Sample records for haplodiploid sex determination

  1. Complementary sex determination substantially increases extinction proneness of haplodiploid populations.

    PubMed

    Zayed, Amro; Packer, Laurence

    2005-07-26

    The role of genetic factors in extinction is firmly established for diploid organisms, but haplodiploids have been considered immune to genetic load impacts because deleterious alleles are readily purged in haploid males. However, we show that single-locus complementary sex determination ancestral to the haplodiploid Hymenoptera (ants, bees, and wasps) imposes a substantial genetic load through homozygosity at the sex locus that results in the production of inviable or sterile diploid males. Using stochastic modeling, we have discovered that diploid male production (DMP) can initiate a rapid and previously uncharacterized extinction vortex. The extinction rate in haplodiploid populations with DMP is an order of magnitude greater than in its absence under realistic but conservative demographic parameter values. Furthermore, DMP alone can elevate the base extinction risk in haplodiploids by over an order of magnitude higher than that caused by inbreeding depression in threatened diploids. Thus, contrary to previous expectations, haplodiploids are more, rather than less, prone to extinction for genetic reasons. Our findings necessitate a fundamental shift in approaches to the conservation and population biology of these ecologically and economically crucial insects.

  2. Wolbachia endosymbionts in haplodiploid and diploid scolytine beetles (Coleoptera: Curculionidae: Scolytinae).

    PubMed

    Kawasaki, Yuuki; Schuler, Hannes; Stauffer, Christian; Lakatos, Ferenc; Kajimura, Hisashi

    2016-05-19

    Haplodiploidy is a sex determination system in which fertilized diploid eggs develop into females and unfertilized haploid eggs develop into males. The evolutionary explanations for this phenomenon include the possibility that haplodiploidy can be reinforced by infection with endosymbiotic bacteria, such as Wolbachia. The subfamily Scolytinae contains species with haplodiploid and diploid sex determination systems. Thus, we studied the association with Wolbachia in 12 diploid and 11 haplodiploid scolytine beetles by analyzing wsp and multilocus sequence typing (MLST) of five loci in this endosymbiont. Wolbachia genotypes were compared with mitochondrial (COI) and nuclear (EF) genotypes in the scolytines. Eight of the 23 scolytine species were infected with Wolbachia, with haplodiploids at significantly higher rates than diploid species. Cloning and sequencing detected multiple infections with up to six Wolbachia strains in individual species. Phylogenetic analyses of wsp and five MLST genes revealed different Wolbachia strains in scolytines. Comparisons between the beetle and Wolbachia phylogenies revealed that closely related beetles were infected with genetically different Wolbachia strains. These results suggest the horizontal transmission of multiple Wolbachia strains between scolytines. We discuss these results in terms of the evolution of different sex determination systems in scolytine beetles. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Mosaicism may explain the evolution of social characters in haplodiploid Hymenoptera with female workers.

    PubMed

    Morpurgo, Giorgio; Babudri, Nora; Fioretti, Bernard; Catacuzzeno, Luigi

    2010-12-01

    The role of haplodiploidy in the evolution of eusocial insects and why in Hymenoptera males do not perform any work is presently unknown. We show here that within-colony conflict caused by the coexistence of individuals of the same caste expressing the same character in different ways can be fundamental in the evolution of social characters in species that have already reached the eusocial condition. Mosaic colonies, composed by individuals expressing either the wild-type or a mutant phenotype, inevitably occurs during the evolution of advantageous social traits in insects. We simulated the evolution of an advantageous social trait increasing colony fitness in haplodiploid and diplodiploid species considering all possible conditions, i.e. dominance/recessivity of the allele determining the new social character, sex of the castes, and influence of mosaicism on the colony fitness. When mosaicism lowered colony fitness below that of the colony homogeneous for the wild type allele, the fixation of an advantageous social character was possible only in haplodiploids with female castes. When mosaicism caused smaller reductions in colony fitness, reaching frequencies of 90% was much faster in haplodiploids with female castes and dominant mutations. Our results suggest that the evolution of social characters is easier in haplodiploid than in diplodiploid species, provided that workers are females.

  4. Sex Determination, Sex Chromosomes, and Karyotype Evolution in Insects.

    PubMed

    Blackmon, Heath; Ross, Laura; Bachtrog, Doris

    2017-01-01

    Insects harbor a tremendous diversity of sex determining mechanisms both within and between groups. For example, in some orders such as Hymenoptera, all members are haplodiploid, whereas Diptera contain species with homomorphic as well as male and female heterogametic sex chromosome systems or paternal genome elimination. We have established a large database on karyotypes and sex chromosomes in insects, containing information on over 13000 species covering 29 orders of insects. This database constitutes a unique starting point to report phylogenetic patterns on the distribution of sex determination mechanisms, sex chromosomes, and karyotypes among insects and allows us to test general theories on the evolutionary dynamics of karyotypes, sex chromosomes, and sex determination systems in a comparative framework. Phylogenetic analysis reveals that male heterogamety is the ancestral mode of sex determination in insects, and transitions to female heterogamety are extremely rare. Many insect orders harbor species with complex sex chromosomes, and gains and losses of the sex-limited chromosome are frequent in some groups. Haplodiploidy originated several times within insects, and parthenogenesis is rare but evolves frequently. Providing a single source to electronically access data previously distributed among more than 500 articles and books will not only accelerate analyses of the assembled data, but also provide a unique resource to guide research on which taxa are likely to be informative to address specific questions, for example, for genome sequencing projects or large-scale comparative studies. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Maternal provision of non-sex-specific transformer messenger RNA in sex determination of the wasp Asobara tabida.

    PubMed

    Geuverink, E; Verhulst, E C; van Leussen, M; van de Zande, L; Beukeboom, L W

    2018-02-01

    In many insect species maternal provision of sex-specifically spliced messenger RNA (mRNA) of sex determination genes is an essential component of the sex determination mechanism. In haplodiploid Hymenoptera, maternal provision in combination with genomic imprinting has been shown for the parasitoid Nasonia vitripennis, known as maternal effect genomic imprinting sex determination (MEGISD). Here, we characterize the sex determination cascade of Asobara tabida, another hymenopteran parasitoid. We show the presence of the conserved sex determination genes doublesex (dsx), transformer (tra) and transformer-2 (tra2) orthologues in As. tabida. Of these, At-dsx and At-tra are sex-specifically spliced, indicating a conserved function in sex determination. At-tra and At-tra2 mRNA is maternally provided to embryos but, in contrast to most studied insects, As. tabida females transmit a non-sex-specific splice form of At-tra mRNA to the eggs. In this respect, As. tabida sex determination differs from the MEGISD mechanism. How the paternal genome can induce female development in the absence of maternal provision of sex-specifically spliced mRNA remains an open question. Our study reports a hitherto unknown variant of maternal effect sex determination and accentuates the diversity of insect sex determination mechanisms. © 2017 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.

  6. Insect Sex Determination Manipulated by Their Endosymbionts: Incidences, Mechanisms and Implications.

    PubMed

    Kageyama, Daisuke; Narita, Satoko; Watanabe, Masaya

    2012-02-10

    The sex-determining systems of arthropods are surprisingly diverse. Some species have male or female heterogametic sex chromosomes while other species do not have sex chromosomes. Most species are diploids but some species, including wasps, ants, thrips and mites, are haplodiploids (n in males; 2n in females). Many of the sexual aberrations, such as sexual mosaics, sex-specific lethality and conversion of sexuality, can be explained by developmental defects including double fertilization of a binucleate egg, loss of a sex chromosome or perturbation of sex-determining gene expression, which occur accidentally or are induced by certain environmental conditions. However, recent studies have revealed that such sexual aberrations can be caused by various groups of vertically-transmitted endosymbiotic microbes such as bacteria of the genera Wolbachia, Rickettsia, Arsenophonus, Spiroplasma and Cardinium, as well as microsporidian protists. In this review, we first summarize the accumulated data on endosymbiont-induced sexual aberrations, and then discuss how such endosymbionts affect the developmental system of their hosts and what kinds of ecological and evolutionary effects these endosymbionts have on their host populations.

  7. Insect Sex Determination Manipulated by Their Endosymbionts: Incidences, Mechanisms and Implications

    PubMed Central

    Kageyama, Daisuke; Narita, Satoko; Watanabe, Masaya

    2012-01-01

    The sex-determining systems of arthropods are surprisingly diverse. Some species have male or female heterogametic sex chromosomes while other species do not have sex chromosomes. Most species are diploids but some species, including wasps, ants, thrips and mites, are haplodiploids (n in males; 2n in females). Many of the sexual aberrations, such as sexual mosaics, sex-specific lethality and conversion of sexuality, can be explained by developmental defects including double fertilization of a binucleate egg, loss of a sex chromosome or perturbation of sex-determining gene expression, which occur accidentally or are induced by certain environmental conditions. However, recent studies have revealed that such sexual aberrations can be caused by various groups of vertically-transmitted endosymbiotic microbes such as bacteria of the genera Wolbachia, Rickettsia, Arsenophonus, Spiroplasma and Cardinium, as well as microsporidian protists. In this review, we first summarize the accumulated data on endosymbiont-induced sexual aberrations, and then discuss how such endosymbionts affect the developmental system of their hosts and what kinds of ecological and evolutionary effects these endosymbionts have on their host populations. PMID:26467955

  8. Cytonuclear Theory for Haplodiploid Species and X-Linked Genes. I. Hardy-Weinberg Dynamics and Continent-Island, Hybrid Zone Models

    PubMed Central

    Goodisman, MAD.; Asmussen, M. A.

    1997-01-01

    We develop models that describe the cytonuclear structure for either a cytoplasmic and nuclear marker in a haplodiploid species or a cytoplasmic and X-linked marker in a diploid species. Sex-specific disequilibrium statistics that summarize nonrandom cytonuclear associations in such systems are defined, and their basic Hardy-Weinberg dynamics and admixture formulae are delimited. We focus on the context of hybrid zones and develop continent-island models whereby individuals from two genetically differentiated source populations migrate into and mate within a single zone of admixture. We examine the effects of differential migration of the sexes, assortative mating by pure type females, and census time (relative to mating and migration), as well as special cases of random mating and migration subsumed under the general models. We show that pure type individuals and nonzero cytonuclear disequilibria can be maintained within a hybrid zone if there is continued migration from both source populations, and that females generally have a greater influence over these cytonuclear variables than males. The resulting theoretical framework can be used to estimate the rates of assortative mating and sex-specific gene flow in hybrid zones and other zones of admixture involving haplodiploid or sex-linked cytonuclear data. PMID:9286692

  9. Phylogenetic distribution and evolutionary dynamics of the sex determination genes doublesex and transformer in insects.

    PubMed

    Geuverink, E; Beukeboom, L W

    2014-01-01

    Sex determination in insects is characterized by a gene cascade that is conserved at the bottom but contains diverse primary signals at the top. The bottom master switch gene doublesex is found in all insects. Its upstream regulator transformer is present in the orders Hymenoptera, Coleoptera and Diptera, but has thus far not been found in Lepidoptera and in the basal lineages of Diptera. transformer is presumed to be ancestral to the holometabolous insects based on its shared domains and conserved features of autoregulation and sex-specific splicing. We interpret that its absence in basal lineages of Diptera and its order-specific conserved domains indicate multiple independent losses or recruitments into the sex determination cascade. Duplications of transformer are found in derived families within the Hymenoptera, characterized by their complementary sex determination mechanism. As duplications are not found in any other insect order, they appear linked to the haplodiploid reproduction of the Hymenoptera. Further phylogenetic analyses combined with functional studies are needed to understand the evolutionary history of the transformer gene among insects. © 2013 S. Karger AG, Basel.

  10. Hybrid incompatibilities are affected by dominance and dosage in the haplodiploid wasp Nasonia

    PubMed Central

    Beukeboom, Leo W.; Koevoets, Tosca; Morales, Hernán E.; Ferber, Steven; van de Zande, Louis

    2015-01-01

    Study of genome incompatibilities in species hybrids is important for understanding the genetic basis of reproductive isolation and speciation. According to Haldane's rule hybridization affects the heterogametic sex more than the homogametic sex. Several theories have been proposed that attribute asymmetry in hybridization effects to either phenotype (sex) or genotype (heterogamety). Here we investigate the genetic basis of hybrid genome incompatibility in the haplodiploid wasp Nasonia using the powerful features of haploid males and sex reversal. We separately investigate the effects of heterozygosity (ploidy level) and sex by generating sex reversed diploid hybrid males and comparing them to genotypically similar haploid hybrid males and diploid hybrid females. Hybrid effects of sterility were more pronounced than of inviability, and were particularly strong in haploid males, but weak to absent in diploid males and females, indicating a strong ploidy level but no sex specific effect. Molecular markers identified a number of genomic regions associated with hybrid inviability in haploid males that disappeared under diploidy in both hybrid males and females. Hybrid inviability was rescued by dominance effects at some genomic regions, but aggravated or alleviated by dosage effects at other regions, consistent with cytonuclear incompatibilities. Dosage effects underlying Bateson–Dobzhansky–Muller (BDM) incompatibilities need more consideration in explaining Haldane's rule in diploid systems. PMID:25926847

  11. A New Component of the Nasonia Sex Determining Cascade Is Maternally Silenced and Regulates Transformer Expression

    PubMed Central

    Bopp, Daniel; Beukeboom, Leo W.; van de Zande, Louis

    2013-01-01

    Although sex determination is a universal process in sexually reproducing organisms, sex determination pathways are among the most highly variable genetic systems found in nature. Nevertheless, general principles can be identified among the diversity, like the central role of transformer (tra) in insects. When a functional TRA protein is produced in early embryogenesis, the female sex determining route is activated, while prevention of TRA production leads to male development. In dipterans, male development is achieved by prevention of female-specific splicing of tra mRNA, either mediated by X-chromosome dose or masculinizing factors. In Hymenoptera, which have haplodiploid sex determination, complementary sex determination and maternal imprinting have been identified to regulate timely TRA production. In the parasitoid Nasonia, zygotic transformer (Nvtra) expression and splicing is regulated by a combination of maternal provision of Nvtra mRNA and silencing of Nvtra expression in unfertilized eggs. It is unclear, however, if this silencing is directly on the tra locus or whether it is mediated through maternal silencing of a trans-acting factor. Here we show that in Nasonia, female sex determination is dependent on zygotic activation of Nvtra expression by an as yet unknown factor. This factor, which we propose to term womanizer (wom), is maternally silenced during oogenesis to ensure male development in unfertilized eggs. This finding implicates the upstream recruitment of a novel gene in the Nasonia sex determining cascade and supports the notion that sex determining cascades can rapidly change by adding new components on top of existing regulators. PMID:23717455

  12. Contagious parthenogenesis, automixis, and a sex determination meltdown.

    PubMed

    Engelstädter, Jan; Sandrock, Christoph; Vorburger, Christoph

    2011-02-01

    Because of the twofold cost of sex, genes conferring asexual reproduction are expected to spread rapidly in sexual populations. However, in reality this simple prediction is often confounded by several complications observed in natural systems. Motivated by recent findings in the Cape honey bee and in the parasitoid wasp Lysiphlebus fabarum, we explore through mathematical models the spread of a recessive, parthenogenesis inducing allele in a haplodiploid population. The focus of these models is on the intricate interactions between the mode of parthenogenesis induction through automixis and complementary sex determination (CSD) systems. These interactions may result in asexual production of diploid male offspring and the spread of the parthenogenesis-inducing allele through these males. We demonstrate that if parthenogenetic females produce a substantial proportion of male offspring, this may prevent the parthenogenesis-inducing allele from spreading. However, this effect is weakened if these diploid males are at least partially fertile. We also predict a degradation of multilocus CSD systems during the spread of parthenogenesis, following which only a single polymorphic CSD locus is maintained. Finally, based on empirical parameter estimates from L. fabarum we predict that male production in parthenogens is unlikely to prevent the eventual loss of sexual reproduction in this system. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  13. Polyploidy in animals: effects of gene expression on sex determination, evolution and ecology.

    PubMed

    Wertheim, B; Beukeboom, L W; van de Zande, L

    2013-01-01

    Polyploidy is rarer in animals than in plants. Why? Since Muller's observation in 1925, many hypotheses have been proposed and tested, but none were able to completely explain this intriguing fact. New genomic technologies enable the study of whole genomes to explain the constraints on or consequences of polyploidization, rather than focusing on specific genes or life history characteristics. Here, we review a selection of old and recent literature on polyploidy in animals, with emphasis on the consequences of polyploidization for gene expression patterns and genomic network interactions. We propose a conceptual model to contrast various scenarios for changes in genomic networks, which may serve as a framework to explain the different evolutionary dynamics of polyploidy in animals and plants. We also present new insights of genetic sex determination in animals and our emerging understanding of how animal sex determination systems may hamper or enable polyploidization, including some recent data on haplodiploids. We discuss the role of polyploidy in evolution and ecology, using a gene regulation perspective, and conclude with a synopsis regarding the effects of whole genome duplications on the balance of genomic networks. See also the sister articles focusing on plants by Ashman et al. and Madlung and Wendel in this themed issue. Copyright © 2013 S. Karger AG, Basel.

  14. Apomictic parthenogenesis in a parasitoid wasp Meteorus pulchricornis, uncommon in the haplodiploid order Hymenoptera.

    PubMed

    Tsutsui, Y; Maeto, K; Hamaguchi, K; Isaki, Y; Takami, Y; Naito, T; Miura, K

    2014-06-01

    Although apomixis is the most common form of parthenogenesis in diplodiploid arthropods, it is uncommon in the haplodiploid insect order Hymenoptera. We found a new type of spontaneous apomixis in the Hymenoptera, completely lacking meiosis and the expulsion of polar bodies in egg maturation division, on the thelytokous strain of a parasitoid wasp Meteorus pulchricornis (Wesmael) (Braconidae, Euphorinae) on pest lepidopteran larvae Spodoptera litura (Fabricius) (Noctuidae). The absence of the meiotic process was consistent with a non-segregation pattern in the offspring of heterozygous females, and no positive evidence was obtained for the induction of thelytoky by any bacterial symbionts. We discuss the conditions that enable the occurrence of such rare cases of apomictic thelytoky in the Hymenoptera, suggesting the significance of fixed heterosis caused by hybridization or polyploidization, symbiosis with bacterial agents, and occasional sex. Our finding will encourage further genetic studies on parasitoid wasps to use asexual lines more wisely for biological control.

  15. Towards a Genetic Theory for the Evolution of the Sex Ratio

    PubMed Central

    Uyenoyama, Marcy K.; Bengtsson, Bengt Olle

    1979-01-01

    A genetical model is formulated in which the sex ratio in broods and the relative size of broods are determined by the genotype at an autosomal locus. The results also apply to the case in which the sex-ratio locus is sex linked and expressed in the homogametic sex and to the case in which the locus is expressed in the diploid sex of a haplodiploid organism. Fisher (1930) argued that the sex ratio evolves under natural selection to a value such that parental expenditure is equalized between the sexes. Shaw and Mohler (1953) and MacArthur (1965) proposed that the sex ratio evolves to increase a certain expression for fitness. The sex ratio suggested by Fisher (1930) is in fact identical to the sex ratio specified by these maximization principles. Further, in our model, the Fisherian sex ratio corresponds exactly to the sex ratio at certain equilibria that are approached whenever they exist. PMID:17248977

  16. Hybrid incompatibilities in the parasitic wasp genus Nasonia: negative effects of hemizygosity and the identification of transmission ratio distortion loci

    PubMed Central

    Koevoets, T; Niehuis, O; van de Zande, L; Beukeboom, L W

    2012-01-01

    The occurrence of hybrid incompatibilities forms an important stage during the evolution of reproductive isolation. In early stages of speciation, males and females often respond differently to hybridization. Haldane's rule states that the heterogametic sex suffers more from hybridization than the homogametic sex. Although haplodiploid reproduction (haploid males, diploid females) does not involve sex chromosomes, sex-specific incompatibilities are predicted to be prevalent in haplodiploid species. Here, we evaluate the effect of sex/ploidy level on hybrid incompatibilities and locate genomic regions that cause increased mortality rates in hybrid males of the haplodiploid wasps Nasonia vitripennis and Nasonia longicornis. Our data show that diploid F1 hybrid females suffer less from hybridization than haploid F2 hybrid males. The latter not only suffer from an increased mortality rate, but also from behavioural and spermatogenic sterility. Genetic mapping in recombinant F2 male hybrids revealed that the observed hybrid mortality is most likely due to a disruption of cytonuclear interactions. As these sex-specific hybrid incompatibilities follow predictions based on Haldane's rule, our data accentuate the need to broaden the view of Haldane's rule to include species with haplodiploid sex determination, consistent with Haldane's original definition. PMID:21878985

  17. Hybrid incompatibilities in the parasitic wasp genus Nasonia: negative effects of hemizygosity and the identification of transmission ratio distortion loci.

    PubMed

    Koevoets, T; Niehuis, O; van de Zande, L; Beukeboom, L W

    2012-03-01

    The occurrence of hybrid incompatibilities forms an important stage during the evolution of reproductive isolation. In early stages of speciation, males and females often respond differently to hybridization. Haldane's rule states that the heterogametic sex suffers more from hybridization than the homogametic sex. Although haplodiploid reproduction (haploid males, diploid females) does not involve sex chromosomes, sex-specific incompatibilities are predicted to be prevalent in haplodiploid species. Here, we evaluate the effect of sex/ploidy level on hybrid incompatibilities and locate genomic regions that cause increased mortality rates in hybrid males of the haplodiploid wasps Nasonia vitripennis and Nasonia longicornis. Our data show that diploid F(1) hybrid females suffer less from hybridization than haploid F(2) hybrid males. The latter not only suffer from an increased mortality rate, but also from behavioural and spermatogenic sterility. Genetic mapping in recombinant F(2) male hybrids revealed that the observed hybrid mortality is most likely due to a disruption of cytonuclear interactions. As these sex-specific hybrid incompatibilities follow predictions based on Haldane's rule, our data accentuate the need to broaden the view of Haldane's rule to include species with haplodiploid sex determination, consistent with Haldane's original definition.

  18. Genomics of sex determination.

    PubMed

    Zhang, Jisen; Boualem, Adnane; Bendahmane, Abdelhafid; Ming, Ray

    2014-04-01

    Sex determination is a major switch in the evolutionary history of angiosperm, resulting 11% monoecious and dioecious species. The genomic sequences of papaya sex chromosomes unveiled the molecular basis of recombination suppression in the sex determination region, and candidate genes for sex determination. Identification and analyses of sex determination genes in cucurbits and maize demonstrated conservation of sex determination mechanism in one lineage and divergence between the two systems. Epigenetic control and hormonal influence of sex determination were elucidated in both plants and animals. Intensive investigation of potential sex determination genes in model species will improve our understanding of sex determination gene network. Such network will in turn accelerate the identification of sex determination genes in dioecious species with sex chromosomes, which are burdensome due to no recombination in sex determining regions. The sex determination genes in dioecious species are crucial for understanding the origin of dioecy and sex chromosomes, particularly in their early stage of evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Plant Sex Determination.

    PubMed

    Pannell, John R

    2017-03-06

    Sex determination is as important for the fitness of plants as it is for animals, but its mechanisms appear to vary much more among plants than among animals, and the expression of gender in plants differs in important respects from that in most animals. In this Minireview, I provide an overview of the broad variety of ways in which plants determine sex. I suggest that several important peculiarities of plant sex determination can be understood by recognising that: plants show an alternation of generations between sporophytic and gametophytic phases (either of which may take control of sex determination); plants are modular in structure and lack a germ line (allowing for a quantitative expression of gender that is not common in animals); and separate sexes in plants have ultimately evolved from hermaphroditic ancestors. Most theorising about sex determination in plants has focused on dioecious species, but we have much to learn from monecious or hermaphroditic species, where sex is determined at the level of modules, tissues or cells. Because of the fundamental modularity of plant development and potentially important evolutionary links between monoecy and dioecy, it may be useful to relax the distinction often made between 'developmental sex determination' (which underpins the development of male versus female flowers in monoecious species) and 'genetic sex determination' (which underpins the separation of males and females in dioecious species, often mediated by a genetic polymorphism and sex chromosomes). I also argue for relaxing the distinction between sex determination involving a genetic polymorphism and that involving responses to environmental or hormonal cues, because non-genetic cues might easily be converted into genetic switches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sex determination in papaya.

    PubMed

    Ming, Ray; Yu, Qingyi; Moore, Paul H

    2007-06-01

    Sex determination is an intriguing system in trioecious papaya. Over the past seven decades various hypotheses, based on the knowledge and information available at the time, have been proposed to explain the genetics of the papaya's sex determination. These include a single gene with three alleles, a group of closely linked genes, a genic balance of sex chromosome over autosomes, classical XY chromosomes, and regulatory elements of the flower development pathway. Recent advancements in genomic technology make it possible to characterize the genomic region involved in sex determination at the molecular level. High density linkage mapping validated the hypothesis that predicted recombination suppression at the sex determination locus. Physical mapping and sample sequencing of the non-recombination region led to the conclusion that sex determination is controlled by a pair of primitive sex chromosomes with a small male-specific region (MSY) of the Y chromosome. We now postulate that two sex determination genes control the sex determination pathway. One, a feminizing or stamen suppressor gene, causes stamen abortion before or at flower inception while the other, a masculinizing or carpel suppressor gene, causes carpel abortion at a later flower developmental stage. Detailed physical mapping is beginning to reveal structural details about the sex determination region and sequencing is expected to uncover candidate sex determining genes. Cloning of the sex determination genes and understanding the sex determination process could have profound application in papaya production.

  1. The ecology of sex explains patterns of helping in arthropod societies.

    PubMed

    Davies, Nicholas G; Ross, Laura; Gardner, Andy

    2016-08-01

    Across arthropod societies, sib-rearing (e.g. nursing or nest defence) may be provided by females, by males or by both sexes. According to Hamilton's 'haplodiploidy hypothesis', this diversity reflects the relatedness consequences of diploid vs. haplodiploid inheritance. However, an alternative 'preadaptation hypothesis' instead emphasises an interplay of ecology and the co-option of ancestral, sexually dimorphic traits for sib-rearing. The preadaptation hypothesis has recently received empirical support, but remains to be formalised. Here, we mathematically model the coevolution of sex-specific helping and sex allocation, contrasting these hypotheses. We find that ploidy per se has little effect. Rather, the ecology of sex shapes patterns of helping: sex-specific preadaptation strongly influences who helps; a freely adjustable sex ratio magnifies sex biases and promotes helping; and sib-mating, promiscuity, and reproductive autonomy also modulate the sex and abundance of helpers. An empirical survey reveals that patterns of sex-specific helping in arthropod taxa are consistent with the preadaptation hypothesis. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  2. Transitions in sex determination and sex chromosomes across vertebrate species.

    PubMed

    Pennell, Matthew W; Mank, Judith E; Peichel, Catherine L

    2018-02-16

    Despite the prevalence of sexual reproduction across eukaryotes, there is a remarkable diversity of sex-determination mechanisms. The underlying causes of this diversity remain unclear, and it is unknown whether there are convergent trends in the directionality of turnover in sex-determination mechanisms. We used the recently assembled Tree of Sex database to assess patterns in the evolution of sex-determination systems in the remarkably diverse vertebrate clades of teleost fish, squamate reptiles and amphibians. Contrary to theoretical predictions, we find no evidence that the evolution of separate sexes is irreversible, as transitions from separate sexes to hermaphroditism occur at higher rates than the reverse in fish. We also find that transitions from environmental sex determination to genetic sex determination occur at higher rates than the reverse in both squamates and fish, suggesting that genetic sex determination is more stable. However, our data are not consistent with the hypothesis that heteromorphic sex chromosomes are an "evolutionary trap." Rather, we find similar transition rates between homomorphic and heteromorphic sex chromosomes in both fish and amphibians, and to environmental sex determination from heteromorphic vs. homomorphic sex chromosome systems in fish. Finally, we find that transitions between male and female heterogamety occur at similar rates in amphibians and squamates, while transitions to male heterogamety occur at higher rates in fish. Together, these results provide the most comprehensive view to date of the evolution of vertebrate sex determination in a phylogenetic context, providing new insight into long-standing questions about the evolution of sexual reproduction. © 2018 John Wiley & Sons Ltd.

  3. Sex selection and restricting abortion and sex determination.

    PubMed

    Zilberberg, Julie

    2007-11-01

    Sex selection in India and China is fostered by a limiting social structure that disallows women from performing the roles that men perform, and relegates women to a lower status level. Individual parents and individual families benefit concretely from having a son born into the family, while society, and girls and women as a group, are harmed by the widespread practice of sex selection. Sex selection reinforces oppression of women and girls. Sex selection is best addressed by ameliorating the situations of women and girls, increasing their autonomy, and elevating their status in society. One might argue that restricting or prohibiting abortion, prohibiting sex selection, and prohibiting sex determination would eliminate sex selective abortion. But this decreases women's autonomy rather than increases it. Such practices will turn underground. Sex selective infanticide, and slower death by long term neglect, could increase. If abortion is restricted, the burden is placed on women seeking abortions to show that they have a legally acceptable or legitimate reason for a desired abortion, and this seriously limits women's autonomy. Instead of restricting abortion, banning sex selection, and sex determination, it is better to address the practice of sex selection by elevating the status of women and empowering women so that giving birth to a girl is a real and positive option, instead of a detriment to the parents and family as it is currently. But, if a ban on sex selective abortion or a ban on sex determination is indeed instituted, then wider social change promoting women's status in society should be instituted simultaneously.

  4. Random sex determination: When developmental noise tips the sex balance.

    PubMed

    Perrin, Nicolas

    2016-12-01

    Sex-determining factors are usually assumed to be either genetic or environmental. The present paper aims at drawing attention to the potential contribution of developmental noise, an important but often-neglected component of phenotypic variance. Mutual inhibitions between male and female pathways make sex a bistable equilibrium, such that random fluctuations in the expression of genes at the top of the cascade are sufficient to drive individual development toward one or the other stable state. Evolutionary modeling shows that stochastic sex determinants should resist elimination by genetic or environmental sex determinants under ecologically meaningful settings. On the empirical side, many sex-determination systems traditionally considered as environmental or polygenic actually provide evidence for large components of stochasticity. In reviewing the field, I argue that sex-determination systems should be considered within a three-ends continuum, rather than the classical two-ends continuum. © 2016 WILEY Periodicals, Inc.

  5. Polygenic Sex Determination System in Zebrafish

    PubMed Central

    Liew, Woei Chang; Bartfai, Richard; Lim, Zijie; Sreenivasan, Rajini; Siegfried, Kellee R.; Orban, Laszlo

    2012-01-01

    Background Despite the popularity of zebrafish as a research model, its sex determination (SD) mechanism is still unknown. Most cytogenetic studies failed to find dimorphic sex chromosomes and no primary sex determining switch has been identified even though the assembly of zebrafish genome sequence is near to completion and a high resolution genetic map is available. Recent publications suggest that environmental factors within the natural range have minimal impact on sex ratios of zebrafish populations. The primary aim of this study is to find out more about how sex is determined in zebrafish. Methodology/Principal Findings Using classical breeding experiments, we found that sex ratios across families were wide ranging (4.8% to 97.3% males). On the other hand, repeated single pair crossings produced broods of very similar sex ratios, indicating that parental genotypes have a role in the sex ratio of the offspring. Variation among family sex ratios was reduced after selection for breeding pairs with predominantly male or female offspring, another indication that zebrafish sex is regulated genetically. Further examinations by a PCR-based “blind assay" and array comparative genomic hybridization both failed to find universal sex-linked differences between the male and female genomes. Together with the ability to increase the sex bias of lines by selective breeding, these data suggest that zebrafish is unlikely to utilize a chromosomal sex determination (CSD) system. Conclusions/Significance Taken together, our study suggests that zebrafish sex is genetically determined with limited, secondary influences from the environment. As we have not found any sign for CSD in the species, we propose that the zebrafish has a polygenic sex determination system. PMID:22506019

  6. Does the mechanism of sex determination constrain the potential for sex manipulation? A test in geckos with contrasting sex-determining systems

    NASA Astrophysics Data System (ADS)

    Kratochvíl, Lukáš; Kubička, Lukáš; Landová, Eva

    2008-03-01

    The concentration of yolk steroids was suggested to influence offspring gender in oviparous animals subject to both temperature-dependent sex determination (TSD) and genotypic sex determination (GSD). However, the proposed mechanisms of steroid effects are thought to differ between TSD and GSD: a direct effect of oestrogens on gonad feminisation in TSD species vs a differential induction of male-producing or female-producing gametes in GSD species. Geckos offer an ideal opportunity for testing these suggested mechanisms. Closely related gecko species differ in their modes of sex determination. They lay clutches of two synchronously formed eggs; both eggs share equal steroid levels. If identical hormonal composition and environment during vitellogenesis, gravidity and incubation determine the sex of the progeny, siblings should share the same gender in both TSD and GSD geckos. We found strong support for this prediction in a TSD gecko species. Among clutches that were incubated at the temperature that produced both sexes, there were no clutches with siblings of the opposite sex. On the other hand, about half of the clutches yielded siblings of the opposite sex in four GSD species. These results suggest that sex-determining systems constrain the ability of the female to produce single-sex siblings and, hence, it seems that the GSD mechanism constrains the opportunities for sex ratio manipulation in geckos via yolk steroid manipulation.

  7. Functional and evolutionary insights from the genomes of three parasitoid nasonia species

    USDA-ARS?s Scientific Manuscript database

    Parasitoid wasps are significant natural enemies of a broad range of arthropods with considerable ecological and economic impact. There are more species beneficial to humans among the parasitoid wasps than in any other insect group. They have haplodiploid sex determination (development of males from...

  8. Identification and characterization of doublesex in Bemisia tabaci.

    PubMed

    Guo, L; Xie, W; Liu, Y; Yang, Z; Yang, X; Xia, J; Wang, S; Wu, Q; Zhang, Y

    2018-04-16

    Bemisia tabaci (Gennadius) is an important agricultural pest with a worldwide distribution. Although B. tabaci is known to have a unique haplodiploid reproductive strategy, its sex determination mechanism is largely unknown. In this study, we cloned the full-length sequence of B. tabaci doublesex (Btdsx) and found that Btdsx has 28 splicing isoforms. We found two new splicing isoforms of transformer 2 (Bttra2), which encode two proteins. We also confirmed that both genes lack sex-specific splicing isoforms. Real-time quantitative PCR analysis showed that the expression of Btdsx and Bttra2 is higher in males than in females. RNA interference of Bttra2 affected the expression of Btdsx and vice versa. Furthermore, silencing of Bttra2 or Btdsx caused malformation of the male genitalia (anal style). It did not affect the female phenotype, but reduced the expression of vitellogenin gene in females. These results indicate that Btdsx is associated with sex determination in B. tabaci and that Btdsx and Bttra2 affect each other and are important for male genitalia formation. In addition to increasing our understanding of the roles of dsx and tra2 in the sex determination of B. tabaci, the results will be useful for studies of sex determination in other haplodiploid species. © 2018 The Royal Entomological Society.

  9. Molecular players involved in temperature-dependent sex determination and sex differentiation in Teleost fish

    PubMed Central

    2014-01-01

    The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream in the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed. PMID:24735220

  10. Climate-driven shifts in adult sex ratios via sex reversals: the type of sex determination matters.

    PubMed

    Bókony, Veronika; Kövér, Szilvia; Nemesházi, Edina; Liker, András; Székely, Tamás

    2017-09-19

    Sex reversals whereby individuals of one genetic sex develop the phenotype of the opposite sex occur in ectothermic vertebrates with genetic sex-determination systems that are sensitive to extreme temperatures during sexual differentiation. Recent rises in global temperatures have led researchers to predict that sex reversals will become more common, resulting in the distortion of many populations' sex ratios. However, it is unclear whether susceptibility to climate-driven sex-ratio shifts depends on the type of sex determination that varies across species. First, we show here using individual-based theoretical models that XX/XY (male-heterogametic) and ZZ/ZW (female-heterogametic) sex-determination systems can respond differentially to temperature-induced sex reversals. Interestingly, the impacts of climate warming on adult sex ratio (ASR) depend on the effects of both genotypic and phenotypic sex on survival and reproduction. Second, we analyse the temporal changes of ASR in natural amphibian populations using data from the literature, and find that ASR shifted towards males in ZZ/ZW species over the past 60 years, but did not change significantly in XX/XY species. Our results highlight the fact that we need a better understanding of the interactions between genetic and environmental sex-determining mechanisms to predict the responses of ectotherms to climate change and the associated extinction risks.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'. © 2017 The Author(s).

  11. Vertebrate sex-determining genes play musical chairs

    PubMed Central

    Pan, Qiaowei; Anderson, Jennifer; Bertho, Sylvain; Herpin, Amaury; Wilson, Catherine; Postlethwait, John H.; Schartl, Manfred; Guiguen, Yann

    2017-01-01

    Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome. PMID:27291506

  12. Vertebrate sex-determining genes play musical chairs.

    PubMed

    Pan, Qiaowei; Anderson, Jennifer; Bertho, Sylvain; Herpin, Amaury; Wilson, Catherine; Postlethwait, John H; Schartl, Manfred; Guiguen, Yann

    2016-01-01

    Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome. Copyright © 2016 Académie des sciences. All rights reserved.

  13. Patterns of reproductive isolation in a haplodiploid - strong post-mating, prezygotic barriers among three forms of a social spider mite.

    PubMed

    Sato, Yukie; Sakamoto, Hironori; Gotoh, Tetsuo; Saito, Yutaka; Chao, Jung-Tai; Egas, Martijn; Mochizuki, Atsushi

    2018-06-01

    In speciation research, much attention is paid to the evolution of reproductive barriers, preventing diverging groups from hybridizing back into one gene pool. The prevalent view is that reproductive barriers evolve gradually as a by-product of genetic changes accumulated by natural selection and genetic drift in groups that are segregated spatially and/or temporally. Reproductive barriers, however, can also be reinforced by natural selection against maladaptive hybridization. These mutually compatible theories are both empirically supported by studies, analysing relationships between intensity of reproductive isolation and genetic distance in sympatric taxa and allopatric taxa. Here, we present the - to our knowledge - first comparative study in a haplodiploid organism, the social spider mite Stigmaeopsis miscanthi, by measuring premating and post-mating, pre- and post-zygotic components of reproductive isolation, using three recently diverged forms of the mite that partly overlap in home range. We carried out cross-experiments and measured genetic distances (mitochondrial DNA and nuclear DNA) among parapatric and allopatric populations of the three forms. Our results show that the three forms are reproductively isolated, despite the absence of premating barriers, and that the post-mating, prezygotic component contributes most to reproductive isolation. As expected, the strength of post-mating reproductive barriers positively correlated with genetic distance. We did not find a clear pattern of prezygotic barriers evolving faster in parapatry than in allopatry, although one form did show a trend in line with the ecological and behavioural relationships between the forms. Our study advocates the versatility of haplodiploid animals for investigating the evolution of reproductive barriers. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  14. Sex determination in mythology and history.

    PubMed

    Mittwoch, Ursula

    2005-02-01

    The history of ideas on how the sexes became divided spans at least three thousand years. The biblical account of the origin of Eve, and the opinions of the philosophers of classical Greece, have unexpected bearings on present-day ideas. The scientific study of sex determination can be said to have begun in the 17th century with the discovery of spermatozoa, but the origin and function of the "spermatic animalcules" eluded investigators until 1841. The mammalian egg was discovered in 1827, and in the last quarter of the century fertilization was observed. The view current at that time, that sex determination was under environmental control, gave way to the idea of chromosomal determination in the first quarter of the 20th century. The study of human and other mammalian chromosomes during the third quarter of the century, and the discovery of sex-chromosome abnormalities, emphasized the importance of the Y chromosome for male sex determination. The last quarter of the century witnessed a hunt for the "testis-determining" gene, thought to be responsible for the differentiation of Sertoli cells, and culminating in the isolation of SRY (Sry in the mouse). However, an increasing number of additional genes and growth factors were found to be required for the establishment of male sex. During the same period evidence emerged that male development was accompanied by enhanced growth, both of gonads and whole embryos. An unexpected finding was the demonstration of temperature-dependent sex determination in reptiles. With the advent of the 21st century, it was shown that Sry induces cell proliferation in fetal mouse gonads, and it has been suggested that male sex differentiation in mammals requires a higher metabolic rate. These insights could lead to a better understanding and improved treatment of abnormalities of sexual development.

  15. The Variety of Vertebrate Mechanisms of Sex Determination

    PubMed Central

    Trukhina, Antonina V.; Lukina, Natalia A.; Wackerow-Kouzova, Natalia D.; Smirnov, Alexander F.

    2013-01-01

    The review deals with features of sex determination in vertebrates. The mechanisms of sex determination are compared between fishes, amphibians, reptilians, birds, and mammals. We focus on structural and functional differences in the role of sex-determining genes in different vertebrates. Special attention is paid to the role of estrogens in sex determination in nonmammalian vertebrates. PMID:24369014

  16. The variety of vertebrate mechanisms of sex determination.

    PubMed

    Trukhina, Antonina V; Lukina, Natalia A; Wackerow-Kouzova, Natalia D; Smirnov, Alexander F

    2013-01-01

    The review deals with features of sex determination in vertebrates. The mechanisms of sex determination are compared between fishes, amphibians, reptilians, birds, and mammals. We focus on structural and functional differences in the role of sex-determining genes in different vertebrates. Special attention is paid to the role of estrogens in sex determination in nonmammalian vertebrates.

  17. Conflict over condition-dependent sex allocation can lead to mixed sex-determination systems

    PubMed Central

    Kuijper, Bram; Pen, Ido

    2014-01-01

    Theory suggests that genetic conflicts drive turnovers between sex-determining mechanisms, yet these studies only apply to cases where sex allocation is independent of environment or condition. Here, we model parent–offspring conflict in the presence of condition-dependent sex allocation, where the environment has sex-specific fitness consequences. Additionally, one sex is assumed to be more costly to produce than the other, which leads offspring to favor a sex ratio less biased toward the cheaper sex in comparison to the sex ratio favored by mothers. The scope for parent–offspring conflict depends on the relative frequency of both environments: when one environment is less common than the other, parent–offspring conflict can be reduced or even entirely absent, despite a biased population sex ratio. The model shows that conflict-driven invasions of condition-independent sex factors (e.g., sex chromosomes) result either in the loss of condition-dependent sex allocation, or, interestingly, lead to stable mixtures of condition-dependent and condition-independent sex factors. The latter outcome corresponds to empirical observations in which sex chromosomes are present in organisms with environment-dependent sex determination. Finally, conflict can also favor errors in environmental perception, potentially resulting in the loss of condition-dependent sex allocation without genetic changes to sex-determining loci. PMID:25180669

  18. Wild Sex in Zebrafish: Loss of the Natural Sex Determinant in Domesticated Strains

    PubMed Central

    Wilson, Catherine A.; High, Samantha K.; McCluskey, Braedan M.; Amores, Angel; Yan, Yi-lin; Titus, Tom A.; Anderson, Jennifer L.; Batzel, Peter; Carvan, Michael J.; Schartl, Manfred; Postlethwait, John H.

    2014-01-01

    Sex determination can be robustly genetic, strongly environmental, or genetic subject to environmental perturbation. The genetic basis of sex determination is unknown for zebrafish (Danio rerio), a model for development and human health. We used RAD-tag population genomics to identify sex-linked polymorphisms. After verifying this “RAD-sex” method on medaka (Oryzias latipes), we studied two domesticated zebrafish strains (AB and TU), two natural laboratory strains (WIK and EKW), and two recent isolates from nature (NA and CB). All four natural strains had a single sex-linked region at the right tip of chromosome 4, enabling sex genotyping by PCR. Genotypes for the single nucleotide polymorphism (SNP) with the strongest statistical association to sex suggested that wild zebrafish have WZ/ZZ sex chromosomes. In natural strains, “male genotypes” became males and some “female genotypes” also became males, suggesting that the environment or genetic background can cause female-to-male sex reversal. Surprisingly, TU and AB lacked detectable sex-linked loci. Phylogenomics rooted on D. nigrofasciatus verified that all strains are monophyletic. Because AB and TU branched as a monophyletic clade, we could not rule out shared loss of the wild sex locus in a common ancestor despite their independent domestication. Mitochondrial DNA sequences showed that investigated strains represent only one of the three identified zebrafish haplogroups. Results suggest that zebrafish in nature possess a WZ/ZZ sex-determination mechanism with a major determinant lying near the right telomere of chromosome 4 that was modified during domestication. Strains providing the zebrafish reference genome lack key components of the natural sex-determination system but may have evolved variant sex-determining mechanisms during two decades in laboratory culture. PMID:25233988

  19. Determination of sex by armbone dimensions.

    PubMed

    Aye, Victor Omakoji

    2010-06-15

    Sex determination is a vital part of the medico-legal system but can be difficult in cases where the body is damaged. The purpose of this study was to develop a technique for sex determination from three arm-bone dimensions (wrist circumference, arm length and arm span). This knowledge can be applied in cases of mass disaster, homicide and events such as sports. Data were collected for 95 Nigerian male students and 90 Nigerian female students using physical anthropometry. Discriminant function presented the wrist dimension as the dominant contributor in this study. Combination equations for both the wrist and arm-span dimensions correctly classified sex (male/female) with an accuracy rate of 84.9%. On cross-validation, sex was also established with the same 84.9% accuracy rate. Sex determination was higher in males. Sexual dimorphism was established in this study, although the wrist circumference was more distinct than arm span; a combination of both generated sex with an accuracy prediction rate of 84.9%. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  20. ZWY Sex Determination in Xenopus tropicalis

    EPA Science Inventory

    Most vertebrate species with described genetic sex determination are either male (XY) or female (ZW) heterogametic. To date, studies with Xenopus species indicate that members of this genus operate under a ZW sex determination system. We used two different approaches and demonst...

  1. Cell-autonomous sex determination outside of the gonad

    PubMed Central

    Arnold, Arthur P.; Chen, Xuqi; Link, Jenny C.; Itoh, Yuichiro; Reue, Karen

    2013-01-01

    The classic model of sex determination in mammals states that the sex of the individual is determined by the type of gonad that develops, which in turn determines the gonadal hormonal milieu that creates sex differences outside of the gonads. However, XX and XY cells are intrinsically different because of the cell-autonomous sex-biasing action of X and Y genes. Recent studies of mice, in which sex chromosome complement is independent of gonadal sex, reveal that sex chromosome complement has strong effects contributing to sex differences in phenotypes such as metabolism. Adult mice with two X chromosomes (relative to mice with one X chromosome) show dramatically greater increases in body weight and adiposity after gonadectomy, irrespective of their gonadal sex. When fed a high fat diet, XX mice develop striking hyperinsulinemia and fatty liver, relative to XY mice. The sex chromosome effects are modulated by the presence of gonadal hormones, indicating an interaction of the sex-biasing effects of gonadal hormones and sex chromosome genes. Other cell-autonomous sex chromosome effects are detected in mice in many phenotypes. Birds (relative to eutherian mammals) are expected to show more widespread cell-autonomous sex determination in non-gonadal tissues, because of ineffective sex chromosome dosage compensation mechanisms. PMID:23361913

  2. Polygenic sex determination in the cichlid fish Astatotilapia burtoni.

    PubMed

    Roberts, Natalie B; Juntti, Scott A; Coyle, Kaitlin P; Dumont, Bethany L; Stanley, M Kaitlyn; Ryan, Allyson Q; Fernald, Russell D; Roberts, Reade B

    2016-10-26

    The East African riverine cichlid species Astatotilapia burtoni serves as an important laboratory model for sexually dimorphic physiology and behavior, and also serves as an outgroup species for the explosive adaptive radiations of cichlid species in Lake Malawi and Lake Victoria. An astounding diversity of genetic sex determination systems have been revealed within the adaptive radiation of East African cichlids thus far, including polygenic sex determination systems involving the epistatic interaction of multiple, independently segregating sex determination alleles. However, sex determination has remained unmapped in A. burtoni. Here we present mapping results supporting the presence of multiple, novel sex determination alleles, and thus the presence of polygenic sex determination in A. burtoni. Using mapping in small families in conjunction with restriction-site associated DNA sequencing strategies, we identify associations with sex at loci on linkage group 13 and linkage group 5-14. Inheritance patterns support an XY sex determination system on linkage group 5-14 (a chromosome fusion relative to other cichlids studied), and an XYW system on linkage group 13, and these associations are replicated in multiple families. Additionally, combining our genetic data with comparative genomic analysis identifies another fusion that is unassociated with sex, with linkage group 8-24 and linkage group 16-21 fused in A. burtoni relative to other East African cichlid species. We identify genetic signals supporting the presence of three previously unidentified sex determination alleles at two loci in the species A. burtoni, strongly supporting the presence of polygenic sex determination system in the species. These results provide a foundation for future mapping of multiple sex determination genes and their interactions. A better understanding of sex determination in A. burtoni provides important context for their use in behavioral studies, as well as studies of the evolution

  3. The end of gonad-centric sex determination in mammals

    PubMed Central

    Arnold, Arthur P.

    2011-01-01

    The 20th century theory of mammalian sex determination states that the embryo is sexually indifferent until the differentiation of gonads, after which sex differences in phenotype are caused by differential effects of gonadal hormones. That theory is inadequate because some sex differences precede differentiation of the gonads and/or are determined by non-gonadal effects of the sexual inequality in number and type of sex chromosomes. A general theory of sex determination is proposed, which recognizes multiple parallel primary sex-determining pathways initiated by genes or factors encoded by the sex chromosomes. The separate sex-specific pathways interact to synergize with or antagonize each other, enhancing or reducing sex differences in phenotype. PMID:22078126

  4. Environmental sex determination mechanisms in reptiles.

    PubMed

    Merchant-Larios, H; Díaz-Hernández, V

    2013-01-01

    Temperature-dependent sex determination (TSD) was first discovered in reptiles. Since then, a great diversity of sex-determining responses to temperature has been reported. Higher temperatures can produce either males or females, and the temperature ranges and lengths of exposure that influence TSD are remarkably variable among species. In addition, transitory gene regulatory networks leading to gonadal TSD have evolved. Although most genes involved in gonadal development are conserved in vertebrates, including TSD species, temporal and spatial gene expression patterns vary among species. Despite variation in TSD pattern and gene expression heterochrony, the structural framework, the medullary cords, and cortex of the bipotential gonad have been strongly conserved. Aromatase (CYP19), which regulates gonadal estrogen levels, is proposed to be the main target of a putative thermosensitive factor for TSD. However, manipulation of estrogen levels rarely mimics the precise timing of temperature effects on expression of gonadal genes, as occurs with TSD. Estrogen levels may influence sex determination or gonad differentiation depending on the species. Furthermore, the process leading to sex determination under the influence of temperature poses problems that are not encountered by species with genetic sex determination. Yolk steroids of maternal origin and steroids produced by the embryonic nervous system should also be considered as sources of hormones that may play a role in TSD. Copyright © 2012 S. Karger AG, Basel.

  5. Insect sex determination: it all evolves around transformer.

    PubMed

    Verhulst, Eveline C; van de Zande, Louis; Beukeboom, Leo W

    2010-08-01

    Insects exhibit a variety of sex determining mechanisms including male or female heterogamety and haplodiploidy. The primary signal that starts sex determination is processed by a cascade of genes ending with the conserved switch doublesex that controls sexual differentiation. Transformer is the doublesex splicing regulator and has been found in all examined insects, indicating its ancestral function as a sex-determining gene. Despite this conserved function, the variation in transformer nucleotide sequence, amino acid composition and protein structure can accommodate a multitude of upstream sex determining signals. Transformer regulation of doublesex and its taxonomic distribution indicate that the doublesex-transformer axis is conserved among all insects and that transformer is the key gene around which variation in sex determining mechanisms has evolved.

  6. Variability in sex-determining mechanisms influences genome complexity in reptilia.

    PubMed

    Janes, D E; Organ, C L; Edwards, S V

    2009-01-01

    In this review, we describe the history of amniote sex determination as a classic example of Darwinian evolution. We suggest that evolutionary changes in sex determination provide a foundation for understanding important aspects of chromosome and genome organization that otherwise appear haphazard in their origins and contents. Species with genotypic sex determination often possess heteromorphic sex chromosomes, whereas species with environmental sex determination lack them. Through a series of mutations followed by selection at key genes, sex-determining mechanisms have turned over many times throughout the amniote lineage. As a consequence, amniote genomes have undergone gains or losses of sex chromosomes. We review the genomic and ecological contexts in which either temperature-dependent or genotypic sex determination has evolved. Once genotypic sex determination emerges in a lineage, viviparity and heteromorphic sex chromosomes become more likely to evolve. For example, in extinct marine reptiles, genotypic sex determination apparently led to viviparity, which in turn facilitated their pelagic radiation. Sex chromosomes comprise genome regions that differ from autosomes in recombination rate, mutation rate, levels of polymorphism, and the presence of sex-determining and sexually antagonistic genes. In short, many aspects of amniote genome complexity, life history, and adaptive radiation appear contingent on evolutionary changes in sex-determining mechanisms. Copyright 2010 S. Karger AG, Basel.

  7. Variability in Sex-Determining Mechanisms Influences Genome Complexity in Reptilia

    PubMed Central

    Janes, D.E.; Organ, C.L.; Edwards, S.V.

    2010-01-01

    In this review, we describe the history of amniote sex determination as a classic example of Darwinian evolution. We suggest that evolutionary changes in sex determination provide a foundation for understanding important aspects of chromosome and genome organization that otherwise appear haphazard in their origins and contents. Species with genotypic sex determination often possess heteromorphic sex chromosomes, whereas species with environmental sex determination lack them. Through a series of mutations followed by selection at key genes, sex-determining mechanisms have turned over many times throughout the amniote lineage. As a consequence, amniote genomes have undergone gains or losses of sex chromosomes. We review the genomic and ecological contexts in which either temperature-dependent or genotypic sex determination has evolved. Once genotypic sex determination emerges in a lineage, viviparity and heteromorphic sex chromosomes become more likely to evolve. For example, in extinct marine reptiles, genotypic sex determination apparently led to viviparity, which in turn facilitated their pelagic radiation. Sex chromosomes comprise genome regions that differ from autosomes in recombination rate, mutation rate, levels of polymorphism, and the presence of sex-determining and sexually antagonistic genes. In short, many aspects of amniote genome complexity, life history, and adaptive radiation appear contingent on evolutionary changes in sex-determining mechanisms. PMID:20203474

  8. Altering the sex determination pathway in Drosophila fat body modifies sex-specific stress responses

    PubMed Central

    Neckameyer, Wendi S.

    2014-01-01

    The stress response in Drosophila melanogaster reveals sex differences in behavior, similar to what has been observed in mammals. However, unlike mammals, the sex determination pathway in Drosophila is well established, making this an ideal system to identify factors involved in the modulation of sex-specific responses to stress. In this study, we show that the Drosophila fat body, which has been shown to be important for energy homeostasis and sex determination, is a dynamic tissue that is altered in response to stress in a sex and time-dependent manner. We manipulated the sex determination pathway in the fat body via targeted expression of transformer and transformer-2 and analyzed these animals for changes in their response to stress. In the majority of cases, manipulation of transformer or transformer-2 was able to change the physiological output in response to starvation and oxidative stress to that of the opposite sex. Our data also uncover the possibility of additional downstream targets for transformer and transformer-2 that are separate from the sex determination pathway and can influence behavioral and physiological responses. PMID:24789992

  9. Altering the sex determination pathway in Drosophila fat body modifies sex-specific stress responses.

    PubMed

    Argue, Kathryn J; Neckameyer, Wendi S

    2014-07-01

    The stress response in Drosophila melanogaster reveals sex differences in behavior, similar to what has been observed in mammals. However, unlike mammals, the sex determination pathway in Drosophila is well established, making this an ideal system to identify factors involved in the modulation of sex-specific responses to stress. In this study, we show that the Drosophila fat body, which has been shown to be important for energy homeostasis and sex determination, is a dynamic tissue that is altered in response to stress in a sex and time-dependent manner. We manipulated the sex determination pathway in the fat body via targeted expression of transformer and transformer-2 and analyzed these animals for changes in their response to stress. In the majority of cases, manipulation of transformer or transformer-2 was able to change the physiological output in response to starvation and oxidative stress to that of the opposite sex. Our data also uncover the possibility of additional downstream targets for transformer and transformer-2 that are separate from the sex determination pathway and can influence behavioral and physiological responses. Copyright © 2014 the American Physiological Society.

  10. Demographic and genetic consequences of disturbed sex determination.

    PubMed

    Wedekind, Claus

    2017-09-19

    During sex determination, genetic and/or environmental factors determine the cascade of processes of gonad development. Many organisms, therefore, have a developmental window in which their sex determination can be sensitive to, for example, unusual temperatures or chemical pollutants. Disturbed environments can distort population sex ratios and may even cause sex reversal in species with genetic sex determination. The resulting genotype-phenotype mismatches can have long-lasting effects on population demography and genetics. I review the theoretical and empirical work in this context and explore in a simple population model the role of the fitness v yy of chromosomally aberrant YY genotypes that are a consequence of environmentally induced feminization. Low v yy is mostly beneficial for population growth. During feminization, low v yy reduces the proportion of genetic males and hence accelerates population growth, especially at low rates of feminization and at high fitness costs of the feminization itself (i.e. when feminization would otherwise not affect population dynamics much). When sex reversal ceases, low v yy mitigates the negative effects of feminization and can even prevent population extinction. Little is known about v yy in natural populations. The available models now need to be parametrized in order to better predict the long-term consequences of disturbed sex determination.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'. © 2017 The Author(s).

  11. Genetic regulation of maize flower development and sex determination.

    PubMed

    Li, Qinglin; Liu, Baoshen

    2017-01-01

    The determining process of pistil fate are central to maize sex determination, mainly regulated by a genetic network in which the sex-determining genes SILKLESS 1 , TASSEL SEED 1 , TASSEL SEED 2 and the paramutagenic locus Required to maintain repression 6 play pivotal roles. Maize silks, which emerge from the ear shoot and derived from the pistil, are the functional stigmas of female flowers and play a pivotal role in pollination. Previous studies on sex-related mutants have revealed that sex-determining genes and phytohormones play an important role in the regulation of flower organogenesis. The processes determining pistil fate are central to flower development, where a silk identified gene SILKLESS 1 (SK1) is required to protect pistil primordia from a cell death signal produced by two commonly known genes, TASSEL SEED 1 (TS1) and TASSEL SEED 2 (TS2). In this review, maize flower developmental process is presented together with a focus on important sex-determining mutants and hormonal signaling affecting pistil development. The role of sex-determining genes, microRNAs, phytohormones, and the paramutagenic locus Required to maintain repression 6 (Rmr6), in forming a regulatory network that determines pistil fate, is discussed. Cloning SK1 and clarifying its function were crucial in understanding the regulation network of sex determination. The signaling mechanisms of phytohormones in sex determination are also an important research focus.

  12. Temperature, Genes, and Sex: a Comparative View of Sex Determination in Trachemys scripta and Mus musculus

    PubMed Central

    Yao, Humphrey H-C; Capel, Blanche

    2014-01-01

    Sex determination, the step at which differentiation of males and females is initiated in the embryo, is of central importance to the propagation of species. There is a remarkable diversity of mechanisms by which sex determination is accomplished. In general these mechanisms fall into two categories: Genetic Sex Determination (GSD), which depends on genetic differences between the sexes, and Environmental Sex Determination (ESD), which depends on extrinsic cues. In this review we will consider these two means of determining sex with particular emphasis on two species: a species that depends on GSD, Mus musculus, and a species that depends on ESD, Trachemys scripta. Because the structural organization of the adult testis and ovary is very similar across vertebrates, most biologists had expected that the pathways downstream of the sex-determining switch would be conserved. However, emerging data indicate that not only are the initial sex determining mechanisms different, but the downstream pathways and morphogenetic events leading to the development of a testis or ovary also are different. PMID:16046442

  13. [Elucidation of key genes in sex determination in genetics teaching].

    PubMed

    Li, Meng; He, Zhumei

    2014-06-01

    Sex is an important and complex feature of organisms, which is controlled by the genetic and environmental factors. The genetic factors, i.e., genes, are vital in sex determination. However, not all the related genes play the same roles, and some key genes play a vital role in the sex determination and differentiation. With the development of the modern genetics, a great progress on the key genes has been made in sex determination. In this review, we summarize the mechanism of sex determination and the strategy of how to study the key genes in sex determination. It will help us to understand the mechanism of sex determination better in the teaching of genetics.

  14. Sex determination: why so many ways of doing it?

    PubMed

    Bachtrog, Doris; Mank, Judith E; Peichel, Catherine L; Kirkpatrick, Mark; Otto, Sarah P; Ashman, Tia-Lynn; Hahn, Matthew W; Kitano, Jun; Mayrose, Itay; Ming, Ray; Perrin, Nicolas; Ross, Laura; Valenzuela, Nicole; Vamosi, Jana C

    2014-07-01

    Sexual reproduction is an ancient feature of life on earth, and the familiar X and Y chromosomes in humans and other model species have led to the impression that sex determination mechanisms are old and conserved. In fact, males and females are determined by diverse mechanisms that evolve rapidly in many taxa. Yet this diversity in primary sex-determining signals is coupled with conserved molecular pathways that trigger male or female development. Conflicting selection on different parts of the genome and on the two sexes may drive many of these transitions, but few systems with rapid turnover of sex determination mechanisms have been rigorously studied. Here we survey our current understanding of how and why sex determination evolves in animals and plants and identify important gaps in our knowledge that present exciting research opportunities to characterize the evolutionary forces and molecular pathways underlying the evolution of sex determination.

  15. Sex Determination: Why So Many Ways of Doing It?

    PubMed Central

    Bachtrog, Doris; Mank, Judith E.; Peichel, Catherine L.; Kirkpatrick, Mark; Otto, Sarah P.; Ashman, Tia-Lynn; Hahn, Matthew W.; Kitano, Jun; Mayrose, Itay; Ming, Ray; Perrin, Nicolas; Ross, Laura; Valenzuela, Nicole; Vamosi, Jana C.

    2014-01-01

    Sexual reproduction is an ancient feature of life on earth, and the familiar X and Y chromosomes in humans and other model species have led to the impression that sex determination mechanisms are old and conserved. In fact, males and females are determined by diverse mechanisms that evolve rapidly in many taxa. Yet this diversity in primary sex-determining signals is coupled with conserved molecular pathways that trigger male or female development. Conflicting selection on different parts of the genome and on the two sexes may drive many of these transitions, but few systems with rapid turnover of sex determination mechanisms have been rigorously studied. Here we survey our current understanding of how and why sex determination evolves in animals and plants and identify important gaps in our knowledge that present exciting research opportunities to characterize the evolutionary forces and molecular pathways underlying the evolution of sex determination. PMID:24983465

  16. Epigenetics of sex determination and gonadogenesis.

    PubMed

    Piferrer, Francesc

    2013-04-01

    Epigenetics is commonly defined as the study of heritable changes in gene function that cannot be explained by changes in DNA sequence. The three major epigenetic mechanisms for gene expression regulation include DNA methylation, histone modifications, and non-coding RNAs. Epigenetic mechanisms provide organisms with the ability to integrate genomic and environmental information to modify the activity of their genes for generating a particular phenotype. During development, cells differentiate, acquire, and maintain identity through changes in gene expression. This is crucial for sex determination and differentiation, which are among the most important developmental processes for the proper functioning and perpetuation of species. This review summarizes studies showing how epigenetic regulatory mechanisms contribute to sex determination and reproductive organ formation in plants, invertebrates, and vertebrates. Further progress will be made by integrating several approaches, including genomics and Next Generation Sequencing to create epigenetic maps related to different aspects of sex determination and gonadogenesis. Epigenetics will also contribute to understand the etiology of several disorders of sexual development. It also might play a significant role in the control of reproduction in animal farm production and will aid in recognizing the environmental versus genetic influences on sex determination of sensitive species in a global change scenario. Copyright © 2013 Wiley Periodicals, Inc.

  17. What was the ancestral sex-determining mechanism in amniote vertebrates?

    PubMed

    Johnson Pokorná, Martina; Kratochvíl, Lukáš

    2016-02-01

    Amniote vertebrates, the group consisting of mammals and reptiles including birds, possess various mechanisms of sex determination. Under environmental sex determination (ESD), the sex of individuals depends on the environmental conditions occurring during their development and therefore there are no sexual differences present in their genotypes. Alternatively, through the mode of genotypic sex determination (GSD), sex is determined by a sex-specific genotype, i.e. by the combination of sex chromosomes at various stages of differentiation at conception. As well as influencing sex determination, sex-specific parts of genomes may, and often do, develop specific reproductive or ecological roles in their bearers. Accordingly, an individual with a mismatch between phenotypic (gonadal) and genotypic sex, for example an individual sex-reversed by environmental effects, should have a lower fitness due to the lack of specialized, sex-specific parts of their genome. In this case, evolutionary transitions from GSD to ESD should be less likely than transitions in the opposite direction. This prediction contrasts with the view that GSD was the ancestral sex-determining mechanism for amniote vertebrates. Ancestral GSD would require several transitions from GSD to ESD associated with an independent dedifferentiation of sex chromosomes, at least in the ancestors of crocodiles, turtles, and lepidosaurs (tuataras and squamate reptiles). In this review, we argue that the alternative theory postulating ESD as ancestral in amniotes is more parsimonious and is largely concordant with the theoretical expectations and current knowledge of the phylogenetic distribution and homology of sex-determining mechanisms. © 2014 Cambridge Philosophical Society.

  18. Sex determination in horses - current status and future perspectives.

    PubMed

    Aurich, Christine; Schneider, Jana

    2014-04-01

    In the equine species, sex determination of the conceptus is of growing interest for the breeding industry. In horses, the sex ratio of the offspring depends on changes in body condition of the mother at conception and under natural conditions may thus markedly deviate from an expected 1:1 ratio. Insemination with sex-sorted spermatozoa allows a pronounced shift of the sex ratio but at present pregnancy rates are low and vary considerably under field conditions. In equine embryo transfer programmes, sex determination in embryos before transfer via genetic methods is a promising approach with high reliability. In ongoing pregnancies, fetal sex can be determined in utero by transrectal or transabdominal ultrasound between days 57 and 220 after ovulation, but experience is required to achieve satisfying accuracy. Recently, genetic sexing via identification of circulating cell-free fetal DNA in the maternal circulation has been successfully performed in the last three months of pregnancy. Development of this technique may also allow fetal sex determination at earlier stages of pregnancy. Further research is required to allow for techniques that enable sex determination in equine embryos as well as in ongoing pregnancies under field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A Century of Sex Determination in Flowering Plants.

    PubMed

    Harkess, Alex; Leebens-Mack, Jim

    2017-01-01

    Plants have evolved a diverse array of strategies for sexual reproduction, particularly through the modification of male and female organs at distinct points in development. The immense variation in sexual systems across the land plants provides a unique opportunity to study the genetic, epigenetic, phylogenetic, and ecological underpinnings of sex determination. Here, we reflect on more than a century of research into flowering plant sex determination, placing a particular focus on the foundational genetic and cytogenetic observations, experiments, and hypotheses. Building on the seminal work on the genetics of plant sex, modern comparative genomic analyses now allow us to address longstanding questions about sex determination and the origins of sex chromosomes. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Longevity enhances selection of environmental sex determination.

    PubMed

    Bull, J J; Bulmer, M G

    1989-12-01

    Environmental sex determination (ESD) is a mechanism in which an individual develops as male or female largely in response to some environmental effect experienced early in life. Its forms range from sex determination by egg incubation temperature in reptiles to sex determination of photoperiod in amphipods. Previous theoretical work as suggested that ESD is favored by natural selection if the fitness consequences of the early environmental experience differ for males and females, so that an individual benefits by being male under some conditions and female under others. A drawback of ESD is that it enables climatic changes to influence the population sex ratio, and such fluctuations select against ESD. This study employed numerical analyses to investigate the balance between these two opposing forces. The negative impact of climatic fluctuations appears to depend greatly on species longevity: substantial between-year fluctuations are of little consequence in selecting against ESD in long-lived species because annual sex ratio fluctuations tend to cancel and thus alter the total population sex ratio only slightly. Thus, if a species is sufficiently long-lived, extreme ESD can be maintained despite only a weak advantage. This result offers one explanation for the failure to demonstrate an advantage for the extreme forms of ESD observed in reptiles.

  1. Genetic and epigenetic effects in sex determination.

    PubMed

    Gunes, Sezgin Ozgur; Metin Mahmutoglu, Asli; Agarwal, Ashok

    2016-12-01

    Sex determination is a complex and dynamic process with multiple genetic and environmental causes, in which germ and somatic cells receive various sex-specific features. During the fifth week of fetal life, the bipotential embryonic gonad starts to develop in humans. In the bipotential gonadal tissue, certain cell groups start to differentiate to form the ovaries or testes. Despite considerable efforts and advances in identifying the mechanisms playing a role in sex determination and differentiation, the underlying mechanisms of the exact functions of many genes, gene-gene interactions, and epigenetic modifications that are involved in different stages of this cascade are not completely understood. This review aims at discussing current data on the genetic effects via genes and epigenetic mechanisms that affect the regulation of sex determination. Birth Defects Research (Part C) 108:321-336, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Transitions between sex-determining systems in reptiles and amphibians.

    PubMed

    Sarre, Stephen D; Ezaz, Tariq; Georges, Arthur

    2011-01-01

    Important technological advances in genomics are driving a new understanding of the evolution of sex determination in vertebrates. In particular, comparative chromosome mapping in reptiles has shown an intriguing distribution of homology in sex chromosomes across reptile groups. When this new understanding is combined with the widespread distribution of genetic and temperature-dependent sex-determination mechanisms among reptiles, it is apparent that transitions between modes have occurred many times, as they have for amphibians (particularly between male and female heterogamety). It is also likely that thermosensitivity in sex determination is a key factor in those transitions in reptiles, and possibly in amphibians too. New models of sex determination involving temperature thresholds are providing the framework for the investigation of transitions and making possible key predictions about the homologies and sex-determination patterns expected among taxa in these groups. Molecular cytogenetics and other genomic approaches are essential to providing the fundamental material necessary to make advances in this field.

  3. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas

    PubMed Central

    Rovatsos, Michail; Pokorná, Martina; Altmanová, Marie; Kratochvíl, Lukáš

    2014-01-01

    Many poikilothermic vertebrate lineages, especially among amphibians and fishes, possess a rapid turnover of sex chromosomes, while in endotherms there is a notable stability of sex chromosomes. Reptiles in general exhibit variability in sex-determining systems; as typical poikilotherms, they might be expected to have a rapid turnover of sex chromosomes. However, molecular data which would enable the testing of the stability of sex chromosomes are lacking in most lineages. Here, we provide molecular evidence that sex chromosomes are highly conserved across iguanas, one of the most species-rich clade of reptiles. We demonstrate that members of the New World families Iguanidae, Tropiduridae, Leiocephalidae, Phrynosomatidae, Dactyloidae and Crotaphytidae, as well as of the family Opluridae which is restricted to Madagascar, all share homologous sex chromosomes. As our sampling represents the majority of the phylogenetic diversity of iguanas, the origin of iguana sex chromosomes can be traced back in history to the basal splitting of this group which occurred during the Cretaceous period. Iguanas thus show a stability of sex chromosomes comparable to mammals and birds and represent the group with the oldest sex chromosomes currently known among amniotic poikilothermic vertebrates. PMID:24598109

  4. Frontal sinus parameters in computed tomography and sex determination.

    PubMed

    Akhlaghi, Mitra; Bakhtavar, Khadijeh; Moarefdoost, Jhale; Kamali, Artin; Rafeifar, Shahram

    2016-03-01

    The frontal sinus is a sturdy part of the skull that is likely to be retrieved for forensic investigations. We evaluated frontal sinus parameters in paranasal sinus computed tomography (CT) images for sex determination. The study was conducted on 200 normal paranasal sinus CT images of 100 men and 100 women of Persian origin. We categorized the studied population into three age groups of 20-34, 35-49 and ⩾ 50 years. The number of partial septa in the right frontal sinus and the maximum height and width were significantly different between the two sexes. The highest precision for sex determination was for the maximum height of the left frontal sinus (61.3%). In the 20-34 years age-group, height and width of the frontal sinus were significantly different between the two sexes and the height of the left sinus had the highest precision (60.8%). In the 35-49 years age-group, right anterior-posterior diameter had a sex determination precision of 52.3%. No frontal sinus parameter reached a statistically significant level for sex determination in the ⩾ 50 years age-group. The number of septa and scallopings were not useful in sex determination. Frontal sinus parameters did not have a high precision in sex determination among Persian adults. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. Brassinosteroid control of sex determination in maize.

    PubMed

    Hartwig, Thomas; Chuck, George S; Fujioka, Shozo; Klempien, Antje; Weizbauer, Renate; Potluri, Devi Prasad V; Choe, Sunghwa; Johal, Gurmukh S; Schulz, Burkhard

    2011-12-06

    Brassinosteroids (BRs) are plant hormones that regulate growth and development. They share structural similarities with animal steroids, which are decisive factors of sex determination. BRs are known to regulate morphogenesis and environmental stress responses, but their involvement in sex determination in plants has been only speculative. We show that BRs control sex determination in maize revealed through characterization of the classical dwarf mutant nana plant1 (na1), which also feminizes male flowers. na1 plants carry a loss-of-function mutation in a DET2 homolog--a gene in the BR biosynthetic pathway. The mutant accumulates the DET2-specific substrate (24R)-24-methylcholest-4-en-3-one with a concomitant decrease of downstream BR metabolites. Treatment of wild-type maize plants with BR biosynthesis inhibitors completely mimicked both dwarf and tasselseed phenotypes of na1 mutants. Tissue-specific na1 expression in anthers throughout their development supports the hypothesis that BRs promote masculinity of the male inflorescence. These findings suggest that, in the monoecious plant maize, BRs have been coopted to perform a sex determination function not found in plants with bisexual flowers.

  6. Sex determination in flowering plants: papaya as a model system.

    PubMed

    Aryal, Rishi; Ming, Ray

    2014-03-01

    Unisexuality in flowering plants evolved from a hermaphrodite ancestor. Transition from hermaphrodite to unisexual flowers has occurred multiple times across the different lineages of the angiosperms. Sexuality in plants is regulated by genetic, epigenetic and physiological mechanisms. The most specialized mechanism of sex determination is sex chromosomes. The sex chromosomes ensure the stable segregation of sexual phenotypes by preventing the recombination of sex determining genes. Despite continuous efforts, sex determining genes of dioecious plants have not yet been cloned. Concerted efforts with various model systems are necessary to understand the complex mechanism of sex determination in plants. Papaya (Carica papaya L.) is a tropical fruit tree with three sex forms, male, hermaphrodite, and female. Sexuality in papaya is determined by an XY chromosome system that is in an early evolutionary stage. The male and hermaphrodite of papaya are controlled by two different types of Y chromosomes: Y and Y(h). Large amounts of information in the area of genetics, genomics, and epigenetics of papaya have been accumulated over the last few decades. Relatively short lifecycle, small genome size, and readily available genetic and genomic resources render papaya an excellent model system to study sex determination and sex chromosomes in flowering plants. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. The nuclear hormone receptor SEX-1 is an X-chromosome signal that determines nematode sex.

    PubMed

    Carmi, I; Kopczynski, J B; Meyer, B J

    1998-11-12

    Organisms in many phyla determine sexual fate by distinguishing one X chromosome from two. Here we use the model organism Caenorhabditis elegans to dissect such an X-chromosome-counting mechanism in molecular detail. In this nematode, several genes on the X chromosome called X signal elements communicate X-chromosome dose by controlling the activity of the sex-determination gene xol-1. xol-1 specifies male (XO) fate when active and hermaphrodite (XX) fate when inactive. The only X signal element described so far represses xol-1 post-transcriptionally, but xol-1 is repressed in XX animals by transcriptional and post-transcriptional mechanisms. Here we identify a nuclear-hormone-receptor homologue, SEX-1, that regulates the transcription of xol-1. We show that sex-1 is vital to X-chromosome counting: changing sex-1 gene dose in XX or XO embryos causes sexual transformation and death from inadequate dosage compensation (the hermaphrodite-specific process that equalizes X-gene expression between the sexes). The SEX-1 protein acts directly on xol-1, associating with its promoter in vivo and repressing xol-1 transcription in XX embryos. Thus, xol-1 is the direct molecular target of the primary sex-determination signal, and the dose of a nuclear hormone receptor helps to communicate X-chromosome number to determine nematode sex.

  8. Complementary Sex Determination in the Parasitic Wasp Diachasmimorpha longicaudata

    PubMed Central

    Carabajal Paladino, Leonela; Muntaabski, Irina; Lanzavecchia, Silvia; Le Bagousse-Pinguet, Yoann; Viscarret, Mariana; Juri, Marianela; Fueyo-Sánchez, Luciana; Papeschi, Alba; Cladera, Jorge; Bressa, María José

    2015-01-01

    We studied the sex determination in Diachasmimorpha longicaudata, a parasitoid braconid wasp widely used as biological control agent of fruit pest tephritid flies. We tested the complementary sex determination hypothesis (CSD) known in at least 60 species of Hymenoptera. According to CSD, male or female development depends on the allelic composition of one sex locus (single-locus CSD) or multiple sex loci (multiple-locus CSD). Hemizygote individuals are normal haploid males, and heterozygotes for at least one sex locus are normal diploid females, but homozygotes for all the sex loci are diploid males. In order to force the occurrence of diploid males in D. longicaudata, we established highly inbred lines and examined their offspring using chromosome counting, flow cytometry, and sex ratio analysis. We found that when mother-son crosses were studied, this wasp produced about 20% of diploid males out of the total male progeny. Our results suggest that this parasitoid may represent the second genus with multiple-locus CSD in Hymenoptera. Knowledge about the sex determination system in D. longicaudata is relevant for the improvement of mass rearing protocols of this species. This information also provides the necessary background for further investigations on the underlying molecular mechanisms of sex determination in this species, and a better insight into the evolution of this pathway in Hymenoptera in particular and insects in general. PMID:25789748

  9. Foot index: is it a tool for sex determination?

    PubMed

    Moudgil, Rohan; Kaur, Ramneet; Menezes, Ritesh G; Kanchan, Tanuj; Garg, Rakesh K

    2008-05-01

    Identification of an individual is of paramount importance in forensic investigations. The dimensions of the foot can be used for the determination of sex and stature of an individual in forensic investigations. No systematic studies are available on the determination of sex from foot measurements of North Indians. Therefore, foot index is derived to determine the sex of an individual in a single community of North India. The foot index for both genders is derived by dividing the foot breadth by foot length and multiplying it by hundred. In the present investigation, the foot index is found to be slightly higher in females in the right foot and males in the left foot. The study suggests that although foot length and foot breadth show significant sex differences, sex determination cannot be made conclusively from the foot index.

  10. Identification of General Patterns of Sex-Biased Expression in Daphnia, a Genus with Environmental Sex Determination

    PubMed Central

    Molinier, Cécile; Reisser, Céline M.O.; Fields, Peter; Ségard, Adeline; Galimov, Yan; Haag, Christoph R.

    2018-01-01

    Daphnia reproduce by cyclic-parthenogenesis, where phases of asexual reproduction are intermitted by sexual production of diapause stages. This life cycle, together with environmental sex determination, allow the comparison of gene expression between genetically identical males and females. We investigated gene expression differences between males and females in four genotypes of Daphnia magna and compared the results with published data on sex-biased gene expression in two other Daphnia species, each representing one of the major phylogenetic clades within the genus. We found that 42% of all annotated genes showed sex-biased expression in D. magna. This proportion is similar both to estimates from other Daphnia species as well as from species with genetic sex determination, suggesting that sex-biased expression is not reduced under environmental sex determination. Among 7453 single copy, one-to-one orthologs in the three Daphnia species, 707 consistently showed sex-biased expression and 675 were biased in the same direction in all three species. Hence these genes represent a core-set of genes with consistent sex-differential expression in the genus. A functional analysis identified that several of them are involved in known sex determination pathways. Moreover, 75% were overexpressed in females rather than males, a pattern that appears to be a general feature of sex-biased gene expression in Daphnia. PMID:29535148

  11. Identification of General Patterns of Sex-Biased Expression in Daphnia, a Genus with Environmental Sex Determination.

    PubMed

    Molinier, Cécile; Reisser, Céline M O; Fields, Peter; Ségard, Adeline; Galimov, Yan; Haag, Christoph R

    2018-05-04

    Daphnia reproduce by cyclic-parthenogenesis, where phases of asexual reproduction are intermitted by sexual production of diapause stages. This life cycle, together with environmental sex determination, allow the comparison of gene expression between genetically identical males and females. We investigated gene expression differences between males and females in four genotypes of Daphnia magna and compared the results with published data on sex-biased gene expression in two other Daphnia species, each representing one of the major phylogenetic clades within the genus. We found that 42% of all annotated genes showed sex-biased expression in D. magna This proportion is similar both to estimates from other Daphnia species as well as from species with genetic sex determination, suggesting that sex-biased expression is not reduced under environmental sex determination. Among 7453 single copy, one-to-one orthologs in the three Daphnia species, 707 consistently showed sex-biased expression and 675 were biased in the same direction in all three species. Hence these genes represent a core-set of genes with consistent sex-differential expression in the genus. A functional analysis identified that several of them are involved in known sex determination pathways. Moreover, 75% were overexpressed in females rather than males, a pattern that appears to be a general feature of sex-biased gene expression in Daphnia . Copyright © 2018 Molinier et al.

  12. Sexual reproduction and sex determination in green algae.

    PubMed

    Sekimoto, Hiroyuki

    2017-05-01

    The sexual reproductive processes of some representative freshwater green algae are reviewed. Chlamydomonas reinhardtii is a unicellular volvocine alga having two mating types: mating type plus (mt + ) and mating type minus (mt - ), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt + and mt - mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular Chlamydomonas reinhardtii is conserved in the multicellular oogamous Volvox carteri. The sexual reproduction of the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.

  13. Patterns and Mechanisms of Evolutionary Transitions between Genetic Sex-Determining Systems

    PubMed Central

    Sander van Doorn, G.

    2014-01-01

    The diversity and patchy phylogenetic distribution of genetic sex-determining mechanisms observed in some taxa is thought to have arisen by the addition, modification, or replacement of regulators at the upstream end of the sex-determining pathway. Here, I review the various evolutionary forces acting on upstream regulators of sexual development that can cause transitions between sex-determining systems. These include sex-ratio selection and pleiotropic benefits, as well as indirect selection mechanisms involving sex-linked sexually antagonistic loci or recessive deleterious mutations. Most of the current theory concentrates on the population–genetic aspects of sex-determination transitions, using models that do not reflect the developmental mechanisms involved in sex determination. However, the increasing availability of molecular data creates opportunities for the development of mechanistic models that can clarify how selection and developmental architecture interact to direct the evolution of sex-determination genes. PMID:24993578

  14. Does sex-ratio selection influence nest-site choice in a reptile with temperature-dependent sex determination?

    PubMed

    Mitchell, Timothy S; Maciel, Jessica A; Janzen, Fredric J

    2013-12-07

    Evolutionary theory predicts that dioecious species should produce a balanced primary sex ratio maintained by frequency-dependent selection. Organisms with environmental sex determination, however, are vulnerable to maladaptive sex ratios, because environmental conditions vary spatio-temporally. For reptiles with temperature-dependent sex determination, nest-site choice is a behavioural maternal effect that could respond to sex-ratio selection, as mothers could adjust offspring sex ratios by choosing nest sites that will have particular thermal properties. This theoretical prediction has generated decades of empirical research, yet convincing evidence that sex-ratio selection is influencing nesting behaviours remains absent. Here, we provide the first experimental evidence from nature that sex-ratio selection, rather than only viability selection, is probably an important component of nest-site choice in a reptile with temperature-dependent sex determination. We compare painted turtle (Chrysemys picta) neonates from maternally selected nest sites with those from randomly selected nest sites, observing no substantive difference in hatching success or survival, but finding a profound difference in offspring sex ratio in the direction expected based on historical records. Additionally, we leverage long-term data to reconstruct our sex ratio results had the experiment been repeated in multiple years. As predicted by theory, our results suggest that sex-ratio selection has shaped nesting behaviour in ways likely to enhance maternal fitness.

  15. Does sex-ratio selection influence nest-site choice in a reptile with temperature-dependent sex determination?

    PubMed Central

    Mitchell, Timothy S.; Maciel, Jessica A.; Janzen, Fredric J.

    2013-01-01

    Evolutionary theory predicts that dioecious species should produce a balanced primary sex ratio maintained by frequency-dependent selection. Organisms with environmental sex determination, however, are vulnerable to maladaptive sex ratios, because environmental conditions vary spatio-temporally. For reptiles with temperature-dependent sex determination, nest-site choice is a behavioural maternal effect that could respond to sex-ratio selection, as mothers could adjust offspring sex ratios by choosing nest sites that will have particular thermal properties. This theoretical prediction has generated decades of empirical research, yet convincing evidence that sex-ratio selection is influencing nesting behaviours remains absent. Here, we provide the first experimental evidence from nature that sex-ratio selection, rather than only viability selection, is probably an important component of nest-site choice in a reptile with temperature-dependent sex determination. We compare painted turtle (Chrysemys picta) neonates from maternally selected nest sites with those from randomly selected nest sites, observing no substantive difference in hatching success or survival, but finding a profound difference in offspring sex ratio in the direction expected based on historical records. Additionally, we leverage long-term data to reconstruct our sex ratio results had the experiment been repeated in multiple years. As predicted by theory, our results suggest that sex-ratio selection has shaped nesting behaviour in ways likely to enhance maternal fitness. PMID:24266033

  16. Sex determination in plants.

    PubMed

    Monéger, Françoise

    2007-05-01

    Most dioecious plant species are believed to derive from hermaphrodite ancestors. The regulatory pathways that have been modified during evolution of the hermaphrodite ancestors and led to the emergence of dioecious species (with separate sexes) still remain unknown. Silene latifolia is a dioecious plant species harbouring XY sex chromosomes. To identify the molecular mechanisms involved in female organ suppression in male flowers of S. latifolia, we looked for genes potentially involved in the establishment of floral organ and whorl boundaries. We identified Arabidopsis thaliana homologs of SHOOTMERISTEMLESS (STM) and CUP SHAPED COTYLEDON 1 (CUC1) and CUC2 genes in S. latifolia. Our phylogenetic analyses suggest that we identified true orthologs for both types of genes. Detailed expression analyses showed a conserved expression pattern for these genes between S. latifolia and A. thaliana, suggesting a conserved function of the corresponding proteins. Both orthologs showed clear differences in their expression pattern between males and females or hermaphrodites suggesting their possible involvement in the sex determination pathway in S. latifolia.

  17. Rapid quantification and sex determination of forensic evidence materials.

    PubMed

    Andréasson, Hanna; Allen, Marie

    2003-11-01

    DNA quantification of forensic evidence is very valuable for an optimal use of the available biological material. Moreover, sex determination is of great importance as additional information in criminal investigations as well as in identification of missing persons, no suspect cases, and ancient DNA studies. While routine forensic DNA analysis based on short tandem repeat markers includes a marker for sex determination, analysis of samples containing scarce amounts of DNA is often based on mitochondrial DNA, and sex determination is not performed. In order to allow quantification and simultaneous sex determination on minute amounts of DNA, an assay based on real-time PCR analysis of a marker within the human amelogenin gene has been developed. The sex determination is based on melting curve analysis, while an externally standardized kinetic analysis allows quantification of the nuclear DNA copy number in the sample. This real-time DNA quantification assay has proven to be highly sensitive, enabling quantification of single DNA copies. Although certain limitations were apparent, the system is a rapid, cost-effective, and flexible assay for analysis of forensic casework samples.

  18. Sex determination in insects: a binary decision based on alternative splicing.

    PubMed

    Salz, Helen K

    2011-08-01

    The gene regulatory networks that control sex determination vary between species. Despite these differences, comparative studies in insects have found that alternative splicing is reiteratively used in evolution to control expression of the key sex-determining genes. Sex determination is best understood in Drosophila where activation of the RNA binding protein-encoding gene Sex-lethal is the central female-determining event. Sex-lethal serves as a genetic switch because once activated it controls its own expression by a positive feedback splicing mechanism. Sex fate choice in is also maintained by self-sustaining positive feedback splicing mechanisms in other dipteran and hymenopteran insects, although different RNA binding protein-encoding genes function as the binary switch. Studies exploring the mechanisms of sex-specific splicing have revealed the extent to which sex determination is integrated with other developmental regulatory networks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Not all sex ratios are equal: the Fisher condition, parental care and sexual selection.

    PubMed

    Jennions, Michael D; Fromhage, Lutz

    2017-09-19

    The term 'sex roles' encapsulates male-female differences in mate searching, competitive traits that increase mating/fertilization opportunities, choosiness about mates and parental care. Theoretical models suggest that biased sex ratios drive the evolution of sex roles. To model sex role evolution, it is essential to note that in most sexually reproducing species (haplodiploid insects are an exception), each offspring has one father and one mother. Consequently, the total number of offspring produced by each sex is identical, so the mean number of offspring produced by individuals of each sex depends on the sex ratio (Fisher condition). Similarly, the total number of heterosexual matings is identical for each sex. On average, neither sex can mate nor breed more often when the sex ratio is even. But equally common in which sex ratio? The Fisher condition only applies to some reproductive measures (e.g. lifetime offspring production or matings) for certain sex ratios (e.g. operational or adult sex ratio; OSR, ASR). Here, we review recent models that clarify whether a biased OSR, ASR or sex ratio at maturation (MSR) have a causal or correlational relationship with the evolution of sex differences in parental care and competitive traits-two key components of sex roles. We suggest that it is more fruitful to understand the combined effect of the MSR and mortality rates while caring and competing than that of the ASR itself. In short, we argue that the ASR does not have a causal role in the evolution of parental care. We point out, however, that the ASR can be a cue for adaptive phenotypic plasticity in how each sex invests in parental care.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'. © 2017 The Author(s).

  20. The impact of chimerism in DNA-based forensic sex determination analysis.

    PubMed

    George, Renjith; Donald, Preethy Mary; Nagraj, Sumanth Kumbargere; Idiculla, Jose Joy; Hj Ismail, Rashid

    2013-01-01

    Sex determination is the most important step in personal identification in forensic investigations. DNA-based sex determination analysis is comparatively more reliable than the other conventional methods of sex determination analysis. Advanced technology like real-time polymerase chain reaction (PCR) offers accurate and reproducible results and is at the level of legal acceptance. But still there are situations like chimerism where an individual possess both male and female specific factors together in their body. Sex determination analysis in such cases can give erroneous results. This paper discusses the phenomenon of chimerism and its impact on sex determination analysis in forensic investigations.

  1. Occupational Segregation by Sex: Determinants and Changes.

    ERIC Educational Resources Information Center

    Beller, Andrea H.

    1982-01-01

    This study found that occupational sex segregation began to diminish during the 1970s, in conjunction with enforcement of the equal employment opportunity laws against sex discrimination in employment. The success of these laws suggests that discrimination was originally a determinant of occupational segregation. (Author/SK)

  2. Evidence of oligogenic sex determination in the apple snail Pomacea canaliculata.

    PubMed

    Yusa, Yoichi; Kumagai, Natsumi

    2018-06-01

    A small number of genes may interact to determine sex, but few such examples have been demonstrated in animals, especially through comprehensive mating experiments. The highly invasive apple snail Pomacea canaliculata is gonochoristic and shows a large variation in brood sex ratio, and the involvement of multiple genes has been suggested for this phenomenon. We conducted mating experiments to determine whether their sex determination involves a few or many genes (i.e., oligogenic or polygenic sex determination, respectively). Full-sib females or males that were born from the same parents were mated to an adult of the opposite sex, and the brood sex ratios of the parents and their offspring were investigated. Analysis of a total of 4288 offspring showed that the sex ratios of offspring from the full-sib females were variable but clustered into only a few values. Similar patterns were observed for the full-sib males, although the effect was less clear because fewer offspring were used (n = 747). Notably, the offspring sex ratios of all full-sib females in some families were nearly 0.5 (proportion of males) with little variation. These results indicate that the number of genotypes of the full-sibs, and hence genes involved in sex determination, is small in this snail. Such oligogenic systems may be a major sex-determining system among animals, especially those with variable sex ratios.

  3. Molecular method for determining sex of walruses

    USGS Publications Warehouse

    Fischbach, Anthony S.; Jay, C.V.; Jackson, J.V.; Andersen, L.W.; Sage, G.K.; Talbot, S.L.

    2008-01-01

    We evaluated the ability of a set of published trans-species molecular sexing primers and a set of walrus-specific primers, which we developed, to accurately identify sex of 235 Pacific walruses (Odobenus rosmarus divergens). The trans-species primers were developed for mammals and targeted the X- and Y-gametologs of the zinc finger protein genes (ZFX, ZFY). We extended this method by using these primers to obtain sequence from Pacific and Atlantic walrus (0. r. rosmarus) ZFX and ZFY genes to develop new walrus-specific primers, which yield polymerase chain reaction products of distinct lengths (327 and 288 base pairs from the X- and Y-chromosome, respectively), allowing them to be used for sex determination. Both methods yielded a determination of sex in all but 1-2% of samples with an accuracy of 99.6-100%. Our walrus-specific primers offer the advantage of small fragment size and facile application to automated electrophoresis and visualization.

  4. Evolutionary diversity and turn-over of sex determination in teleost fishes.

    PubMed

    Mank, J E; Avise, J C

    2009-01-01

    Sex determination, due to the obvious association with reproduction and Darwinian fitness, has been traditionally assumed to be a relatively conserved trait. However, research on teleost fishes has shown that this need not be the case, as these animals display a remarkable diversity in the ways that they determine sex. These different mechanisms, which include constitutive genetic mechanisms on sex chromosomes, polygenic constitutive mechanisms, environmental influences, hermaphroditism, and unisexuality have each originated numerous independent times in the teleosts. The evolutionary lability of sex determination, and the corresponding rapid rate of turn-over among different modes, makes the teleost clade an excellent model with which to test theories regarding the evolution of sex determining adaptations. Much of the plasticity in sex determination likely results from the dynamic teleost genome, and recent advances in fish genetics and genomics have revealed the role of gene and genome duplication in fostering emergence and turn-over of sex determining mechanisms. 2009 S. Karger AG, Basel.

  5. Sex ratio selection and multi-factorial sex determination in the housefly: a dynamic model.

    PubMed

    Kozielska, M; Pen, I; Beukeboom, L W; Weissing, F J

    2006-05-01

    Sex determining (SD) mechanisms are highly variable between different taxonomic groups and appear to change relatively quickly during evolution. Sex ratio selection could be a dominant force causing such changes. We investigate theoretically the effect of sex ratio selection on the dynamics of a multi-factorial SD system. The system considered resembles the naturally occurring three-locus system of the housefly, which allows for male heterogamety, female heterogamety and a variety of other mechanisms. Sex ratio selection is modelled by assuming cost differences in the production of sons and daughters, a scenario leading to a strong sex ratio bias in the absence of constraints imposed by the mechanism of sex determination. We show that, despite of the presumed flexibility of the SD system considered, equilibrium sex ratios never deviate strongly from 1 : 1. Even if daughters are very costly, a male-biased sex ratio can never evolve. If sons are more costly, sex ratio can be slightly female biased but even in case of large cost differences the bias is very small (<10% from 1 : 1). Sex ratio selection can lead to a shift in the SD mechanism, but cannot be the sole cause of complete switches from one SD system to another. In fact, more than one locus remains polymorphic at equilibrium. We discuss our results in the context of evolution of the variable SD mechanism found in natural housefly populations.

  6. Elucidation of the transcription network governing mammalian sex determination by exploiting strain-specific susceptibility to sex reversal

    PubMed Central

    Munger, Steven C.; Aylor, David L.; Syed, Haider Ali; Magwene, Paul M.; Threadgill, David W.; Capel, Blanche

    2009-01-01

    Despite the identification of some key genes that regulate sex determination, most cases of disorders of sexual development remain unexplained. Evidence suggests that the sexual fate decision in the developing gonad depends on a complex network of interacting factors that converge on a critical threshold. To elucidate the transcriptional network underlying sex determination, we took the first expression quantitative trait loci (eQTL) approach in a developing organ. We identified reproducible differences in the transcriptome of the embryonic day 11.5 (E11.5) XY gonad between C57BL/6J (B6) and 129S1/SvImJ (129S1), indicating that the reported sensitivity of B6 to sex reversal is consistent with a higher expression of a female-like transcriptome in B6. Gene expression is highly variable in F2 XY gonads from B6 and 129S1 intercrosses, yet strong correlations emerged. We estimated the F2 coexpression network and predicted roles for genes of unknown function based on their connectivity and position within the network. A genetic analysis of the F2 population detected autosomal regions that control the expression of many sex-related genes, including Sry (sex-determining region of the Y chromosome) and Sox9 (Sry-box containing gene 9), the key regulators of male sex determination. Our results reveal the complex transcription architecture underlying sex determination, and provide a mechanism by which individuals may be sensitized for sex reversal. PMID:19884258

  7. Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome.

    PubMed

    Spigler, R B; Lewers, K S; Main, D S; Ashman, T-L

    2008-12-01

    The evolution of separate sexes (dioecy) from hermaphroditism is one of the major evolutionary transitions in plants, and this transition can be accompanied by the development of sex chromosomes. Studies in species with intermediate sexual systems are providing unprecedented insight into the initial stages of sex chromosome evolution. Here, we describe the genetic mechanism of sex determination in the octoploid, subdioecious wild strawberry, Fragaria virginiana Mill., based on a whole-genome simple sequence repeat (SSR)-based genetic map and on mapping sex determination as two qualitative traits, male and female function. The resultant total map length is 2373 cM and includes 212 markers on 42 linkage groups (mean marker spacing: 14 cM). We estimated that approximately 70 and 90% of the total F. virginiana genetic map resides within 10 and 20 cM of a marker on this map, respectively. Both sex expression traits mapped to the same linkage group, separated by approximately 6 cM, along with two SSR markers. Together, our phenotypic and genetic mapping results support a model of gender determination in subdioecious F. virginiana with at least two linked loci (or gene regions) with major effects. Reconstruction of parental genotypes at these loci reveals that both female and hermaphrodite heterogamety exist in this species. Evidence of recombination between the sex-determining loci, an important hallmark of incipient sex chromosomes, suggest that F. virginiana is an example of the youngest sex chromosome in plants and thus a novel model system for the study of sex chromosome evolution.

  8. Maintenance of polygenic sex determination in a fluctuating environment: an individual-based model.

    PubMed

    Bateman, A W; Anholt, B R

    2017-05-01

    R. A. Fisher predicted that individuals should invest equally in offspring of both sexes, and that the proportion of males and females produced (the primary sex ratio) should evolve towards 1:1 when unconstrained. For many species, sex determination is dependent on sex chromosomes, creating a strong tendency for balanced sex ratios, but in other cases, multiple autosomal genes interact to determine sex. In such cases, the maintenance of multiple sex-determining alleles at multiple loci and the consequent among-family variability in sex ratios presents a puzzle, as theory predicts that such systems should be unstable. Theory also predicts that environmental influences on sex can complicate outcomes of genetic sex determination, and that population structure may play a role. Tigriopus californicus, a copepod that lives in splash-pool metapopulations and exhibits polygenic and environment-dependent sex determination, presents a test case for relevant theory. We use this species as a model for parameterizing an individual-based simulation to investigate conditions that could maintain polygenic sex determination. We find that metapopulation structure can delay the degradation of polygenic sex determination and that periods of alternating frequency-dependent selection, imposed by seasonal fluctuations in environmental conditions, can maintain polygenic sex determination indefinitely. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  9. The trap of sex in social insects: from the female to the male perspective.

    PubMed

    Beani, Laura; Dessì-Fulgheri, Francesco; Cappa, Federico; Toth, Amy

    2014-10-01

    The phenotype of male Hymenoptera and the peculiar role of males has been neglected and greatly understudied, given the spectacular cooperative behavior of female social insects. In social insects there has been considerable progress in understanding the molecular mechanisms behind haplodiploid sex determination but, beyond that, very little is known concerning the neural, endocrine, and genetic correlates of sexual selection in males. An opportunity is being missed: the male phenotype in Hymenoptera is a natural experiment to compare the drives of natural versus sexual selection. In contrast to females, males do not work, they usually display far from the nest to gain mates, compete among rivals in nuptial flights or for a symbolic territory at leks, and engage in direct or ritualized conflicts. By comparing the available data on male paper wasps with studies on other social Hymenoptera, we summarize what we currently know about the physical, hormonal, neural and behavioral traits in a model system appropriate to examine current paradigms on sexual selection. Here we review male behavior in social Hymenoptera beyond sex stereotypes: the subtle role of "drones" in the colony, the lack of armaments and ornaments, the explosive mating crowds, the "endurance" race, the cognitive bases of the "choosy" male and his immune defense. Social insect males are not just simple-minded mating machines, they are shaped, constrained and perhaps trapped by sexual selection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Sex determination in the wild: a field application of loop-mediated isothermal amplification successfully determines sex across three raptor species.

    PubMed

    Centeno-Cuadros, A; Abbasi, I; Nathan, R

    2017-03-01

    PCR-based methods are the most common technique for sex determination of birds. Although these methods are fast, easy and accurate, they still require special facilities that preclude their application outdoors. Consequently, there is a time lag between sampling and obtaining results that impedes researchers to take decisions in situ and in real time considering individuals' sex. We present an outdoor technique for sex determination of birds based on the amplification of the duplicated sex-chromosome-specific gene Chromo-Helicase-DNA binding protein using a loop-mediated isothermal amplification (LAMP). We tested our method on Griffon Vulture (Gyps fulvus), Egyptian Vulture (Neophron percnopterus) and Black Kite (Milvus migrans) (family Accipitridae). We introduce the first fieldwork procedure for sex determination of animals in the wild, successfully applied to raptor species of three different subfamilies using the same specific LAMP primers. This molecular technique can be deployed directly in sampling areas because it only needs a voltage inverter to adapt a thermo-block to a car lighter and results can be obtained by the unaided eye based on colour change within the reaction tubes. Primers and reagents are prepared in advance to facilitate their storage at room temperature. We provide detailed guidelines how to implement this procedure, which is simpler (no electrophoresis required), cheaper and faster (results in c. 90 min) than PCR-based laboratory methods. Our successful cross-species application across three different raptor subfamilies posits our set of markers as a promising tool for molecular sexing of other raptor families and our field protocol extensible to all bird species. © 2016 John Wiley & Sons Ltd.

  11. Sex determination and maintenance: the role of DMRT1 and FOXL2

    PubMed Central

    Huang, Shengsong; Ye, Leping; Chen, Haolin

    2017-01-01

    In many species, including mammals, sex determination is genetically based. The sex chromosomes that individuals carry determine sex identity. Although the genetic base of phenotypic sex is determined at the moment of fertilization, the development of testes or ovaries in the bipotential early gonads takes place during embryogenesis. During development, sex determination depends upon very few critical genes. When one of these key genes functions inappropriately, sex reversal may happen. Consequently, an individual's sex phenotype may not necessarily be consistent with the sex chromosomes that are present. For some time, it has been assumed that once the fetal choice is made between male and female in mammals, the gonadal sex identity of an individual remains stable. However, recent studies in mice have provided evidence that it is possible for the gonadal sex phenotype to be switched even in adulthood. These studies have shown that two key genes, doublesex and mad-3 related transcription factor 1 (Dmrt1) and forkhead box L2 (Foxl2), function in a Yin and Yang relationship to maintain the fates of testes or ovaries in adult mammals, and that mutations in either gene might have a dramatic effect on gonadal phenotype. Thus, adult gonad maintenance in addition to fetal sex determination may both be important for the fertility. PMID:28091399

  12. Molecular evolution of Dmrt1 accompanies change of sex-determining mechanisms in reptilia.

    PubMed

    Janes, Daniel E; Organ, Christopher L; Stiglec, Rami; O'Meally, Denis; Sarre, Stephen D; Georges, Arthur; Graves, Jennifer A M; Valenzuela, Nicole; Literman, Robert A; Rutherford, Kim; Gemmell, Neil; Iverson, John B; Tamplin, Jeffrey W; Edwards, Scott V; Ezaz, Tariq

    2014-12-01

    In reptiles, sex-determining mechanisms have evolved repeatedly and reversibly between genotypic and temperature-dependent sex determination. The gene Dmrt1 directs male determination in chicken (and presumably other birds), and regulates sex differentiation in animals as distantly related as fruit flies, nematodes and humans. Here, we show a consistent molecular difference in Dmrt1 between reptiles with genotypic and temperature-dependent sex determination. Among 34 non-avian reptiles, a convergently evolved pair of amino acids encoded by sequence within exon 2 near the DM-binding domain of Dmrt1 distinguishes species with either type of sex determination. We suggest that this amino acid shift accompanied the evolution of genotypic sex determination from an ancestral condition of temperature-dependent sex determination at least three times among reptiles, as evident in turtles, birds and squamates. This novel hypothesis describes the evolution of sex-determining mechanisms as turnover events accompanied by one or two small mutations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Molecular evolution of Dmrt1 accompanies change of sex-determining mechanisms in reptilia

    PubMed Central

    Janes, Daniel E.; Organ, Christopher L.; Stiglec, Rami; O'Meally, Denis; Sarre, Stephen D.; Georges, Arthur; Graves, Jennifer A. M.; Valenzuela, Nicole; Literman, Robert A.; Rutherford, Kim; Gemmell, Neil; Iverson, John B.; Tamplin, Jeffrey W.; Edwards, Scott V.; Ezaz, Tariq

    2014-01-01

    In reptiles, sex-determining mechanisms have evolved repeatedly and reversibly between genotypic and temperature-dependent sex determination. The gene Dmrt1 directs male determination in chicken (and presumably other birds), and regulates sex differentiation in animals as distantly related as fruit flies, nematodes and humans. Here, we show a consistent molecular difference in Dmrt1 between reptiles with genotypic and temperature-dependent sex determination. Among 34 non-avian reptiles, a convergently evolved pair of amino acids encoded by sequence within exon 2 near the DM-binding domain of Dmrt1 distinguishes species with either type of sex determination. We suggest that this amino acid shift accompanied the evolution of genotypic sex determination from an ancestral condition of temperature-dependent sex determination at least three times among reptiles, as evident in turtles, birds and squamates. This novel hypothesis describes the evolution of sex-determining mechanisms as turnover events accompanied by one or two small mutations. PMID:25540158

  14. Prenatal sex determination: a new family-building strategy.

    PubMed

    Khanna, S K

    1995-01-01

    In the Indian village of Shahargaon, a village undergoing urbanizing effects near New Delhi, ultrasound and other prenatal diagnosis services are offered for people seeking prenatal sex determination and abortion of female fetuses. In the last 10 years there has been a significant rise in the practice of amniocentesis and ultrasonography to identify female fetuses followed by abortion to avoid the birth of a daughter. Cultural practices are behind this custom of sex-selective abortion because of strong son preference. Since the 1970s many activist organizations, women's groups, and voluntary agencies have condemned prenatal sex determination and called for strict government control. A survey of these village women, a midwife, and doctors at clinics surrounding Shahargaon indicated that ultrasound examinations and sex-selected abortion are common practice and they are on the rise. The techniques most widely used in north India are amniocentesis, ultrasonography, chorionic villus sampling, and fetoscopy. The dominant ethnic group in the area are the Jats, who owned most of the land before 1964. Since the 1970s they have been flocking to New Delhi as wage laborers and taking up employment in the service sector in low paying jobs. In the traditional Jat community the birth of son is considered a gift, while that of daughter is an expense, a moral burden, and a threat to the family. Thus, the devaluation of women and son preference continue. In 1993 the birth rate in the Shahargaon Jat community was 32.18 per 1000 population with a growing disparity between the number of boys and girls. The average family size is 5.98. The highly skewed sex ratio in this population of children 5 years or younger can be largely attributed to increased use of prenatal sex determination and sex-selective abortion of female fetuses.

  15. Comparative In silico Study of Sex-Determining Region Y (SRY) Protein Sequences Involved in Sex-Determining.

    PubMed

    Vakili Azghandi, Masoume; Nasiri, Mohammadreza; Shamsa, Ali; Jalali, Mohsen; Shariati, Mohammad Mahdi

    2016-04-01

    The SRY gene (SRY) provides instructions for making a transcription factor called the sex-determining region Y protein. The sex-determining region Y protein causes a fetus to develop as a male. In this study, SRY of 15 spices included of human, chimpanzee, dog, pig, rat, cattle, buffalo, goat, sheep, horse, zebra, frog, urial, dolphin and killer whale were used for determine of bioinformatic differences. Nucleotide sequences of SRY were retrieved from the NCBI databank. Bioinformatic analysis of SRY is done by CLC Main Workbench version 5.5 and ClustalW (http:/www.ebi.ac.uk/clustalw/) and MEGA6 softwares. The multiple sequence alignment results indicated that SRY protein sequences from Orcinus orca (killer whale) and Tursiopsaduncus (dolphin) have least genetic distance of 0.33 in these 15 species and are 99.67% identical at the amino acid level. Homosapiens and Pantroglodytes (chimpanzee) have the next lowest genetic distance of 1.35 and are 98.65% identical at the amino acid level. These findings indicate that the SRY proteins are conserved in the 15 species, and their evolutionary relationships are similar.

  16. A simple fitness proxy for structured populations with continuous traits, with case studies on the evolution of haplo-diploids and genetic dimorphisms.

    PubMed

    Metz, J A J; Leimar, O

    2011-03-01

    For structured populations in equilibrium with everybody born equal, ln(R (0)) is a useful fitness proxy for evolutionarily steady strategy (ESS) and most adaptive dynamics calculations, with R (0) the average lifetime number of offspring in the clonal and haploid cases, and half the average lifetime number of offspring fathered or mothered for Mendelian diploids. When individuals have variable birth states, as is, for example, the case in spatial models, R (0) is itself an eigenvalue, which usually cannot be expressed explicitly in the trait vectors under consideration. In that case, Q(Y| X):=-det (I-L(Y| X)) can often be used as fitness proxy, with L the next-generation matrix for a potential mutant characterized by the trait vector Y in the (constant) environment engendered by a resident characterized by X. If the trait space is connected, global uninvadability can be determined from it. Moreover, it can be used in all the usual local calculations like the determination of evolutionarily singular trait vectors and their local invadability and attractivity. We conclude with three extended case studies demonstrating the usefulness of Q: the calculation of ESSs under haplo-diploid genetics (I), of evolutionarily steady genetic dimorphisms (ESDs) with a priori proportionality of macro- and micro-gametic outputs (an assumption that is generally made but the fulfilment of which is a priori highly exceptional) (II), and of ESDs without such proportionality (III). These case studies should also have some interest in their own right for the spelled out calculation recipes and their underlying modelling methodology.

  17. Sex determination of human remains from peptides in tooth enamel.

    PubMed

    Stewart, Nicolas Andre; Gerlach, Raquel Fernanda; Gowland, Rebecca L; Gron, Kurt J; Montgomery, Janet

    2017-12-26

    The assignment of biological sex to archaeological human skeletons is a fundamental requirement for the reconstruction of the human past. It is conventionally and routinely performed on adults using metric analysis and morphological traits arising from postpubertal sexual dimorphism. A maximum accuracy of ∼95% is possible if both the cranium and os coxae are present and intact, but this is seldom achievable for all skeletons. Furthermore, for infants and juveniles, there are no reliable morphological methods for sex determination without resorting to DNA analysis, which requires good DNA survival and is time-consuming. Consequently, sex determination of juvenile remains is rarely undertaken, and a dependable and expedient method that can correctly assign biological sex to human remains of any age is highly desirable. Here we present a method for sex determination of human remains by means of a minimally destructive surface acid etching of tooth enamel and subsequent identification of sex chromosome-linked isoforms of amelogenin, an enamel-forming protein, by nanoflow liquid chromatography mass spectrometry. Tooth enamel is the hardest tissue in the human body and survives burial exceptionally well, even when the rest of the skeleton or DNA in the organic fraction has decayed. Our method can reliably determine the biological sex of humans of any age using a body tissue that is difficult to cross-contaminate and is most likely to survive. The application of this method will make sex determination of adults and, for the first time, juveniles a reliable and routine activity in future bioarcheological and medico-legal science contexts. Copyright © 2017 the Author(s). Published by PNAS.

  18. Genetic and epigenetic architecture of sex-biased expression in the jewel wasps Nasonia vitripennis and giraulti

    PubMed Central

    Wang, Xu; Werren, John H.; Clark, Andrew G.

    2015-01-01

    There is extraordinary diversity in sexual dimorphism (SD) among animals, but little is known about its epigenetic basis. To study the epigenetic architecture of SD in a haplodiploid system, we performed RNA-seq and whole-genome bisulfite sequencing of adult females and males from two closely related parasitoid wasps, Nasonia vitripennis and Nasonia giraulti. More than 75% of expressed genes displayed significantly sex-biased expression. As a consequence, expression profiles are more similar between species within each sex than between sexes within each species. Furthermore, extremely male- and female-biased genes are enriched for totally different functional categories: male-biased genes for key enzymes in sex-pheromone synthesis and female-biased genes for genes involved in epigenetic regulation of gene expression. Remarkably, just 70 highly expressed, extremely male-biased genes account for 10% of all transcripts in adult males. Unlike expression profiles, DNA methylomes are highly similar between sexes within species, with no consistent sex differences in methylation found. Therefore, methylation changes cannot explain the extensive level of sex-biased gene expression observed. Female-biased genes have smaller sequence divergence between species, higher conservation to other hymenopterans, and a broader expression range across development. Overall, female-biased genes have been recruited from genes with more conserved and broadly expressing “house-keeping” functions, whereas male-biased genes are more recently evolved and are predominately testis specific. In summary, Nasonia accomplish a striking degree of sex-biased expression without sex chromosomes or epigenetic differences in methylation. We propose that methylation provides a general signal for constitutive gene expression, whereas other sex-specific signals cause sex-biased gene expression. PMID:26100871

  19. The price of sex: condom use and the determinants of the price of sex among female sex workers in eastern Zimbabwe.

    PubMed

    Elmes, Jocelyn; Nhongo, Kundai; Ward, Helen; Hallett, Timothy; Nyamukapa, Constance; White, Peter J; Gregson, Simon

    2014-12-01

    Higher prices for unprotected sex threaten the high levels of condom use that contributed to the decline in Zimbabwe's human immunodeficiency virus (HIV) epidemic. To improve understanding of financial pressures competing against safer sex, we explore factors associated with the price of commercial sex in rural eastern Zimbabwe. We collected and analyzed cross-sectional data on 311 women, recruited during October-December 2010, who reported that they received payment for their most-recent or second-most-recent sex acts in the past year. Zero-inflated negative binomial models with robust standard errors clustered on female sex worker (FSW) were used to explore social and behavioral determinants of price. The median price of sex was $10 (interquartile range [IQR], $5-$20) per night and $10 (IQR, $5-$15) per act. Amounts paid in cash and commodities did not differ significantly. At the most-recent sex act, more-educated FSWs received 30%-74% higher payments. Client requests for condom use significantly predicted protected sex (P < .01), but clients paid on average 42.9% more for unprotected sex. Within a work environment where clients' preferences determine condom use, FSWs effectively use their individual capital to negotiate the terms of condom use. Strengthening FSWs' preferences for protected sex could help maintain high levels of condom use. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  20. The Price of Sex: Condom Use and the Determinants of the Price of Sex Among Female Sex Workers in Eastern Zimbabwe

    PubMed Central

    Elmes, Jocelyn; Nhongo, Kundai; Ward, Helen; Hallett, Timothy; Nyamukapa, Constance; White, Peter J.; Gregson, Simon

    2014-01-01

    Background. Higher prices for unprotected sex threaten the high levels of condom use that contributed to the decline in Zimbabwe's human immunodeficiency virus (HIV) epidemic. To improve understanding of financial pressures competing against safer sex, we explore factors associated with the price of commercial sex in rural eastern Zimbabwe. Methods. We collected and analyzed cross-sectional data on 311 women, recruited during October–December 2010, who reported that they received payment for their most-recent or second-most-recent sex acts in the past year. Zero-inflated negative binomial models with robust standard errors clustered on female sex worker (FSW) were used to explore social and behavioral determinants of price. Results. The median price of sex was $10 (interquartile range [IQR], $5–$20) per night and $10 (IQR, $5–$15) per act. Amounts paid in cash and commodities did not differ significantly. At the most-recent sex act, more-educated FSWs received 30%–74% higher payments. Client requests for condom use significantly predicted protected sex (P < .01), but clients paid on average 42.9% more for unprotected sex. Conclusions. Within a work environment where clients' preferences determine condom use, FSWs effectively use their individual capital to negotiate the terms of condom use. Strengthening FSWs' preferences for protected sex could help maintain high levels of condom use. PMID:25381377

  1. Use of B-mode ultrasonography for fetal sex determination in dogs.

    PubMed

    Gil, E M U; Garcia, D A A; Giannico, A T; Froes, T R

    2015-10-01

    Ultrasonographic determination of fetal sex in dogs has not previously been reported. The aim of this study was to describe a method for determination of intrauterine fetal sex using ultrasound. A cohort study was conducted in pregnant bitches to perform ultrasound examination of the fetal genitalia between the eighth and ninth week of gestation. Fetal sex was determined in utero by consensus agreement of two sonographers. Eighteen pregnant bitches were included in this study, and a total of 39 fetuses were evaluated. The accuracy of ultrasonography to determine the sex with a 95% confidence interval was 62.24% to female fetuses and 65.48% to male fetuses. The sonographic accuracy in determining fetal sex can be achieved at 100% when there are up to two fetuses in the litter; however, the accuracy of the technique reduces (66.7%) when more than three fetuses are present. This study describes the sonographic appearance of the external genitalia in canine fetuses in utero associated with a specific position of the fetus and reports that sex determination is possible between 55 and 58 days of gestation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Radiomorphometric analysis of frontal sinus for sex determination.

    PubMed

    Verma, Saumya; Mahima, V G; Patil, Karthikeya

    2014-09-01

    Sex determination of unknown individuals carries crucial significance in forensic research, in cases where fragments of skull persist with no likelihood of identification based on dental arch. In these instances sex determination becomes important to rule out certain number of possibilities instantly and helps in establishing a biological profile of human remains. The aim of the study is to evaluate a mathematical method based on logistic regression analysis capable of ascertaining the sex of individuals in the South Indian population. The study was conducted in the department of Oral Medicine and Radiology. The right and left areas, maximum height, width of frontal sinus were determined in 100 Caldwell views of 50 women and 50 men aged 20 years and above, with the help of Vernier callipers and a square grid with 1 square measuring 1mm(2) in area. Student's t-test, logistic regression analysis. The mean values of variables were greater in men, based on Student's t-test at 5% level of significance. The mathematical model based on logistic regression analysis gave percentage agreement of total area to correctly predict the female gender as 55.2%, of right area as 60.9% and of left area as 55.2%. The areas of the frontal sinus and the logistic regression proved to be unreliable in sex determination. (Logit = 0.924 - 0.00217 × right area).

  3. Function and evolution of sex determination mechanisms, genes and pathways in insects

    PubMed Central

    Gempe, Tanja; Beye, Martin

    2011-01-01

    Animals have evolved a bewildering diversity of mechanisms to determine the two sexes. Studies of sex determination genes – their history and function – in non-model insects and Drosophila have allowed us to begin to understand the generation of sex determination diversity. One common theme from these studies is that evolved mechanisms produce activities in either males or females to control a shared gene switch that regulates sexual development. Only a few small-scale changes in existing and duplicated genes are sufficient to generate large differences in sex determination systems. This review summarises recent findings in insects, surveys evidence of how and why sex determination mechanisms can change rapidly and suggests fruitful areas of future research. PMID:21110346

  4. Gonadal expression of Sf1 and aromatase during sex determination in the red-eared slider turtle (Trachemys scripta), a reptile with temperature-dependent sex determination.

    PubMed

    Ramsey, Mary; Shoemaker, Christina; Crews, David

    2007-12-01

    Many egg-laying reptiles have temperature-dependent sex determination (TSD), where the offspring sex is determined by incubation temperature during a temperature-sensitive period (TSP) in the middle third of development. The underlying mechanism transducing a temperature cue into an ovary or testis is unknown, but it is known that steroid hormones play an important role. During the TSP, exogenous application of estrogen can override a temperature cue and produce females, while blocking the activity of aromatase (Cyp19a1), the enzyme that converts testosterone to estradiol, produces males from a female-biased temperature. The production of estrogen is a key step in ovarian differentiation for many vertebrates, including TSD reptiles, and temperature-based differences in aromatase expression during the TSP may be a critical step in ovarian determination. Steroidogenic factor-1 (Sf1) is a key gene in vertebrate sex determination and regulates many steroidogenic enzymes, including aromatase. We find that Sf1 and aromatase are differentially expressed during sex determination in the red-eared slider turtle, Trachemys scripta elegans. Sf1 is expressed at higher levels during testis development while aromatase expression increases during ovary determination. We also assayed Sf1 and aromatase response to sex-reversing treatments via temperature or the modulation of estrogen availability. Sf1 expression was redirected to low-level female-specific patterns with feminizing temperature shift or exogenous estradiol application and redirected to more intense male-specific patterns with male-producing temperature shift or inhibition of aromatase activity. Conversely, aromatase expression was redirected to more intense female-specific patterns with female-producing treatment and redirected toward diffuse low-level male-specific patterns with masculinizing sex reversal. Our data do not lend support to a role for Sf1 in the regulation of aromatase expression during slider turtle sex

  5. A simple PCR-based marker to determine sex in aspen.

    PubMed

    Pakull, B; Kersten, B; Lüneburg, J; Fladung, M

    2015-01-01

    The genus Populus features a genetically controlled sex determination system, located on chromosome 19. However, different Populus species vary in the position of the sex-linked region on the respective chromosome and the apparent heterogametic sex, and the precise mechanism of sex determination in Populus is still unknown. Using next generation sequencing of pooled samples of male and female aspens, we identified the aspen homologue of the P. trichocarpa gene Potri.019G047300 ('TOZ19') to be male-specific. While in P. tremuloides, the complete gene is missing in the genome of female plants, a short fragment of the 3'-part of the gene is still present in P. tremula females. The male-specific presence and transcription of TOZ19 was further verified using PCR in various different aspen individuals and RT-PCR expression analysis. TOZ19 is potentially involved in early steps of flower development, and represents an interesting candidate gene for involvement in sex determination in aspen. Regardless of its role as candidate gene, TOZ19 represents an ideal marker for determination of the sex of non-flowering aspen individuals or seedlings. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Determination of sex from the patella in a contemporary Spanish population.

    PubMed

    Peckmann, Tanya R; Meek, Susan; Dilkie, Natasha; Rozendaal, Andrew

    2016-11-01

    The skull and pelvis have been used for the determination of sex for unknown human remains. However, in forensic cases where skeletal remains often exhibit postmortem damage and taphonomic changes the patella may be used for the determination of sex as it is a preservationally favoured bone. The goal of the present research was to derive discriminant function equations from the patella for estimation of sex from a contemporary Spanish population. Six parameters were measured on 106 individuals (55 males and 51 females), ranging in age from 22 to 85 years old, from the Granada Osteological Collection. The statistical analyses showed that all variables were sexually dimorphic. Discriminant function score equations were generated for use in sex determination. The overall accuracy of sex classification ranged from 75.2% to 84.8% for the direct method and 75.5%-83.8% for the stepwise method. When the South African White discriminant functions were applied to the Spanish sample they showed high accuracy rates for sexing female patellae (90%-95.9%) and low accuracy rates for sexing male patellae (52.7%-58.2%). When the South African Black discriminant functions were applied to the Spanish sample they showed high accuracy rates for sexing male patellae (90.9%) and low accuracy rates for sexing female patellae (70%-75.5%). The patella was shown to be useful for sex determination in the contemporary Spanish population. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  7. The genetic contribution to sex determination and number of sex chromosomes vary among populations of common frogs (Rana temporaria).

    PubMed

    Rodrigues, N; Vuille, Y; Brelsford, A; Merilä, J; Perrin, N

    2016-07-01

    The patterns of sex determination and sex differentiation have been shown to differ among geographic populations of common frogs. Notably, the association between phenotypic sex and linkage group 2 (LG2) has been found to be perfect in a northern Swedish population, but weak and variable among families in a southern one. By analyzing these populations with markers from other linkage groups, we bring two new insights: (1) the variance in phenotypic sex not accounted for by LG2 in the southern population could not be assigned to genetic factors on other linkage groups, suggesting an epigenetic component to sex determination; (2) a second linkage group (LG7) was found to co-segregate with sex and LG2 in the northern population. Given the very short timeframe since post-glacial colonization (in the order of 1000 generations) and its seemingly localized distribution, this neo-sex chromosome system might be the youngest one described so far. It does not result from a fusion, but more likely from a reciprocal translocation between the original Y chromosome (LG2) and an autosome (LG7), causing their co-segregation during male meiosis. By generating a strict linkage between several important genes from the sex-determination cascade (Dmrt1, Amh and Amhr2), this neo-sex chromosome possibly contributes to the 'differentiated sex race' syndrome (strictly genetic sex determination and early gonadal development) that characterizes this northern population.

  8. Determinants of Safer Sex Behaviors among College Students

    ERIC Educational Resources Information Center

    Kanekar, Amar; Sharma, Manoj

    2010-01-01

    Safer sex behaviors (monogamy, sexual abstinence, correct and consistent condom usage) are important for prevention of sexually transmitted diseases and HIV/AIDS among college students. The purpose of this article was to review studies addressing determinants of safer sex behaviors among college students. In order to collect materials for this…

  9. Thyroid hormone modulates offspring sex ratio in a turtle with temperature-dependent sex determination

    PubMed Central

    Li, Teng; Mu, Yi; McGlashan, Jessica K.; Georges, Arthur

    2016-01-01

    The adaptive significance of temperature-dependent sex determination (TSD) has attracted a great deal of research, but the underlying mechanisms by which temperature determines the sex of a developing embryo remain poorly understood. Here, we manipulated the level of a thyroid hormone (TH), triiodothyronine (T3), during embryonic development (by adding excess T3 to the eggs of the red-eared slider turtle Trachemys scripta, a reptile with TSD), to test two competing hypotheses on the proximate basis for TSD: the developmental rate hypothesis versus the hormone hypothesis. Exogenous TH accelerated embryonic heart rate (and hence metabolic rate), developmental rate, and rates of early post-hatching growth. More importantly, hyperthyroid conditions depressed expression of Cyp19a1 (the gene encoding for aromatase) and levels of oestradiol, and induced more male offspring. This result is contrary to the direction of sex-ratio shift predicted by the developmental rate hypothesis, but consistent with that predicted by the hormone hypothesis. Our results suggest an important role for THs in regulating sex steroid hormones, and therefore, in affecting gonadal sex differentiation in TSD reptiles. Our study has implications for the conservation of TSD reptiles in the context of global change because environmental contaminants may disrupt the activity of THs, and thereby affect offspring sex in TSD reptiles. PMID:27798296

  10. Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya).

    PubMed

    Urasaki, Naoya; Tarora, Kazuhiko; Shudo, Ayano; Ueno, Hiroki; Tamaki, Moritoshi; Miyagi, Norimichi; Adaniya, Shinichi; Matsumura, Hideo

    2012-01-01

    Papaya (Carica papaya) is a trioecious plant species that has male, female and hermaphrodite flowers on different plants. The primitive sex chromosomes genetically determine the sex of the papaya. Although draft sequences of the papaya genome are already available, the genes for sex determination have not been identified, likely due to the complicated structure of its sex-chromosome sequences. To identify the candidate genes for sex determination, we conducted a transcriptome analysis of flower samples from male, female and hermaphrodite plants using high-throughput SuperSAGE for digital gene expression analysis. Among the short sequence tags obtained from the transcripts, 312 unique tags were specifically mapped to the primitive sex chromosome (X or Y(h)) sequences. An annotation analysis revealed that retroelements are the most abundant sequences observed in the genes corresponding to these tags. The majority of tags on the sex chromosomes were located on the X chromosome, and only 30 tags were commonly mapped to both the X and Y(h) chromosome, implying a loss of many genes on the Y(h) chromosome. Nevertheless, candidate Y(h) chromosome-specific female determination genes, including a MADS-box gene, were identified. Information on these sex chromosome-specific expressed genes will help elucidating sex determination in the papaya.

  11. Digital Transcriptome Analysis of Putative Sex-Determination Genes in Papaya (Carica papaya)

    PubMed Central

    Urasaki, Naoya; Tarora, Kazuhiko; Shudo, Ayano; Ueno, Hiroki; Tamaki, Moritoshi; Miyagi, Norimichi; Adaniya, Shinichi; Matsumura, Hideo

    2012-01-01

    Papaya (Carica papaya) is a trioecious plant species that has male, female and hermaphrodite flowers on different plants. The primitive sex chromosomes genetically determine the sex of the papaya. Although draft sequences of the papaya genome are already available, the genes for sex determination have not been identified, likely due to the complicated structure of its sex-chromosome sequences. To identify the candidate genes for sex determination, we conducted a transcriptome analysis of flower samples from male, female and hermaphrodite plants using high-throughput SuperSAGE for digital gene expression analysis. Among the short sequence tags obtained from the transcripts, 312 unique tags were specifically mapped to the primitive sex chromosome (X or Yh) sequences. An annotation analysis revealed that retroelements are the most abundant sequences observed in the genes corresponding to these tags. The majority of tags on the sex chromosomes were located on the X chromosome, and only 30 tags were commonly mapped to both the X and Yh chromosome, implying a loss of many genes on the Yh chromosome. Nevertheless, candidate Yh chromosome-specific female determination genes, including a MADS-box gene, were identified. Information on these sex chromosome-specific expressed genes will help elucidating sex determination in the papaya. PMID:22815863

  12. Conservation of Sex-Linked Markers among Conspecific Populations of a Viviparous Skink, Niveoscincus ocellatus, Exhibiting Genetic and Temperature-Dependent Sex Determination

    PubMed Central

    Burridge, Christopher P; Ezaz, Tariq; Wapstra, Erik

    2018-01-01

    Abstract Sex determination systems are exceptionally diverse and have undergone multiple and independent evolutionary transitions among species, particularly reptiles. However, the mechanisms underlying these transitions have not been established. Here, we tested for differences in sex-linked markers in the only known reptile that is polymorphic for sex determination system, the spotted snow skink, Niveoscincus ocellatus, to quantify the genomic differences that have accompanied this transition. In a highland population, sex is determined genetically, whereas in a lowland population, offspring sex ratio is influenced by temperature. We found a similar number of sex-linked loci in each population, including shared loci, with genotypes consistent with male heterogamety (XY). However, population-specific linkage disequilibrium suggests greater differentiation of sex chromosomes in the highland population. Our results suggest that transitions between sex determination systems can be facilitated by subtle genetic differences. PMID:29659810

  13. Determinants of unprotected casual heterosexual sex in Ghana.

    PubMed

    Kumi-Kyereme, Akwasi; Tuoyire, Derek A; Darteh, Eugene K M

    2014-05-01

    Casual heterosexual sex remains a significant contributor to HIV transmissions in Ghana. The study used data from the 2008 Ghana Demographic and Health Survey (GDHS) to assess the socio-demographic, economic and spatial factors influencing unprotected casual heterosexual sex among men and women. The results of the binary logistic regression models revealed that women aged 35-44 had significantly higher odds of engaging in unprotected casual heterosexual sex than those aged 15-24, unlike the men. There were significantly lower odds of unprotected casual heterosexual sex for women and men with exposure to print media compared with those without exposure. Compared with men residing in the Western Region, unprotected casual heterosexual sex was significantly less likely among those in the Upper East Region. There is the need for behavioural change campaigns in Ghana that take into consideration the multiplicity of factors that determine unprotected casual heterosexual sex.

  14. Male sex determination: insights into molecular mechanisms

    PubMed Central

    McClelland, Kathryn; Bowles, Josephine; Koopman, Peter

    2012-01-01

    Disorders of sex development often arise from anomalies in the molecular or cellular networks that guide the differentiation of the embryonic gonad into either a testis or an ovary, two functionally distinct organs. The activation of the Y-linked gene Sry (sex-determining region Y) and its downstream target Sox9 (Sry box-containing gene 9) triggers testis differentiation by stimulating the differentiation of Sertoli cells, which then direct testis morphogenesis. Once engaged, a genetic pathway promotes the testis development while actively suppressing genes involved in ovarian development. This review focuses on the events of testis determination and the struggle to maintain male fate in the face of antagonistic pressure from the underlying female programme. PMID:22179516

  15. Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L.

    PubMed

    Kafkas, Salih; Khodaeiaminjan, Mortaza; Güney, Murat; Kafkas, Ebru

    2015-02-18

    Pistachio (Pistacia vera L.) is a dioecious species that has a long juvenility period. Therefore, development of marker-assisted selection (MAS) techniques would greatly facilitate pistachio cultivar-breeding programs. The sex determination mechanism is presently unknown in pistachio. The generation of sex-linked markers is likely to reduce time, labor, and costs associated with breeding programs, and will help to clarify the sex determination system in pistachio. Restriction site-associated DNA (RAD) markers were used to identify sex-linked markers and to elucidate the sex determination system in pistachio. Eight male and eight female F1 progenies from a Pistacia vera L. Siirt × Bağyolu cross, along with the parents, were subjected to RAD sequencing in two lanes of a Hi-Seq 2000 sequencing platform. This generated 449 million reads, comprising approximately 37.7 Gb of sequences. There were 33,757 polymorphic single nucleotide polymorphism (SNP) loci between the parents. Thirty-eight of these, from 28 RAD reads, were detected as putative sex-associated loci in pistachio. Validation was performed by SNaPshot analysis in 42 mature F1 progenies and in 124 cultivars and genotypes in a germplasm collection. Eight loci could distinguish sex with 100% accuracy in pistachio. To ascertain cost-effective application of markers in a breeding program, high-resolution melting (HRM) analysis was performed; four markers were found to perfectly separate sexes in pistachio. Because of the female heterogamety in all candidate SNP loci, we report for the first time that pistachio has a ZZ/ZW sex determination system. As the reported female-to-male segregation ratio is 1:1 in all known segregating populations and there is no previous report of super-female genotypes or female heteromorphic chromosomes in pistachio, it appears that the WW genotype is not viable. Sex-linked SNP markers were identified and validated in a large germplasm and proved their suitability for MAS in

  16. Sex determination using the Probabilistic Sex Diagnosis (DSP: Diagnose Sexuelle Probabiliste) tool in a virtual environment.

    PubMed

    Chapman, Tara; Lefevre, Philippe; Semal, Patrick; Moiseev, Fedor; Sholukha, Victor; Louryan, Stéphane; Rooze, Marcel; Van Sint Jan, Serge

    2014-01-01

    The hip bone is one of the most reliable indicators of sex in the human body due to the fact it is the most dimorphic bone. Probabilistic Sex Diagnosis (DSP: Diagnose Sexuelle Probabiliste) developed by Murail et al., in 2005, is a sex determination method based on a worldwide hip bone metrical database. Sex is determined by comparing specific measurements taken from each specimen using sliding callipers and computing the probability of specimens being female or male. In forensic science it is sometimes not possible to sex a body due to corpse decay or injury. Skeletalization and dissection of a body is a laborious process and desecrates the body. There were two aims to this study. The first aim was to examine the accuracy of the DSP method in comparison with a current visual sexing method on sex determination. A further aim was to see if it was possible to virtually utilise the DSP method on both the hip bone and the pelvic girdle in order to utilise this method for forensic sciences. For the first part of the study, forty-nine dry hip bones of unknown sex were obtained from the Body Donation Programme of the Université Libre de Bruxelles (ULB). A comparison was made between DSP analysis and visual sexing on dry bone by two researchers. CT scans of bones were then analysed to obtain three-dimensional (3D) virtual models and the method of DSP was analysed virtually by importing the models into a customised software programme called lhpFusionBox which was developed at ULB. The software enables DSP distances to be measured via virtually-palpated bony landmarks. There was found to be 100% agreement of sex between the manual and virtual DSP method. The second part of the study aimed to further validate the method by analysing thirty-nine supplementary pelvic girdles of known sex blind. There was found to be a 100% accuracy rate further demonstrating that the virtual DSP method is robust. Statistically significant differences were found in the identification of sex

  17. Sex determination in dioecious Mercurialis annua and its close diploid and polyploid relatives

    PubMed Central

    Russell, J R W; Pannell, J R

    2015-01-01

    Separate sexes have evolved on numerous independent occasions from hermaphroditic ancestors in flowering plants. The mechanisms of sex determination is known for only a handful of such species, but, in those that have been investigated, it usually involves alleles segregating at a single locus, sometimes on heteromorphic sex chromosomes. In the genus Mercurialis, transitions between combined (hermaphroditism) and separate sexes (dioecy or androdioecy, where males co-occur with hermaphrodites rather than females) have occurred more than once in association with hybridisation and shifts in ploidy. Previous work has pointed to an unusual 3-locus system of sex determination in dioecious populations. Here, we use crosses and genotyping for a sex-linked marker to reject this model: sex in diploid dioecious M. annua is determined at a single locus with a dominant male-determining allele (an XY system). We also crossed individuals among lineages of Mercurialis that differ in their ploidy and sexual system to ascertain the extent to which the same sex-determination system has been conserved following genome duplication, hybridisation and transitions between dioecy and hermaphroditism. Our results indicate that the male-determining element is fully capable of determining gender in the progeny of hybrids between different lineages. Specifically, males crossed with females or hermaphrodites always generate 1:1 male:female or male:hermaphrodite sex ratios, respectively, regardless of the ploidy levels involved (diploid, tetraploid or hexaploid). Our results throw further light on the genetics of the remarkable variation in sexual systems in the genus Mercurialis. They also illustrate the almost identical expression of sex-determining alleles in terms of sexual phenotypes across multiple divergent backgrounds, including those that have lost separate sexes altogether. PMID:25335556

  18. Sex determination in dioecious Mercurialis annua and its close diploid and polyploid relatives.

    PubMed

    Russell, J R W; Pannell, J R

    2015-03-01

    Separate sexes have evolved on numerous independent occasions from hermaphroditic ancestors in flowering plants. The mechanisms of sex determination is known for only a handful of such species, but, in those that have been investigated, it usually involves alleles segregating at a single locus, sometimes on heteromorphic sex chromosomes. In the genus Mercurialis, transitions between combined (hermaphroditism) and separate sexes (dioecy or androdioecy, where males co-occur with hermaphrodites rather than females) have occurred more than once in association with hybridisation and shifts in ploidy. Previous work has pointed to an unusual 3-locus system of sex determination in dioecious populations. Here, we use crosses and genotyping for a sex-linked marker to reject this model: sex in diploid dioecious M. annua is determined at a single locus with a dominant male-determining allele (an XY system). We also crossed individuals among lineages of Mercurialis that differ in their ploidy and sexual system to ascertain the extent to which the same sex-determination system has been conserved following genome duplication, hybridisation and transitions between dioecy and hermaphroditism. Our results indicate that the male-determining element is fully capable of determining gender in the progeny of hybrids between different lineages. Specifically, males crossed with females or hermaphrodites always generate 1:1 male:female or male:hermaphrodite sex ratios, respectively, regardless of the ploidy levels involved (diploid, tetraploid or hexaploid). Our results throw further light on the genetics of the remarkable variation in sexual systems in the genus Mercurialis. They also illustrate the almost identical expression of sex-determining alleles in terms of sexual phenotypes across multiple divergent backgrounds, including those that have lost separate sexes altogether.

  19. Origin and transition of sex determination mechanisms in a gynogenetic hexaploid fish.

    PubMed

    Li, Xi-Yin; Liu, Xiao-Li; Zhu, Yao-Jun; Zhang, Jun; Ding, Miao; Wang, Ming-Tao; Wang, Zhong-Wei; Li, Zhi; Zhang, Xiao-Juan; Zhou, Li; Gui, Jian-Fang

    2018-02-02

    Most vertebrates reproduce sexually, and plastic sex determination mechanisms including genotypic sex determination (GSD) and environmental sex determination (ESD) have been extensively revealed. However, why sex determination mechanisms evolve diversely and how they correlate with diverse reproduction strategies remain largely unclear. Here, we utilize the superiority of a hexaploid gibel carp (Carassius gibelio) that is able to reproduce by unisexual gynogenesis and contains a rare but diverse proportion of males to investigate these puzzles. A total of 2248 hexaploid specimens were collected from 34 geographic wild populations throughout mainland China, in which 24 populations were revealed to contain 186 males with various incidences ranging from 1.2 to 26.5%. Subsequently, the proportion of temperature-dependent sex determination (TSD) was revealed to be positively correlated to average annual temperature in wild populations, and male incidence in lab gynogenetic progenies was demonstrated to increase with the increasing of larval rearing temperature. Meanwhile, extra microchromosomes were confirmed to play genotypic male determination role as previously reported. Thereby, GSD and TSD were found to coexist in gibel carp, and the proportions of GSD were observed to be much higher than that of TSD in sympatric wild populations. Our findings uncover a potential new mechanism in the evolution of sex determination system in polyploid vertebrates with unisexual gynogenesis ability, and also reveal a possible association of sex determination mechanism transition between TSD and GSD and reproduction mode transition between unisexual gynogenesis and bisexual reproduction.

  20. Identification of the sex-determining locus in grass puffer (Takifugu niphobles) provides evidence for sex-chromosome turnover in a subset of Takifugu species

    PubMed Central

    Atsumi, Kazufumi; Kamiya, Takashi; Nozawa, Aoi; Aoki, Yuma; Tasumi, Satoshi; Koyama, Takashi; Nakamura, Osamu; Suzuki, Yuzuru

    2018-01-01

    There is increasing evidence for frequent turnover in sex chromosomes in vertebrates. Yet experimental systems suitable for tracing the detailed process of turnover are rare. In theory, homologous turnover is possible if the new sex-determining locus is established on the existing sex-chromosome. However, there is no empirical evidence for such an event. The genus Takifugu includes fugu (Takifugu rubripes) and its two closely-related species whose sex is most likely determined by a SNP at the Amhr2 locus. In these species, males are heterozygous, with G and C alleles at the SNP site, while females are homozygous for the C allele. To determine if a shift in the sex-determining locus occurred in another member of this genus, we used genetic mapping to characterize the sex-chromosome systems of Takifugu niphobles. We found that the G allele of Amhr2 is absent in T. niphobles. Nevertheless, our initial mapping suggests a linkage between the phenotypic sex and the chromosome 19, which harbors the Amhr2 locus. Subsequent high-resolution analysis using a sex-reversed fish demonstrated that the sex-determining locus maps to the proximal end of chromosome 19, far from the Amhr2 locus. Thus, it is likely that homologous turnover involving these species has occurred. The data also showed that there is a male-specific reduction of recombination around the sex-determining locus. Nevertheless, no evidence for sex-chromosome differentiation was detected: the reduced recombination depended on phenotypic sex rather than genotypic sex; no X- or Y-specific maker was obtained; the YY individual was viable. Furthermore, fine-scale mapping narrowed down the new sex-determining locus to the interval corresponding to approximately 300-kb of sequence in the fugu genome. Thus, T. niphobles is determined to have a young and small sex-determining region that is suitable for studying an early phase of sex-chromosome evolution and the mechanisms underlying turnover of sex chromosome. PMID

  1. Sex and PRNP genotype determination in preimplantation caprine embryos.

    PubMed

    Guignot, F; Perreau, C; Cavarroc, C; Touzé, J-L; Pougnard, J-L; Dupont, F; Beckers, J-F; Rémy, B; Babilliot, J-M; Bed'Hom, B; Lamorinière, J M; Mermillod, P; Baril, G

    2011-08-01

    The objective of this study was to test the accuracy of genotype diagnosis after whole amplification of DNA extracted from biopsies obtained by trimming goat embryos and to evaluate the viability of biopsied embryos after vitrification/warming and transfer. Whole genome amplification (WGA) was performed using Multiple Displacement Amplification (MDA). Sex and prion protein (PRNP) genotypes were determined. Sex diagnosis was carried out by PCR amplification of ZFX/ZFY and Y chromosome-specific sequences. Prion protein genotype determination was performed on codons 142, 154, 211, 222 and 240. Embryos were collected at day 7 after oestrus and biopsied either immediately after collection (blastocysts and expanded blastocysts) or after 24 h of in vitro culture (compacted morulae). Biopsied embryos were frozen by vitrification. Vitrified whole embryos were kept as control. DNA of biopsies was extracted and amplified using MDA. Sex diagnosis was efficient for 97.4% of biopsies and PRNP genotyping was determined in 78.7% of biopsies. After embryo transfer, no significant difference was observed in kidding rate between biopsied and vitrified control embryos, whereas embryo survival rate was different between biopsied and whole vitrified embryos (p = 0.032). At birth, 100% of diagnosed sex and 98.2% of predetermined codons were correct. Offspring PRNP profiles were in agreement with parental genotype. Whole genome amplification with MDA kit coupled with sex diagnosis and PRNP genotype predetermination are very accurate techniques to genotype goat embryos before transfer. These novel results allow us to plan selection of scrapie-resistant genotypes and kid sex before transfer of cryopreserved embryo. © 2010 Blackwell Verlag GmbH.

  2. Sex hormones alter sex ratios in the Indian skipper frog, Euphlyctis cyanophlyctis: Determining sensitive stages for gonadal sex reversal.

    PubMed

    Phuge, S K; Gramapurohit, N P

    2015-09-01

    In amphibians, although genetic factors are involved in sex determination, gonadal sex differentiation can be modified by exogenous steroid hormones suggesting a possible role of sex steroids in regulating the process. We studied the effect of testosterone propionate (TP) and estradiol-17β (E2) on gonadal differentiation and sex ratio at metamorphosis in the Indian skipper frog, Euphlyctis cyanophlyctis with undifferentiated type of gonadal differentiation. A series of experiments were carried out to determine the optimum dose and sensitive stages for gonadal sex reversal. Our results clearly indicate the importance of sex hormones in controlling gonadal differentiation of E. cyanophlyctis. Treatment of tadpoles with 10, 20, 40, and 80μg/L TP throughout larval period resulted in the development of 100% males at metamorphosis at all concentrations. Similarly, treatment of tadpoles with 40μg/L TP during ovarian and testicular differentiation resulted in the development of 90% males, 10% intersexes and 100% males respectively. Treatment of tadpoles with 10, 20, 40, and 80μg/L E2 throughout larval period likewise produced 100% females at all concentrations. Furthermore, exposure to 40μg/L E2 during ovarian and testicular differentiation produced 95% females, 5% intersexes and 91% females, 9% intersexes respectively. Both TP and E2 were also effective in advancing the stages of gonadal development. Present study shows the effectiveness of both T and E2 in inducing complete sex reversal in E. cyanophlyctis. Generally, exposure to E2 increased the larval period resulting in significantly larger females than control group while the larval period of control and TP treated groups was comparable. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Guardian small RNAs and sex determination.

    PubMed

    Katsuma, Susumu; Kawamoto, Munetaka; Kiuchi, Takashi

    2014-01-01

    The W chromosome of the silkworm Bombyx mori has been known to determine femaleness for more than 80 years. However, the feminizing gene has not been molecularly identified, because the B. mori W chromosome is almost fully occupied by a large number of transposable elements. The W chromosome-derived feminizing factor of B. mori was recently shown to be a female-specific PIWI-interacting RNA (piRNA). piRNAs are small RNAs that potentially repress invading "non-self" elements (e.g., transposons and virus-like elements) by associating with PIWI proteins. Our results revealed that female-specific piRNA precursors, which we named Fem, are transcribed from the sex-determining region of the W chromosome at the early embryonic stage and are processed into a single mature piRNA (Fem piRNA). Fem piRNA forms a complex with Siwi (silkworm Piwi), which cleaves a protein-coding mRNA transcribed from the Z chromosome. RNA interference of this Z-linked gene, which we named Masc, revealed that this gene encodes a protein required for masculinization and dosage compensation. Fem and Masc both participate in the ping-pong cycle of the piRNA amplification loop by associating with the 2 B. mori PIWI proteins Siwi and BmAgo3 (silkworm Ago3), respectively, indicating that the piRNA-mediated interaction between the 2 sex chromosomes is the primary signal for the B. mori sex determination cascade. Fem is a non-transposable repetitive sequence on the W chromosome, whereas Masc is a single-copy protein-coding gene. It is of great interest how the piRNA system recognizes "self "Masc mRNA as "non-self" RNA.

  4. Social induction of maturation and sex determination in a coral reef fish.

    PubMed Central

    Hobbs, Jean-Paul A.; Munday, Philip L.; Jones, Geoffrey P.

    2004-01-01

    Labile maturation and sex determination should be advantageous where the probability of finding a mating partner is unpredictable. Here we tested the hypothesis that the presence of a potential mating partner induces maturation and sex determination in a coral-dwelling fish, Gobiodon erythrospilus. In natural populations at Lizard Island (Great Barrier Reef), single individuals were less likely to be mature than paired individuals and they matured at a larger size, indicating plasticity in the timing of maturation. By manipulating group structure we demonstrated that both the timing of maturation and the sex of maturing individuals are socially controlled. Single juveniles did not mature, but maturation was rapidly induced by the presence of an adult partner. In addition, sex determination was found to be labile, with juveniles maturing into the opposite sex of the partner encountered. To our knowledge, this is the first experimental demonstration of social induction of maturation in conjunction with labile sex determination at maturation in vertebrates. This flexibility enables individuals to maximize their reproductive success in an environment where the timing of mate acquisition and the sex of their future partner are unpredictable. PMID:15475329

  5. Pulp tissue in sex determination: A fluorescent microscopic study

    PubMed Central

    Nayar, Amit; Singh, Harkanwal Preet; Leekha, Swati

    2014-01-01

    Aims: To determine and compare the reliability of pulp tissue in determination of sex and to analyze whether caries have any effect on fluorescent body test. Materials and Methods: This study was carried on 50 maxillary and mandibular teeth (25 male teeth and 25 female teeth), which were indicated for extraction. The teeth are categorized into 5 groups, 10 each (5 from males and 5 from females) on the basis of caries progression. The pulp cells are stained with quinacrine hydrochloride and observed with fluorescent microscope for fluorescent body. Gender is determined by identification of Y chromosome fluorescence in dental pulp. Results: Fluorescent bodies were found to be more in sound teeth in males as the caries increase the mean percentage of fluorescent bodies observed decreases in males. We also observed the fluorescent spots in females, and the value of the spot increases in female as the caries progresses, thereby giving false positive results in females. Conclusion: Sex determination by fluorescent staining of the Y chromosome is a reliable technique in teeth with healthy pulps or caries with enamel or up to half way of dentin. Teeth with caries involving pulp cannot be used for sex determination. PMID:25125912

  6. Karyotype analysis and sex determination in Australian Brush-turkeys (Alectura lathami).

    PubMed

    Ortega, Madison T; Foote, Dustin J; Nees, Nicholas; Erdmann, Jason C; Bangs, Charles D; Rosenfeld, Cheryl S

    2017-01-01

    Sexual differentiation across taxa may be due to genetic sex determination (GSD) and/or temperature sex determination (TSD). In many mammals, males are heterogametic (XY); whereas females are homogametic (XX). In most birds, the opposite is the case with females being heterogametic (ZW) and males the homogametic sex (ZZ). Many reptile species lack sex chromosomes, and instead, sexual differentiation is influenced by temperature with specific temperatures promoting males or females varying across species possessing this form of sexual differentiation, although TSD has recently been shown to override GSD in Australian central beaded dragons (Pogona vitticeps). There has been speculation that Australian Brush-turkeys (Alectura lathami) exhibit TSD alone and/or in combination with GSD. Thus, we sought to determine if this species possesses sex chromosomes. Blood was collected from one sexually mature female and two sexually mature males residing at Sylvan Heights Bird Park (SHBP) and shipped for karyotype analysis. Karyotype analysis revealed that contrary to speculation, Australian Brush-turkeys possess the classic avian ZW/ZZ sex chromosomes. It remains a possibility that a biased primary sex ratio of Australian Brush-turkeys might be influenced by maternal condition prior to ovulation that result in her laying predominantly Z- or W-bearing eggs and/or sex-biased mortality due to higher sensitivity of one sex in environmental conditions. A better understanding of how maternal and extrinsic factors might differentially modulate ovulation of Z- or W-bearing eggs and hatching of developing chicks possessing ZW or ZZ sex chromosomes could be essential in conservation strategies used to save endangered members of Megapodiidae.

  7. Karyotype analysis and sex determination in Australian Brush-turkeys (Alectura lathami)

    PubMed Central

    Ortega, Madison T.; Foote, Dustin J.; Nees, Nicholas; Erdmann, Jason C.; Bangs, Charles D.

    2017-01-01

    Sexual differentiation across taxa may be due to genetic sex determination (GSD) and/or temperature sex determination (TSD). In many mammals, males are heterogametic (XY); whereas females are homogametic (XX). In most birds, the opposite is the case with females being heterogametic (ZW) and males the homogametic sex (ZZ). Many reptile species lack sex chromosomes, and instead, sexual differentiation is influenced by temperature with specific temperatures promoting males or females varying across species possessing this form of sexual differentiation, although TSD has recently been shown to override GSD in Australian central beaded dragons (Pogona vitticeps). There has been speculation that Australian Brush-turkeys (Alectura lathami) exhibit TSD alone and/or in combination with GSD. Thus, we sought to determine if this species possesses sex chromosomes. Blood was collected from one sexually mature female and two sexually mature males residing at Sylvan Heights Bird Park (SHBP) and shipped for karyotype analysis. Karyotype analysis revealed that contrary to speculation, Australian Brush-turkeys possess the classic avian ZW/ZZ sex chromosomes. It remains a possibility that a biased primary sex ratio of Australian Brush-turkeys might be influenced by maternal condition prior to ovulation that result in her laying predominantly Z- or W-bearing eggs and/or sex-biased mortality due to higher sensitivity of one sex in environmental conditions. A better understanding of how maternal and extrinsic factors might differentially modulate ovulation of Z- or W-bearing eggs and hatching of developing chicks possessing ZW or ZZ sex chromosomes could be essential in conservation strategies used to save endangered members of Megapodiidae. PMID:28910392

  8. MicroRNAs in Honey Bee Caste Determination

    PubMed Central

    Ashby, Regan; Forêt, Sylvain; Searle, Iain; Maleszka, Ryszard

    2016-01-01

    The cellular mechanisms employed by some organisms to produce contrasting morphological and reproductive phenotypes from the same genome remains one of the key unresolved issues in biology. Honeybees (Apis mellifera) use differential feeding and a haplodiploid sex determination system to generate three distinct organismal outcomes from the same genome. Here we investigate the honeybee female and male caste-specific microRNA and transcriptomic molecular signatures during a critical time of larval development. Both previously undetected and novel miRNAs have been discovered, expanding the inventory of these genomic regulators in invertebrates. We show significant differences in the microRNA and transcriptional profiles of diploid females relative to haploid drone males as well as between reproductively distinct females (queens and workers). Queens and drones show gene enrichment in physio-metabolic pathways, whereas workers show enrichment in processes associated with neuronal development, cell signalling and caste biased structural differences. Interestingly, predicted miRNA targets are primarily associated with non-physio-metabolic genes, especially neuronal targets, suggesting a mechanistic disjunction from DNA methylation that regulates physio-metabolic processes. Accordingly, miRNA targets are under-represented in methylated genes. Our data show how a common set of genetic elements are differentially harnessed by an organism, which may provide the remarkable level of developmental flexibility required. PMID:26739502

  9. Sexy splicing: regulatory interplays governing sex determination from Drosophila to mammals.

    PubMed

    Lalli, Enzo; Ohe, Kenji; Latorre, Elisa; Bianchi, Marco E; Sassone-Corsi, Paolo

    2003-02-01

    A remarkable array of strategies is used to produce sexual differentiation in different species. Complex gene hierarchies govern sex determination pathways, as exemplified by the classic D. melanogaster paradigm, where an interplay of transcriptional, splicing and translational mechanisms operate. Molecular studies support the hypothesis that genetic sex determination pathways evolved in reverse order, from downstream to upstream genes, in the cascade. The recent identification of a role for the key regulatory factors SRY and WT1(+KTS) in pre-mRNA splicing indicates that important steps in the mammalian sex determination process are likely to operate at the post-transcriptional level.

  10. Characterization of Pisrt1/Foxl2 in Ellobius lutescens and exclusion as sex-determining genes.

    PubMed

    Baumstark, Annette; Hameister, Horst; Hakhverdyan, Mikhayil; Bakloushinskaya, Irina; Just, Walter

    2005-04-01

    The rodent Ellobius lutescens is an exceptional mammal which determines male sex constitutively without the SRY gene and, therefore, may serve as an animal model for human 46,XX female-to-male sex reversal. It was suggested that other factors of the network of sex-determining genes determine maleness in these animals. However, some sex-determining genes like SOX9 and SF1 have already been excluded by segregation analysis as primary sex-determining factors in E. lutescens. In this work, we have cloned and characterized two genes of the PIS (polled intersex syndrome) gene interval, which were reported as candidates in female-to-male sex reversal in hornless goats recently. The genes Foxl2 and Pisrt1 from that interval were identified in E. lutescens DNA and mapped to Chromosome 8. We have excluded linkage of Foxl2 and Pisrt1 loci with the sex of the animals. Hence, the involvement of this gene region in sex determination may be specific for goats and is not a general mechanism of XX sex reversal or XX male sex determination.

  11. Sex determining gene on the X chromosome short arm: dosage sensitive sex reversal.

    PubMed

    Ogata, T; Matsuo, N

    1996-08-01

    The present review article summarizes current knowledge concerning the sex determining gene on Xp21, termed DSS (dosage sensitive sex reversal). The presence of DSS has been based on the finding that, in the presence of SRY, partial active Xp duplications encompassing the middle part of Xp result in sex reversal, whereas those of the distal or proximal part of Xp permit male sex development. Because Klinefelter patients develop as males, it is believed that DSS is normally subject to X-inactivation, and that two active copies of DSS override the function of SRY, resulting in gonadal dysgenesis because of meiotic pairing failure. It may be possible that DSS encodes a target sequence for repressing function of SRY or that DSS is involved in an X chromosome-counting mechanism. Molecular approaches have localized DSS to a 160 kb region and isolated candidate genes such as DAX-1 and MAGE-Xp, but there has been no formal evidence equating the candidate gene with DSS. In addition to its clinical importance, the exploration of DSS must provide a useful clue to phylogenetic studies of sex chromosomes and dosage compensation.

  12. Transcriptome profile analysis of floral sex determination in cucumber.

    PubMed

    Wu, Tao; Qin, Zhiwei; Zhou, Xiuyan; Feng, Zhuo; Du, Yalin

    2010-07-15

    Cucumber has been widely studied as a model for floral sex determination. In this investigation, we performed genome-wide transcriptional profiling of apical tissue of a gynoecious mutant (Csg-G) and the monoecious wild-type (Csg-M) of cucumber in an attempt to isolate genes involved in sex determination, using the Solexa technology. The profiling analysis revealed numerous changes in gene expression attributable to the mutation, which resulted in the down-regulation of 600 genes and the up-regulation of 143 genes. The Solexa data were confirmed by reverse transcription polymerase chain reaction (RT-PCR) and real-time quantitative RT-PCR (qRT-PCR). Gene ontology (GO) analysis revealed that the differentially expressed genes were mainly involved in biogenesis, transport and organization of cellular component, macromolecular and cellular biosynthesis, localization, establishment of localization, translation and other processes. Furthermore, the expression of some of these genes depended upon the tissue and the developmental stage of the flowers of gynoecious mutant. The results of this study suggest two important concepts, which govern sex determination in cucumber. First, the differential expression of genes involved in plant hormone signaling pathways, such as ACS, Asr1, CsIAA2, CS-AUX1 and TLP, indicate that phytohormones and their crosstalk might play a critical role in the sex determination. Second, the regulation of some transcription factors, including EREBP-9, may also be involved in this developmental process. Copyright (c) 2010 Elsevier GmbH. All rights reserved.

  13. Direct LAMP Assay without Prior DNA Purification for Sex Determination of Papaya.

    PubMed

    Tsai, Chi-Chu; Shih, Huei-Chuan; Ko, Ya-Zhu; Wang, Ren-Huang; Li, Shu-Ju; Chiang, Yu-Chung

    2016-09-24

    Papaya (Carica papaya L.) is an economically important tropical fruit tree with hermaphrodite, male and female sex types. Hermaphroditic plants are the major type used for papaya production because their fruits have more commercial advantages than those of female plants. Sex determination of the seedlings, or during the early growth stages, is very important for the papaya seedling industry. Thus far, the only method for determining the sex type of a papaya at the seedling stage has been DNA analysis. In this study, a molecular technique-based on DNA analysis-was developed for detecting male-hermaphrodite-specific markers to examine the papaya's sex type. This method is based on the loop-mediated isothermal amplification (LAMP) and does not require prior DNA purification. The results show that the method is an easy, efficient, and inexpensive way to determine a papaya's sex. This is the first report on the LAMP assay, using intact plant materials-without DNA purification-as samples for the analysis of sex determination of papaya. We found that using high-efficiency DNA polymerase was essential for successful DNA amplification, using trace intact plant material as a template DNA source.

  14. Evolution of sex determination systems with heterogametic males and females in silene.

    PubMed

    Slancarova, Veronika; Zdanska, Jana; Janousek, Bohuslav; Talianova, Martina; Zschach, Christian; Zluvova, Jitka; Siroky, Jiri; Kovacova, Viera; Blavet, Hana; Danihelka, Jiri; Oxelman, Bengt; Widmer, Alex; Vyskot, Boris

    2013-12-01

    The plant genus Silene has become a model for evolutionary studies of sex chromosomes and sex-determining mechanisms. A recent study performed in Silene colpophylla showed that dioecy and the sex chromosomes in this species evolved independently from those in Silene latifolia, the most widely studied dioecious Silene species. The results of this study show that the sex-determining system in Silene otites, a species related to S. colpophylla, is based on female heterogamety, a sex determination system that is unique among the Silene species studied to date. Our phylogenetic data support the placing of S. otites and S. colpophylla in the subsection Otites and the analysis of ancestral states suggests that the most recent common ancestor of S. otites and S. colpophylla was most probably dioecious. These observations imply that a switch from XX/XY sex determination to a ZZ/ZW system (or vice versa) occurred in the subsection Otites. This is the first report of two different types of heterogamety within one plant genus of this mostly nondioecious plant family. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  15. Direct LAMP Assay without Prior DNA Purification for Sex Determination of Papaya

    PubMed Central

    Tsai, Chi-Chu; Shih, Huei-Chuan; Ko, Ya-Zhu; Wang, Ren-Huang; Li, Shu-Ju; Chiang, Yu-Chung

    2016-01-01

    Papaya (Carica papaya L.) is an economically important tropical fruit tree with hermaphrodite, male and female sex types. Hermaphroditic plants are the major type used for papaya production because their fruits have more commercial advantages than those of female plants. Sex determination of the seedlings, or during the early growth stages, is very important for the papaya seedling industry. Thus far, the only method for determining the sex type of a papaya at the seedling stage has been DNA analysis. In this study, a molecular technique—based on DNA analysis—was developed for detecting male-hermaphrodite-specific markers to examine the papaya’s sex type. This method is based on the loop-mediated isothermal amplification (LAMP) and does not require prior DNA purification. The results show that the method is an easy, efficient, and inexpensive way to determine a papaya’s sex. This is the first report on the LAMP assay, using intact plant materials-without DNA purification-as samples for the analysis of sex determination of papaya. We found that using high-efficiency DNA polymerase was essential for successful DNA amplification, using trace intact plant material as a template DNA source. PMID:27669237

  16. Adaptive Sex Determination and Population Dynamics in a Brackish-water Amphipod

    NASA Astrophysics Data System (ADS)

    Watt, Penelope J.; Adams, Jonathan

    1993-09-01

    Gammarus duebeni is a sexually dimorphic amphipod with an unusual and environmentally mediated sex determining system. In seasonal populations, environmental sex determination (ESD) is selectively advantageous and males and females are produced at different times of the year, but it has been predicted that where generations overlap or the breeding season is long, ESD should no longer have a selective advantage over genetic mechanisms of sex determination and males and females should be produced simultaneously. The dynamics of a supposedly bivoltine population at Totton Marsh on the south coast of England were investigated. The field study showed that the breeding season at Totton was not in fact bivoltine but long, extending through most of the year with a short break in early summer. Population sex ratio fluctuated seasonally: this pattern appears to be the product of differences in production of males and females rather than growth or mortality. Thus, contrary to expectations, ESD does occur in this population. Photoperiod is the cue for sex determination in the laboratory, but in the field this alone could not account for the observed pattern of male and female production at Totton Marsh. Another major variable must be involved and it is proposed that it also has an influence on other G. duebeni populations.

  17. ZNRF3 functions in mammalian sex determination by inhibiting canonical WNT signaling.

    PubMed

    Harris, Abigail; Siggers, Pam; Corrochano, Silvia; Warr, Nick; Sagar, Danielle; Grimes, Daniel T; Suzuki, Makoto; Burdine, Rebecca D; Cong, Feng; Koo, Bon-Kyoung; Clevers, Hans; Stévant, Isabelle; Nef, Serge; Wells, Sara; Brauner, Raja; Ben Rhouma, Bochra; Belguith, Neïla; Eozenou, Caroline; Bignon-Topalovic, Joelle; Bashamboo, Anu; McElreavey, Ken; Greenfield, Andy

    2018-05-22

    Mammalian sex determination is controlled by the antagonistic interactions of two genetic pathways: The SRY-SOX9-FGF9 network promotes testis determination partly by opposing proovarian pathways, while RSPO1/WNT-β-catenin/FOXL2 signals control ovary development by inhibiting SRY-SOX9-FGF9. The molecular basis of this mutual antagonism is unclear. Here we show that ZNRF3, a WNT signaling antagonist and direct target of RSPO1-mediated inhibition, is required for sex determination in mice. XY mice lacking ZNRF3 exhibit complete or partial gonadal sex reversal, or related defects. These abnormalities are associated with ectopic WNT/β-catenin activity and reduced Sox9 expression during fetal sex determination. Using exome sequencing of individuals with 46,XY disorders of sex development, we identified three human ZNRF3 variants in very rare cases of XY female presentation. We tested two missense variants and show that these disrupt ZNRF3 activity in both human cell lines and zebrafish embryo assays. Our data identify a testis-determining function for ZNRF3 and indicate a mechanism of direct molecular interaction between two mutually antagonistic organogenetic pathways. Copyright © 2018 the Author(s). Published by PNAS.

  18. ZNRF3 functions in mammalian sex determination by inhibiting canonical WNT signaling

    PubMed Central

    Harris, Abigail; Siggers, Pam; Warr, Nick; Sagar, Danielle; Grimes, Daniel T.; Cong, Feng; Koo, Bon-Kyoung; Clevers, Hans; Stévant, Isabelle; Nef, Serge; Wells, Sara; Brauner, Raja; Ben Rhouma, Bochra; Belguith, Neïla; Eozenou, Caroline; Bignon-Topalovic, Joelle; Bashamboo, Anu; McElreavey, Ken

    2018-01-01

    Mammalian sex determination is controlled by the antagonistic interactions of two genetic pathways: The SRY-SOX9-FGF9 network promotes testis determination partly by opposing proovarian pathways, while RSPO1/WNT-β-catenin/FOXL2 signals control ovary development by inhibiting SRY-SOX9-FGF9. The molecular basis of this mutual antagonism is unclear. Here we show that ZNRF3, a WNT signaling antagonist and direct target of RSPO1-mediated inhibition, is required for sex determination in mice. XY mice lacking ZNRF3 exhibit complete or partial gonadal sex reversal, or related defects. These abnormalities are associated with ectopic WNT/β-catenin activity and reduced Sox9 expression during fetal sex determination. Using exome sequencing of individuals with 46,XY disorders of sex development, we identified three human ZNRF3 variants in very rare cases of XY female presentation. We tested two missense variants and show that these disrupt ZNRF3 activity in both human cell lines and zebrafish embryo assays. Our data identify a testis-determining function for ZNRF3 and indicate a mechanism of direct molecular interaction between two mutually antagonistic organogenetic pathways. PMID:29735715

  19. Assessment of craniometric traits in South Indian dry skulls for sex determination.

    PubMed

    Ramamoorthy, Balakrishnan; Pai, Mangala M; Prabhu, Latha V; Muralimanju, B V; Rai, Rajalakshmi

    2016-01-01

    The skeleton plays an important role in sex determination in forensic anthropology. The skull bone is considered as the second best after the pelvic bone in sex determination due to its better retention of morphological features. Different populations have varying skeletal characteristics, making population specific analysis for sex determination essential. Hence the objective of this investigation is to obtain the accuracy of sex determination using cranial parameters of adult skulls to the highest percentage in South Indian population and to provide a baseline data for sex determination in South India. Seventy adult preserved human skulls were taken and based on the morphological traits were classified into 43 male skulls and 27 female skulls. A total of 26 craniometric parameters were studied. The data were analyzed by using the SPSS discriminant function. The analysis of stepwise, multivariate, and univariate discriminant function gave an accuracy of 77.1%, 85.7%, and 72.9% respectively. Multivariate direct discriminant function analysis classified skull bones into male and female with highest levels of accuracy. Using stepwise discriminant function analysis, the most dimorphic variable to determine sex of the skull, was biauricular breadth followed by weight. Subjecting the best dimorphic variables to univariate discriminant analysis, high levels of accuracy of sexual dimorphism was obtained. Percentage classification of high accuracies were obtained in this study indicating high level of sexual dimorphism in the crania, setting specific discriminant equations for the gender determination in South Indian people. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  20. Fatty Acids Regulate Germline Sex Determination through ACS-4-Dependent Myristoylation.

    PubMed

    Tang, Hongyun; Han, Min

    2017-04-20

    Fat metabolism has been linked to fertility and reproductive adaptation in animals and humans, and environmental sex determination potentially plays a role in the process. To investigate the impact of fatty acids (FA) on sex determination and reproductive development, we examined and observed an impact of FA synthesis and mobilization by lipolysis in somatic tissues on oocyte fate in Caenorhabditis elegans. The subsequent genetic analysis identified ACS-4, an acyl-CoA synthetase and its FA-CoA product, as key germline factors that mediate the role of FA in promoting oocyte fate through protein myristoylation. Further tests indicated that ACS-4-dependent protein myristoylation perceives and translates the FA level into regulatory cues that modulate the activities of MPK-1/MAPK and key factors in the germline sex-determination pathway. These findings, including a similar role of ACS-4 in a male/female species, uncover a likely conserved mechanism by which FA, an environmental factor, regulates sex determination and reproductive development. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Field study suggests that sex determination in sea lamprey is directly influenced by larval growth rate.

    PubMed

    Johnson, Nicholas S; Swink, William D; Brenden, Travis O

    2017-03-29

    Sex determination mechanisms in fishes lie along a genetic-environmental continuum and thereby offer opportunities to understand how physiology and environment interact to determine sex. Mechanisms and ecological consequences of sex determination in fishes are primarily garnered from teleosts, with little investigation into basal fishes. We tagged and released larval sea lamprey ( Petromyzon marinus ) into unproductive lake and productive stream environments. Sex ratios produced from these environments were quantified by recapturing tagged individuals as adults. Sex ratios from unproductive and productive environments were initially similar. However, sex ratios soon diverged, with unproductive environments becoming increasingly male-skewed and productive environments becoming less male-skewed with time. We hypothesize that slower growth in unproductive environments contributed to the sex ratio differences by directly influencing sex determination. To the best of our knowledge, this is the first study suggesting that growth rate in a fish species directly influences sex determination; other studies have suggested that the environmental variables to which sex determination is sensitive (e.g. density, temperature) act as cues for favourable or unfavourable growth conditions. Understanding mechanisms of sex determination in lampreys may provide unique insight into the underlying principles of sex determination in other vertebrates and provide innovative approaches for their management where valued and invasive. © 2017 The Author(s).

  2. Field study suggests that sex determination in sea lamprey is directly influenced by larval growth rate

    USGS Publications Warehouse

    Johnson, Nicholas; Swink, William D.; Brenden, Travis O.

    2017-01-01

    Sex determination mechanisms in fishes lie along a genetic-environmental continuum and thereby offer opportunities to understand how physiology and environment interact to determine sex. Mechanisms and ecological consequences of sex determination in fishes are primarily garnered from teleosts, with little investigation into basal fishes. We tagged and released larval sea lamprey (Petromyzon marinus) into unproductive lake and productive stream environments. Sex ratios produced from these environments were quantified by recapturing tagged individuals as adults. Sex ratios from unproductive and productive environments were initially similar. However, sex ratios soon diverged, with unproductive environments becoming increasingly male-skewed and productive environments becoming less male-skewed with time. We hypothesize that slower growth in unproductive environments contributed to the sex ratio differences by directly influencing sex determination. To the best of our knowledge, this is the first study suggesting that growth rate in a fish species directly influences sex determination; other studies have suggested that the environmental variables to which sex determination is sensitive (e.g. density, temperature) act as cues for favourable or unfavourable growth conditions. Understanding mechanisms of sex determination in lampreys may provide unique insight into the underlying principles of sex determination in other vertebrates and provide innovative approaches for their management where valued and invasive.

  3. Climate change and temperature-dependent sex determination: can individual plasticity in nesting phenology prevent extreme sex ratios?

    PubMed

    Schwanz, Lisa E; Janzen, Fredric J

    2008-01-01

    Under temperature-dependent sex determination (TSD), temperatures experienced by embryos during development determine the sex of the offspring. Consequently, populations of organisms with TSD have the potential to be strongly impacted by climatic warming that could bias offspring sex ratio, a fundamental demographic parameter involved in population dynamics. Moreover, many taxa with TSD are imperiled, so research on this phenomenon, particularly long-term field study, has assumed great urgency. Recently, turtles with TSD have joined the diverse list of taxa that have demonstrated population-level changes in breeding phenology in response to recent climate change. This raises the possibility that any adverse impacts of climate change on populations may be alleviated by individual plasticity in nesting phenology. Here, we examine data from a long-term study on a population of painted turtles (Chrysemys picta) to determine whether changes in phenology are due to individual plasticity and whether individual plasticity in the timing of nesting has the capacity to offset the sex ratio effects of a rise in climatic temperature. We find that individual females show plasticity in the date of first nesting each year, and that this plasticity depends on the climate from the previous winter. First nesting date is not repeatable within individuals, suggesting that it would not respond to selection. Sex ratios of hatchlings within a nest declined nonsignificantly over the nesting season. However, small increases in summer temperature had a much stronger effect on nest sex ratios than did laying nests earlier in the season. For this and other reasons, it seems unlikely that individual plasticity in the timing of nesting will offset the effects of climate change on sex ratios in this population, and we hypothesize that this conclusion applies to other populations with TSD.

  4. Determining age and sex of American coots

    USGS Publications Warehouse

    Eddleman, William R.; Knopf, Fritz L.

    1985-01-01

    Reliable techniques for age and sex determination of migrating and wintering American Coots (Fulica americana) have not been available. Breeding coots can be ages through age 3 by tarsal color (birds 4 years and older were placed in a 4+ age class) (Crawford 1978), and males and females have sex-specific behaviors and calls while on breeding territories (Gullion 1950, 1952). Externally, juvenile coots differ from adults in having gray (as opposed to white) bills and brown (as opposed to red) eyes to an age of 75 days (Gullion 1954-394). Bill color changes to white by about 120 days. No quantitative data have been available, however, on the proportion of juveniles retaining these traits throughout fall and early winter. Nonbreeding coots can be ages as juvenile or adult by internal examination of the thickness of the wall of the bursa of Fabricius, although bursal depth does not predictably decline with age (Fredrickson 1968). Attempts to sex coots by single external measurements of combinations of measurements have met with mixed success. Eight-five percent of 101 fall migrants in Wisconsin could be sexed by the length of the metatarsus-midtoe including claw by using 139.5 mm as a cutoff point (Burton 1959), whereas 88% of 67 coots in California were correctly sexed by the length of the metatarsus-midtoe without claw using 127.5 mm as the cutoff point (Gullion 1952). Two-hundred-thirty-two of 291 coots collected in Iowa, however, were in the zone of overlap between the sexes for this measurement (Fredrickson 1968). Previous studies attempting to develop aging and sexing techniques for American Coots have been limited to a few study sites or to 1 season or year, often failing to take geographical, annual, and seasonal morphological variation into account (e.g., Visser 1976, Fjeldsa 1977). We designed the present study to refine and quantify external and internal age and sex criteria for postbreeding coots, with the objective of defining techniques applicable for all

  5. A novel method for sex determination by detecting the number of X chromosomes.

    PubMed

    Nakanishi, Hiroaki; Shojo, Hideki; Ohmori, Takeshi; Hara, Masaaki; Takada, Aya; Adachi, Noboru; Saito, Kazuyuki

    2015-01-01

    A novel method for sex determination, based on the detection of the number of X chromosomes, was established. Current methods, based on the detection of the Y chromosome, can directly identify an unknown sample as male, but female gender is determined indirectly, by not detecting the Y chromosome. Thus, a direct determination of female gender is important because the quality (e.g., fragmentation and amelogenin-Y null allele) of the Y chromosome DNA may lead to a false result. Thus, we developed a novel sex determination method by analyzing the number of X chromosomes using a copy number variation (CNV) detection technique (the comparative Ct method). In this study, we designed a primer set using the amelogenin-X gene without the CNV region as the target to determine the X chromosome copy number, to exclude the influence of the CNV region from the comparative Ct value. The number of X chromosomes was determined statistically using the CopyCaller software with real-time PCR. All DNA samples from participants (20 males, 20 females) were evaluated correctly using this method with 1-ng template DNA. A minimum of 0.2-ng template DNA was found to be necessary for accurate sex determination with this method. When using ultraviolet-irradiated template DNA, as mock forensic samples, the sex of the samples could not be determined by short tandem repeat (STR) analysis but was correctly determined using our method. Thus, we successfully developed a method of sex determination based on the number of X chromosomes. Our novel method will be useful in forensic practice for sex determination.

  6. Genetic biases for showy males: Are some genetic systems especially conducive to sexual selection?

    PubMed Central

    Reeve, Hudson Kern; Pfennig, David W.

    2003-01-01

    Male secondary sexual characters (conspicuous ornaments, signals, colors) are among nature's most striking features. Yet, it is unclear why certain groups of organisms are more likely than others to evolve these traits. One explanation for such taxonomic biases is that some genetic systems may be especially conducive to sexual selection. Here, we present theory and simulation results demonstrating that rare alleles encoding either male ornaments or female preferences for those ornaments are better protected against random loss in species with ZZ/ZW or ZZ/ZO sex chromosome systems (male homogamety) than in species with XX/XY or XX/XO systems (male heterogamety). Moreover, this protection is much stronger in diploid than haplodiploid species. We also present empirical data showing that male secondary sexual characters are better developed in diploid than haplodiploid species and in diploid species with male homogamety than in those with male heterogamety. Thus, taxonomic biases for showy males may stem from differences in sex chromosome systems. PMID:12540829

  7. Sex determination and gender expression: Reproductive investment in snails.

    PubMed

    Koene, Joris M

    2017-02-01

    Sex determination is generally seen as an issue of importance for separate-sexed organisms; however, when considering other sexual systems, such as hermaphroditism, sex allocation is a less-binary form of sex determination. As illustrated here, with examples from molluscs, this different vantage point can offer important evolutionary insights. After all, males and females produce only one type of gamete, whereas hermaphrodites produce both. In addition, sperm and accessory gland products are donated bidirectionally. For reciprocal mating, this is obvious since sperm are exchanged within one mating interaction; but even unilaterally mating species end up mating in both sexual roles, albeit not simultaneously. With this in mind, I highlight two factors that play an important role in how reproductive investment is divided in snails: First, the individual's motivation to preferentially donate rather than receive sperm (or vice versa) leads to flexible behavioral performance, and thereby investment, of either sex. Second, due to the presence of both sexual roles within the same individual, partners are potentially able to influence investment in both sexual functions of their partner to their own benefit. The latter has already led to novel insights into how accessory gland products may evolve. Moreover, the current evidence points towards different ways in which allocation to reproduction can be changed in simultaneous hermaphrodites. These often differ from the separate-sexed situation, highlighting that comparison across different sexual systems may help identify commonalities and differences in physiological, and molecular mechanisms as well as evolutionary patterns. Mol. Reprod. Dev. 84: 132-143, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Sex determination strategies in 2012: towards a common regulatory model?

    PubMed

    Angelopoulou, Roxani; Lavranos, Giagkos; Manolakou, Panagiota

    2012-02-22

    Sex determination is a complicated process involving large-scale modifications in gene expression affecting virtually every tissue in the body. Although the evolutionary origin of sex remains controversial, there is little doubt that it has developed as a process of optimizing metabolic control, as well as developmental and reproductive functions within a given setting of limited resources and environmental pressure. Evidence from various model organisms supports the view that sex determination may occur as a result of direct environmental induction or genetic regulation. The first process has been well documented in reptiles and fish, while the second is the classic case for avian species and mammals. Both of the latter have developed a variety of sex-specific/sex-related genes, which ultimately form a complete chromosome pair (sex chromosomes/gonosomes). Interestingly, combinations of environmental and genetic mechanisms have been described among different classes of animals, thus rendering the possibility of a unidirectional continuous evolutionary process from the one type of mechanism to the other unlikely. On the other hand, common elements appear throughout the animal kingdom, with regard to a) conserved key genes and b) a central role of sex steroid control as a prerequisite for ultimately normal sex differentiation. Studies in invertebrates also indicate a role of epigenetic chromatin modification, particularly with regard to alternative splicing options. This review summarizes current evidence from research in this hot field and signifies the need for further study of both normal hormonal regulators of sexual phenotype and patterns of environmental disruption. © 2012 Angelopoulou et al; licensee BioMed Central Ltd.

  9. Sex determination strategies in 2012: towards a common regulatory model?

    PubMed Central

    2012-01-01

    Sex determination is a complicated process involving large-scale modifications in gene expression affecting virtually every tissue in the body. Although the evolutionary origin of sex remains controversial, there is little doubt that it has developed as a process of optimizing metabolic control, as well as developmental and reproductive functions within a given setting of limited resources and environmental pressure. Evidence from various model organisms supports the view that sex determination may occur as a result of direct environmental induction or genetic regulation. The first process has been well documented in reptiles and fish, while the second is the classic case for avian species and mammals. Both of the latter have developed a variety of sex-specific/sex-related genes, which ultimately form a complete chromosome pair (sex chromosomes/gonosomes). Interestingly, combinations of environmental and genetic mechanisms have been described among different classes of animals, thus rendering the possibility of a unidirectional continuous evolutionary process from the one type of mechanism to the other unlikely. On the other hand, common elements appear throughout the animal kingdom, with regard to a) conserved key genes and b) a central role of sex steroid control as a prerequisite for ultimately normal sex differentiation. Studies in invertebrates also indicate a role of epigenetic chromatin modification, particularly with regard to alternative splicing options. This review summarizes current evidence from research in this hot field and signifies the need for further study of both normal hormonal regulators of sexual phenotype and patterns of environmental disruption. PMID:22357269

  10. Determination of age, sex, and blood group from a single tooth.

    PubMed

    Nayar, Amit K; Parhar, Swati; Thind, Gagandeep; Sharma, Aman; Sharma, Divya

    2017-01-01

    Human identification is one of the most challenging subjects that human has been confronted with. Through the ages, odontological examinations have been a critical determinant in the search of human identity. Data in the form of age, gender, and blood group might provide vital clues in such investigations. In the recent times, it has been often desirable to preserve tissues for further investigations following the unfolding of certain events or discovery of new data. Hence, it is important to gather as much data as possible using less tissue. The purpose of this study was to determine age, sex, and ABO blood group of individual from a single tooth, to determine the effect of different environmental conditions, and to extract maximum information also at the same time preserving some tissue for the further investigation whenever needed. The study sample consisted of sixty teeth divided into four groups under different environmental conditions and time. The teeth were sectioned longitudinally in the buccolingual plane along the midline. Longitudinal ground sections of each tooth were prepared for age determination from cemental lines. Pulp removed was divided into two halves thereafter sex and blood group was determined. For correlation of age between estimated age and actual age, using cemental lines Pearson's correlation coefficient was applied. Further for determination of both sex and blood group between groups, Chi-square test was applied. A strong positive correlation was found between the estimated age and actual age of the study groups. Moreover, there was no significant difference between the actual and determined sex and blood group of the study groups. Although age, sex, and blood group are more reliably determined in freshly extracted teeth, these variables may be of significant help in identification even after a period of 6 weeks postextraction.

  11. The evolution of the search for novel genes in mammalian sex determination: from mice to men.

    PubMed

    Arboleda, Valerie A; Vilain, Eric

    2011-01-01

    Disorders of sex determination are a genetically heterogeneous group of rare disorders, presenting with sex-specific phenotypes and variable expressivity. Prior to the advent of the Human Genome Project, the identification of novel mammalian sex determination genes was hindered by the rarity of disorders of sex determination and small family sizes that made traditional linkage approaches difficult, if not impossible. This article reviews the revolutionary role of the Human Genome Project in the history of sex determination research and highlights the important role of inbred mouse models in elucidating the role of identified sex determination genes in mammalian sex determination. Next generation sequencing technologies has made it possible to sequence complete human genomes or exomes for the purpose of providing a genetic diagnosis to more patients with unexplained disorders of sex determination and identifying novel sex determination genes. However, beyond novel gene discovery, these tools have the power to inform us on more intricate and complex regulation-taking place within the heterogeneous cells that make up the testis and ovary. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Contribution of dental tissues to sex determination in modern human populations.

    PubMed

    García-Campos, Cecilia; Martinón-Torres, María; Martín-Francés, Laura; Martínez de Pinillos, Marina; Modesto-Mata, Mario; Perea-Pérez, Bernardo; Zanolli, Clément; Labajo González, Elena; Sánchez Sánchez, José Antonio; Ruiz Mediavilla, Elena; Tuniz, Claudio; Bermúdez de Castro, José María

    2018-02-20

    Accurate sex estimation is an essential step for the reconstruction of the biological profile of human remains. Earlier studies have shown that elements of the human permanent dentition are sexually dimorphic. The aims of this study are to determine the degree of sexual dimorphism in the dental tissue volumes and surface areas of mandibular canines and to explore its potential for reliable sex determination. The teeth included in this study (n = 69) were selected from anthropological collections from Spain, South Africa and Sudan. In all cases, the sex of the individuals was known. The teeth were scanned and three-dimensional (3D) measurements (volumes and surfaces areas) were obtained. Finally, a dsicriminant function analysis was applied. Our results showed that sexual dimorphism in canine size is due to males having greater amounts of dentine, whereas enamel volume does not contribute significantly to overall tooth size dimorphism. Classification accuracy of the multivariable equations tested on slightly worn teeth ranged from 78 to 90.2% for the crossvalidation, and from 71.43 to 84.62% for the hold-out sample validation. When all functions were applied together, the sex was correctly assigned 92.30% of the time. Our results suggest that the 3D variables from mandibular canine dental tissues are useful for sex determination as they present a high degree of dimorphism. The results obtained show the importance of 3D dental tissue measurements as a methodology in sex determination, which application should be considered as a supplemental method to others. © 2018 Wiley Periodicals, Inc.

  13. Tracing back the nascence of a new sex-determination pathway to the ancestor of bees and ants

    PubMed Central

    Schmieder, Sandra; Colinet, Dominique; Poirié, Marylène

    2012-01-01

    In several Hymenoptera, sexual fate is determined by the allelic composition at the complementary sex-determiner locus, a sex-determination mechanism that can strongly affect population dynamics. To date, the molecular identification of complementary sex determiner has only been achieved in the honeybee, where the complementary sex-determiner gene was reported to have arisen from duplication of the feminizer gene. Strikingly, the complementary sex-determiner gene was also proposed to be unique to the honeybee lineage. Here we identify feminizer and complementary sex-determiner orthologues in bumble bees and ants. We further demonstrate that the duplication of feminizer that produced complementary sex determiner occurred before the divergence of Aculeata species (~120 Myr ago). Finally, we provide evidence that the two genes evolved concertedly through gene conversion, complementary sex-determiner evolution being additionally shaped by mosaic patterns of selection. Thus, the complementary sex-determiner gene likely represents the molecular basis for single locus-complementary sex determination in the Aculeata infra-order, and possibly, in the entire Hymenoptera order. PMID:22692538

  14. Analyzing the Coordinated Gene Network Underlying Temperature-Dependent Sex Determination in Reptiles

    PubMed Central

    Shoemaker, Christina M.; Crews, David

    2009-01-01

    Although gonadogenesis has been extensively studied in vertebrates with genetic sex determination, investigations at the molecular level in nontraditional model organisms with temperature-dependent sex determination are a relatively new area of research. Results show that while the key players of the molecular network underlying gonad development appear to be retained, their functions range from conserved to novel roles. In this review, we summarize experiments investigating candidate molecular players underlying temperature-dependent sex determination. We discuss some of the problems encountered unraveling this network, pose potential solutions, and suggest rewarding future directions of research. PMID:19022389

  15. The evolution of environmental and genetic sex determination in fluctuating environments.

    PubMed

    Van Dooren, Tom J M; Leimar, Olof

    2003-12-01

    Twenty years ago, Bulmer and Bull suggested that disruptive selection, produced by environmental fluctuations, can result in an evolutionary transition from environmental sex determination (ESD) to genetic sex determination (GSD). We investigated the feasibility of such a process, using mutation-limited adaptive dynamics and individual-based computer simulations. Our model describes the evolution of a reaction norm for sex determination in a metapopulation setting with partial migration and variation in an environmental variable both within and between local patches. The reaction norm represents the probability of becoming a female as a function of environmental state and was modeled as a sigmoid function with two parameters, one giving the location (i.e., the value of the environmental variable for which an individual has equal chance of becoming either sex) and the other giving the slope of the reaction norm for that environment. The slope can be interpreted as being set by the level of developmental noise in morph determination, with less noise giving a steeper slope and a more switchlike reaction norm. We found convergence stable reaction norms with intermediate to large amounts of developmental noise for conditions characterized by low migration rates, small differential competitive advantages between the sexes over environments, and little variation between individual environments within patches compared to variation between patches. We also considered reaction norms with the slope parameter constrained to a high value, corresponding to little developmental noise. For these we found evolutionary branching in the location parameter and a transition from ESD toward GSD, analogous to the original analysis by Bulmer and Bull. Further evolutionary change, including dominance evolution, produced a polymorphism acting as a GSD system with heterogamety. Our results point to the role of developmental noise in the evolution of sex determination.

  16. Putative Independent Evolutionary Reversals from Genotypic to Temperature-Dependent Sex Determination are Associated with Accelerated Evolution of Sex-Determining Genes in Turtles.

    PubMed

    Literman, Robert; Burrett, Alexandria; Bista, Basanta; Valenzuela, Nicole

    2018-01-01

    The evolutionary lability of sex-determining mechanisms across the tree of life is well recognized, yet the extent of molecular changes that accompany these repeated transitions remain obscure. Most turtles retain the ancestral temperature-dependent sex determination (TSD) from which multiple transitions to genotypic sex determination (GSD) occurred independently, and two contrasting hypotheses posit the existence or absence of reversals back to TSD. Here we examined the molecular evolution of the coding regions of a set of gene regulators involved in gonadal development in turtles and several other vertebrates. We found slower molecular evolution in turtles and crocodilians compared to other vertebrates, but an acceleration in Trionychia turtles and at some phylogenetic branches demarcating major taxonomic diversification events. Of all gene classes examined, hormone signaling genes, and Srd5a1 in particular, evolve faster in many lineages and especially in turtles. Our data show that sex-linked genes do not follow a ubiquitous nor uniform pattern of molecular evolution. We then evaluated turtle nucleotide and protein evolution under two evolutionary hypotheses with or without GSD-to-TSD reversals, and found that when GSD-to-TSD reversals are considered, all transitional branches irrespective of direction, exhibit accelerated molecular evolution of nucleotide sequences, while GSD-to-TSD transitional branches also show acceleration in protein evolution. Significant changes in predicted secondary structure that may affect protein function were identified in three genes that exhibited hastened evolution in turtles compared to other vertebrates or in transitional versus non-transitional branches within turtles, rendering them candidates for a key role during SDM evolution in turtles.

  17. Gender/Sex as a Social Determinant of Cardiovascular Risk.

    PubMed

    O'Neil, Adrienne; Scovelle, Anna J; Milner, Allison J; Kavanagh, Anne

    2018-02-20

    The social gradient for cardiovascular disease (CVD) onset and outcomes is well established. The American Heart Association's Social Determinants of Risk and Outcomes of Cardiovascular Disease Scientific Statement advocates looking beyond breakthroughs in biological science toward a social determinants approach that focuses on socioeconomic position, race and ethnicity, social support, culture and access to medical care, and residential environments to curb the burden of CVD going forward. Indeed, the benefits of this approach are likely to be far reaching, enhancing the positive effects of advances in CVD related to prevention and treatment while reducing health inequities that contribute to CVD onset and outcomes. It is disappointing that the role of gender has been largely neglected despite being a critical determinant of cardiovascular health. It is clear that trajectories and outcomes of CVD differ by biological sex, yet the tendency for sex and gender to be conflated has contributed to the idea that both are constant or fixed with little room for intervention. Rather, as distinct from biological sex, gender is socially produced. Overlaid on biological sex, gender is a broad term that shapes and interacts with one's cognition to guide norms, roles, behaviors, and social relations. It is a fluid construct that varies across time, place, and life stage. Gender can interact with biological sex and, indeed, other social determinants, such as ethnicity and socioeconomic position, to shape cardiovascular health from conception, through early life when health behaviors and risk factors are shaped, into adolescence and adulthood. This article will illustrate how gender shapes the early adoption of health behaviors in childhood, adolescence, and young adulthood by focusing on physical activity, drinking, and smoking behaviors (including the influence of role modeling). We will also discuss the role of gender in psychosocial stress with a focus on trauma from life

  18. Implications of monotreme and marsupial chromosome evolution on sex determination and differentiation.

    PubMed

    Deakin, Janine E

    2017-04-01

    Studies of chromosomes from monotremes and marsupials endemic to Australasia have provided important insight into the evolution of their genomes as well as uncovering fundamental differences in their sex determination/differentiation pathways. Great advances have been made this century into solving the mystery of the complicated sex chromosome system in monotremes. Monotremes possess multiple different X and Y chromosomes and a candidate sex determining gene has been identified. Even greater advancements have been made for marsupials, with reconstruction of the ancestral karyotype enabling the evolutionary history of marsupial chromosomes to be determined. Furthermore, the study of sex chromosomes in intersex marsupials has afforded insight into differences in the sexual differentiation pathway between marsupials and eutherians, together with experiments showing the insensitivity of the mammary glands, pouch and scrotum to exogenous hormones, led to the hypothesis that there is a gene (or genes) on the X chromosome responsible for the development of either pouch or scrotum. This review highlights the major advancements made towards understanding chromosome evolution and how this has impacted on our understanding of sex determination and differentiation in these interesting mammals. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. An Unusual Role for doublesex in Sex Determination in the Dipteran Sciara.

    PubMed

    Ruiz, María Fernanda; Alvarez, Mercedes; Eirín-López, José M; Sarno, Francesca; Kremer, Leonor; Barbero, José L; Sánchez, Lucas

    2015-08-01

    The gene doublesex, which is placed at the bottom of the sex-determination gene cascade, plays the ultimate discriminatory role for sex determination in insects. In all insects where this gene has been characterized, the dsx premessenger RNA (pre-mRNA) follows a sex-specific splicing pattern, producing male- and female-specific mRNAs encoding the male-DSXM and female-DSXF proteins, which determine male and female development, respectively. This article reports the isolation and characterization of the gene doublesex of dipteran Sciara insects. The Sciara doublesex gene is constitutively transcribed during development and adult life of males and females. Sciara had no sex-specific doublesex mRNAs but the same transcripts, produced by alternative splicing of its primary transcript, were present in both sexes, although their relative abundance is sex specific. However, only the female DSXF protein, but not the male DSXM protein, was produced at similar amounts in both sexes. An analysis of the expression of female and male Sciara DSX proteins in Drosophila showed that these proteins conserved female and male function, respectively, on the control of Drosophila yolk-protein genes. The molecular evolution of gene doublesex of all insects where this gene has been characterized revealed that Sciara doublesex displays a considerable degree of divergence in its molecular organization and its splicing pattern with respect to the rest of dipterans as suggested by its basal position within the doublesex phylogeny. It is suggested that the doublesex gene is involved in Sciara sex determination although it appears not to play the discriminatory role performed in other insects. Copyright © 2015 by the Genetics Society of America.

  20. Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change.

    PubMed

    Ospina-Alvarez, Natalia; Piferrer, Francesc

    2008-07-30

    In gonochoristic vertebrates, sex determination mechanisms can be classified as genotypic (GSD) or temperature-dependent (TSD). Some cases of TSD in fish have been questioned, but the prevalent view is that TSD is very common in this group of animals, with three different response patterns to temperature. We analyzed field and laboratory data for the 59 fish species where TSD has been explicitly or implicitly claimed so far. For each species, we compiled data on the presence or absence of sex chromosomes and determined if the sex ratio response was obtained within temperatures that the species experiences in the wild. If so, we studied whether this response was statistically significant. We found evidence that many cases of observed sex ratio shifts in response to temperature reveal thermal alterations of an otherwise predominately GSD mechanism rather than the presence of TSD. We also show that in those fish species that actually have TSD, sex ratio response to increasing temperatures invariably results in highly male-biased sex ratios, and that even small changes of just 1-2 degrees C can significantly alter the sex ratio from 1:1 (males:females) up to 3:1 in both freshwater and marine species. We demonstrate that TSD in fish is far less widespread than currently believed, suggesting that TSD is clearly the exception in fish sex determination. Further, species with TSD exhibit only one general sex ratio response pattern to temperature. However, the viability of some fish populations with TSD can be compromised through alterations in their sex ratios as a response to temperature fluctuations of the magnitude predicted by climate change.

  1. Heritable Variation for Sex Ratio under Environmental Sex Determination in the Common Snapping Turtle (Chelydra Serpentina)

    PubMed Central

    Janzen, F. J.

    1992-01-01

    The magnitude of quantitative genetic variation for primary sex ratio was measured in families extracted from a natural population of the common snapping turtle (Chelydra serpentina), which possesses temperature-dependent sex determination (TSD). Eggs were incubated at three temperatures that produced mixed sex ratios. This experimental design provided estimates of the heritability of sex ratio in multiple environments and a test of the hypothesis that genotype X environment (G X E) interactions may be maintaining genetic variation for sex ratio in this population of C. serpentina. Substantial quantitative genetic variation for primary sex ratio was detected in all experimental treatments. These results in conjunction with the occurrence of TSD in this species provide support for three critical assumptions of Fisher's theory for the microevolution of sex ratio. There were statistically significant effects of family and incubation temperature on sex ratio, but no significant interaction was observed. Estimates of the genetic correlations of sex ratio across environments were highly positive and essentially indistinguishable from +1. These latter two findings suggest that G X E interaction is not the mechanism maintaining genetic variation for sex ratio in this system. Finally, although substantial heritable variation exists for primary sex ratio of C. serpentina under constant temperatures, estimates of the effective heritability of primary sex ratio in nature are approximately an order of magnitude smaller. Small effective heritability and a long generation time in C. serpentina imply that evolution of sex ratios would be slow even in response to strong selection by, among other potential agents, any rapid and/or substantial shifts in local temperatures, including those produced by changes in the global climate. PMID:1592234

  2. Identification of Sex-determining Loci in Pacific White Shrimp Litopeneaus vannamei Using Linkage and Association Analysis.

    PubMed

    Yu, Yang; Zhang, Xiaojun; Yuan, Jianbo; Wang, Quanchao; Li, Shihao; Huang, Hao; Li, Fuhua; Xiang, Jianhai

    2017-06-01

    The Pacific white shrimp Litopenaeus vannamei is a predominant aquaculture shrimp species in the world. Like other animals, the L. vannamei exhibited sexual dimorphism in growth trait. Mapping of the sex-determining locus will be very helpful to clarify the sex determination system and further benefit the shrimp aquaculture industry towards the production of mono-sex stocks. Based on the data used for high-density linkage map construction, linkage-mapping analysis was conducted. The sex determination region was mapped in linkage group (LG) 18. A large region from 0 to 21.205 cM in LG18 showed significant association with sex. However, none of the markers in this region showed complete association with sex in the other populations. So an association analysis was designed using the female parent, pool of female progenies, male parent, and pool of male progenies. Markers were de novo developed and those showing significant differences between female and male pools were identified. Among them, three sex-associated markers including one fully associated marker were identified. Integration of linkage and association analysis showed that the sex determination region was fine-mapped in a small region along LG18. The identified sex-associated marker can be used for the sex detection of this species at genetic level. The fine-mapped sex-determining region will contribute to the mapping of sex-determining gene and help to clarify sex determination system for L. vannamei.

  3. Cytogenetic Insights into the Evolution of Chromosomes and Sex Determination Reveal Striking Homology of Turtle Sex Chromosomes to Amphibian Autosomes.

    PubMed

    Montiel, Eugenia E; Badenhorst, Daleen; Lee, Ling S; Literman, Robert; Trifonov, Vladimir; Valenzuela, Nicole

    2016-01-01

    Turtle karyotypes are highly conserved compared to other vertebrates; yet, variation in diploid number (2n = 26-68) reflects profound genomic reorganization, which correlates with evolutionary turnovers in sex determination. We evaluate the published literature and newly collected comparative cytogenetic data (G- and C-banding, 18S-NOR, and telomere-FISH mapping) from 13 species spanning 2n = 28-68 to revisit turtle genome evolution and sex determination. Interstitial telomeric sites were detected in multiple lineages that underwent diploid number and sex determination turnovers, suggesting chromosomal rearrangements. C-banding revealed potential interspecific variation in centromere composition and interstitial heterochromatin at secondary constrictions. 18S-NORs were detected in secondary constrictions in a single chromosomal pair per species, refuting previous reports of multiple NORs in turtles. 18S-NORs are linked to ZW chromosomes in Apalone and Pelodiscus and to X (not Y) in Staurotypus. Notably, comparative genomics across amniotes revealed that the sex chromosomes of several turtles, as well as mammals and some lizards, are homologous to components of Xenopus tropicalis XTR1 (carrying Dmrt1). Other turtle sex chromosomes are homologous to XTR4 (carrying Wt1). Interestingly, all known turtle sex chromosomes, except in Trionychidae, evolved via inversions around Dmrt1 or Wt1. Thus, XTR1 appears to represent an amniote proto-sex chromosome (perhaps linked ancestrally to XTR4) that gave rise to turtle and other amniote sex chromosomes. © 2016 S. Karger AG, Basel.

  4. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis.

    PubMed

    Tao, Wenjing; Chen, Jinlin; Tan, Dejie; Yang, Jing; Sun, Lina; Wei, Jing; Conte, Matthew A; Kocher, Thomas D; Wang, Deshou

    2018-05-15

    The factors determining sex in teleosts are diverse. Great efforts have been made to characterize the underlying genetic network in various species. However, only seven master sex-determining genes have been identified in teleosts. While the function of a few genes involved in sex determination and differentiation has been studied, we are far from fully understanding how genes interact to coordinate in this process. To enable systematic insights into fish sexual differentiation, we generated a dynamic co-expression network from tilapia gonadal transcriptomes at 5, 20, 30, 40, 90, and 180 dah (days after hatching), plus 45 and 90 dat (days after treatment) and linked gene expression profiles to both development and sexual differentiation. Transcriptomic profiles of female and male gonads at 5 and 20 dah exhibited high similarities except for a small number of genes that were involved in sex determination, while drastic changes were observed from 90 to 180 dah, with a group of differently expressed genes which were involved in gonadal differentiation and gametogenesis. Weighted gene correlation network analysis identified changes in the expression of Borealin, Gtsf1, tesk1, Zar1, Cdn15, and Rpl that were correlated with the expression of genes previously known to be involved in sex differentiation, such as Foxl2, Cyp19a1a, Gsdf, Dmrt1, and Amh. Global gonadal gene expression kinetics during sex determination and differentiation have been extensively profiled in tilapia. These findings provide insights into the genetic framework underlying sex determination and sexual differentiation, and expand our current understanding of developmental pathways during teleost sex determination.

  5. Morphometric analysis of mandibular ramus for sex determination on digital orthopantomogram.

    PubMed

    More, Chandramani Bhagwan; Vijayvargiya, Ritika; Saha, Nairita

    2017-01-01

    Identification of sex from skeletal remains is an important tool in forensic science. Mandibular ramus can be used for sex determination either on dry mandible or through orthopantomogram (OPG). To determine the sex from mandibular ramus using digital OPG. The morphometric analysis was conducted on mandibular ramus of 1000 digital OPG using Kodak Master View version 4.3 software. Statistical analysis was performed, and independent t -test and discriminant function were applied. The participants' age ranged from 21-60 years with an equal number of males and females. The mean dimensions of all parameters for ramus were higher in males and highly significant ( P < 0.001). The total mean length of minimum and maximum ramus breadth was 27.44 ± 3.41 mm and 32.27 ± 3.40 mm, respectively. The maximum and projective ramus height was 71.78 ± 5.98 mm and 65.62 ± 6.19 mm, respectively. The coronoid height was 59.23 ± 6.08 mm. The correlation of gender with morphology of mandibular ramus was significant ( P < 0.05). The overall accuracy for diagnosing sex was 69%, whereas for diagnosing male and female, the accuracy was 68% and 70%, respectively. Measurements of mandibular ramus using OPG are helpful in sex determination.

  6. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.).

    PubMed

    Pucholt, P; Rönnberg-Wästljung, A-C; Berlin, S

    2015-06-01

    Most eukaryotes reproduce sexually and a wealth of different sex determination mechanisms have evolved in this lineage. Dioecy or separate sexes are rare among flowering plants but have repeatedly evolved from hermaphroditic ancestors possibly involving male or female sterility mutations. Willows (Salix spp.) and poplars (Populus spp.) are predominantly dioecious and are members of the Salicaceae family. All studied poplars have sex determination loci on chromosome XIX, however, the position differs among species and both male and female heterogametic system exists. In contrast to the situation in poplars, knowledge of sex determination mechanisms in willows is sparse. In the present study, we have for the first time positioned the sex determination locus on chromosome XV in S. viminalis using quantitative trait locus mapping. All female offspring carried a maternally inherited haplotype, suggesting a system of female heterogamety or ZW. We used a comparative mapping approach and compared the positions of the markers between the S. viminalis linkage map and the physical maps of S. purpurea, S. suchowensis and P. trichocarpa. As we found no evidence for chromosomal rearrangements between chromosome XV and XIX between S. viminalis and P. trichocarpa, it shows that the sex determination loci in the willow and the poplar most likely do not share a common origin and has thus evolved separately. This demonstrates that sex determination mechanisms in the Salicaceae family have a high turnover rate and as such it is excellent for studies of evolutionary processes involved in sex chromosome turnover.

  7. Sex determination based on a thoracic vertebra and ribs evaluation using clinical chest radiography.

    PubMed

    Tsubaki, Shun; Morishita, Junji; Usumoto, Yosuke; Sakaguchi, Kyoko; Matsunobu, Yusuke; Kawazoe, Yusuke; Okumura, Miki; Ikeda, Noriaki

    2017-07-01

    Our aim was to investigate whether sex can be determined from a combination of geometric features obtained from the 10th thoracic vertebra, 6th rib, and 7th rib. Six hundred chest radiographs (300 males and 300 females) were randomly selected to include patients of six age groups (20s, 30s, 40s, 50s, 60s, and 70s). Each group included 100 images (50 males and 50 females). A total of 14 features, including 7 lengths, 5 indices for the vertebra, and 2 types of widths for ribs, were utilized and analyzed for sex determination. Dominant features contributing to sex determination were selected by stepwise discriminant analysis after checking the variance inflation factors for multicollinearity. The accuracy of sex determination using a combination of the vertebra and ribs was evaluated from the selected features by the stepwise discriminant analysis. The accuracies in each age group were also evaluated in this study. The accuracy of sex determination based on a combination of features of the vertebra and ribs was 88.8% (533/600). This performance was superior to that of the vertebra or ribs only. Moreover, sex determination of subjects in their 20s demonstrated the highest accuracy (96.0%, 96/100). The features selected in the stepwise discriminant analysis included some features in both the vertebra and ribs. These results indicate the usefulness of combined information obtained from the vertebra and ribs for sex determination. We conclude that a combination of geometric characteristics obtained from the vertebra and ribs could be useful for determining sex. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Single-locus complementary sex determination in the inbreeding wasp Euodynerus foraminatus Saussure (Hymenoptera: Vespidae).

    PubMed

    Stahlhut, J K; Cowan, D P

    2004-03-01

    The Hymenoptera have arrhenotokous haplodiploidy in which males normally develop from unfertilized eggs and are haploid, while females develop from fertilized eggs and are diploid. Multiple sex determination systems are known to underlie haplodiploidy, and the best understood is single-locus complementary sex determination (sl-CSD) in which sex is determined at a single polymorphic locus. Individuals heterozygous at the sex locus develop as females; individuals that are hemizygous (haploid) or homozygous (diploid) at the sex locus develop as males. sl-CSD can be detected with inbreeding experiments that produce diploid males in predictable proportions as well as sex ratio shifts due to diploid male production. This sex determination system is considered incompatible with inbreeding because the ensuing increase in homozygosity increases the production of diploid males that are inviable or infertile, imposing a high cost on matings between close relatives. However, in the solitary hunting wasp Euodynerus foraminatus, a species suspected of having sl-CSD, inbreeding may be common due to a high incidence of sibling matings at natal nests. In laboratory crosses with E. foraminatus, we find that sex ratios and diploid male production (detected as microsatellite heterozygosity) are consistent with sl-CSD, but not with other sex determination systems. This is the first documented example of sl-CSD in a hymenopteran with an apparent natural history of inbreeding, and thus presents a paradox for our understanding of hymenopteran genetics.

  9. Sex determination: balancing selection in the honey bee.

    PubMed

    Charlesworth, Deborah

    2004-07-27

    Sequences of alleles of the honey bee's primary sex-determining gene have extremely high diversity, with many amino acid variants, suggesting that different alleles of this gene have been maintained in populations for very long evolutionary times.

  10. Complementary sex determination, inbreeding depression and inbreeding avoidance in a gregarious sawfly.

    PubMed

    Harper, K E; Bagley, R K; Thompson, K L; Linnen, C R

    2016-11-01

    Although most Hymenoptera reproduce via arrhenotokous haplodiploidy, the underlying genetic mechanisms vary. Of these, the most widespread mechanism appears to be single-locus complementary sex determination (sl-CSD), in which individuals that are diploid and heterozygous at a sex-determining locus are female, and individuals that are homozygous or hemizygous are male. Because inbreeding increases the probability of producing diploid males, which are often sterile or inviable, sl-CSD can generate substantial inbreeding depression. To counteract this, Hymenoptera with traits that promote inbreeding, such as gregariousness, may evolve one or more of the following: inbreeding avoidance, functional diploid males or alternative sex determination mechanisms. Here, we investigate sex determination, inbreeding depression and inbreeding avoidance in Neodiprion lecontei, a gregarious, pine-feeding sawfly in the family Diprionidae. First, via inbreeding experiments and flow cytometry, we demonstrate that this species has CSD. By modeling expected sex ratios under different conditions, we also show that our data are consistent with sl-CSD. Second, via tracking survival in inbred and outbred families, we demonstrate that inbred families have reduced larval survival and that this mortality is partly attributable to the death of diploid males. Third, using a no-choice mating assay, we demonstrate that females are less willing to mate with siblings than nonsiblings. Together, these results suggest that inbreeding depression stemming from CSD has shaped mating behavior in N. lecontei. These results also set the stage for future comparative work that will investigate the interplay between sex determination, ecology and behavior in additional diprionid species that vary in larval gregariousness.

  11. Complementary sex determination, inbreeding depression and inbreeding avoidance in a gregarious sawfly

    PubMed Central

    Harper, K E; Bagley, R K; Thompson, K L; Linnen, C R

    2016-01-01

    Although most Hymenoptera reproduce via arrhenotokous haplodiploidy, the underlying genetic mechanisms vary. Of these, the most widespread mechanism appears to be single-locus complementary sex determination (sl-CSD), in which individuals that are diploid and heterozygous at a sex-determining locus are female, and individuals that are homozygous or hemizygous are male. Because inbreeding increases the probability of producing diploid males, which are often sterile or inviable, sl-CSD can generate substantial inbreeding depression. To counteract this, Hymenoptera with traits that promote inbreeding, such as gregariousness, may evolve one or more of the following: inbreeding avoidance, functional diploid males or alternative sex determination mechanisms. Here, we investigate sex determination, inbreeding depression and inbreeding avoidance in Neodiprion lecontei, a gregarious, pine-feeding sawfly in the family Diprionidae. First, via inbreeding experiments and flow cytometry, we demonstrate that this species has CSD. By modeling expected sex ratios under different conditions, we also show that our data are consistent with sl-CSD. Second, via tracking survival in inbred and outbred families, we demonstrate that inbred families have reduced larval survival and that this mortality is partly attributable to the death of diploid males. Third, using a no-choice mating assay, we demonstrate that females are less willing to mate with siblings than nonsiblings. Together, these results suggest that inbreeding depression stemming from CSD has shaped mating behavior in N. lecontei. These results also set the stage for future comparative work that will investigate the interplay between sex determination, ecology and behavior in additional diprionid species that vary in larval gregariousness. PMID:27381325

  12. Sex determination of Pohnpei Micronesian kingfishers using morphological and molecular genetic techniques

    USGS Publications Warehouse

    Kesler, Dylan C.; Lopes, I.F.; Haig, Susan M.

    2006-01-01

    Conservation-oriented studies of Micronesian Kingfishers (Todiramphus cinnamominus) have been hindered by a lack of basic natural history information, despite the status of the Guam subspecies (T. c. cinnamominus) as one of the most endangered species in the world. We used tissue samples and morphometric measures from museum specimens and wild-captured Pohnpei Micronesian Kingfishers (T. c. reichenbachii) to develop methods for sex determination. We present a modified molecular protocol and a discriminant function that yields the probability that a particular individual is male or female. Our results revealed that females were significantly larger than males, and the discriminant function correctly predicted sex in 73% (30/41) of the individuals. The sex of 86% (18/21) of individuals was correctly assigned when a moderate reliability threshold was set. Sex determination using molecular genetic techniques was more reliable than methods based on morphology. Our results will facilitate recovery efforts for the critically endangered Guam Micronesian Kingfisher and provide a basis for sex determination in the 11 other endangered congeners in the Pacific Basin.

  13. Sry and SoxE genes: How they participate in mammalian sex determination and gonadal development?

    PubMed

    She, Zhen-Yu; Yang, Wan-Xi

    2017-03-01

    In mammals, sex determination defines the differentiation of the bipotential genital ridge into either testes or ovaries. Sry, the mammalian Y-chromosomal testis-determining gene, is a master regulator of male sex determination. It acts to switch the undifferentiated genital ridge towards testis development, triggering the adoption of a male fate. Sry initiates a cascade of gene networks through the direct regulation of Sox9 expression and promotes supporting cell differentiation, Leydig cell specification, vasculature formation and testis cord development. In the absence of Sry, alternative genetic cascades, including female sex-determining genes RSPO1, Wnt4/β-catenin and Foxl2, are involved in the formation of female genitalia and the maintenance of female ovarian development. The mutual antagonisms between male and female sex-determining pathways are crucial in not just the initiation but also the maintenance of the somatic sex of the gonad throughout the organism's lifetime. Any imbalances in above sex-determining genes can cause disorders of sex development in humans and mice. In this review, we provide a detailed summary of the expression profiles, biochemical properties and developmental functions of Sry and SoxE genes in embryonic testis development and adult gonadal development. We also briefly summarize the dedicate balances between male and female sex-determining genes in mammalian sex development, with particular highlights on the molecular actions of Sry and Sox9 transcription factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Methyltestosterone alters sex determination in the American alligator (Alligator mississippiensis).

    PubMed

    Murray, Christopher M; Easter, Michael; Merchant, Mark; Rheubert, Justin L; Wilson, Kelly A; Cooper, Amos; Mendonça, Mary; Wibbels, Thane; Marin, Mahmood Sasa; Guyer, Craig

    2016-09-15

    Effects of xenobiotics can be organizational, permanently affecting anatomy during embryonic development, and/or activational, influencing transitory actions during adulthood. The organizational influence of endocrine-disrupting contaminants (EDC's) produces a wide variety of reproductive abnormalities among vertebrates that exhibit temperature-dependent sex determination (TSD). Typically, such influences result in subsequent activational malfunction, some of which are beneficial in aquaculture. For example, 17-αmethyltestosterone (MT), a synthetic androgen, is utilized in tilapia farming to bias sex ratio towards males because they are more profitable. A heavily male-biased hatchling sex ratio is reported from a crocodile population near one such tilapia operation in Guanacaste, Costa Rica. In this study we test the effects of MT on sexual differentiation in American alligators, which we used as a surrogate for all crocodilians. Experimentally, alligators were exposed to MT in ovo at standard ecotoxicological concentrations. Sexual differentiation was determined by examination of primary and secondary sex organs post hatching. We find that MT is capable of producing male embryos at temperatures known to produce females and demonstrate a dose-dependent gradient of masculinization. Embryonic exposure to MT results in hermaphroditic primary sex organs, delayed renal development and masculinization of the clitero-penis (CTP). Copyright © 2016. Published by Elsevier Inc.

  15. Genetic sex determination and extinction.

    PubMed

    Hedrick, Philip W; Gadau, Jürgen; Page, Robert E

    2006-02-01

    Genetic factors can affect the probability of extinction either by increasing the effect of detrimental variants or by decreasing the potential for future adaptive responses. In a recent paper, Zayed and Packer demonstrate that low variation at a specific locus, the complementary sex determination (csd) locus in Hymenoptera (ants, bees and wasps), can result in a sharply increased probability of extinction. Their findings illustrate situations in which there is a feedback process between decreased genetic variation at the csd locus owing to genetic drift and decreased population growth, resulting in an extreme type of extinction vortex for these ecologically important organisms.

  16. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.)

    PubMed Central

    Pucholt, P; Rönnberg-Wästljung, A-C; Berlin, S

    2015-01-01

    Most eukaryotes reproduce sexually and a wealth of different sex determination mechanisms have evolved in this lineage. Dioecy or separate sexes are rare among flowering plants but have repeatedly evolved from hermaphroditic ancestors possibly involving male or female sterility mutations. Willows (Salix spp.) and poplars (Populus spp.) are predominantly dioecious and are members of the Salicaceae family. All studied poplars have sex determination loci on chromosome XIX, however, the position differs among species and both male and female heterogametic system exists. In contrast to the situation in poplars, knowledge of sex determination mechanisms in willows is sparse. In the present study, we have for the first time positioned the sex determination locus on chromosome XV in S. viminalis using quantitative trait locus mapping. All female offspring carried a maternally inherited haplotype, suggesting a system of female heterogamety or ZW. We used a comparative mapping approach and compared the positions of the markers between the S. viminalis linkage map and the physical maps of S. purpurea, S. suchowensis and P. trichocarpa. As we found no evidence for chromosomal rearrangements between chromosome XV and XIX between S. viminalis and P. trichocarpa, it shows that the sex determination loci in the willow and the poplar most likely do not share a common origin and has thus evolved separately. This demonstrates that sex determination mechanisms in the Salicaceae family have a high turnover rate and as such it is excellent for studies of evolutionary processes involved in sex chromosome turnover. PMID:25649501

  17. Differential intron retention in Jumonji chromatin modifier genes is implicated in reptile temperature-dependent sex determination

    PubMed Central

    Deveson, Ira W.; Holleley, Clare E.; Blackburn, James; Marshall Graves, Jennifer A.; Mattick, John S.; Waters, Paul D.; Georges, Arthur

    2017-01-01

    In many vertebrates, sex of offspring is determined by external environmental cues rather than by sex chromosomes. In reptiles, for instance, temperature-dependent sex determination (TSD) is common. Despite decades of work, the mechanism by which temperature is converted into a sex-determining signal remains mysterious. This is partly because it is difficult to distinguish the primary molecular events of TSD from the confounding downstream signatures of sexual differentiation. We use the Australian central bearded dragon, in which chromosomal sex determination is overridden at high temperatures to produce sex-reversed female offspring, as a unique model to identify TSD-specific features of the transcriptome. We show that an intron is retained in mature transcripts from each of two Jumonji family genes, JARID2 and JMJD3, in female dragons that have been sex-reversed by temperature but not in normal chromosomal females or males. JARID2 is a component of the master chromatin modifier Polycomb Repressive Complex 2, and the mammalian sex-determining factor SRY is directly regulated by an independent but closely related Jumonji family member. We propose that the perturbation of JARID2/JMJD3 function by intron retention alters the epigenetic landscape to override chromosomal sex-determining cues, triggering sex reversal at extreme temperatures. Sex reversal may then facilitate a transition from genetic sex determination to TSD, with JARID2/JMJD3 intron retention preserved as the decisive regulatory signal. Significantly, we also observe sex-associated differential retention of the equivalent introns in JARID2/JMJD3 transcripts expressed in embryonic gonads from TSD alligators and turtles, indicative of a reptile-wide mechanism controlling TSD. PMID:28630932

  18. Differential intron retention in Jumonji chromatin modifier genes is implicated in reptile temperature-dependent sex determination.

    PubMed

    Deveson, Ira W; Holleley, Clare E; Blackburn, James; Marshall Graves, Jennifer A; Mattick, John S; Waters, Paul D; Georges, Arthur

    2017-06-01

    In many vertebrates, sex of offspring is determined by external environmental cues rather than by sex chromosomes. In reptiles, for instance, temperature-dependent sex determination (TSD) is common. Despite decades of work, the mechanism by which temperature is converted into a sex-determining signal remains mysterious. This is partly because it is difficult to distinguish the primary molecular events of TSD from the confounding downstream signatures of sexual differentiation. We use the Australian central bearded dragon, in which chromosomal sex determination is overridden at high temperatures to produce sex-reversed female offspring, as a unique model to identify TSD-specific features of the transcriptome. We show that an intron is retained in mature transcripts from each of two Jumonji family genes, JARID2 and JMJD3 , in female dragons that have been sex-reversed by temperature but not in normal chromosomal females or males. JARID2 is a component of the master chromatin modifier Polycomb Repressive Complex 2, and the mammalian sex-determining factor SRY is directly regulated by an independent but closely related Jumonji family member. We propose that the perturbation of JARID2/JMJD3 function by intron retention alters the epigenetic landscape to override chromosomal sex-determining cues, triggering sex reversal at extreme temperatures. Sex reversal may then facilitate a transition from genetic sex determination to TSD, with JARID2/JMJD3 intron retention preserved as the decisive regulatory signal. Significantly, we also observe sex-associated differential retention of the equivalent introns in JARID2/JMJD3 transcripts expressed in embryonic gonads from TSD alligators and turtles, indicative of a reptile-wide mechanism controlling TSD.

  19. Genetic sex determination in Astatotilapia calliptera, a prototype species for the Lake Malawi cichlid radiation.

    PubMed

    Peterson, Erin N; Cline, Maggie E; Moore, Emily C; Roberts, Natalie B; Roberts, Reade B

    2017-06-01

    East African cichlids display extensive variation in sex determination systems. The species Astatotilapia calliptera is one of the few cichlids that reside both in Lake Malawi and in surrounding waterways. A. calliptera is of interest in evolutionary studies as a putative immediate outgroup species for the Lake Malawi species flock and possibly as a prototype ancestor-like species for the radiation. Here, we use linkage mapping to test association of sex in A. calliptera with loci that have been previously associated with genetic sex determination in East African cichlid species. We identify a male heterogametic XY system segregating at linkage group (LG) 7 in an A. calliptera line that originated from Lake Malawi, at a locus previously shown to act as an XY sex determination system in multiple species of Lake Malawi cichlids. Significant association of genetic markers and sex produce a broad genetic interval of approximately 26 megabases (Mb) using the Nile tilapia genome to orient markers; however, we note that the marker with the strongest association with sex is near a gene that acts as a master sex determiner in other fish species. We demonstrate that alleles of the marker are perfectly associated with sex in Metriaclima mbenjii, a species from the rock-dwelling clade of Lake Malawi. While we do not rule out the possibility of other sex determination loci in A. calliptera, this study provides a foundation for fine mapping of the cichlid sex determination gene on LG7 and evolutionary context regarding the origin and persistence of the LG7 XY across diverse, rapidly evolving lineages.

  20. Genetic sex determination in Astatotilapia calliptera, a prototype species for the Lake Malawi cichlid radiation

    NASA Astrophysics Data System (ADS)

    Peterson, Erin N.; Cline, Maggie E.; Moore, Emily C.; Roberts, Natalie B.; Roberts, Reade B.

    2017-06-01

    East African cichlids display extensive variation in sex determination systems. The species Astatotilapia calliptera is one of the few cichlids that reside both in Lake Malawi and in surrounding waterways. A. calliptera is of interest in evolutionary studies as a putative immediate outgroup species for the Lake Malawi species flock and possibly as a prototype ancestor-like species for the radiation. Here, we use linkage mapping to test association of sex in A. calliptera with loci that have been previously associated with genetic sex determination in East African cichlid species. We identify a male heterogametic XY system segregating at linkage group (LG) 7 in an A. calliptera line that originated from Lake Malawi, at a locus previously shown to act as an XY sex determination system in multiple species of Lake Malawi cichlids. Significant association of genetic markers and sex produce a broad genetic interval of approximately 26 megabases (Mb) using the Nile tilapia genome to orient markers; however, we note that the marker with the strongest association with sex is near a gene that acts as a master sex determiner in other fish species. We demonstrate that alleles of the marker are perfectly associated with sex in Metriaclima mbenjii, a species from the rock-dwelling clade of Lake Malawi. While we do not rule out the possibility of other sex determination loci in A. calliptera, this study provides a foundation for fine mapping of the cichlid sex determination gene on LG7 and evolutionary context regarding the origin and persistence of the LG7 XY across diverse, rapidly evolving lineages.

  1. Determination of sex origin of meat and meat products on the DNA basis: a review.

    PubMed

    Gokulakrishnan, Palanisamy; Kumar, Rajiv Ranjan; Sharma, Brahm Deo; Mendiratta, Sanjod Kumar; Malav, Omprakash; Sharma, Deepak

    2015-01-01

    Sex determination of domestic animal's meat is of potential value in meat authentication and quality control studies. Methods aiming at determining the sex origin of meat may be based either on the analysis of hormone or on the analysis of nucleic acids. At the present time, sex determination of meat and meat products based on hormone analysis employ gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS), and enzyme-linked immunosorbent assay (ELISA). Most of the hormone-based methods proved to be highly specific and sensitive but were not performed on a regular basis for meat sexing due to the technical limitations or the expensive equipments required. On the other hand, the most common methodology to determine the sex of meat is unquestionably traditional polymerase chain reaction (PCR) that involves gel electrophoresis of DNA amplicons. This review is intended to provide an overview of the DNA-based methods for sex determination of meat and meat products.

  2. The role of estrogen in turtle sex determination and the effect of PCBs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crews, D.; Bergeron, J.M.; McLachlan, J.A.

    1995-10-01

    Gonadal sex is fixed at fertilization by specific chromosomes, a process known as genotypic sex determination (GSD). Only after the gonad is formed do hormones begin to exert an influence that modifies specific structures that eventually will differ between the sexes. Many egg-laying reptiles do not exhibit GSD but rather depend on the temperature of the incubating egg to determine the gonadal sex of the offspring, a process termed temperature-dependent sex determination (TSD). Research on TSD indicates that gonadal sex is not irrevocably set by the genetic composition inherited at fertilization but depends ultimately on which genes encoding for steroidogenicmore » enzymes and hormone receptors are activated during the midtrimester of embryonic development by temperature. Incubation temperature modifies the activity as well as the temporal and spatial sequence of enzymes and hormone receptors to determine gonad type. Estrogen is the physiologic equivalent of incubation temperature and the proximate cue that initiates female sex determination. increasing evidence indicates some polychlorinated biphenyl (PCB) compounds are capable of disrupting reproductive and endocrine function in fish, birds, and mammals, including humans. Reproductive disorders resulting from exposure to these xenobiotic compounds may include reductions in fertility, hatch rate in fish and birds, and viability of offspring, as well as alterations in hormone levels or adult sexual behaviors. Research on the mechanism through which these compounds may be acting to alter reproductive function indicates estrogenic activity, by which the compounds may be altering sexual differentiation. In TSD turtles, the estrogenic effect of some PCBs reverses gonadal sex in individuals incubating at an otherwise male-producing temperature. Furthermore, certain PCBs are synergistic in their effect at very low concentrations. 19 refs., 3 figs., 1 tab.« less

  3. Sex-determining mechanisms in insects based on imprinting and elimination of chromosomes.

    PubMed

    Sánchez, L

    2014-01-01

    As a rule, the sex of an individual is fixed at fertilization, and the chromosomal constitution of the zygote is a direct consequence of the chromosomal constitution of the gametes. However, there are cases in which the chromosomal differences determining sex are brought about by elimination or inactivation of chromosomes in the embryo. In Sciaridae insects, all zygotes start with the XXX constitution; the loss of either 1 or 2 X chromosomes determines whether the zygote becomes XX (female) or X0 (male). In Cecydomyiidae and Collembola insects, all zygotes start with the XXXX constitution. If the embryo does not eliminate any X chromosome, this remains XXXX and develops as female, whereas if 2 X chromosomes are eliminated, the embryo becomes XX0 and develops as a male. In the coccids (scale insects), the chromosomal differences between the sexes result from either the elimination or the heterochromatinization (inactivation) of half of the chromosomes giving rise to haploid males and diploid females. The chromosomes that are eliminated or inactivated are those inherited from the father. Therefore, in the formation of the sex-determining chromosomal signal in those insects, a marking ('imprinting') process must occur in one of the parents, which determines that the chromosomes to be eliminated or inactivated are of paternal origin. In this article, the sex determination mechanism of these insects and the associated imprinting process are reviewed. © 2013 S. Karger AG, Basel.

  4. Accuracy of fetal sex determination on ultrasound examination in the first trimester of pregnancy.

    PubMed

    Manzanares, Sebastián; Benítez, Adara; Naveiro-Fuentes, Mariña; López-Criado, María Setefilla; Sánchez-Gila, Mar

    2016-06-01

    The aim of this study was to evaluate the feasibility and success rate of sex determination on transabdominal sonographic examination at 11-13 weeks' gestation and to identify factors influencing accuracy. In this prospective observational evaluation of 672 fetuses between 11 weeks' and 13 weeks + 6 days' gestational age (GA), we determined fetal sex according to the angle of the genital tubercle viewed on the midsagittal plane. We also analyzed maternal, fetal, and operator factors possibly influencing the accuracy of the determination. Fetal sex determination was feasible in 608 of the 672 fetuses (90.5%), and the prediction was correct in 532 of those 608 cases (87.5%). Fetal sex was more accurately predicted as the fetal crown-rump length (CRL), and GA increased and was less accurately predicted as the maternal body mass index increased. A CRL greater than 55.7 mm, a GA more than 12 weeks + 2 days, and a body mass index below 23.8 were identified as the best cutoff values for sex prediction. None of the other analyzed factors influenced the feasibility or accuracy of sex determination. The sex of a fetus can be accurately determined on sonographic examination in the first trimester of pregnancy; the accuracy of this prediction is influenced by the fetal CRL and GA and by the maternal body mass index. © 2015 Wiley Periodicals, Inc. J Clin Ultrasound 44:272-277, 2016. © 2015 Wiley Periodicals, Inc.

  5. Woodcock age and sex determination from wings

    USGS Publications Warehouse

    Martin, F.W.

    1964-01-01

    Age of woodcock (Philohela minor) can be accurately determined throughout the year by differences in pattern, color, and wear of secondary feathers. Immature woodcock retain most secondaries during the postjuvenal molt that begins in July or August and ends in October. In contrast, subadults (first-year adults) and older woodcock molt all secondaries during the postnuptial molt beginning in June or July and ending in October. Retention of juvenal secondaries by immatures and molt of these feathers by adults form the basis for age determination. Sex of woodcock can be accurately determined by width of the outer three primaries, which are conspicuously narrower on males.

  6. No evidence of temperature-dependent sex determination or sex-biased embryo mortality in the chicken.

    PubMed

    Collins, K E; Jordan, B J; McLendon, B L; Navara, K J; Beckstead, R B; Wilson, J L

    2013-12-01

    Skewing the sex ratio at hatch in commercial poultry would be economically beneficial to the poultry industry. The existence of temperature-dependent sex determination is uncertain in birds. This experiment investigated if incubation temperatures skew sex ratios of commercial broilers. Three incubators were each set at a hot (38.3°C), standard (37.5°C), or cool (36.7°C) single-stage incubation temperature one time over 3 trials to eliminate incubator effect as a Latin square design. Sex ratios of hatched chicks and dead embryos were monitored. In one trial, embryo weights were evaluated. The percentages of male hatched chicks did not differ based on incubation temperature (P = 0.4486; 49.5% in the hot treatment, 51.4% at standard temperature, and 49.8% in the cool treatment). The percent hatch of eggs set was lower in the hot treatment (83.6%) than the standard (93.5%) and cool (91.6%) treatments (P < 0.0001) with greater late embryonic mortality in the hot treatment (P < 0.0001); however, the sex ratio of dead embryos did not differ among treatments (P = 0.9863). Pooled data of embryo mortality found no sex-biased embryo mortality with a female/male sex ratio of 1.22:1 (χ(2) = 1.27; P = 0.2596). Embryos from the hot treatment were heavier than those from the standard treatment by d 14 of incubation and were heavier than the embryos from the cool treatment by d 9 of incubation (P < 0.0001). These data indicate that incubation temperature affects embryonic mortality and embryonic growth rate, but it does not affect the sex ratio of broiler chickens. Additionally, no evidence was found for sex-biased embryo mortality in commercial broilers even at the incubation temperatures of this study.

  7. Is Multifactorial Sex Determination in the House Fly, Musca domestica (L.), Stable Over Time?

    PubMed

    Meisel, Richard P; Davey, Taira; Son, Jae Hak; Gerry, Alec C; Shono, Toshio; Scott, Jeffrey G

    2016-01-01

    Sex determination pathways evolve rapidly, usually because of turnover of master regulatory genes at the top of the developmental pathway. Polygenic sex determination is expected to be a transient state between ancestral and derived conditions. However, polygenic sex determination has been observed in numerous animal species, including the house fly, Musca domestica House fly males carry a male-determining factor (M) that can be located on any chromosome, and an individual male may have multiple M factors. Females lack M and/or have a dominant allele of the Md-tra gene (Md-tra D ) that acts as a female-determining locus even in the presence of multiple copies of M. We found the frequency and linkage of M in house flies collected in Chino, CA (USA) was relatively unchanged between 1982 and 2014. The frequency of females with Md-tra D in the 2014 collection was 33.6% (n = 140). Analysis of these results, plus previously published data, revealed a strong correlation between the frequencies of Md-tra D and multiple M males, and we find that these populations are expected to have balanced sex ratios. We also find that fitness values that allow for the invasion and maintenance of multiple sex determining loci suggest that sexually antagonistic selection could be responsible for maintaining polygenic sex determination in house fly populations. The stability over time and equilibrium frequencies within populations suggest the house fly polygenic sex determination system is not in transition, and provide guidance for future investigations on the factors responsible for the polymorphism. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Germline stem cells and sex determination in Hydra.

    PubMed

    Nishimiya-Fujisawa, Chiemi; Kobayashi, Satoru

    2012-01-01

    The sex of germline stem cells (GSCs) in Hydra is determined in a cell-autonomous manner. In gonochoristic species like Hydra magnipapillata or H. oligactis, where the sexes are separate, male polyps have sperm-restricted stem cells (SpSCs), while females have egg-restricted stem cells (EgSCs). These GSCs self-renew in a polyp, and are usually transmitted to a new bud from a parental polyp during asexual reproduction. But if these GSCs are lost during subsequent budding or regeneration events, new ones are generated from multipotent stem cells (MPSCs). MPSCs are the somatic stem cells in Hydra that ordinarily differentiate into nerve cells, nematocytes (stinging cells in cnidarians), and gland cells. By means of such a backup system, sexual reproduction is guaranteed for every polyp. Interestingly, Hydra polyps occasionally undergo sex-reversal. This implies that each polyp can produce either type of GSCs, i.e. Hydra are genetically hermaphroditic. Nevertheless a polyp possesses only one type of GSCs at a time. We propose a plausible model for sex-reversal in Hydra. We also discuss so-called germline specific genes, which are expressed in both GSCs and MPSCs, and some future plans to investigate Hydra GSCs.

  9. Sex determination in goat by amplification of the HMG box using duplex PCR.

    PubMed

    Shi, Lei; Yue, Wenbin; Ren, Youshe; Lei, Fulin; Zhao, Junxing

    2008-05-01

    The objective of this study was to obtain a fast, accurate and reliable method of determining the sex of goat embryos prior to implantation through amplification of the high-motility-group (HMG) box of the sex-determining region of the Y chromosome (SRY) gene of the goats. Goat specific primers were designed for duplex polymerase chain reaction (PCR). As an internal control gene, the goat beta-action gene sequence was simultaneously amplified together with the HMG box of goat SRY gene. Males showed both 1 SRY band and 1 beta-action band, but only 1 beta-action band was present in the agarose gel electrophoresis of females. The result indicated that the goat HMG-box sequence motif of SRY was male specific. Afterward, the optimized PCR procedure was applied in 30 embryo biopsies and the biopsied embryos were transferred into 30 recipient female goats. The sex of the 13 kids proved anatomically corresponded to the sex determined by PCR (100% accuracy). Thus, this study showed that this duplex PCR method can be applied to sex the goat pre-implantation embryos and to manipulate the sex ratio of offspring in goat breeding programs.

  10. Physical Attractiveness, Age, and Sex as Determinants of Reactions to Resumes.

    ERIC Educational Resources Information Center

    Quereshi, M. Y.; Kay, Janet P.

    1986-01-01

    Physical attractiveness, age, and sex were manipulated to determine their effect on the evaluation of 54 hypothetical applicants' resumes for three different jobs by 60 Master's in Business Administration students. Physical attractiveness favorably influenced the suitability ratings for all jobs; raters' sex and age were not significant but…

  11. The sex and sex determination in Pyropia haitanensis (Bangiales, Rhodophyta).

    PubMed

    Zhang, Yuan; Yan, Xing-hong; Aruga, Yusho

    2013-01-01

    Pyropia haitanensis has a biphasic life cycle with macroscopic gametophytic blade (n) and microscopic filamentous conchocelis (2n) phase. Its gametophytic blades have long been believed to be mainly dioecious. However, when crossing the red mutant (R, ♀) with the wild type (W, ♂), the parental colors were segregated in F1 blades, of which 96.1% were linearly sectored with 2-4 color sectors. When color sectors were excised from the color-sectored blades and cultured singly, 99.7% of the color sectors appeared to be unisexual with an equal sex ratio. Although the sex of color sector did not genetically link with its color, the boundaries of both sex and color sectors coincided precisely. About 87.9% of the examined color-sectored blades were monoecious and the percentage increased with the number of color sectors of a blade. The gametophytic blades from each conchocelis strain produced by parthenogenesis of the excised color sectors were unisexual and unicolor, showing the same sex and color as their original sectors. These results indicate that most of the sexually reproduced Py. haitanensis blades are monoecious, and their sex is controlled by segregation of a pair of alleles during meiosis of conchospore, forming a sex-sectored tetrad. During the subsequent development of blades, one or two lower cell(s) of the tetrad contribute mainly to rhizoid formation, and rarely show their sexual phenotype, leading to reduced frequency of full sex phenotype of the meiotic blades. Moreover, the aberrant segregations of sex genes or color genes in a few of F1 blades were probably due to gene conversions, but there was no sex transfer in Py. haitanensis.

  12. The Sex and Sex Determination in Pyropia haitanensis (Bangiales, Rhodophyta)

    PubMed Central

    Zhang, Yuan; Yan, Xing-hong; Aruga, Yusho

    2013-01-01

    Pyropia haitanensis has a biphasic life cycle with macroscopic gametophytic blade (n) and microscopic filamentous conchocelis (2n) phase. Its gametophytic blades have long been believed to be mainly dioecious. However, when crossing the red mutant (R, ♀) with the wild type (W, ♂), the parental colors were segregated in F1 blades, of which 96.1% were linearly sectored with 2–4 color sectors. When color sectors were excised from the color-sectored blades and cultured singly, 99.7% of the color sectors appeared to be unisexual with an equal sex ratio. Although the sex of color sector did not genetically link with its color, the boundaries of both sex and color sectors coincided precisely. About 87.9% of the examined color-sectored blades were monoecious and the percentage increased with the number of color sectors of a blade. The gametophytic blades from each conchocelis strain produced by parthenogenesis of the excised color sectors were unisexual and unicolor, showing the same sex and color as their original sectors. These results indicate that most of the sexually reproduced Py. haitanensis blades are monoecious, and their sex is controlled by segregation of a pair of alleles during meiosis of conchospore, forming a sex-sectored tetrad. During the subsequent development of blades, one or two lower cell(s) of the tetrad contribute mainly to rhizoid formation, and rarely show their sexual phenotype, leading to reduced frequency of full sex phenotype of the meiotic blades. Moreover, the aberrant segregations of sex genes or color genes in a few of F1 blades were probably due to gene conversions, but there was no sex transfer in Py. haitanensis. PMID:23991194

  13. Abortion and sex determination: conflicting messages in information materials in a District of Rajasthan, India.

    PubMed

    Nidadavolu, Vijaya; Bracken, Hillary

    2006-05-01

    Public information campaigns are an integral component of reproductive health programmes, including on abortion. In India, where sex selective abortion is increasing, public information is being disseminated on the illegality of sex determination. This paper presents findings from a study undertaken in 2003 in one district in Rajasthan to analyse the content of information materials on abortion and sex determination and people's perceptions of them. Most of the informational material about abortion was produced by one abortion service provider, but none by the public or private sector. The public sector had produced materials on the illegality of sex determination, some of which failed to distinguish between sex selection and other reasons for abortion. In the absence of knowledge of the legal status of abortion, the negative messages and strong language of these materials may have contributed to the perception that abortion is illegal in India. Future materials should address abortion and sex determination, including the legal status of abortion, availability of providers and social norms that shape decision-making. Married and unmarried women should be addressed and the participation of family members acknowledged, while supporting independent decisions by women. Sex determination should also be addressed, and the conditions under which a woman can and cannot seek an abortion clarified, using media and materials accessible to low-literate audiences. Based on what we learned in this research, a pictorial booklet and educator's manual were produced, covering both abortion and sex determination, and are being distributed in India.

  14. Chromosome Banding in Amphibia. XXXVI. Multimorphic Sex Chromosomes and an Enigmatic Sex Determination in Eleutherodactylus johnstonei (Anura, Eleutherodactylidae).

    PubMed

    Schmid, Michael; Steinlein, Claus

    2018-01-01

    A detailed cytogenetic study on the leaf litter frog Eleutherodactylus johnstonei from 14 different Caribbean islands and the mainlands of Venezuela and Guyana revealed the existence of multimorphic XY♂/XX♀ sex chromosomes 14. Their male sex determination and development depends either on the presence of 2 telocentric chromosomes 14 (XtYt), or on 1 submetacentric chromosome 14 (Xsm) plus 1 telocentric chromosome 14 (Yt), or on the presence of 2 submetacentric chromosomes 14 (XsmYsm). The female sex determination and development requires either the presence of 2 telocentric chromosomes 14 (XtXt) or 2 submetacentric chromosomes 14 (XsmXsm). In all individuals analyzed, the sex chromosomes 14 carry a prominent nucleolus organizer region in their long arms. An explanation is given for the origin of the (XtYt)♂, (XsmYt)♂, (XsmYsm)♂, (XtXt)♀, and (XsmXsm)♀ in the different populations of E. johnstonei. Furthermore, the present study gives detailed data on the chromosome banding patterns, in situ hybridization experiments, and the genome size of E. johnstonei. © 2018 S. Karger AG, Basel.

  15. Sexual conflict resolved by invasion of a novel sex determiner in Lake Malawi cichlid fishes.

    PubMed

    Roberts, Reade B; Ser, Jennifer R; Kocher, Thomas D

    2009-11-13

    Sex determination mechanisms differ among animal species, but it is not clear how these differences evolve. New sex determiners may arise in response to sexual conflicts, which occur when traits benefit one sex but hinder the other. We identified the genetic basis for the orange-blotch (OB) color pattern, a trait under sexually antagonistic selection in the cichlid fish of Lake Malawi, East Africa. The OB phenotype is due to a cis-regulatory mutation in the Pax7 gene. OB provides benefits of camouflage to females but disrupts the species-specific male color patterns used for mate recognition. We suggest that the resulting sexual conflict over the OB allele has been resolved by selection for a novel female sex determination locus that has invaded populations with an ancestral male sex determination system.

  16. Global Survey of Protein Expression during Gonadal Sex Determination in Mice*

    PubMed Central

    Ewen, Katherine; Baker, Mark; Wilhelm, Dagmar; Aitken, R. John; Koopman, Peter

    2009-01-01

    The development of an embryo as male or female depends on differentiation of the gonads as either testes or ovaries. A number of genes are known to be important for gonadal differentiation, but our understanding of the regulatory networks underpinning sex determination remains fragmentary. To advance our understanding of sexual development beyond the transcriptome level, we performed the first global survey of the mouse gonad proteome at the time of sex determination by using two-dimensional nanoflow LC-MS/MS. The resulting data set contains a total of 1037 gene products (154 non-redundant and 883 redundant proteins) identified from 620 peptides. Functional classification and biological network construction suggested that the identified proteins primarily serve in RNA post-transcriptional modification and trafficking, protein synthesis and folding, and post-translational modification. The data set contains potential novel regulators of gonad development and sex determination not revealed previously by transcriptomics and proteomics studies and more than 60 proteins with potential links to human disorders of sexual development. PMID:19617587

  17. Sex determination of a Tunisian population by CT scan analysis of the skull.

    PubMed

    Zaafrane, Malek; Ben Khelil, Mehdi; Naccache, Ines; Ezzedine, Ekbel; Savall, Frédéric; Telmon, Norbert; Mnif, Najla; Hamdoun, Moncef

    2018-05-01

    It is widely accepted that the estimation of biological attributes in the human skeleton is more accurate when population-specific standards are applied. With the shortage of such data for contemporary North African populations, it is duly required to establish population-specific standards. We present here the first craniometric standards for sex determination of a contemporary Tunisian population. The aim of this study was to analyze the correlation between sex and metric parameters of the skull in this population using CT scan analysis and to generate proper reliable standards for sex determination of a complete or fragmented skull. The study sample comprised cranial multislice computed tomography scans of 510 individuals equally distributed by sex. ASIR TM software in a General Electric TM workstation was used to position 37 landmarks along the volume-rendered images and the multiplanar slices, defining 27 inter-landmark distances. Frontal and parietal bone thickness was also measured for each case. The data were analyzed using basic descriptive statistics and logistic regression with cross-validation of classification results. All of the measurements were sexually dimorphic with male values being higher than female values. A nine-variable model achieved the maximum classification accuracy of 90% with -2.9% sex bias and a six-variable model yielded 85.9% sexing accuracy with -0.97% sex bias. We conclude that the skull is highly dimorphic and represents a reliable bone for sex determination in contemporary Tunisian individuals.

  18. Delimitation of the embryonic thermosensitive period for sex determination using an embryo growth model reveals a potential bias for sex ratio prediction in turtles.

    PubMed

    Girondot, Marc; Monsinjon, Jonathan; Guillon, Jean-Michel

    2018-04-01

    The sexual phenotype of the gonad is dependent on incubation temperature in many turtles, all crocodilians, and some lepidosaurians. At hatching, identification of sexual phenotype is impossible without sacrificing the neonates. For this reason, a general method to infer sexual phenotype from incubation temperatures is needed. Temperature influences sex determination during a specific period of the embryonic development, starting when the gonad begins to form. At constant incubation temperatures, this thermosensitive period for sex determination (TSP) is located at the middle third of incubation duration (MTID). When temperature fluctuates, the position of the thermosensitive period for sex determination can be shifted from the MTID because embryo growth is affected by temperature. A method is proposed to locate the thermosensitive period for sex determination based on modelling the embryo growth, allowing its precise identification from a natural regime of temperatures. Results from natural nests and simulations show that the approximation of the thermosensitive period for sex determination to the middle third of incubation duration may create a quasi-systematic bias to lower temperatures when computing the average incubation temperature during this period and thus a male-bias for sex ratio estimate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Sequential Turnovers of Sex Chromosomes in African Clawed Frogs (Xenopus) Suggest Some Genomic Regions Are Good at Sex Determination

    PubMed Central

    Furman, Benjamin L. S.; Evans, Ben J.

    2016-01-01

    Sexual differentiation is fundamentally important for reproduction, yet the genetic triggers of this developmental process can vary, even between closely related species. Recent studies have uncovered, for example, variation in the genetic triggers for sexual differentiation within and between species of African clawed frogs (genus Xenopus). Here, we extend these discoveries by demonstrating that yet another sex determination system exists in Xenopus, specifically in the species Xenopus borealis. This system evolved recently in an ancestor of X. borealis that had the same sex determination system as X. laevis, a system which itself is newly evolved. Strikingly, the genomic region carrying the sex determination factor in X. borealis is homologous to that of therian mammals, including humans. Our results offer insights into how the genetic underpinnings of conserved phenotypes evolve, and suggest an important role for cooption of genetic building blocks with conserved developmental roles. PMID:27605520

  20. The lesser known challenge of climate change: thermal variance and sex-reversal in vertebrates with temperature-dependent sex determination.

    PubMed

    Neuwald, Jennifer L; Valenzuela, Nicole

    2011-03-23

    Climate change is expected to disrupt biological systems. Particularly susceptible are species with temperature-dependent sex determination (TSD), as in many reptiles. While the potentially devastating effect of rising mean temperatures on sex ratios in TSD species is appreciated, the consequences of increased thermal variance predicted to accompany climate change remain obscure. Surprisingly, no study has tested if the effect of thermal variance around high-temperatures (which are particularly relevant given climate change predictions) has the same or opposite effects as around lower temperatures. Here we show that sex ratios of the painted turtle (Chrysemys picta) were reversed as fluctuations increased around low and high unisexual mean-temperatures. Unexpectedly, the developmental and sexual responses around female-producing temperatures were decoupled in a more complex manner than around male-producing values. Our novel observations are not fully explained by existing ecological models of development and sex determination, and provide strong evidence that thermal fluctuations are critical for shaping the biological outcomes of climate change.

  1. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination.

    PubMed

    Pokorná, Martina; Rábová, Marie; Ráb, Petr; Ferguson-Smith, Malcolm A; Rens, Willem; Kratochvíl, Lukáš

    2010-11-01

    The eyelid geckos (family Eublepharidae) include both species with temperature-dependent sex determination and species where genotypic sex determination (GSD) was suggested based on the observation of equal sex ratios at several incubation temperatures. In this study, we present data on karyotypes and chromosomal characteristics in 12 species (Aeluroscalabotes felinus, Coleonyx brevis, Coleonyx elegans, Coleonyx variegatus, Eublepharis angramainyu, Eublepharis macularius, Goniurosaurus araneus, Goniurosaurus lichtenfelderi, Goniurosaurus luii, Goniurosaurus splendens, Hemitheconyx caudicinctus, and Holodactylus africanus) covering all genera of the family, and search for the presence of heteromorphic sex chromosomes. Phylogenetic mapping of chromosomal changes showed a long evolutionary stasis of karyotypes with all acrocentric chromosomes followed by numerous chromosomal rearrangements in the ancestors of two lineages. We have found heteromorphic sex chromosomes in only one species, which suggests that sex chromosomes in most GSD species of the eyelid geckos are not morphologically differentiated. The sexual difference in karyotype was detected only in C. elegans which has a multiple sex chromosome system (X(1)X(2)Y). The metacentric Y chromosome evolved most likely via centric fusion of two acrocentric chromosomes involving loss of interstitial telomeric sequences. We conclude that the eyelid geckos exhibit diversity in sex determination ranging from the absence of any sexual differences to heteromorphic sex chromosomes, which makes them an interesting system for exploring the evolutionary origin of sexually dimorphic genomes.

  2. ddRADseq reveals determinants for temperature-dependent sex reversal in Nile tilapia on LG23.

    PubMed

    Wessels, Stephan; Krause, Ina; Floren, Claudia; Schütz, Ekkehard; Beck, Jule; Knorr, Christoph

    2017-07-14

    In Nile tilapia sex determination is governed by a male heterogametic system XX/XY either on LG1 or LG23. The latter carries a Y-specific duplicate of the amh gene, which is a testis-determining factor. Allelic variants in the amh gene demonstrated to be major triggers for autosomal and temperature-dependent sex reversal. Further, QTL on LG23 and LG20 show a temperature-responsiveness with influence on the phenotypic sex relative to the sex chromosomes. Here we present a ddRADseq based approach to identify genomic regions that show unusual large differentiation in terms of fixation index (F ST ) between temperature-treated pseudomales and non-masculinized females using a comparative genome-scan. Genome-wide associations were identified for the temperature-dependent sex using a genetically all-female population devoid of amh-ΔY. Twenty-two thousand three hundred ninety-two SNPs were interrogated for the comparison of temperature-treated pseudomales and females, which revealed the largest differentiation on LG23. Outlier F ST -values (0.35-0.44) were determined for six SNPs in the genomic interval (9,190,077-11,065,693) harbouring the amh gene (9,602,693-9,605,808), exceeding the genome-wide low F ST of 0.013. Association analysis with a set of 9104 selected SNPs confirmed that the same genomic region on LG23 exerts a significant effect on the temperature-dependent sex. This study highlights the role of LG23 in sex determination, harbouring major determinants for temperature-dependent sex reversal in Nile tilapia. Furthermore F ST outlier detection proves a powerful tool for detection of sex-determining regions in fish genomes.

  3. Bombyx mori histone methyltransferase BmAsh2 is essential for silkworm piRNA-mediated sex determination.

    PubMed

    Li, Zhiqian; You, Lang; Yan, Dong; James, Anthony A; Huang, Yongping; Tan, Anjiang

    2018-02-01

    Sex determination is a hierarchically-regulated process with high diversity in different organisms including insects. The W chromosome-derived Fem piRNA has been identified as the primary sex determination factor in the lepidopteran insect, Bombyx mori, revealing a distinctive piRNA-mediated sex determination pathway. However, the comprehensive mechanism of silkworm sex determination is still poorly understood. We show here that the silkworm PIWI protein BmSiwi, but not BmAgo3, is essential for silkworm sex determination. CRISPR/Cas9-mediated depletion of BmSiwi results in developmental arrest in oogenesis and partial female sexual reversal, while BmAgo3 depletion only affects oogenesis. We identify three histone methyltransferases (HMTs) that are significantly down-regulated in BmSiwi mutant moths. Disruption one of these, BmAsh2, causes dysregulation of piRNAs and transposable elements (TEs), supporting a role for it in the piRNA signaling pathway. More importantly, we find that BmAsh2 mutagenesis results in oogenesis arrest and partial female-to-male sexual reversal as well as dysregulation of the sex determination genes, Bmdsx and BmMasc. Mutagenesis of other two HMTs, BmSETD2 and BmEggless, does not affect piRNA-mediated sex determination. Histological analysis and immunoprecipitation results support a functional interaction between the BmAsh2 and BmSiwi proteins. Our data provide the first evidence that the HMT, BmAsh2, plays key roles in silkworm piRNA-mediated sex determination.

  4. Dimorphic DNA methylation during temperature-dependent sex determination in the sea turtle Lepidochelys olivacea.

    PubMed

    Venegas, Daniela; Marmolejo-Valencia, Alejandro; Valdes-Quezada, Christian; Govenzensky, Tzipe; Recillas-Targa, Félix; Merchant-Larios, Horacio

    2016-09-15

    Sex determination in vertebrates depends on the expression of a conserved network of genes. Sea turtles such as Lepidochelys olivacea have temperature-dependent sex determination. The present work analyses some of the epigenetic processes involved in this. We describe sexual dimorphism in global DNA methylation patterns between ovaries and testes of L. olivacea and show that the differences may arise from a combination of DNA methylation and demethylation events that occur during sex determination. Irrespective of incubation temperature, 5-hydroxymethylcytosine was abundant in the bipotential gonad; however, following sex determination, this modification was no longer found in pre-Sertoli cells in the testes. These changes correlate with the establishment of the sexually dimorphic DNA methylation patterns, down regulation of Sox9 gene expression in ovaries and irreversible gonadal commitment towards a male or female differentiation pathway. Thus, DNA methylation changes may be necessary for the stabilization of the gene expression networks that drive the differentiation of the bipotential gonad to form either an ovary or a testis in L. olivacea and probably among other species that manifest temperature-dependent sex determination. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A haploid system of sex determination in the brown alga Ectocarpus sp.

    PubMed

    Ahmed, Sophia; Cock, J Mark; Pessia, Eugenie; Luthringer, Remy; Cormier, Alexandre; Robuchon, Marine; Sterck, Lieven; Peters, Akira F; Dittami, Simon M; Corre, Erwan; Valero, Myriam; Aury, Jean-Marc; Roze, Denis; Van de Peer, Yves; Bothwell, John; Marais, Gabriel A B; Coelho, Susana M

    2014-09-08

    A common feature of most genetic sex-determination systems studied so far is that sex is determined by nonrecombining genomic regions, which can be of various sizes depending on the species. These regions have evolved independently and repeatedly across diverse groups. A number of such sex-determining regions (SDRs) have been studied in animals, plants, and fungi, but very little is known about the evolution of sexes in other eukaryotic lineages. We report here the sequencing and genomic analysis of the SDR of Ectocarpus, a brown alga that has been evolving independently from plants, animals, and fungi for over one giga-annum. In Ectocarpus, sex is expressed during the haploid phase of the life cycle, and both the female (U) and the male (V) sex chromosomes contain nonrecombining regions. The U and V of this species have been diverging for more than 70 mega-annum, yet gene degeneration has been modest, and the SDR is relatively small, with no evidence for evolutionary strata. These features may be explained by the occurrence of strong purifying selection during the haploid phase of the life cycle and the low level of sexual dimorphism. V is dominant over U, suggesting that femaleness may be the default state, adopted when the male haplotype is absent. The Ectocarpus UV system has clearly had a distinct evolutionary trajectory not only to the well-studied XY and ZW systems but also to the UV systems described so far. Nonetheless, some striking similarities exist, indicating remarkable universality of the underlying processes shaping sex chromosome evolution across distant lineages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Molecular marker suggests rapid changes of sex-determining mechanisms in Australian dragon lizards.

    PubMed

    Ezaz, Tariq; Quinn, Alexander E; Sarre, Stephen D; O'Meally, Denis; Georges, Arthur; Graves, Jennifer A Marshall

    2009-01-01

    Distribution of sex-determining mechanisms across Australian agamids shows no clear phylogenetic segregation, suggesting multiple transitions between temperature-dependent (TSD) and genotypic sex determination (GSD). These taxa thus present an excellent opportunity for studying the evolution of sex chromosomes, and evolutionary transitions between TSD and GSD. Here we report the hybridization of a 3 kb genomic sequence (PvZW3) that marks the Z and W microchromosomes of the Australian central bearded dragon (Pogona vitticeps) to chromosomes of 12 species of Australian agamids from eight genera using fluorescence in-situ hybridization (FISH). The probe hybridized to a single microchromosome pair in 11 of these species, but to the tip of the long arm of chromosome pair 2 in the twelfth (Physignathus lesueurii), indicating a micro-macro chromosome rearrangement. Three TSD species shared the marked microchromosome, implying that it is a conserved autosome in related species that determine sex by temperature. C-banding identified the marked microchromosome as the heterochromatic W chromosome in two of the three GSD species. However, in Ctenophorus fordi, the probe hybridized to a different microchromosome from that shown by C-banding to be the heterochromatic W, suggesting an independent origin for the ZW chromosome pair in that species. Given the haphazard distribution of GSD and TSD in this group and the existence of at least two sets of sex microchromosomes in GSD species, we conclude that sex-determining mechanisms in this family have evolved independently, multiple times in a short evolutionary period.

  7. Prevalence and determinants of online-sex use in the German population.

    PubMed

    Beutel, Manfred E; Giralt, Sebastian; Wölfling, Klaus; Stöbel-Richter, Yve; Subic-Wrana, Claudia; Reiner, Iris; Tibubos, Ana Nanette; Brähler, Elmar

    2017-01-01

    The unlimited access to sexual features in the World Wide Web has raised concerns about excessive and problematic online-sex use. However, little is known about antecedents of internet-sex use of different intensity. Based on a representative German sample of 2,522 participants between the ages of 14 and 97 years, the aims of the present study were (1) to determine the prevalence rates of online-sex users with the short version (ISSTGSV) of the Internet Sex Screening Test and (2) to associate online-sex use with anxious vs. avoidant partner attachment patterns and "Big Five" personality traits as potential antecedents. The ISST is a brief, one-dimensional and reliable measure of online-sex activities (rtt = .69). Overall, 14.7% of respondents reported occasional and 4.2% intensive online-sex use. In multivariate analysis, online-sex use was significantly positively associated with male sex, younger age, unemployment and an anxious partner attachment pattern and negatively with conscientiousness and agreeableness. Arousal and satisfaction by virtual enactment of sexual phantasies may be attractive for anxiously attached persons who find it difficult to commit to a real life relationship due to fear of rejection or low self-esteem. More knowledge about the individual antecedents of intensive online-sex use may also be helpful for the development of consultation and treatment strategies for excessive and addictive online-sex use.

  8. [Sex determination in cucurbits].

    PubMed

    Foucart, Camille; Boualem, Adnane; Lasseur, Bertrand; Eleblu, John; Fahraj, Izhak; Bendahmane, Abdelhafid

    2012-01-01

    Sex determination in plants leads to the development of unisexual flowers from an originally bisexual floral meristem. Cucurbits are not only species of agronomic interest but they also represent model species for the study of plant sex determination, because of their ability to harbor different sexual types. Such sexual forms are controlled by the identity of the alleles at the following loci: andromonoecious (a) and gynoecious (g) in melon, or androecious (a), Female (F), and Monoecious (M) in cucumber. We firstly showed that the andromonoecious a gene in melon encodes for an ACC synthase (CmACS7) and demonstrated that andromonoecy results from a mutation in the active site of the enzyme. Expression of the active enzyme inhibits the development of the male organs and is not required for carpel development. Because the a gene in melon and M gene in cucumber control the same sexual transition, monoecy to andromonoecy, we isolated the andromonoecy M gene in cucumber using a candidate gene approach in combination with genetic and biochemical analysis. We demonstrated the co-segregation of CsACS2, a close ortholog of CmACS7, with the M locus, and showed that the cucumber andromonoecious phenotype is also due to a loss of ACS enzymatic activity. CsACS2 is expressed specifically in carpel primordia of female flowers and should play a similar role to that of CmACS7 in melon in the inhibition of stamina development. Finally, we also showed that the transition from male to female flowers in the gynoecious lines results from epigenetic changes in the promoter of a C(2)H (2) zinc-finger transcription factor, CmWIP1. This epigenetic change is elicited by the insertion of a DNA transposon, which causes the spreading of DNA methylation to the CmWIP1 promoter. Expression of CmWIP1 leads to carpel abortion, resulting in the development of unisexual male flowers. From all these results, we built a model in which CmACS7 and CmWIP1 interact to control the development of male, female

  9. Sex determination from the talus in a contemporary Greek population using discriminant function analysis.

    PubMed

    Peckmann, Tanya R; Orr, Kayla; Meek, Susan; Manolis, Sotiris K

    2015-07-01

    The determination of sex is an important part of building the biological profile for unknown human remains. Many of the bones traditionally used for the determination of sex are often found fragmented or incomplete in forensic and archaeological cases. The goal of the present research was to derive discriminant function equations from the talus, a preservationally favoured bone, for sexing skeletons from a contemporary Greek population. Nine parameters were measured on 182 individuals (96 males and 86 females) from the University of Athens Human Skeletal Reference Collection. The individuals ranged in age from 20 to 99 years old. The statistical analyses showed that all measured parameters were sexually dimorphic. Discriminant function score equations were generated for use in sex determination. The average accuracy of sex classification ranged from 65.2% to 93.4% for the univariate analysis, 90%-96.5% for the direct method and 86.7% for the stepwise method. Comparisons to other populations were made. Overall, the cross-validated accuracies ranged from 65.5% to 83.2% and males were most often correctly identified. The talus was shown to be useful for sex determination in the modern Greek population. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  10. Recruitment of the proneural gene scute to the Drosophila sex-determination pathway.

    PubMed Central

    Wrischnik, Lisa A; Timmer, John R; Megna, Lisa A; Cline, Thomas W

    2003-01-01

    In flies, scute (sc) works with its paralogs in the achaete-scute-complex (ASC) to direct neuronal development. However, in the family Drosophilidae, sc also acquired a role in the primary event of sex determination, X chromosome counting, by becoming an X chromosome signal element (XSE)-an evolutionary step shown here to have occurred after sc diverged from its closest paralog, achaete (ac). Two temperature-sensitive alleles, sc(sisB2) and sc(sisB3), which disrupt only sex determination, were recovered in a powerful F1 genetic selection and used to investigate how sc was recruited to the sex-determination pathway. sc(sisB2) revealed 3' nontranscribed regulatory sequences likely to be involved. The sc(sisB2) lesion abolished XSE activity when combined with mutations engineered in a sequence upstream of all XSEs. In contrast, changes in Sc protein sequence seem not to have been important for recruitment. The observation that the other new allele, sc(sisB3), eliminates the C-terminal half of Sc without affecting neurogenesis and that sc(sisB1), the most XSE-specific allele previously available, is a nonsense mutant, would seem to suggest the opposite, but we show that housefly Sc can substitute for fruit fly Sc in sex determination, despite lacking Drosophilidae-specific conserved residues in its C-terminal half. Lack of synergistic lethality among mutations in sc, twist, and dorsal argue against a proposed role for sc in mesoderm formation that had seemed potentially relevant to sex-pathway recruitment. The screen that yielded new sc alleles also generated autosomal duplications that argue against the textbook view that fruit fly sex signal evolution recruited a set of autosomal signal elements comparable to the XSEs. PMID:14704182

  11. Dmrt1 induces the male pathway in a turtle species with temperature-dependent sex determination.

    PubMed

    Ge, Chutian; Ye, Jian; Zhang, Haiyan; Zhang, Yi; Sun, Wei; Sang, Yapeng; Capel, Blanche; Qian, Guoying

    2017-06-15

    The molecular mechanism underlying temperature-dependent sex determination (TSD) has been a long-standing mystery; in particular, the thermosensitive genetic triggers for gonadal sex differentiation are largely unknown. Here, we have characterized a conserved DM domain gene, Dmrt1 , in the red-eared slider turtle Trachemys scripta ( T. scripta ), which exhibits TSD. We found that Dmrt1 has a temperature-dependent, sexually dimorphic expression pattern, preceding gonadal sex differentiation, and is capable of responding rapidly to temperature shifts and aromatase inhibitor treatment. Most importantly, loss- and gain-of-function analyses provide solid evidence that Dmrt1 is both necessary and sufficient to initiate male development in T. scripta Furthermore, the DNA methylation dynamics of the Dmrt1 promoter are tightly correlated with temperature and could mediate the impact of temperature on sex determination. Collectively, our findings demonstrate that Dmrt1 is a candidate master male sex-determining gene in this TSD species, consistent with the idea that DM domain genes are conserved during the evolution of sex determination mechanisms. © 2017. Published by The Company of Biologists Ltd.

  12. Constraints on temperature-dependent sex determination in the leopard gecko ( Eublepharis macularius): response to Kratochvil et al.

    NASA Astrophysics Data System (ADS)

    Huang, Victoria; Sakata, Jon T.; Rhen, Turk; Coomber, Patricia; Simmonds, Sarah; Crews, David

    2008-12-01

    Kratochvil et al. (Naturwissenschaften 95:209 215, 2008) reported recently that in the leopard gecko ( Eublepharis macularius) of the family Eublepharidae with temperature-dependent sex determination (TSD), clutches in which eggs were incubated at the same temperature produce only same-sex siblings. Interpreting this result in light of studies of sex steroid hormone involvement in sex determination, they suggested that maternally derived yolk steroid hormones could constrain sex-determining mechanisms in TSD reptiles. We have worked extensively with this species and have routinely incubated clutches at constant temperatures. To test the consistency of high frequency same-sex clutches across different incubation temperatures, we examined our records of clutches at the University of Texas at Austin from 1992 to 2001. We observed that clutches in which eggs were incubated at the same incubation temperature produced mixed-sex clutches as well as same-sex clutches. Furthermore, cases in which eggs within a clutch were separated and incubated at different temperatures produced the expected number of mixed-sex clutches. These results suggest that maternal influences on sex determination are secondary relative to incubation temperature effects.

  13. Sex determination and differentiation in Aurelia sp.1: the absence of temperature dependence

    NASA Astrophysics Data System (ADS)

    Liu, Chunsheng; Gu, Zhifeng; Xing, Mengxin; Sun, Yun; Chen, Siqing; Chen, Zhaoting

    2018-03-01

    Cnidarians, being regarded as `basal' metazoan animals, are considered to have relatively high plasticity in terms of sex reversal. In this study we used an experimental approach to demonstrate sexual differentiation and plasticity in benthic polyps and pelagic medusae of Aurelia sp.1 maintained at different temperatures. Results indicated that in Aurelia sp.1, sex differentiation has been determined at the polyp stage and that all medusae originating from a given polyp are, phenotypically, of the same sex. In addition, the sex of polyps budding from the same clone (either male or female) at different temperatures appears to be the same as that of the parent. The sex of medusae that had originated from a known-sex polyp was observed to remain the same as that of the parent, irrespective of differences in strobilation or rearing temperatures. These results indicate that the mechanism of sex determination of Aurelia sp.1. is not influenced by prevailing temperature regimes. A comparison of variability in terms of sexual plasticity of Aurelia sp.1 with that of Hydrozoa and Anthozoa suggests that species characterized by a free-swimming medusa life stage have a high dispersal potential, which probably results in a lower rate of sex reversal.

  14. Birth order, individual sex and sex of competitors determine the outcome of conflict among siblings over parental care

    PubMed Central

    Bonisoli-Alquati, Andrea; Boncoraglio, Giuseppe; Caprioli, Manuela; Saino, Nicola

    2011-01-01

    Success in competition for limiting parental resources depends on the interplay between parental decisions over allocation of care and offspring traits. Birth order, individual sex and sex of competing siblings are major candidates as determinants of success in sib–sib competition, but experimental studies focusing on the combined effect of these factors on parent–offspring communication and within-brood competitive dynamics are rare. Here, we assessed individual food intake and body mass gain during feeding trials in barn swallow chicks differing for seniority and sex, and compared the intensity of their acoustic and postural solicitation (begging) displays. Begging intensity and success in competition depended on seniority in combination with individual sex and sex of the opponent. Junior chicks begged more than seniors, independently of satiation level (which was also experimentally manipulated), and obtained greater access to food. Females were generally weaker competitors than males. Individual sex and sex of the opponent also affected duration of begging bouts. Present results thus show that competition with siblings can make the rearing environment variably harsh for developing chicks, depending on individual sex, sex of competing broodmates and age ranking within the nest. They also suggest that parental decisions on the allocation of care and response of kin to signalling siblings may further contribute to the outcome of sibling competition. PMID:20943688

  15. Hand-rearing and sex determination tool for the Taveta golden weaver (Ploceus castaneiceps).

    PubMed

    Breeding, Shawnlei; Ferrie, Gina M; Schutz, Paul; Leighty, Katherine A; Plassé, Chelle

    2012-01-01

    Improvements in the ability to hand-rear birds in captivity have aided zoological institutions in the sustainable management of these species, and have provided opportunities to examine their physical growth in varying conditions. Monitoring the weight gain and development of chicks is an important aspect of developing a hand-rearing protocol. In this paper we provide the institutional history for a colonial species of passerine, the Taveta golden weaver, at Disney's Animal Kingdom®, in order to demonstrate the methods of establishing a successful breeding program which largely incorporates hand-rearing in management of the population. We also tested if we could accurately predict sex of chicks using weights collected on Day 14 during the hand-rearing process. Using this tool, we were able to correctly determine sex before fledging in more than 83% of chicks. Early sex determination is important in captive species for genetic management and husbandry purposes. While genetic sexing can be expensive, we found that using growth curves to determine sex can be a reliable and cost-effective tool for population management of a colonial passerine. © 2012 Wiley Periodicals, Inc.

  16. Prevalence and determinants of online-sex use in the German population

    PubMed Central

    Beutel, Manfred E.; Giralt, Sebastian; Wölfling, Klaus; Stöbel-Richter, Yve; Subic-Wrana, Claudia; Reiner, Iris; Tibubos, Ana Nanette; Brähler, Elmar

    2017-01-01

    Introduction The unlimited access to sexual features in the World Wide Web has raised concerns about excessive and problematic online-sex use. However, little is known about antecedents of internet-sex use of different intensity. Based on a representative German sample of 2,522 participants between the ages of 14 and 97 years, the aims of the present study were (1) to determine the prevalence rates of online-sex users with the short version (ISSTGSV) of the Internet Sex Screening Test and (2) to associate online-sex use with anxious vs. avoidant partner attachment patterns and “Big Five” personality traits as potential antecedents. Results The ISST is a brief, one-dimensional and reliable measure of online-sex activities (rtt = .69). Overall, 14.7% of respondents reported occasional and 4.2% intensive online-sex use. In multivariate analysis, online-sex use was significantly positively associated with male sex, younger age, unemployment and an anxious partner attachment pattern and negatively with conscientiousness and agreeableness. Conclusions Arousal and satisfaction by virtual enactment of sexual phantasies may be attractive for anxiously attached persons who find it difficult to commit to a real life relationship due to fear of rejection or low self-esteem. More knowledge about the individual antecedents of intensive online-sex use may also be helpful for the development of consultation and treatment strategies for excessive and addictive online-sex use. PMID:28628620

  17. Triploid Colubrid Snake Provides Insight into the Mechanism of Sex Determination in Advanced Snakes.

    PubMed

    Rovatsos, Michail; Augstenová, Barbora; Altmanová, Marie; Sloboda, Michal; Kodym, Petr; Kratochvíl, Lukáš

    2018-06-19

    The advanced snakes (Caenophidia), the important amniote lineage encompassing more than 3,000 living species, possess highly conserved female heterogamety across all families. However, we still lack any knowledge on the gene(s) and the molecular mechanism controlling sex determination. Triploid individuals spontaneously appear in populations of diploid species and can provide an important insight into the evolution of sex determination. Here, we report a case of spontaneous triploidy in a male of the twin-spotted ratsnake (Elaphe bimaculata) with ZZW sex chromosomes. We speculate that as both ZZ and ZZW individuals develop male gonads, the ratio between the number of Z chromosomes and autosomes, and not the presence of the W chromosome in the genome, drives sex determination in the advanced snakes. © 2018 S. Karger AG, Basel.

  18. Sex determination from the talus and calcaneus measurements.

    PubMed

    Gualdi-Russo, Emanuela

    2007-09-13

    Several studies have demonstrated that discriminant function equations used to determine the sex of a skeleton are population-specific. The purpose of the present research was to develop discriminant function equations for sex determination on the basis of 18 variables on the right and left talus and calcaneus in a modern northern Italian sample. The sample consisted of 118 skeletons (62 males and 56 females) from the Frassetto Collection (University of Bologna). The ages of the individuals ranged from 19 to 70 years. The results indicated that metric traits of the talus (in particular) and calcaneus are good indicators of sexual dimorphism. The percentage of correct classification was high (87.9-95.7%). In view of the differences among current Italian populations, we tested the validity of the discriminant function equations in an independent sample of individuals of different origin (northern and southern Italy). The accuracy of classification was high only for the northern Italians. Most southern Italian males were misclassified as females, confirming the population-specificity of discriminant function equations.

  19. A microRNA family exerts maternal control on sex determination in C. elegans

    PubMed Central

    McJunkin, Katherine; Ambros, Victor

    2017-01-01

    Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally contributed microRNAs may therefore play important roles in early development. We elucidated a major biological role of the nematode mir-35 family of maternally contributed essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream of and downstream from her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. Both of the predicted target genes that act downstream from the mir-35 family in this process, suppressor-26 (sup-26) and NHL (NCL-1, HT2A, and LIN-41 repeat) domain-containing-2 (nhl-2), encode RNA-binding proteins, thus delineating a previously unknown post-transcriptional regulatory subnetwork within the well-studied sex determination pathway of Caenorhabditis elegans. Repression of nhl-2 by the mir-35 family is required for not only proper sex determination but also viability, showing that a single microRNA target site can be essential. Since sex determination in C. elegans requires zygotic gene expression to read the sex chromosome karyotype, early embryos must remain gender-naïve; our findings show that the mir-35 family microRNAs act in the early embryo to function as a developmental timer that preserves naïveté and prevents premature deleterious developmental decisions. PMID:28279983

  20. Observation of a ZZW female in a natural population: implications for avian sex determination.

    PubMed Central

    Arit, D; Bensch, S; Hansson, B; Hasselquist, D; Westerdahl, H

    2004-01-01

    Avian sex determination is chromosomal; however, the underlying mechanisms are not yet understood. There is no conclusive evidence for either of two proposed mechanisms: a dominant genetic switch or a dosage mechanism. No dominant sex-determining gene on the female-specific W chromosome has been found. Birds lack inactivation of one of the Z chromosomes in males, but seem to compensate for a double dose of Z-linked genes by other mechanisms. Recent studies showing female-specific expression of two genes may support an active role of the W chromosome. To resolve the question of avian sex determination the investigation of birds with a 2A: ZZW or 2A: ZO genotype would be decisive. Here, we report the case of an apparent 2A: ZZW great reed warbler (Acrocephalus arundinaceus) female breeding in a natural population, which was detected using Z-linked microsatellites. Our data strongly suggest a role of W-linked genes in avian sex determination. PMID:15252998

  1. Missing female fetus: a micro level investigation of sex determination in a periurban area of Northern India.

    PubMed

    Ghosh, Rohini; Sharma, Arun Kumar

    2012-01-01

    A micro-level investigation of 983 pregnant women (aged 15-49 years) regarding sex determination and associated factors was carried out in a periurban region of Northern India. Among the women surveyed, 183 chose to use sex determination. The highest percentage of sex determination was among 30-39-year-old women, and general caste and family size were two risk factors associated with sex determination. Correcting imbalances in sex ratios at birth is a complex issue without easy answers, especially in patriarchal societies. Apart from raising awareness among decisionmakers, property rights in favor of women and strict vigilance and record of registration of ultrasound machines are necessary.

  2. Unexpected resilience of species with temperature-dependent sex determination at the Cretaceous–Palaeogene boundary

    PubMed Central

    Silber, Sherman; Geisler, Jonathan H.; Bolortsetseg, Minjin

    2011-01-01

    It has been suggested that climate change at the Cretaceous–Palaeogene (K–Pg) boundary, initiated by a bolide impact or volcanic eruptions, caused species with temperature-dependent sex determination (TSD), including dinosaurs, to go extinct because of a skewed sex ratio towards all males. To test this hypothesis, the sex-determining mechanisms (SDMs) of Cretaceous tetrapods of the Hell Creek Formation (Montana, USA) were inferred using parsimony optimizations of SDMs on a tree, including Hell Creek species and their extant relatives. Although the SDMs of non-avian dinosaurs could not be inferred, we were able to determine the SDMs of 62 species; 46 had genotypic sex determination (GSD) and 16 had TSD. The TSD hypothesis for extinctions performed poorly, predicting between 32 and 34 per cent of survivals and extinctions. Most surprisingly, of the 16 species with TSD, 14 of them survived into the Early Palaeocene. In contrast, 61 per cent of species with GSD went extinct. Possible explanations include minimal climate change at the K–Pg, or if climate change did occur, TSD species that survived had egg-laying behaviour that prevented the skewing of sex ratios, or had a sex ratio skewed towards female rather than male preponderance. Application of molecular clocks may allow the SDMs of non-avian dinosaurs to be inferred, which would be an important test of the pattern discovered here. PMID:20980293

  3. Determination of sex from the hyoid bone in a contemporary White population.

    PubMed

    Logar, Ciara J; Peckmann, Tanya R; Meek, Susan; Walls, Stephen G

    2016-04-01

    Six discriminant functions, developed from an historic White population, were tested on a contemporary White population for determination of sex from the hyoid. One hundred and thirty four fused and unfused hyoids from a contemporary White population were used. Individuals ranged between 20 and 49 years old. Six historic White discriminant functions were applied to the fused and unfused hyoids of the pooled contemporary White population, i.e. all males and females and all age ranges combined. The overall accuracy rates were between 72.1% and 92.3%. Correct sex determination for contemporary White males ranged between 88.2% and 96.3%, while correct sex determination for contemporary White females ranged between 31.3% and 92.0%. Discriminant functions were created for the contemporary White population with overall mean accuracy rates between 67.0% and 93.0%. The multivariate discriminant function overall accuracy rates were between 89.0% and 93.0% and the univariate discriminant function overall accuracy rates were between 67.0% and 86.8%. The contemporary White population data were compared to other populations and showed significant differences between many of the variables measured. This study illustrated the need for population-specific and temporally-specific discriminant functions for determination of sex from the hyoid bone. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  4. The role of epistatic interactions underpinning resistance to parasitic Varroa mites in haploid honey bee (Apis mellifera) drones.

    PubMed

    Conlon, Benjamin H; Frey, Eva; Rosenkranz, Peter; Locke, Barbara; Moritz, Robin F A; Routtu, Jarkko

    2018-06-01

    The Red Queen hypothesis predicts that host-parasite coevolutionary dynamics can select for host resistance through increased genetic diversity, recombination and evolutionary rates. However, in haplodiploid organisms such as the honeybee (Apis mellifera), models suggest the selective pressure is weaker than in diploids. Haplodiploid sex determination, found in A. mellifera, can allow deleterious recessive alleles to persist in the population through the diploid sex with negative effects predominantly expressed in the haploid sex. To overcome these negative effects in haploid genomes, epistatic interactions have been hypothesized to play an important role. Here, we use the interaction between A. mellifera and the parasitic mite Varroa destructor to test epistasis in the expression of resistance, through the inhibition of parasite reproduction, in haploid drones. We find novel loci on three chromosomes which explain over 45% of the resistance phenotype. Two of these loci interact only additively, suggesting their expression is independent of each other, but both loci interact epistatically with the third locus. With drone offspring inheriting only one copy of the queen's chromosomes, the drones will only possess one of two queen alleles throughout the years-long lifetime of the honeybee colony. Varroa, in comparison, completes its highly inbred reproductive cycle in a matter of weeks, allowing it to rapidly evolve resistance. Faced with the rapidly evolving Varroa, a diversity of pathways and epistatic interactions for the inhibition of Varroa reproduction could therefore provide a selective advantage to the high levels of recombination seen in A. mellifera. This allows for the remixing of phenotypes despite a fixed queen genotype. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  5. Gonadal morphogenesis and gene expression in reptiles with temperature-dependent sex determination.

    PubMed

    Merchant-Larios, H; Díaz-Hernández, V; Marmolejo-Valencia, A

    2010-01-01

    In reptiles with temperature-dependent sexual determination, the thermosensitive period (TSP) is the interval in which the sex is defined during gonadal morphogenesis. One-shift experiments in a group of eggs define the onset and the end of the TSP as all and none responses, respectively. Timing for sex-undetermined (UG) and -determined gonads (DG) differs at male- (MPT) or female-producing temperatures (FPT). During the TSP a decreasing number of embryos respond to temperature shifts indicating that in this period embryos with both UG and DG exist. Although most UG correspond to undifferentiated gonads, some embryos extend UG after the onset of histological differentiation. Thus, temperature affects gonadal cells during the process of morphogenesis, but timing of commitment depends on individual embryos. A correlation between gonadal morphogenesis, TSP, and gene expression suggests that determination of the molecular pathways modulated by temperature in epithelial cells (surface epithelium and medullary cords) holds the key for a unifying hypothesis on temperature-dependent sex determination. (c) 2010 S. Karger AG, Basel.

  6. Sexing the Sciuridae: a simple and accurate set of molecular methods to determine sex in tree squirrels, ground squirrels and marmots.

    PubMed

    Gorrell, Jamieson C; Boutin, Stan; Raveh, Shirley; Neuhaus, Peter; Côté, Steeve D; Coltman, David W

    2012-09-01

    We determined the sequence of the male-specific minor histocompatibility complex antigen (Smcy) from the Y chromosome of seven squirrel species (Sciuridae, Rodentia). Based on conserved regions inside the Smcy intron sequence, we designed PCR primers for sex determination in these species that can be co-amplified with nuclear loci as controls. PCR co-amplification yields two products for males and one for females that are easily visualized as bands by agarose gel electrophoresis. Our method provides simple and reliable sex determination across a wide range of squirrel species. © 2012 Blackwell Publishing Ltd.

  7. Zebrafish monosex population reveals female dominance in sex determination and earliest events of gonad differentiation.

    PubMed

    Tong, Sok-Keng; Hsu, Hwei-Jan; Chung, Bon-chu

    2010-08-15

    The zebrafish is a popular model for genetic analysis and its sex differentiation has been the focus of attention for breeding purposes. Despite numerous efforts, very little is known about the mechanism of zebrafish sex determination. The lack of discernible sex chromosomes and the difficulty of distinguishing the sex of juvenile fish are two major obstacles that hamper the progress in such studies. To alleviate these problems, we have developed a scheme involving methyltestosterone treatment followed by natural mating to generate fish with predictable sex trait. Female F1 fish that gave rise to all-female offspring were generated. This predictable sex trait enables characterization of gonadal development in juvenile fish by histological examination and gene expression analysis. We found the first sign of zebrafish sex differentiation to be ovarian gonocyte proliferation and differentiation at 10 to 12 days post-fertilization (dpf). Somatic genes were expressed indifferently at 10 to 17 dpf, and then became sexually dimorphic at three weeks. This result indicates clear distinction of male and female gonads derived independently from primordial gonads. We classified the earliest stages of zebrafish sex determination into the initial preparation followed by female germ cell growth, oocyte differentiation, and somatic differentiation. Our genetic selection scheme matches the prediction that female-dominant genetic factors are required to determine zebrafish sex. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Determination of sex from various hand dimensions of Koreans.

    PubMed

    Jee, Soo-Chan; Bahn, Sangwoo; Yun, Myung Hwan

    2015-12-01

    In the case of disasters or crime scenes, forensic anthropometric methods have been utilized as a reliable way to quickly confirm the identification of victims using only a few parts of the body. A total of 321 measurement data (from 167 males and 154 females) were analyzed to investigate the suitability of detailed hand dimensions as discriminators of sex. A total of 29 variables including length, breadth, thickness, and circumference of fingers, palm, and wrist were measured. The obtained data were analyzed using descriptive statistics and t-test. The accuracy of sex indication from the hand dimensions data was found using discriminant analysis. The age effect and interaction effect according to age and sex on hand dimensions were analyzed by ANOVA. The prediction accuracy on a wide age range was also compared. According to the results, the maximum hand circumference showed the highest accuracy of 88.6% for predicting sex for males and 89.6% for females. Although the breadth, circumference, and thickness of hand parts generally showed higher accuracy than the lengths of hand parts in predicting the sex of the participant, the breadth and circumference of some finger joints showed a significant difference according to age and gender. Thus, the dimensions of hand parts which are not affected by age or gender, such as hand length, palm length, hand breadth, and maximum hand thickness, are recommended to be used first in sex determination for a wide age range group. The results suggest that the detailed hand dimensions can also be used to identify sex for better accuracy; however, the aging effects need to be considered in estimating aged suspects. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. A microRNA family exerts maternal control on sex determination in C. elegans.

    PubMed

    McJunkin, Katherine; Ambros, Victor

    2017-02-15

    Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally contributed microRNAs may therefore play important roles in early development. We elucidated a major biological role of the nematode mir-35 family of maternally contributed essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream of and downstream from her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. Both of the predicted target genes that act downstream from the mir-35 family in this process, suppressor-26 ( sup-26 ) and NHL (NCL-1, HT2A, and LIN-41 repeat) domain-containing-2 ( nhl-2 ), encode RNA-binding proteins, thus delineating a previously unknown post-transcriptional regulatory subnetwork within the well-studied sex determination pathway of Caenorhabditis elegans Repression of nhl-2 by the mir-35 family is required for not only proper sex determination but also viability, showing that a single microRNA target site can be essential. Since sex determination in C. elegans requires zygotic gene expression to read the sex chromosome karyotype, early embryos must remain gender-naïve; our findings show that the mir-35 family microRNAs act in the early embryo to function as a developmental timer that preserves naïveté and prevents premature deleterious developmental decisions. © 2017 McJunkin and Ambros; Published by Cold Spring Harbor Laboratory Press.

  10. An ARMS-based technique for sex determination of red panda (Ailurus fulgens).

    PubMed

    Li, Yuzhi; Xu, Xiao; Zhang, Liang; Zhang, Zhihe; Shen, Fujun; Zhang, Wenping; Yue, Bisong

    2011-03-01

    Molecular sexing is a key component in the investigation of wild populations. In this study, we developed a fast, accurate and reliable amplification refractory mutation system (ARMS) technique for sex determination of red panda based on the exon 4 of the ZFX/ZFY gene. The amplicons were distinguished simply by agarose gel electrophoresis, exhibiting one fragment in females (X: 300 bp) and two in males (X: 300 bp, Y: 166 bp). Robustness of this ARMS system was confirmed by testing both 43 captive red pandas using DNA samples with known-sex and 10 wild red pandas using faecal DNA samples with unknown sex. © 2010 Blackwell Publishing Ltd.

  11. Ocean acidification but not warming alters sex determination in the Sydney rock oyster, Saccostrea glomerata.

    PubMed

    Parker, Laura M; O'Connor, Wayne A; Byrne, Maria; Dove, Michael; Coleman, Ross A; Pörtner, Hans-O; Scanes, Elliot; Virtue, Patti; Gibbs, Mitchell; Ross, Pauline M

    2018-02-14

    Whether sex determination of marine organisms can be altered by ocean acidification and warming during this century remains a significant, unanswered question. Here, we show that exposure of the protandric hermaphrodite oyster, Saccostrea glomerata to ocean acidification, but not warming, alters sex determination resulting in changes in sex ratios. After just one reproductive cycle there were 16% more females than males. The rate of gametogenesis, gonad area, fecundity, shell length, extracellular pH and survival decreased in response to ocean acidification. Warming as a sole stressor slightly increased the rate of gametogenesis, gonad area and fecundity, but this increase was masked by the impact of ocean acidification at a level predicted for this century. Alterations to sex determination, sex ratios and reproductive capacity will have flow on effects to reduce larval supply and population size of oysters and potentially other marine organisms. © 2018 The Author(s).

  12. Sex determination from hand and foot dimensions in a North Indian population.

    PubMed

    Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha

    2011-03-01

    Hands and feet are often recovered from the site of natural as well as man-made disasters because of bomb blasts, train accidents, plane crashes, or mass homicides. This study is intended to establish standards for determination of sex from the dimensions of hands and feet in a North Indian population. The data for this study comprise 123 men and 123 women aged between 17 and 20 years from the "Rajput" population of Himachal Pradesh in North India. Four anthropometric measurements viz. hand length, hand breadth, foot length, and foot breadth have been taken on both sides of each subject following international anthropometric standards. The hand index (hand breadth/hand length × 100) and the foot index (foot breadth/foot length × 100) were calculated. Sectioning points and regression models are derived for the hand and foot dimensions and the derived indices. The hand and foot dimensions show a higher accuracy in sex determination by sectioning point analysis when compared to hand and foot index. Of the hand and the foot dimensions, hand breadth and foot breadth showed better accuracy in sex determination. Hand index and foot index remain poor sex discriminators in the study. © 2011 American Academy of Forensic Sciences.

  13. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture

    PubMed Central

    Martínez, Paulino; Viñas, Ana M.; Sánchez, Laura; Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of

  14. Mapping platypus SOX genes; autosomal location of SOX9 excludes it from sex determining role.

    PubMed

    Wallis, M C; Delbridge, M L; Pask, A J; Alsop, A E; Grutzner, F; O'Brien, P C M; Rens, W; Ferguson-Smith, M A; Graves, J A M

    2007-01-01

    In the absence of an SRY orthologue the platypus sex determining gene is unknown, so genes in the human testis determining pathway are of particular interest as candidates. SOX9 is an attractive choice because SOX9 deletions cause male-to-female sex reversal in humans and mice, and SOX9 duplications cause female-to-male sex reversal. We have localized platypus SOX9, as well as the related SOX10, to platypus chromosomes 15 and 10, respectively, the first assignments to these platypus chromosomes, and the first comparative mapping markers from human chromosomes 17 and 22. The autosomal localization of platypus SOX9 in this study contradicts the hypothesis that SOX9 acts as the sex determining switch in platypus. Copyright 2007 S. Karger AG, Basel.

  15. A noninvasive, direct real-time PCR method for sex determination in multiple avian species

    USGS Publications Warehouse

    Brubaker, Jessica L.; Karouna-Renier, Natalie K.; Chen, Yu; Jenko, Kathryn; Sprague, Daniel T.; Henry, Paula F.P.

    2011-01-01

    Polymerase chain reaction (PCR)-based methods to determine the sex of birds are well established and have seen few modifications since they were first introduced in the 1990s. Although these methods allowed for sex determination in species that were previously difficult to analyse, they were not conducive to high-throughput analysis because of the laboriousness of DNA extraction and gel electrophoresis. We developed a high-throughput real-time PCR-based method for analysis of sex in birds, which uses noninvasive sample collection and avoids DNA extraction and gel electrophoresis.

  16. Genomic analysis of the Pacific oyster (Crassostrea gigas) reveals possible conservation of vertebrate sex determination in a mollusc.

    PubMed

    Zhang, Na; Xu, Fei; Guo, Ximing

    2014-09-11

    Despite the prevalence of sex in animal kingdom, we have only limited understanding of how sex is determined and evolved in many taxa. The mollusc Pacific oyster Crassostrea gigas exhibits complex modes of sexual reproduction that consists of protandric dioecy, sex change, and occasional hermaphroditism. This complex system is controlled by both environmental and genetic factors through unknown molecular mechanisms. In this study, we investigated genes related to sex-determining pathways in C. gigas through transcriptome sequencing and analysis of female and male gonads. Our analysis identified or confirmed novel homologs in the oyster of key sex-determining genes (SoxH or Sry-like and FoxL2) that were thought to be vertebrate-specific. Their expression profile in C. gigas is consistent with conserved roles in sex determination, under a proposed model where a novel testis-determining CgSoxH may serve as a primary regulator, directly or indirectly interacting with a testis-promoting CgDsx and an ovary-promoting CgFoxL2. Our findings plus previous results suggest that key vertebrate sex-determining genes such as Sry and FoxL2 may not be inventions of vertebrates. The presence of such genes in a mollusc with expression profiles consistent with expected roles in sex determination suggest that sex determination may be deeply conserved in animals, despite rapid evolution of the regulatory pathways that in C. gigas may involve both genetic and environmental factors. Copyright © 2014 Zhang et al.

  17. Genomic Analysis of the Pacific Oyster (Crassostrea gigas) Reveals Possible Conservation of Vertebrate Sex Determination in a Mollusc

    PubMed Central

    Zhang, Na; Xu, Fei; Guo, Ximing

    2014-01-01

    Despite the prevalence of sex in animal kingdom, we have only limited understanding of how sex is determined and evolved in many taxa. The mollusc Pacific oyster Crassostrea gigas exhibits complex modes of sexual reproduction that consists of protandric dioecy, sex change, and occasional hermaphroditism. This complex system is controlled by both environmental and genetic factors through unknown molecular mechanisms. In this study, we investigated genes related to sex-determining pathways in C. gigas through transcriptome sequencing and analysis of female and male gonads. Our analysis identified or confirmed novel homologs in the oyster of key sex-determining genes (SoxH or Sry-like and FoxL2) that were thought to be vertebrate-specific. Their expression profile in C. gigas is consistent with conserved roles in sex determination, under a proposed model where a novel testis-determining CgSoxH may serve as a primary regulator, directly or indirectly interacting with a testis-promoting CgDsx and an ovary-promoting CgFoxL2. Our findings plus previous results suggest that key vertebrate sex-determining genes such as Sry and FoxL2 may not be inventions of vertebrates. The presence of such genes in a mollusc with expression profiles consistent with expected roles in sex determination suggest that sex determination may be deeply conserved in animals, despite rapid evolution of the regulatory pathways that in C. gigas may involve both genetic and environmental factors. PMID:25213692

  18. Determination of Sex from Footprint Dimensions in a Ghanaian Population.

    PubMed

    Abledu, Jubilant Kwame; Abledu, Godfred Kwame; Offei, Eric Bekoe; Antwi, Emmanuel Mensah

    2015-01-01

    The present study sought to verify the utility and reliability of footprint dimensions in sex determination in a Ghanaian population. Bilateral footprints were obtained from 126 Ghanaian students (66 males and 60 females) aged 18-30 years at Koforidua Polytechnic using an ink pad and white papers. Seven dimensions-length of each toe (designated T1-T5) from the most anterior point of the toe to the mid-rear heel point, breadth at ball (BAB) and breadth at heel (BAH)--and the heel-ball (HB) index were obtained from each footprint. Some footprint dimensions (i.e. T2, T3, T4 and T5) showed statistically significant bilateral asymmetry in males only. All the footprint dimensions, except HB index, were significantly greater in males than females (p<0.001). Applied singly in discriminant function analysis, the footprint dimensions allowed 69.8%-80.3% of cases to be correctly classified into their sex groups; the accuracy of sex classification was higher using left footprints than right footprints. With all dimensions subjected to stepwise discriminant function analysis 80.3% and 77% of cases could be correctly classified, combining both T5 and BAH for left footprints and T1, BAB and BAH for left footprints respectively. The present study has demonstrated, for the first time among Ghanaian subjects, the utility and reliability of sex determination standards developed from footprint dimensions. The results thus provide the baseline for elaborated studies in the future.

  19. The doublesex gene integrates multi-locus complementary sex determination signals in the Japanese ant, Vollenhovia emeryi.

    PubMed

    Miyakawa, Misato Okamoto; Tsuchida, Koji; Miyakawa, Hitoshi

    2018-03-01

    A female diploid, male haploid sex determination system (haplodiploidy) is found in hymenopteran taxa, such as ants, wasps, bees and sawflies. In this system, a single, complementary sex-determination (sl-CSD) locus functions as the primary sex-determination signal. In the taxa that has evolved this system, females and males are heterozygous and hemi/homozygous at the CSD locus, respectively. While the sl-CSD system enables females to alter sex ratios in the nest, it carries a high cost in terms of inbreeding, as individuals that are homozygous at the CSD locus become sterile diploid males. To counter this risk, some of hymenopteran species have evolved a multi-locus CSD (ml-CSD) system, which effectively reduces the proportion of sterile males. However, the mechanism by which these multiple primary signals are integrated and how they affect the terminal sex-differentiation signal of the molecular cascade have not yet been clarified. To resolve these questions, we examined the molecular cascade in the Japanese ant Vollenhovia emeryi, which we previously confirmed has two CSD loci. Here, we showed that the sex-determination gene, doublesex (dsx), which is highly conserved among phylogenetically distant taxa, is responsible for integrating two CSD signals in V. emeryi. After identifying and characterizing dsx, genotypes containing two CSD loci and splicing patterns of dsx were found to correspond to the sexual phenotype, suggesting that two primary signals are integrated into dsx. These findings will facilitate future molecular and functional studies of the sex determination cascade in V. emeryi, and shed light on the evolution and diversification of sex determination systems in insects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish.

    PubMed

    Mei, Jie; Gui, Jian-Fang

    2015-02-01

    Aquaculture has made an enormous contribution to the world food production, especially to the sustainable supply of animal proteins. The utility of diverse reproduction strategies in fish, such as the exploiting use of unisexual gynogenesis, has created a typical case of fish genetic breeding. A number of fish species show substantial sexual dimorphism that is closely linked to multiple economic traits including growth rate and body size, and the efficient development of sex-linked genetic markers and sex control biotechnologies has provided significant approaches to increase the production and value for commercial purposes. Along with the rapid development of genomics and molecular genetic techniques, the genetic basis of sexual dimorphism has been gradually deciphered, and great progress has been made in the mechanisms of fish sex determination and identification of sex-determining genes. This review summarizes the progress to provide some directive and objective thinking for further research in this field.

  1. Formal and informal sex education as determinants of premarital sexual behavior.

    PubMed

    Spanier, G B

    1976-01-01

    Controversies exist regarding the effects of sex education in the schools and informal sex education obtained from parents, peers, the mass media, and other sources. Similarly, there is widespread interest in premarital sexual behavior, especially its determinants. This study presents several issues reflecting these concerns which have been the subject of much speculation but which have received little attention by researchers. The purpose of this study was to investigate--through the use of respondent reports--how formal and informal sex education influences premarital sexual behavior during college. A national probability sample of 1177 college students was studied using face-to-face interviews with approximately equal numbers of males and females. These interviews, which were conducted for the Institute for Sex Research, included questions about past and present sexual involvement and other attitudinal, behavioral and background variables. Accordingly, the data about sexual behavior and attitudes are based on the interviewees' self-reports. Indices were created which operationalized independent variables such as familial sexual conservatism, exposure to eroticism, perceived sex knowledge, and sexual exposure and assault during childhood and adolescence. Individual items reflecting childhood sex play, masturbation, current religiosity, religiosity while growing up, social class, sources of sex information, sex education in classrooms, and high school and college dating were used. The dependent variable, premarital sociosexual involvement, is a composite measure of incidence and prevalence of premarital heterosexual involvement which meets Guttman scaling criteria. An Automatic Interaction Detector analysis was used to determine the relative influences of reported sexualization variables on premarital sexual behavior. Major findings can be summarized as follows: Heterosexual behavior progresses in stepwise fashion from elementary to advanced levels of involvement

  2. A novel method for determining sex in late term gestational mice based on the external genitalia

    PubMed Central

    Murdaugh, Laura B.; Mendoza-Romero, Haley N.; Fish, Eric W.

    2018-01-01

    In many experiments using fetal mice, it is necessary to determine the sex of the individual fetus. However, other than genotyping for sex-specific genes, there is no convenient, reliable method of sexing mice between gestational day (GD) 16.5 and GD 18.0. We designed a rapid, relatively simple visual method to determine the sex of mouse fetuses in the GD 16.5—GD 18.0 range that can be performed as part of a routine morphological assessment. By examining the genitalia for the presence or absence of key features, raters with minimal experience with the method were able to correctly identify the sex of embryos with 99% accuracy, while raters with no experience were 95% accurate. The critical genital features include: the presence or absence of urethral seam or proximal urethral meatus; the shape of the genitalia, and the presence or absence of an area related to the urethral plate. By comparing these morphological features of the external genitalia, we show a simple, accurate, and fast way to determine the sex of late stage mouse fetuses. Integrating this method into regular morphological assessments will facilitate the determination of sex differences in fetuses between GD 16.5 and GD 18.0. PMID:29617407

  3. Regulation of Sex Determination in Mice by a Non-coding Genomic Region

    PubMed Central

    Arboleda, Valerie A.; Fleming, Alice; Barseghyan, Hayk; Délot, Emmanuèle; Sinsheimer, Janet S.; Vilain, Eric

    2014-01-01

    To identify novel genomic regions that regulate sex determination, we utilized the powerful C57BL/6J-YPOS (B6-YPOS) model of XY sex reversal where mice with autosomes from the B6 strain and a Y chromosome from a wild-derived strain, Mus domesticus poschiavinus (YPOS), show complete sex reversal. In B6-YPOS, the presence of a 55-Mb congenic region on chromosome 11 protects from sex reversal in a dose-dependent manner. Using mouse genetic backcross designs and high-density SNP arrays, we narrowed the congenic region to a 1.62-Mb genomic region on chromosome 11 that confers 80% protection from B6-YPOS sex reversal when one copy is present and complete protection when two copies are present. It was previously believed that the protective congenic region originated from the 129S1/SviMJ (129) strain. However, genomic analysis revealed that this region is not derived from 129 and most likely is derived from the semi-inbred strain POSA. We show that the small 1.62-Mb congenic region that protects against B6-YPOS sex reversal is located within the Sox9 promoter and promotes the expression of Sox9, thereby driving testis development within the B6-YPOS background. Through 30 years of backcrossing, this congenic region was maintained, as it promoted male sex determination and fertility despite the female-promoting B6-YPOS genetic background. Our findings demonstrate that long-range enhancer regions are critical to developmental processes and can be used to identify the complex interplay between genome variants, epigenetics, and developmental gene regulation. PMID:24793290

  4. Incubation history prior to the canonical thermosensitive period determines sex in the American alligator.

    PubMed

    McCoy, Jessica A; Parrott, Benjamin B; Rainwater, Thomas R; Wilkinson, Phillip M; Guillette, Louis J

    2015-10-01

    Despite the widespread occurrence of environmental sex determination (ESD) among vertebrates, our knowledge of the temporal dynamics by which environmental factors act on this process remains limited. In many reptiles, incubation temperature determines sex during a discrete developmental window just prior to and coincident with the differentiation of the gonads. Yet, there is substantial variation in sex ratios among different clutches of eggs incubated at identical temperatures during this period. Here, we test the hypothesis that temperatures experienced prior to the reported thermosensitive period for alligators (Alligator mississippiensis) can impact how the sex determination system responds to thermal cues later in development. Temperature shift experiments on eggs collected from the field within 24  h of oviposition were employed to decouple various maternal influences from thermal effects, and results demonstrate a previously undefined window of thermosensitivity occurring by stage 15 of embryonic development, six stages earlier than previously reported. We also examine the intrasexual expression of several male- and female-biased genes and show that while male-biased genes display no intrasexual differences, ovarian CYP19A1 (aromatase) transcript abundance differs by approximately twofold depending on thermal exposures experienced at early stages of embryonic development. These findings expand our understanding of the ESD in the alligator and provide the rationale for reevaluation of the temporal dynamics of sex determination in other crocodilians. © 2015 Society for Reproduction and Fertility.

  5. A Sex Chromosome piRNA Promotes Robust Dosage Compensation and Sex Determination in C. elegans.

    PubMed

    Tang, Wen; Seth, Meetu; Tu, Shikui; Shen, En-Zhi; Li, Qian; Shirayama, Masaki; Weng, Zhiping; Mello, Craig C

    2018-03-26

    In metazoans, Piwi-related Argonaute proteins engage piRNAs (Piwi-interacting small RNAs) to defend the genome against invasive nucleic acids, such as transposable elements. Yet many organisms-including worms and humans-express thousands of piRNAs that do not target transposons, suggesting that piRNA function extends beyond genome defense. Here, we show that the X chromosome-derived piRNA 21ux-1 downregulates XOL-1 (XO Lethal), a master regulator of X chromosome dosage compensation and sex determination in Caenorhabditis elegans. Mutations in 21ux-1 and several Piwi-pathway components sensitize hermaphrodites to dosage compensation and sex determination defects. We show that the piRNA pathway also targets xol-1 in C. briggsae, a nematode species related to C. elegans. Our findings reveal physiologically important piRNA-mRNA interactions, raising the possibility that piRNAs function broadly to ensure robust gene expression and germline development. Copyright © 2018. Published by Elsevier Inc.

  6. Three loci on mouse chromosome 5 and 10 modulate sex determination in XX Ods/+ mice.

    PubMed

    Poirier, Christophe; Moran, Jennifer L; Kovanci, Ertug; Petit, Deborah C; Beier, David R; Bishop, Colin E

    2007-07-01

    In mouse, XY embryos are committed to the male sex determination pathway after the transient expression of the Y-linked Sry gene in the Sertoli cell lineage between 10.5 and 12.5 dpc. In the C57BL/6J strain, male sex determination program can be modulated by some autosomal genes. The C57BL/6J alleles at these autosomal loci can antagonize male sex determination in combination with specific Sry alleles. In this report, the authors have identified an effect of these C57BL/6J specific alleles in combination with a mutated Sox9 allele, Sox9(Ods). Authors report the mapping of three of these genetic loci on mouse chromosome 5 and 10 in a backcross of the Ods mutation to the C57BL/6J background. Our study confirms the importance of the strain C57BL/6J for the investigation of the genetic mechanisms that control sex determination.

  7. Molecular patterns of sex determination in the animal kingdom: a comparative study of the biology of reproduction

    PubMed Central

    Manolakou, Panagiota; Lavranos, Giagkos; Angelopoulou, Roxani

    2006-01-01

    Determining sexual fate is an integral part of reproduction, used as a means to enrich the genome. A variety of such regulatory mechanisms have been described so far and some of the more extensively studied ones are being discussed. For the insect order of Hymenoptera, the choice lies between uniparental haploid males and biparental diploid females, originating from unfertilized and fertilized eggs accordingly. This mechanism is also known as single-locus complementary sex determination (slCSD). On the other hand, for Dipterans and Drosophila melanogaster, sex is determined by the ratio of X chromosomes to autosomes and the sex switching gene, sxl. Another model organism whose sex depends on the X:A ratio, Caenorhabditis elegans, has furthermore to provide for the brief period of spermatogenesis in hermaphrodites (XX) without the benefit of the "male" genes of the sex determination pathway. Many reptiles have no discernible sex determining genes. Their sexual fate is determined by the temperature of the environment during the thermosensitive period (TSP) of incubation, which regulates aromatase activity. Variable patterns of sex determination apply in fish and amphibians. In birds, while sex chromosomes do exist, females are the heterogametic (ZW) and males the homogametic sex (ZZ). However, we have yet to decipher which of the two (Z or W) is responsible for the choice between males and females. In mammals, sex determination is based on the presence of two identical (XX) or distinct (XY) gonosomes. This is believed to be the result of a lengthy evolutionary process, emerging from a common ancestral autosomal pair. Indeed, X and Y present different levels of homology in various mammals, supporting the argument of a gradual structural differentiation starting around the SRY region. The latter initiates a gene cascade that results in the formation of a male. Regulation of sex steroid production is also a major result of these genetic interactions. Similar

  8. Tribolium castaneum Transformer-2 regulates sex determination and development in both males and females

    PubMed Central

    Shukla, Jayendra Nath; Palli, Subba Reddy

    2014-01-01

    Tribolium castaneum Transformer (TcTra) is essential for female sex determination and maintenance through the regulation of sex-specific splicing of doublesex (dsx) pre-mRNA. In females, TcTra also regulates the sex-specific splicing of its own pre-mRNA to ensure continuous production of functional Tra protein. Transformer protein is absent in males and hence dsx pre-mRNA is spliced in a default mode. The mechanisms by which males inhibit the production of functional Tra protein are not known. Here, we report on functional characterization of transformer-2 (tra-2) gene (an ortholog of Drosophila transformer-2) in T. castaneum. RNA interference-mediated knockdown in the expression of gene coding for tra-2 in female pupae or adults resulted in the production of male-specific isoform of dsx and both female and male isoforms of tra suggesting that Tra-2 is essential for the female-specific splicing of tra and dsx pre-mRNAs. Interestingly, knockdown of tra-2 in males did not affect the splicing of dsx but resulted in the production of both female and male isoforms of tra suggesting that Tra-2 suppresses female-specific splicing of tra pre-mRNA in males. This dual regulation of sex-specific splicing of tra pre-mRNA ensures a tight regulation of sex determination and maintenance. These data suggest a critical role for Tra-2 in suppression of female sex determination cascade in males. In addition, RNAi studies showed that Tra-2 is also required for successful embryonic and larval development in both sexes. PMID:24056158

  9. Evolution of DMY, a newly emergent male sex-determination gene of medaka fish.

    PubMed

    Zhang, Jianzhi

    2004-04-01

    The Japanese medaka fish Oryzias latipes has an XX/XY sex-determination system. The Y-linked sex-determination gene DMY is a duplicate of the autosomal gene DMRT1, which encodes a DM-domain-containing transcriptional factor. DMY appears to have originated recently within Oryzias, allowing a detailed evolutionary study of the initial steps that led to the new gene and new sex-determination system. Here I analyze the publicly available DMRT1 and DMY gene sequences of Oryzias species and report the following findings. First, the synonymous substitution rate in DMY is 1.73 times that in DMRT1, consistent with the male-driven evolution hypothesis. Second, the ratio of the rate of nonsynonymous nucleotide substitution (d(N)) to that of synonymous substitution (d(S)) is significantly higher in DMY than in DMRT1. Third, in DMRT1, the d(N)/d(S) ratio for the DM domain is lower than that for non-DM regions, as expected from the functional importance of the DM domain. But in DMY, the opposite is observed and the DM domain is likely under positive Darwinian selection. Fourth, only one characteristic amino acid distinguishes all DMY sequences from all DMRT1 sequences, suggesting that a single amino acid change may be largely responsible for the establishment of DMY as the male sex-determination gene in medaka fish.

  10. The effects of temperature on sex determination in the bloater Coregonus hoyi: a hypothesis test

    USGS Publications Warehouse

    Eck, Gary W.; Allen, Jeffrey D.

    1995-01-01

    The hypothesis that temperature was an epigamic factor in bloater (Coregonus hoyi) sex determination in Lake Michigan was tested by rearing bloater larvae in the laboratory at 6, 11, and 15 degrees C for the first 80 days after hatching. The percentages of females of fish exposed to the three treatment temperatures did not differ significantly from the expected, 50%. Therefore, the null hypothesis, that temperature did not influence bloater sex determination within the confines of this study, could not be rejected. Our study of bloater sex determination was an attempt to explain the extreme female predominance (> 95%) that occurred in the Lake Michigan bloater population during the 1960s.

  11. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size

    PubMed Central

    Rideout, Elizabeth J.; Narsaiya, Marcus S.; Grewal, Savraj S.

    2015-01-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway. PMID:26710087

  12. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.

    PubMed

    Rideout, Elizabeth J; Narsaiya, Marcus S; Grewal, Savraj S

    2015-12-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.

  13. Size and Content of the Sex-Determining Region of the Y Chromosome in Dioecious Mercurialis annua, a Plant with Homomorphic Sex Chromosomes.

    PubMed

    Veltsos, Paris; Cossard, Guillaume; Beaudoing, Emmanuel; Beydon, Genséric; Savova Bianchi, Dessislava; Roux, Camille; C González-Martínez, Santiago; R Pannell, John

    2018-05-29

    Dioecious plants vary in whether their sex chromosomes are heteromorphic or homomorphic, but even homomorphic sex chromosomes may show divergence between homologues in the non-recombining, sex-determining region (SDR). Very little is known about the SDR of these species, which might represent particularly early stages of sex-chromosome evolution. Here, we assess the size and content of the SDR of the diploid dioecious herb Mercurialis annua , a species with homomorphic sex chromosomes and mild Y-chromosome degeneration. We used RNA sequencing (RNAseq) to identify new Y-linked markers for M. annua. Twelve of 24 transcripts showing male-specific expression in a previous experiment could be amplified by polymerase chain reaction (PCR) only from males, and are thus likely to be Y-linked. Analysis of genome-capture data from multiple populations of M. annua pointed to an additional six male-limited (and thus Y-linked) sequences. We used these markers to identify and sequence 17 sex-linked bacterial artificial chromosomes (BACs), which form 11 groups of non-overlapping sequences, covering a total sequence length of about 1.5 Mb. Content analysis of this region suggests that it is enriched for repeats, has low gene density, and contains few candidate sex-determining genes. The BACs map to a subset of the sex-linked region of the genetic map, which we estimate to be at least 14.5 Mb. This is substantially larger than estimates for other dioecious plants with homomorphic sex chromosomes, both in absolute terms and relative to their genome sizes. Our data provide a rare, high-resolution view of the homomorphic Y chromosome of a dioecious plant.

  14. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex.

    PubMed

    Holleley, Clare E; O'Meally, Denis; Sarre, Stephen D; Marshall Graves, Jennifer A; Ezaz, Tariq; Matsubara, Kazumi; Azad, Bhumika; Zhang, Xiuwen; Georges, Arthur

    2015-07-02

    Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.

  15. Deciphering the link between doubly uniparental inheritance of mtDNA and sex determination in bivalves: Clues from comparative transcriptomics

    USGS Publications Warehouse

    Capt, Charlotte; Renaut, Sébastien; Ghiselli, Fabrizio; Milani, Liliana; Johnson, Nathan A.; Sietman, Bernard E.; Stewart, Donald; Breton, Sophie

    2018-01-01

    Bivalves exhibit an astonishing diversity of sexual systems and sex-determining mechanisms. They can be gonochoric, hermaphroditic or androgenetic, with both genetic and environmental factors known to determine or influence sex. One unique sex-determining system involving the mitochondrial genome has also been hypothesized to exist in bivalves with doubly uniparental inheritance (DUI) of mtDNA. However, the link between DUI and sex determination remains obscure. In this study, we performed a comparative gonad transcriptomics analysis for two DUI-possessing freshwater mussel species to better understand the mechanisms underlying sex determination and DUI in these bivalves. We used a BLAST reciprocal analysis to identify orthologs between Venustaconcha ellipsiformis and Utterbackia peninsularis and compared our results with previously published sex-specific bivalve transcriptomes to identify conserved sex-determining genes. We also compared our data with other DUI species to identify candidate genes possibly involved in the regulation of DUI. A total of ∼12,000 orthologous relationships were found, with 2,583 genes differentially expressed in both species. Among these genes, key sex-determining factors previously reported in vertebrates and in bivalves (e.g., Sry, Dmrt1, Foxl2) were identified, suggesting that some steps of the sex-determination pathway may be deeply conserved in metazoans. Our results also support the hypothesis that a modified ubiquitination mechanism could be responsible for the retention of the paternal mtDNA in male bivalves, and revealed that DNA methylation could also be involved in the regulation of DUI. Globally, our results suggest that sets of genes associated with sex determination and DUI are similar in distantly-related DUI species.

  16. Deciphering the Link between Doubly Uniparental Inheritance of mtDNA and Sex Determination in Bivalves: Clues from Comparative Transcriptomics

    PubMed Central

    Renaut, Sébastien; Milani, Liliana; Johnson, Nathan A; Sietman, Bernard E; Stewart, Donald T

    2018-01-01

    Abstract Bivalves exhibit an astonishing diversity of sexual systems and sex-determining mechanisms. They can be gonochoric, hermaphroditic or androgenetic, with both genetic and environmental factors known to determine or influence sex. One unique sex-determining system involving the mitochondrial genome has also been hypothesized to exist in bivalves with doubly uniparental inheritance (DUI) of mtDNA. However, the link between DUI and sex determination remains obscure. In this study, we performed a comparative gonad transcriptomics analysis for two DUI-possessing freshwater mussel species to better understand the mechanisms underlying sex determination and DUI in these bivalves. We used a BLAST reciprocal analysis to identify orthologs between Venustaconcha ellipsiformis and Utterbackia peninsularis and compared our results with previously published sex-specific bivalve transcriptomes to identify conserved sex-determining genes. We also compared our data with other DUI species to identify candidate genes possibly involved in the regulation of DUI. A total of ∼12,000 orthologous relationships were found, with 2,583 genes differentially expressed in both species. Among these genes, key sex-determining factors previously reported in vertebrates and in bivalves (e.g., Sry, Dmrt1, Foxl2) were identified, suggesting that some steps of the sex-determination pathway may be deeply conserved in metazoans. Our results also support the hypothesis that a modified ubiquitination mechanism could be responsible for the retention of the paternal mtDNA in male bivalves, and revealed that DNA methylation could also be involved in the regulation of DUI. Globally, our results suggest that sets of genes associated with sex determination and DUI are similar in distantly-related DUI species. PMID:29360964

  17. Sex determination from scapular length measurements by CT scans images in a Caucasian population.

    PubMed

    Giurazza, F; Schena, E; Del Vescovo, R; Cazzato, R L; Mortato, L; Saccomandi, P; Paternostro, F; Onofri, L; Zobel, B Beomonte

    2013-01-01

    Together with race, stature and age, sex is a main component of the biological identity. Thanks to its proportional correlation with parts of the human body, sex can be evaluated form the skeleton. The most accurate approach to determine sex by bone size is based on os coxae or skull. After natural disaster their presence can never be guaranteed, therefore the development of methods of sex determination using other skeletal elements can result crucial. Herein, sexual dimorphism in the human scapula is used to develop a two-variable discriminant function for sex estimation. We have enrolled 100 males and 100 females who underwent thoracic CT scan evaluation and we have estimated two scapular diameters. The estimation has been carried out by analyzing images of the scapulae of each patient after three dimensional post-processing reconstructions. The two-variable function allows to obtain an overall accuracy of 88% on the calibration sample. Furthermore, we have employed the mentioned function on a collection of 10 individual test sample from the collection of the "Museo di Anatomia Umana di Firenze" of the Università degli Studi di Firenze; sex has been correctly predicted on 9 skeletons.

  18. The IMD innate immunity pathway of Drosophila influences somatic sex determination via regulation of the Doa locus.

    PubMed

    Zhao, Yunpo; Cocco, Claudia; Domenichini, Severine; Samson, Marie-Laure; Rabinow, Leonard

    2015-11-15

    The IMD pathway induces the innate immune response to infection by gram-negative bacteria. We demonstrate strong female-to-male sex transformations in double mutants of the IMD pathway in combination with Doa alleles. Doa encodes a protein kinase playing a central role in somatic sex determination through its regulation of alternative splicing of dsx transcripts. Transcripts encoding two specific Doa isoforms are reduced in Rel null mutant females, supporting our genetic observations. A role for the IMD pathway in somatic sex determination is further supported by the induction of female-to-male sex transformations by Dredd mutations in sensitized genetic backgrounds. In contrast, mutations in either dorsal or Dif, the two other NF-κB paralogues of Drosophila, display no effects on sex determination, demonstrating the specificity of IMD signaling. Our results reveal a novel role for the innate immune IMD signaling pathway in the regulation of somatic sex determination in addition to its role in response to microbial infection, demonstrating its effects on alternative splicing through induction of a crucial protein kinase. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. QTL Mapping of Sex Determination Loci Supports an Ancient Pathway in Ants and Honey Bees.

    PubMed

    Miyakawa, Misato O; Mikheyev, Alexander S

    2015-11-01

    Sex determination mechanisms play a central role in life-history characteristics, affecting mating systems, sex ratios, inbreeding tolerance, etc. Downstream components of sex determination pathways are highly conserved, but upstream components evolve rapidly. Evolutionary dynamics of sex determination remain poorly understood, particularly because mechanisms appear so diverse. Here we investigate the origins and evolution of complementary sex determination (CSD) in ants and bees. The honey bee has a well-characterized CSD locus, containing tandemly arranged homologs of the transformer gene [complementary sex determiner (csd) and feminizer (fem)]. Such tandem paralogs appear frequently in aculeate hymenopteran genomes. However, only comparative genomic, but not functional, data support a broader role for csd/fem in sex determination, and whether species other than the honey bee use this pathway remains controversial. Here we used a backcross to test whether csd/fem acts as a CSD locus in an ant (Vollenhovia emeryi). After sequencing and assembling the genome, we computed a linkage map, and conducted a quantitative trait locus (QTL) analysis of diploid male production using 68 diploid males and 171 workers. We found two QTLs on separate linkage groups (CsdQTL1 and CsdQTL2) that jointly explained 98.0% of the phenotypic variance. CsdQTL1 included two tandem transformer homologs. These data support the prediction that the same CSD mechanism has indeed been conserved for over 100 million years. CsdQTL2 had no similarity to CsdQTL1 and included a 236-kb region with no obvious CSD gene candidates, making it impossible to conclusively characterize it using our data. The sequence of this locus was conserved in at least one other ant genome that diverged >75 million years ago. By applying QTL analysis to ants for the first time, we support the hypothesis that elements of hymenopteran CSD are ancient, but also show that more remains to be learned about the diversity of CSD

  20. Comparison of cranial sex determination by discriminant analysis and logistic regression.

    PubMed

    Amores-Ampuero, Anabel; Alemán, Inmaculada

    2016-04-05

    Various methods have been proposed for estimating dimorphism. The objective of this study was to compare sex determination results from cranial measurements using discriminant analysis or logistic regression. The study sample comprised 130 individuals (70 males) of known sex, age, and cause of death from San José cemetery in Granada (Spain). Measurements of 19 neurocranial dimensions and 11 splanchnocranial dimensions were subjected to discriminant analysis and logistic regression, and the percentages of correct classification were compared between the sex functions obtained with each method. The discriminant capacity of the selected variables was evaluated with a cross-validation procedure. The percentage accuracy with discriminant analysis was 78.2% for the neurocranium (82.4% in females and 74.6% in males) and 73.7% for the splanchnocranium (79.6% in females and 68.8% in males). These percentages were higher with logistic regression analysis: 85.7% for the neurocranium (in both sexes) and 94.1% for the splanchnocranium (100% in females and 91.7% in males).

  1. Sex determination mode does not affect body or genital development of the central bearded dragon (Pogona vitticeps).

    PubMed

    Whiteley, Sarah L; Holleley, Clare E; Ruscoe, Wendy A; Castelli, Meghan; Whitehead, Darryl L; Lei, Juan; Georges, Arthur; Weisbecker, Vera

    2017-01-01

    The development of male- or female-specific phenotypes in squamates is typically controlled by either temperature-dependent sex determination (TSD) or chromosome-based genetic sex determination (GSD). However, while sex determination is a major switch in individual phenotypic development, it is unknownhow evolutionary transitions between GSD and TSD might impact on the evolution of squamate phenotypes, particularly the fast-evolving and diverse genitalia. Here, we take the unique opportunity of studying the impact of both sex determination mechanisms on the embryological development of the central bearded dragon ( Pogona vitticeps ). This is possible because of the transitional sex determination system of this species, in which genetically male individuals reverse sex at high incubation temperatures. This can trigger the evolutionary transition of GSD to TSD in a single generation, making P. vitticeps an ideal model organism for comparing the effects of both sex determination processes in the same species. We conducted four incubation experiments on 265 P. vitticeps eggs, covering two temperature regimes ("normal" at 28 °C and "sex reversing" at 36 °C) and the two maternal sexual genotypes (concordant ZW females or sex-reversed ZZ females). From this, we provide the first detailed staging system for the species, with a focus on genital and limb development. This was augmented by a new sex chromosome identification methodology for P. vitticeps that is non-destructive to the embryo. We found a strong correlation between embryo age and embryo stage. Aside from faster growth in 36 °C treatments, body and external genital development was entirely unperturbed by temperature, sex reversal or maternal sexual genotype. Unexpectedly, all females developed hemipenes (the genital phenotype of adult male P. vitticeps ), which regress close to hatching. The tight correlation between embryo age and embryo stage allows the precise targeting of specific developmental periods

  2. Efficacy of Sex Determination from Human Dental Pulp Tissue and its Reliability as a Tool in Forensic Dentistry.

    PubMed

    Khanna, Kaveri Surya

    2015-01-01

    Sex determination is one of the primary steps in forensics. Barr body can be used as a histological method for identification of sex as it is found to be specific to female somatic cells and rare in male cells. To demarcate human dental pulp as an important identification tool of sex in forensic odontology (FO) and to evaluate the time period till which sex can be determined from pulp tissue using three stains H and E, Feulgen, and acridine - orange under fluorescence so as. 90 pulp samples (45 males and 45 females) were subjected to Barr body analysis for determination of sex using light and fluorescent microscopy. Barr body was found to be positive for female samples and negative or rare in the male sample (<3%). Barr body from human dental pulp tissue can be used as a successful determinant of sex identification in FO.

  3. Sex determination from the radius and ulna in a modern South African sample.

    PubMed

    Barrier, I L O; L'Abbé, E N

    2008-07-18

    With a large number of unidentified skeletal remains found in South Africa, the development of population specific osteometric standards is imperative. Forensic anthropologists need to have access to a variety of techniques to establish accurate demographic profiles from complete, fragmentary and/or commingled remains. No research has been done on the forearm of African samples, even though these bones have been shown to exhibit sexual dimorphism. The purpose of this paper is to develop discriminant function formulae to determine sex from the radius and ulna in a South African population. The sample consisted of 200 male and 200 female skeletons from the Pretoria Bone (University of Pretoria) and Raymond A. Dart (Witwatersrand University) collections. Sixteen standard anthropometric measurements were taken from the radius (9) and ulna (7) and subjected to stepwise and direct discriminant function analysis. Distal breadth, minimum mid-shaft diameter and maximum head diameter were the best discriminators of sex for the radius, while minimum mid-shaft diameter and olecranon breadth were selected for the ulna. Classification accuracy for the forearm ranged from 76 to 86%. The radius and ulna can be considered moderate discriminators for determining sex in a South African group. However, it is advised that these formulae are used in conjunction with additional methods to determine sex.

  4. Tribolium castaneum Transformer-2 regulates sex determination and development in both males and females.

    PubMed

    Shukla, Jayendra Nath; Palli, Subba Reddy

    2013-12-01

    Tribolium castaneum Transformer (TcTra) is essential for female sex determination and maintenance through the regulation of sex-specific splicing of doublesex (dsx) pre-mRNA. In females, TcTra also regulates the sex-specific splicing of its own pre-mRNA to ensure continuous production of functional Tra protein. Transformer protein is absent in males and hence dsx pre-mRNA is spliced in a default mode. The mechanisms by which males inhibit the production of functional Tra protein are not known. Here, we report on functional characterization of transformer-2 (tra-2) gene (an ortholog of Drosophila transformer-2) in T. castaneum. RNA interference-mediated knockdown in the expression of gene coding for tra-2 in female pupae or adults resulted in the production of male-specific isoform of dsx and both female and male isoforms of tra suggesting that Tra-2 is essential for the female-specific splicing of tra and dsx pre-mRNAs. Interestingly, knockdown of tra-2 in males did not affect the splicing of dsx but resulted in the production of both female and male isoforms of tra suggesting that Tra-2 suppresses female-specific splicing of tra pre-mRNA in males. This dual regulation of sex-specific splicing of tra pre-mRNA ensures a tight regulation of sex determination and maintenance. These data suggest a critical role for Tra-2 in suppression of female sex determination cascade in males. In addition, RNAi studies showed that Tra-2 is also required for successful embryonic and larval development in both sexes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Multilocus Sex Determination Revealed in Two Populations of Gynodioecious Wild Strawberry, Fragaria vesca subsp. bracteata

    PubMed Central

    Ashman, Tia-Lynn; Tennessen, Jacob A.; Dalton, Rebecca M.; Govindarajulu, Rajanikanth; Koski, Matthew H.; Liston, Aaron

    2015-01-01

    Gynodioecy, the coexistence of females and hermaphrodites, occurs in 20% of angiosperm families and often enables transitions between hermaphroditism and dioecy. Clarifying mechanisms of sex determination in gynodioecious species can thus illuminate sexual system evolution. Genetic determination of gynodioecy, however, can be complex and is not fully characterized in any wild species. We used targeted sequence capture to genetically map a novel nuclear contributor to male sterility in a self-pollinated hermaphrodite of Fragaria vesca subsp. bracteata from the southern portion of its range. To understand its interaction with another identified locus and possibly additional loci, we performed crosses within and between two populations separated by 2000 km, phenotyped the progeny and sequenced candidate markers at both sex-determining loci. The newly mapped locus contains a high density of pentatricopeptide repeat genes, a class commonly involved in restoration of fertility caused by cytoplasmic male sterility. Examination of all crosses revealed three unlinked epistatically interacting loci that determine sexual phenotype and vary in frequency between populations. Fragaria vesca subsp. bracteata represents the first wild gynodioecious species with genomic evidence of both cytoplasmic and nuclear genes in sex determination. We propose a model for the interactions between these loci and new hypotheses for the evolution of sex determining chromosomes in the subdioecious and dioecious Fragaria. PMID:26483011

  6. The role of the transformer gene in sex determination and reproduction in the tephritid fruit fly, Bactrocera dorsalis (Hendel)

    USDA-ARS?s Scientific Manuscript database

    Transformer (tra) is a double-switch gene in the somatic sex-determination hierarchy that regulates sexual dimorphism based on RNA splicing in many insects. In tephritids, a Y-linked male determining gene (M) controls sex in the sex-determination pathway. Here, homologues of Drosophila tra and trans...

  7. Determinants of Zambian men's extra-marital sex: a multi-level analysis.

    PubMed

    Benefo, Kofi D

    2008-08-01

    Research interest in extra-marital sex has increased as scholars have become aware of its role in sustaining epidemics of STDs in sub-Saharan Africa and elsewhere. While most research has used the socioeconomic and demographic features of individuals as determinants of extra-marital sexual behavior, this study examined the role played by community characteristics. Using data from the 2003 Zambian Sexual Behavior Survey for a sample of 1,118 men aged 15-59 and multilevel logistic regression techniques, the study analyzed the effects of community social and demographic characteristics on involvement in extra-marital sex while controlling for the men's individual-level characteristics. Men's involvement in extra-marital sex was found to vary with the characteristics of communities. The chances of men's involvement in extra-marital sex increased with community-level ethnic heterogeneity and urbanization, decreased in commercial centers, and in communities with a demographic surplus of males, health workers active in AIDS prevention, and access to the mass media. These results show that scholars trying to understand the motivations for extra-marital sex must pay attention to the characteristics of both individuals and communities.

  8. Deciphering the Link between Doubly Uniparental Inheritance of mtDNA and Sex Determination in Bivalves: Clues from Comparative Transcriptomics.

    PubMed

    Capt, Charlotte; Renaut, Sébastien; Ghiselli, Fabrizio; Milani, Liliana; Johnson, Nathan A; Sietman, Bernard E; Stewart, Donald T; Breton, Sophie

    2018-02-01

    Bivalves exhibit an astonishing diversity of sexual systems and sex-determining mechanisms. They can be gonochoric, hermaphroditic or androgenetic, with both genetic and environmental factors known to determine or influence sex. One unique sex-determining system involving the mitochondrial genome has also been hypothesized to exist in bivalves with doubly uniparental inheritance (DUI) of mtDNA. However, the link between DUI and sex determination remains obscure. In this study, we performed a comparative gonad transcriptomics analysis for two DUI-possessing freshwater mussel species to better understand the mechanisms underlying sex determination and DUI in these bivalves. We used a BLAST reciprocal analysis to identify orthologs between Venustaconcha ellipsiformis and Utterbackia peninsularis and compared our results with previously published sex-specific bivalve transcriptomes to identify conserved sex-determining genes. We also compared our data with other DUI species to identify candidate genes possibly involved in the regulation of DUI. A total of ∼12,000 orthologous relationships were found, with 2,583 genes differentially expressed in both species. Among these genes, key sex-determining factors previously reported in vertebrates and in bivalves (e.g., Sry, Dmrt1, Foxl2) were identified, suggesting that some steps of the sex-determination pathway may be deeply conserved in metazoans. Our results also support the hypothesis that a modified ubiquitination mechanism could be responsible for the retention of the paternal mtDNA in male bivalves, and revealed that DNA methylation could also be involved in the regulation of DUI. Globally, our results suggest that sets of genes associated with sex determination and DUI are similar in distantly-related DUI species. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Di (2-ethylhexyl) phthalate exposure during pregnancy disturbs temporal sex determination regulation in mice offspring.

    PubMed

    Wang, Yongan; Liu, Wei; Yang, Qing; Yu, Mingxi; Zhang, Zhou

    2015-10-02

    Animal researches and clinical studies have supported the relevance between phthalates exposure and testicular dysgenesis syndrome (TDS). These disorders may comprise common origin in fetal life, especially during sex determination and differentiation, where the mechanism remains unclear. The present study evaluated the disturbances in gene regulatory networks of sex determination in fetal mouse by in utero Di (2-ethylhexyl) phthalate (DEHP) exposure. Temporal expression of key sex determination genes were examined during the critical narrow time window, using whole-mount in situ hybridization and quantitative-PCR. DEHP exposure resulted in significant reduction in mRNA of Sry during sex determination from gestation day (GD) 11.0 to 11.5 in male fetal mice, and the increasing of Sry expression to threshold level on GD 11.5 was delayed. Meanwhile, Gadd45g and Gata4, the upstream genes of Sry, and downstream gene Sox9 were also significantly downregulated in expression. In fetal females, the expression of Wnt4 and beta-catenin were up-regulated by DEHP exposure. Taken together, the results suggest that the potential mechanism of gonadal development disorder by DEHP may origin from repression of important male sex determination signaling pathway, involving Gadd45g → Gata4 → Sry → Sox9. The results would promote a better understanding of the association between phthalate esters (PAEs) exposure and the reductive disorder. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Efficacy of Sex Determination from Human Dental Pulp Tissue and its Reliability as a Tool in Forensic Dentistry

    PubMed Central

    Khanna, Kaveri Surya

    2015-01-01

    Background: Sex determination is one of the primary steps in forensics. Barr body can be used as a histological method for identification of sex as it is found to be specific to female somatic cells and rare in male cells. To demarcate human dental pulp as an important identification tool of sex in forensic odontology (FO) and to evaluate the time period till which sex can be determined from pulp tissue using three stains H and E, Feulgen, and acridine - orange under fluorescence so as. Materials and Methods: 90 pulp samples (45 males and 45 females) were subjected to Barr body analysis for determination of sex using light and fluorescent microscopy. Results: Barr body was found to be positive for female samples and negative or rare in the male sample (<3%). Conclusion: Barr body from human dental pulp tissue can be used as a successful determinant of sex identification in FO. PMID:26668474

  11. Fetal sex determination in twin pregnancies using cell free fetal DNA analysis.

    PubMed

    Milan, Miguel; Mateu, Emilia; Blesa, David; Clemente-Ciscar, Monica; Simon, Carlos

    2018-04-23

    We sought to develop an accurate sex classification method in twin pregnancies using data obtained from a standard commercial non-invasive prenatal test. A total of 706 twin pregnancies were included in this retrospective analytical data study. Normalized chromosome values for chromosomes X and Y were used and adapted into a sex-score to predict fetal sex in each fetus, and results were compared with the clinical outcome at birth. Outcome information at birth for sex chromosomes was available for 232 twin pregnancies. From these, a total of 173 twin pregnancies with a Y chromosome identified in non-invasive pregnancy testing were used for the development of a predictive model. Global accuracy for sex classification in the testing set with 51 samples was 0.98 (95% confidence interval [0.90,0.99]), with a specificity and sensitivity of 1 (95% confidence interval [0.82,1.00]) and 0.97 (95% confidence interval [0.84,0.99]), respectively. While non-invasive prenatal testing is a screening method and confirmatory results must be obtained by ultrasound or genetic diagnosis, the sex-score determination presented herein offers an accurate and useful approach to characterizing fetus sex in twin pregnancies in a non-invasive manner early on in pregnancy. © 2018 John Wiley & Sons, Ltd.

  12. Non-invasive fetal sex determination by maternal plasma sequencing and application in X-linked disorder counseling.

    PubMed

    Pan, Xiaoyu; Zhang, Chunlei; Li, Xuchao; Chen, Shengpei; Ge, Huijuan; Zhang, Yanyan; Chen, Fang; Jiang, Hui; Jiang, Fuman; Zhang, Hongyun; Wang, Wei; Zhang, Xiuqing

    2014-12-01

    To develop a fetal sex determination method based on maternal plasma sequencing (MPS), assess its performance and potential use in X-linked disorder counseling. 900 cases of MPS data from a previous study were reviewed, in which 100 and 800 cases were used as training and validation set, respectively. The percentage of uniquely mapped sequencing reads on Y chromosome was calculated and used to classify male and female cases. Eight pregnant women who are carriers of Duchenne muscular dystrophy (DMD) mutations were recruited, whose plasma were subjected to multiplex sequencing and fetal sex determination analysis. In the training set, a sensitivity of 96% and false positive rate of 0% for male cases detection were reached in our method. The blinded validation results showed 421 in 423 male cases and 374 in 377 female cases were successfully identified, revealing sensitivity and specificity of 99.53% and 99.20% for fetal sex determination, at as early as 12 gestational weeks. Fetal sex for all eight DMD genetic counseling cases were correctly identified, which were confirmed by amniocentesis. Based on MPS, high accuracy of non-invasive fetal sex determination can be achieved. This method can potentially be used for prenatal genetic counseling.

  13. Computer-assisted sperm morphometry fluorescence-based analysis has potential to determine progeny sex.

    PubMed

    Santolaria, Pilar; Pauciullo, Alfredo; Silvestre, Miguel A; Vicente-Fiel, Sandra; Villanova, Leyre; Pinton, Alain; Viruel, Juan; Sales, Ester; Yániz, Jesús L

    2016-01-01

    This study was designed to determine the ability of computer-assisted sperm morphometry analysis (CASA-Morph) with fluorescence to discriminate between spermatozoa carrying different sex chromosomes from the nuclear morphometrics generated and different statistical procedures in the bovine species. The study was divided into two experiments. The first was to study the morphometric differences between X- and Y-chromosome-bearing spermatozoa (SX and SY, respectively). Spermatozoa from eight bulls were processed to assess simultaneously the sex chromosome by FISH and sperm morphometry by fluorescence-based CASA-Morph. SX cells were larger than SY cells on average (P < 0.001) although with important differences between bulls. A simultaneous evaluation of all the measured features by discriminant analysis revealed that nuclear area and average fluorescence intensity were the variables selected by stepwise discriminant function analysis as the best discriminators between SX and SY. In the second experiment, the sperm nuclear morphometric results from CASA-Morph in nonsexed (mixed SX and SY) and sexed (SX) semen samples from four bulls were compared. FISH allowed a successful classification of spermatozoa according to their sex chromosome content. X-sexed spermatozoa displayed a larger size and fluorescence intensity than nonsexed spermatozoa (P < 0.05). We conclude that the CASA-Morph fluorescence-based method has the potential to find differences between X- and Y-chromosome-bearing spermatozoa in bovine species although more studies are needed to increase the precision of sex determination by this technique.

  14. Sex determination from the calcaneus in a 20th century Greek population using discriminant function analysis.

    PubMed

    Peckmann, Tanya R; Orr, Kayla; Meek, Susan; Manolis, Sotiris K

    2015-12-01

    The skull and post-cranium have been used for the determination of sex for unknown human remains. However, in forensic cases where skeletal remains often exhibit postmortem damage and taphonomic changes the calcaneus may be used for the determination of sex as it is a preservationally favored bone. The goal of the present research was to derive discriminant function equations from the calcaneus for estimation of sex from a contemporary Greek population. Nine parameters were measured on 198 individuals (103 males and 95 females), ranging in age from 20 to 99 years old, from the University of Athens Human Skeletal Reference Collection. The statistical analyses showed that all variables were sexually dimorphic. Discriminant function score equations were generated for use in sex determination. The average accuracy of sex classification ranged from 70% to 90% for the univariate analysis, 82.9% to 87.5% for the direct method, and 86.2% for the stepwise method. Comparisons to other populations were made. Overall, the cross-validated accuracies ranged from 48.6% to 56.1% with males most often identified correctly and females most often misidentified. The calcaneus was shown to be useful for sex determination in the twentieth century Greek population. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Multilocus Sex Determination Revealed in Two Populations of Gynodioecious Wild Strawberry, Fragaria vesca subsp. bracteata.

    PubMed

    Ashman, Tia-Lynn; Tennessen, Jacob A; Dalton, Rebecca M; Govindarajulu, Rajanikanth; Koski, Matthew H; Liston, Aaron

    2015-10-19

    Gynodioecy, the coexistence of females and hermaphrodites, occurs in 20% of angiosperm families and often enables transitions between hermaphroditism and dioecy. Clarifying mechanisms of sex determination in gynodioecious species can thus illuminate sexual system evolution. Genetic determination of gynodioecy, however, can be complex and is not fully characterized in any wild species. We used targeted sequence capture to genetically map a novel nuclear contributor to male sterility in a self-pollinated hermaphrodite of Fragaria vesca subsp. bracteata from the southern portion of its range. To understand its interaction with another identified locus and possibly additional loci, we performed crosses within and between two populations separated by 2000 km, phenotyped the progeny and sequenced candidate markers at both sex-determining loci. The newly mapped locus contains a high density of pentatricopeptide repeat genes, a class commonly involved in restoration of fertility caused by cytoplasmic male sterility. Examination of all crosses revealed three unlinked epistatically interacting loci that determine sexual phenotype and vary in frequency between populations. Fragaria vesca subsp. bracteata represents the first wild gynodioecious species with genomic evidence of both cytoplasmic and nuclear genes in sex determination. We propose a model for the interactions between these loci and new hypotheses for the evolution of sex determining chromosomes in the subdioecious and dioecious Fragaria. Copyright © 2015 Ashman et al.

  16. Suitability of foramen magnum measurements in sex determination and their clinical significance.

    PubMed

    Tellioglu, A Metin; Durum, Y; Gok, M; Karakas, S; Polat, A G; Karaman, C Z

    2018-01-01

    The foramen magnum provides a transition between fossa cranii posterior and canalis vertebralis. Medulla oblongata, arteria vertebralis and nervus accessorius spinal part pass through the foramen magnum. In this study, we aimed to make the morphometric measurements of the foramen magnum on computed tomography (CT) and to determine the feasibility of sex determination based on these measurements. Besides sex determination, from a clinical aspect, it is important to know the measurements of the foramen magnum in the normal population in terms of diseases characterised by displacement of the posterior fossa structures through foramen magnum to upper cervical spinal canal such as Chiari malformations and syringomyelia. All the data for our study was obtained retrospectively from 100 patients (50 males, 50 females) who had a CT scan of the head and neck region in Adnan Menderes University Hospital, Department of Radiology. To examine the foramen magnum in each and every occipital bone, we measured the foramen magnum's anteroposterior diameter, transverse diameter, the area of the foramen magnum and its circumference. We found that men have a higher average value than women in our study. According to Student's t-test results; in all measured parameters, there is significant difference between the genders (p < 0.05). When multivariate discriminant function test is performed for all four measurements, the discrimination rate is 64% for all women, 70% for all men and 67% for both genders. As a result of our study, the metric data we obtained will be useful in cases where the skeletons' sex could not be determined by any other methods. We believe that, our study may be useful for other studies in determining of sex from foramen magnum. Our measurements could give some information of the normal ranges of the foramen magnum in normal population, so that this can contribute to the diagnosis process of some diseases by imaging. (Folia Morphol 2018; 77, 1: 99-104).

  17. Sex determination of ovine embryos by SRY and amelogenin (AMEL) genes using maternal circulating cell free DNA.

    PubMed

    Saberivand, Adel; Ahsan, Sima

    2016-01-01

    Simple and precise methods for sex determination in animals are a pre-requisite for a number of applications in animal production and forensics. Some of the existing methods depend only on the detection of Y-chromosome specific sequences. However, the detection of Y and X-chromosome specific sequences is advantageous. In the present study the accuracy of sex determination by SRY (sex-determining region Y) and AMEL (Amelogenin) gene detection was assessed using a polymerase chain reaction (PCR) of DNA extracted from free fetal cells in maternal blood, which is noninvasive for fetus and easier to collect. The PCR amplification of SRY primers produced a single band of 171bp from ewes bearing a male fetus, whereas no band was amplified from the DNA extracted from ewes pregnant to a female fetus. Moreover, two bands of 182 and 242bp in male and a single band of 242 in female fetuses were produced by AMEL gene primers in the PCR reaction. Using this technique 100% of samples were successfully sexed, excluding twins. In conclusion, we demonstrated that sex determination using DNA of free fetal cells in maternal plasma is efficient using both SRY and AMEL gene sequences. It also is evident that this method is not suitable for sex determination of twin pregnancies. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Signatures of selection among sex-determining alleles of the honey bee.

    PubMed

    Hasselmann, Martin; Beye, Martin

    2004-04-06

    Patterns of DNA polymorphisms are a primary tool for dissecting signatures of selection; however, the underlying selective forces are poorly understood for most genes. A classical example of diversifying selection is the complementary sex-determining locus that is found in the very large insect order Hymenoptera (bees, wasps, ants, and sawflies). The gene responsible for sex determination, the complementary sex determiner (csd), has been most recently identified in the honey bee. Females are heterozygous at this locus. Males result when there is only one functional allele present, as a result of either homozygosity (fertilized eggs) or, more commonly, hemizygosity (unfertilized eggs). The homozygotes, diploid males, do not reproduce and have zero fitness, which implies positive selection in favor of rare alleles. Large differences in csd cDNA sequences within and between four populations were found that fall into two major groups, types I and II. Type I consists of several allelic lineages that were maintained over an extended period, an indication of balancing selection. Diversifying selection has operated on several confined parts of the protein, as shown by an excess of nonsynonymous differences. Elevated sequence differences indicate another selected part near a repeat region. These findings have general implications about the understanding of both the function of the multiallelic mechanism and the adaptive processes on the level of nucleotide sequences. Moreover, the first csd sequence data are a notable basis for the avoidance of diploid males in bee selection programs by allele-assisted breeding.

  19. Mapping the sex determination locus in the hāpuku (Polyprion oxygeneios) using ddRAD sequencing.

    PubMed

    Brown, Jeremy K; Taggart, John B; Bekaert, Michaël; Wehner, Stefanie; Palaiokostas, Christos; Setiawan, Alvin N; Symonds, Jane E; Penman, David J

    2016-06-10

    Hāpuku (Polyprion oxygeneios) is a member of the wreckfish family (Polyprionidae) and is highly regarded as a food fish. Although adults grow relatively slowly, juveniles exhibit low feed conversion ratios and can reach market size in 1-2 years, making P. oxygeneios a strong candidate for aquaculture. However, they can take over 5 years to reach sexual maturity in captivity and are not externally sexually dimorphic, complicating many aspects of broodstock management. Understanding the sex determination system of P. oxygeneios and developing accurate assays to assign genetic sex will contribute significantly towards its full-scale commercialisation. DNA from parents and sexed offspring (n = 57) from a single family of captive bred P. oxygeneios was used as a template for double digestion Restriction-site Associated DNA (ddRAD) sequencing. Two libraries were constructed using SbfI - SphI and SbfI - NcoI restriction enzyme combinations, respectively. Two runs on an Illumina MiSeq platform generated 70,266,464 raw reads, identifying 19,669 RAD loci. A combined sex linkage map (1367 cM) was constructed based on 1575 Single Nucleotide Polymorphism (SNP) markers that resolved into 35 linkage groups. Sex-specific linkage maps were of similar size (1132 and 1168 cM for male and female maps respectively). A single major sex-determining locus, found to be heterogametic in males, was mapped to linkage group 14. Several markers were found to be in strong linkage disequilibrium with the sex-determining locus. Allele-specific PCR assays were developed for two of these markers, SphI6331 and SphI8298, and demonstrated to accurately differentiate sex in progeny within the same pedigree. Comparative genomic analyses indicated that many of the linkage groups within the P. oxygeneios map share a relatively high degree of homology with those published for the European seabass (Dicentrarchus labrax). P. oxygeneios has an XX/XY sex determination system. Evaluation of allele

  20. MYB transcription factor gene involved in sex determination in Asparagus officinalis.

    PubMed

    Murase, Kohji; Shigenobu, Shuji; Fujii, Sota; Ueda, Kazuki; Murata, Takanori; Sakamoto, Ai; Wada, Yuko; Yamaguchi, Katsushi; Osakabe, Yuriko; Osakabe, Keishi; Kanno, Akira; Ozaki, Yukio; Takayama, Seiji

    2017-01-01

    Dioecy is a plant mating system in which individuals of a species are either male or female. Although many flowering plants evolved independently from hermaphroditism to dioecy, the molecular mechanism underlying this transition remains largely unknown. Sex determination in the dioecious plant Asparagus officinalis is controlled by X and Y chromosomes; the male and female karyotypes are XY and XX, respectively. Transcriptome analysis of A. officinalis buds showed that a MYB-like gene, Male Specific Expression 1 (MSE1), is specifically expressed in males. MSE1 exhibits tight linkage with the Y chromosome, specific expression in early anther development and loss of function on the X chromosome. Knockout of the MSE1 orthologue in Arabidopsis induces male sterility. Thus, MSE1 acts in sex determination in A. officinalis. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  1. Advances in sex determination in bats and its utility in wind-wildlife studies.

    PubMed

    Korstian, J M; Hale, A M; Bennett, V J; Williams, D A

    2013-09-01

    We developed a simple and reliable genetic method to determine sex in bats from the Vespertilionidae and Molossidae families. Polymerase chain reaction was used to amplify a portion of the introns within the zinc-finger-X (Zfx) and zinc-finger-Y (Zfy) genes. We designed primers to produce size variation between the Zfx and Zfy products that could be visualized using gel electrophoresis. Using an example from our wind-wildlife research, we show how sex data generated using this method are superior to sex data based on external morphology. Our method allows for the generation of sex data across a wide range of bats that can be used to address key questions in wildlife forensics, behavioural ecology, conservation and evolutionary biology. © 2013 John Wiley & Sons Ltd.

  2. A Novel Candidate Gene for Temperature-Dependent Sex Determination in the Common Snapping Turtle.

    PubMed

    Schroeder, Anthony L; Metzger, Kelsey J; Miller, Alexandra; Rhen, Turk

    2016-05-01

    Temperature-dependent sex determination (TSD) was described nearly 50 years ago. Researchers have since identified many genes that display differential expression at male- vs. female-producing temperatures. Yet, it is unclear whether these genes (1) are involved in sex determination per se, (2) are downstream effectors involved in differentiation of ovaries and testes, or (3) are thermo-sensitive but unrelated to gonad development. Here we present multiple lines of evidence linking CIRBP to sex determination in the snapping turtle, Chelydra serpentina We demonstrate significant associations between a single nucleotide polymorphism (SNP) (c63A > C) in CIRBP, transcript levels in embryonic gonads during specification of gonad fate, and sex in hatchlings from a thermal regime that produces mixed sex ratios. The A allele was induced in embryos exposed to a female-producing temperature, while expression of the C allele did not differ between female- and male-producing temperatures. In accord with this pattern of temperature-dependent, allele-specific expression, AA homozygotes were more likely to develop ovaries than AC heterozygotes, which, in turn, were more likely to develop ovaries than CC homozygotes. Multiple regression using SNPs in CIRBP and adjacent loci suggests that c63A > C may be the causal variant or closely linked to it. Differences in CIRBP allele frequencies among turtles from northern Minnesota, southern Minnesota, and Texas reflect small and large-scale latitudinal differences in TSD pattern. Finally, analysis of CIRBP protein localization reveals that CIRBP is in a position to mediate temperature effects on the developing gonads. Together, these studies strongly suggest that CIRBP is involved in determining the fate of the bipotential gonad. Copyright © 2016 by the Genetics Society of America.

  3. A Novel Candidate Gene for Temperature-Dependent Sex Determination in the Common Snapping Turtle

    PubMed Central

    Schroeder, Anthony L.; Metzger, Kelsey J.; Miller, Alexandra; Rhen, Turk

    2016-01-01

    Temperature-dependent sex determination (TSD) was described nearly 50 years ago. Researchers have since identified many genes that display differential expression at male- vs. female-producing temperatures. Yet, it is unclear whether these genes (1) are involved in sex determination per se, (2) are downstream effectors involved in differentiation of ovaries and testes, or (3) are thermo-sensitive but unrelated to gonad development. Here we present multiple lines of evidence linking CIRBP to sex determination in the snapping turtle, Chelydra serpentina. We demonstrate significant associations between a single nucleotide polymorphism (SNP) (c63A > C) in CIRBP, transcript levels in embryonic gonads during specification of gonad fate, and sex in hatchlings from a thermal regime that produces mixed sex ratios. The A allele was induced in embryos exposed to a female-producing temperature, while expression of the C allele did not differ between female- and male-producing temperatures. In accord with this pattern of temperature-dependent, allele-specific expression, AA homozygotes were more likely to develop ovaries than AC heterozygotes, which, in turn, were more likely to develop ovaries than CC homozygotes. Multiple regression using SNPs in CIRBP and adjacent loci suggests that c63A > C may be the causal variant or closely linked to it. Differences in CIRBP allele frequencies among turtles from northern Minnesota, southern Minnesota, and Texas reflect small and large-scale latitudinal differences in TSD pattern. Finally, analysis of CIRBP protein localization reveals that CIRBP is in a position to mediate temperature effects on the developing gonads. Together, these studies strongly suggest that CIRBP is involved in determining the fate of the bipotential gonad. PMID:26936926

  4. Linking physiological approaches to marine vertebrate conservation: using sex steroid hormone determinations in demographic assessments

    PubMed Central

    Labrada-Martagón, Vanessa; Zenteno-Savín, Tania; Mangel, Marc

    2014-01-01

    Sex, age and sexual maturation are key biological parameters for aspects of life history and are fundamental information for assessing demographic changes and the reproductive viability and performance of natural populations under exploitation pressures or in response to environmental influences. Much of the information available on the reproductive condition, length at sexual maturity and sex determinations of endangered species has been derived from direct examination of the gonads in dead animals, either intentionally or incidentally caught, or from stranded individuals. However, morphological data, when used alone, do not provide accurate demographic information in sexually monomorphic marine vertebrate species (e.g. sharks, sea turtles, seabirds and cetaceans). Hormone determination is an accurate and non-destructive method that provides indirect information about sex, reproductive condition and sexual maturity of free-ranging individuals. Correlations between sex steroid concentrations and biochemical parameters, gonadal development and state, reproductive behaviour and secondary external features have been already demonstrated in many species. Different non-lethal approaches (e.g. surgical and mark–recapture procedures), with intrinsic advantages and disadvantages when applied on free-ranging organisms, have been proposed to asses sex, growth and reproductive condition. Hormone determination from blood samples will generate valuable additional demographic information needed for stock assessment and biological conservation. PMID:27293619

  5. Temperature-dependent sex determination modulates cardiovascular maturation in embryonic snapping turtles Chelydra serpentina.

    PubMed

    Alvine, Travis; Rhen, Turk; Crossley, Dane A

    2013-03-01

    We investigated sex differences in cardiovascular maturation in embryos of the snapping turtle Chelydra serpentina, a species with temperature-dependent sex determination. One group of eggs was incubated at 26.5°C to produce males. Another group of eggs was incubated at 26.5°C until embryos reached stage 17; eggs were then shifted to 31°C for 6 days to produce females, and returned to 26.5°C for the rest of embryogenesis. Thus, males and females were at the same temperature when autonomic tone was determined and for most of development. Cholinergic blockade increased resting blood pressure (P(m)) and heart rate (f(H)) in both sexes at 75% and 90% of incubation. However, the magnitude of the f(H) response was enhanced in males compared with females at 90% of incubation. β-adrenergic blockade increased P(m) at 75% of incubation in both sexes but had no effect at 90% of incubation. β-adrenergic blockade reduced f(H) at both time points but produced a stronger response at 90% versus 75% of incubation. We found that α-adrenergic blockade decreased P(m) in both sexes at 75% and 90% of incubation and decreased f(H) at 75% of incubation in both sexes. At 90% of incubation, f(H) decreased in females but not males. Although these data clearly demonstrate sexual dimorphism in the autonomic regulation of cardiovascular physiology in embryos, further studies are needed to test whether differences are caused by endocrine signals from gonads or by a hormone-independent temperature effect.

  6. Methyl farnesoate synthesis is necessary for the environmental sex determination in the water flea Daphnia pulex.

    PubMed

    Toyota, Kenji; Miyakawa, Hitoshi; Hiruta, Chizue; Furuta, Kenjiro; Ogino, Yukiko; Shinoda, Tetsuro; Tatarazako, Norihisa; Miyagawa, Shinichi; Shaw, Joseph R; Iguchi, Taisen

    2015-09-01

    Sex-determination systems can be divided into two groups: genotypic sex determination (GSD) and environmental sex determination (ESD). ESD is an adaptive life-history strategy that allows control of sex in response to environmental cues in order to optimize fitness. However, the molecular basis of ESD remains largely unknown. The micro crustacean Daphnia pulex exhibits ESD in response to various external stimuli. Although methyl farnesoate (MF: putative juvenile hormone, JH, in daphnids) has been reported to induce male production in daphnids, the role of MF as a sex-determining factor remains elusive due to the lack of a suitable model system for its study. Here, we establish such a system for ESD studies in D. pulex. The WTN6 strain switches from producing females to producing males in response to the shortened day condition, while the MFP strain only produces females, irrespective of day-length. To clarify whether MF has a novel physiological role as a sex-determining factor in D. pulex, we demonstrate that a MF/JH biosynthesis inhibitor suppressed male production in WTN6 strain reared under the male-inducible condition, shortened day-length. Moreover, we show that juvenile hormone acid O-methyltransferase (JHAMT), a critical enzyme of MF/JH biosynthesis, displays MF-generating activity by catalyzing farnesoic acid. Expression of the JHAMT gene increased significantly just before the MF-sensitive period for male production in the WTN6 strain, but not in the MFP strain, when maintained under male-inducible conditions. These results suggest that MF synthesis regulated by JHAMT is necessary for male offspring production in D. pulex. Our findings provide novel insights into the genetic underpinnings of ESD and they begin to shed light on the physiological function of MF as a male-fate determiner in D. pulex. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Three-hour analysis of non-invasive foetal sex determination: application of Plexor chemistry.

    PubMed

    Pietropolli, Adalgisa; Capogna, Maria Vittoria; Cascella, Raffaella; Germani, Chiara; Bruno, Valentina; Strafella, Claudia; Sarta, Simona; Ticconi, Carlo; Marmo, Giusy; Gallaro, Sara; Longo, Giuliana; Marsella, Luigi Tonino; Novelli, Antonio; Novelli, Giuseppe; Piccione, Emilio; Giardina, Emiliano

    2016-04-04

    The knowledge of the individual genetic "status" in the prenatal era is particularly relevant in the case of positive family history for genetic diseases, in advanced maternal age and in the general screening for foetal abnormalities. In this context, here, we report an innovative molecular assay which utilizes the cell-free foetal DNA (cffDNA) as a source for the early and fast detection of the foetal sex. The study involved 132 pregnant women in their first 3 months of pregnancy, who agreed to give a blood sample. All the collected samples were immediately subjected to the separation of the plasma, which was utilized for the extraction of the cffDNA. Successively, the extracted cffDNA was analysed by a quantitative PCR (qPCR) method based on Plexor-HY chemistry, which is able to simultaneously identify, quantify and discriminate the autosomal DNA from the sex-linked DNA. Overall, the Plexor-HY assay demonstrated to be sensitive and specific for the determination of low-template DNA, such as the cffDNA. In fact, the Plexor-HY assay has been successfully performed in all the samples, identifying 70 males and 62 females. As the foetal sex can be provided in 120 min just by utilizing a maternal blood sample as cffDNA source, the assay represents a very fast, safe and non-invasive prenatal method. The possibility of determining the foetal sex in the early prenatal life consents the application of our assay as a helpful screening test for subjects and families at risk of sex-linked disorders. Moreover, the early knowledge of the foetal sex may be of great help even for the specialist, who might promptly advise the patients concerning the foetal risk of inheriting sex-linked disorders and the clinical utility of performing an invasive prenatal diagnosis.

  8. Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22.

    PubMed

    Sharma, Akash; Heinze, Svenia D; Wu, Yanli; Kohlbrenner, Tea; Morilla, Ian; Brunner, Claudia; Wimmer, Ernst A; van de Zande, Louis; Robinson, Mark D; Beukeboom, Leo W; Bopp, Daniel

    2017-05-12

    Across species, animals have diverse sex determination pathways, each consisting of a hierarchical cascade of genes and its associated regulatory mechanism. Houseflies have a distinctive polymorphic sex determination system in which a dominant male determiner, the M-factor, can reside on any of the chromosomes. We identified a gene, Musca domestica male determiner ( Mdmd ), as the M-factor. Mdmd originated from a duplication of the spliceosomal factor gene CWC22 ( nucampholin ). Targeted Mdmd disruption results in complete sex reversal to fertile females because of a shift from male to female expression of the downstream genes transformer and doublesex The presence of Mdmd on different chromosomes indicates that Mdmd translocated to different genomic sites. Thus, an instructive signal in sex determination can arise by duplication and neofunctionalization of an essential splicing regulator. Copyright © 2017, American Association for the Advancement of Science.

  9. A Duplicated, Truncated amh Gene Is Involved in Male Sex Determination in an Old World Silverside.

    PubMed

    Bej, Dilip Kumar; Miyoshi, Kaho; Hattori, Ricardo S; Strüssmann, Carlos A; Yamamoto, Yoji

    2017-08-07

    A master sex-determining gene, the Y chromosome-linked anti-Müllerian hormone ( amhy ) gene, has been described in two New World atheriniform species but little is known on the distribution, evolution, and function(s) of this gene in other Atheriniformes. Interestingly, amhy has been found to coexist with temperature-dependent sex determination (TSD), providing a unique opportunity to explore the interplay between genotypic and environmental sex determination. In this study, the search for an amhy homolog was extended to an Old World atheriniform, the cobaltcap silverside Hypoatherina tsurugae (Atherinidae). The full sequences, including the coding and noncoding regions, of the autosomal amh ( amha ) and a putative amhy were obtained. The deduced Amha and Amhy proteins comprised 511 and 340 amino acids (aa), respectively. PCR analysis with genomic DNA from wild adults and from laboratory-reared juveniles revealed a high, but not complete association of ∼95% between amhy and maleness. The spatiotemporal expression of amhy and amha during gonadal sex differentiation was analyzed by qRT-PCR and in situ hybridization (ISH). amhy transcription (in amhy -positive larvae) started before and peaked during histological differentiation of the gonads whereas amha was negligible during the same period in both genotypes. These results demonstrate that the amhy , although with some structural differences in relation to the amhy of some New World atheriniforms, is strongly associated with maleness and probably important for testicular development in this Old World atheriniform. Thus, amhy is a candidate sex determination gene in cobaltcap silverside and it will be key to scrutinize the mechanism of sex determination in this species. Copyright © 2017 Bej et al.

  10. Maternal provision of transformer-2 is required for female development and embryo viability in the wasp Nasonia vitripennis.

    PubMed

    Geuverink, Elzemiek; Rensink, Anna H; Rondeel, Inge; Beukeboom, Leo W; van de Zande, Louis; Verhulst, Eveline C

    2017-11-01

    In insect sex determination a primary signal starts the genetic sex determination cascade that, in most insect orders, is subsequently transduced down the cascade by a transformer (tra) ortholog. Only a female-specifically spliced tra mRNA yields a functional TRA-protein that forms a complex with TRA2, encoded by a transformer-2 (tra2) ortholog, to act as a sex specific splicing regulator of the downstream transcription factors doublesex (dsx) and fruitless (fru). Here, we identify the tra2 ortholog of the haplodiploid parasitoid wasp N. vitripennis (Nv-tra2) and confirm its function in N. vitripennis sex determination. Knock down of Nv-tra2 by parental RNA interference (pRNAi) results in complete sex reversal of diploid offspring from female to male, indicating the requirement of Nv-tra2 for female sex determination. As Nv-tra2 pRNAi leads to frequent lethality in early developmental stages, maternal provision of Nv-tra2 transcripts is apparently also required for another, non-sex determining function during embryogenesis. In addition, lethality following Nv-tra2 pRNAi appears more pronounced in diploid than in haploid offspring. This diploid lethal effect was also observed following Nv-tra pRNAi, which served as a positive control in our experiments. As diploid embryos from fertilized eggs have a paternal chromosome set in addition to the maternal one, this suggests that either the presence of this paternal chromosome set or the dosage effect resulting from the diploid state is incompatible with the induced male development in N. vitripennis caused by either Nv-tra2 or Nv-tra pRNAi. The role of Nv-tra2 in activating the female sex determination pathway yields more insight into the sex determination mechanism of Nasonia. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Role of P-450 aromatase in sex determination of the diamondback terrapin, Malaclemys terrapin.

    PubMed

    Jeyasuria, P; Roosenburg, W M; Place, A R

    1994-09-15

    Sex determination in the diamondback terrapin, Malaclemys terrapin, is temperature-dependent. Eggs incubated at 31 degrees C, and above, hatch in approximately 45 days as females. Eggs incubated below 27 degrees C hatch in about 60 days as males. Sex is not reversible after hatching. Nest temperatures in the wild can be as low as 20 degrees C and as high as 37 degrees C with as much as a 10 degrees C diel cycle. The shortest incubation time measured in nature was 56 days and the longest approaching 120 days. Nests in our study site produced predominantly (> 95%) male hatchlings. Treatment of developing embryos with estrogen produces females at male producing temperatures while treatment with fadrozole (a nonsteroidal aromatase inhibitor) induces partial male-like gonads. Treatment with a steroidal aromatase inhibitor (4-hydroxyandrostenedione, 4-OHA) had no effect on sex determination. Both fadrozole and 4-OHA are potent competitive inhibitors (Ki approximately 40-50 nM) for terrapin in vitro aromatase activity. These findings are consistent with aromatase expression being a key step in sex determination of terrapins. We have cloned a partial single copy P-450 aromatase from the terrapin using a cDNA library constructed from ovarian mRNA. This partial clone is highly homologous to other vertebrate aromatases.

  12. Determinants of condom breakage among female sex workers in Karnataka, India.

    PubMed

    Bradley, Janet; Rajaram, S; Alary, Michel; Isac, Shajy; Washington, Reynold; Moses, Stephen; Ramesh, B M

    2011-12-29

    Condoms are effective in preventing the transmission of HIV and other sexually transmitted infections, when properly used. However, recent data from surveys of female sex workers (FSWs) in Karnataka in south India, suggest that condom breakage rates may be quite high. It is important therefore to quantify condom breakage rates, and examine what factors might precipitate condom breakage, so that programmers can identify those at risk, and develop appropriate interventions. We explored determinants of reported condom breakage in the previous month among 1,928 female sex workers in four districts of Karnataka using data from cross-sectional surveys undertaken from July 2008 to February 2009. Using stepwise multivariate logistic regression, we examined the possible determinants of condom breakage, controlling for several independent variables including the district and client load. Overall, 11.4% of FSWs reported at least one condom break in the previous month. FSWs were much more likely to report breakage if under 20 years of age (AOR 3.43, p = 0.005); if divorced/ separated/widowed (AOR 1.52, p = 0.012); if they were regular alcohol users (AOR 1.63, p = 0.005); if they mostly entertained clients in lodges/rented rooms (AOR 2.99, p = 0.029) or brothels (AOR 4.77, p = 0.003), compared to street based sex workers; if they had ever had anal sex (AOR 2.03, p = 0.006); if the sex worker herself (as opposed to the client) applied the condom at last use (AOR 1.90, p < 0.001); if they were inconsistent condom users (AOR 2.77, p < 0.001); and if they had never seen a condom demonstration (AOR 2.37, p < 0.001). The reported incidence of condom breakage was high in this study, and this is a major concern for HIV/STI prevention programs, for which condom use is a key prevention tool. Younger and more marginalized female sex workers were most vulnerable to condom breakage. Special effort is therefore required to seek out such women and to provide information and skills on correct

  13. Determinants of condom breakage among female sex workers in Karnataka, India

    PubMed Central

    2011-01-01

    Background Condoms are effective in preventing the transmission of HIV and other sexually transmitted infections, when properly used. However, recent data from surveys of female sex workers (FSWs) in Karnataka in south India, suggest that condom breakage rates may be quite high. It is important therefore to quantify condom breakage rates, and examine what factors might precipitate condom breakage, so that programmers can identify those at risk, and develop appropriate interventions. Methods We explored determinants of reported condom breakage in the previous month among 1,928 female sex workers in four districts of Karnataka using data from cross-sectional surveys undertaken from July 2008 to February 2009. Using stepwise multivariate logistic regression, we examined the possible determinants of condom breakage, controlling for several independent variables including the district and client load. Results Overall, 11.4% of FSWs reported at least one condom break in the previous month. FSWs were much more likely to report breakage if under 20 years of age (AOR 3.43, p = 0.005); if divorced/ separated/widowed (AOR 1.52, p = 0.012); if they were regular alcohol users (AOR 1.63, p = 0.005); if they mostly entertained clients in lodges/rented rooms (AOR 2.99, p = 0.029) or brothels (AOR 4.77, p = 0.003), compared to street based sex workers; if they had ever had anal sex (AOR 2.03, p = 0.006); if the sex worker herself (as opposed to the client) applied the condom at last use (AOR 1.90, p < 0.001); if they were inconsistent condom users (AOR 2.77, p < 0.001); and if they had never seen a condom demonstration (AOR 2.37, p < 0.001). Conclusions The reported incidence of condom breakage was high in this study, and this is a major concern for HIV/STI prevention programs, for which condom use is a key prevention tool. Younger and more marginalized female sex workers were most vulnerable to condom breakage. Special effort is therefore required to seek out such women and to

  14. Sexy transgenes: the impact of gene transfer and gene inactivation technologies on the understanding of mammalian sex determination.

    PubMed

    Vaiman, Daniel

    2003-06-01

    Amongst the various developmental pathways ending in a sound mammal, sex determination presents the peculiarity of a choice between two equally viable options: female or male. Therefore, destroying a 'male-determining gene' or a 'female-determining gene' should generally not be lethal. Genetic sex determination is divided into two consecutive steps: construction of the bipotential gonad, and then sex determination per se. The genes involved in the first step are in fact involved in the development of various body compartments, and their mutation is generally far from innocuous. From transgenic and inactivation studies carried out on the laboratory mouse, a complete picture of the two steps is beginning to emerge, where the gonad itself and the necessary ducts are shown to evolve in a very coordinate way, with well-defined sex-specificities. Compared with testis determination, the ovarian side of the picture is still relatively empty, but this situation can change rapidly as candidate ovarian genes for inactivation studies are beginning to be identified.

  15. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators.

    PubMed

    Herpin, Amaury; Schartl, Manfred

    2015-10-01

    Sexual dimorphism is one of the most pervasive and diverse features of animal morphology, physiology, and behavior. Despite the generality of the phenomenon itself, the mechanisms controlling how sex is determined differ considerably among various organismic groups, have evolved repeatedly and independently, and the underlying molecular pathways can change quickly during evolution. Even within closely related groups of organisms for which the development of gonads on the morphological, histological, and cell biological level is undistinguishable, the molecular control and the regulation of the factors involved in sex determination and gonad differentiation can be substantially different. The biological meaning of the high molecular plasticity of an otherwise common developmental program is unknown. While comparative studies suggest that the downstream effectors of sex-determining pathways tend to be more stable than the triggering mechanisms at the top, it is still unclear how conserved the downstream networks are and how all components work together. After many years of stasis, when the molecular basis of sex determination was amenable only in the few classical model organisms (fly, worm, mouse), recently, sex-determining genes from several animal species have been identified and new studies have elucidated some novel regulatory interactions and biological functions of the downstream network, particularly in vertebrates. These data have considerably changed our classical perception of a simple linear developmental cascade that makes the decision for the embryo to develop as male or female, and how it evolves. © 2015 The Authors.

  16. Transcriptome analysis identifies genes involved in sex determination and development of Xenopus laevis gonads.

    PubMed

    Piprek, Rafal P; Damulewicz, Milena; Kloc, Malgorzata; Kubiak, Jacek Z

    Development of the gonads is a complex process, which starts with a period of undifferentiated, bipotential gonads. During this period the expression of sex-determining genes is initiated. Sex determination is a process triggering differentiation of the gonads into the testis or ovary. Sex determination period is followed by sexual differentiation, i.e. appearance of the first testis- and ovary-specific features. In Xenopus laevis W-linked DM-domain gene (DM-W) had been described as a master determinant of the gonadal female sex. However, the data on the expression and function of other genes participating in gonad development in X. laevis, and in anurans, in general, are very limited. We applied microarray technique to analyze the expression pattern of a subset of X. laevis genes previously identified to be involved in gonad development in several vertebrate species. We also analyzed the localization and the expression level of proteins encoded by these genes in developing X. laevis gonads. These analyses pointed to the set of genes differentially expressed in developing testes and ovaries. Gata4, Sox9, Dmrt1, Amh, Fgf9, Ptgds, Pdgf, Fshr, and Cyp17a1 expression was upregulated in developing testes, while DM-W, Fst, Foxl2, and Cyp19a1 were upregulated in developing ovaries. We discuss the possible roles of these genes in development of X. laevis gonads. Copyright © 2018 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  17. Sex determination from chest measurements in a sample of Egyptian adults using Multislice Computed Tomography.

    PubMed

    Darwish, Ragaa T; Abdel-Aziz, Manal H; El Nekiedy, Abdel-Aziz M; Sobh, Zahraa K

    2017-11-01

    In forensic sciences to determine one's sex is quite important during the identity defining stage. The reliability of sex determination depends on the completeness of the remains and the degree of sexual dimorphism inherent in the population. Computed Tomography is the imaging modality of choice for two- and three-dimensional documentation and analysis of many autopsy findings. The aim of the present work was to assess the reliability of Three-dimensional Multislice Computed Tomography (3D MSCT) to determine sexual dimorphism from certain chest measurements; sternum and fourth rib using the 3D MSCT and to develop equations for sex determination from these bones among adult Egyptians sample. The present study was performed on 60 adult Egyptians. Their age ranged from 21 up to 74 years and they were equally divided between both sexes. Sixty virtual chests (reconstructed Multislice Computed Tomography 3D images) were examined for detection of Sternal measurements; Manubrium length (ML), Sternal body length (BL), Manubrium width (MW), Sternal body widths(BWa&BWb), Sternal area (SA) [(ML + BL) × (MW + BWa + BWb)/3]and Fourth rib width (FRW). All the studied measurements were significantly higher in males than in females. Multiple regression analysis was used to and three significant regression equations were developed for predicting sex using the different studied chest measurements; the sternal measurements, the sternal area and the widths of the right and left fourth ribs with their accuracies 96.67%.95.0%.72.68% respectively. Sterunm and fourth rib width revealed significant metric sex differences with the use of Multislice Computed Tomography 3D images thus provide a great advantage in the analysis of skeletal remains and badly decomposed bodies. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  18. Amh and Dmrta2 genes map to tilapia (Oreochromis spp.) linkage group 23 within quantitative trait locus regions for sex determination.

    PubMed

    Shirak, Andrey; Seroussi, Eyal; Cnaani, Avner; Howe, Aimee E; Domokhovsky, Raisa; Zilberman, Noam; Kocher, Thomas D; Hulata, Gideon; Ron, Micha

    2006-11-01

    Recent studies have revealed that the major genes of the mammalian sex determination pathway are also involved in sex determination of fish. Several studies have reported QTL in various species and strains of tilapia, regions contributing to sex determination have been identified on linkage groups 1, 3, and 23. Genes contributing to sex-specific mortality have been detected on linkage groups 2, 6, and 23. To test whether the same genes might control sex determination in mammals and fishes, we mapped 11 genes that are considered putative master key regulators of sex determination: Amh, Cyp19, Dax1, Dmrt2, Dmrta2, Fhl3l, Foxl2, Ixl, Lhx9, Sf1, and Sox8. We identified polymorphisms in noncoding regions of these genes and genotyped these sites for 90 individuals of an F2 mapping family. Mapping of Dax1 joined LG16 and LG21 into a single linkage group. The Amh and Dmrta2 genes were mapped to two distinct regions of LG23. The Amh gene was mapped 5 cM from UNH879 within a QTL region for sex determination and 2 cM from UNH216 within a QTL region for sex-specific mortality. Dmrta2 was mapped 4 cM from UNH848 within another QTL region for sex determination. Cyp19 was mapped to LG1 far from a previously reported QTL region for sex determination on this chromosome. Seven other candidate genes mapped to LG4, -11, -12, -14, and -17.

  19. Female-Bias in a Long-Term Study of a Species with Temperature-Dependent Sex Determination: Monitoring Sex Ratios for Climate Change Research

    PubMed Central

    Braun McNeill, Joanne; Avens, Larisa; Goodman Hall, April; Goshe, Lisa R.; Harms, Craig A.; Owens, David W.

    2016-01-01

    Alterations have occurred and continue to manifest in the Earth’s biota as a result of climate change. Animals exhibiting temperature dependent sex determination (TSD), including sea turtles, are perhaps most vulnerable to a warming of the Earth as highly skewed sex ratios can result, potentially leading to population extinction resulting from decreased male recruitment. Recent studies have begun to quantify climate change impacts to sea turtle populations, especially in terms of predicting effects on hatchling sex ratios. However, given the inherent difficulty in studying sex ratios at this life stage, a more accurate assessment of changes in population sex ratios might be derived by evaluating the juvenile portion of foraging aggregations. We investigated the long-term trend in sex ratio of a juvenile loggerhead (Caretta caretta) sea turtle population inhabiting Pamlico and Core Sounds, North Carolina, USA. We used plasma testosterone reference ranges measured using radioimmunoassay (RIA) to assign sex for 959 turtles and confirmed sex assignment of a subset (N = 58) of the sampled turtles through laparoscopic examination of their gonads. Our results demonstrate that for this particular population of loggerheads, sex ratios (3Females:1Male) had not significantly changed over a 10 year period (1998–2007), nor showed any significant difference among 5-cm straight carapace length (SCL) size classes. Ultimately, these findings provide a basis for comparison with future sex ratios, and highlight the importance of establishing similar long-term studies monitoring secondary, rather than primary, sex ratios, so that needed mitigation measures to climate change impacts can be implemented. PMID:27579608

  20. Female-Bias in a Long-Term Study of a Species with Temperature-Dependent Sex Determination: Monitoring Sex Ratios for Climate Change Research.

    PubMed

    Braun McNeill, Joanne; Avens, Larisa; Goodman Hall, April; Goshe, Lisa R; Harms, Craig A; Owens, David W

    2016-01-01

    Alterations have occurred and continue to manifest in the Earth's biota as a result of climate change. Animals exhibiting temperature dependent sex determination (TSD), including sea turtles, are perhaps most vulnerable to a warming of the Earth as highly skewed sex ratios can result, potentially leading to population extinction resulting from decreased male recruitment. Recent studies have begun to quantify climate change impacts to sea turtle populations, especially in terms of predicting effects on hatchling sex ratios. However, given the inherent difficulty in studying sex ratios at this life stage, a more accurate assessment of changes in population sex ratios might be derived by evaluating the juvenile portion of foraging aggregations. We investigated the long-term trend in sex ratio of a juvenile loggerhead (Caretta caretta) sea turtle population inhabiting Pamlico and Core Sounds, North Carolina, USA. We used plasma testosterone reference ranges measured using radioimmunoassay (RIA) to assign sex for 959 turtles and confirmed sex assignment of a subset (N = 58) of the sampled turtles through laparoscopic examination of their gonads. Our results demonstrate that for this particular population of loggerheads, sex ratios (3Females:1Male) had not significantly changed over a 10 year period (1998-2007), nor showed any significant difference among 5-cm straight carapace length (SCL) size classes. Ultimately, these findings provide a basis for comparison with future sex ratios, and highlight the importance of establishing similar long-term studies monitoring secondary, rather than primary, sex ratios, so that needed mitigation measures to climate change impacts can be implemented.

  1. Epigenetic Regulation of the Sex Determination Gene MeGI in Polyploid Persimmon.

    PubMed

    Akagi, Takashi; Henry, Isabelle M; Kawai, Takashi; Comai, Luca; Tao, Ryutaro

    2016-12-01

    Epigenetic regulation can add a flexible layer to genetic variation, potentially enabling long-term but reversible cis-regulatory changes to an allele while maintaining its DNA sequence. Here, we present a case in which alternative epigenetic states lead to reversible sex determination in the hexaploid persimmon Diospyros kaki Previously, we elucidated the molecular mechanism of sex determination in diploid persimmon and demonstrated the action of a Y-encoded sex determinant pseudogene called OGI, which produces small RNAs targeting the autosomal gene MeGI, resulting in separate male and female individuals (dioecy). We contrast these findings with the discovery, in hexaploid persimmon, of an additional layer of regulation in the form of DNA methylation of the MeGI promoter associated with the production of both male and female flowers in genetically male trees. Consistent with this model, developing male buds exhibited higher methylation levels across the MeGI promoter than developing female flowers from either monoecious or female trees. Additionally, a DNA methylation inhibitor induced developing male buds to form feminized flowers. Concurrently, in Y-chromosome-carrying trees, the expression of OGI is silenced by the presence of a SINE (short interspersed nuclear element)-like insertion in the OGI promoter. Our findings provide an example of an adaptive scenario involving epigenetic plasticity. © 2016 American Society of Plant Biologists. All rights reserved.

  2. Non-invasive prenatal diagnosis for fetal sex determination: benefits and disadvantages from the service users' perspective

    PubMed Central

    Lewis, Celine; Hill, Melissa; Skirton, Heather; Chitty, Lyn S

    2012-01-01

    Prenatal fetal sex determination is clinically indicated for women who are at risk of having a child with a serious genetic disorder affecting a particular sex. Ultrasound has been the traditional method used, but early fetal sex determination using non-invasive prenatal diagnosis (NIPD) can now be performed using cell-free fetal DNA in maternal plasma. The study aim was to assess the views and experiences of service users who had used NIPD for fetal sex determination. In this paper, we report on the perceived benefits and disadvantages. A qualitative approach using semi-structured interviews was used. A total of 44 participants (38 women and 6 partners of participating women) were recruited. Participants' views and experiences of NIPD were overwhelmingly positive. Concerning benefits over traditional methods, three themes emerged: (1) technical aspects of technology; (2) timing; and (3) enhanced decision-making. Practical advantages of NIPD included avoiding miscarriage, and there were a number of psychological advantages associated with timing such as perceived control, early re-engagement, normalization of pregnancy and peace of mind. Participants also valued NIPD as it enabled a stepwise approach to decision-making. A number of disadvantages were discussed including concerns about social sexing and increased bonding at a time in pregnancy when miscarriage risk is high. However, participants felt these were fairly minor in comparison with the advantages of NIPD. Until definitive genetic diagnosis using NIPD is available, NIPD for fetal sex determination is perceived as a good interim measure with a number of notable advantages over traditional methods. PMID:22453293

  3. Non-invasive prenatal diagnosis for fetal sex determination: benefits and disadvantages from the service users' perspective.

    PubMed

    Lewis, Celine; Hill, Melissa; Skirton, Heather; Chitty, Lyn S

    2012-11-01

    Prenatal fetal sex determination is clinically indicated for women who are at risk of having a child with a serious genetic disorder affecting a particular sex. Ultrasound has been the traditional method used, but early fetal sex determination using non-invasive prenatal diagnosis (NIPD) can now be performed using cell-free fetal DNA in maternal plasma. The study aim was to assess the views and experiences of service users who had used NIPD for fetal sex determination. In this paper, we report on the perceived benefits and disadvantages. A qualitative approach using semi-structured interviews was used. A total of 44 participants (38 women and 6 partners of participating women) were recruited. Participants' views and experiences of NIPD were overwhelmingly positive. Concerning benefits over traditional methods, three themes emerged: (1) technical aspects of technology; (2) timing; and (3) enhanced decision-making. Practical advantages of NIPD included avoiding miscarriage, and there were a number of psychological advantages associated with timing such as perceived control, early re-engagement, normalization of pregnancy and peace of mind. Participants also valued NIPD as it enabled a stepwise approach to decision-making. A number of disadvantages were discussed including concerns about social sexing and increased bonding at a time in pregnancy when miscarriage risk is high. However, participants felt these were fairly minor in comparison with the advantages of NIPD. Until definitive genetic diagnosis using NIPD is available, NIPD for fetal sex determination is perceived as a good interim measure with a number of notable advantages over traditional methods.

  4. Sex-specific markers developed by next-generation sequencing confirmed an XX/XY sex determination system in bighead carp (Hypophthalmichehys nobilis) and silver carp (Hypophthalmichthys molitrix).

    PubMed

    Liu, Haiyang; Pang, Meixia; Yu, Xiaomu; Zhou, Ying; Tong, Jingou; Fu, Beide

    2018-01-05

    Sex-specific markers are powerful tools for identifying sex-determination system in various animals. Bighead carp (Hypophthalmichehys nobilis) and silver carp (Hypophthalmichthys molitrix) are two of the most important edible fish in Asia, which have a long juvenility period that can lasts for 4-5 years. In this study, we found one sex-specific marker by next-generation sequencing together with bioinformatics analysis in bighead carp. The male-specific markers were used to perform molecular sexing in the progenies of artificial gynogenetic diploids and found all progenies (n = 160) were females. Meanwhile, around 1 : 1 sex ratio was observed in a total of 579 juvenile offspring from three other families. To further extend the male-specific region, we performed genome walking and got a male-specific sequence of 8,661 bp. Five pairs of primers were designed and could be used to efficiently distinguish males from females in bighead carp and silver carp. The development of these male-specific markers and results of their molecular sexing in different populations provide strong evidence for a sex determination system of female homogametry or male heterogametry (XX/XY) in bighead carp and silver carp. To the best of our knowledge, this is the first report of effective sex-specific markers in these two large carp species. © The Author(s) 2018. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  5. Sex Determination from Fragmented and Degenerated DNA by Amplified Product-Length Polymorphism Bidirectional SNP Analysis of Amelogenin and SRY Genes.

    PubMed

    Masuyama, Kotoka; Shojo, Hideki; Nakanishi, Hiroaki; Inokuchi, Shota; Adachi, Noboru

    2017-01-01

    Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female) were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted "bidirectional analysis," which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples) whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples.

  6. Determination of sex-ratio by birth order in an urban community in Manipur.

    PubMed

    Brogen, Akoijam S; Shantibala, K; Rajkumari, Bishwalata; Laishram, Jalina

    2009-01-01

    To determine the sex ratio by birth order and to assess the sex preference of the couples in an urban community. A cross sectional study, in an urban community in Manipur, was conducted among the currently married couples. Data on background characteristics of the couple, family pedigree chart (of the offspring) including history of abortion, stillbirth, death of child of the couple, sex preference and Pre-natal Diagnostic Techniques (Regulation and Prevention of Misuse) Act [PNDT Act] were collected through a structured interview. Data were analyzed using descriptive and chi-square statistics. There were a total of 1777 births to the 855 couples interviewed. There were 900 females per 1000 males for the 1st birth order but the sex ratio was favorable towards females in the 2nd, 3rd and 4th birth orders. Among both the husbands and wives, being more educated was significantly associated (p<0.05) with preferring lesser number of children, using new technology for sex selection and having heard of the PNDT Act. Majority of those who wanted to use new technology for sex selection (128, 56.6%) preferred to have male child. Sex ratio in this community was favorable towards females, though it was less among the first born babies.

  7. Estimating the use of morphometric measurements from museum specimens for sex determination in Mountain Plovers (Charadrius montanus)

    USGS Publications Warehouse

    Iko, W.M.; Dinsmore, S.J.; Knopf, F.L.

    2004-01-01

    The Mountain Plover (Charadrius montanus) is a shorebird species endemic to the dry, terrestrial ecosystems of the Great Plains and southwestern United States. Breeding Bird Survey data suggest that Mountain Plover populations have declined by >60% in the last 30 years. A better understanding of the population dynamics of the Mountain Plover is important in determining future management goals for this species. However, this effort is hampered by the inability to determine the sex of Mountain Plovers accurately under field conditions. In an effort to develop a simple method for sexing plovers in the hand, we measured external morphometric characteristics from 190 museum specimens of adult Mountain Plovers in alternate (breeding) plumage. Logistic regression and discriminant function analyses were performed on 10 external morphometric measurements (lengths of unflattened wing chord, 10th primary, central rectrix, outer rectrix, total head length, exposed culmen, culmen, bill depth, bill width, and tarsus). The results of these analyses indicated that Mountain Plover sexes were similar for all measures except culmen length. However, further analysis determined that culmen length accurately predicted sex in less than two-thirds of the specimens, suggesting that this measure is a poor predictor of sex in Mountain Plovers. Structurally, Mountain Plovers appear to be nearly identical between the sexes, and other methods of sexing birds (e.g., plumage characteristics, behavioral observations, or molecular markers) should be further assessed for devising a simple method for sexing Mountain Plovers under field conditions.

  8. Utility of the Determine Syphilis TP rapid test in commercial sex venues in Peru.

    PubMed

    Campos, P E; Buffardi, A L; Chiappe, M; Buendía, C; Garcia, P J; Carcamo, C P; Garnett, G; White, P; Holmes, K K

    2006-12-01

    This study sought to evaluate the utility of the Determine Syphilis TP test performed in Peruvian commercial sex venues for the detection of active syphilis; and determine the feasibility of integrating rapid syphilis testing for female sex workers (FSW) into existing health outreach services. We tested 3586 female sex workers for syphilis by Determine in the field using whole blood fingerstick, and by rapid plasma reagin (RPR) and Treponema pallidum haemagglutination assay (TPHA) in a central laboratory in Lima using sera. 97.4% of the FSW offered rapid syphilis testing participated; and among those who tested positive, 87% visited the local health centre for treatment. More than twice as many specimens were RPR reactive using serum in Lima (5.7%) than tested positive by whole blood Determine in the field (2.8%), and although most were confirmed by TPHA, only a small proportion (0.7%) were RPR reactive at >or=1:8 dilutions, and likely indicating active syphilis. Sensitivity, specificity and positive predictive value of the Determine Syphilis TP test in whole blood when compared to serum RPR reactivity at any dilution confirmed by TPHA as the gold standard were 39.3%, 99.2% and 71.4%, respectively. Sensitivity improved to 64.0% when using serum RPR >or=1:8 confirmed by TPHA. Invalid tests were rare (0.3%). Rapid syphilis testing in sex work venues proved feasible, but Determine using whole blood obtained by fingerstick was substantially less sensitive than reported in previous laboratory-based studies using serum. Although easy to perform in outreach venues, the utility of this rapid syphilis test was relatively low in settings where a large proportion of the targeted population has been previously tested and treated.

  9. Utility of the Determine Syphilis TP rapid test in commercial sex venues in Peru

    PubMed Central

    Campos, P E; Buffardi, A L; Chiappe, M; Buendía, C; Garcia, P J; Carcamo, C P; Garnett, G; White, P

    2006-01-01

    Objectives This study sought to evaluate the utility of the Determine Syphilis TP test performed in Peruvian commercial sex venues for the detection of active syphilis; and determine the feasibility of integrating rapid syphilis testing for female sex workers (FSW) into existing health outreach services. Methods We tested 3586 female sex workers for syphilis by Determine in the field using whole blood fingerstick, and by rapid plasma reagin (RPR) and Treponema pallidum haemagglutination assay (TPHA) in a central laboratory in Lima using sera. Results 97.4% of the FSW offered rapid syphilis testing participated; and among those who tested positive, 87% visited the local health centre for treatment. More than twice as many specimens were RPR reactive using serum in Lima (5.7%) than tested positive by whole blood Determine in the field (2.8%), and although most were confirmed by TPHA, only a small proportion (0.7%) were RPR reactive at ⩾1:8 dilutions, and likely indicating active syphilis. Sensitivity, specificity and positive predictive value of the Determine Syphilis TP test in whole blood when compared to serum RPR reactivity at any dilution confirmed by TPHA as the gold standard were 39.3%, 99.2% and 71.4%, respectively. Sensitivity improved to 64.0% when using serum RPR ⩾1:8 confirmed by TPHA. Invalid tests were rare (0.3%). Conclusions Rapid syphilis testing in sex work venues proved feasible, but Determine using whole blood obtained by fingerstick was substantially less sensitive than reported in previous laboratory‐based studies using serum. Although easy to perform in outreach venues, the utility of this rapid syphilis test was relatively low in settings where a large proportion of the targeted population has been previously tested and treated. PMID:17116642

  10. Bombyx mori P-element Somatic Inhibitor (BmPSI) Is a Key Auxiliary Factor for Silkworm Male Sex Determination

    PubMed Central

    Chen, Shuqing; Zeng, Baosheng; James, Anthony A.; Tan, Anjiang; Huang, Yongping

    2017-01-01

    Manipulation of sex determination pathways in insects provides the basis for a wide spectrum of strategies to benefit agriculture and public health. Furthermore, insects display a remarkable diversity in the genetic pathways that lead to sex differentiation. The silkworm, Bombyx mori, has been cultivated by humans as a beneficial insect for over two millennia, and more recently as a model system for studying lepidopteran genetics and development. Previous studies have identified the B. mori Fem piRNA as the primary female determining factor and BmMasc as its downstream target, while the genetic scenario for male sex determination was still unclear. In the current study, we exploite the transgenic CRISPR/Cas9 system to generate a comprehensive set of knockout mutations in genes BmSxl, Bmtra2, BmImp, BmImpM, BmPSI and BmMasc, to investigate their roles in silkworm sex determination. Absence of Bmtra2 results in the complete depletion of Bmdsx transcripts, which is the conserved downstream factor in the sex determination pathway, and induces embryonic lethality. Loss of BmImp or BmImpM function does not affect the sexual differentiation. Mutations in BmPSI and BmMasc genes affect the splicing of Bmdsx and the female reproductive apparatus appeared in the male external genital. Intriguingly, we identify that BmPSI regulates expression of BmMasc, BmImpM and Bmdsx, supporting the conclusion that it acts as a key auxiliary factor in silkworm male sex determination. PMID:28103247

  11. Environmental regulation of sex determination in oil palm: current knowledge and insights from other species.

    PubMed

    Adam, Hélène; Collin, Myriam; Richaud, Frédérique; Beulé, Thierry; Cros, David; Omoré, Alphonse; Nodichao, Leifi; Nouy, Bruno; Tregear, James W

    2011-12-01

    The African oil palm (Elaeis guineensis) is a monoecious species of the palm subfamily Arecoideae. It may be qualified as 'temporally dioecious' in that it produces functionally unisexual male and female inflorescences in an alternating cycle on the same plant, resulting in an allogamous mode of reproduction. The 'sex ratio' of an oil palm stand is influenced by both genetic and environmental factors. In particular, the enhancement of male inflorescence production in response to water stress has been well documented. This paper presents a review of our current understanding of the sex determination process in oil palm and discusses possible insights that can be gained from other species. Although some informative phenological studies have been carried out, nothing is as yet known about the genetic basis of sex determination in oil palm, nor the mechanisms by which this process is regulated. Nevertheless new genomics-based techniques, when combined with field studies and biochemical and molecular cytological-based approaches, should provide a new understanding of the complex processes governing oil palm sex determination in the foreseeable future. Current hypotheses and strategies for future research are discussed.

  12. Comparative Analysis of the Shared Sex-Determination Region (SDR) among Salmonid Fishes.

    PubMed

    Faber-Hammond, Joshua J; Phillips, Ruth B; Brown, Kim H

    2015-06-25

    Salmonids present an excellent model for studying evolution of young sex-chromosomes. Within the genus, Oncorhynchus, at least six independent sex-chromosome pairs have evolved, many unique to individual species. This variation results from the movement of the sex-determining gene, sdY, throughout the salmonid genome. While sdY is known to define sexual differentiation in salmonids, the mechanism of its movement throughout the genome has remained elusive due to high frequencies of repetitive elements, rDNA sequences, and transposons surrounding the sex-determining regions (SDR). Despite these difficulties, bacterial artificial chromosome (BAC) library clones from both rainbow trout and Atlantic salmon containing the sdY region have been reported. Here, we report the sequences for these BACs as well as the extended sequence for the known SDR in Chinook gained through genome walking methods. Comparative analysis allowed us to study the overlapping SDRs from three unique salmonid Y chromosomes to define the specific content, size, and variation present between the species. We found approximately 4.1 kb of orthologous sequence common to all three species, which contains the genetic content necessary for masculinization. The regions contain transposable elements that may be responsible for the translocations of the SDR throughout salmonid genomes and we examine potential mechanistic roles of each one. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Determinants of Heterosexual Adolescents Having Sex with Female Sex Workers in Singapore

    PubMed Central

    Ng, Junice Y. S.; Wong, Mee-Lian

    2016-01-01

    Objectives We assessed the proportion of and socio-ecological factors associated with ever having had sex with female sex workers (FSWs) among heterosexual adolescents. We also described the characteristics of the adolescents who reported inconsistent condom use with FSWs. Methods This is a cross-sectional study (response rate: 73%) of 300 heterosexually active male adolescents of 16 to 19 years attending a national STI clinic in Singapore between 2009 and 2014. We assessed the ecological factors (individual, parental, peer, school and medial influences) and sexual risk behaviors using a self-reported questionnaire. Poisson regression was used to obtain the adjusted prevalence ratios (aPR) and confidence intervals (CI). Results The proportion of heterosexual male adolescents who had ever had sex with FSWs was 39%. Multivariate analysis showed that significant factors associated with ever having had sex with FSWs were sex initiation before 16 years old (aPR 1.79 CI: 1.30–2.46), never had a sexually active girlfriend (aPR 1.75 CI 1.28–2.38), reported lower self-esteem score (aPR 0.96 CI: 0.93–0.98), higher rebelliousness score (aPR 1.03 CI: 1.00–1.07) and more frequent viewing of pornography (aPR 1.47 CI: 1.04–2.09). Lifetime inconsistent condom use with FSWs was 30%. Conclusions A significant proportion of heterosexual male adolescents attending the public STI clinic had ever had sex with FSWs. A targeted intervention that addresses different levels of influence to this behavior is needed. This is even more so because a considerable proportion of adolescents reported inconsistent condom use with FSWs, who may serve as a bridge of STI transmission to the community. National surveys on adolescent health should include the assessment of frequency of commercial sex visits and condom use with FSWs for long-term monitoring and surveillance. PMID:26808561

  14. Impact and determinants of sex preference in Nepal.

    PubMed

    Leone, Tiziana; Matthews, Zoë; Dalla Zuanna, Gianpiero

    2003-06-01

    Gender discrimination and son preference are key demographic features of South Asia and are well documented for India. However, gender bias and sex preference in Nepal have received little attention. 1996 Nepal Demographic and Health Survey data on ever-married women aged 15-49 who did not desire any more children were used to investigate levels of gender bias and sex preference. The level of contraceptive use and the total fertility rate in the absence of sex preference were estimated, and logistic regression was performed to analyze the association between socioeconomic and demographic variables and stopping childbearing after the birth of a son. Commonly used indicators of gender bias, such as sex ratio at birth and sex-specific immunization rates, do not suggest a high level of gender discrimination in Nepal. However, sex preference decreases contraceptive use by 24% and increases the total fertility rate by more than 6%. Women's contraceptive use, exposure to the media, parity, last birth interval, educational level and religion are linked to stopping childbearing after the birth of a boy, as is the ethnic makeup of the local area. The level of sex preference in Nepal is substantial. Sex preference is an important barrier to the increase of contraceptive use and decline of fertility in the country; its impact will be greater as desired family size declines.

  15. High-density linkage mapping aided by transcriptomics documents ZW sex determination system in the Chinese mitten crab Eriocheir sinensis

    PubMed Central

    Cui, Z; Hui, M; Liu, Y; Song, C; Li, X; Li, Y; Liu, L; Shi, G; Wang, S; Li, F; Zhang, X; Liu, C; Xiang, J; Chu, K H

    2015-01-01

    The sex determination system in crabs is believed to be XY-XX from karyotypy, but centromeres could not be identified in some chromosomes and their morphology is not completely clear. Using quantitative trait locus mapping of the gender phenotype, we revealed a ZW-ZZ sex determination system in Eriocheir sinensis and presented a high-density linkage map covering ~98.5% of the genome, with 73 linkage groups corresponding to the haploid chromosome number. All sex-linked markers in the family we used were located on a single linkage group, LG60, and sex linkage was confirmed by genome-wide association studies (GWAS). Forty-six markers detected by GWAS were heterozygous and segregated only in the female parent. The female LG60 was thus the putative W chromosome, with the homologous male LG60 as the Z chromosome. The putative Z and W sex chromosomes were identical in size and carried many homologous loci. Sex ratio (5:1) skewing towards females in induced triploids using unrelated animals also supported a ZW-ZZ system. Transcriptome data were used to search for candidate sex-determining loci, but only one LG60 gene was identified as an ankyrin-2 gene. Double sex- and mab3-related transcription factor 1 (Dmrt1), a Z-linked gene in birds, was located on a putative autosome. With complete genome sequencing and transcriptomic data, more genes on putative sex chromosomes will be characterised, thus leading towards a comprehensive understanding of the sex determination and differentiation mechanisms of E. sinensis, and decapod crustaceans in general. PMID:25873149

  16. Sex Determination from Fragmented and Degenerated DNA by Amplified Product-Length Polymorphism Bidirectional SNP Analysis of Amelogenin and SRY Genes

    PubMed Central

    Masuyama, Kotoka; Shojo, Hideki; Nakanishi, Hiroaki; Inokuchi, Shota; Adachi, Noboru

    2017-01-01

    Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female) were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted “bidirectional analysis,” which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples) whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples. PMID:28052096

  17. Epigenetic Regulation of the Sex Determination Gene MeGI in Polyploid Persimmon[OPEN

    PubMed Central

    Kawai, Takashi; Tao, Ryutaro

    2016-01-01

    Epigenetic regulation can add a flexible layer to genetic variation, potentially enabling long-term but reversible cis-regulatory changes to an allele while maintaining its DNA sequence. Here, we present a case in which alternative epigenetic states lead to reversible sex determination in the hexaploid persimmon Diospyros kaki. Previously, we elucidated the molecular mechanism of sex determination in diploid persimmon and demonstrated the action of a Y-encoded sex determinant pseudogene called OGI, which produces small RNAs targeting the autosomal gene MeGI, resulting in separate male and female individuals (dioecy). We contrast these findings with the discovery, in hexaploid persimmon, of an additional layer of regulation in the form of DNA methylation of the MeGI promoter associated with the production of both male and female flowers in genetically male trees. Consistent with this model, developing male buds exhibited higher methylation levels across the MeGI promoter than developing female flowers from either monoecious or female trees. Additionally, a DNA methylation inhibitor induced developing male buds to form feminized flowers. Concurrently, in Y-chromosome-carrying trees, the expression of OGI is silenced by the presence of a SINE (short interspersed nuclear element)-like insertion in the OGI promoter. Our findings provide an example of an adaptive scenario involving epigenetic plasticity. PMID:27956470

  18. The ecology and evolution of temperature-dependent reaction norms for sex determination in reptiles: a mechanistic conceptual model.

    PubMed

    Pezaro, Nadav; Doody, J Sean; Thompson, Michael B

    2017-08-01

    Sex-determining mechanisms are broadly categorised as being based on either genetic or environmental factors. Vertebrate sex determination exhibits remarkable diversity but displays distinct phylogenetic patterns. While all eutherian mammals possess XY male heterogamety and female heterogamety (ZW) is ubiquitous in birds, poikilothermic vertebrates (fish, amphibians and reptiles) exhibit multiple genetic sex-determination (GSD) systems as well as environmental sex determination (ESD). Temperature is the factor controlling ESD in reptiles and temperature-dependent sex determination (TSD) in reptiles has become a focal point in the study of this phenomenon. Current patterns of climate change may cause detrimental skews in the population sex ratios of reptiles exhibiting TSD. Understanding the patterns of variation, both within and among populations and linking such patterns with the selection processes they are associated with, is the central challenge of research aimed at predicting the capacity of populations to adapt to novel conditions. Here we present a conceptual model that innovates by defining an individual reaction norm for sex determination as a range of incubation temperatures. By deconstructing individual reaction norms for TSD and revealing their underlying interacting elements, we offer a conceptual solution that explains how variation among individual reaction norms can be inferred from the pattern of population reaction norms. The model also links environmental variation with the different patterns of TSD and describes the processes from which they may arise. Specific climate scenarios are singled out as eco-evolutionary traps that may lead to demographic extinction or a transition to either male or female heterogametic GSD. We describe how the conceptual principles can be applied to interpret TSD data and to explain the adaptive capacity of TSD to climate change as well as its limits and the potential applications for conservation and management

  19. FOXL2 is a female sex-determining gene in the goat.

    PubMed

    Boulanger, Laurent; Pannetier, Maëlle; Gall, Laurence; Allais-Bonnet, Aurélie; Elzaiat, Maëva; Le Bourhis, Daniel; Daniel, Nathalie; Richard, Christophe; Cotinot, Corinne; Ghyselinck, Norbert B; Pailhoux, Eric

    2014-02-17

    The origin of sex reversal in XX goats homozygous for the polled intersex syndrome (PIS) mutation was unclear because of the complexity of the mutation that affects the transcription of both FOXL2 and several long noncoding RNAs (lncRNAs). Accumulating evidence suggested that FOXL2 could be the sole gene of the PIS locus responsible for XX sex reversal, the lncRNAs being involved in transcriptional regulation of FOXL2. In this study, using zinc-finger nuclease-directed mutagenesis, we generated several fetuses, of which one XX individual bears biallelic mutations of FOXL2. Our analysis demonstrates that FOXL2 loss of function dissociated from loss of lncRNA expression is sufficient to cause an XX female-to-male sex reversal in the goat model and, as in the mouse model, an agenesis of eyelids. Both developmental defects were reproduced in two newborn animals cloned from the XX FOXL2(-/-) fibroblasts. These results therefore identify FOXL2 as a bona fide female sex-determining gene in the goat. They also highlight a stage-dependent role of FOXL2 in the ovary, different between goats and mice, being important for fetal development in the former but for postnatal maintenance in the latter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Expression profiles of amhy and major sex-related genes during gonadal sex differentiation and their relation with genotypic and temperature-dependent sex determination in pejerrey Odontesthes bonariensis.

    PubMed

    Zhang, Yan; Hattori, Ricardo S; Sarida, Munti; García, Estefany L; Strüssmann, Carlos Augusto; Yamamoto, Yoji

    2018-03-15

    To shed light on the mechanisms of and interactions of GSD and TSD in pejerrey, we investigated how the transcriptional profiles of amhy and amha are affected by feminizing (17 °C) and masculinizing (29 °C) temperatures during the critical period of sex determination/differentiation and their relation with the expression profiles of AMH receptor type II (amhrII), gonadal aromatase (cyp19a1a), and 11 beta-hydroxysteroid dehydrogenase 2 (hsd11b2). Careful consideration of the results of this study and all information currently available for this species, including similar analyzes for an intermediate, mixed-sex promoting temperature (25 °C), suggests a model for genotypic/temperature-dependent sex determination and gonadal sex differentiation that involves a) cyp19a1a-dependent, developmentally-programmed ovarian development as the default state that becomes self-sustaining in the absence of a potent and timely masculinizing stimulus, b) early, developmentally-programmed amhy expression and high temperature as masculinization signals that antagonize the putative female pathway by suppressing cyp19a1a expression, c) increasing stress response, cortisol, and the synthesis of the masculinizing androgen 11-keto-testosterone via hsd11b2 with increasing temperature that is important for masculinization in both genotypes but particularly so in XX individuals, and d) an endocrine network with positive/negative feedback mechanisms that ensure fidelity of the male/female pathway once started. The proposed model, albeit tentative and non-all inclusive, accounts for the continuum of responses, from all-females at low temperatures to all-males at high temperatures and for the balanced-, genotype-linked sex ratios obtained at intermediate temperatures, and therefore supports the coexistence of TSD and GSD in pejerrey across the range of viable temperatures for this species. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.).

    PubMed

    Mori, Kazuki; Shirasawa, Kenta; Nogata, Hitoshi; Hirata, Chiharu; Tashiro, Kosuke; Habu, Tsuyoshi; Kim, Sangwan; Himeno, Shuichi; Kuhara, Satoru; Ikegami, Hidetoshi

    2017-01-25

    With the aim of identifying sex determinants of fig, we generated the first draft genome sequence of fig and conducted the subsequent analyses. Linkage analysis with a high-density genetic map established by a restriction-site associated sequencing technique, and genome-wide association study followed by whole-genome resequencing analysis identified two missense mutations in RESPONSIVE-TO-ANTAGONIST1 (RAN1) orthologue encoding copper-transporting ATPase completely associated with sex phenotypes of investigated figs. This result suggests that RAN1 is a possible sex determinant candidate in the fig genome. The genomic resources and genetic findings obtained in this study can contribute to general understanding of Ficus species and provide an insight into fig's and plant's sex determination system.

  2. Sex determination from calcification of costal cartilages in a Scottish sample.

    PubMed

    Middleham, Helen P; Boyd, Laura E; Mcdonald, Stuart W

    2015-10-01

    The pelvic bones and skull are not always available when human remains are discovered in a forensic setting. This study investigates the suitability to a Scottish sample of existing methods of sexing based on calcification patterns in the costal cartilages. Radiographs of chest plates of 41 cadavers, 22 male and 19 female aged 57-96 years were analyzed for their calcification patterns according to the methods of McCormick et al. (1985, Am. J. Phys. Anthropol. 68:173-195) and Rejtarova et al. (2004, Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 148:241-243). With the method of Rejtarova et al. (2004, Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 148:241-243) none of the male specimens was sexed correctly. Of the chest plates that were suitable for sexing, the method of McCormick et al. (1985, Am. J. Phys. Anthropol. 68:173-195) correctly sexed 82.4% of the female specimens but only 41.2% of the males. To improve the reliability, we suggest a new method of sex determination based on whether the calcified deposits in the second to seventh costal cartilages are predominantly trabecular bone or sclerotic calcified deposits. Specimens with minimal amounts or similar amounts of trabecular bone or sclerotic deposits in the costal cartilages are not appropriate for our method. When such specimens (10 specimens) were excluded, our method correctly sexed 16 of 17 (94%) males and 12 of 14 (86%) females. The authors acknowledge that their sample is small and that many of their subjects were elderly and that the method should be tested on a larger sample group before application in a forensic context. © 2014 Wiley Periodicals, Inc.

  3. RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation.

    PubMed

    Yatsu, Ryohei; Miyagawa, Shinichi; Kohno, Satomi; Parrott, Benjamin B; Yamaguchi, Katsushi; Ogino, Yukiko; Miyakawa, Hitoshi; Lowers, Russell H; Shigenobu, Shuji; Guillette, Louis J; Iguchi, Taisen

    2016-01-25

    The American alligator (Alligator mississippiensis) displays temperature-dependent sex determination (TSD), in which incubation temperature during embryonic development determines the sexual fate of the individual. However, the molecular mechanisms governing this process remain a mystery, including the influence of initial environmental temperature on the comprehensive gonadal gene expression patterns occurring during TSD. Our characterization of transcriptomes during alligator TSD allowed us to identify novel candidate genes involved in TSD initiation. High-throughput RNA sequencing (RNA-seq) was performed on gonads collected from A. mississippiensis embryos incubated at both a male and a female producing temperature (33.5 °C and 30 °C, respectively) in a time series during sexual development. RNA-seq yielded 375.2 million paired-end reads, which were mapped and assembled, and used to characterize differential gene expression. Changes in the transcriptome occurring as a function of both development and sexual differentiation were extensively profiled. Forty-one differentially expressed genes were detected in response to incubation at male producing temperature, and included genes such as Wnt signaling factor WNT11, histone demethylase KDM6B, and transcription factor C/EBPA. Furthermore, comparative analysis of development- and sex-dependent differential gene expression revealed 230 candidate genes involved in alligator sex determination and differentiation, and early details of the suspected male-fate commitment were profiled. We also discovered sexually dimorphic expression of uncharacterized ncRNAs and other novel elements, such as unique expression patterns of HEMGN and ARX. Twenty-five of the differentially expressed genes identified in our analysis were putative transcriptional regulators, among which were MYBL2, MYCL, and HOXC10, in addition to conventional sex differentiation genes such as SOX9, and FOXL2. Inferred gene regulatory network was constructed

  4. High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya.

    PubMed Central

    Ma, Hao; Moore, Paul H; Liu, Zhiyong; Kim, Minna S; Yu, Qingyi; Fitch, Maureen M M; Sekioka, Terry; Paterson, Andrew H; Ming, Ray

    2004-01-01

    A high-density genetic map of papaya (Carica papaya L.) was constructed using 54 F(2) plants derived from cultivars Kapoho and SunUp with 1501 markers, including 1498 amplified fragment length polymorphism (AFLP) markers, the papaya ringspot virus coat protein marker, morphological sex type, and fruit flesh color. These markers were mapped into 12 linkage groups at a LOD score of 5.0 and recombination frequency of 0.25. The 12 major linkage groups covered a total length of 3294.2 cM, with an average distance of 2.2 cM between adjacent markers. This map revealed severe suppression of recombination around the sex determination locus with a total of 225 markers cosegregating with sex types. The cytosine bases were highly methylated in this region on the basis of the distribution of methylation-sensitive and -insensitive markers. This high-density genetic map is essential for cloning of specific genes of interest such as the sex determination gene and for the integration of genetic and physical maps of papaya. PMID:15020433

  5. Primary Sex Determination in Drosophila melanogaster Does Not Rely on the Male-Specific Lethal Complex.

    PubMed

    Erickson, James W

    2016-02-01

    It has been proposed that the Male Specific Lethal (MSL) complex is active in Drosophila melanogaster embryos of both sexes prior to the maternal-to-zygotic transition. Elevated gene expression from the two X chromosomes of female embryos is proposed to facilitate the stable establishment of Sex-lethal (Sxl) expression, which determines sex and represses further activity of the MSL complex, leaving it active only in males. Important supporting data included female-lethal genetic interactions between the seven msl genes and either Sxl or scute and sisterlessA, two of the X-signal elements (XSE) that regulate early Sxl expression. Here I report contrary findings that there are no female-lethal genetic interactions between the msl genes and Sxl or its XSE regulators. Fly stocks containing the msl3(1) allele were found to exhibit a maternal-effect interaction with Sxl, scute, and sisterlessA mutations, but genetic complementation experiments showed that msl3 is neither necessary nor sufficient for the female-lethal interactions, which appear to be due to an unidentified maternal regulator of Sxl. Published data cited as evidence for an early function of the MSL complex in females, including a maternal effect of msl2, have been reevaluated and found not to support a maternal, or other effect, of the MSL complex in sex determination. These findings suggest that the MSL complex is not involved in primary sex determination or in X chromosome dosage compensation prior to the maternal-to-zygotic transition. Copyright © 2016 by the Genetics Society of America.

  6. Genetic sex determination assays in 53 mammalian species: Literature analysis and guidelines for reporting standardization.

    PubMed

    Hrovatin, Karin; Kunej, Tanja

    2018-01-01

    Erstwhile, sex was determined by observation, which is not always feasible. Nowadays, genetic methods are prevailing due to their accuracy, simplicity, low costs, and time-efficiency. However, there is no comprehensive review enabling overview and development of the field. The studies are heterogeneous, lacking a standardized reporting strategy. Therefore, our aim was to collect genetic sexing assays for mammals and assemble them in a catalogue with unified terminology. Publications were extracted from online databases using key words such as sexing and molecular. The collected data were supplemented with species and gene IDs and the type of sex-specific sequence variant (SSSV). We developed a catalogue and graphic presentation of diagnostic tests for molecular sex determination of mammals, based on 58 papers published from 2/1991 to 10/2016. The catalogue consists of five categories: species, genes, SSSVs, methods, and references. Based on the analysis of published literature, we propose minimal requirements for reporting, consisting of: species scientific name and ID, genetic sequence with name and ID, SSSV, methodology, genomic coordinates (e.g., restriction sites, SSSVs), amplification system, and description of detected amplicon and controls. The present study summarizes vast knowledge that has up to now been scattered across databases, representing the first step toward standardization regarding molecular sexing, enabling a better overview of existing tests and facilitating planned designs of novel tests. The project is ongoing; collecting additional publications, optimizing field development, and standardizing data presentation are needed.

  7. Validation of endoscopy for determination of maturity in small salmonids and sex of mature individuals

    Treesearch

    Erica A. Swenson; Amanda E. Rosenberger; Philip J. Howell

    2007-01-01

    Fish maturity status, sex ratio, and age and size at first maturity are important parameters in population assessments and life history studies. In most empirical studies of these variables, fish are sacrificed and dissected to obtain data. However, maturity status and the sex of mature individuals can be determined by inserting an endoscope through a small incision in...

  8. Fish with thermolabile sex determination (TSD) as models to study brain sex differentiation.

    PubMed

    Blázquez, Mercedes; Somoza, Gustavo M

    2010-05-01

    As fish are ectothermic animals, water temperature can affect their basic biological processes such as larval development, growth and reproduction. Similar to reptiles, the incubation temperature during early phases of development is capable to modify sex ratios in a large number of fish species. This phenomenon, known as thermolabile sex determination (TSD) was first reported in Menidia menidia, a species belonging to the family Atherinopsidae. Since then, an increasing number of fish have also been found to exhibit TSD. Traditionally, likewise in reptiles, several TSD patterns have been described in fish, however it has been recently postulated that only one, females at low temperatures and males at high temperatures, may represent the "real" or "true" TSD. Many studies regarding the influence of temperature on the final sex ratios have been focused on the expression and activity of gonadal aromatase, the enzyme involved in the conversion of androgens into estrogens and encoded by the cyp19a1a gene. In this regard, teleost fish, may be due to a whole genome duplication event, produce another aromatase enzyme, commonly named brain aromatase, encoded by the cyp19a1b gene. Contrary to what has been described in other vertebrates, fish exhibit very high levels of aromatase activity in the brain and therefore they synthesize high amounts of neuroestrogens. However, its biological significance is still not understood. In addition, the mechanism whereby temperature can induce the development of a testis or an ovary still remains elusive. In this context the present review is aimed to discuss several theories about the possible role of brain aromatase using fish as models. The relevance of brain aromatase and therefore of neuroestrogens as the possible cue for gonadal differentiation is raised. In addition, the possible role of brain aromatase as the way to keep the high levels of neurogenesis in fish is also considered. Several key examples of how teleosts and aromatase

  9. Deletions of 9p and the quest for a conserved mechanism of sex determination.

    PubMed

    Ottolenghi, C; McElreavey, K

    2000-01-01

    Distal chromosome 9p contains a locus that, when deleted, is a cause of 46,XY gonadal dysgenesis in the absence of extragenital anomalies. This locus might account for the frequently observed cases of 46,XY pure gonadal dysgenesis who do not harbor mutations in SRY, the sex master regulator gene found in mammalian species. The genomic organization of 9p positional candidate genes is currently being studied and mutational screens are ongoing. Among other positional candidates, including two additional doublesex-related genes, the evidence to support a role for the gene DMRT1 in vertebrate male sexual development is accumulating. Although formal proof of the requirement of DMRT1 in gonadal sex fate choice has not been obtained so far, the particular interest in this gene and perhaps other doublesex-related genes identified in vertebrates lies in that they may provide an entry point to a conserved mechanism of sex determination across animal phyla. We discuss recent results and emerging views on the genetics of sex determination, while stressing that the majority of cases of 46,XY gonadal dysgenesis remain unexplained. The latter is likely to be efficiently addressed by positional cloning efforts, particularly by considering the wealth of sequence data provided by the Human Genome Project. Copyright 2000 Academic Press.

  10. Metric Sex Determination of the Human Coxal Bone on a Virtual Sample using Decision Trees.

    PubMed

    Savall, Frédéric; Faruch-Bilfeld, Marie; Dedouit, Fabrice; Sans, Nicolas; Rousseau, Hervé; Rougé, Daniel; Telmon, Norbert

    2015-11-01

    Decision trees provide an alternative to multivariate discriminant analysis, which is still the most commonly used in anthropometric studies. Our study analyzed the metric characterization of a recent virtual sample of 113 coxal bones using decision trees for sex determination. From 17 osteometric type I landmarks, a dataset was built with five classic distances traditionally reported in the literature and six new distances selected using the two-step ratio method. A ten-fold cross-validation was performed, and a decision tree was established on two subsamples (training and test sets). The decision tree established on the training set included three nodes and its application to the test set correctly classified 92% of individuals. This percentage was similar to the data of the literature. The usefulness of decision trees has been demonstrated in numerous fields. They have been already used in sex determination, body mass prediction, and ancestry estimation. This study shows another use of decision trees enabling simple and accurate sex determination. © 2015 American Academy of Forensic Sciences.

  11. Species identification and sex determination of the genus Nepenthes (Nepenthaceae).

    PubMed

    Mokkamul, Piya; Chaveerach, Arunrat; Sudmoon, Runglawan; Tanee, Tawatchai

    2007-02-15

    Nepenthes species are well known for their ornamentally attractive pitchers. The species diversity was randomly surveyed in some conservation areas of Thailand and three species were found, namely N. gracilis Korth., N. mirabilis Druce. and N. smilesii Hemsl. Young plants as unknown species from Chatuchak market were added in plant sampled set. Thirty two Inter Simple Sequence Repeat (ISSR) primers were screened and 13 successful primers were used to produce DNA banding patterns for constructing a dendrogram. The dendrogram is potentially power tool to identify unknown species from Chatuchak market, differentiate species population, population by geographical areas and sex determination. The geographical area of N. mirabilis was specified to Southern and Northeastern regions and finally, subdivided into exact areas according to province. Male and female plants of N. gracilis at Phu Wua Wildlife Sanctuary and N. mirabilis at Bung Khonglong non-hunting area were determined. Two unknown species from Chatuchak market were analyzed to be N. mirabilis with the genetic similarities (S) 77.2 to 84.7. Be more sex specific in all sample studied, 37 Random Amplified Polymorphic DNA (RAPD) primers were investigated. The result shows that only one RAPD primer show high resolution results at about 750 bp specific male-related marker.

  12. The roles of Dmrt (Double sex/Male-abnormal-3 Related Transcription factor) genes in sex determination and differentiation mechanisms: Ubiquity and diversity across the animal kingdom.

    PubMed

    Picard, Marion Anne-Lise; Cosseau, Céline; Mouahid, Gabriel; Duval, David; Grunau, Christoph; Toulza, Ève; Allienne, Jean-François; Boissier, Jérôme

    2015-07-01

    The Dmrt (Double sex/Male-abnormal-3 Related Transcription factor) genes have been intensively studied because they represent major transcription factors in the pathways governing sex determination and differentiation. These genes have been identified in animal groups ranging from cnidarians to mammals, and some of the genes functionally studied. Here, we propose to analyze (i) the presence/absence of various Dmrt gene groups in the different taxa across the animal kingdom; (ii) the relative expression levels of the Dmrt genes in each sex; (iii) the specific spatial (by organ) and temporal (by developmental stage) variations in gene expression. This review considers non-mammalian animals at all levels of study (i.e. no particular importance is given to animal models), and using all types of sexual strategy (hermaphroditic or gonochoric) and means of sex determination (i.e. genetic or environmental). To conclude this global comparison, we offer an analysis of the DM domains conserved among the different DMRT proteins, and propose a general sex-specific pattern for each member of the Dmrt gene family. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  13. A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori

    PubMed Central

    Sakurai, Takeshi; Mitsuno, Hidefumi; Haupt, Stephan Shuichi; Uchino, Keiro; Yokohari, Fumio; Nishioka, Takaaki; Kobayashi, Isao; Sezutsu, Hideki; Tamura, Toshiki; Kanzaki, Ryohei

    2011-01-01

    In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence

  14. A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori.

    PubMed

    Sakurai, Takeshi; Mitsuno, Hidefumi; Haupt, Stephan Shuichi; Uchino, Keiro; Yokohari, Fumio; Nishioka, Takaaki; Kobayashi, Isao; Sezutsu, Hideki; Tamura, Toshiki; Kanzaki, Ryohei

    2011-06-01

    In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence.

  15. Identification and functional analyses of sex determination genes in the sexually dimorphic stag beetle Cyclommatus metallifer.

    PubMed

    Gotoh, Hiroki; Zinna, Robert A; Warren, Ian; DeNieu, Michael; Niimi, Teruyuki; Dworkin, Ian; Emlen, Douglas J; Miura, Toru; Lavine, Laura C

    2016-03-22

    Genes in the sex determination pathway are important regulators of sexually dimorphic animal traits, including the elaborate and exaggerated male ornaments and weapons of sexual selection. In this study, we identified and functionally analyzed members of the sex determination gene family in the golden metallic stag beetle Cyclommatus metallifer, which exhibits extreme differences in mandible size between males and females. We constructed a C. metallifer transcriptomic database from larval and prepupal developmental stages and tissues of both males and females. Using Roche 454 pyrosequencing, we generated a de novo assembled database from a total of 1,223,516 raw reads, which resulted in 14,565 isotigs (putative transcript isoforms) contained in 10,794 isogroups (putative identified genes). We queried this database for C. metallifer conserved sex determination genes and identified 14 candidate sex determination pathway genes. We then characterized the roles of several of these genes in development of extreme sexual dimorphic traits in this species. We performed molecular expression analyses with RT-PCR and functional analyses using RNAi on three C. metallifer candidate genes--Sex-lethal (CmSxl), transformer-2 (Cmtra2), and intersex (Cmix). No differences in expression pattern were found between the sexes for any of these three genes. In the RNAi gene-knockdown experiments, we found that only the Cmix had any effect on sexually dimorphic morphology, and these mimicked the effects of Cmdsx knockdown in females. Knockdown of CmSxl had no measurable effects on stag beetle phenotype, while knockdown of Cmtra2 resulted in complete lethality at the prepupal period. These results indicate that the roles of CmSxl and Cmtra2 in the sex determination cascade are likely to have diverged in stag beetles when compared to Drosophila. Our results also suggest that Cmix has a conserved role in this pathway. In addition to those three genes, we also performed a more complete

  16. Protein kinase C is involved with upstream signaling of methyl farnesoate for photoperiod-dependent sex determination in the water flea Daphnia pulex

    PubMed Central

    Toyota, Kenji; Sato, Tomomi; Tatarazako, Norihisa

    2017-01-01

    ABSTRACT Sex determination of Daphnia pulex is decided by environmental conditions. We established a suitable experimental system for this study using D. pulex WTN6 strain, in which the sex of the offspring can be controlled by photoperiod. Long-day conditions induced females and short-day conditions induced males. Using this system, we previously found that methy farnesoate (MF), which is a putative innate juvenile hormone molecule in daphnids, is necessary for male sex determination and that protein kinase C (PKC) is a candidate factor of male sex determiner. In this study, we demonstrated that a PKC inhibitor [bisindolylmaleimide IV (BIM)] application strongly suppressed male offspring induction in the short-day condition. Moreover, co-treatment of BIM with MF revealed that PKC signaling acts upstream of MF signaling for male sex determination. This is the first experimental evidence that PKC is involved in the male sex determination process associated with methyl farnesoate signaling in daphnid species. PMID:27965197

  17. Protein kinase C is involved with upstream signaling of methyl farnesoate for photoperiod-dependent sex determination in the water flea Daphnia pulex.

    PubMed

    Toyota, Kenji; Sato, Tomomi; Tatarazako, Norihisa; Iguchi, Taisen

    2017-02-15

    Sex determination of Daphnia pulex is decided by environmental conditions. We established a suitable experimental system for this study using D. pulex WTN6 strain, in which the sex of the offspring can be controlled by photoperiod. Long-day conditions induced females and short-day conditions induced males. Using this system, we previously found that methy farnesoate (MF), which is a putative innate juvenile hormone molecule in daphnids, is necessary for male sex determination and that protein kinase C (PKC) is a candidate factor of male sex determiner. In this study, we demonstrated that a PKC inhibitor [bisindolylmaleimide IV (BIM)] application strongly suppressed male offspring induction in the short-day condition. Moreover, co-treatment of BIM with MF revealed that PKC signaling acts upstream of MF signaling for male sex determination. This is the first experimental evidence that PKC is involved in the male sex determination process associated with methyl farnesoate signaling in daphnid species. © 2017. Published by The Company of Biologists Ltd.

  18. Potential contributions of heat shock proteins to temperature-dependent sex determination in the American alligator.

    PubMed

    Kohno, S; Katsu, Y; Urushitani, H; Ohta, Y; Iguchi, T; Guillette, L J

    2010-01-01

    Sex determination in the American alligator depends on the incubation temperature experienced during a thermo-sensitive period (TSP), although sex determination can be 'reversed' by embryonic exposure to an estrogenic compound. Thus, temperature and estrogenic signals play essential roles during temperature-dependent sex determination (TSD). The genetic basis for TSD is poorly understood, although previous studies observed that many of the genes associated with genetic sex determination (GSD) are expressed in species with TSD. Heat shock proteins (HSPs), good candidates because of their temperature-sensitive expression, have not been examined in regard to TSD but HSPs have the ability to modify steroid receptor function. A number of HSP cDNAs (HSP27, DNAJ, HSP40, HSP47, HSP60, HSP70A, HSP70B, HSP70C, HSP75, HSP90alpha, HSP90beta, and HSP108) as well as cold-inducible RNA binding protein (CIRBP) and HSP-binding protein (HSPBP) were cloned, and expression of their mRNA in the gonadal-adrenal-mesonephros complex (GAM) was investigated. Embryonic and neonatal GAMs exhibited mRNA for all of the HSPs examined during and after the TSP. One-month-old GAMs were separated into 3 portions (gonad, adrenal gland, and mesonephros), and sexual dimorphism in the mRNA expression of gonadal HSP27 (male > female), gonadal HSP70A (male < female), and adrenal HSP90 alpha (male > female) was observed. These findings provide new insights on TSD and suggest that further studies examining the role of HSPs during gonadal development are needed. (c) 2009 S. Karger AG, Basel.

  19. Sex determination in skeletal remains from the medieval Eastern Adriatic coast – discriminant function analysis of humeri

    PubMed Central

    Bašić, Željana; Anterić, Ivana; Vilović, Katarina; Petaros, Anja; Bosnar, Alan; Madžar, Tomislav; Polašek, Ozren; Anđelinović, Šimun

    2013-01-01

    Aim To investigate the usefulness of humerus measurement for sex determination in a sample of medieval skeletons from the Eastern Adriatic Coast. Additional aim was to compare the results with contemporary female population. Methods Five humerus measurements (maximum length, epicondylar width, maximum vertical diameter of the head, maximum and minimum diameter of the humerus at midshaft) for 80 male and 35 female medieval and 19 female contemporary humeri were recorded. Only sufficiently preserved skeletons and those with no obvious pathological or traumatic changes that could affect the measurements were included. For ten samples, analysis of DNA was performed in order to determine sex using amelogenin. Results The initial comparison of men and women indicated significant differences in all five measures (P < 0.001). Discriminant function for sex determination indicated that as much as 85% of cases could be properly categorized, with better results in men (86%) than women (80%). Furthermore, the comparison of the medieval and contemporary women did not show significant difference in any of the measured features. Sex results obtained by anthropological and DNA analysis matched in all 10 cases. Conclusion The results indicate that humerus measurement in Croatian medieval population may be sufficient to determine the sex of the skeleton. Furthermore, it seems that secular changes have not substantially affected contemporary population, suggesting that the results of this study are transferable to contemporary population as well. PMID:23771758

  20. Expression of putative sex-determining genes during the thermosensitive period of gonad development in the snapping turtle, Chelydra serpentina.

    PubMed

    Rhen, T; Metzger, K; Schroeder, A; Woodward, R

    2007-01-01

    Modes of sex determination are quite variable in vertebrates. The developmental decision to form a testis or an ovary can be influenced by one gene, several genes, environmental variables, or a combination of these factors. Nevertheless, certain morphogenetic aspects of sex determination appear to be conserved in amniotes. Here we clone fragments of nine candidate sex-determining genes from the snapping turtle Chelydra serpentina, a species with temperature-dependent sex determination (TSD). We then analyze expression of these genes during the thermosensitive period of gonad development. In particular, we compare gene expression profiles in gonads from embryos incubated at a male-producing temperature to those from embryos at a female-producing temperature. Expression of Dmrt1 and Sox9 mRNA increased gradually at the male-producing temperature, but was suppressed at the female-producing temperature. This finding suggests that Dmrt1 and Sox9 play a role in testis development. In contrast, expression of aromatase, androgen receptor (Ar), and Foxl2 mRNA was constant at the male-producing temperature, but increased several-fold in embryos at the female-producing temperature. Aromatase, Ar, and Foxl2 may therefore play a role in ovary development. In addition, there was a small temperature effect on ER alpha expression with lower mRNA levels found in embryos at the female-producing temperature. Finally, Dax1, Fgf9, and SF-1 were not differentially expressed during the sex-determining period, suggesting these genes are not involved in sex determination in the snapping turtle. Comparison of gene expression profiles among amniotes indicates that Dmrt1 and Sox9 are part of a core testis-determining pathway and that Ar, aromatase, ER alpha, and Foxl2 are part of a core ovary-determining pathway. 2007 S. Karger AG, Basel

  1. Quantitative Trait Loci Involved in Sex Determination and Body Growth in the Gilthead Sea Bream (Sparus aurata L.) through Targeted Genome Scan

    PubMed Central

    Loukovitis, Dimitrios; Sarropoulou, Elena; Tsigenopoulos, Costas S.; Batargias, Costas; Magoulas, Antonios; Apostolidis, Apostolos P.; Chatziplis, Dimitrios; Kotoulas, Georgios

    2011-01-01

    Among vertebrates, teleost fish exhibit a considerably wide range of sex determination patterns that may be influenced by extrinsic parameters. However even for model fish species like the zebrafish Danio rerio the precise mechanisms involved in primary sex determination have not been studied extensively. The zebrafish, a gonochoristic species, is lacking discernible sex chromosomes and the sex of juvenile fish is difficult to determine. Sequential protandrous hermaphrodite species provide distinct determination of the gender and allow studying the sex determination process by looking at the mechanism of sex reversal. This is the first attempt to understand the genetic basis of phenotypic variation for sex determination and body weight in a sequential protandrous hermaphrodite species, the gilthead sea bream (Sparus aurata). This work demonstrates a fast and efficient strategy for Quantitative Trait Loci (QTL) detection in the gilthead sea bream, a non-model but target hermaphrodite fish species. Therefore a comparative mapping approach was performed to query syntenies against two other Perciformes, the European sea bass (Dicentrarchus labrax), a gonochoristic species and the Asian sea bass (Lates calcarifer) a protandrous hermaphrodite. In this manner two significant QTLs, one QTL affecting both body weight and sex and one QTL affecting sex, were detected on the same linkage group. The co-segregation of the two QTLs provides a genomic base to the observed genetic correlation between these two traits in sea bream as well as in other teleosts. The identification of QTLs linked to sex reversal and growth, will contribute significantly to a better understanding of the complex nature of sex determination in S. aurata where most individuals reverse to the female sex at the age of two years through development and maturation of the ovarian portion of the gonad and regression of the testicular area. [Genomic sequences reported in this manuscript have been submitted to Gen

  2. Sex determination: ciliates' self-censorship.

    PubMed

    Bloomfield, Gareth

    2014-07-07

    Differentiation involves the expression of certain latent cellular characteristics and the repression of others. A new study has revealed how Paramecium uses short RNAs to delete information from the somatic genome of one of its two sexes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Applying iPSCs for Preserving Endangered Species and Elucidating the Evolution of Mammalian Sex Determination.

    PubMed

    Honda, Arata

    2018-06-01

    The endangered species Tokudaia osimensis has the unique chromosome constitution of 2n = 25, with an XO/XO sex chromosome configuration (2n = 25; XO). There is urgency to preserve this species and to elucidate the regulator(s) that can discriminate the males and females arising from the indistinguishable sex chromosome constitution. However, it is not realistic to examine this rare animal species by sacrificing individuals. Recently, true naïve induced pluripotent stem cells were successfully generated from a female T. osimensis, and the sexual plasticity of its germ cells was elucidated. This achievement constitutes the basis of an attractive research area, including embryonic fate determination, sex determination, and factor(s) that can replace the Y chromosome. In this essay, concrete strategies to conserve rare animal species and to reveal their specific characteristics using other compatible and abundant animals are proposed. © 2018 WILEY Periodicals, Inc.

  4. When daughters are unwanted. Sex determination tests in India.

    PubMed

    Kishwar, M

    1995-01-01

    Amniocentesis and ultrasound have been used for detecting fetal abnormalities, but in India they have been used for sex determination, leading to the abortion of hundreds of thousands of female fetuses. As a result, by 1991 the sex ratio had declined to 929 females per 1000 males from 972 females per 1000 males in 1901. This amounts to a deficit of almost 30 million females in the whole population. The regional prevalence of sex preferences has spread horizontally and vertically in the south and the northeast, where the ratios used to be more favorable. A ban on such prenatal diagnosis was passed in several states, but it proved to be ineffective and unenforceable. The result was only that the fees charged soared. Finally, in August 1994 the Indian Parliament enacted the Prenatal Diagnostics Techniques Act that prohibited genetic counseling centers to perform such procedures unless strict criteria were observed (age over 35 years, two or more previous abortions, exposure to drugs, infections, and mental or physical retardation). However, the emergence of a police-doctor nexus is dangerous for the well-being of any society and could lead to criminalization of the medical profession. Some doctors also rationalize this practice as a means of controlling population, because the custom continues to have children until the desired number of sons are born. In low sex ratio regions seclusion, disinheritance of women from property, low female literacy, poor health, greater incidence of domestic violence, and low employment rates are typical. The aversion to female infants is a culturally conditioned choice which materializes in the pervasive dread of daughters. Women themselves perpetuate the dread because of their own misery, low status, abuse, and the burden of the dowry. The devaluation of women is rooted in history, particularly in the northwest where constant wars favored a martial society for males (with strict purdah for females), and in addition British colonialism

  5. [Molecular mechanisms in sex determination: from gene regulation to pathology].

    PubMed

    Ravel, C; Chantot-Bastaraud, S; Siffroi, J-P

    2004-01-01

    Testis determination is the complex process by which the bipotential gonad becomes a normal testis during embryo development. As a consequence, this process leads to sexual differentiation corresponding to the masculinization of both genital track and external genitalia. The whole phenomenon is under genetic control and is particularly driven by the presence of the Y chromosome and by the SRY gene, which acts as the key initiator of the early steps of testis determination. However, many other autosomal genes, present in both males and females, are expressed during testis formation in a gene activation pathway, which is far to be totally elucidated. All these genes act in a dosage-sensitive manner by which quantitative gene abnormalities, due to chromosomal deletions, duplications or mosaicism, may lead to testis determination failure and sex reversal.

  6. Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements.

    PubMed

    Schartl, Manfred; Schories, Susanne; Wakamatsu, Yuko; Nagao, Yusuke; Hashimoto, Hisashi; Bertin, Chloé; Mourot, Brigitte; Schmidt, Cornelia; Wilhelm, Dagmar; Centanin, Lazaro; Guiguen, Yann; Herpin, Amaury

    2018-01-29

    Sex determination relies on a hierarchically structured network of genes, and is one of the most plastic processes in evolution. The evolution of sex-determining genes within a network, by neo- or sub-functionalization, also requires the regulatory landscape to be rewired to accommodate these novel gene functions. We previously showed that in medaka fish, the regulatory landscape of the master male-determining gene dmrt1bY underwent a profound rearrangement, concomitantly with acquiring a dominant position within the sex-determining network. This rewiring was brought about by the exaptation of a transposable element (TE) called Izanagi, which is co-opted to act as a silencer to turn off the dmrt1bY gene after it performed its function in sex determination. We now show that a second TE, Rex1, has been incorporated into Izanagi. The insertion of Rex1 brought in a preformed regulatory element for the transcription factor Sox5, which here functions in establishing the temporal and cell-type-specific expression pattern of dmrt1bY. Mutant analysis demonstrates the importance of Sox5 in the gonadal development of medaka, and possibly in mice, in a dmrt1bY-independent manner. Moreover, Sox5 medaka mutants have complete female-to-male sex reversal. Our work reveals an unexpected complexity in TE-mediated transcriptional rewiring, with the exaptation of a second TE into a network already rewired by a TE. We also show a dual role for Sox5 during sex determination: first, as an evolutionarily conserved regulator of germ-cell number in medaka, and second, by de novo regulation of dmrt1 transcriptional activity during primary sex determination due to exaptation of the Rex1 transposable element.

  7. Temperature-Dependent Sex Determination under Rapid Anthropogenic Environmental Change: Evolution at a Turtle's Pace?

    PubMed

    Refsnider, Jeanine M; Janzen, Fredric J

    2016-01-01

    Organisms become adapted to their environment by evolving through natural selection, a process that generally transpires over many generations. Currently, anthropogenically driven environmental changes are occurring orders of magnitude faster than they did prior to human influence, which could potentially outpace the ability of some organisms to adapt. Here, we focus on traits associated with temperature-dependent sex determination (TSD), a classic polyphenism, in a model turtle species to address the evolutionary potential of species with TSD to respond to rapid climate change. We show, first, that sex-ratio outcomes in species with TSD are sensitive to climatic variation. We then identify the evolutionary potential, in terms of heritability, of TSD and quantify the evolutionary potential of 3 key traits involved in TSD: pivotal temperature, maternal nest-site choice, and nesting phenology. We find that these traits display different patterns of adaptive potential: pivotal temperature exhibits moderate heritable variation, whereas nest-site choice and nesting phenology, with considerable phenotypic plasticity, have only modest evolutionary potential to alter sex ratios. Therefore, the most likely response of species with TSD to anthropogenically induced climate change may be a combination of microevolution in thermal sensitivity of the sex-determining pathway and of plasticity in maternal nesting behavior. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Sex determination using cheiloscopy and mandibular canine index as a tool in forensic dentistry.

    PubMed

    Singh, Jaspal; Gupta, Kapil D; Sardana, Varun; Balappanavar, Ashwini Y; Malhotra, Garima

    2012-07-01

    Establishment of a person's individuality is important for legal as well as humanitarian purpose and gender determination is an essential step in identifying an individual. In forensic odontology the sum total of all the characteristics of teeth and their associated structures provide a unique totality and forms the basis for personal identification. To investigate the accuracy of various methods employed in sex determination such as cheiloscopy and mandibular canine index (MCI). The study group comprises adults between 20 and 25 years of age, who were assessed for gender identification using lip prints and MCI. The results were subjected to statistical analysis. MCI and lip prints were found to be accurate and specific for sex determination. There is scope for use of these methods in criminal investigations, personal identification, and genetic studies. Thus, dental tissues make good witnesses although they speak softly, they never lie and they never forget.

  9. Awareness and Attitudes Regarding Prenatal Sex Determination, Pre-Conception and Pre-Natal Diagnostic Techniques Act (PCPNDTA) among Pregnant Women in Southern India

    PubMed Central

    Kumar, Nithin; Unnikrishnan, Bhaskaran; Kanchan, Tanuj; Thapar, Rekha; Mithra, Prasanna; Kulkarni, Vaman; Holla, Ramesh

    2014-01-01

    Objectives: The present study was conducted to assess the awareness and attitude regarding prenatal sex determination and Pre-conception and Pre-natal Diagnostic techniques Act among pregnant women. Materials and Methods: A cross sectional study was carried at tertiary care teaching hospitals of Kasturba Medical College in Mangalore, India among 132 pregnant women. Data was collected using a pre-tested semi-structured questionnaire and was analysed using Statistical Package for Social Sciences(SPSS) version 11.5 and results were expressed in percentages. Results: The study included 132 participants and the mean age of study subjects was around 27 y. Majority of the study subjects (91.7%) knew that prenatal sex determination was possible. Three fourth (74.4%) of the participants prenatal sex determination was a punishable offence. One of the participants was ready to terminate pregnancy if sex of the fetus was revealed to be female before second trimester. Majority of participants (67.4%) were willing to educate people about PCPNDT act and motivate them against sex determination and sex selective abortions. Conclusion: Our study showed that higher proportion of participants knew about the prenatal sex determination and it was a punishable offence, still majority of them preferred to know the sex of unborn child which shows the need to implement the act effectively. PMID:25478372

  10. PCBs as environmental estrogens: Turtle sex determination as a biomarker of environmental contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergeron, J.M.; Crews, D.; McLachlan, J.A.

    1994-09-01

    Polychlorinated biphenyls (PCBs) are widespread, low-level environmental pollutants associated with adverse health effects such as immune suppression and teratogenicity. There is increasing evidence that some PCB compounds are capable of disrupting reproductive and endocrine function in fish, birds, and mammals, including humans, particularly during development. Research on the mechanism through which these compounds act to alter reproductive function indicates estrogenic activity, whereby the compounds may be altering sexual differentiation. Here we demonstrate the estrogenic effect of some PCBs by reversing gonadal sex in a reptile species that exhibits temperature-dependent sex determination. 17 refs., 1 fig., 1 tab.

  11. Steroid Signaling and Temperature-Dependent Sex Determination – Reviewing the Evidence for Early Action of Estrogen during Ovarian Determination in the Red-Eared Slider Turtle (Trachemys scripta elegans)

    PubMed Central

    Ramsey, Mary; Crews, David

    2009-01-01

    The developmental processes underlying gonadal differentiation are conserved across vertebrates, but the triggers initiating these trajectories are extremely variable. The red-eared slider turtle (Trachemys scripta elegans) exhibits temperature-dependent sex determination (TSD), a system where incubation temperature during a temperature-sensitive period of development determines offspring sex. However, gonadal sex is sensitive to both temperature and hormones during this period – particularly estrogen. We present a model for temperature-based differences in aromatase expression as a critical step in ovarian determination. Localized estrogen production facilitates ovarian development while inhibiting male-specific gene expression. At male-producing temperatures aromatase is not upregulated, thereby allowing testis development. PMID:18992835

  12. Climate and predation dominate juvenile and adult recruitment in a turtle with temperature-dependent sex determination.

    PubMed

    Schwanz, Lisa E; Spencer, Ricky-John; Bowden, Rachel M; Janzen, Fredric J

    2010-10-01

    Conditions experienced early in life can influence phenotypes in ecologically important ways, as exemplified by organisms with environmental sex determination. For organisms with temperature-dependent sex determination (TSD), variation in nest temperatures induces phenotypic variation that could impact population growth rates. In environments that vary over space and time, how does this variation influence key demographic parameters (cohort sex ratio and hatchling recruitment) in early life stages of populations exhibiting TSD? We leverage a 17-year data set on a population of painted turtles, Chrysemys picta, to investigate how spatial variation in nest vegetation cover and temporal variation in climate influence early life-history demography. We found that spatial variation in nest cover strongly influenced nest temperature and sex ratio, but was not correlated with clutch size, nest predation, total nest failure, or hatching success. Temporal variation in climate influenced percentage of total nest failure and cohort sex ratio, but not depredation rate, mean clutch size, or mean hatching success. Total hatchling recruitment in a year was influenced primarily by temporal variation in climate-independent factors, number of nests constructed, and depredation rate. Recruitment of female hatchlings was determined by stochastic variation in nest depredation and annual climate and also by the total nest production. Overall population demography depends more strongly on annual variation in climate and predation than it does on the intricacies of nest-specific biology. Finally, we demonstrate that recruitment of female hatchlings translates into recruitment of breeding females into the population, thus linking climate (and other) effects on early life stages to adult demographics.

  13. Climate change overruns resilience conferred by temperature-dependent sex determination in sea turtles and threatens their survival.

    PubMed

    Santidrián Tomillo, Pilar; Genovart, Meritxell; Paladino, Frank V; Spotila, James R; Oro, Daniel

    2015-08-01

    Temperature-dependent sex determination (TSD) is the predominant form of environmental sex determination (ESD) in reptiles, but the adaptive significance of TSD in this group remains unclear. Additionally, the viability of species with TSD may be compromised as climate gets warmer. We simulated population responses in a turtle with TSD to increasing nest temperatures and compared the results to those of a virtual population with genotypic sex determination (GSD) and fixed sex ratios. Then, we assessed the effectiveness of TSD as a mechanism to maintain populations under climate change scenarios. TSD populations were more resilient to increased nest temperatures and mitigated the negative effects of high temperatures by increasing production of female offspring and therefore, future fecundity. That buffered the negative effect of temperature on the population growth. TSD provides an evolutionary advantage to sea turtles. However, this mechanism was only effective over a range of temperatures and will become inefficient as temperatures rise to levels projected by current climate change models. Projected global warming threatens survival of sea turtles, and the IPCC high gas concentration scenario may result in extirpation of the studied population in 50 years. © 2015 John Wiley & Sons Ltd.

  14. Sex Determination: Separate Sexes Are a Double Turnoff in Melons.

    PubMed

    Ma, Wen-Juan; Pannell, John R

    2016-02-22

    Flowers with only one sexual function typically result from the developmental suppression of the other. A recent study that shows how this is achieved has important implications for models of the evolution of separate sexes in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Maintaining continuity through a scientific revolution: a rereading of E. B. Wilson and T. H. Morgan on sex determination and Mendelism.

    PubMed

    Kingsland, Sharon E

    2007-09-01

    A rereading of the American scientific literature on sex determination from 1902 to 1926 leads to a different understanding of the construction of the Mendelian-chromosome theory after 1910. There was significant intellectual continuity, which has not been properly appreciated, underlying this scientific "revolution." After reexamining the relationship between the ideas of key scientists, in particular Edmund B. Wilson and Thomas Hunt Morgan, I argue that, contrary to the historical literature, Wilson and Morgan did not adopt opposing views on Mendelism and sex determination. Rather, each preferred a non-Mendelian explanation of the determination of sex. Around 1910, both integrated the Mendelian and non-Mendelian theories to create a synthetic theory. One problem was the need to avoid an overly deterministic view of sex while also accepting the validity of Mendelism. Morgan's discovery of mutations on the X chromosome takes on different significance when set in the context of the debate about sex determination, and Calvin Bridges's work on sex determination is better seen as a development of Morgan's ideas, rather than a departure from them. Conclusions point to the role of synthesis within fields as a way to advance scientific theories and reflect on the relationship between synthesis and explanatory "pluralism" in biology.

  16. Accuracy of fetal sex determination in the first trimester of pregnancy using 3D virtual reality ultrasound.

    PubMed

    Bogers, Hein; Rifouna, Maria S; Koning, Anton H J; Husen-Ebbinge, Margreet; Go, Attie T J I; van der Spek, Peter J; Steegers-Theunissen, Régine P M; Steegers, Eric A P; Exalto, Niek

    2018-05-01

    Early detection of fetal sex is becoming more popular. The aim of this study was to evaluate the accuracy of fetal sex determination in the first trimester, using 3D virtual reality. Three-dimensional (3D) US volumes were obtained in 112 pregnancies between 9 and 13 weeks of gestational age. They were offline projected as a hologram in the BARCO I-Space and subsequently the genital tubercle angle was measured. Separately, the 3D US aspect of the genitalia was examined for having a male or female appearance. Although a significant difference in genital tubercle angles was found between male and female fetuses, it did not result in a reliable prediction of fetal gender. Correct sex prediction based on first trimester genital appearance was at best 56%. Our results indicate that accurate determination of the fetal sex in the first trimester of pregnancy is not possible, even using an advanced 3D US technique. © 2017 Wiley Periodicals, Inc.

  17. GLOBAL EPIDEMIOLOGY OF HIV AMONG FEMALE SEX WORKERS: INFLUENCE OF STRUCTURAL DETERMINANTS

    PubMed Central

    Shannon, K; Strathdee, SA; Goldenberg, SM; Duff, P; Mwangi, P; Rusakova, M; Reza-Paul, S; Lau, J; Deering, K; Pickles, M; Boily, M-C

    2014-01-01

    SUMMARY Female sex workers (FSWs) bear a disproportionately large burden of HIV infection worldwide. Despite decades of research and programme activity, the epidemiology of HIV and the role that structural determinants have in mitigating or potentiating HIV epidemics and access to care for FSWs is poorly understood. We reviewed available published data for HIV prevalence and incidence, condom use, and structural determinants among this group. Only 87 (43%) of 204 unique studies reviewed explicitly examined structural determinants of HIV. Most studies were from Asia, with few from areas with a heavy burden of HIV such as sub-Saharan Africa, Russia, and eastern Europe. To further explore the potential effect of structural determinants on the course of epidemics, we used a deterministic transmission model to simulate potential HIV infections averted through structural changes in regions with concentrated and generalised epidemics, and high HIV prevalence among FSWs. This modelling suggested that elimination of sexual violence alone could avert 17% of HIV infections in Kenya (95% uncertainty interval [UI] 1–31) and 20% in Canada (95% UI 3–39) through its immediate and sustained effect on non-condom use) among FSWs and their clients in the next decade. In Kenya, scaling up of access to antiretroviral therapy among FSWs and their clients to meet WHO eligibility of a CD4 cell count of less than 500 cells per μL could avert 34% (95% UI 25–42) of infections and even modest coverage of sex worker-led outreach could avert 20% (95% UI 8–36) of infections in the next decade. Decriminalisation of sex work would have the greatest effect on the course of HIV epidemics across all settings, averting 33–46% of HIV infections in the next decade. Multipronged structural and community-led interventions are crucial to increase access to prevention and treatment and to promote human rights for FSWs worldwide. PMID:25059947

  18. Sex determination using humeral dimensions in a sample from KwaZulu-Natal: an osteometric study

    PubMed Central

    Ogedengbe, Oluwatosin Olalekan; Ajayi, Sunday Adelaja; Komolafe, Omobola Aderibigbe; Zaw, Aung Khaing; Naidu, Edwin Coleridge Stephen

    2017-01-01

    The morphological characteristics of the humeral bone has been investigated in recent times with studies showing varying degrees of sexual dimorphism. Osteologists and forensic scientists have shown that sex determination methods based on skeletal measurements are population specific, and these population-specific variations are present in many body dimensions. The present study aims to establish sex identification using osteometric standards for the humerus in a contemporary KwaZulu-Natal population. A total of 11 parameters were measured in a sample of n=211 humeri (males, 113; females, 98) from the osteological collection in the Discipline of Clinical Anatomy, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa. The difference in means for nearly all variables were found to be significantly higher in males compared to females (P<0.01) with the most effective single parameter for predicting sex being the vertical head diameter having an accuracy of 82.5%. Stepwise discriminant analysis increased the overall accuracy rate to 87.7% when all measurements were jointly applied. We conclude that the humerus is an important bone which can be reliably used for sex determination based on standard metric methods despite minor tribal or ancestral differences amongst an otherwise homogenous population. PMID:29043096

  19. Sex determination using humeral dimensions in a sample from KwaZulu-Natal: an osteometric study.

    PubMed

    Ogedengbe, Oluwatosin Olalekan; Ajayi, Sunday Adelaja; Komolafe, Omobola Aderibigbe; Zaw, Aung Khaing; Naidu, Edwin Coleridge Stephen; Okpara Azu, Onyemaechi

    2017-09-01

    The morphological characteristics of the humeral bone has been investigated in recent times with studies showing varying degrees of sexual dimorphism. Osteologists and forensic scientists have shown that sex determination methods based on skeletal measurements are population specific, and these population-specific variations are present in many body dimensions. The present study aims to establish sex identification using osteometric standards for the humerus in a contemporary KwaZulu-Natal population. A total of 11 parameters were measured in a sample of n=211 humeri (males, 113; females, 98) from the osteological collection in the Discipline of Clinical Anatomy, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa. The difference in means for nearly all variables were found to be significantly higher in males compared to females ( P <0.01) with the most effective single parameter for predicting sex being the vertical head diameter having an accuracy of 82.5%. Stepwise discriminant analysis increased the overall accuracy rate to 87.7% when all measurements were jointly applied. We conclude that the humerus is an important bone which can be reliably used for sex determination based on standard metric methods despite minor tribal or ancestral differences amongst an otherwise homogenous population.

  20. Inheritance of nesting behaviour across natural environmental variation in a turtle with temperature-dependent sex determination.

    PubMed

    McGaugh, Suzanne E; Schwanz, Lisa E; Bowden, Rachel M; Gonzalez, Julie E; Janzen, Fredric J

    2010-04-22

    Nesting behaviour is critical for reproductive success in oviparous organisms with no parental care. In organisms where sex is determined by incubation temperature, nesting behaviour may be a prime target of selection in response to unbalanced sex ratios. To produce an evolutionary change in response to sex-ratio selection, components of nesting behaviour must be heritable. We estimated the field heritability of two key components of nesting behaviour in a population of painted turtles (Chrysemys picta) with temperature-dependent sex determination by applying the 'animal model' to a pedigree reconstructed from genotype data. We obtained estimates of low to non-detectable heritability using repeated records across all environments. We then determined environment-specific heritability by grouping records with similar temperatures for the winter preceding the nesting season, a variable known to be highly associated with our two traits of interest, nest vegetation cover and Julian date of nesting. The heritability estimates of nest vegetation cover and Julian date of nesting were qualitatively highest and significant, or nearly so, after hot winters. Additive genetic variance for these traits was not detectable after cold winters. Our analysis suggests that the potential for evolutionary change of nesting behaviour may be dependent on the thermal conditions of the preceding winter, a season that is predicted to be especially subject to climate change.

  1. Charactering the ZFAND3 gene mapped in the sex-determining locus in hybrid tilapia (Oreochromis spp.)

    PubMed Central

    Ma, Keyi; Liao, Minghui; Liu, Feng; Ye, Baoqing; Sun, Fei; Yue, Gen Hua

    2016-01-01

    Zinc finger AN1-type domain 3 (ZFAND3) is essential for spermatogenesis in mice. However, its function in teleosts remains unclear. In this study, we characterized the ZFAND3 gene (termed as OsZFAND3) in an important food fish, tilapia. The OsZFAND3 cDNA sequence is 1,050 bp in length, containing an ORF of 615 bp, which encodes a putative peptide of 204 amino acid residues. Quantitative real-time PCR revealed that the OsZFAND3 transcripts were exclusively expressed in the testis and ovary. In situ hybridization showed that the high expression of OsZFAND3 transcripts was predominantly localized in the spermatocyte and spermatid. These results suggest that OsZFAND3 is involved in male germ cell maturation. Three single nucleotide polymorphisms (SNPs) were detected in the introns of OsZFAND3. The OsZFAND3 gene was mapped in the sex-determining locus on linkage group 1 (LG1). The three SNPs in the OsZFAND3 gene were strictly associated with sex phenotype, suggesting that the OsZFAND3 gene is tightly linked to the sex-determining locus. Our study provides new insights into the functions of the OsZFAND3 gene in tilapia and a foundation for further detailed analysis of the OsZFAND3 gene in sex determination and differentiation. PMID:27137111

  2. Sex determination using the mesio-distal dimension of permanent maxillary incisors and canines in a modern Chilean population.

    PubMed

    Peckmann, Tanya R; Logar, Ciara; Garrido-Varas, Claudia E; Meek, Susan; Pinto, Ximena Toledo

    2016-03-01

    The pelvis and skull have been shown to be the most accurate skeletal elements for the determination of sex. Incomplete or fragmentary bones are frequently found at forensic sites however teeth are often recovered in forensic cases due to their postmortem longevity. The goal of the present research was to investigate sexual dimorphism between the mesio-distal dimension of the permanent maxillary incisors and canines for the determination of sex in a contemporary Chilean population. Three hundred and three dental models (126 males and 177 females) from individuals ranging in age from 13 years to 37 years old were used from the School of Dentistry, University of Chile. The statistical analyses showed that only the central incisors and canines were sexually dimorphic. Discriminant function score equations were generated for use in sex determination. The average accuracy of sex classification ranged from 59.7% to 65.0% for the univariate analysis and 60.1% to 66.7% for the multivariate analysis. Comparisons to other populations were made. Overall, the accuracies ranged from 54.4% to 63.3% with males most often identified correctly and females most often misidentified. The determination of sex from the mesio-distal width of incisors and canines in Chilean populations does not adhere to the Mohan and Daubert criteria and therefore would not be presented as evidence in court. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Sex-specific genetic determinants for arterial stiffness in Dahl salt-sensitive hypertensive rats.

    PubMed

    Decano, Julius L; Pasion, Khristine A; Black, Nicole; Giordano, Nicholas J; Herrera, Victoria L; Ruiz-Opazo, Nelson

    2016-01-11

    Arterial stiffness is an independent predictor of cardiovascular outcomes in hypertensive patients including myocardial infarction, fatal stroke, cerebral micro-bleeds which predicts cerebral hemorrhage in hypertensive patients, as well as progression to hypertension in non-hypertensive subjects. The association between arterial stiffness and various cardiovascular outcomes (coronary heart disease, stroke) remains after adjusting for age, sex, blood pressure, body mass index and other known predictors of cardiovascular disease, suggesting that arterial stiffness, measured via carotid-femoral pulse wave velocity, has a better predictive value than each of these factors. Recent evidence shows that arterial stiffening precedes the onset of high blood pressure; however their molecular genetic relationship (s) and sex-specific determinants remain uncertain. We investigated whether distinct or shared genetic determinants might underlie susceptibility to arterial stiffening in male and female Dahl salt-sensitive rats. Thus, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting arterial stiffness in six-week old F2 (Dahl S x R)-intercross male and female rats characterized for abdominal aortic pulse wave velocity and aortic strain by high-resolution ultrasonography. We detected five highly significant QTLs affecting aortic stiffness: two interacting QTLs (AS-m1 on chromosome 4 and AS-m2 on chromosome16, LOD 8.8) in males and two distinct interacting QTLs (AS-f1 on chromosome 9 and AS-f2 on chromosome11, LOD 8.9) in females affecting pulse wave velocity. One QTL (AS-1 on chromosome 3, LOD 4.3) was found to influence aortic strain in a sex-independent manner. None of these arterial stiffness QTLs co-localized with previously reported blood pressure QTLs detected in equivalent genetic intercrosses. These data reveal sex-specific genetic determinants for aortic pulse wave velocity and suggest distinct polygenic susceptibility for arterial stiffness and

  4. Sex determination by three-dimensional geometric morphometrics of craniofacial form.

    PubMed

    Chovalopoulou, Maria-Eleni; Valakos, Efstratios D; Manolis, Sotiris K

    The purpose of the present study is to define which regions of the cranium, the upper-face, the orbits and the nasal are the most sexually dimorphic, by using three-dimensional geometric morphometric methods, and investigate the effectiveness of this method in determining sex from the shape of these regions. The study sample consisted of 176 crania of known sex (94 males, 82 females) belonging to individuals who lived in Greece during the 20(th) century. The three-dimensional co-ordinates of 31 ecto-cranial landmarks were digitized using a MicroScribe 3DX contact digitizer. Goodall's F-test was performed in order to compare statistical differences in shape between males and females. Generalized Procrustes Analysis (GPA) was used to obtain size and shape variables for statistical analysis. Shape, Size and Form analyses were carried out by logistic regression and discriminant function analysis. The results indicate that there are shape differences between the sexes in the upper-face and the orbits. The highest shape classification rate was obtained from the upper-face region. The centroid size of the caraniofacial and the orbital regions was smaller in females than males. Moreover, it was found that size is significant for sexual dimorphism in the upper-face region. As anticipated, the classification accuracy improves when both size and shape are combined. The findings presented here constitute a firm basis upon which further research can be conducted.

  5. Novel method for determining sex of live adult Laricobius nigrinus (Coleoptera: Derodontidae).

    Treesearch

    William Shepherd; Michael Montgomery; Brian Sullivan; Albert (Bud) Mayfield

    2014-01-01

    A method for determining the sex of live adult Laricobius nigrinus Fender (Coleoptera:Derodontidae) is described. Beetles were briefly chilled and positioned ventral-side-up under a dissecting microscope. Two forceps with blunted ends were used to gently brace the beetle and press on the centre of the abdomen to extrude its terminal segments. Male beetles were...

  6. Determinants of quality of life in Spanish transsexuals attending a gender unit before genital sex reassignment surgery.

    PubMed

    Gómez-Gil, Esther; Zubiaurre-Elorza, Leire; de Antonio, Isabel Esteva; Guillamon, Antonio; Salamero, Manel

    2014-03-01

    To evaluate the self-reported perceived quality of life (QoL) in transsexuals attending a Spanish gender identity unit before genital sex reassignment surgery, and to identify possible determinants that likely contribute to their QoL. A sample of 119 male-to-female (MF) and 74 female-to-male (FM) transsexuals were included in the study. The WHOQOL-BREF scale was used to evaluate self-reported QoL. Possible determinants included age, sex, education, employment, partnership status, undergoing cross-sex hormonal therapy, receiving at least one non-genital sex reassignment surgery, and family support (assessed with the family APGAR questionnaire). Mean scores of all QoL domains ranged from 55.44 to 63.51. Linear regression analyses revealed that undergoing cross-sex hormonal treatment, having family support, and having an occupation were associated with a better QoL for all transsexuals. FM transsexuals have higher social domain QoL scores than MF transsexuals. The model accounts for 20.6 % of the variance in the physical, 32.5 % in the psychological, 21.9 % in the social, and 20.1 % in the environment domains, and 22.9 % in the global QoL factor. Cross-sex hormonal treatment, family support, and working or studying are linked to a better self-reported QoL in transsexuals. Healthcare providers should consider these factors when planning interventions to promote the health-related QoL of transsexuals.

  7. Proteasomal Ubiquitin Receptor RPN-10 Controls Sex Determination in Caenorhabditis elegans

    PubMed Central

    Shimada, Masumi; Kanematsu, Kenji; Tanaka, Keiji; Yokosawa, Hideyoshi

    2006-01-01

    The ubiquitin-binding RPN-10 protein serves as a ubiquitin receptor that delivers client proteins to the 26S proteasome. Although ubiquitin recognition is an essential step for proteasomal destruction, deletion of the rpn-10 gene in yeast does not influence viability, indicating redundancy of the substrate delivery pathway. However, their specificity and biological relevance in higher eukaryotes is still enigmatic. We report herein that knockdown of the rpn-10 gene, but not any other proteasome subunit genes, sexually transforms hermaphrodites to females by eliminating hermaphrodite spermatogenesis in Caenorhabditis elegans. The feminization phenotype induced by deletion of the rpn-10 gene was rescued by knockdown of tra-2, one of sexual fate decision genes promoting female development, and its downstream target tra-1, indicating that the TRA-2–mediated sex determination pathway is crucial for the Δrpn-10–induced sterile phenotype. Intriguingly, we found that co-knockdown of rpn-10 and functionally related ubiquitin ligase ufd-2 overcomes the germline-musculinizing effect of fem-3(gf). Furthermore, TRA-2 proteins accumulated in rpn-10-defective worms. Our results show that the RPN-10–mediated ubiquitin pathway is indispensable for control of the TRA-2–mediated sex-determining pathway. PMID:17050737

  8. Influence of age, sex, and strength training on human muscle gene expression determined by microarray

    PubMed Central

    ROTH, STEPHEN M.; FERRELL, ROBERT E.; PETERS, DAVID G.; METTER, E. JEFFREY; HURLEY, BEN F.; ROGERS, MARC A.

    2010-01-01

    The purpose of this study was to determine the influence of age, sex, and strength training (ST) on large-scale gene expression patterns in vastus lateralis muscle biopsies using high-density cDNA microarrays and quantitative PCR. Muscle samples from sedentary young (20–30 yr) and older (65–75 yr) men and women (5 per group) were obtained before and after a 9-wk unilateral heavy resistance ST program. RNA was hybridized to cDNA filter microarrays representing ~4,000 known human genes and comparisons were made among arrays to determine differential gene expression as a result of age and sex differences, and/or response to ST. Sex had the strongest influence on muscle gene expression, with differential expression (>1.7-fold) observed for ~200 genes between men and women (~75% with higher expression in men). Age contributed to differential expression as well, as ~50 genes were identified as differentially expressed (>1.7-fold) in relation to age, representing structural, metabolic, and regulatory gene classes. Sixty-nine genes were identified as being differentially expressed (>1.7-fold) in all groups in response to ST, and the majority of these were downregulated. Quantitative PCR was employed to validate expression levels for caldesmon, SWI/SNF (BAF60b), and four-and-a-half LIM domains 1. These significant differences suggest that in the analysis of skeletal muscle gene expression issues of sex, age, and habitual physical activity must be addressed, with sex being the most critical variable. PMID:12209020

  9. Molecular characterization and evolutionary insights into potential sex-determination genes in the western orchard predatory mite Metaseiulus occidentalis (Chelicerata: Arachnida: Acari: Phytoseiidae).

    PubMed

    Pomerantz, Aaron F; Hoy, Marjorie A; Kawahara, Akito Y

    2015-01-01

    Little is known about the process of sex determination at the molecular level in species belonging to the subclass Acari, a taxon of arachnids that contains mites and ticks. The recent sequencing of the transcriptome and genome of the western orchard predatory mite Metaseiulus occidentalis allows investigation of molecular mechanisms underlying the biological processes of sex determination in this predator of phytophagous pest mites. We identified four doublesex-and-mab-3-related transcription factor (dmrt) genes, one transformer-2 gene, one intersex gene, and two fruitless-like genes in M. occidentalis. Phylogenetic analyses were conducted to infer the molecular relationships to sequences from species of arthropods, including insects, crustaceans, acarines, and a centipede, using available genomic data. Comparative analyses revealed high sequence identity within functional domains and confirmed that the architecture for certain sex-determination genes is conserved in arthropods. This study provides a framework for identifying potential target genes that could be implicated in the process of sex determination in M. occidentalis and provides insight into the conservation and change of the molecular components of sex determination in arthropods.

  10. MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module.

    PubMed

    Arur, Swathi; Ohmachi, Mitsue; Berkseth, Matt; Nayak, Sudhir; Hansen, David; Zarkower, David; Schedl, Tim

    2011-05-17

    Tissues that generate specialized cell types in a production line must coordinate developmental mechanisms with physiological demand, although how this occurs is largely unknown. In the Caenorhabditis elegans hermaphrodite, the developmental sex-determination cascade specifies gamete sex in the distal germline, while physiological sperm signaling activates MPK-1/ERK in the proximal germline to control plasma membrane biogenesis and organization during oogenesis. We discovered repeated utilization of a self-contained negative regulatory module, consisting of NOS-3 translational repressor, FEM-CUL-2 (E3 ubiquitin ligase), and TRA-1 (Gli transcriptional repressor), which acts both in sex determination and in physiological demand control of oogenesis, coordinating these processes. In the distal germline, where MPK-1 is not activated, TRA-1 represses the male fate as NOS-3 functions in translational repression leading to inactivation of the FEM-CUL-2 ubiquitin ligase. In the proximal germline, sperm-dependent physiological MPK-1 activation results in phosphorylation-based inactivation of NOS-3, FEM-CUL-2-mediated degradation of TRA-1 and the promotion of membrane organization during oogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Evolutionary Significance of Wolbachia-to-Animal Horizontal Gene Transfer: Female Sex Determination and the f Element in the Isopod Armadillidium vulgare.

    PubMed

    Cordaux, Richard; Gilbert, Clément

    2017-07-21

    An increasing number of horizontal gene transfer (HGT) events from bacteria to animals have been reported in the past years, many of which involve Wolbachia bacterial endosymbionts and their invertebrate hosts. Most transferred Wolbachia genes are neutrally-evolving fossils embedded in host genomes. A remarkable case of Wolbachia HGT for which a clear evolutionary significance has been demonstrated is the " f element", a nuclear Wolbachia insert involved in female sex determination in the terrestrial isopod Armadillidium vulgare . The f element represents an instance of bacteria-to-animal HGT that has occurred so recently that it was possible to infer the donor (feminizing Wolbachia closely related to the w VulC Wolbachia strain of A. vulgare ) and the mechanism of integration (a nearly complete genome inserted by micro-homology-mediated recombination). In this review, we summarize our current knowledge of the f element and discuss arising perspectives regarding female sex determination, unstable inheritance, population dynamics and the molecular evolution of the f element. Overall, the f element unifies three major areas in evolutionary biology: symbiosis, HGT and sex determination. Its characterization highlights the tremendous impact sex ratio distorters can have on the evolution of sex determination mechanisms and sex chromosomes in animals and plants.

  12. A Case of Problematic Diffusion: The Use of Sex Determination Techniques in India.

    ERIC Educational Resources Information Center

    Luthra, Rashmi

    1994-01-01

    Discussion of model shifts in diffusion research focuses on the growth in the use of sex determination techniques in India and their consequences relating to gender and power. Topics addressed include development, underdevelopment, and modernization; the adoption of innovations; and meanings of innovations within particular social systems.…

  13. A novel hypothesis for the adaptive maintenance of environmental sex determination in a turtle.

    PubMed

    Spencer, R-J; Janzen, F J

    2014-08-22

    Temperature-dependent sex determination (TSD) is widespread in reptiles, yet its adaptive significance and mechanisms for its maintenance remain obscure and controversial. Comparative analyses identify an ancient origin of TSD in turtles, crocodiles and tuatara, suggesting that this trait should be advantageous in order to persist. Based on this assumption, researchers primarily, and with minimal success, have employed a model to examine sex-specific variation in hatchling phenotypes and fitness generated by different incubation conditions. The unwavering focus on different incubation conditions may be misplaced at least in the many turtle species in which hatchlings overwinter in the natal nest. If overwintering temperatures differentially affect fitness of male and female hatchlings, TSD might be maintained adaptively by enabling embryos to develop as the sex best suited to those overwintering conditions. We test this novel hypothesis using the painted turtle (Chrysemys picta), a species with TSD in which eggs hatch in late summer and hatchlings remain within nests until the following spring. We used a split-clutch design to expose field-incubated hatchlings to warm and cool overwintering (autumn-winter-spring) regimes in the laboratory and measured metabolic rates, energy use, body size and mortality of male and female hatchlings. While overall mortality rates were low, males exposed to warmer overwintering regimes had significantly higher metabolic rates and used more residual yolk than females, whereas the reverse occurred in the cool temperature regime. Hatchlings from mixed-sex nests exhibited similar sex-specific trends and, crucially, they were less energy efficient and grew less than same-sex hatchlings that originated from single-sex clutches. Such sex- and incubation-specific physiological adaptation to winter temperatures may enhance fitness and even extend the northern range of many species that overwinter terrestrially. © 2014 The Author

  14. Policing practices as a structural determinant for HIV among sex workers: a systematic review of empirical findings

    PubMed Central

    Footer, Katherine HA; Silberzahn, Bradley E; Tormohlen, Kayla N; Sherman, Susan G

    2016-01-01

    Introduction Sex workers are disproportionately infected with HIV worldwide. Significant focus has been placed on understanding the structural determinants of HIV and designing related interventions. Although there is growing international evidence that policing is an important structural HIV determinant among sex workers, the evidence has not been systematically reviewed. Methods We conducted a systematic review of quantitative studies to examine the effects of policing on HIV and STI infection and HIV-related outcomes (condom use; syringe use; number of clients; HIV/STI testing and access) among cis and trans women sex workers. Databases included PubMed, Embase, Scopus, Sociological Abstracts, Popline, Global Health (OVID), Web of Science, IBSS, IndMed and WHOLIS. We searched for studies that included police practices as an exposure for HIV or STI infection or HIV-related outcomes. Results Of the 137 peer-reviewed articles identified for full text review, 14 were included, representing sex workers' experiences with police across five settings. Arrest was the most commonly explored measure with between 6 and 45% of sex workers reporting having ever been arrested. Sexual coercion was observed between 3 and 37% of the time and police extortion between 12 and 28% across studies. Half the studies used a single measure to capture police behaviours. Studies predominantly focused on “extra-legal policing practices,” with insufficient attention to the role of “legal enforcement activities”. All studies found an association between police behaviours and HIV or STI infection, or a related risk behaviour. Conclusions The review points to a small body of evidence that confirms policing practices as an important structural HIV determinant for sex workers, but studies lack generalizability with respect to identifying those police behaviours most relevant to women's HIV risk environment. PMID:27435716

  15. Policing practices as a structural determinant for HIV among sex workers: a systematic review of empirical findings.

    PubMed

    Footer, Katherine Ha; Silberzahn, Bradley E; Tormohlen, Kayla N; Sherman, Susan G

    2016-01-01

    Sex workers are disproportionately infected with HIV worldwide. Significant focus has been placed on understanding the structural determinants of HIV and designing related interventions. Although there is growing international evidence that policing is an important structural HIV determinant among sex workers, the evidence has not been systematically reviewed. We conducted a systematic review of quantitative studies to examine the effects of policing on HIV and STI infection and HIV-related outcomes (condom use; syringe use; number of clients; HIV/STI testing and access) among cis and trans women sex workers. Databases included PubMed, Embase, Scopus, Sociological Abstracts, Popline, Global Health (OVID), Web of Science, IBSS, IndMed and WHOLIS. We searched for studies that included police practices as an exposure for HIV or STI infection or HIV-related outcomes. Of the 137 peer-reviewed articles identified for full text review, 14 were included, representing sex workers' experiences with police across five settings. Arrest was the most commonly explored measure with between 6 and 45% of sex workers reporting having ever been arrested. Sexual coercion was observed between 3 and 37% of the time and police extortion between 12 and 28% across studies. Half the studies used a single measure to capture police behaviours. Studies predominantly focused on "extra-legal policing practices," with insufficient attention to the role of "legal enforcement activities". All studies found an association between police behaviours and HIV or STI infection, or a related risk behaviour. The review points to a small body of evidence that confirms policing practices as an important structural HIV determinant for sex workers, but studies lack generalizability with respect to identifying those police behaviours most relevant to women's HIV risk environment.

  16. HIV INFECTION AMONG FEMALE SEX WORKERS IN CONCENTRATED AND HIGH PREVALENCE EPIDEMICS: WHY A STRUCTURAL DETERMINANTS FRAMEWORK IS NEEDED

    PubMed Central

    Shannon, Kate; Goldenberg, Shira M.; Deering, Kathleen N.; Strathdee, Steffanie A.

    2014-01-01

    Purpose of review This article reviews the current state of the epidemiological literature on female sex work and HIV from the past 18 months. We offer a conceptual framework for structural HIV determinants and sex work that unpacks intersecting structural, interpersonal, and individual biological and behavioural factors. Recent findings Our review suggests that despite the heavy HIV burden among female sex workers (FSWs) globally, data on the structural determinants shaping HIV transmission dynamics have only begun to emerge. Emerging research suggests that factors operating at macrostructural (e.g., migration, stigma, criminalized laws), community organization (e.g., empowerment) and work environment levels (e.g., violence, policing, access to condoms HIV testing, HAART) act dynamically with interpersonal (e.g., dyad factors, sexual networks) and individual biological and behavioural factors to confer risks or protections for HIV transmission in female sex work. Summary Future research should be guided by a Structural HIV Determinants Framework to better elucidate the complex and iterative effects of structural determinants with interpersonal and individual biological and behavioural factors on HIV transmission pathways among FSWs, and meet critical gaps in optimal access to HIV prevention, treatment, and care for FSWs globally. PMID:24464089

  17. The role of Fanconi anemia/BRCA genes in zebrafish sex determination.

    PubMed

    Rodríguez-Marí, Adriana; Postlethwait, John H

    2011-01-01

    Fanconi anemia (FA) is a human disease of bone marrow failure, leukemia, squamous cell carcinoma, and developmental anomalies, including hypogonadism and infertility. Bone marrow transplants improve hematopoietic phenotypes but do not prevent other cancers. FA arises from mutation in any of the 15 FANC genes that cooperate to repair double stranded DNA breaks by homologous recombination. Zebrafish has a single ortholog of each human FANC gene and unexpectedly, mutations in at least two of them (fancl and fancd1(brca2)) lead to female-to-male sex reversal. Investigations show that, as in human, zebrafish fanc genes are required for genome stability and for suppressing apoptosis in tissue culture cells, in embryos treated with DNA damaging agents, and in meiotic germ cells. The sex reversal phenotype requires the action of Tp53 (p53), an activator of apoptosis. These results suggest that in normal sex determination, zebrafish oocytes passing through meiosis signal the gonadal soma to maintain expression of aromatase, an enzyme that converts androgen to estrogen, thereby feminizing the gonad and the individual. According to this model, normal male and female zebrafish differ in genetic factors that control the strength of the late meiotic oocyte-derived signal, probably by regulating the number of meiotic oocytes, which environmental factors can also alter. Transcripts from fancd1(brca2) localize at the animal pole of the zebrafish oocyte cytoplasm and are required for normal oocyte nuclear architecture, for normal embryonic development, and for preventing ovarian tumors. Embryonic DNA repair and sex reversal phenotypes provide assays for the screening of small molecule libraries for therapeutic substances for FA. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Flower Development and Sex Determination between Male and Female Flowers in Vernicia fordii

    PubMed Central

    Mao, Yingji; Liu, Wenbo; Chen, Xue; Xu, Yang; Lu, Weili; Hou, Jinyan; Ni, Jun; Wang, Yuting; Wu, Lifang

    2017-01-01

    Vernicia fordii is a monoecious and diclinous species with male and female flowers on the same inflorescence. Low female to male flower ratio is one of the main reasons for low yield in this species. However, little is known of its floral development and sex determination. Here, according to the results of scanning electron microscopy and histological analysis, the floral development of V. fordii was divided into 12 stages and the first morphological divergence between the male and female flowers was found to occur at stage 7. The male flowers are always unisexual, but the female flowers present bisexual characteristics, with sterile stamen (staminode) restricted to pre-meiosis of mother sporogenous cells and cell death occurring at later development stages. To further elucidate the molecular mechanism underling sex determination at the divergence stage for male and female flowers, comparative transcriptome analysis was performed. In total, 56,065 unigenes were generated and 608 genes were differentially expressed between male and female flowers, among which 310 and 298 DEGs (differentially expressed genes) showed high expression levels in males and females, respectively. The transcriptome data showed that the sexual dimorphism of female flowers was affected by jasmonic acid, transcription factors, and some genes related to the floral meristem activity. Ten candidate genes showed consistent expression in the qRT-PCR validation and DEGs data. In this study, we provide developmental characterization and transcriptomic information for better understanding of the development of unisexual flowers and the regulatory networks underlying the mechanism of sex determination in V. fordii, which would be helpful in the molecular breeding of V. fordii to improve the yield output. PMID:28775735

  19. Flower Development and Sex Determination between Male and Female Flowers in Vernicia fordii.

    PubMed

    Mao, Yingji; Liu, Wenbo; Chen, Xue; Xu, Yang; Lu, Weili; Hou, Jinyan; Ni, Jun; Wang, Yuting; Wu, Lifang

    2017-01-01

    Vernicia fordii is a monoecious and diclinous species with male and female flowers on the same inflorescence. Low female to male flower ratio is one of the main reasons for low yield in this species. However, little is known of its floral development and sex determination. Here, according to the results of scanning electron microscopy and histological analysis, the floral development of V. fordii was divided into 12 stages and the first morphological divergence between the male and female flowers was found to occur at stage 7. The male flowers are always unisexual, but the female flowers present bisexual characteristics, with sterile stamen (staminode) restricted to pre-meiosis of mother sporogenous cells and cell death occurring at later development stages. To further elucidate the molecular mechanism underling sex determination at the divergence stage for male and female flowers, comparative transcriptome analysis was performed. In total, 56,065 unigenes were generated and 608 genes were differentially expressed between male and female flowers, among which 310 and 298 DEGs (differentially expressed genes) showed high expression levels in males and females, respectively. The transcriptome data showed that the sexual dimorphism of female flowers was affected by jasmonic acid, transcription factors, and some genes related to the floral meristem activity. Ten candidate genes showed consistent expression in the qRT-PCR validation and DEGs data. In this study, we provide developmental characterization and transcriptomic information for better understanding of the development of unisexual flowers and the regulatory networks underlying the mechanism of sex determination in V. fordii , which would be helpful in the molecular breeding of V. fordii to improve the yield output.

  20. A comparison of honeybee (Apis mellifera) queen, worker and drone larvae by RNA-Seq.

    PubMed

    He, Xu-Jiang; Jiang, Wu-Jun; Zhou, Mi; Barron, Andrew B; Zeng, Zhi-Jiang

    2017-11-06

    Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNA-Seq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  1. On the maintenance of sex chromosome polymorphism by sex-antagonistic selection.

    PubMed

    Blaser, Olivier; Neuenschwander, Samuel; Perrin, Nicolas

    2011-10-01

    Complex sex determination systems are a priori unstable and require specific selective forces for their maintenance. Analytical derivations suggest that sex antagonistic selection may play such a role, but this assumes absence of recombination between the sex-determining and sex-antagonistic genes. Using individual-based simulations and focusing on the sex chromosome and coloration polymorphisms of platy fishes as a case study, we show that the conditions for polymorphism maintenance induce female biases in primary sex ratios, so that sex ratio selection makes the system collapse toward male or female heterogamety as soon as recombinant genotypes appear. However, a polymorphism can still be maintained under scenarios comprising strong sexual selection against dull males, mild natural selection against bright females, and low recombination rates. Though such conditions are plausibly met in natural populations of fishes harboring such polymorphisms, quantitative empirical evaluations are required to properly test whether sex antagonistic selection is a causal agent or whether other selective processes are required (such as local mate competition favoring female-biased sex ratios).

  2. Sex determination of duck embryos: observations on syrinx development

    USGS Publications Warehouse

    Wilson, Robert E.; Sonsthagen, Sarah A.; Franson, J. Christian

    2013-01-01

    Ducks exhibit sexual dimorphism in vocal anatomy. Asymmetrical ossification of the syrinx (bulla syringealis) is discernable at about 10 days of age in male Pekin duck (Anas platyrhynchos domestica) embryos, but information is lacking on the early development of the bulla in wild ducks. To evaluate the reliability of this characteristic for sexing developing embryos, we examined the syrinx of dead embryos and compared results with molecular sexing techniques in high arctic nesting Common Eiders (Somateria mollissima). Embryos 8 days or older were accurately (100%) sexed based on the presence/absence of a bulla, 2 days earlier than Pekin duck. The use of the tracheal bulla can be a valuable technique when sex identification of embryos or young ducklings is required.

  3. Embryonic origin of mate choice in a lizard with temperature-dependent sex determination.

    PubMed

    Putz, Oliver; Crews, David

    2006-01-01

    Individual differences in the adult sexual behavior of vertebrates are rooted in the fetal environment. In the leopard gecko (Eublepharis macularius), a species with temperature-dependent sex determination (TSD), hatchling sex ratios differ between incubation temperatures, as does sexuality in same-sex animals. This variation can primarily be ascribed to the temperature having direct organizing actions on the brain. Here we demonstrate that embryonic temperature can affect adult mate choice in the leopard gecko. Given the simultaneous choice between two females from different incubation temperatures (30.0 and 34.0 degrees C), males from one incubation temperature (30.0 degrees C) preferred the female from 34.0 degrees C, while males from another incubation temperature (32.5 degrees C) preferred the female from 30.0 degrees C. We suggest that this difference in mate choice is due to an environmental influence on brain development leading to differential perception of opposite-sex individuals. This previously unrecognized modulator of adult mate choice lends further support to the view that mate choice is best understood in the context of an individual's entire life-history. Thus, sexual selection results from a combination of the female's as well as the male's life history. Female attractiveness and male choice therefore are complementary. Copyright 2005 Wiley Periodicals, Inc.

  4. DEHP exposure in utero disturbs sex determination and is potentially linked with precocious puberty in female mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yongan

    Human's ubiquitous exposure to di (2-ethylhexyl) phthalate (DEHP) is thought to be associated with female reproductive toxicity. Previous studies found that DEHP inhibited follicle growth and decreased estradiol levels in adult female mice. However, limited information is available on the link between in utero DEHP exposure and ovarian development in female mouse offspring. The present study evaluates the disturbances in regulatory genes involved in female sex determination and the ovarian outcomes in fetal and postnatal female mice treated with in utero DEHP exposure. Pregnant mice were exposed to DEHP by gavage, with the dosage regime beginning at human relevant exposuremore » levels. After in utero DEHP exposure, increased follicular atresia was observed in the female pups at postnatal days (PND) 21. Foxl2 expression was significantly upregulated, and Fst was significantly downregulated by DEHP above 2 mg/kg/d at PND 1 and 21. This suggests that lesion of granulosa cell differentiation and disturbance of follicle development in postnatal female mice. The expression of Cyp11a1 and Star were significantly downregulated by in utero DEHP exposure, indicating effects on estradiol biosynthesis. The female sex determination pathway was disturbed in fetus by DEHP at 2 mg/kg/d and above during the critical time window of sex determination causing significant upregulation of Foxl2, Wnt4, β-catenin and Fst. Furthermore, the increased expression of Wnt4 was supported by whole-mount in situ hybridization (WISH). These results suggest a possible association between in utero DEHP exposure and precocious puberty in the postnatal life of mice offspring, where disturbance of the sex determination regulating pathway acted as an important mechanism. - Highlights: • Maternal exposure to di (2-ethylhexyl) phthalate disturbs fetus sex determination. • DEHP upregulated Foxl2 expression potentially disturbs postnatal granulosa cell differentiation. • DEHP accelerated medulla

  5. Sex Determination in Ceratopteris richardii Is Accompanied by Transcriptome Changes That Drive Epigenetic Reprogramming of the Young Gametophyte.

    PubMed

    Atallah, Nadia M; Vitek, Olga; Gaiti, Federico; Tanurdzic, Milos; Banks, Jo Ann

    2018-05-02

    The fern Ceratopteris richardii is an important model for studies of sex determination and gamete differentiation in homosporous plants. Here we use RNA-seq to de novo assemble a transcriptome and identify genes differentially expressed in young gametophytes as their sex is determined by the presence or absence of the male-inducing pheromone called antheridiogen. Of the 1,163 consensus differentially expressed genes identified, the vast majority (1,030) are up-regulated in gametophytes treated with antheridiogen. GO term enrichment analyses of these DEGs reveals that a large number of genes involved in epigenetic reprogramming of the gametophyte genome are up-regulated by the pheromone. Additional hormone response and development genes are also up-regulated by the pheromone. This C. richardii gametophyte transcriptome and gene expression dataset will prove useful for studies focusing on sex determination and differentiation in plants. Copyright © 2018, G3: Genes, Genomes, Genetics.

  6. Is the Maxillary Sinus Really Suitable in Sex Determination? A Three-Dimensional Analysis of Maxillary Sinus Volume and Surface Depending on Sex and Dentition.

    PubMed

    Möhlhenrich, Stephan Christian; Heussen, Nicole; Peters, Florian; Steiner, Timm; Hölzle, Frank; Modabber, Ali

    2015-11-01

    The morphometric analysis of maxillary sinus was recently presented as a helpful instrument for sex determination. The aim of the present study was to examine the volume and surface of the fully dentate, partial, and complete edentulous maxillary sinus depending on the sex. Computed tomography data from 276 patients were imported in DICOM format via special virtual planning software, and surfaces (mm) and volumes (mm) of maxillary sinuses were measured. In sex-specific comparisons (women vs men), statistically significant differences for the mean maxillary sinus volume and surface were found between fully dentate (volume, 13,267.77 mm vs 16,623.17 mm, P < 0.0001; surface, 3480.05 mm vs 4100.83 mm, P < 0.0001) and partially edentulous (volume, 10,577.35 mm vs 14,608.10 mm, P = 0.0002; surface, 2980.11 mm vs 3797.42 mm, P < 0.0001) or complete edentulous sinuses (volume, 11,200.99 mm vs 15,382.29 mm, P < 0.0001; surface, 3118.32 mm vs 3877.25 mm, P < 0.0001). For males, the statistically different mean values were calculated between fully dentate and partially edentulous (volume, P = 0.0022; surface, P = 0.0048) maxillary sinuses. Between the sexes, no differences were only measured for female and male partially dentate fully edentulous sinuses (2 teeth missing) and between partially edentulous sinuses in women and men (1 teeth vs 2 teeth missing). With a corresponding software program, it is possible to analyze the maxillary sinus precisely. The dentition influences the volume and surface of the pneumatic maxillary sinus. Therefore, sex determination is possible by analysis of the maxillary sinus event through the increase in pneumatization.

  7. The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals.

    PubMed

    Charlesworth, Deborah; Mank, Judith E

    2010-09-01

    The ability to identify genetic markers in nonmodel systems has allowed geneticists to construct linkage maps for a diversity of species, and the sex-determining locus is often among the first to be mapped. Sex determination is an important area of study in developmental and evolutionary biology, as well as ecology. Its importance for organisms might suggest that sex determination is highly conserved. However, genetic studies have shown that sex determination mechanisms, and the genes involved, are surprisingly labile. We review studies using genetic mapping and phylogenetic inferences, which can help reveal evolutionary pattern within this lability and potentially identify the changes that have occurred among different sex determination systems. We define some of the terminology, particularly where confusion arises in writing about such a diverse range of organisms, and highlight some major differences between plants and animals, and some important similarities. We stress the importance of studying taxa suitable for testing hypotheses, and the need for phylogenetic studies directed to taxa where the patterns of changes can be most reliably inferred, if the ultimate goal of testing hypotheses regarding the selective forces that have led to changes in such an essential trait is to become feasible.

  8. Ethylene responsive factor ERF110 mediates ethylene-regulated transcription of a sex determination-related orthologous gene in two Cucumis species.

    PubMed

    Tao, Qianyi; Niu, Huanhuan; Wang, Zhongyuan; Zhang, Wenhui; Wang, Hu; Wang, Shenhao; Zhang, Xian; Li, Zheng

    2018-05-25

    In plants, unisexual flowers derived from developmental sex determination form separate stamens and pistils that facilitate cross pollination. In cucumber and melon, ethylene plays a key role in sex determination. Six sex determination-related genes have been identified in ethylene biosynthesis in these Cucumis species. The interactions among these genes are thought to involve ethylene signaling; however, the underlying mechanism of regulation remains unknown. In this study, hormone treatment and qPCR assays were used to confirm expression of these sex determination-related genes in cucumber and melon is ethylene sensitive. RNA-Seq analysis subsequently helped identify the ethylene responsive factor (ERF) gene, CsERF110, related to ethylene signaling and sex determination. CsERF110 and its melon ortholog, CmERF110, shared a conserved AP2/ERF domain and showed ethylene-sensitive expression. Yeast one-hybrid and ChIP-PCR assays further indicated that CsERF110 bound to at least two sites in the promoter fragment of CsACS11, while transient transformation analysis showed that CsERF110 and CmERF110 enhance CsACS11 and CmACS11 promoter activity, respectively. Taken together, these findings suggest that CsERF110 and CmERF110 respond to ethylene signaling, mediating ethylene-regulated transcription of CsACS11 and CmACS11 in cucumber and melon, respectively. Furthermore, the mechanism involved in its regulation is thought to be conserved in these two Cucumis species.

  9. Phylogeny determines flower size-dependent sex allocation at flowering in a hermaphroditic family.

    PubMed

    Teixido, A L; Guzmán, B; Staggemeier, V G; Valladares, F

    2017-11-01

    In animal-pollinated hermaphroditic plants, optimal floral allocation determines relative investment into sexes, which is ultimately dependent on flower size. Larger flowers disproportionally increase maleness whereas smaller and less rewarding flowers favour female function. Although floral traits are considered strongly conserved, phylogenetic relationships in the interspecific patterns of resource allocation to floral sex remain overlooked. We investigated these patterns in Cistaceae, a hermaphroditic family. We reconstructed phylogenetic relationships among Cistaceae species and quantified phylogenetic signal for flower size, dry mass and nutrient allocation to floral structures in 23 Mediterranean species using Blomberg's K-statistic. Lastly, phylogenetically-controlled correlational and regression analyses were applied to examine flower size-based allometry in resource allocation to floral structures. Sepals received the highest dry mass allocation, followed by petals, whereas sexual structures increased nutrient allocation. Flower size and resource allocation to floral structures, except for carpels, showed a strong phylogenetic signal. Larger-flowered species allometrically allocated more resources to maleness, by increasing allocation to corollas and stamens. Our results suggest a major role of phylogeny in determining interspecific changes in flower size and subsequent floral sex allocation. This implies that flower size balances the male-female function over the evolutionary history of Cistaceae. While allometric resource investment in maleness is inherited across species diversification, allocation to the female function seems a labile trait that varies among closely related species that have diversified into different ecological niches. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. The role of the transformer gene in sex determination and reproduction in the tephritid fruit fly, Bactrocera dorsalis (Hendel).

    PubMed

    Peng, Wei; Zheng, Wenping; Handler, Alfred M; Zhang, Hongyu

    2015-12-01

    Transformer (tra) is a switch gene in the somatic sex-determination hierarchy that regulates sexual dimorphism based on RNA splicing in many insects. In tephritids, a Y-linked male determining gene (M) controls sex in the sex-determination pathway. Here, homologues of Drosophila tra and transformer-2 (tra-2) genes were isolated and characterized in Bactrocera dorsalis (Hendel), one of the most destructive agricultural insect pests in many Asian countries. Two male-specific and one female-specific isoforms of B. dorsalis transformer (Bdtra) were identified. The presence of multiple TRA/TRA-2 binding sites in Bdtra suggests that the TRA/TRA-2 proteins are splicing regulators promoting and maintaining, epigenetically, female sex determination by a tra positive feedback loop in XX individuals during development. The expression patterns of female-specific Bdtra transcripts during early embryogenesis shows that a peak appears at 15 h after egg laying. Using dsRNA to knock-down Bdtra expression in the embryo and adult stages, we showed that sexual formation is determined early in the embryo stage and that parental RNAi does not lead to the production of all male progeny as in Tribolium castaneum. RNAi results from adult abdominal dsRNA injections show that Bdtra has a positive influence on female yolk protein gene (Bdyp1) expression and fecundity.

  11. Study of mathematical models of mutation and selection in multi-locus systems. Annual progress report, October 1, 1980-September 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewontin, R C

    1981-01-01

    During the past year, research has been devoted to two related studies of two-locus systems under natural selection and one on selection in haplo-diploid organisms. The principal results are: (1) Numerical studies were made of 2 locus selection models with asymmetric fitnesses. These were created by perturbing the fitness matrices of symmetric models whose results are known analytically. A complete classification of solved models has been made and all perturbations of these have been undertaken. The result is that all models lead to three classes of equilibrium structure. All are characterized by multiple equilbria with small linkage disequilibria under loosemore » linkage and high complementarity equilibria under tight linkage. In some cases there is gene fixation at intermediate linkage. (2) It has been shown that selection may favor more recombination, contrary to the usual expectation, if multiple locus polymorphisms are maintained by a mechanism other than marginal overdominance. This may be the result of mutation-selection balance or frequency-dependent selection. (3) In a haplo-diploid system in which diploid males are lethal (as in bees and braconid wasps) the number of sex alleles that can be maintained depends both on breeding size and the number of colonies. Simulations show that the steady number is sensitive to the number of colonies but insensitive to the number of matings. Thirty-five to fifty colonies are sufficient to maintain very large numbers of sex alleles.« less

  12. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize

    USDA-ARS?s Scientific Manuscript database

    Sex determination in maize is controlled by a developmental cascade leading to the formation of unisexual florets derived from an initially bisexual floral meristem. Abortion of pistil primordia in staminate florets is controlled by a tasselseed-mediated cell death process. Here, we describe the pos...

  13. The use of soil pollen to determine the sex of overhead individuals of a temperate dioecious shrub.

    PubMed

    Sugiyama, Anna; Shichi, Koji; Masaki, Takashi; Hubbell, Stephen P

    2017-04-01

    In dioecious species, determining the sex of individual plants from one-time phenological observations is rarely feasible when some individuals capable of reproducing are not flowering or fruiting at the time of observation. Currently, sexing those individuals requires long-term phenological data on individuals and populations, but such data are rarely available or feasible to collect. We tested the hypothesis that differences in soil pollen concentrations beneath the crowns of female and male plants would exist and be sufficient to reliably determine the sex of the individual plant overhead in a dioecious species. We predicted that soil pollen concentrations beneath male plants would be significantly higher than beneath female plants because only males produce pollen and pollen should accumulate in the soil underneath the male plants over repeated flowering events. We collected samples from surface soil under both sexes of the insect-pollinated dioecious shrub, Aucuba japonica (Garryaceae). Pollen grains were present in surface soil in both Oe and A horizons, and mean pollen concentration under males was significantly higher than under females. Pollen concentrations beneath males were positively correlated with male plant height, potentially reflecting greater pollen production by larger individuals. Considering the small plant size and relatively low pollen production of A. japonica , this method may hold promise for sexing other dioecious species in the absence of direct phenological data. Our phenology-free and relatively low-cost method for sexing dioecious plants may be especially useful in tropical forests where many species are dioecious. © 2017 Botanical Society of America.

  14. determination of sex in south african blacks by discriminant function analysis of mandibular linear dimensions : A preliminary investigation using the zulu local population.

    PubMed

    Franklin, Daniel; O'Higgins, Paul; Oxnard, Charles E; Dadour, Ian

    2006-12-01

    The determination of sex is a critical component in forensic anthropological investigation. The literature attests to numerous metrical standards, each utilizing diffetent skeletal elements, for sex determination in South A frican Blacks. Metrical standards are popular because they provide a high degree of expected accuracy and are less error-prone than subjective nonmetric visual techniques. We note, however, that there appears to be no established metric mandible discriminant function standards for sex determination in this population.We report here on a preliminary investigation designed to evaluate whether the mandible is a practical element for sex determination in South African Blacks. The sample analyzed comprises 40 nonpathological Zulu individuals drawn from the R.A. Dart Collection. Ten linear measurements, obtained from mathematically trans-formed three-dimensional landmark data, are analyzed using basic univariate statistics and discriminant function analyses. Seven of the 10 measurements examined are found to be sexually dimorphic; the dimensions of the ramus are most dimorphic. The sex classification accuracy of the discriminant functions ranged from 72.5 to 87.5% for the univariate method, 92.5% for the stepwise method, and 57.5 to 95% for the direct method. We conclude that the mandible is an extremely useful element for sex determination in this population.

  15. Applicability of the Ricketts' posteroanterior cephalometry for sex determination using logistic regression analysis in Hispano American Peruvians.

    PubMed

    Perez, Ivan; Chavez, Allison K; Ponce, Dario

    2016-01-01

    The Ricketts' posteroanterior (PA) cephalometry seems to be the most widely used and it has not been tested by multivariate statistics for sex determination. The objective was to determine the applicability of Ricketts' PA cephalometry for sex determination using the logistic regression analysis. The logistic models were estimated at distinct age cutoffs (all ages, 11 years, 13 years, and 15 years) in a database from 1,296 Hispano American Peruvians between 5 years and 44 years of age. The logistic models were composed by six cephalometric measurements; the accuracy achieved by resubstitution varied between 60% and 70% and all the variables, with one exception, exhibited a direct relationship with the probability of being classified as male; the nasal width exhibited an indirect relationship. The maxillary and facial widths were present in all models and may represent a sexual dimorphism indicator. The accuracy found was lower than the literature and the Ricketts' PA cephalometry may not be adequate for sex determination. The indirect relationship of the nasal width in models with data from patients of 12 years of age or less may be a trait related to age or a characteristic in the studied population, which could be better studied and confirmed.

  16. Mallard age and sex determination from wings

    USGS Publications Warehouse

    Carney, S.M.; Geis, A.D.

    1960-01-01

    This paper describes characters on the wing plumage of the mallard that indicate age and sex. A key outlines a logical order in which to check age and sex characters on wings. This method was tested and found to be more than 95 percent reliable, although it was found that considerable practice and training with known-age specimens was required to achieve this level of accuracy....The implications of this technique and the sampling procedure it permits are discussed. Wing collections could provide information on production, and, if coupled with a banding program could permit seasonal population estimates to be calculated. In addition, representative samples of wings would provide data to check the reliability of several other waterfowl surveys.

  17. Sex determination of the Acadian Flycatcher using discriminant analysis

    USGS Publications Warehouse

    Wilson, R.R.

    1999-01-01

    I used five morphometric variables from 114 individuals captured in Arkansas to develop a discriminant model to predict the sex of Acadian Flycatchers (Empidonax virescens). Stepwise discriminant function analyses selected wing chord and tail length as the most parsimonious subset of variables for discriminating sex. This two-variable model correctly classified 80% of females and 97% of males used to develop the model. Validation of the model using 19 individuals from Louisiana and Virginia resulted in 100% correct classification of males and females. This model provides criteria for sexing monomorphic Acadian Flycatchers during the breeding season and possibly during the winter.

  18. Sex determination from the mandibular ramus flexure of Koreans by discrimination function analysis using three-dimensional mandible models.

    PubMed

    Lin, Chenghe; Jiao, Benzheng; Liu, Shanshan; Guan, Feng; Chung, Nak-Eun; Han, Seung-Ho; Lee, U-Young

    2014-03-01

    It has been known that mandible ramus flexure is an important morphologic trait for sex determination. However, it will be unavailable when mandible is incomplete or fragmented. Therefore, the anthropometric analysis on incomplete or fragmented mandible becomes more important. The aim of this study is to investigate the sex-discriminant potential of mandible ramus flexure on the Korean three-dimensional (3D) mandible models with anthropometric analysis. The sample consists of 240 three dimensional mandibular models obtained from Korean population (M:F; 120:120, mean age 46.2 y), collected by The Catholic Institute for Applied Anatomy, The Catholic University of Korea. Anthropometric information about 11 metric was taken with Mimics, anthropometry libraries toolkit. These parameters were subjected to different discriminant function analyses using SPSS 17.0. Univariate analyses showed that the resubstitution accuracies for sex determination range from 50.4 to 77.1%. Mandibular flexure upper border (MFUB), maximum ramus vertical height (MRVH), and upper ramus vertical height (URVH) expressed the greatest dimorphism, 72.1 to 77.1%. Bivariate analyses indicated that the combination of MFUB and MRVH hold even higher resubstitution accuracy of 81.7%. Furthermore, the direct and stepwise discriminant analyses with the variables on the upper ramus above flexure could predict sex in 83.3 and 85.0%, respectively. When all variables of mandibular ramus flexure were input in stepwise discriminant analysis, the resubstitution accuracy arrived as high as 88.8%. Therefore, we concluded that the upper ramus above flexure hold the larger potentials than the mandibular ramus flexure itself to predict sexes, and that the equations in bivariate and multivariate analysis from our study will be helpful for sex determination on Korean population in forensic science and law. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. The Riddle of Sex.

    ERIC Educational Resources Information Center

    Sagan, Dorion; Margulis, Lynn

    1985-01-01

    Discusses the work of evolutionary biologists in determining how sexual reproduction arose. Topics explored include the nature of sex, bacterial sex, meiotic sex, and asexual reproduction. A diagram (which can be used as a duplicating master) illustrating types of bacterial sex is included. (DH)

  20. Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes.

    PubMed

    Wallis, M C; Waters, P D; Delbridge, M L; Kirby, P J; Pask, A J; Grützner, F; Rens, W; Ferguson-Smith, M A; Graves, J A M

    2007-01-01

    In eutherian ('placental') mammals, sex is determined by the presence or absence of the Y chromosome-borne gene SRY, which triggers testis determination. Marsupials also have a Y-borne SRY gene, implying that this mechanism is ancestral to therians, the SRY gene having diverged from its X-borne homologue SOX3 at least 180 million years ago. The rare exceptions have clearly lost and replaced the SRY mechanism recently. Other vertebrate classes have a variety of sex-determining mechanisms, but none shares the therian SRY-driven XX female:XY male system. In monotreme mammals (platypus and echidna), which branched from the therian lineage 210 million years ago, no orthologue of SRY has been found. In this study we show that its partner SOX3 is autosomal in platypus and echidna, mapping among human X chromosome orthologues to platypus chromosome 6, and to the homologous chromosome 16 in echidna. The autosomal localization of SOX3 in monotreme mammals, as well as non-mammal vertebrates, implies that SRY is absent in Prototheria and evolved later in the therian lineage 210-180 million years ago. Sex determination in platypus and echidna must therefore depend on another male-determining gene(s) on the Y chromosomes, or on the different dosage of a gene(s) on the X chromosomes.

  1. DEHP exposure in utero disturbs sex determination and is potentially linked with precocious puberty in female mice.

    PubMed

    Wang, Yongan; Yang, Qing; Liu, Wei; Yu, Mingxi; Zhang, Zhou; Cui, Xiaoyu

    2016-09-15

    Human's ubiquitous exposure to di (2-ethylhexyl) phthalate (DEHP) is thought to be associated with female reproductive toxicity. Previous studies found that DEHP inhibited follicle growth and decreased estradiol levels in adult female mice. However, limited information is available on the link between in utero DEHP exposure and ovarian development in female mouse offspring. The present study evaluates the disturbances in regulatory genes involved in female sex determination and the ovarian outcomes in fetal and postnatal female mice treated with in utero DEHP exposure. Pregnant mice were exposed to DEHP by gavage, with the dosage regime beginning at human relevant exposure levels. After in utero DEHP exposure, increased follicular atresia was observed in the female pups at postnatal days (PND) 21. Foxl2 expression was significantly upregulated, and Fst was significantly downregulated by DEHP above 2mg/kg/d at PND 1 and 21. This suggests that lesion of granulosa cell differentiation and disturbance of follicle development in postnatal female mice. The expression of Cyp11a1 and Star were significantly downregulated by in utero DEHP exposure, indicating effects on estradiol biosynthesis. The female sex determination pathway was disturbed in fetus by DEHP at 2mg/kg/d and above during the critical time window of sex determination causing significant upregulation of Foxl2, Wnt4, β-catenin and Fst. Furthermore, the increased expression of Wnt4 was supported by whole-mount in situ hybridization (WISH). These results suggest a possible association between in utero DEHP exposure and precocious puberty in the postnatal life of mice offspring, where disturbance of the sex determination regulating pathway acted as an important mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants.

    PubMed

    Yamasaki, S; Fujii, N; Matsuura, S; Mizusawa, H; Takahashi, H

    2001-06-01

    Sex determination in cucumber (Cucumis sativus L.) plants is genetically controlled by the F and M loci. These loci interact to produce three different sexual phenotypes: gynoecious (M-F-), monoecious (M-ff), and andromonoecious (mmff). Gynoecious cucumber plants produce more ethylene than do monoecious plants. We found that the levels of ethylene production and the accumulation of CS-ACS2 mRNA in andromonoecious cucumber plants did not differ from those in monoecious plants and were lower than the levels measured in gynoecious plants. Ethylene inhibited stamen development in gynoecious cucumbers but not in andromonoecious ones. Furthermore, ethylene caused substantial increases in the accumulation of CS-ETR2, CS-ERS, and CS-ACS2 mRNA in monoecious and gynoecious cucumber plants, but not in andromonoecious one. In addition, the inhibitory effect of ethylene on hypocotyl elongation in andromonoecious cucumber plants was less than that in monoecious and gynoecious plants. These results suggest that ethylene responses in andromonoecious cucumber plants are reduced from those in monoecious and gynoecious plants. This is the first evidence that ethylene signals may influence the product of the M locus and thus inhibit stamen development in cucumber. The andromonoecious line provides novel material for studying the function of the M locus during sex determination in flowering cucumbers.

  3. Comparing discriminant analysis and neural network for the determination of sex using femur head measurements.

    PubMed

    Alunni, Véronique; Jardin, Philippe du; Nogueira, Luisa; Buchet, Luc; Quatrehomme, Gérald

    2015-08-01

    The measurement of the femoral head is usually considered an interesting variable for the sex determination of skeletal remains. To date, there are few published reference measurements of the femoral head in a modern European population for the purpose of sex determination. In this study, 116 femurs from 58 individuals of the South of France (Nice Bone Collection, Nice, France) were studied. Three measurements of the femoral head were taken: the vertical head diameter (VHD), the transversal head diameter (THD) and the head circumference (HC). The results show that: (i) there is no statistical difference between the right and left femurs for each of the three measurements (VHD, THD and HC). Therefore we arbitrarily chose to use the measures from the right femurs (N=58) to pursue our experiments; (ii) the measurements of the femoral head are similar to those of contemporary American populations; (iii) the dimensions of the femoral head place the measurements of the French population somewhere between Germany or Croatia, and Spain; (iv) there is no significant secular trend (in contrast with the femoral neck diameter); (v) the femoral head measurement as a single variable is useful for sex determination: a 96.5% rate of accuracy was obtained using THD and HC measurements with the artificial neural network; and a 94.8% rate of accuracy using VHD, both with the discriminant analysis and the neural network. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Multiple Sex-Associated Regions and a Putative Sex Chromosome in Zebrafish Revealed by RAD Mapping and Population Genomics

    PubMed Central

    Anderson, Jennifer L.; Rodríguez Marí, Adriana; Braasch, Ingo; Amores, Angel; Hohenlohe, Paul; Batzel, Peter; Postlethwait, John H.

    2012-01-01

    Within vertebrates, major sex determining genes can differ among taxa and even within species. In zebrafish (Danio rerio), neither heteromorphic sex chromosomes nor single sex determination genes of large effect, like Sry in mammals, have yet been identified. Furthermore, environmental factors can influence zebrafish sex determination. Although progress has been made in understanding zebrafish gonad differentiation (e.g. the influence of germ cells on gonad fate), the primary genetic basis of zebrafish sex determination remains poorly understood. To identify genetic loci associated with sex, we analyzed F2 offspring of reciprocal crosses between Oregon *AB and Nadia (NA) wild-type zebrafish stocks. Genome-wide linkage analysis, using more than 5,000 sequence-based polymorphic restriction site associated (RAD-tag) markers and population genomic analysis of more than 30,000 single nucleotide polymorphisms in our *ABxNA crosses revealed a sex-associated locus on the end of the long arm of chr-4 for both cross families, and an additional locus in the middle of chr-3 in one cross family. Additional sequencing showed that two SNPs in dmrt1 previously suggested to be functional candidates for sex determination in a cross of ABxIndia wild-type zebrafish, are not associated with sex in our AB fish. Our data show that sex determination in zebrafish is polygenic and that different genes may influence sex determination in different strains or that different genes become more important under different environmental conditions. The association of the end of chr-4 with sex is remarkable because, unique in the karyotype, this chromosome arm shares features with known sex chromosomes: it is highly heterochromatic, repetitive, late replicating, and has reduced recombination. Our results reveal that chr-4 has functional and structural properties expected of a sex chromosome. PMID:22792396

  5. De Novo Assembly of the Manila Clam Ruditapes philippinarum Transcriptome Provides New Insights into Expression Bias, Mitochondrial Doubly Uniparental Inheritance and Sex Determination

    PubMed Central

    Ghiselli, Fabrizio; Milani, Liliana; Chang, Peter L.; Hedgecock, Dennis; Davis, Jonathan P.; Nuzhdin, Sergey V.; Passamonti, Marco

    2012-01-01

    Males and females share the same genome, thus, phenotypic divergence requires differential gene expression and sex-specific regulation. Accordingly, the analysis of expression patterns is pivotal to the understanding of sex determination mechanisms. Many bivalves are stable gonochoric species, but the mechanism of gonad sexualization and the genes involved are still unknown. Moreover, during the period of sexual rest, a gonad is not present and sex cannot be determined. A mechanism associated with germ line differentiation in some bivalves, including the Manila clam Ruditapes philippinarum, is the doubly uniparental inheritance (DUI) of mitochondria, a variation of strict maternal inheritance. Two mitochondrial lineages are present, one transmitted through eggs and the other through sperm, as well as a mother-dependent sex bias of the progeny. We produced a de novo annotation of 17,186 transcripts from R. philippinarum and compared the transcriptomes of males and females and identified 1,575 genes with strong sex-specific expression and 166 sex-specific single nucleotide polymorphisms, obtaining preliminary information about genes that could be involved in sex determination. Then we compared the transcriptomes between a family producing predominantly females and a family producing predominantly males to identify candidate genes involved in regulation of sex-specific aspects of DUI system, finding a relationship between sex bias and differential expression of several ubiquitination genes. In mammalian embryos, sperm mitochondria are degraded by ubiquitination. A modification of this mechanism is hypothesized to be responsible for the retention of sperm mitochondria in male embryos of DUI species. Ubiquitination can additionally regulate gene expression, playing a role in sex determination of several animals. These data enable us to develop a model that incorporates both the DUI literature and our new findings. PMID:21976711

  6. Determinants of condom use in female sex workers in Surabaya, Indonesia.

    PubMed

    Joesoef, M R; Kio, D; Linnan, M; Kamboji, A; Barakbah, Y; Idajadi, A

    2000-04-01

    In the developing world condom use among sex workers and their clients plays a dominant role in the transmission of HIV/STD. In Surabaya, Indonesia, data from the 1993 STD prevalence survey in female sex workers (brothels, street, massage parlours, barber shops, call-girl houses, and nightclubs) reveal that only 5% (33/692) of the brothel workers and 14% (25/177) of the street walkers had condoms in their possession at the time of the interview. During the last paid sexual intercourse, sex workers from the brothels, streets, and nightclubs used condoms infrequently (14%, 20%, and 25%, respectively). Sex workers from massage parlours, barber shops, and call girls were about 5 to 3 times more likely to use condoms than sex workers from nightclubs (adjusted odds ratio of 3.5, 4.9, and 4.2, respectively); thus condom promotion programmes should be targeted at sex workers at brothels, streets, and nightclubs. Programmes should include: (1) free distribution of condoms to sex establishments at the initial stage, and condom social marketing at later stages; (2) penalties, including legal sanctions, against any sex establishments that do not consistently use condoms; (3) participation of brothel owners and madams in encouraging sex workers to consistently have clients use condoms during sexual intercourse; and (4) establishment of sentinel surveillance to monitor STD/HIV and condom-use compliance.

  7. Sex determination from the frontal bone: a geometric morphometric study.

    PubMed

    Perlaza, Néstor A

    2014-09-01

    Sex estimation in human skeletal remains when using the cranium through traditional methods is a fundamental pillar in human identification; however, it may be possible to incur in a margin of error due because of the state of preservation in incomplete or fragmented remains. The aim of this investigation was sex estimation through the geometric morphometric analysis of the frontal bone. The sample employed 60 lateral radiographs of adult subjects of both sexes (30 males and 30 females), aged between 18 and 40 years, with mean age for males of 28 ± 4 and 30 ± 6 years for females. Thin-plate splines evidenced strong expansion of the glabellar region in males and contraction in females. No significant differences were found between sexes with respect to size. The findings suggest differences in shape and size in the glabellar region, besides reaffirming the use of geometric morphometrics as a quantitative method in sex estimation. © 2014 American Academy of Forensic Sciences.

  8. Thermosensitive period of sex determination in the coral-reef damselfish Acanthochromis polyacanthus and the implications of projected ocean warming

    NASA Astrophysics Data System (ADS)

    Rodgers, G. G.; Donelson, J. M.; Munday, P. L.

    2017-03-01

    Higher temperatures associated with climate change have the potential to significantly alter the population sex ratio of species with temperature-dependent sex determination. Whether or not elevated temperature affects sex determination depends on both the absolute temperature experienced and the stage of development at which the thermal conditions occur. We explored the importance of exposure timing during early development in the coral reef fish, Acanthochromis polyacanthus, by increasing water temperature 1.5 or 3 °C above the summer average (28.5 °C) at different stages of development. We also measured the effect of treatment temperature on fish size and condition, in order to gauge how the thermal threshold for sex-ratio bias may compare with other commonly considered physiological metrics. Increasing grow-out temperature from 28.5 to 30 °C had no effect on the sex ratio of offspring, whereas an increase to 31.5 °C (+3 °C) produced a strong male bias (average 90%). The thermosensitive period for this species lasted between 25 and 60 d post hatching, with the bias in sex ratio greater the earlier that fish experienced warm conditions. Temperatures high enough to bias the sex ratio are likely to be seen first during late summer (January and February) and would affect clutches produced late in the breeding season. There was no change to fish condition in response to temperature; however, the two higher temperature treatments produced significantly smaller fish at sampling. Clutches produced early in the season could buffer the population from a skewed sex ratio, as their development will remain below the thermal threshold; however, continued ocean warming could mean that clutches produced earlier in the breeding season would also be affected in the longer term. A skewed sex ratio could be detrimental to population viability by reducing the number of females in the breeding population.

  9. Loop Mediated Isothermal Amplification (LAMP) for Embryo Sex Determination in Pregnant Women at Eight Weeks of Pregnancy.

    PubMed

    Almasi, Mohammad Amin; Almasi, Galavizh

    2017-01-01

    In human, SRY (sex-determining region of the Y chromosome) is the major gene for the testis-determining factor which is found in normal XY males and in the rare XX males, and it is absent in normal XX females and many XY females. There are several methods which can indicate a male genotype by the presence of the amplified product of SRY gene. The aim of this study was to identify the SRY gene for embryo sex determination in human during pregnancy using loop mediated isothermal amplification (LAMP) method. A total of 15 blood samples from pregnant women at eight weeks of pregnancy were collected, and Plasma DNA was extracted. LAMP assay was performed using DNA obtained for detection of SRY gene. Furthermore, colorimetric LAMP assay for rapid and easy detection of SRY gene was developed. LAMP results revealed that the positive reaction was highly specific only with samples containing XY chromosomes, while no amplification was found in samples containing XX chromosomes. A total of 15 blood samples from pregnant women were seven male embryos (46.6%) and eight female embryos (53.4%). All used visual components in the colorimetric assay could successfully make a clear distinction between positive and negative ones. The LAMP assay developed in this study is a valuable tool capable of monitoring the purity and detection of SRY gene for sex determination.

  10. A neo-sex-chromosome that drives post-zygotic sex determiniation in the Hessian fly

    USDA-ARS?s Scientific Manuscript database

    Two nonoverlapping autosomal inversions defined unusual neo-sex chromosomes in the Hessian fly (Mayetiola destructor). Like other neo-sex chromosomes, these were normally heterozygous, present only in one sex, and suppressed recombination around a sex-determining master switch. Their unusual propert...

  11. Sex determination and disorders of sex development according to the revised nomenclature and classification in 46,XX individuals.

    PubMed

    Kousta, Eleni; Papathanasiou, Asteroula; Skordis, Nicos

    2010-01-01

    There have been considerable advances concerning understanding of the early and later stages of ovarian development; a number of genes have been implicated and their mutations have been associated with developmental abnormalities. The most important genes controlling the initial phase of gonadal development, identical in females and males, are Wilms' tumor suppressor 1 (WT1) and steroidogenic factor 1 (SF1). Four genes are likely to be involved in the subsequent stages of ovarian development (WNT4, DAX1, FOXL2 and RSPO1), but none is yet proven to be the ovarian determining factor. Changes in nomenclature and classification were recently proposed in order to incorporate genetic advances and substitute gender-based diagnostic labels in terminology. The term "disorders of sex development" (DSD) is proposed to substitute the previous term "intersex disorders". Three main categories have been used to describe DSD in the 46,XX individual: 1) disorders of gonadal (ovarian) development: ovotesticular DSD, previously named true hermaphroditism, testicular DSD, previously named XX males, and gonadal dysgenesis; 2) disorders related to androgen excess (congenital adrenal hyperplasia, aromatase deficiency and P450 oxidoreductase deficiency); and 3) other rare disorders. In this mini-review, recent advances concerning development of the genital system in 46,XX individuals and related abnormalities are discussed. Basic embryology of the ovary and molecular pathways determining ovarian development are reviewed, focusing on mutations disrupting normal ovarian development. Disorders of sex development according to the revised nomenclature and classification in 46,XX individuals are summarized, including genetic progress in the field.

  12. X-chromosome-counting mechanisms that determine nematode sex.

    PubMed

    Nicoll, M; Akerib, C C; Meyer, B J

    1997-07-10

    Sex is determined in Caenorhabditis elegans by an X-chromosome-counting mechanism that reliably distinguishes the twofold difference in X-chromosome dose between males (1X) and hermaphrodites (2X). This small quantitative difference is translated into the 'on/off' response of the target gene, xol-1, a switch that specifies the male fate when active and the hermaphrodite fate when inactive. Specific regions of X contain counted signal elements whose combined dose sets the activity of xol-1. Here we ascribe the dose effects of one region to a discrete, protein-encoding gene, fox-1. We demonstrate that the dose-sensitive signal elements on chromosome X control xol-1 through two different molecular mechanisms. One involves the transcriptional repression of xol-1 in XX animals. The other uses the putative RNA-binding protein encoded by fox-1 to reduce the level of xol-1 protein. These two mechanisms of repression act together to ensure the fidelity of the X-chromosome counting process.

  13. The evolution of sex chromosomes in organisms with separate haploid sexes.

    PubMed

    Immler, Simone; Otto, Sarah Perin

    2015-03-01

    The evolution of dimorphic sex chromosomes is driven largely by the evolution of reduced recombination and the subsequent accumulation of deleterious mutations. Although these processes are increasingly well understood in diploid organisms, the evolution of dimorphic sex chromosomes in haploid organisms (U/V) has been virtually unstudied theoretically. We analyze a model to investigate the evolution of linkage between fitness loci and the sex-determining region in U/V species. In a second step, we test how prone nonrecombining regions are to degeneration due to accumulation of deleterious mutations. Our modeling predicts that the decay of recombination on the sex chromosomes and the addition of strata via fusions will be just as much a part of the evolution of haploid sex chromosomes as in diploid sex chromosome systems. Reduced recombination is broadly favored, as long as there is some fitness difference between haploid males and females. The degeneration of the sex-determining region due to the accumulation of deleterious mutations is expected to be slower in haploid organisms because of the absence of masking. Nevertheless, balancing selection often drives greater differentiation between the U/V sex chromosomes than in X/Y and Z/W systems. We summarize empirical evidence for haploid sex chromosome evolution and discuss our predictions in light of these findings. © 2015 The Author(s).

  14. Interactive effects of culture and sex hormones on the sex role self-concept

    PubMed Central

    Pletzer, Belinda; Petasis, Ourania; Ortner, Tuulia M.; Cahill, Larry

    2015-01-01

    Sex role orientation, i.e., a person's masculinity or femininity, influences cognitive and emotional performance, like biological sex. While it is now widely accepted that sex differences are modulated by the hormonal status of female participants (menstrual cycle, hormonal contraceptive use), the question, whether hormonal status and sex hormones also modulate participants sex role orientation has hardly been addressed previously. The present study assessed sex role orientation and hormonal status as well as sex hormone levels in three samples of participants from two different cultures (Northern American, Middle European). Menstrual cycle phase did not affect participant's masculinity or femininity, but had a significant impact on reference group. While women in their follicular phase (low levels of female sex hormones) determined their masculinity and femininity in reference to men, women in their luteal phase (high levels of female sex hormones) determined their masculinity and femininity in reference to women. Hormonal contraceptive users rated themselves as significantly more feminine and less masculine than naturally cycling women. Furthermore, the impact of biological sex on the factorial structure of sex role orientation as well as the relationship of estrogen to masculinity/femininity was modulated by culture. We conclude that culture and sex hormones interactively affect sex role orientation and hormonal status of participants should be controlled for when assessing masculinity and/or femininity. PMID:26236181

  15. Accuracy and reliability in sex determination from skulls: a comparison of Fordisc® 3.0 and the discriminant function analysis.

    PubMed

    Guyomarc'h, Pierre; Bruzek, Jaroslav

    2011-05-20

    Identification in forensic anthropology and the definition of a biological profile in bioarchaeology are essential to each of those fields and use the same methodologies. Sex, age, stature and ancestry can be conclusive or dispensable, depending on the field. The Fordisc(®) 3.0 computer program was developed to aid in the identification of the sex, stature and ancestry of skeletal remains by exploiting the Forensic Data Bank (FDB) and computing discriminant function analyses (DFAs). Although widely used, this tool has been recently criticised, principally when used to determine ancestry. Two sub-samples of individuals of known sex were drawn from French (n=50) and Thai (n=91) osteological collections and used to assess the reliability of sex determination using Fordisc(®) 3.0 with 12 cranial measurements. Comparisons were made using the whole FDB as well as using select groups, taking into account the posterior and typicality probabilities. The results of Fordisc(®) 3.0 vary between 52.2% and 77.8% depending on the options and groups selected. Tests of published discriminant functions and the computation of specific DFA were performed in order to discuss the applicability of this software and, overall, to question the pertinence of the use of DFA and linear distances in sex determination, in light of the huge cranial morphological variability. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Sex-determining mechanism in Buergeria buergeri (Anura, Rhacophoridae). III. Does the ZZW triploid frog become female or male?

    PubMed

    Ohta, S; Sumida, M; Nishioka, M

    1999-02-15

    Both triploids and gynogenetic diploids (GDs) were produced to clarify the relationship between the sex-chromosome constitution and the expression of sex in the common bell-ring frog, Buergeria buergeri. The sex differentiation of triploids in B. buergeri is quite remarkable. Triploid frogs consisted of three sex genotypes, ZZZ, ZWW and ZZW. All ZZZ triploids were males, and all ZWW triploids were females. It is very interesting that half of the ZZW triploids became female, and the other half became male. The GD frogs consisted of two sex genotypes, ZW and ZZ, which did not differ from the controls in sex differentiation. Since the ratios of ZZ and ZW eggs were significantly different among female parents, it is assumed that most (approximately 80-90%) of the eggs made pre-reductional division in some females and post-reductional division in others during meiosis. It seems that ZW eggs were produced by the occurrence of recombination between the centromere and the sex-determining genes in B. buergeri. It was also found that the number of Z chromosomes in each cell of these triploids and GDs agreed with that of the nucleoli in each cell.

  17. Sex Offenders.

    ERIC Educational Resources Information Center

    Hayes, Susan

    1991-01-01

    This paper on the problem of sex offending among individuals with intellectual disabilities examines the incidence of this problem, characteristics of intellectually disabled sex offenders, determination of whether the behavior is a paraphilia or functional age-related behavior, and treatment options, with emphasis on the situation in New South…

  18. Structure-function analysis of mouse Sry reveals dual essential roles of the C-terminal polyglutamine tract in sex determination.

    PubMed

    Zhao, Liang; Ng, Ee Ting; Davidson, Tara-Lynne; Longmuss, Enya; Urschitz, Johann; Elston, Marlee; Moisyadi, Stefan; Bowles, Josephine; Koopman, Peter

    2014-08-12

    The mammalian sex-determining factor SRY comprises a conserved high-mobility group (HMG) box DNA-binding domain and poorly conserved regions outside the HMG box. Mouse Sry is unusual in that it includes a C-terminal polyglutamine (polyQ) tract that is absent in nonrodent SRY proteins, and yet, paradoxically, is essential for male sex determination. To dissect the molecular functions of this domain, we generated a series of Sry mutants, and studied their biochemical properties in cell lines and transgenic mouse embryos. Sry protein lacking the polyQ domain was unstable, due to proteasomal degradation. Replacing this domain with irrelevant sequences stabilized the protein but failed to restore Sry's ability to up-regulate its key target gene SRY-box 9 (Sox9) and its sex-determining function in vivo. These functions were restored only when a VP16 transactivation domain was substituted. We conclude that the polyQ domain has important roles in protein stabilization and transcriptional activation, both of which are essential for male sex determination in mice. Our data disprove the hypothesis that the conserved HMG box domain is the only functional domain of Sry, and highlight an evolutionary paradox whereby mouse Sry has evolved a novel bifunctional module to activate Sox9 directly, whereas SRY proteins in other taxa, including humans, seem to lack this ability, presumably making them dependent on partner proteins(s) to provide this function.

  19. Distance and Sex Determine Host Plant Choice by Herbivorous Beetles

    PubMed Central

    Ballhorn, Daniel J.; Kautz, Stefanie; Heil, Martin

    2013-01-01

    Background Plants respond to herbivore damage with the release of volatile organic compounds (VOCs). This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores? Methodology We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis) when facing lima bean plants (Fabaceae: Phaseolus lunatus) with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials. Conclusion Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores, whereas the presence of a

  20. A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus x Oreochromis spp.) and mapping of sex-determining loci

    PubMed Central

    2013-01-01

    Background Tilapia is the common name for a group of cichlid fishes and is one of the most important aquacultured freshwater food fish. Mozambique tilapia and its hybrids, including red tilapia are main representatives of salt tolerant tilapias. A linkage map is an essential framework for mapping QTL for important traits, positional cloning of genes and understanding of genome evolution. Results We constructed a consensus linkage map of Mozambique tilapia and red tilapia using 95 individuals from two F1 families and 401 microsatellites including 282 EST-derived markers. In addition, we conducted comparative mapping and searched for sex-determining loci on the whole genome. These 401 microsatellites were assigned to 22 linkage groups. The map spanned 1067.6 cM with an average inter-marker distance of 3.3 cM. Comparative mapping between tilapia and stickleback, medaka, pufferfish and zebrafish revealed clear homologous relationships between chromosomes from different species. We found evidence for the fusion of two sets of two independent chromosomes forming two new chromosome pairs, leading to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex determination locus in Mozambique tilapia was mapped on LG1, and verified in five families containing 549 individuals. The major XY sex determination locus in red tilapia was located on LG22, and verified in two families containing 275 individuals. Conclusions A first-generation linkage map of salt tolerant tilapia was constructed using 401 microsatellites. Two separate fusions of two sets of two independent chromosomes may lead to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex-determining loci from Mozambique tilapia and red tilapia were mapped on LG1 and LG22, respectively. This map provides a useful resource for QTL mapping for important traits and comparative genome studies. The DNA markers linked to the sex-determining loci could be used in

  1. Sexual dimorphism in mammalian autosomal gene regulation is determined not only by Sry but by sex chromosome complement as well.

    PubMed

    Wijchers, Patrick J; Yandim, Cihangir; Panousopoulou, Eleni; Ahmad, Mushfika; Harker, Nicky; Saveliev, Alexander; Burgoyne, Paul S; Festenstein, Richard

    2010-09-14

    Differences between males and females are normally attributed to developmental and hormonal differences between the sexes. Here, we demonstrate differences between males and females in gene silencing using a heterochromatin-sensitive reporter gene. Using "sex-reversal" mouse models with varying sex chromosome complements, we found that this differential gene silencing was determined by X chromosome complement, rather than sex. Genome-wide transcription profiling showed that the expression of hundreds of autosomal genes was also sensitive to sex chromosome complement. These genome-wide analyses also uncovered a role for Sry in modulating autosomal gene expression in a sex chromosome complement-specific manner. The identification of this additional layer in the establishment of sexual dimorphisms has implications for understanding sexual dimorphisms in physiology and disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): differentiation of sex and neo-sex chromosomes

    PubMed Central

    Rovatsos, Michail; Pokorná, Martina Johnson; Altmanová, Marie; Kratochvíl, Lukáš

    2015-01-01

    Amniotes possess variability in sex determining mechanisms, however, this diversity is still only partially known throughout the clade and sex determining systems still remain unknown even in such a popular and distinctive lineage as chameleons (Squamata: Acrodonta: Chamaeleonidae). Here, we present evidence for female heterogamety in this group. The Malagasy giant chameleon (Furcifer oustaleti) (chromosome number 2n = 22) possesses heteromorphic Z and W sex chromosomes with heterochromatic W. The panther chameleon (Furcifer pardalis) (2n = 22 in males, 21 in females), the second most popular chameleon species in the world pet trade, exhibits a rather rare Z1Z1Z2Z2/Z1Z2W system of multiple sex chromosomes, which most likely evolved from W-autosome fusion. Notably, its neo-W chromosome is partially heterochromatic and its female-specific genetic content has expanded into the previously autosomal region. Showing clear evidence for genotypic sex determination in the panther chameleon, we resolve the long-standing question of whether or not environmental sex determination exists in this species. Together with recent findings in other reptile lineages, our work demonstrates that female heterogamety is widespread among amniotes, adding another important piece to the mosaic of knowledge on sex determination in amniotes needed to understand the evolution of this important trait. PMID:26286647

  3. Exogenous application of estradiol to eggs unexpectedly induces male development in two turtle species with temperature-dependent sex determination.

    PubMed

    Warner, Daniel A; Addis, Elizabeth; Du, Wei-guo; Wibbels, Thane; Janzen, Fredric J

    2014-09-15

    Steroid hormones affect sex determination in a variety of vertebrates. The feminizing effects of exposure to estradiol and the masculinizing effects of aromatase inhibition during development are well established in a broad range of vertebrate taxa, but paradoxical findings are occasionally reported. Four independent experiments were conducted on two turtle species with temperature-dependent sex determination (Chrysemys picta and Chelydra serpentina) to quantify the effects of egg incubation temperature, estradiol, and an aromatase inhibitor on offspring sex ratios. As expected, the warmer incubation temperatures induced female development and the cooler temperatures produced primarily males. However, application of an aromatase inhibitor had no effect on offspring sex ratios, and exogenous applications of estradiol to eggs produced male offspring across all incubation temperatures. These unexpected results were remarkably consistent across all four experiments and both study species. Elevated concentrations of estradiol could interact with androgen receptors or inhibit aromatase expression, which might result in relatively high testosterone concentrations that lead to testis development. These findings add to a short list of studies that report paradoxical effects of steroid hormones, which addresses the need for a more comprehensive understanding of the role of sex steroids in sexual development. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Intragenomic conflict in populations infected by Parthenogenesis Inducing Wolbachia ends with irreversible loss of sexual reproduction

    PubMed Central

    2010-01-01

    Background The maternally inherited, bacterial symbiont, parthenogenesis inducing (PI) Wolbachia, causes females in some haplodiploid insects to produce daughters from both fertilized and unfertilized eggs. The symbionts, with their maternal inheritance, benefit from inducing the production of exclusively daughters, however the optimal sex ratio for the nuclear genome is more male-biased. Here we examine through models how an infection with PI-Wolbachia in a previously uninfected population leads to a genomic conflict between PI-Wolbachia and the nuclear genome. In most natural populations infected with PI-Wolbachia the infection has gone to fixation and sexual reproduction is impossible, specifically because the females have lost their ability to fertilize eggs, even when mated with functional males. Results The PI Wolbachia infection by itself does not interfere with the fertilization process in infected eggs, fertilized infected eggs develop into biparental infected females. Because of the increasingly female-biased sex ratio in the population during a spreading PI-Wolbachia infection, sex allocation alleles in the host that cause the production of more sons are rapidly selected. In haplodiploid species a reduced fertilization rate leads to the production of more sons. Selection for the reduced fertilization rate leads to a spread of these alleles through both the infected and uninfected population, eventually resulting in the population becoming fixed for both the PI-Wolbachia infection and the reduced fertilization rate. Fertilization rate alleles that completely interfere with fertilization ("virginity alleles") will be selected over alleles that still allow for some fertilization. This drives the final resolution of the conflict: the irreversible loss of sexual reproduction and the complete dependence of the host on its symbiont. Conclusions This study shows that dependence among organisms can evolve rapidly due to the resolution of the conflicts between

  5. The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: no role in sex determination and reproduction

    PubMed Central

    Yoshido, A; Marec, F; Sahara, K

    2016-01-01

    Moths and butterflies (Lepidoptera) have sex chromosome systems with female heterogamety (WZ/ZZ or derived variants). The maternally inherited W chromosome is known to determine female sex in the silkworm, Bombyx mori. However, little is known about the role of W chromosome in other lepidopteran species. Here we describe two forms of the W chromosome, W and neo-W, that are transmitted to both sexes in offspring of hybrids from reciprocal crosses between subspecies of wild silkmoths, Samia cynthia. We performed crosses between S. c. pryeri (2n=28, WZ/ZZ) and S. c. walkeri (2n=26, neo-Wneo-Z/neo-Zneo-Z) and examined fitness and sex chromosome constitution in their hybrids. The F1 hybrids of both reciprocal crosses had reduced fertility. Fluorescence in situ hybridization revealed not only the expected sex chromosome constitutions in the backcross and F2 hybrids of both sexes but also females without the W (or neo-W) chromosome and males carrying the W (or neo-W) chromosome. Furthermore, crosses between the F2 hybrids revealed no association between the presence or absence of W (or neo-W) chromosome and variations in the hatchability of their eggs. Our results clearly suggest that the W (or neo-W) chromosome of S. cynthia ssp. plays no role in sex determination and reproduction, and thus does not contribute to the formation of reproductive barriers between different subspecies. PMID:26758188

  6. The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: no role in sex determination and reproduction.

    PubMed

    Yoshido, A; Marec, F; Sahara, K

    2016-05-01

    Moths and butterflies (Lepidoptera) have sex chromosome systems with female heterogamety (WZ/ZZ or derived variants). The maternally inherited W chromosome is known to determine female sex in the silkworm, Bombyx mori. However, little is known about the role of W chromosome in other lepidopteran species. Here we describe two forms of the W chromosome, W and neo-W, that are transmitted to both sexes in offspring of hybrids from reciprocal crosses between subspecies of wild silkmoths, Samia cynthia. We performed crosses between S. c. pryeri (2n=28, WZ/ZZ) and S. c. walkeri (2n=26, neo-Wneo-Z/neo-Zneo-Z) and examined fitness and sex chromosome constitution in their hybrids. The F1 hybrids of both reciprocal crosses had reduced fertility. Fluorescence in situ hybridization revealed not only the expected sex chromosome constitutions in the backcross and F2 hybrids of both sexes but also females without the W (or neo-W) chromosome and males carrying the W (or neo-W) chromosome. Furthermore, crosses between the F2 hybrids revealed no association between the presence or absence of W (or neo-W) chromosome and variations in the hatchability of their eggs. Our results clearly suggest that the W (or neo-W) chromosome of S. cynthia ssp. plays no role in sex determination and reproduction, and thus does not contribute to the formation of reproductive barriers between different subspecies.

  7. Sex determination in beetles: Production of all male progeny by Parental RNAi knockdown of transformer

    PubMed Central

    Shukla, Jayendra Nath; Palli, Subba Reddy

    2012-01-01

    Sex in insects is determined by a cascade of regulators ultimately controlling sex-specific splicing of a transcription factor, Doublesex (Dsx). We recently identified homolog of dsx in the red flour beetle, Tribolium castaneum (Tcdsx). Here, we report on the identification and characterization of a regulator of Tcdsx splicing in T. castaneum. Two male-specific and one female-specific isoforms of T. castaneum transformer (Tctra) were identified. RNA interference-aided knockdown of Tctra in pupa or adults caused a change in sex from females to males by diverting the splicing of Tcdsx pre-mRNA to male-specific isoform. All the pupa and adults developed from Tctra dsRNA injected final instar larvae showed male-specific sexually dimorphic structures. Tctra parental RNAi caused an elimination of females from the progeny resulting in production of all male progeny. Transformer parental RNAi could be used to produce all male population for use in pest control though sterile male release methods. PMID:22924109

  8. On the origin of sex chromosomes from meiotic drive

    PubMed Central

    Úbeda, Francisco; Patten, Manus M.; Wild, Geoff

    2015-01-01

    Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex chromosomes overcome this disadvantage? Any theory for the origin of sex chromosomes must identify the benefit that outweighs this cost and enables a sex-determining mutation to establish in the population. Here we show that a new sex-determining allele succeeds when linked to a sex-specific meiotic driver. The new sex-determining allele benefits from confining the driving allele to the sex in which it gains the benefit of drive. Our model requires few special assumptions and is sufficiently general to apply to the evolution of sex chromosomes in outbreeding cosexual or dioecious species. We highlight predictions of the model that can discriminate between this and previous theories of sex-chromosome origins. PMID:25392470

  9. Evolution of the complementary sex-determination gene of honey bees: balancing selection and trans-species polymorphisms.

    PubMed

    Cho, Soochin; Huang, Zachary Y; Green, Daniel R; Smith, Deborah R; Zhang, Jianzhi

    2006-11-01

    The mechanism of sex determination varies substantively among evolutionary lineages. One important mode of genetic sex determination is haplodiploidy, which is used by approximately 20% of all animal species, including >200,000 species of the entire insect order Hymenoptera. In the honey bee Apis mellifera, a hymenopteran model organism, females are heterozygous at the csd (complementary sex determination) locus, whereas males are hemizygous (from unfertilized eggs). Fertilized homozygotes develop into sterile males that are eaten before maturity. Because homozygotes have zero fitness and because common alleles are more likely than rare ones to form homozygotes, csd should be subject to strong overdominant selection and negative frequency-dependent selection. Under these selective forces, together known as balancing selection, csd is expected to exhibit a high degree of intraspecific polymorphism, with long-lived alleles that may be even older than the species. Here we sequence the csd genes as well as randomly selected neutral genomic regions from individuals of three closely related species, A. mellifera, Apis cerana, and Apis dorsata. The polymorphic level is approximately seven times higher in csd than in the neutral regions. Gene genealogies reveal trans-species polymorphisms at csd but not at any neutral regions. Consistent with the prediction of rare-allele advantage, nonsynonymous mutations are found to be positively selected in csd only in early stages after their appearances. Surprisingly, three different hypervariable repetitive regions in csd are present in the three species, suggesting variable mechanisms underlying allelic specificities. Our results provide a definitive demonstration of balancing selection acting at the honey bee csd gene, offer insights into the molecular determinants of csd allelic specificities, and help avoid homozygosity in bee breeding.

  10. A Study on Gender Preference and Awareness Regarding Prenatal Sex Determination among Antenatal Women in a Rural Area of Darjeeling District, West Bengal, India

    PubMed Central

    Roy, Archak

    2017-01-01

    Introduction Sex ratio is one of the major indicators to find the gender preferences in the community. Change in sex ratio reflects underlying socioeconomic, cultural patterns of a society. Aim The present study was conducted with the aim to find out the knowledge of antenatal women regarding the prenatal sex determination and the Pre Natal Diagnostic Techniques (PNDT) Act in a rural area along with assessing the gender preference in family among the study population. Materials and Methods A community based, descriptive, cross-sectional study was undertaken in the villages of Matigara Block of Darjeeling district of West Bengal, which serves as a field practice area of North Bengal Medical College & Hospital for two months. A total of 116 pregnant women were included and a pre designed pre tested questionnaire was used to collect the socio demographic details. The data were analysed by SPSS 20.0 software for proportions with chi-square tests. Results Knowledge of sex determination and the PNDT Act were found to be 44.82% and 18.10% among antenatal women. Knowledge regarding assessment of gender preference showed 52.58% expect a boy in this pregnancy. It was found that the determinants for gender preference were caste, sex of the last pregnancy and current gender composition. It was found that the determinants for knowledge of sex determination are age of the mother and the gravida of the mother. It was also found that the factor for the knowledge regarding the PNDT Act is age of the mother. These associations are statistically significant. Conclusion This situation calls for a strategy which includes community based awareness campaigns, women employment, education, and empowerment and by ensuring effective implementation of PNDT Act by the government so that families find it difficult to undertake sex determination. PMID:28384893

  11. Statistical sex determination from craniometrics: Comparison of linear discriminant analysis, logistic regression, and support vector machines.

    PubMed

    Santos, Frédéric; Guyomarc'h, Pierre; Bruzek, Jaroslav

    2014-12-01

    Accuracy of identification tools in forensic anthropology primarily rely upon the variations inherent in the data upon which they are built. Sex determination methods based on craniometrics are widely used and known to be specific to several factors (e.g. sample distribution, population, age, secular trends, measurement technique, etc.). The goal of this study is to discuss the potential variations linked to the statistical treatment of the data. Traditional craniometrics of four samples extracted from documented osteological collections (from Portugal, France, the U.S.A., and Thailand) were used to test three different classification methods: linear discriminant analysis (LDA), logistic regression (LR), and support vector machines (SVM). The Portuguese sample was set as a training model on which the other samples were applied in order to assess the validity and reliability of the different models. The tests were performed using different parameters: some included the selection of the best predictors; some included a strict decision threshold (sex assessed only if the related posterior probability was high, including the notion of indeterminate result); and some used an unbalanced sex-ratio. Results indicated that LR tends to perform slightly better than the other techniques and offers a better selection of predictors. Also, the use of a decision threshold (i.e. p>0.95) is essential to ensure an acceptable reliability of sex determination methods based on craniometrics. Although the Portuguese, French, and American samples share a similar sexual dimorphism, application of Western models on the Thai sample (that displayed a lower degree of dimorphism) was unsuccessful. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines.

    PubMed

    Picq, Sandrine; Santoni, Sylvain; Lacombe, Thierry; Latreille, Muriel; Weber, Audrey; Ardisson, Morgane; Ivorra, Sarah; Maghradze, David; Arroyo-Garcia, Rosa; Chatelet, Philippe; This, Patrice; Terral, Jean-Frédéric; Bacilieri, Roberto

    2014-09-03

    In Vitis vinifera L., domestication induced a dramatic change in flower morphology: the wild sylvestris subspecies is dioecious while hermaphroditism is largely predominant in the domesticated subsp. V. v. vinifera. The characterisation of polymorphisms in genes underlying the sex-determining chromosomal region may help clarify the history of domestication in grapevine and the evolution of sex chromosomes in plants. In the genus Vitis, sex determination is putatively controlled by one major locus with three alleles, male M, hermaphrodite H and female F, with an allelic dominance M > H > F. Previous genetic studies located the sex locus on chromosome 2. We used DNA polymorphisms of geographically diverse V. vinifera genotypes to confirm the position of this locus, to characterise the genetic diversity and traces of selection in candidate genes, and to explore the origin of hermaphroditism. In V. v. sylvestris, a sex-determining region of 154.8 kb, also present in other Vitis species, spans less than 1% of chromosome 2. It displays haplotype diversity, linkage disequilibrium and differentiation that typically correspond to a small XY sex-determining region with XY males and XX females. In male alleles, traces of purifying selection were found for a trehalose phosphatase, an exostosin and a WRKY transcription factor, with strikingly low polymorphism levels between distant geographic regions. Both diversity and network analysis revealed that H alleles are more closely related to M than to F alleles. Hermaphrodite alleles appear to derive from male alleles of wild grapevines, with successive recombination events allowing import of diversity from the X into the Y chromosomal region and slowing down the expansion of the region into a full heteromorphic chromosome. Our data are consistent with multiple domestication events and show traces of introgression from other Asian Vitis species into the cultivated grapevine gene pool.

  13. On the origin of sex chromosomes from meiotic drive.

    PubMed

    Úbeda, Francisco; Patten, Manus M; Wild, Geoff

    2015-01-07

    Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex chromosomes overcome this disadvantage? Any theory for the origin of sex chromosomes must identify the benefit that outweighs this cost and enables a sex-determining mutation to establish in the population. Here we show that a new sex-determining allele succeeds when linked to a sex-specific meiotic driver. The new sex-determining allele benefits from confining the driving allele to the sex in which it gains the benefit of drive. Our model requires few special assumptions and is sufficiently general to apply to the evolution of sex chromosomes in outbreeding cosexual or dioecious species. We highlight predictions of the model that can discriminate between this and previous theories of sex-chromosome origins. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Co-option of the bZIP transcription factor Vrille as the activator of Doublesex1 in environmental sex determination of the crustacean Daphnia magna.

    PubMed

    Mohamad Ishak, Nur Syafiqah; Nong, Quang Dang; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2017-11-01

    Divergence of upstream regulatory pathways of the transcription factor Doublesex (Dsx) serves as a basis for evolution of sex-determining mechanisms in animals. However, little is known about the regulation of Dsx in environmental sex determination. In the crustacean Daphnia magna, environmental sex determination is implemented by male-specific expression of the Dsx ortholog, Dsx1. Transcriptional regulation of Dsx1 comprises at least three phases during embryogenesis: non-sex-specific initiation, male-specific up-regulation, and its maintenance. Herein, we demonstrate that the male-specific up-regulation is controlled by the bZIP transcription factor, Vrille (Vri), an ortholog of the circadian clock genes-Drosophila Vri and mammalian E4BP4/NFIL3. Sequence analysis of the Dsx1 promoter/enhancer revealed a conserved element among two Daphnia species (D. magna and D. pulex), which contains a potential enhancer harboring a consensus Vri binding site overlapped with a consensus Dsx binding site. Besides non-sex-specific expression of Vri in late embryos, we found male-specific expression in early gastrula before the Dsx1 up-regulation phase begins. Knockdown of Vri in male embryos showed reduction of Dsx1 expression. In addition, transient overexpression of Vri in early female embryos up-regulated the expression of Dsx1 and induced male-specific trait. Targeted mutagenesis using CRISPR/Cas9 disrupted the enhancer on genome in males, which led to the reduction of Dsx1 expression. These results indicate that Vri was co-opted as a transcriptional activator of Dsx1 in environmental sex determination of D. magna. The data suggests the remarkably plastic nature of gene regulatory network in sex determination.

  15. Co-option of the bZIP transcription factor Vrille as the activator of Doublesex1 in environmental sex determination of the crustacean Daphnia magna

    PubMed Central

    Nong, Quang Dang; Matsuura, Tomoaki; Watanabe, Hajime

    2017-01-01

    Divergence of upstream regulatory pathways of the transcription factor Doublesex (Dsx) serves as a basis for evolution of sex-determining mechanisms in animals. However, little is known about the regulation of Dsx in environmental sex determination. In the crustacean Daphnia magna, environmental sex determination is implemented by male-specific expression of the Dsx ortholog, Dsx1. Transcriptional regulation of Dsx1 comprises at least three phases during embryogenesis: non-sex-specific initiation, male-specific up-regulation, and its maintenance. Herein, we demonstrate that the male-specific up-regulation is controlled by the bZIP transcription factor, Vrille (Vri), an ortholog of the circadian clock genes—Drosophila Vri and mammalian E4BP4/NFIL3. Sequence analysis of the Dsx1 promoter/enhancer revealed a conserved element among two Daphnia species (D. magna and D. pulex), which contains a potential enhancer harboring a consensus Vri binding site overlapped with a consensus Dsx binding site. Besides non-sex-specific expression of Vri in late embryos, we found male-specific expression in early gastrula before the Dsx1 up-regulation phase begins. Knockdown of Vri in male embryos showed reduction of Dsx1 expression. In addition, transient overexpression of Vri in early female embryos up-regulated the expression of Dsx1 and induced male-specific trait. Targeted mutagenesis using CRISPR/Cas9 disrupted the enhancer on genome in males, which led to the reduction of Dsx1 expression. These results indicate that Vri was co-opted as a transcriptional activator of Dsx1 in environmental sex determination of D. magna. The data suggests the remarkably plastic nature of gene regulatory network in sex determination. PMID:29095827

  16. Sex Determination: Sterility Genes out of Sequence.

    PubMed

    Pannell, John R; Gerchen, Jörn

    2018-01-22

    The canonical model for the evolution of separate sexes in plants invokes sterility mutations at two linked loci. A new study claims to have found them in asparagus, but the order of their origin does not conform to expectation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Plant Sex Chromosomes.

    PubMed

    Charlesworth, Deborah

    2016-04-29

    Although individuals in most flowering plant species, and in many haploid plants, have both sex functions, dioecious species-in which individuals have either male or female functions only-are scattered across many taxonomic groups, and many species have genetic sex determination. Among these, some have visibly heteromorphic sex chromosomes, and molecular genetic studies are starting to uncover sex-linked markers in others, showing that they too have fully sex-linked regions that are either too small or are located in chromosomes that are too small to be cytologically detectable from lack of pairing, lack of visible crossovers, or accumulation of heterochromatin. Detailed study is revealing that, like animal sex chromosomes, plant sex-linked regions show evidence for accumulation of repetitive sequences and genetic degeneration. Estimating when recombination stopped confirms the view that many plants have young sex-linked regions, making plants of great interest for studying the timescale of these changes.

  18. Molecular cloning and functional characterization of the sex-determination gene doublesex in the sexually dimorphic broad-horned beetle Gnatocerus cornutus (Coleoptera, Tenebrionidae)

    PubMed Central

    Gotoh, Hiroki; Ishiguro, Mai; Nishikawa, Hideto; Morita, Shinichi; Okada, Kensuke; Miyatake, Takahisa; Yaginuma, Toshinobu; Niimi, Teruyuki

    2016-01-01

    Various types of weapon traits found in insect order Coleoptera are known as outstanding examples of sexually selected exaggerated characters. It is known that the sex determination gene doublesex (dsx) plays a significant role in sex-specific expression of weapon traits in various beetles belonging to the superfamily Scarabaeoidea. Although sex-specific weapon traits have evolved independently in various Coleopteran groups, developmental mechanisms of sex-specific expression have not been studied outside of the Scarabaeoidea. In order to test the hypothesis that dsx-dependent sex-specific expression of weapon traits is a general mechanism among the Coleoptera, we have characterized the dsx in the sexually dimorphic broad-horned beetle Gnatocerus cornutus (Tenebrionidea, Tenebirionidae). By using molecular cloning, we identified five splicing variants of Gnatocerus cornutus dsx (Gcdsx), which are predicted to code four different isoforms. We found one male-specific variant (GcDsx-M), two female-specific variants (GcDsx-FL and GcDsx-FS) and two non-sex-specific variants (correspond to a single isoform, GcDsx-C). Knockdown of all Dsx isoforms resulted in intersex phenotype both in male and female. Also, knockdown of all female-specific isoforms transformed females to intersex phenotype, while did not affect male phenotype. Our results clearly illustrate the important function of Gcdsx in determining sex-specific trait expression in both sexes. PMID:27404087

  19. Sex Determination of Carolina Wrens (Thryothorus ludovicianus) in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Twedt, D.J.

    2004-01-01

    I identified sexual dimorphism in wing length (unflattened chord) of Carolina Wrens (Thryothorus ludovicianus) within the central Mississippi Alluvial Valley (northeast Louisiana and west-central Mississippi) and used this difference to assign a sex to captured wrens. Wrens were identified as female when wing length was less than 57.5 mm or male when wing length was greater than 58.5 mm. Verification of predicted sex was obtained from recaptures of banded individuals where sex was ascertained from the presence of a cloacal protuberance or brood patch. Correct prediction of sex was 81% for adult females and 95% for adult males. An alternative model, which categorized wrens with wing lengths of 58 and 59 mm as birds of unknown sex, increased correct prediction of females to 93% but reduced the number of individuals to which sex was assigned. These simple, predictive, wing-length-based models also correctly assigned sex for more than 88% of young (hatching-year) birds.

  20. Thelytokous parthenogenesis in eusocial Hymenoptera.

    PubMed

    Rabeling, Christian; Kronauer, Daniel J C

    2013-01-01

    Female parthenogenesis, or thelytoky, is particularly common in solitary Hymenoptera. Only more recently has it become clear that many eusocial species also regularly reproduce thelytokously, and here we provide a comprehensive overview. Especially in ants, thelytoky underlies a variety of idiosyncratic life histories with unique evolutionary and ecological consequences. In all eusocial species studied, thelytoky probably has a nuclear genetic basis and the underlying cytological mechanism retains high levels of heterozygosity. This is in striking contrast to many solitary wasps, in which thelytoky is often induced by cytoplasmic bacteria and results in an immediate loss of heterozygosity. These differences are likely related to differences in haplodiploid sex determination mechanisms, which in eusocial species usually require heterozygosity for female development. At the same time, haplodiploidy might account for important preadaptations that can help explain the apparent ease with which Hymenoptera transition between sexual and asexual reproduction.

  1. Structural Determinants of Health among Im/Migrants in the Indoor Sex Industry: Experiences of Workers and Managers/Owners in Metropolitan Vancouver

    PubMed Central

    Krüsi, Andrea; Zhang, Emma; Chettiar, Jill; Shannon, Kate

    2017-01-01

    Background Globally, im/migrant women are overrepresented in the sex industry and experience disproportionate health inequities. Despite evidence that the health impacts of migration may vary according to the timing and stage of migration (e.g., early arrival vs. long-term migration), limited evidence exists regarding social and structural determinants of health across different stages of migration, especially among im/migrants engaged in sex work. Our aim was to describe and analyze the evolving social and structural determinants of health and safety across the arrival and settlement process for im/migrants in the indoor sex industry. Methods We analyzed qualitative interviews conducted with 44 im/migrant sex workers and managers/owners working in indoor sex establishments (e.g., massage parlours, micro-brothels) in Metropolitan Vancouver, Canada in 2011; quantitative data from AESHA, a larger community-based cohort, were used to describe socio-demographic and social and structural characteristics of im/migrant sex workers. Results Based on quantitative data among 198 im/migrant workers in AESHA, 78.3% were Chinese-born, the median duration in Canada was 6 years, and most (86.4%) serviced clients in formal indoor establishments. Qualitative narratives revealed diverse pathways into sex work upon arrival to Canada, including language barriers to conventional labour markets and the higher pay and relative flexibility of sex work. Once engaged in sex work, fear associated with police raids (e.g., immigration concerns, sex work disclosure) and language barriers to sexual negotiation and health, social and legal supports posed pervasive challenges to health, safety and human rights during long-term settlement in Canada. Conclusions Findings highlight the critical influences of criminalization, language barriers, and stigma and discrimination related to sex work and im/migrant status in shaping occupational health and safety for im/migrants engaged in sex work

  2. Early determinants of vagal activity at preschool age - With potential dependence on sex.

    PubMed

    Kühne, Britta; Genser, Bernd; De Bock, Freia

    2016-12-01

    In children, autonomic nervous function is related to various highly prevalent health problems and might therefore represent an early indicator of ill health. We aimed to investigate the role of early-life exposures and physical activity (PA) as potential determinants of autonomic function at preschool age. We used an existing longitudinal data set of repeated vagal tone measurements (assessed via heart rate recovery (HRR)) and retrospectively assessed early-life exposures in 1052 children (mean age: 59.4months, 47.5% girls) from 52 preschools in Germany recruited from 2008 to 2010. HRR 1min after submaximal exercise served as primary outcome. Through multilevel linear regression analysis adjusted for demographic and socioeconomic factors, we assessed the association between repeatedly measured HRR and pregnancy smoking status, breastfeeding and objectively measured PA. Besides significant regression coefficients for previously described correlates of HRR (sex, age), we could show positive associations of HRR with breastfeeding (six versus zero months: +4.2 beats per minute (BPM), p=0.004) and PA (+1.0BPM for 10min increase of moderate-to-vigorous PA/day, p<0.001). Smoking before and during pregnancy showed no significant association with HRR in the total sample. However, we found interactions between sex and smoking before and during pregnancy as well as between sex and breastfeeding, suggesting significant associations with HRR only in girls. Besides PA, early pre- and postnatal exposures seem to have long-lasting effects on children's autonomic function, still recordable at preschool age. Our data suggest that these effects might be sex-dependent. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Sex and Social Influence: Does Sex Function as a Status Characteristic in Mixed-Sex Groups of Children?

    ERIC Educational Resources Information Center

    Lockheed, Marlaine E.; And Others

    1983-01-01

    The purpose of this study was to determine (1) whether sex operated as a diffuse status characteristic in mixed-sex groups of fourth- and fifth-grade children (n=168), and (2) whether an intervention based on expectation states theory would be successful in changing the status relationships within such groups. (PN)

  4. Cultural Influence on Pupils' Understanding of Conception, Birth of Twins and Sex Determination in Kenya

    ERIC Educational Resources Information Center

    Keraro, Fred N.; Okere, Mark I. O.; Anditi, Zephania O.

    2013-01-01

    This study investigated the extent to which primary and secondary school pupils believe in cultural interpretations of the biological concepts of conception, birth of twins and sex determination and the influence of education level and gender. Cross-sectional survey research design was used. The target population was Standard Seven (7th grade in…

  5. A complex interaction of imprinted and maternal-effect genes modifies sex determination in Odd Sex (Ods) mice.

    PubMed

    Poirier, Christophe; Qin, Yangjun; Adams, Carolyn P; Anaya, Yanett; Singer, Jonathan B; Hill, Annie E; Lander, Eric S; Nadeau, Joseph H; Bishop, Colin E

    2004-11-01

    The transgenic insertional mouse mutation Odd Sex (Ods) represents a model for the long-range regulation of Sox9. The mutation causes complete female-to-male sex reversal by inducing a male-specific expression pattern of Sox9 in XX Ods/+ embryonic gonads. We previously described an A/J strain-specific suppressor of Ods termed Odsm1(A). Here we show that phenotypic sex depends on a complex interaction between the suppressor and the transgene. Suppression can be achieved only if the transgene is transmitted paternally. In addition, the suppressor itself exhibits a maternal effect, suggesting that it may act on chromatin in the early embryo.

  6. A Complex Interaction of Imprinted and Maternal-Effect Genes Modifies Sex Determination in Odd Sex (Ods) Mice

    PubMed Central

    Poirier, Christophe; Qin, Yangjun; Adams, Carolyn P.; Anaya, Yanett; Singer, Jonathan B.; Hill, Annie E.; Lander, Eric S.; Nadeau, Joseph H.; Bishop, Colin E.

    2004-01-01

    The transgenic insertional mouse mutation Odd Sex (Ods) represents a model for the long-range regulation of Sox9. The mutation causes complete female-to-male sex reversal by inducing a male-specific expression pattern of Sox9 in XX Ods/+ embryonic gonads. We previously described an A/J strain-specific suppressor of Ods termed Odsm1A. Here we show that phenotypic sex depends on a complex interaction between the suppressor and the transgene. Suppression can be achieved only if the transgene is transmitted paternally. In addition, the suppressor itself exhibits a maternal effect, suggesting that it may act on chromatin in the early embryo. PMID:15579706

  7. Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors.

    PubMed

    Koster, Roelof; Mitra, Nandita; D'Andrea, Kurt; Vardhanabhuti, Saran; Chung, Charles C; Wang, Zhaoming; Loren Erickson, R; Vaughn, David J; Litchfield, Kevin; Rahman, Nazneen; Greene, Mark H; McGlynn, Katherine A; Turnbull, Clare; Chanock, Stephen J; Nathanson, Katherine L; Kanetsky, Peter A

    2014-11-15

    Genome-wide association (GWA) studies of testicular germ cell tumor (TGCT) have identified 18 susceptibility loci, some containing genes encoding proteins important in male germ cell development. Deletions of one of these genes, DMRT1, lead to male-to-female sex reversal and are associated with development of gonadoblastoma. To further explore genetic association with TGCT, we undertook a pathway-based analysis of SNP marker associations in the Penn GWAs (349 TGCT cases and 919 controls). We analyzed a custom-built sex determination gene set consisting of 32 genes using three different methods of pathway-based analysis. The sex determination gene set ranked highly compared with canonical gene sets, and it was associated with TGCT (FDRG = 2.28 × 10(-5), FDRM = 0.014 and FDRI = 0.008 for Gene Set Analysis-SNP (GSA-SNP), Meta-Analysis Gene Set Enrichment of Variant Associations (MAGENTA) and Improved Gene Set Enrichment Analysis for Genome-wide Association Study (i-GSEA4GWAS) analysis, respectively). The association remained after removal of DMRT1 from the gene set (FDRG = 0.0002, FDRM = 0.055 and FDRI = 0.009). Using data from the NCI GWA scan (582 TGCT cases and 1056 controls) and UK scan (986 TGCT cases and 4946 controls), we replicated these findings (NCI: FDRG = 0.006, FDRM = 0.014, FDRI = 0.033, and UK: FDRG = 1.04 × 10(-6), FDRM = 0.016, FDRI = 0.025). After removal of DMRT1 from the gene set, the sex determination gene set remains associated with TGCT in the NCI (FDRG = 0.039, FDRM = 0.050 and FDRI = 0.055) and UK scans (FDRG = 3.00 × 10(-5), FDRM = 0.056 and FDRI = 0.044). With the exception of DMRT1, genes in the sex determination gene set have not previously been identified as TGCT susceptibility loci in these GWA scans, demonstrating the complementary nature of a pathway-based approach for genome-wide analysis of TGCT. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions.

    PubMed

    Conte, Matthew A; Gammerdinger, William J; Bartie, Kerry L; Penman, David J; Kocher, Thomas D

    2017-05-02

    Tilapias are the second most farmed fishes in the world and a sustainable source of food. Like many other fish, tilapias are sexually dimorphic and sex is a commercially important trait in these fish. In this study, we developed a significantly improved assembly of the tilapia genome using the latest genome sequencing methods and show how it improves the characterization of two sex determination regions in two tilapia species. A homozygous clonal XX female Nile tilapia (Oreochromis niloticus) was sequenced to 44X coverage using Pacific Biosciences (PacBio) SMRT sequencing. Dozens of candidate de novo assemblies were generated and an optimal assembly (contig NG50 of 3.3Mbp) was selected using principal component analysis of likelihood scores calculated from several paired-end sequencing libraries. Comparison of the new assembly to the previous O. niloticus genome assembly reveals that recently duplicated portions of the genome are now well represented. The overall number of genes in the new assembly increased by 27.3%, including a 67% increase in pseudogenes. The new tilapia genome assembly correctly represents two recent vasa gene duplication events that have been verified with BAC sequencing. At total of 146Mbp of additional transposable element sequence are now assembled, a large proportion of which are recent insertions. Large centromeric satellite repeats are assembled and annotated in cichlid fish for the first time. Finally, the new assembly identifies the long-range structure of both a ~9Mbp XY sex determination region on LG1 in O. niloticus, and a ~50Mbp WZ sex determination region on LG3 in the related species O. aureus. This study highlights the use of long read sequencing to correctly assemble recent duplications and to characterize repeat-filled regions of the genome. The study serves as an example of the need for high quality genome assemblies and provides a framework for identifying sex determining genes in tilapia and related fish species.

  9. Sexing sirenians: Validation of visual and molecular sex determination in both wild dugongs (Dugong dugon) and Florida manatees (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Lanyon, J.M.; Sneath, H.L.; Ovenden, J.R.; Broderick, D.; Bonde, R.K.

    2009-01-01

    Sexing wild marine mammals that show little to no sexual dimorphism is challenging. For sirenians that are difficult to catch or approach closely, molecular sexing from tissue biopsies offers an alternative method to visual discrimination. This paper reports the results of a field study to validate the use of two sexing methods: (1) visual discrimination of sex vs (2) molecular sexing based on a multiplex PCR assay which amplifies the male-specific SRY gene and differentiates ZFX and ZFY gametologues. Skin samples from 628 dugongs (Dugong dugon) and 100 Florida manatees (Trichechus manatus latirostris) were analysed and assigned as male or female based on molecular sex. These individuals were also assigned a sex based on either direct observation of the genitalia and/or the association of the individual with a calf. Individuals of both species showed 93 to 96% congruence between visual and molecular sexing. For the remaining 4 to 7%, the discrepancies could be explained by human error. To mitigate this error rate, we recommend using both of these robust techniques, with routine inclusion of sex primers into microsatellite panels employed for identity, along with trained field observers and stringent sample handling.

  10. Loggerhead sea turtle environmental sex determination: implications of moisture and temperature for climate change based predictions for species survival.

    PubMed

    Wyneken, Jeanette; Lolavar, Alexandra

    2015-05-01

    It has been proposed that because marine turtles have environmentally determined sex by incubation temperature, elevated temperatures might skew sex ratios to unsustainable levels, leading to extinction. Elevated temperatures may also reduce availability of suitable nesting sites via sea level rise. Increased tropical storm activity can directly affect nest site moisture, embryonic development, and the probability that nests will survive. Here, we question some of these assumptions and review the limits of sex ratio estimates. Sea turtles may be more resilient to climate change than previously thought, in part because of hitherto unappreciated mechanisms for coping with variable incubation conditions. © 2015 Wiley Periodicals, Inc.

  11. Comparing the refuge strategy for managing the evolution of insect resistance under different reproductive strategies.

    PubMed

    Crowder, David W; Carrière, Yves

    2009-12-07

    Genetically modified (GM) crops are used extensively worldwide to control diploid agricultural insect pests that reproduce sexually. However, future GM crops will likely soon target haplodiploid and parthenogenetic insects. As rapid pest adaptation could compromise these novel crops, strategies to manage resistance in haplodiploid and parthenogenetic pests are urgently needed. Here, we developed models to characterize factors that could delay or prevent the evolution of resistance to GM crops in diploid, haplodiploid, and parthenogenetic insect pests. The standard strategy for managing resistance in diploid pests relies on refuges of non-GM host plants and GM crops that produce high toxin concentrations. Although the tenets of the standard refuge strategy apply to all pests, this strategy does not greatly delay the evolution of resistance in haplodiploid or parthenogenetic pests. Two additional factors are needed to effectively delay or prevent the evolution of resistance in such pests, large recessive or smaller non-recessive fitness costs must reduce the fitness of resistance individuals in refuges (and ideally also on GM crops), and resistant individuals must have lower fitness on GM compared to non-GM crops (incomplete resistance). Recent research indicates that the magnitude and dominance of fitness costs could be increased by using specific host-plants, natural enemies, or pathogens. Furthermore, incomplete resistance could be enhanced by engineering desirable traits into novel GM crops. Thus, the sustainability of GM crops that target haplodiploid or parthenogenetic pests will require careful consideration of the effects of reproductive mode, fitness costs, and incomplete resistance.

  12. Did Lizards Follow Unique Pathways in Sex Chromosome Evolution?

    PubMed Central

    Gleeson, Dianne; Georges, Arthur

    2018-01-01

    Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata) which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways. PMID:29751579

  13. Identification of floral genes for sex determination in Calamus palustris Griff. by using suppression subtractive hybridization.

    PubMed

    Ng, C Y; Wickneswari, R; Choong, C Y

    2014-08-07

    Calamus palustris Griff. is an economically important dioecious rattan species in Southeast Asia. However, dioecy and onset of flowering at 3-4 years old render uncertainties in desired female:male seedling ratios to establish a productive seed orchard for this rattan species. We constructed a subtractive library for male floral tissue to understand the genetic mechanism for gender determination in C. palustris. The subtractive library produced 1536 clones with 1419 clones of high quality. Reverse Northern screening showed 313 clones with differential expression, and sequence analyses clustered them into 205 unigenes, including 32 contigs and 173 singletons. The subtractive library was further validated with reverse transcription-quantitative polymerase chain reaction analysis. Homology identification classified the unigenes into 12 putative functional proteins with 83% unigenes showing significant match to proteins in databases. Functional annotations of these unigenes revealed genes involved in male flower development, including MADS-box genes, pollen-related genes, phytohormones for flower development, and male flower organ development. Our results showed that the male floral genes may play a vital role in sex determination in C. palustris. The identified genes can be exploited to understand the molecular basis of sex determination in C. palustris.

  14. Origin of sex chromosomes in six groups of Rana rugosa frogs inferred from a sex-linked DNA marker.

    PubMed

    Oike, Akira; Watanabe, Koichiro; Min, Mi-Sook; Tojo, Koji; Kumagai, Masahide; Kimoto, Yuya; Yamashiro, Tadashi; Matsuo, Takanori; Kodama, Maho; Nakamura, Yoriko; Notsu, Masaru; Tochimoto, Takeyoshi; Fujita, Hiroyuki; Ota, Maki; Ito, Etsuro; Yasumasu, Shigeki; Nakamura, Masahisa

    2017-08-01

    Each vertebrate species, as a general rule, has either the XX/XY or ZZ/ZW chromosomes by which sex is determined. However, the Japanese Rana (R.) rugosa frog is an exception, possessing both sex-determining combinations within one species, varying with region of origin. We collected R. rugosa frogs from 104 sites around Japan and South Korea and determined the nucleotide sequences of the mitochondrial 12S ribosomal RNA gene. Based on the sequences, R. rugosa frogs were divided into four groups from Japan and one from South Korea. The ZZ/ZW type is reportedly derived from the XX/XY type, although recently a new ZZ/ZW type of R. rugosa was reported. However, it still remains unclear from where the sex chromosomes in the five groups of this species were derived. In this study, we successfully isolated a sex-linked DNA maker and used it to classify R. rugosa frogs into several groupings. From the DNA marker as well as from nucleotide analysis of the promoter region of the androgen receptor (AR) gene, we identified another female heterogametic group, designated, West-Central. The sex chromosomes in the West-Central originated from the West and Central groups. The results indicate that a sex-linked DNA marker is a verifiable tool to determine the origin of the sex chromosomes in R. rugosa frogs in which the sex-determining system has changed, during two independent events, from the male to female heterogamety. © 2017 Wiley Periodicals, Inc.

  15. Same sex marriage and the perceived assault on opposite sex marriage.

    PubMed

    Dinno, Alexis; Whitney, Chelsea

    2013-01-01

    Marriage benefits both individuals and societies, and is a fundamental determinant of health. Until recently same sex couples have been excluded from legally recognized marriage in the United States. Recent debate around legalization of same sex marriage has highlighted for anti-same sex marriage advocates and policy makers a concern that allowing same sex couples to marry will lead to a decrease in opposite sex marriages. Our objective is to model state trends in opposite sex marriage rates by implementation of same sex marriages and other same sex unions. Marriage data were obtained for all fifty states plus the District of Columbia from 1989 through 2009. As these marriage rates are non-stationary, a generalized error correction model was used to estimate long run and short run effects of same sex marriages and strong and weak same sex unions on rates of opposite sex marriage. We found that there were no significant long-run or short run effects of same sex marriages or of strong or weak same sex unions on rates of opposite sex marriage. A deleterious effect on rates of opposite sex marriage has been argued to be a motivating factor for both the withholding and the elimination of existing rights of same sex couples to marry by policy makers-including presiding justices of current litigation over the rights of same sex couples to legally marry. Such claims do not appear credible in the face of the existing evidence, and we conclude that rates of opposite sex marriages are not affected by legalization of same sex civil unions or same sex marriages.

  16. Same Sex Marriage and the Perceived Assault on Opposite Sex Marriage

    PubMed Central

    Dinno, Alexis; Whitney, Chelsea

    2013-01-01

    Background Marriage benefits both individuals and societies, and is a fundamental determinant of health. Until recently same sex couples have been excluded from legally recognized marriage in the United States. Recent debate around legalization of same sex marriage has highlighted for anti-same sex marriage advocates and policy makers a concern that allowing same sex couples to marry will lead to a decrease in opposite sex marriages. Our objective is to model state trends in opposite sex marriage rates by implementation of same sex marriages and other same sex unions. Methods and Findings Marriage data were obtained for all fifty states plus the District of Columbia from 1989 through 2009. As these marriage rates are non-stationary, a generalized error correction model was used to estimate long run and short run effects of same sex marriages and strong and weak same sex unions on rates of opposite sex marriage. We found that there were no significant long-run or short run effects of same sex marriages or of strong or weak same sex unions on rates of opposite sex marriage. Conclusion A deleterious effect on rates of opposite sex marriage has been argued to be a motivating factor for both the withholding and the elimination of existing rights of same sex couples to marry by policy makers–including presiding justices of current litigation over the rights of same sex couples to legally marry. Such claims do not appear credible in the face of the existing evidence, and we conclude that rates of opposite sex marriages are not affected by legalization of same sex civil unions or same sex marriages. PMID:23776536

  17. An Evolving Genetic Architecture Interacts with Hill–Robertson Interference to Determine the Benefit of Sex

    PubMed Central

    Whitlock, Alexander O. B.; Peck, Kayla M.; Azevedo, Ricardo B. R.; Burch, Christina L.

    2016-01-01

    Sex is ubiquitous in the natural world, but the nature of its benefits remains controversial. Previous studies have suggested that a major advantage of sex is its ability to eliminate interference between selection on linked mutations, a phenomenon known as Hill–Robertson interference. However, those studies may have missed both important advantages and important disadvantages of sexual reproduction because they did not allow the distributions of mutational effects and interactions (i.e., the genetic architecture) to evolve. Here we investigate how Hill–Robertson interference interacts with an evolving genetic architecture to affect the evolutionary origin and maintenance of sex by simulating evolution in populations of artificial gene networks. We observed a long-term advantage of sex—equilibrium mean fitness of sexual populations exceeded that of asexual populations—that did not depend on population size. We also observed a short-term advantage of sex—sexual modifier mutations readily invaded asexual populations—that increased with population size, as was observed in previous studies. We show that the long- and short-term advantages of sex were both determined by differences between sexual and asexual populations in the evolutionary dynamics of two properties of the genetic architecture: the deleterious mutation rate (Ud) and recombination load (LR). These differences resulted from a combination of selection to minimize LR, which is experienced only by sexuals, and Hill–Robertson interference experienced primarily by asexuals. In contrast to the previous studies, in which Hill–Robertson interference had only a direct impact on the fitness advantages of sex, the impact of Hill–Robertson interference in our simulations was mediated additionally by an indirect impact on the efficiency with which selection acted to reduce Ud. PMID:27098911

  18. The Wright stuff: reimagining path analysis reveals novel components of the sex determination hierarchy in Drosophila melanogaster.

    PubMed

    Fear, Justin M; Arbeitman, Michelle N; Salomon, Matthew P; Dalton, Justin E; Tower, John; Nuzhdin, Sergey V; McIntyre, Lauren M

    2015-09-04

    The Drosophila sex determination hierarchy is a classic example of a transcriptional regulatory hierarchy, with sex-specific isoforms regulating morphology and behavior. We use a structural equation modeling approach, leveraging natural genetic variation from two studies on Drosophila female head tissues--DSPR collection (596 F1-hybrids from crosses between DSPR sub-populations) and CEGS population (75 F1-hybrids from crosses between DGRP/Winters lines to a reference strain w1118)--to expand understanding of the sex hierarchy gene regulatory network (GRN). This approach is completely generalizable to any natural population, including humans. We expanded the sex hierarchy GRN adding novel links among genes, including a link from fruitless (fru) to Sex-lethal (Sxl) identified in both populations. This link is further supported by the presence of fru binding sites in the Sxl locus. 754 candidate genes were added to the pathway, including the splicing factors male-specific lethal 2 and Rm62 as downstream targets of Sxl which are well-supported links in males. Independent studies of doublesex and transformer mutants support many additions, including evidence for a link between the sex hierarchy and metabolism, via Insulin-like receptor. The genes added in the CEGS population were enriched for genes with sex-biased splicing and components of the spliceosome. A common goal of molecular biologists is to expand understanding about regulatory interactions among genes. Using natural alleles we can not only identify novel relationships, but using supervised approaches can order genes into a regulatory hierarchy. Combining these results with independent large effect mutation studies, allows clear candidates for detailed molecular follow-up to emerge.

  19. Gender preference and awareness regarding sex determination among antenatal mothers attending a medical college of eastern India.

    PubMed

    Yasmin, Shamima; Mukherjee, Anindya; Manna, Nirmalya; Baur, Baijayanti; Datta, Mousumi; Sau, Manabendra; Roy, Manidipa; Dasgupta, Samir

    2013-06-01

    There are many women "missing" due to an unfavourable sex ratio in India, which has strong patriarchal norms and a preference for sons. Female gender discrimination has been reported in health care, nutrition, education, and resource allocation due to man-made norms, religious beliefs, and recently by ultrasonography resulting in lowered sex ratio. The present study attempts to find out the level of awareness regarding sex determination and to explore preference of gender and factors associated among antenatal mothers attending a medical college in eastern India. Interviews were done by predesigned pretested proforma over 6 months. The data were analysed by SPSS 16.0 software for proportions with chi-squared tests and binary logistic regression analysis. Most women who were multigravida did not know about contraceptives; 1.8% of mothers knew the sex of the fetus in present pregnancy while another 34.7% expressed willingness; 13.6% knew of a place which could tell sex of the fetus beforehand; 55.6% expressed their preference of sex of the baby for present pregnancy while 50.6% of their husbands had gender preference. Gender preference was significantly high in subjects with: lower socioeconomic status (p=0.011); lower level of education of mother (p=0.047) and husband (p=0.0001); multigravida (p=0.002); presence of living children (p=0.0001); and husband having preference of sex of baby (p=0.0001). Parental education, socioeconomic background, and number of living issues were the main predictors for gender preference. Awareness regarding gender preference and related law and parental counselling to avoid gender preference with adoption of small family norm is recommended.

  20. Sex in an Evolutionary Perspective: Just Another Reaction Norm

    PubMed Central

    Nylin, Sören

    2010-01-01

    It is common to refer to all sorts of clear-cut differences between the sexes as something that is biologically almost inevitable. Although this does not reflect the status of evolutionary theory on sex determination and sexual dimorphism, it is probably a common view among evolutionary biologists as well, because of the impact of sexual selection theory. To get away from thinking about biological sex and traits associated with a particular sex as something static, it should be recognized that in an evolutionary perspective sex can be viewed as a reaction norm, with sex attributes being phenotypically plastic. Sex determination itself is fundamentally plastic, even when it is termed “genetic”. The phenotypic expression of traits that are statistically associated with a particular sex always has a plastic component. This plasticity allows for much more variation in the expression of traits according to sex and more overlap between the sexes than is typically acknowledged. Here we review the variation and frequency of evolutionary changes in sex, sex determination and sex roles and conclude that sex in an evolutionary time-frame is extremely variable. We draw on recent findings in sex determination mechanisms, empirical findings of morphology and behaviour as well as genetic and developmental models to explore the concept of sex as a reaction norm. From this point of view, sexual differences are not expected to generally fall into neat, discrete, pre-determined classes. It is important to acknowledge this variability in order to increase objectivity in evolutionary research. PMID:21170116

  1. Sex Determination by Biometry of Anterior Features of Human Hip Bones in South Indian Population.

    PubMed

    Rajasekhar, Sssn; Vasudha, T K; Aravindhan, K

    2017-06-01

    Sex determination is the first step in establishing the identity of skeletal remains. Many studies included biometry of posterior features of hip bone. Very few studies are reported involving the biometry of anterior features of the hip bone. Anterior features of hip bone are important especially, if there is damage to the posterior features of hip bone in cases involving deliberate disfigurement of the body to resist identification of the crime in medicolegal cases. The present study was done to evaluate the effectiveness of anterior border parameters of the hip bone for prediction of sex using discriminant function analysis in South Indian population. A total of 206 dry bones were used (121 male and 85 female) and parameters like the distance between pubic tubercle and anterior rim of acetabulum, vertical acetabular diameter, transverse acetabular diameter, and the distance between pubic tubercle to highest point on the iliopubic eminence were measured using Vernier calipers. Normally distributed variables were compared using Students t-test to analyse the significance. There was significant difference between the male and female hip bones of the observed variables with p-value less than 0.05. In parameters like the distance between pubic tubercle to anterior rim of acetabulum and distance between the highest points on iliopubic eminence to pubic tubercle; the values were more in female when compared to males. In parameters like vertical and transverse acetabular diameters; the values in males were more when compared to females. These parameters of hip bone can be utilised for sex determination in South Indian population.

  2. The transformer2 gene of the pumpkin fruit fly, Bactrocera tau (Walker), functions in sex determination, male fertility and testis development.

    PubMed

    Thongsaiklaing, Thanaset; Nipitwattanaphon, Mingkwan; Ngernsiri, Lertluk

    2018-06-22

    The insect transformer2 (tra2) gene has a prevalent role in cooperating with the sex determining gene transformer (tra) to direct female differentiation. Here, we report the identification and characterization of Btau-tra2, the tra2 ortholog of the pumpkin fruit fly, Bactrocera tau, an invasive agricultural pest. The Btau-tra2 gene produces three transcript variants. However, only two transcripts can be examined; one is present at all developmental stages in the soma and germline of both sexes and the other one is specific to embryo and the germline. Knocking down the function of Btau-tra2 produced a male biased sex ratio and some intersexes. Consistent with a role in sex determination, the obtained intersexual and male sterility phenotypes express a mix of male and female splice variants of the tra and doublesex (dsx) orthologs, indicating that Btau-tra2 has a conserved splicing regulatory function and acts together/upstream of tra and dsx. In addition, some males obtained from the knock down are fertile but their fertilities are extremely reduced. Moreover, almost all surviving RNAi males harbor testes having some defects in their external morphologies. Most notably, the body size of a few surviving RNAi flies was two to three folds increased with respect to the normal size. Our findings suggest that Btua-tra2 is involved in male fertility and may also have an unprecedented role in body size control besides its conserved role in sex determination. This article is protected by copyright. All rights reserved. © 2018 The Royal Entomological Society.

  3. Inherited XX sex reversal originating from wild medaka populations.

    PubMed

    Shinomiya, A; Otake, H; Hamaguchi, S; Sakaizumi, M

    2010-11-01

    The teleost fish, medaka (Oryzias latipes), has an XX/XY sex-determining mechanism. A Y-linked DM domain gene, DMY, has been isolated by positional cloning as the sex-determining gene in this species. Previously, we conducted a field survey of genotypic sex and found that approximately 1% of wild medaka are sex-reversed (XX males and XY females). Here, we performed genetic analyses of nine spontaneous XX sex-reversed males to elucidate its genetic basis. In all cases, the F(1) progeny were all females, whereas XX males reappeared in the backcross (BC) progeny, suggesting that XX sex reversal is a recessive trait. Although the incidences of sex reversal in the BC progeny were mostly low, 40% were males derived from one XX male. We performed linkage analysis using 55 BC males and located a single major factor, sda-1 (sex-determining autosomal factor-1), controlling sex reversal in an autosomal linkage group. Thus, genes involved in the sex-determining pathway can be isolated from spontaneous mutants in wild populations.

  4. Sex Chromosome Drive

    PubMed Central

    Helleu, Quentin; Gérard, Pierre R.; Montchamp-Moreau, Catherine

    2015-01-01

    Sex chromosome drivers are selfish elements that subvert Mendel's first law of segregation and therefore are overrepresented among the products of meiosis. The sex-biased progeny produced then fuels an extended genetic conflict between the driver and the rest of the genome. Many examples of sex chromosome drive are known, but the occurrence of this phenomenon is probably largely underestimated because of the difficulty to detect it. Remarkably, nearly all sex chromosome drivers are found in two clades, Rodentia and Diptera. Although very little is known about the molecular and cellular mechanisms of drive, epigenetic processes such as chromatin regulation could be involved in many instances. Yet, its evolutionary consequences are far-reaching, from the evolution of mating systems and sex determination to the emergence of new species. PMID:25524548

  5. The Consequences of Same-Sex, Cross-Sex, and Androgynous Preferences.

    ERIC Educational Resources Information Center

    Fagot, Beverly I.

    The sex role choices of preschool children were observed for two years in a free play situation to determine what the consequences of such choices are for the types of play chosen and for social behaviors. The sex role factor was plotted on four quadrants: Masculine (M), Feminine (F), Androgynous and Low on both M and F (LMF). The children who…

  6. Loss of Mitogen-Activated Protein Kinase Kinase Kinase 4 (MAP3K4) Reveals a Requirement for MAPK Signalling in Mouse Sex Determination

    PubMed Central

    Bogani, Debora; Siggers, Pam; Brixey, Rachel; Warr, Nick; Beddow, Sarah; Edwards, Jessica; Williams, Debbie; Wilhelm, Dagmar; Koopman, Peter; Flavell, Richard A.; Chi, Hongbo; Ostrer, Harry; Wells, Sara; Cheeseman, Michael; Greenfield, Andy

    2009-01-01

    Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY) gonad, sex-determining region of the Y (SRY) protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK) signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg) mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4), a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas). These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and create a novel

  7. Transcriptome profiling of Diachasmimorpha longicaudata towards useful molecular tools for population management.

    PubMed

    Mannino, M Constanza; Rivarola, Máximo; Scannapieco, Alejandra C; González, Sergio; Farber, Marisa; Cladera, Jorge L; Lanzavecchia, Silvia B

    2016-10-12

    Diachasmimorpha longicaudata (Hymenoptera: Braconidae) is a solitary parasitoid of Tephritidae (Diptera) fruit flies of economic importance currently being mass-reared in bio-factories and successfully used worldwide. A peculiar biological aspect of Hymenoptera is its haplo-diploid life cycle, where females (diploid) develop from fertilized eggs and males (haploid) from unfertilized eggs. Diploid males were described in many species and recently evidenced in D. longicaudata by mean of inbreeding studies. Sex determination in this parasitoid is based on the Complementary Sex Determination (CSD) system, with alleles from at least one locus involved in early steps of this pathway. Since limited information is available about genetics of this parasitoid species, a deeper analysis on D. longicaudata's genomics is required to provide molecular tools for achieving a more cost effective production under artificial rearing conditions. We report here the first transcriptome analysis of male-larvae, adult females and adult males of D. longicaudata using 454-pyrosequencing. A total of 469766 reads were analyzed and 8483 high-quality isotigs were assembled. After functional annotation, a total of 51686 unigenes were produced, from which, 7021 isotigs and 20227 singletons had at least one BLAST hit against the NCBI non-redundant protein database. A preliminary comparison of adult female and male evidenced that 98 transcripts showed differential expression profiles, with at least a 10-fold difference. Among the functionally annotated transcripts we detected four sequences potentially involved in sex determination and three homologues to two known genes involved in the sex determination cascade. Finally, a total of 4674SimpleSequence Repeats (SSRs) were in silico identified and characterized. The information obtained here will significantly contribute to the development of D. longicaudata functional genomics, genetics and population-based genome studies. Thousands of new

  8. Sex difference in leukocyte telomere length is ablated in opposite-sex co-twins

    PubMed Central

    Benetos, Athanase; Dalgård, Christine; Labat, Carlos; Kark, Jeremy D; Verhulst, Simon; Christensen, Kaare; Kimura, Masayuki; Horvath, Kent; Kyvik, Kirsten Ohm; Aviv, Abraham

    2014-01-01

    Background: In eutherian mammals and in humans, the female fetus may be masculinized while sharing the intra-uterine environment with a male fetus. Telomere length (TL), as expressed in leukocytes, is heritable and is longer in women than in men. The main determinant of leukocyte TL (LTL) is LTL at birth. However, LTL is modified by age-dependent attrition. Methods: We studied LTL dynamics (LTL and its attrition) in adult same-sex (monozygotic, n = 268; dizygotic, n = 308) twins and opposite-sex (n = 144) twins. LTL was measured by Southern blots of the terminal restriction fragments. Results: We observed that in same-sex (both monozygotic and dizygotic) twins, as reported in singletons, LTL was longer in females than in males [estimate ± standard error (SE):163 ± 63 bp, P < 0.01]. However, in opposite-sex twins, female LTL was indistinguishable from that of males (−31 ± 52 bp, P = 0.6), whereas male LTL was not affected. Findings were similar when the comparison was restricted to opposite-sex and same-sex dizygotic twins (females relative to males: same-sex: 188 ± 90 bp, P < 0.05; other-sex: −32 ± 64 bp, P = 0.6). Conclusions: These findings are compatible with masculinization of the female fetus in opposite-sex twins. They suggest that the sex difference in LTL, seen in the general population, is largely determined in utero, perhaps by the intrauterine hormonal environment. Further studies in newborn twins are warranted to test this thesis. PMID:25056338

  9. Distributed effects of biological sex define sex-typical motor behavior in Caenorhabditis elegans.

    PubMed

    Mowrey, William R; Bennett, Jessica R; Portman, Douglas S

    2014-01-29

    Sex differences in shared behaviors (for example, locomotion and feeding) are a nearly universal feature of animal biology. Though these behaviors may share underlying neural programs, their kinematics can exhibit robust differences between males and females. The neural underpinnings of these differences are poorly understood because of the often-untested assumption that they are determined by sex-specific body morphology. Here, we address this issue in the nematode Caenorhabditis elegans, which features two sexes with distinct body morphologies but similar locomotor circuitry and body muscle. Quantitative behavioral analysis shows that C. elegans and related nematodes exhibit significant sex differences in the dynamics and geometry of locomotor body waves, such that the male is generally faster. Using a recently proposed model of locomotor wave propagation, we show that sex differences in both body mechanics and the intrinsic dynamics of the motor system can contribute to kinematic differences in distinct mechanical contexts. By genetically sex-reversing the properties of specific tissues and cells, however, we find that sex-specific locomotor frequency in C. elegans is determined primarily by the functional modification of shared sensory neurons. Further, we find that sexual modification of body wall muscle together with the nervous system is required to alter body wave speed. Thus, rather than relying on a single focus of modification, sex differences in motor dynamics require independent modifications to multiple tissue types. Our results suggest shared motor behaviors may be sex-specifically optimized though distributed modifications to several aspects of morphology and physiology.

  10. Distributed Effects of Biological Sex Define Sex-Typical Motor Behavior in Caenorhabditis elegans

    PubMed Central

    Mowrey, William R.; Bennett, Jessica R.

    2014-01-01

    Sex differences in shared behaviors (for example, locomotion and feeding) are a nearly universal feature of animal biology. Though these behaviors may share underlying neural programs, their kinematics can exhibit robust differences between males and females. The neural underpinnings of these differences are poorly understood because of the often-untested assumption that they are determined by sex-specific body morphology. Here, we address this issue in the nematode Caenorhabditis elegans, which features two sexes with distinct body morphologies but similar locomotor circuitry and body muscle. Quantitative behavioral analysis shows that C. elegans and related nematodes exhibit significant sex differences in the dynamics and geometry of locomotor body waves, such that the male is generally faster. Using a recently proposed model of locomotor wave propagation, we show that sex differences in both body mechanics and the intrinsic dynamics of the motor system can contribute to kinematic differences in distinct mechanical contexts. By genetically sex-reversing the properties of specific tissues and cells, however, we find that sex-specific locomotor frequency in C. elegans is determined primarily by the functional modification of shared sensory neurons. Further, we find that sexual modification of body wall muscle together with the nervous system is required to alter body wave speed. Thus, rather than relying on a single focus of modification, sex differences in motor dynamics require independent modifications to multiple tissue types. Our results suggest shared motor behaviors may be sex-specifically optimized though distributed modifications to several aspects of morphology and physiology. PMID:24478342

  11. Mayfly and fish species identification and sex determination in bleak (Alburnus alburnus) by MALDI-TOF mass spectrometry.

    PubMed

    Maasz, G; Takács, P; Boda, P; Varbiro, G; Pirger, Z

    2017-12-01

    Besides food quality control of fish or cephalopods, the novel mass spectrometry (MS) approaches could be effective and beneficial methods for the investigation of biodiversity in ecological research. Our aims were to verify the applicability of MALDI-TOF MS in the rapid identification of closely related species, and to further develop it for sex determination in phenotypically similar fish focusing on the low mass range. For MALDI-TOF MS spectra analysis, ClinProTools software was applied, but our observed classification was also confirmed by Self Organizing Map. For verifying the wide applicability of the method, brains from invertebrate and vertebrate species were used in order to detect the species related markers from two mayflies and eight fish as well as sex-related markers within bleak. Seven Ephemera larvae and sixty-one fish species related markers were observed and nineteen sex-related markers were identified in bleak. Similar patterns were observed between the individuals within one species. In contrast, there were markedly diverse patterns between the different species and sexes visualized by SOMs. Two different Ephemera species and male or female fish were identified with 100% accuracy. The various fish species were classified into 8 species with a high level of accuracy (96.2%). Based on MS data, dendrogram was generated from different fish species by using ClinProTools software. This MS-based dendrogram shows relatively high correspondence with the phylogenetic relationships of both the studied species and orders. In summary, MALDI-TOF MS provides a cheap, reliable, sensitive and fast identification tool for researchers in the case of closely related species using mass spectra acquired in a low mass range to define specific molecular profiles. Moreover, we presented evidence for the first time for determination of sex within one fish species by using this method. We conclude that it is a powerful tool that can revolutionize ecological and

  12. Gonad Transcriptome Analysis of the Pacific Oyster Crassostrea gigas Identifies Potential Genes Regulating the Sex Determination and Differentiation Process.

    PubMed

    Yue, Chenyang; Li, Qi; Yu, Hong

    2018-04-01

    The Pacific oyster Crassostrea gigas is a commercially important bivalve in aquaculture worldwide. C. gigas has a fascinating sexual reproduction system consisting of dioecism, sex change, and occasional hermaphroditism, while knowledge of the molecular mechanisms of sex determination and differentiation is still limited. In this study, the transcriptomes of male and female gonads at different gametogenesis stages were characterized by RNA-seq. Hierarchical clustering based on genes differentially expressed revealed that 1269 genes were expressed specifically in female gonads and 817 genes were expressed increasingly over the course of spermatogenesis. Besides, we identified two and one gene modules related to female and male gonad development, respectively, using weighted gene correlation network analysis (WGCNA). Interestingly, GO and KEGG enrichment analysis showed that neurotransmitter-related terms were significantly enriched in genes related to ovary development, suggesting that the neurotransmitters were likely to regulate female sex differentiation. In addition, two hub genes related to testis development, lncRNA LOC105321313 and Cg-Sh3kbp1, and one hub gene related to ovary development, Cg-Malrd1-like, were firstly investigated. This study points out the role of neurotransmitter and non-coding RNA regulation during gonad development and produces lists of novel relevant candidate genes for further studies. All of these provided valuable information to understand the molecular mechanisms of C. gigas sex determination and differentiation.

  13. Genetic Diversity on the Sex Chromosomes

    PubMed Central

    Wilson Sayres, Melissa A

    2018-01-01

    Abstract Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system. PMID:29635328

  14. Tree of Sex: a database of sexual systems.

    PubMed

    2014-01-01

    The vast majority of eukaryotic organisms reproduce sexually, yet the nature of the sexual system and the mechanism of sex determination often vary remarkably, even among closely related species. Some species of animals and plants change sex across their lifespan, some contain hermaphrodites as well as males and females, some determine sex with highly differentiated chromosomes, while others determine sex according to their environment. Testing evolutionary hypotheses regarding the causes and consequences of this diversity requires interspecific data placed in a phylogenetic context. Such comparative studies have been hampered by the lack of accessible data listing sexual systems and sex determination mechanisms across the eukaryotic tree of life. Here, we describe a database developed to facilitate access to sexual system and sex chromosome information, with data on sexual systems from 11,038 plant, 705 fish, 173 amphibian, 593 non-avian reptilian, 195 avian, 479 mammalian, and 11,556 invertebrate species.

  15. Antibiotic treatment leads to the elimination of Wolbachia endosymbionts and sterility in the diplodiploid collembolan Folsomia candida

    PubMed Central

    Pike, Nathan; Kingcombe, Rachel

    2009-01-01

    Background Wolbachia is an extremely widespread bacterial endosymbiont of arthropods and nematodes that causes a variety of reproductive peculiarities. Parthenogenesis is one such peculiarity but it has been hypothesised that this phenomenon may be functionally restricted to organisms that employ haplodiploid sex determination. Using two antibiotics, tetracycline and rifampicin, we attempted to eliminate Wolbachia from the diplodiploid host Folsomia candida, a species of springtail which is a widely used study organism. Results Molecular assays confirmed that elimination of Wolbachia was successfully achieved through continuous exposure of populations (over two generations and several weeks) to rifampicin administered as 2.7% dry weight of their yeast food source. The consequence of this elimination was total sterility of all individuals, despite the continuation of normal egg production. Conclusion Microbial endosymbionts play an obligatory role in the reproduction of their diplodiploid host, most likely one in which the parthenogenetic process is facilitated by Wolbachia. A hitherto unknown level of host-parasite interdependence is thus recorded. PMID:19698188

  16. Stress and sex: does cortisol mediate sex change in fish?

    PubMed

    Goikoetxea, Alexander; Todd, Erica V; Gemmell, Neil J

    2017-12-01

    Cortisol is the main glucocorticoid (GC) in fish and the hormone most directly associated with stress. Recent research suggests that this hormone may act as a key factor linking social environmental stimuli and the onset of sex change by initiating a shift in steroidogenesis from estrogens to androgens. For many teleost fish, sex change occurs as a usual part of the life cycle. Changing sex is known to enhance the lifetime reproductive success of these fish and the modifications involved (behavioral, gonadal and morphological) are well studied. However, the exact mechanism behind the transduction of the environmental signals into the molecular cascade that underlies this singular process remains largely unknown. We here synthesize current knowledge regarding the role of cortisol in teleost sex change with a focus on two well-described transformations: temperature-induced masculinization and socially regulated sex change. Three non-mutually exclusive pathways are considered when describing the potential role of cortisol in mediating teleost sex change: cross-talk between GC and androgen pathways, inhibition of aromatase expression and upregulation of amh (the gene encoding anti-Müllerian hormone). We anticipate that understanding the role of cortisol in the initial stages of sex change will further improve our understanding of sex determination and differentiation across vertebrates, and may lead to new tools to control fish sex ratios in aquaculture. © 2017 Society for Reproduction and Fertility.

  17. The Andromonoecious Sex Determination Gene Predates the Separation of Cucumis and Citrullus Genera

    PubMed Central

    Boualem, Adnane; Lemhemdi, Afef; Sari, Marie-Agnes; Pignoly, Sarah; Troadec, Christelle; Abou Choucha, Fadi; Solmaz, Ilknur; Sari, Nebahat; Dogimont, Catherine; Bendahmane, Abdelhafid

    2016-01-01

    Understanding the evolution of sex determination in plants requires the cloning and the characterization of sex determination genes. Monoecy is characterized by the presence of both male and female flowers on the same plant. Andromonoecy is characterized by plants carrying both male and bisexual flowers. In watermelon, the transition between these two sexual forms is controlled by the identity of the alleles at the A locus. We previously showed, in two Cucumis species, melon and cucumber, that the transition from monoecy to andromonoecy results from mutations in 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene, ACS-7/ACS2. To test whether the ACS-7/ACS2 function is conserved in cucurbits, we cloned and characterized ClACS7 in watermelon. We demonstrated co-segregation of ClACS7, the homolog of CmACS-7/CsACS2, with the A locus. Sequence analysis of ClACS7 in watermelon accessions identified three ClACS7 isoforms, two in andromonoecious and one in monoecious lines. To determine whether the andromonoecious phenotype is due to a loss of ACS enzymatic activity, we expressed and assayed the activity of the three protein isoforms. Like in melon and cucumber, the isoforms from the andromonoecious lines showed reduced to no enzymatic activity and the isoform from the monoecious line was active. Consistent with this, the mutations leading andromonoecy were clustered in the active site of the enzyme. Based on this, we concluded that active ClACS7 enzyme leads to the development of female flowers in monoecious lines, whereas a reduction of enzymatic activity yields hermaphrodite flowers. ClACS7, like CmACS-7/CsACS2 in melon and cucumber, is highly expressed in carpel primordia of buds determined to develop carpels and not in male flowers. Based on this finding and previous investigations, we concluded that the monoecy gene, ACS7, likely predated the separation of the Cucumis and Citrullus genera. PMID:27171236

  18. The Andromonoecious Sex Determination Gene Predates the Separation of Cucumis and Citrullus Genera.

    PubMed

    Boualem, Adnane; Lemhemdi, Afef; Sari, Marie-Agnes; Pignoly, Sarah; Troadec, Christelle; Abou Choucha, Fadi; Solmaz, Ilknur; Sari, Nebahat; Dogimont, Catherine; Bendahmane, Abdelhafid

    2016-01-01

    Understanding the evolution of sex determination in plants requires the cloning and the characterization of sex determination genes. Monoecy is characterized by the presence of both male and female flowers on the same plant. Andromonoecy is characterized by plants carrying both male and bisexual flowers. In watermelon, the transition between these two sexual forms is controlled by the identity of the alleles at the A locus. We previously showed, in two Cucumis species, melon and cucumber, that the transition from monoecy to andromonoecy results from mutations in 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene, ACS-7/ACS2. To test whether the ACS-7/ACS2 function is conserved in cucurbits, we cloned and characterized ClACS7 in watermelon. We demonstrated co-segregation of ClACS7, the homolog of CmACS-7/CsACS2, with the A locus. Sequence analysis of ClACS7 in watermelon accessions identified three ClACS7 isoforms, two in andromonoecious and one in monoecious lines. To determine whether the andromonoecious phenotype is due to a loss of ACS enzymatic activity, we expressed and assayed the activity of the three protein isoforms. Like in melon and cucumber, the isoforms from the andromonoecious lines showed reduced to no enzymatic activity and the isoform from the monoecious line was active. Consistent with this, the mutations leading andromonoecy were clustered in the active site of the enzyme. Based on this, we concluded that active ClACS7 enzyme leads to the development of female flowers in monoecious lines, whereas a reduction of enzymatic activity yields hermaphrodite flowers. ClACS7, like CmACS-7/CsACS2 in melon and cucumber, is highly expressed in carpel primordia of buds determined to develop carpels and not in male flowers. Based on this finding and previous investigations, we concluded that the monoecy gene, ACS7, likely predated the separation of the Cucumis and Citrullus genera.

  19. Sex chromosome drive.

    PubMed

    Helleu, Quentin; Gérard, Pierre R; Montchamp-Moreau, Catherine

    2014-12-18

    Sex chromosome drivers are selfish elements that subvert Mendel's first law of segregation and therefore are overrepresented among the products of meiosis. The sex-biased progeny produced then fuels an extended genetic conflict between the driver and the rest of the genome. Many examples of sex chromosome drive are known, but the occurrence of this phenomenon is probably largely underestimated because of the difficulty to detect it. Remarkably, nearly all sex chromosome drivers are found in two clades, Rodentia and Diptera. Although very little is known about the molecular and cellular mechanisms of drive, epigenetic processes such as chromatin regulation could be involved in many instances. Yet, its evolutionary consequences are far-reaching, from the evolution of mating systems and sex determination to the emergence of new species. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes.

    PubMed

    Veyrunes, Frédéric; Waters, Paul D; Miethke, Pat; Rens, Willem; McMillan, Daniel; Alsop, Amber E; Grützner, Frank; Deakin, Janine E; Whittington, Camilla M; Schatzkamer, Kyriena; Kremitzki, Colin L; Graves, Tina; Ferguson-Smith, Malcolm A; Warren, Wes; Marshall Graves, Jennifer A

    2008-06-01

    In therian mammals (placentals and marsupials), sex is determined by an XX female: XY male system, in which a gene (SRY) on the Y affects male determination. There is no equivalent in other amniotes, although some taxa (notably birds and snakes) have differentiated sex chromosomes. Birds have a ZW female: ZZ male system with no homology with mammal sex chromosomes, in which dosage of a Z-borne gene (possibly DMRT1) affects male determination. As the most basal mammal group, the egg-laying monotremes are ideal for determining how the therian XY system evolved. The platypus has an extraordinary sex chromosome complex, in which five X and five Y chromosomes pair in a translocation chain of alternating X and Y chromosomes. We used physical mapping to identify genes on the pairing regions between adjacent X and Y chromosomes. Most significantly, comparative mapping shows that, contrary to earlier reports, there is no homology between the platypus and therian X chromosomes. Orthologs of genes in the conserved region of the human X (including SOX3, the gene from which SRY evolved) all map to platypus chromosome 6, which therefore represents the ancestral autosome from which the therian X and Y pair derived. Rather, the platypus X chromosomes have substantial homology with the bird Z chromosome (including DMRT1) and to segments syntenic with this region in the human genome. Thus, platypus sex chromosomes have strong homology with bird, but not to therian sex chromosomes, implying that the therian X and Y chromosomes (and the SRY gene) evolved from an autosomal pair after the divergence of monotremes only 166 million years ago. Therefore, the therian X and Y are more than 145 million years younger than previously thought.

  1. Stigma to Sage: Learning and Teaching Safer Sex Practices Among Canadian Sex Trade Workers. NALL Working Paper.

    ERIC Educational Resources Information Center

    Meaghan, Diane

    A study interviewed 37 Canadian sex workers in 4 cities to determine how they acquire a working knowledge of safer sex practices and what that knowledge constituted. Findings indicated the vast majority exhibited high levels of knowledge and efficacy regarding safer sex practices; sex workers took the initiative to obtain information and engage in…

  2. The behavioural consequences of sex reversal in dragons

    PubMed Central

    Li, Hong; Holleley, Clare E.; Elphick, Melanie; Georges, Arthur

    2016-01-01

    Sex differences in morphology, physiology, and behaviour are caused by sex-linked genes, as well as by circulating sex-steroid levels. Thus, a shift from genotypic to environmental sex determination may create an organism that exhibits a mixture of male-like and female-like traits. We studied a lizard species (Central Bearded Dragon, Pogona vitticeps), in which the high-temperature incubation of eggs transforms genetically male individuals into functional females. Although they are reproductively female, sex-reversed dragons (individuals with ZZ genotype reversed to female phenotype) resemble genetic males rather than females in morphology (relative tail length), general behaviour (boldness and activity level), and thermoregulatory tactics. Indeed, sex-reversed ‘females’ are more male-like in some behavioural traits than are genetic males. This novel phenotype may impose strong selection on the frequency of sex reversal within natural populations, facilitating rapid shifts in sex-determining systems. A single period of high incubation temperatures (generating thermally induced sex reversal) can produce functionally female individuals with male-like (or novel) traits that enhance individual fitness, allowing the new temperature-dependent sex-determining system to rapidly replace the previous genetically based one.

  3. Tree of Sex: A database of sexual systems

    PubMed Central

    Ashman, Tia-Lynn; Bachtrog, Doris; Blackmon, Heath; Goldberg, Emma E; Hahn, Matthew W; Kirkpatrick, Mark; Kitano, Jun; Mank, Judith E; Mayrose, Itay; Ming, Ray; Otto, Sarah P; Peichel, Catherine L; Pennell, Matthew W; Perrin, Nicolas; Ross, Laura; Valenzuela, Nicole; Vamosi, Jana C

    2014-01-01

    The vast majority of eukaryotic organisms reproduce sexually, yet the nature of the sexual system and the mechanism of sex determination often vary remarkably, even among closely related species. Some species of animals and plants change sex across their lifespan, some contain hermaphrodites as well as males and females, some determine sex with highly differentiated chromosomes, while others determine sex according to their environment. Testing evolutionary hypotheses regarding the causes and consequences of this diversity requires interspecific data placed in a phylogenetic context. Such comparative studies have been hampered by the lack of accessible data listing sexual systems and sex determination mechanisms across the eukaryotic tree of life. Here, we describe a database developed to facilitate access to sexual system and sex chromosome information, with data on sexual systems from 11,038 plant, 705 fish, 173 amphibian, 593 non-avian reptilian, 195 avian, 479 mammalian, and 11,556 invertebrate species. PMID:25977773

  4. Signatures of Sex-Antagonistic Selection on Recombining Sex Chromosomes

    PubMed Central

    Kirkpatrick, Mark; Guerrero, Rafael F.

    2014-01-01

    Sex-antagonistic (SA) selection has major evolutionary consequences: it can drive genomic change, constrain adaptation, and maintain genetic variation for fitness. The recombining (or pseudoautosomal) regions of sex chromosomes are a promising setting in which to study SA selection because they tend to accumulate SA polymorphisms and because recombination allows us to deploy the tools of molecular evolution to locate targets of SA selection and quantify evolutionary forces. Here we use coalescent models to characterize the patterns of polymorphism expected within and divergence between recombining X and Y (or Z and W) sex chromosomes. SA selection generates peaks of divergence between X and Y that can extend substantial distances away from the targets of selection. Linkage disequilibrium between neutral sites is also inflated. We show how the pattern of divergence is altered when the SA polymorphism or the sex-determining region was recently established. We use data from the flowering plant Silene latifolia to illustrate how the strength of SA selection might be quantified using molecular data from recombining sex chromosomes. PMID:24578352

  5. Signatures of sex-antagonistic selection on recombining sex chromosomes.

    PubMed

    Kirkpatrick, Mark; Guerrero, Rafael F

    2014-06-01

    Sex-antagonistic (SA) selection has major evolutionary consequences: it can drive genomic change, constrain adaptation, and maintain genetic variation for fitness. The recombining (or pseudoautosomal) regions of sex chromosomes are a promising setting in which to study SA selection because they tend to accumulate SA polymorphisms and because recombination allows us to deploy the tools of molecular evolution to locate targets of SA selection and quantify evolutionary forces. Here we use coalescent models to characterize the patterns of polymorphism expected within and divergence between recombining X and Y (or Z and W) sex chromosomes. SA selection generates peaks of divergence between X and Y that can extend substantial distances away from the targets of selection. Linkage disequilibrium between neutral sites is also inflated. We show how the pattern of divergence is altered when the SA polymorphism or the sex-determining region was recently established. We use data from the flowering plant Silene latifolia to illustrate how the strength of SA selection might be quantified using molecular data from recombining sex chromosomes. Copyright © 2014 by the Genetics Society of America.

  6. Distinct sperm nucleus behaviors between genotypic and temperature-dependent sex determination males are associated with replication and expression-related pathways in a gynogenetic fish.

    PubMed

    Zhu, Yao-Jun; Li, Xi-Yin; Zhang, Jun; Li, Zhi; Ding, Miao; Zhang, Xiao-Juan; Zhou, Li; Gui, Jian-Fang

    2018-06-05

    Coexistence and transition of diverse sex determination strategies have been revealed in some ectothermic species, but the variation between males caused by different sex determination strategies and the underlying mechanism remain unclear. Here, we used the gynogenetic gibel carp (Carassius gibelio) with both genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) strategies to illustrate this issue. We found out that males of GSD and TSD in gibel carp had similar morphology, testicular histology, sperm structure and sperm vitality. However, when maternal individuals were mated with males of GSD, sperm nucleus swelling and fusing with the female pronucleus were observed in the fertilized eggs. On the contrary, when maternal individuals were mated with males of TSD, sperm nucleus remained in the condensed status throughout the whole process. Subsequently, semen proteomics analysis unveiled that DNA replication and gene expression-related pathways were inhibited in the sperm from males of TSD compared to males of GSD, and most differentially expressed proteins associated with DNA replication, transcription and translation were down-regulated. Moreover, via BrdU incorporation and immunofluorescence detection, male nucleus replication was revealed to be present in the fertilized eggs by the sperm from males of GSD, but absent in the fertilized eggs by the sperm from males of TSD. These findings indicate that DNA replication and gene expression-related pathways are associated with the distinct sperm nucleus development behaviors in fertilized eggs in response to the sperm from males of GSD and TSD. And this study is the first attempt to screen the differences between males determined via GSD and TSD in gynogenetic species, which might give a hint for understanding evolutionary adaption of diverse sex determination mechanisms in unisexual vertebrates.

  7. HABITAT-SPECIFIC FORAGING AND SEX DETERMINE MERCURY CONCENTRATIONS IN SYMPATRIC BENTHIC AND LIMNETIC ECOTYPES OF THE THREESPINE STICKLEBACK

    PubMed Central

    Willacker, James J.; Von Hippel, Frank A.; Ackerly, Kerri L.; O’Hara, Todd M.

    2013-01-01

    Mercury (Hg) is a widespread environmental contaminant known for the neurotoxicity of its methylated forms, especially monomethylmercury, which bioaccumulates and biomagnifies in aquatic food webs. Mercury bioaccumulation and biomagnification rates are known to vary among species utilizing different food webs (benthic vs limnetic) within and between systems. The authors assessed whether carbon and nitrogen stable isotope values and total Hg (THg) concentrations differed between sympatric benthic and limnetic ecotypes and sexes of threespine stickleback fish (Gasterosteus aculeatus) from Benka Lake, Alaska, USA. The mean THg concentration in the limnetic ecotype was significantly higher (26 mg/kg dry wt, 16.1%) than that of the benthic ecotype. Trophic position and benthic carbon percentage utilized were both important determinants of THg concentration; however, the 2 variables were of approximately equal importance in females, whereas trophic position clearly explained more of the variance than benthic carbon percentage in males. Additionally, strong sex effects (45 mg/kg dry wt, 29.4%) were observed in both ecotypes, with female fish having lower THg concentrations than males. These results indicate that trophic ecology and sex are both important determinants of Hg contamination even within a single species and lake and likely play a role in governing Hg concentrations in higher trophic levels. PMID:23456641

  8. Sexual Dimorphism of Body Size Is Controlled by Dosage of the X-Chromosomal Gene Myc and by the Sex-Determining Gene tra in Drosophila.

    PubMed

    Mathews, Kristina Wehr; Cavegn, Margrith; Zwicky, Monica

    2017-03-01

    Drosophila females are larger than males. In this article, we describe how X -chromosome dosage drives sexual dimorphism of body size through two means: first, through unbalanced expression of a key X -linked growth-regulating gene, and second, through female-specific activation of the sex-determination pathway. X -chromosome dosage determines phenotypic sex by regulating the genes of the sex-determining pathway. In the presence of two sets of X -chromosome signal elements (XSEs), Sex-lethal ( Sxl ) is activated in female ( XX ) but not male ( XY ) animals. Sxl activates transformer ( tra ), a gene that encodes a splicing factor essential for female-specific development. It has previously been shown that null mutations in the tra gene result in only a partial reduction of body size of XX animals, which shows that other factors must contribute to size determination. We tested whether X dosage directly affects animal size by analyzing males with duplications of X -chromosomal segments. Upon tiling across the X chromosome, we found four duplications that increase male size by >9%. Within these, we identified several genes that promote growth as a result of duplication. Only one of these, Myc , was found not to be dosage compensated. Together, our results indicate that both Myc dosage and tra expression play crucial roles in determining sex-specific size in Drosophila larvae and adult tissue. Since Myc also acts as an XSE that contributes to tra activation in early development, a double dose of Myc in females serves at least twice in development to promote sexual size dimorphism. Copyright © 2017 by the Genetics Society of America.

  9. Spatial pattern of Baccharis platypoda shrub as determined by sex and life stages

    NASA Astrophysics Data System (ADS)

    Fonseca, Darliana da Costa; de Oliveira, Marcio Leles Romarco; Pereira, Israel Marinho; Gonzaga, Anne Priscila Dias; de Moura, Cristiane Coelho; Machado, Evandro Luiz Mendonça

    2017-11-01

    Spatial patterns of dioecious species can be determined by their nutritional requirements and intraspecific competition, apart from being a response to environmental heterogeneity. The aim of the study was to evaluate the spatial pattern of populations of a dioecious shrub reporting to sex and reproductive stage patterns of individuals. Sampling was carried out in three areas located in the meridional portion of Serra do Espinhaço, where in individuals of the studied species were mapped. The spatial pattern was determined through O-ring analysis and Ripley's K-function and the distribution of individuals' frequencies was verified through x2 test. Populations in two areas showed an aggregate spatial pattern tending towards random or uniform according to the observed scale. Male and female adults presented an aggregate pattern at smaller scales, while random and uniform patterns were verified above 20 m for individuals of both sexes of the areas A2 and A3. Young individuals presented an aggregate pattern in all areas and spatial independence in relation to adult individuals, especially female plants. The interactions between individuals of both genders presented spatial independence with respect to spatial distribution. Baccharis platypoda showed characteristics in accordance with the spatial distribution of savannic and dioecious species, whereas the population was aggregated tending towards random at greater spatial scales. Young individuals showed an aggregated pattern at different scales compared to adults, without positive association between them. Female and male adult individuals presented similar characteristics, confirming that adult individuals at greater scales are randomly distributed despite their distinct preferences for environments with moisture variation.

  10. Millions of missing girls: from fetal sexing to high technology sex selection in India.

    PubMed

    George, Sabu M

    2006-07-01

    The morality and acceptability of using prenatal diagnosis for sex selection is being extensively debated around the world as advances in assisted reproductive technologies (ART) and embryology have enabled selective implantation of embryos of the desired sex (George and Dahiya, 1998; Savulescu, 1999; Raphael, 2002; Harris, 2005; Robertson, 2005; Snider, 2005). Sophisticated methods of separation of semen, originally developed for cattle breeding, are being used for human sex selection. Recently, non-invasive methods of fetal sex determination in the first trimester (from 6 weeks) of pregnancy have also emerged (Hahn and Chitty, 2005). Market forces that promote sex selection along with libertarian ideologues have assisted in blurring the ethical limits (Paul, 2001; President's Council on Bioethics, 2003). The widespread misuse of sex selection for eliminating girls before birth in India and among the Indian diaspora needs to be brought into the global 'intellectual discourse'. It is imperative that Western ethicists recognize the genocidal nature of sex selection taking place in certain Asian countries. Even if they believe that these trends will not affect mainstream Western societies, the promotion or tolerance of sex selection amounts to a 'crime of silence' against this ongoing genocide in China and India. I have been concerned with issues of the girl child in India for over two decades and sex selection among Asian Indians in North America (George et al., 1992; George et al., 1993; George and Dahiya, 1998). This article examines the missing millions of girls, but will not consider the 1980s campaign against fetal sex determination, Indian feminists' recognition of sex selection as violence against women (unlike several Western feminists, Moazam, 2004), or the Government's response to regulate prenatal diagnostic techniques in 1994 (George and Dahiya, 1998; George, 2002). Copyright 2006 John Wiley & Sons, Ltd.

  11. Consistent sex ratio bias of individual female dragon lizards

    PubMed Central

    Uller, Tobias; Mott, Beth; Odierna, Gaetano; Olsson, Mats

    2006-01-01

    Sex ratio evolution relies on genetic variation in either the phenotypic traits that influence sex ratios or sex-determining mechanisms. However, consistent variation among females in offspring sex ratio is rarely investigated. Here, we show that female painted dragons (Ctenophorus pictus) have highly repeatable sex ratios among clutches within years. A consistent effect of female identity could represent stable phenotypic differences among females or genetic variation in sex-determining mechanisms. Sex ratios were not correlated with female size, body condition or coloration. Furthermore, sex ratios were not influenced by incubation temperature. However, the variation among females resulted in female-biased mean population sex ratios at hatching both within and among years. PMID:17148290

  12. Steroid signaling system responds differently to temperature and hormone manipulation in the red-eared slider turtle (Trachemys scripta elegans), a reptile with temperature-dependent sex determination.

    PubMed

    Ramsey, M; Crews, D

    2007-01-01

    Many reptiles, including the red-eared slider turtle (Trachemys scripta elegans), exhibit temperature-dependent sex determination (TSD). Temperature determines gonadal sex during the middle of embryogenesis, or the temperature-sensitive period (TSP), when gonadal sex is labile to both temperature and hormones--particularly estrogen. The biological actions of steroid hormones are mediated by their receptors as defined here as the classic transcriptional regulation of target genes. To elucidate estrogen action during sex determination, we examined estrogen receptor alpha (Esr1, hereafter referred to as ERalpha), estrogen receptor beta (Esr2, hereafter referred to as ERbeta), and androgen receptor (Ar, hereafter referred to as AR) expression in slider turtle gonads before, during and after the TSP, as well as following sex reversal via temperature or steroid hormone manipulation. ERalpha and AR levels spike at the female-producing temperature while ovarian sex is determined, but none of the receptors exhibited sexually dimorphic localization within the gonad prior to morphological differentiation. All three receptors respond differentially to sex-reversing treatments. When shifted to female-producing temperatures, embryos maintain ERalpha and AR expression while ERbeta is reduced. When shifted to male-producing temperatures, medullary expression of all three receptors is reduced. Feminization via estradiol (E(2)) treatment at a male-producing temperature profoundly changed the expression patterns for all three receptors. ERalpha and ERbeta redirected to the cortex in E(2)-created ovaries, while AR medullary expression was transiently reduced. Although warmer incubation temperature and estrogen result in the same endpoint (ovarian development), our results indicate different steroid signaling patterns between temperature- and estrogen-induced feminization. 2007 S. Karger AG, Basel

  13. Confirmation of Single-Locus Sex Determination and Female Heterogamety in Willow Based on Linkage Analysis.

    PubMed

    Chen, Yingnan; Wang, Tiantian; Fang, Lecheng; Li, Xiaoping; Yin, Tongming

    2016-01-01

    In this study, we constructed high-density genetic maps of Salix suchowensis and mapped the gender locus with an F1 pedigree. Genetic maps were separately constructed for the maternal and paternal parents by using amplified fragment length polymorphism (AFLP) markers and the pseudo-testcross strategy. The maternal map consisted of 20 linkage groups that spanned a genetic distance of 2333.3 cM; whereas the paternal map contained 21 linkage groups that covered 2260 cM. Based on the established genetic maps, it was found that the gender of willow was determined by a single locus on linkage group LG_03, and the female was the heterogametic gender. Aligned with mapped SSR markers, linkage group LG_03 was found to be associated with chromosome XV in willow. It is noteworthy that marker density in the vicinity of the gender locus was significantly higher than that expected by chance alone, which indicates severe recombination suppression around the gender locus. In conclusion, this study confirmed the findings on the single-locus sex determination and female heterogamety in willow. It also provided additional evidence that validated the previous studies, which found that different autosomes evolved into sex chromosomes between the sister genera of Salix (willow) and Populus (poplar).

  14. Confirmation of Single-Locus Sex Determination and Female Heterogamety in Willow Based on Linkage Analysis

    PubMed Central

    Fang, Lecheng; Li, Xiaoping; Yin, Tongming

    2016-01-01

    In this study, we constructed high-density genetic maps of Salix suchowensis and mapped the gender locus with an F1 pedigree. Genetic maps were separately constructed for the maternal and paternal parents by using amplified fragment length polymorphism (AFLP) markers and the pseudo-testcross strategy. The maternal map consisted of 20 linkage groups that spanned a genetic distance of 2333.3 cM; whereas the paternal map contained 21 linkage groups that covered 2260 cM. Based on the established genetic maps, it was found that the gender of willow was determined by a single locus on linkage group LG_03, and the female was the heterogametic gender. Aligned with mapped SSR markers, linkage group LG_03 was found to be associated with chromosome XV in willow. It is noteworthy that marker density in the vicinity of the gender locus was significantly higher than that expected by chance alone, which indicates severe recombination suppression around the gender locus. In conclusion, this study confirmed the findings on the single-locus sex determination and female heterogamety in willow. It also provided additional evidence that validated the previous studies, which found that different autosomes evolved into sex chromosomes between the sister genera of Salix (willow) and Populus (poplar). PMID:26828940

  15. Adolescent same-sex and both-sex romantic attractions and relationships: implications for smoking.

    PubMed

    Easton, Alyssa; Jackson, Kat; Mowery, Paul; Comeau, Dawn; Sell, Randall

    2008-03-01

    We examined cross-sectional and longitudinal associations between smoking and romantic attractions and relationships. We used data from the National Longitudinal Study of Adolescent Health to assess associations of smoking at Waves I and II with same-sex, both-sex, and opposite-sex romantic attractions or relationships as determined at Wave I. We used logistic regression to predict smoking at Wave II by sexual orientation. Both adolescent boys and adolescent girls with both-sex attractions or relationships were significantly more likely than those with opposite-sex attractions or relationships to be current smokers. Adolescent boys and girls with both-sex attractions or relationships who were nonsmokers at Wave I were more likely to be current smokers at Wave II than those with opposite-sex attractions or relationships. Our findings support previous research on smoking among youths who report same-sex or both-sex romantic attractions or relationships and demonstrate the increased risk bisexual youths have for smoking initiation and smoking prevalence. Tobacco use prevention programs targeting gay and bisexual youths are warranted, particularly among adolescent girls and boys who have had both-sex romantic attractions or relationships.

  16. Adolescent Same-Sex and Both-Sex Romantic Attractions and Relationships: Implications for Smoking

    PubMed Central

    Easton, Alyssa; Jackson, Kat; Mowery, Paul; Comeau, Dawn; Sell, Randall

    2008-01-01

    Objectives. We examined cross-sectional and longitudinal associations between smoking and romantic attractions and relationships. Methods. We used data from the National Longitudinal Study of Adolescent Health to assess associations of smoking at Waves I and II with same-sex, both-sex, and opposite-sex romantic attractions or relationships as determined at Wave I. We used logistic regression to predict smoking at Wave II by sexual orientation. Results. Both adolescent boys and adolescent girls with both-sex attractions or relationships were significantly more likely than those with opposite-sex attractions or relationships to be current smokers. Adolescent boys and girls with both-sex attractions or relationships who were nonsmokers at Wave I were more likely to be current smokers at Wave II than those with opposite-sex attractions or relationships. Conclusions. Our findings support previous research on smoking among youths who report same-sex or both-sex romantic attractions or relationships and demonstrate the increased risk bisexual youths have for smoking initiation and smoking prevalence. Tobacco use prevention programs targeting gay and bisexual youths are warranted, particularly among adolescent girls and boys who have had both-sex romantic attractions or relationships. PMID:18235075

  17. Sex Reversal in Birds.

    PubMed

    Major, Andrew T; Smith, Craig A

    2016-01-01

    Sexual differentiation in birds is controlled genetically as in mammals, although the sex chromosomes are different. Males have a ZZ sex chromosome constitution, while females are ZW. Gene(s) on the sex chromosomes must initiate gonadal sex differentiation during embryonic life, inducing paired testes in ZZ individuals and unilateral ovaries in ZW individuals. The traditional view of avian sexual differentiation aligns with that expounded for other vertebrates; upon sexual differentiation, the gonads secrete sex steroid hormones that masculinise or feminise the rest of the body. However, recent studies on naturally occurring or experimentally induced avian sex reversal suggest a significant role for direct genetic factors, in addition to sex hormones, in regulating sexual differentiation of the soma in birds. This review will provide an overview of sex determination in birds and both naturally and experimentally induced sex reversal, with emphasis on the key role of oestrogen. We then consider how recent studies on sex reversal and gynandromorphic birds (half male:half female) are shaping our understanding of sexual differentiation in avians and in vertebrates more broadly. Current evidence shows that sexual differentiation in birds is a mix of direct genetic and hormonal mechanisms. Perturbation of either of these components may lead to sex reversal. © 2016 S. Karger AG, Basel.

  18. Doing gender in sex and sex research.

    PubMed

    Vanwesenbeeck, Ine

    2009-12-01

    Gender is central to sexuality, and vice versa, but there are a number of difficulties with the treatment of gender in sex research. Apparently, it is hard to find a balance between two conflicting needs. First, obviously, it is necessary to make distinctions between women and men, for political as well as research-technical and theoretical reasons. A second requirement, at odds with the first one, is the necessity to understand gender and its relation to sexuality and the body as much more complex than simplistically referring to two sets of individuals. This is all the more necessary when one realizes the possible drawbacks of exaggerating the differences between the sexes (in particular when they are biologically explained), because of stereotyping, stigmatizing, and expectancy confirmatory processes. This essay identifies and discusses 10 difficulties in the treatment of gender in sex research, reflects on their origins, and reviews theory and evidence with the aim to (1) consider the relative strength of gender/sex as an explanatory variable compared to other factors and processes explaining differences between men and women on a number of sexual aspects, (2) inform an understanding of gender and its relation to sexuality as an ongoing, open-ended, multi-determined, situated, interactional process, with the body as a third player, and (3) argue in favor of a nuanced, well-balanced treatment of gender in sex research.

  19. The sex-specific region of sex chromosomes in animals and plants.

    PubMed

    Gschwend, Andrea R; Weingartner, Laura A; Moore, Richard C; Ming, Ray

    2012-01-01

    Our understanding of the evolution of sex chromosomes has increased greatly in recent years due to a number of molecular evolutionary investigations in divergent sex chromosome systems, and these findings are reshaping theories of sex chromosome evolution. In particular, the dynamics of the sex-determining region (SDR) have been demonstrated by recent findings in ancient and incipient sex chromosomes. Radical changes in genomic structure and gene content in the male specific region of the Y chromosome between human and chimpanzee indicated rapid evolution in the past 6 million years, defying the notion that the pace of evolution in the SDR was fast at early stages but slowed down overtime. The chicken Z and the human X chromosomes appeared to have acquired testis-expressed genes and expanded in intergenic regions. Transposable elements greatly contributed to SDR expansion and aided the trafficking of genes in the SDR and its X or Z counterpart through retrotransposition. Dosage compensation is not a destined consequence of sex chromosomes as once thought. Most X-linked microRNA genes escape silencing and are expressed in testis. Collectively, these findings are challenging many of our preconceived ideas of the evolutionary trajectory and fates of sex chromosomes.

  20. Contribution of domestic animals to the identification of new genes involved in sex determination.

    PubMed

    Pailhoux, E; Vigier, B; Vaiman, D; Schibler, L; Vaiman, A; Cribiu, E; Nezer, C; Georges, M; Sundström, J; Pelliniemi, L J; Fellous, M; Cotinot, C

    2001-12-01

    Among farm animals, two species present an intersex condition at a relatively high frequency: pig and goat. Both are known to contain XX sex-reversed individuals which are genetically female but with a true hermaphrodite or male phenotype. It has been clearly demonstrated that the SRY gene is not involved in these phenotypes. Consequently, autosomal or X-linked mutations in the sex-determining pathway may explain these sex-reversed phenotypes. A mutation referred to as "polled" has been characterized in goats by the suppression of horn formation and abnormal sexual differentiation. The Polled Intersex Syndrome locus (PIS) was initially located in the distal region of goat chromosome 1. The homologous human region has been precisely identified as an HSA 3q23 DNA segment containing the Blepharophimosis Ptosis Epicanthus locus (BPES), a syndrome combining Premature Ovarian Failure (POF) and an excess of epidermis of the eyelids. In order to isolate genes involved in pig intersexuality, a similar genetic approach was attempted in pigs using genome scanning of resource families. Genetic analyses suggest that pig intersexuality is controlled multigenically. Parallel to this work, gonads of fetal intersex animals have been studied during development by light and electron microscopy. The development of testicular tissue and reduction of germ cell number by apoptosis, which simultaneously occurs as soon as 50 days post coïtum, also suggests that several separate genes could be involved in pig intersexuality. Copyright 2001 Wiley-Liss, Inc.