Sample records for haptic feedback system

  1. Haptic Feedback in Robot-Assisted Minimally Invasive Surgery

    PubMed Central

    Okamura, Allison M.

    2009-01-01

    Purpose of Review Robot-assisted minimally invasive surgery (RMIS) holds great promise for improving the accuracy and dexterity of a surgeon while minimizing trauma to the patient. However, widespread clinical success with RMIS has been marginal. It is hypothesized that the lack of haptic (force and tactile) feedback presented to the surgeon is a limiting factor. This review explains the technical challenges of creating haptic feedback for robot-assisted surgery and provides recent results that evaluate the effectiveness of haptic feedback in mock surgical tasks. Recent Findings Haptic feedback systems for RMIS are still under development and evaluation. Most provide only force feedback, with limited fidelity. The major challenge at this time is sensing forces applied to the patient. A few tactile feedback systems for RMIS have been created, but their practicality for clinical implementation needs to be shown. It is particularly difficult to sense and display spatially distributed tactile information. The cost-benefit ratio for haptic feedback in RMIS has not been established. Summary The designs of existing commercial RMIS systems are not conducive for force feedback, and creative solutions are needed to create compelling tactile feedback systems. Surgeons, engineers, and neuroscientists should work together to develop effective solutions for haptic feedback in RMIS. PMID:19057225

  2. Performance evaluation of a robot-assisted catheter operating system with haptic feedback.

    PubMed

    Song, Yu; Guo, Shuxiang; Yin, Xuanchun; Zhang, Linshuai; Hirata, Hideyuki; Ishihara, Hidenori; Tamiya, Takashi

    2018-06-20

    In this paper, a novel robot-assisted catheter operating system (RCOS) has been proposed as a method to reduce physical stress and X-ray exposure time to physicians during endovascular procedures. The unique design of this system allows the physician to apply conventional bedside catheterization skills (advance, retreat and rotate) to an input catheter, which is placed at the master side to control another patient catheter placed at the slave side. For this purpose, a magnetorheological (MR) fluids-based master haptic interface has been developed to measure the axial and radial motions of an input catheter, as well as to provide the haptic feedback to the physician during the operation. In order to achieve a quick response of the haptic force in the master haptic interface, a hall sensor-based closed-loop control strategy is employed. In slave side, a catheter manipulator is presented to deliver the patient catheter, according to position commands received from the master haptic interface. The contact forces between the patient catheter and blood vessel system can be measured by designed force sensor unit of catheter manipulator. Four levels of haptic force are provided to make the operator aware of the resistance encountered by the patient catheter during the insertion procedure. The catheter manipulator was evaluated for precision positioning. The time lag from the sensed motion to replicated motion is tested. To verify the efficacy of the proposed haptic feedback method, the evaluation experiments in vitro are carried out. The results demonstrate that the proposed system has the ability to enable decreasing the contact forces between the catheter and vasculature.

  3. Prevailing Trends in Haptic Feedback Simulation for Minimally Invasive Surgery.

    PubMed

    Pinzon, David; Byrns, Simon; Zheng, Bin

    2016-08-01

    Background The amount of direct hand-tool-tissue interaction and feedback in minimally invasive surgery varies from being attenuated in laparoscopy to being completely absent in robotic minimally invasive surgery. The role of haptic feedback during surgical skill acquisition and its emphasis in training have been a constant source of controversy. This review discusses the major developments in haptic simulation as they relate to surgical performance and the current research questions that remain unanswered. Search Strategy An in-depth review of the literature was performed using PubMed. Results A total of 198 abstracts were returned based on our search criteria. Three major areas of research were identified, including advancements in 1 of the 4 components of haptic systems, evaluating the effectiveness of haptic integration in simulators, and improvements to haptic feedback in robotic surgery. Conclusions Force feedback is the best method for tissue identification in minimally invasive surgery and haptic feedback provides the greatest benefit to surgical novices in the early stages of their training. New technology has improved our ability to capture, playback and enhance to utility of haptic cues in simulated surgery. Future research should focus on deciphering how haptic training in surgical education can increase performance, safety, and improve training efficiency. © The Author(s) 2016.

  4. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm

    PubMed Central

    Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae

    2017-01-01

    Purpose Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. Materials and Methods The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. Results A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. Conclusion This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site. PMID:27873506

  5. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm.

    PubMed

    Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae; Kim, Tae Il; Yi, Byung Ju

    2017-01-01

    Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site.

  6. Palpation simulator with stable haptic feedback.

    PubMed

    Kim, Sang-Youn; Ryu, Jee-Hwan; Lee, WooJeong

    2015-01-01

    The main difficulty in constructing palpation simulators is to compute and to generate stable and realistic haptic feedback without vibration. When a user haptically interacts with highly non-homogeneous soft tissues through a palpation simulator, a sudden change of stiffness in target tissues causes unstable interaction with the object. We propose a model consisting of a virtual adjustable damper and an energy measuring element. The energy measuring element gauges energy which is stored in a palpation simulator and the virtual adjustable damper dissipates the energy to achieve stable haptic interaction. To investigate the haptic behavior of the proposed method, impulse and continuous inputs are provided to target tissues. If a haptic interface point meets with the hardest portion in the target tissues modeled with a conventional method, we observe unstable motion and feedback force. However, when the target tissues are modeled with the proposed method, a palpation simulator provides stable interaction without vibration. The proposed method overcomes a problem in conventional haptic palpation simulators where unstable force or vibration can be generated if there is a big discrepancy in material property between an element and its neighboring elements in target tissues.

  7. Detection of Membrane Puncture with Haptic Feedback using a Tip-Force Sensing Needle.

    PubMed

    Elayaperumal, Santhi; Bae, Jung Hwa; Daniel, Bruce L; Cutkosky, Mark R

    2014-09-01

    This paper presents calibration and user test results of a 3-D tip-force sensing needle with haptic feedback. The needle is a modified MRI-compatible biopsy needle with embedded fiber Bragg grating (FBG) sensors for strain detection. After calibration, the needle is interrogated at 2 kHz, and dynamic forces are displayed remotely with a voice coil actuator. The needle is tested in a single-axis master/slave system, with the voice coil haptic display at the master, and the needle at the slave end. Tissue phantoms with embedded membranes were used to determine the ability of the tip-force sensors to provide real-time haptic feedback as compared to external sensors at the needle base during needle insertion via the master/slave system. Subjects were able to determine the position of the embedded membranes with significantly better accuracy using FBG tip feedback than with base feedback using a commercial force/torque sensor (p = 0.045) or with no added haptic feedback (p = 0.0024).

  8. Vision-Based Haptic Feedback for Remote Micromanipulation in-SEM Environment

    NASA Astrophysics Data System (ADS)

    Bolopion, Aude; Dahmen, Christian; Stolle, Christian; Haliyo, Sinan; Régnier, Stéphane; Fatikow, Sergej

    2012-07-01

    This article presents an intuitive environment for remote micromanipulation composed of both haptic feedback and virtual reconstruction of the scene. To enable nonexpert users to perform complex teleoperated micromanipulation tasks, it is of utmost importance to provide them with information about the 3-D relative positions of the objects and the tools. Haptic feedback is an intuitive way to transmit such information. Since position sensors are not available at this scale, visual feedback is used to derive information about the scene. In this work, three different techniques are implemented, evaluated, and compared to derive the object positions from scanning electron microscope images. The modified correlation matching with generated template algorithm is accurate and provides reliable detection of objects. To track the tool, a marker-based approach is chosen since fast detection is required for stable haptic feedback. Information derived from these algorithms is used to propose an intuitive remote manipulation system that enables users situated in geographically distant sites to benefit from specific equipments, such as SEMs. Stability of the haptic feedback is ensured by the minimization of the delays, the computational efficiency of vision algorithms, and the proper tuning of the haptic coupling. Virtual guides are proposed to avoid any involuntary collisions between the tool and the objects. This approach is validated by a teleoperation involving melamine microspheres with a diameter of less than 2 μ m between Paris, France and Oldenburg, Germany.

  9. Haptic feedback in OP:Sense - augmented reality in telemanipulated robotic surgery.

    PubMed

    Beyl, T; Nicolai, P; Mönnich, H; Raczkowksy, J; Wörn, H

    2012-01-01

    In current research, haptic feedback in robot assisted interventions plays an important role. However most approaches to haptic feedback only regard the mapping of the current forces at the surgical instrument to the haptic input devices, whereas surgeons demand a combination of medical imaging and telemanipulated robotic setups. In this paper we describe how this feature is integrated in our robotic research platform OP:Sense. The proposed method allows the automatic transfer of segmented imaging data to the haptic renderer and therefore allows enriching the haptic feedback with virtual fixtures based on imaging data. Anatomical structures are extracted from pre-operative generated medical images or virtual walls are defined by the surgeon inside the imaging data. Combining real forces with virtual fixtures can guide the surgeon to the regions of interest as well as helps to prevent the risk of damage to critical structures inside the patient. We believe that the combination of medical imaging and telemanipulation is a crucial step for the next generation of MIRS-systems.

  10. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.

    PubMed

    Hu, Zhenkai; Yoon, Chae-Hyun; Park, Samuel Byeongjun; Jo, Yung-Ho

    2016-07-01

    We propose a portable haptic device providing grasp (kinesthetic) and push-pull (cutaneous) sensations for optical-motion-capture master interfaces. Although optical-motion-capture master interfaces for surgical robot systems can overcome the stiffness, friction, and coupling problems of mechanical master interfaces, it is difficult to add haptic feedback to an optical-motion-capture master interface without constraining the free motion of the operator's hands. Therefore, we utilized a Bowden cable-driven mechanism to provide the grasp and push-pull sensation while retaining the free hand motion of the optical-motion capture master interface. To evaluate the haptic device, we construct a 2-DOF force sensing/force feedback system. We compare the sensed force and the reproduced force of the haptic device. Finally, a needle insertion test was done to evaluate the performance of the haptic interface in the master-slave system. The results demonstrate that both the grasp force feedback and the push-pull force feedback provided by the haptic interface closely matched with the sensed forces of the slave robot. We successfully apply our haptic interface in the optical-motion-capture master-slave system. The results of the needle insertion test showed that our haptic feedback can provide more safety than merely visual observation. We develop a suitable haptic device to produce both kinesthetic grasp force feedback and cutaneous push-pull force feedback. Our future research will include further objective performance evaluations of the optical-motion-capture master-slave robot system with our haptic interface in surgical scenarios.

  11. Detection of Membrane Puncture with Haptic Feedback using a Tip-Force Sensing Needle

    PubMed Central

    Elayaperumal, Santhi; Bae, Jung Hwa; Daniel, Bruce L.; Cutkosky, Mark R.

    2015-01-01

    This paper presents calibration and user test results of a 3-D tip-force sensing needle with haptic feedback. The needle is a modified MRI-compatible biopsy needle with embedded fiber Bragg grating (FBG) sensors for strain detection. After calibration, the needle is interrogated at 2 kHz, and dynamic forces are displayed remotely with a voice coil actuator. The needle is tested in a single-axis master/slave system, with the voice coil haptic display at the master, and the needle at the slave end. Tissue phantoms with embedded membranes were used to determine the ability of the tip-force sensors to provide real-time haptic feedback as compared to external sensors at the needle base during needle insertion via the master/slave system. Subjects were able to determine the position of the embedded membranes with significantly better accuracy using FBG tip feedback than with base feedback using a commercial force/torque sensor (p = 0.045) or with no added haptic feedback (p = 0.0024). PMID:26509101

  12. Assisting Movement Training and Execution With Visual and Haptic Feedback.

    PubMed

    Ewerton, Marco; Rother, David; Weimar, Jakob; Kollegger, Gerrit; Wiemeyer, Josef; Peters, Jan; Maeda, Guilherme

    2018-01-01

    In the practice of motor skills in general, errors in the execution of movements may go unnoticed when a human instructor is not available. In this case, a computer system or robotic device able to detect movement errors and propose corrections would be of great help. This paper addresses the problem of how to detect such execution errors and how to provide feedback to the human to correct his/her motor skill using a general, principled methodology based on imitation learning. The core idea is to compare the observed skill with a probabilistic model learned from expert demonstrations. The intensity of the feedback is regulated by the likelihood of the model given the observed skill. Based on demonstrations, our system can, for example, detect errors in the writing of characters with multiple strokes. Moreover, by using a haptic device, the Haption Virtuose 6D, we demonstrate a method to generate haptic feedback based on a distribution over trajectories, which could be used as an auxiliary means of communication between an instructor and an apprentice. Additionally, given a performance measurement, the haptic device can help the human discover and perform better movements to solve a given task. In this case, the human first tries a few times to solve the task without assistance. Our framework, in turn, uses a reinforcement learning algorithm to compute haptic feedback, which guides the human toward better solutions.

  13. Enhanced operator perception through 3D vision and haptic feedback

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Light, Kenneth; Bodenhamer, Andrew; Bosscher, Paul; Wilkinson, Loren

    2012-06-01

    Polaris Sensor Technologies (PST) has developed a stereo vision upgrade kit for TALON® robot systems comprised of a replacement gripper camera and a replacement mast zoom camera on the robot, and a replacement display in the Operator Control Unit (OCU). Harris Corporation has developed a haptic manipulation upgrade for TALON® robot systems comprised of a replacement arm and gripper and an OCU that provides haptic (force) feedback. PST and Harris have recently collaborated to integrate the 3D vision system with the haptic manipulation system. In multiple studies done at Fort Leonard Wood, Missouri it has been shown that 3D vision and haptics provide more intuitive perception of complicated scenery and improved robot arm control, allowing for improved mission performance and the potential for reduced time on target. This paper discusses the potential benefits of these enhancements to robotic systems used for the domestic homeland security mission.

  14. A new visual feedback-based magnetorheological haptic master for robot-assisted minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Hyun; Kim, Soomin; Kim, Pyunghwa; Park, Jinhyuk; Choi, Seung-Bok

    2015-06-01

    In this study, we developed a novel four-degrees-of-freedom haptic master using controllable magnetorheological (MR) fluid. We also integrated the haptic master with a vision device with image processing for robot-assisted minimally invasive surgery (RMIS). The proposed master can be used in RMIS as a haptic interface to provide the surgeon with a sense of touch by using both kinetic and kinesthetic information. The slave robot, which is manipulated with a proportional-integrative-derivative controller, uses a force sensor to obtain the desired forces from tissue contact, and these desired repulsive forces are then embodied through the MR haptic master. To verify the effectiveness of the haptic master, the desired force and actual force are compared in the time domain. In addition, a visual feedback system is implemented in the RMIS experiment to distinguish between the tumor and organ more clearly and provide better visibility to the operator. The hue-saturation-value color space is adopted for the image processing since it is often more intuitive than other color spaces. The image processing and haptic feedback are realized on surgery performance. In this work, tumor-cutting experiments are conducted under four different operating conditions: haptic feedback on, haptic feedback off, image processing on, and image processing off. The experimental realization shows that the performance index, which is a function of pixels, is different in the four operating conditions.

  15. Effects of kinesthetic haptic feedback on standing stability of young healthy subjects and stroke patients.

    PubMed

    Afzal, Muhammad Raheel; Byun, Ha-Young; Oh, Min-Kyun; Yoon, Jungwon

    2015-03-13

    Haptic control is a useful therapeutic option in rehabilitation featuring virtual reality interaction. As with visual and vibrotactile biofeedback, kinesthetic haptic feedback may assist in postural control, and can achieve balance control. Kinesthetic haptic feedback in terms of body sway can be delivered via a commercially available haptic device and can enhance the balance stability of both young healthy subjects and stroke patients. Our system features a waist-attached smartphone, software running on a computer (PC), and a dedicated Phantom Omni® device. Young healthy participants performed balance tasks after assumption of each of four distinct postures for 30 s (one foot on the ground; the Tandem Romberg stance; one foot on foam; and the Tandem Romberg stance on foam) with eyes closed. Patient eyes were not closed and assumption of the Romberg stance (only) was tested during a balance task 25 s in duration. An Android application running continuously on the smartphone sent mediolateral (ML) and anteroposterior (AP) tilt angles to a PC, which generated kinesthetic haptic feedback via Phantom Omni®. A total of 16 subjects, 8 of whom were young healthy and 8 of whom had suffered stroke, participated in the study. Post-experiment data analysis was performed using MATLAB®. Mean Velocity Displacement (MVD), Planar Deviation (PD), Mediolateral Trajectory (MLT) and Anteroposterior Trajectory (APT) parameters were analyzed to measure reduction in body sway. Our kinesthetic haptic feedback system was effective to reduce postural sway in young healthy subjects regardless of posture and the condition of the substrate (the ground) and to improve MVD and PD in stroke patients who assumed the Romberg stance. Analysis of Variance (ANOVA) revealed that kinesthetic haptic feedback significantly reduced body sway in both categories of subjects. Kinesthetic haptic feedback can be implemented using a commercial haptic device and a smartphone. Intuitive balance cues were

  16. KinoHaptics: An Automated, Wearable, Haptic Assisted, Physio-therapeutic System for Post-surgery Rehabilitation and Self-care.

    PubMed

    Rajanna, Vijay; Vo, Patrick; Barth, Jerry; Mjelde, Matthew; Grey, Trevor; Oduola, Cassandra; Hammond, Tracy

    2016-03-01

    A carefully planned, structured, and supervised physiotherapy program, following a surgery, is crucial for the successful diagnosis of physical injuries. Nearly 50 % of the surgeries fail due to unsupervised, and erroneous physiotherapy. The demand for a physiotherapist for an extended period is expensive to afford, and sometimes inaccessible. Researchers have tried to leverage the advancements in wearable sensors and motion tracking by building affordable, automated, physio-therapeutic systems that direct a physiotherapy session by providing audio-visual feedback on patient's performance. There are many aspects of automated physiotherapy program which are yet to be addressed by the existing systems: a wide classification of patients' physiological conditions to be diagnosed, multiple demographics of the patients (blind, deaf, etc.), and the need to pursue patients to adopt the system for an extended period for self-care. In our research, we have tried to address these aspects by building a health behavior change support system called KinoHaptics, for post-surgery rehabilitation. KinoHaptics is an automated, wearable, haptic assisted, physio-therapeutic system that can be used by a wide variety of demographics and for various physiological conditions of the patients. The system provides rich and accurate vibro-haptic feedback that can be felt by the user, irrespective of the physiological limitations. KinoHaptics is built to ensure that no injuries are induced during the rehabilitation period. The persuasive nature of the system allows for personal goal-setting, progress tracking, and most importantly life-style compatibility. The system was evaluated under laboratory conditions, involving 14 users. Results show that KinoHaptics is highly convenient to use, and the vibro-haptic feedback is intuitive, accurate, and has shown to prevent accidental injuries. Also, results show that KinoHaptics is persuasive in nature as it supports behavior change and habit building

  17. Enhancing audiovisual experience with haptic feedback: a survey on HAV.

    PubMed

    Danieau, F; Lecuyer, A; Guillotel, P; Fleureau, J; Mollet, N; Christie, M

    2013-01-01

    Haptic technology has been widely employed in applications ranging from teleoperation and medical simulation to art and design, including entertainment, flight simulation, and virtual reality. Today there is a growing interest among researchers in integrating haptic feedback into audiovisual systems. A new medium emerges from this effort: haptic-audiovisual (HAV) content. This paper presents the techniques, formalisms, and key results pertinent to this medium. We first review the three main stages of the HAV workflow: the production, distribution, and rendering of haptic effects. We then highlight the pressing necessity for evaluation techniques in this context and discuss the key challenges in the field. By building on existing technologies and tackling the specific challenges of the enhancement of audiovisual experience with haptics, we believe the field presents exciting research perspectives whose financial and societal stakes are significant.

  18. Investigating Students' Ideas About Buoyancy and the Influence of Haptic Feedback

    NASA Astrophysics Data System (ADS)

    Minogue, James; Borland, David

    2016-04-01

    While haptics (simulated touch) represents a potential breakthrough technology for science teaching and learning, there is relatively little research into its differential impact in the context of teaching and learning. This paper describes the testing of a haptically enhanced simulation (HES) for learning about buoyancy. Despite a lifetime of everyday experiences, a scientifically sound explanation of buoyancy remains difficult to construct for many. It requires the integration of domain-specific knowledge regarding density, fluid, force, gravity, mass, weight, and buoyancy. Prior studies suggest that novices often focus on only one dimension of the sinking and floating phenomenon. Our HES was designed to promote the integration of the subconcepts of density and buoyant forces and stresses the relationship between the object itself and the surrounding fluid. The study employed a randomized pretest-posttest control group research design and a suite of measures including an open-ended prompt and objective content questions to provide insights into the influence of haptic feedback on undergraduate students' thinking about buoyancy. A convenience sample (n = 40) was drawn from a university's population of undergraduate elementary education majors. Two groups were formed from haptic feedback (n = 22) and no haptic feedback (n = 18). Through content analysis, discernible differences were seen in the posttest explanations sinking and floating across treatment groups. Learners that experienced the haptic feedback made more frequent use of "haptically grounded" terms (e.g., mass, gravity, buoyant force, pushing), leading us to begin to build a local theory of language-mediated haptic cognition.

  19. Robot-assisted microsurgical forceps with haptic feedback for transoral laser microsurgery.

    PubMed

    Deshpande, Nikhil; Chauhan, Manish; Pacchierotti, Claudio; Prattichizzo, Domenico; Caldwell, Darwin G; Mattos, Leonardo S

    2016-08-01

    In this paper, a novel, motorized, multi-degrees-of-freedom (DoF), microsurgical forceps tool is presented, which is based on a master-slave teleoperation architecture. The slave device is a 7-DoF manipulator with: (i) 6-DoF positioning and orientation, (ii) 1 open/close gripper DoF; and (iii) an integrated force/torque sensor for tissue grip-force measurement. The master device is a 7-DoF haptic interface which teleoperates the slave device, and provides haptic feedback in its gripper interface. The combination of the device and the surgeon interface replaces the manual, hand-held device providing easy-to-use and ergonomic tissue control, simplifying the surgical tasks. This makes the system suitable to real surgical scenarios in the operating room (OR). The performance of the system was analysed through the evaluation of teleoperation control and characterization of gripping force. The new system offers an overall positioning error of less than 400 μm demonstrating its safety and accuracy. Improved system precision, usability, and ergonomics point to the potential suitability of the device for the OR and its ability to advance haptic-feedback-enhanced transoral laser microsurgeries.

  20. Haptic seat for fuel economy feedback

    DOEpatents

    Bobbitt, III, John Thomas

    2016-08-30

    A process of providing driver fuel economy feedback is disclosed in which vehicle sensors provide for haptic feedback on fuel usage. Such sensors may include one or more of a speed sensors, global position satellite units, vehicle pitch/roll angle sensors, suspension displacement sensors, longitudinal accelerometer sensors, throttle position in sensors, steering angle sensors, break pressure sensors, and lateral accelerometer sensors. Sensors used singlely or collectively can provide enhanced feedback as to various environmental conditions and operating conditions such that a more accurate assessment of fuel economy information can be provided to the driver.

  1. Augmented kinematic feedback from haptic virtual reality for dental skill acquisition.

    PubMed

    Suebnukarn, Siriwan; Haddawy, Peter; Rhienmora, Phattanapon; Jittimanee, Pannapa; Viratket, Piyanuch

    2010-12-01

    We have developed a haptic virtual reality system for dental skill training. In this study we examined several kinds of kinematic information about the movement provided by the system supplement knowledge of results (KR) in dental skill acquisition. The kinematic variables examined involved force utilization (F) and mirror view (M). This created three experimental conditions that received augmented kinematic feedback (F, M, FM) and one control condition that did not (KR-only). Thirty-two dental students were randomly assigned to four groups. Their task was to perform access opening on the upper first molar with the haptic virtual reality system. An acquisition session consisted of two days of ten trials of practice in which augmented kinematic feedback was provided for the appropriate experimental conditions after each trial. One week after, a retention test consisting of two trials without augmented feedback was completed. The results showed that the augmented kinematic feedback groups had larger mean performance scores than the KR-only group in Day 1 of the acquisition and retention sessions (ANOVA, p<0.05). The apparent differences among feedback groups were not significant in Day 2 of the acquisition session (ANOVA, p>0.05). The trends in acquisition and retention sessions suggest that the augmented kinematic feedback can enhance the performance earlier in the skill acquisition and retention sessions.

  2. Haptic interface of web-based training system for interventional radiology procedures

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Lu, Yiping; Loe, KiaFock; Nowinski, Wieslaw L.

    2004-05-01

    The existing web-based medical training systems and surgical simulators can provide affordable and accessible medical training curriculum, but they seldom offer the trainee realistic and affordable haptic feedback. Therefore, they cannot offer the trainee a suitable practicing environment. In this paper, a haptic solution for interventional radiology (IR) procedures is proposed. System architecture of a web-based training system for IR procedures is briefly presented first. Then, the mechanical structure, the working principle and the application of a haptic device are discussed in detail. The haptic device works as an interface between the training environment and the trainees and is placed at the end user side. With the system, the user can be trained on the interventional radiology procedures - navigating catheters, inflating balloons, deploying coils and placing stents on the web and get surgical haptic feedback in real time.

  3. The effect of haptic guidance and visual feedback on learning a complex tennis task.

    PubMed

    Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert

    2013-11-01

    While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on

  4. Object discrimination using optimized multi-frequency auditory cross-modal haptic feedback.

    PubMed

    Gibson, Alison; Artemiadis, Panagiotis

    2014-01-01

    As the field of brain-machine interfaces and neuro-prosthetics continues to grow, there is a high need for sensor and actuation mechanisms that can provide haptic feedback to the user. Current technologies employ expensive, invasive and often inefficient force feedback methods, resulting in an unrealistic solution for individuals who rely on these devices. This paper responds through the development, integration and analysis of a novel feedback architecture where haptic information during the neural control of a prosthetic hand is perceived through multi-frequency auditory signals. Through representing force magnitude with volume and force location with frequency, the feedback architecture can translate the haptic experiences of a robotic end effector into the alternative sensory modality of sound. Previous research with the proposed cross-modal feedback method confirmed its learnability, so the current work aimed to investigate which frequency map (i.e. frequency-specific locations on the hand) is optimal in helping users distinguish between hand-held objects and tasks associated with them. After short use with the cross-modal feedback during the electromyographic (EMG) control of a prosthetic hand, testing results show that users are able to use audial feedback alone to discriminate between everyday objects. While users showed adaptation to three different frequency maps, the simplest map containing only two frequencies was found to be the most useful in discriminating between objects. This outcome provides support for the feasibility and practicality of the cross-modal feedback method during the neural control of prosthetics.

  5. A perspective on the role and utility of haptic feedback in laparoscopic skills training.

    PubMed

    Singapogu, Ravikiran; Burg, Timothy; Burg, Karen J L; Smith, Dane E; Eckenrode, Amanda H

    2014-01-01

    Laparoscopic surgery is a minimally invasive surgical technique with significant potential benefits to the patient, including shorter recovery time, less scarring, and decreased costs. There is a growing need to teach surgical trainees this emerging surgical technique. Simulators, ranging from simple "box" trainers to complex virtual reality (VR) trainers, have emerged as the most promising method for teaching basic laparoscopic surgical skills. Current box trainers require oversight from an expert surgeon for both training and assessing skills. VR trainers decrease the dependence on expert teachers during training by providing objective, real-time feedback and automatic skills evaluation. However, current VR trainers generally have limited credibility as a means to prepare new surgeons and have often fallen short of educators' expectations. Several researchers have speculated that the missing component in modern VR trainers is haptic feedback, which refers to the range of touch sensations encountered during surgery. These force types and ranges need to be adequately rendered by simulators for a more complete training experience. This article presents a perspective of the role and utility of haptic feedback during laparoscopic surgery and laparoscopic skills training by detailing the ranges and types of haptic sensations felt by the operating surgeon, along with quantitative studies of how this feedback is used. Further, a number of research studies that have documented human performance effects as a result of the presence of haptic feedback are critically reviewed. Finally, key research directions in using haptic feedback for laparoscopy training simulators are identified.

  6. Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback.

    PubMed

    Alaraj, Ali; Luciano, Cristian J; Bailey, Daniel P; Elsenousi, Abdussalam; Roitberg, Ben Z; Bernardo, Antonio; Banerjee, P Pat; Charbel, Fady T

    2015-03-01

    With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. To develop and evaluate the usefulness of a new haptic-based virtual reality simulator in the training of neurosurgical residents. A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the ImmersiveTouch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomographic angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-dimensional immersive virtual reality environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from 3 residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Residents thought that the simulation would be useful in preparing for real-life surgery. About two-thirds of the residents thought that the 3-dimensional immersive anatomic details provided a close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They thought the simulation was useful for preoperative surgical rehearsal and neurosurgical training. A third of the residents thought that the technology in its current form provided realistic haptic feedback for aneurysm surgery. Neurosurgical residents thought that the novel immersive VR simulator is helpful in their training, especially because they do not get a chance to perform aneurysm clippings until late in their residency programs.

  7. Effects of 3D virtual haptics force feedback on brand personality perception: the mediating role of physical presence in advergames.

    PubMed

    Jin, Seung-A Annie

    2010-06-01

    This study gauged the effects of force feedback in the Novint Falcon haptics system on the sensory and cognitive dimensions of a virtual test-driving experience. First, in order to explore the effects of tactile stimuli with force feedback on users' sensory experience, feelings of physical presence (the extent to which virtual physical objects are experienced as actual physical objects) were measured after participants used the haptics interface. Second, to evaluate the effects of force feedback on the cognitive dimension of consumers' virtual experience, this study investigated brand personality perception. The experiment utilized the Novint Falcon haptics controller to induce immersive virtual test-driving through tactile stimuli. The author designed a two-group (haptics stimuli with force feedback versus no force feedback) comparison experiment (N = 238) by manipulating the level of force feedback. Users in the force feedback condition were exposed to tactile stimuli involving various force feedback effects (e.g., terrain effects, acceleration, and lateral forces) while test-driving a rally car. In contrast, users in the control condition test-drove the rally car using the Novint Falcon but were not given any force feedback. Results of ANOVAs indicated that (a) users exposed to force feedback felt stronger physical presence than those in the no force feedback condition, and (b) users exposed to haptics stimuli with force feedback perceived the brand personality of the car to be more rugged than those in the control condition. Managerial implications of the study for product trial in the business world are discussed.

  8. Virtual Reality Cerebral Aneurysm Clipping Simulation With Real-time Haptic Feedback

    PubMed Central

    Alaraj, Ali; Luciano, Cristian J.; Bailey, Daniel P.; Elsenousi, Abdussalam; Roitberg, Ben Z.; Bernardo, Antonio; Banerjee, P. Pat; Charbel, Fady T.

    2014-01-01

    Background With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. Objective To develop and evaluate the usefulness of a new haptic-based virtual reality (VR) simulator in the training of neurosurgical residents. Methods A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the Immersive Touch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomography angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-D immersive VR environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from three residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Results Residents felt that the simulation would be useful in preparing for real-life surgery. About two thirds of the residents felt that the 3-D immersive anatomical details provided a very close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They believed the simulation is useful for preoperative surgical rehearsal and neurosurgical training. One third of the residents felt that the technology in its current form provided very realistic haptic feedback for aneurysm surgery. Conclusion Neurosurgical residents felt that the novel immersive VR simulator is helpful in their training especially since they do not get a chance to perform aneurysm clippings until very late in their residency programs. PMID:25599200

  9. Haptic Paddle Enhancements and a Formal Assessment of Student Learning in System Dynamics

    ERIC Educational Resources Information Center

    Gorlewicz, Jenna L.; Kratchman, Louis B.; Webster, Robert J., III

    2014-01-01

    The haptic paddle is a force-feedback joystick used at several universities in teaching System Dynamics, a core mechanical engineering undergraduate course where students learn to model dynamic systems in several domains. A second goal of the haptic paddle is to increase the accessibility of robotics and haptics by providing a low-cost device for…

  10. Towards a Teleoperated Needle Driver Robot with Haptic Feedback for RFA of Breast Tumors under Continuous MRI1

    PubMed Central

    Kokes, Rebecca; Lister, Kevin; Gullapalli, Rao; Zhang, Bao; MacMillan, Alan; Richard, Howard; Desai, Jaydev P.

    2009-01-01

    Objective The purpose of this paper is to explore the feasibility of developing a MRI-compatible needle driver system for radiofrequency ablation (RFA) of breast tumors under continuous MRI imaging while being teleoperated by a haptic feedback device from outside the scanning room. The developed needle driver prototype was designed and tested for both tumor targeting capability as well as RFA. Methods The single degree-of-freedom (DOF) prototype was interfaced with a PHANToM haptic device controlled from outside the scanning room. Experiments were performed to demonstrate MRI-compatibility and position control accuracy with hydraulic actuation, along with an experiment to determine the PHANToM’s ability to guide the RFA tool to a tumor nodule within a phantom breast tissue model while continuously imaging within the MRI and receiving force feedback from the RFA tool. Results Hydraulic actuation is shown to be a feasible actuation technique for operation in an MRI environment. The design is MRI-compatible in all aspects except for force sensing in the directions perpendicular to the direction of motion. Experiments confirm that the user is able to detect healthy vs. cancerous tissue in a phantom model when provided with both visual (imaging) feedback and haptic feedback. Conclusion The teleoperated 1-DOF needle driver system presented in this paper demonstrates the feasibility of implementing a MRI-compatible robot for RFA of breast tumors with haptic feedback capability. PMID:19303805

  11. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review.

    PubMed

    van der Meijden, O A J; Schijven, M P

    2009-06-01

    Virtual reality (VR) as surgical training tool has become a state-of-the-art technique in training and teaching skills for minimally invasive surgery (MIS). Although intuitively appealing, the true benefits of haptic (VR training) platforms are unknown. Many questions about haptic feedback in the different areas of surgical skills (training) need to be answered before adding costly haptic feedback in VR simulation for MIS training. This study was designed to review the current status and value of haptic feedback in conventional and robot-assisted MIS and training by using virtual reality simulation. A systematic review of the literature was undertaken using PubMed and MEDLINE. The following search terms were used: Haptic feedback OR Haptics OR Force feedback AND/OR Minimal Invasive Surgery AND/OR Minimal Access Surgery AND/OR Robotics AND/OR Robotic Surgery AND/OR Endoscopic Surgery AND/OR Virtual Reality AND/OR Simulation OR Surgical Training/Education. The results were assessed according to level of evidence as reflected by the Oxford Centre of Evidence-based Medicine Levels of Evidence. In the current literature, no firm consensus exists on the importance of haptic feedback in performing minimally invasive surgery. Although the majority of the results show positive assessment of the benefits of force feedback, results are ambivalent and not unanimous on the subject. Benefits are least disputed when related to surgery using robotics, because there is no haptic feedback in currently used robotics. The addition of haptics is believed to reduce surgical errors resulting from a lack of it, especially in knot tying. Little research has been performed in the area of robot-assisted endoscopic surgical training, but results seem promising. Concerning VR training, results indicate that haptic feedback is important during the early phase of psychomotor skill acquisition.

  12. A wearable skin stretch haptic feedback device: Towards improving balance control in lower limb amputees.

    PubMed

    Husman, M A B; Maqbool, H F; Awad, M I; Abouhossein, A; Dehghani-Sanij, A A

    2016-08-01

    Haptic feedback to lower limb amputees is essential to maximize the functionality of a prosthetic device by providing information to the user about the interaction with the environment and the position of the prostheses in space. Severed sensory pathway and the absence of connection between the prosthesis and the Central Nervous System (CNS) after lower limb amputation reduces balance control, increases visual dependency and increases risk of falls among amputees. This work describes the design of a wearable haptic feedback device for lower limb amputees using lateral skin-stretch modality intended to serve as a feedback cue during ambulation. A feedback scheme was proposed based on gait event detection for possible real-time postural adjustment. Preliminary perceptual test with healthy subjects in static condition was carried out and the results indicated over 98% accuracy in determining stimuli location around the upper leg region, suggesting good perceptibility of the delivered stimuli.

  13. The impact of haptic feedback on students' conceptions of the cell

    NASA Astrophysics Data System (ADS)

    Minogue, James

    2005-07-01

    The purpose of this study was to investigate the efficacy of adding haptic (sense of touch) feedback to computer generated visualizations for use in middle school science instruction. Current technology allows for the simulation of tactile and kinesthetic sensations via haptic devices and a computer interface. This study, conducted with middle school students (n = 80), explored the cognitive and affective impacts of this innovative technology on students' conceptions of the cell and the process of passive transport. A pretest-posttest control group design was used and participants were randomly assigned to one of two treatment groups (n = 40 for each). Both groups experienced the same core computer-mediated instructional program. This Cell Exploration program engaged students in a 3-D immersive environment that allowed them to actively investigate the form and function of a typical animal cell including its major organelles. The program also engaged students in a study of the structure and function of the cell membrane as it pertains to the process of passive transport and the mechanisms behind the membrane's selective permeability. As they conducted their investigations, students in the experimental group received bi-modal visual and haptic (simulated tactile and kinesthetic) feedback whereas the control group students experienced the program with only visual stimuli. A battery of assessments, including objective and open-ended written response items as well as a haptic performance assessment, were used to gather quantitative and qualitative data regarding changes in students' understandings of the cell concepts prior to and following their completion of the instructional program. Additionally, the impact of haptics on the affective domain of students' learning was assessed using a post-experience semi-structured interview and an attitudinal survey. Results showed that students from both conditions (Visual-Only and Visual + Haptic) found the instructional program

  14. Augmented reality and haptic interfaces for robot-assisted surgery.

    PubMed

    Yamamoto, Tomonori; Abolhassani, Niki; Jung, Sung; Okamura, Allison M; Judkins, Timothy N

    2012-03-01

    Current teleoperated robot-assisted minimally invasive surgical systems do not take full advantage of the potential performance enhancements offered by various forms of haptic feedback to the surgeon. Direct and graphical haptic feedback systems can be integrated with vision and robot control systems in order to provide haptic feedback to improve safety and tissue mechanical property identification. An interoperable interface for teleoperated robot-assisted minimally invasive surgery was developed to provide haptic feedback and augmented visual feedback using three-dimensional (3D) graphical overlays. The software framework consists of control and command software, robot plug-ins, image processing plug-ins and 3D surface reconstructions. The feasibility of the interface was demonstrated in two tasks performed with artificial tissue: palpation to detect hard lumps and surface tracing, using vision-based forbidden-region virtual fixtures to prevent the patient-side manipulator from entering unwanted regions of the workspace. The interoperable interface enables fast development and successful implementation of effective haptic feedback methods in teleoperation. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Multimodal Interaction with Speech, Gestures and Haptic Feedback in a Media Center Application

    NASA Astrophysics Data System (ADS)

    Turunen, Markku; Hakulinen, Jaakko; Hella, Juho; Rajaniemi, Juha-Pekka; Melto, Aleksi; Mäkinen, Erno; Rantala, Jussi; Heimonen, Tomi; Laivo, Tuuli; Soronen, Hannu; Hansen, Mervi; Valkama, Pellervo; Miettinen, Toni; Raisamo, Roope

    We demonstrate interaction with a multimodal media center application. Mobile phone-based interface includes speech and gesture input and haptic feedback. The setup resembles our long-term public pilot study, where a living room environment containing the application was constructed inside a local media museum allowing visitors to freely test the system.

  16. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.

    PubMed

    Ehrampoosh, Shervin; Dave, Mohit; Kia, Michael A; Rablau, Corneliu; Zadeh, Mehrdad H

    2013-01-01

    This paper presents an enhanced haptic-enabled master-slave teleoperation system which can be used to provide force feedback to surgeons in minimally invasive surgery (MIS). One of the research goals was to develop a combined-control architecture framework that included both direct force reflection (DFR) and position-error-based (PEB) control strategies. To achieve this goal, it was essential to measure accurately the direct contact forces between deformable bodies and a robotic tool tip. To measure the forces at a surgical tool tip and enhance the performance of the teleoperation system, an optical force sensor was designed, prototyped, and added to a robot manipulator. The enhanced teleoperation architecture was formulated by developing mathematical models for the optical force sensor, the extended slave robot manipulator, and the combined-control strategy. Human factor studies were also conducted to (a) examine experimentally the performance of the enhanced teleoperation system with the optical force sensor, and (b) study human haptic perception during the identification of remote object deformability. The first experiment was carried out to discriminate deformability of objects when human subjects were in direct contact with deformable objects by means of a laparoscopic tool. The control parameters were then tuned based on the results of this experiment using a gain-scheduling method. The second experiment was conducted to study the effectiveness of the force feedback provided through the enhanced teleoperation system. The results show that the force feedback increased the ability of subjects to correctly identify materials of different deformable types. In addition, the virtual force feedback provided by the teleoperation system comes close to the real force feedback experienced in direct MIS. The experimental results provide design guidelines for choosing and validating the control architecture and the optical force sensor.

  17. On the design of a miniature haptic ring for cutaneous force feedback using shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Hwang, Donghyun; Lee, Jaemin; Kim, Keehoon

    2017-10-01

    This paper proposes a miniature haptic ring that can display touch/pressure and shearing force to the user’s fingerpad. For practical use and wider application of the device, it is developed with the aim of achieving high wearability and mobility/portability as well as cutaneous force feedback functionality. A main body of the device is designed as a ring-shaped lightweight structure with a simple driving mechanism, and thin shape memory alloy (SMA) wires having high energy density are applied as actuating elements. Also, based on a band-type wireless control unit including a wireless data communication module, the whole device could be realized as a wearable mobile haptic device system. These features enable the device to take diverse advantages on functional performances and to provide users with significant usability. In this work, the proposed miniature haptic ring is systematically designed, and its working performances are experimentally evaluated with a fabricated functional prototype. The experimental results obviously demonstrate that the proposed device exhibits higher force-to-weight ratio than conventional finger-wearable haptic devices for cutaneous force feedback. Also, it is investigated that operational performances of the device are strongly influenced by electro-thermomechanical behaviors of the SMA actuator. In addition to the experiments for performance evaluation, we conduct a preliminary user test to assess practical feasibility and usability based on user’s qualitative feedback.

  18. Learning of Temporal and Spatial Movement Aspects: A Comparison of Four Types of Haptic Control and Concurrent Visual Feedback.

    PubMed

    Rauter, Georg; Sigrist, Roland; Riener, Robert; Wolf, Peter

    2015-01-01

    In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task's velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.

  19. Optimal haptic feedback control of artificial muscles

    NASA Astrophysics Data System (ADS)

    Chen, Daniel; Besier, Thor; Anderson, Iain; McKay, Thomas

    2014-03-01

    As our population ages, and trends in obesity continue to grow, joint degenerative diseases like osteoarthritis (OA) are becoming increasingly prevalent. With no cure currently in sight, the only effective treatments for OA are orthopaedic surgery and prolonged rehabilitation, neither of which is guaranteed to succeed. Gait retraining has tremendous potential to alter the contact forces in the joints due to walking, reducing the risk of one developing hip and knee OA. Dielectric Elastomer Actuators (DEAs) are being explored as a potential way of applying intuitive haptic feedback to alter a patient's walking gait. The main challenge with the use of DEAs in this application is producing large enough forces and strains to induce sensation when coupled to a patient's skin. A novel controller has been proposed to solve this issue. The controller uses simultaneous capacitive self-sensing and actuation which will optimally apply a haptic sensation to the patient's skin independent of variability in DEAs and patient geometries.

  20. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation.

    PubMed

    Veras, Eduardo J; De Laurentis, Kathryn J; Dubey, Rajiv

    2008-01-01

    This paper describes the design and implementation of a control system that integrates visual and haptic information to give assistive force feedback through a haptic controller (Omni Phantom) to the user. A sensor-based assistive function and velocity scaling program provides force feedback that helps the user complete trajectory following exercises for rehabilitation purposes. This system also incorporates a PUMA robot for teleoperation, which implements a camera and a laser range finder, controlled in real time by a PC, were implemented into the system to help the user to define the intended path to the selected target. The real-time force feedback from the remote robot to the haptic controller is made possible by using effective multithreading programming strategies in the control system design and by novel sensor integration. The sensor-based assistant function concept applied to teleoperation as well as shared control enhances the motion range and manipulation capabilities of the users executing rehabilitation exercises such as trajectory following along a sensor-based defined path. The system is modularly designed to allow for integration of different master devices and sensors. Furthermore, because this real-time system is versatile the haptic component can be used separately from the telerobotic component; in other words, one can use the haptic device for rehabilitation purposes for cases in which assistance is needed to perform tasks (e.g., stroke rehab) and also for teleoperation with force feedback and sensor assistance in either supervisory or automatic modes.

  1. Open Touch/Sound Maps: A system to convey street data through haptic and auditory feedback

    NASA Astrophysics Data System (ADS)

    Kaklanis, Nikolaos; Votis, Konstantinos; Tzovaras, Dimitrios

    2013-08-01

    The use of spatial (geographic) information is becoming ever more central and pervasive in today's internet society but the most of it is currently inaccessible to visually impaired users. However, access in visual maps is severely restricted to visually impaired and people with blindness, due to their inability to interpret graphical information. Thus, alternative ways of a map's presentation have to be explored, in order to enforce the accessibility of maps. Multiple types of sensory perception like touch and hearing may work as a substitute of vision for the exploration of maps. The use of multimodal virtual environments seems to be a promising alternative for people with visual impairments. The present paper introduces a tool for automatic multimodal map generation having haptic and audio feedback using OpenStreetMap data. For a desired map area, an elevation map is being automatically generated and can be explored by touch, using a haptic device. A sonification and a text-to-speech (TTS) mechanism provide also audio navigation information during the haptic exploration of the map.

  2. Ascending and Descending in Virtual Reality: Simple and Safe System Using Passive Haptics.

    PubMed

    Nagao, Ryohei; Matsumoto, Keigo; Narumi, Takuji; Tanikawa, Tomohiro; Hirose, Michitaka

    2018-04-01

    This paper presents a novel interactive system that provides users with virtual reality (VR) experiences, wherein users feel as if they are ascending/descending stairs through passive haptic feedback. The passive haptic stimuli are provided by small bumps under the feet of users; these stimuli are provided to represent the edges of the stairs in the virtual environment. The visual stimuli of the stairs and shoes, provided by head-mounted displays, evoke a visuo-haptic interaction that modifies a user's perception of the floor shape. Our system enables users to experience all types of stairs, such as half-turn and spiral stairs, in a VR setting. We conducted a preliminary user study and two experiments to evaluate the proposed technique. The preliminary user study investigated the effectiveness of the basic idea associated with the proposed technique for the case of a user ascending stairs. The results demonstrated that the passive haptic feedback produced by the small bumps enhanced the user's feeling of presence and sense of ascending. We subsequently performed an experiment to investigate an improved viewpoint manipulation method and the interaction of the manipulation and haptics for both the ascending and descending cases. The experimental results demonstrated that the participants had a feeling of presence and felt a steep stair gradient under the condition of haptic feedback and viewpoint manipulation based on the characteristics of actual stair walking data. However, these results also indicated that the proposed system may not be as effective in providing a sense of descending stairs without an optimization of the haptic stimuli. We then redesigned the shape of the small bumps, and evaluated the design in a second experiment. The results indicated that the best shape to present haptic stimuli is a right triangle cross section in both the ascending and descending cases. Although it is necessary to install small protrusions in the determined direction, by

  3. Graphic and haptic simulation system for virtual laparoscopic rectum surgery.

    PubMed

    Pan, Jun J; Chang, Jian; Yang, Xiaosong; Zhang, Jian J; Qureshi, Tahseen; Howell, Robert; Hickish, Tamas

    2011-09-01

    Medical simulators with vision and haptic feedback techniques offer a cost-effective and efficient alternative to the traditional medical trainings. They have been used to train doctors in many specialties of medicine, allowing tasks to be practised in a safe and repetitive manner. This paper describes a virtual-reality (VR) system which will help to influence surgeons' learning curves in the technically challenging field of laparoscopic surgery of the rectum. Data from MRI of the rectum and real operation videos are used to construct the virtual models. A haptic force filter based on radial basis functions is designed to offer realistic and smooth force feedback. To handle collision detection efficiently, a hybrid model is presented to compute the deformation of intestines. Finally, a real-time cutting technique based on mesh is employed to represent the incision operation. Despite numerous research efforts, fast and realistic solutions of soft tissues with large deformation, such as intestines, prove extremely challenging. This paper introduces our latest contribution to this endeavour. With this system, the user can haptically operate with the virtual rectum and simultaneously watch the soft tissue deformation. Our system has been tested by colorectal surgeons who believe that the simulated tactile and visual feedbacks are realistic. It could replace the traditional training process and effectively transfer surgical skills to novices. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Development of a StandAlone Surgical Haptic Arm.

    PubMed

    Jones, Daniel; Lewis, Andrew; Fischer, Gregory S

    2011-01-01

    When performing telesurgery with current commercially available Minimally Invasive Robotic Surgery (MIRS) systems, a surgeon cannot feel the tool interactions that are inherent in traditional laparoscopy. It is proposed that haptic feedback in the control of MIRS systems could improve the speed, safety and learning curve of robotic surgery. To test this hypothesis, a standalone surgical haptic arm (SASHA) capable of manipulating da Vinci tools has been designed and fabricated with the additional ability of providing information for haptic feedback. This arm was developed as a research platform for developing and evaluating approaches to telesurgery, including various haptic mappings between master and slave and evaluating the effects of latency.

  5. Computer-aided trauma simulation system with haptic feedback is easy and fast for oral-maxillofacial surgeons to learn and use.

    PubMed

    Schvartzman, Sara C; Silva, Rebeka; Salisbury, Ken; Gaudilliere, Dyani; Girod, Sabine

    2014-10-01

    Computer-assisted surgical (CAS) planning tools have become widely available in craniomaxillofacial surgery, but are time consuming and often require professional technical assistance to simulate a case. An initial oral and maxillofacial (OM) surgical user experience was evaluated with a newly developed CAS system featuring a bimanual sense of touch (haptic). Three volunteer OM surgeons received a 5-minute verbal introduction to the use of a newly developed haptic-enabled planning system. The surgeons were instructed to simulate mandibular fracture reductions of 3 clinical cases, within a 15-minute time limit and without a time limit, and complete a questionnaire to assess their subjective experience with the system. Standard landmarks and linear and angular measurements between the simulated results and the actual surgical outcome were compared. After the 5-minute instruction, all 3 surgeons were able to use the system independently. The analysis of standardized anatomic measurements showed that the simulation results within a 15-minute time limit were not significantly different from those without a time limit. Mean differences between measurements of surgical and simulated fracture reductions were within current resolution limitations in collision detection, segmentation of computed tomographic scans, and haptic devices. All 3 surgeons reported that the system was easy to learn and use and that they would be comfortable integrating it into their daily clinical practice for trauma cases. A CAS system with a haptic interface that capitalizes on touch and force feedback experience similar to operative procedures is fast and easy for OM surgeons to learn and use. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. All rights reserved.

  6. Lack of transfer of skills after virtual reality simulator training with haptic feedback.

    PubMed

    Våpenstad, Cecilie; Hofstad, Erlend Fagertun; Bø, Lars Eirik; Kuhry, Esther; Johnsen, Gjermund; Mårvik, Ronald; Langø, Thomas; Hernes, Toril Nagelhus

    2017-12-01

    Virtual reality (VR) simulators enrich surgical training and offer training possibilities outside of the operating room (OR). In this study, we created a criterion-based training program on a VR simulator with haptic feedback and tested it by comparing the performances of a simulator group against a control group. Medical students with no experience in laparoscopy were randomly assigned to a simulator group or a control group. In the simulator group, the candidates trained until they reached predefined criteria on the LapSim ® VR simulator (Surgical Science AB, Göteborg, Sweden) with haptic feedback (Xitact TM IHP, Mentice AB, Göteborg, Sweden). All candidates performed a cholecystectomy on a porcine organ model in a box trainer (the clinical setting). The performances were video rated by two surgeons blinded to subject training status. In total, 30 students performed the cholecystectomy and had their videos rated (N = 16 simulator group, N = 14 control group). The control group achieved better video rating scores than the simulator group (p < .05). The criterion-based training program did not transfer skills to the clinical setting. Poor mechanical performance of the simulated haptic feedback is believed to have resulted in a negative training effect.

  7. High-fidelity bilateral teleoperation systems and the effect of multimodal haptics.

    PubMed

    Tavakoli, Mahdi; Aziminejad, Arash; Patel, Rajni V; Moallem, Mehrdad

    2007-12-01

    In master-slave teleoperation applications that deal with a delicate and sensitive environment, it is important to provide haptic feedback of slave/environment interactions to the user's hand as it improves task performance and teleoperation transparency (fidelity), which is the extent of telepresence of the remote environment available to the user through the master-slave system. For haptic teleoperation, in addition to a haptics-capable master interface, often one or more force sensors are also used, which warrant new bilateral control architectures while increasing the cost and the complexity of the teleoperation system. In this paper, we investigate the added benefits of using force sensors that measure hand/master and slave/environment interactions and of utilizing local feedback loops on the teleoperation transparency. We compare the two-channel and the four-channel bilateral control systems in terms of stability and transparency, and study the stability and performance robustness of the four-channel method against nonidealities that arise during bilateral control implementation, which include master-slave communication latency and changes in the environment dynamics. The next issue addressed in the paper deals with the case where the master interface is not haptics capable, but the slave is equipped with a force sensor. In the context of robotics-assisted soft-tissue surgical applications, we explore through human factors experiments whether slave/environment force measurements can be of any help with regard to improving task performance. The last problem we study is whether slave/environment force information, with and without haptic capability in the master interface, can help improve outcomes under degraded visual conditions.

  8. Eye Tracking of Occluded Self-Moved Targets: Role of Haptic Feedback and Hand-Target Dynamics.

    PubMed

    Danion, Frederic; Mathew, James; Flanagan, J Randall

    2017-01-01

    Previous studies on smooth pursuit eye movements have shown that humans can continue to track the position of their hand, or a target controlled by the hand, after it is occluded, thereby demonstrating that arm motor commands contribute to the prediction of target motion driving pursuit eye movements. Here, we investigated this predictive mechanism by manipulating both the complexity of the hand-target mapping and the provision of haptic feedback. Two hand-target mappings were used, either a rigid (simple) one in which hand and target motion matched perfectly or a nonrigid (complex) one in which the target behaved as a mass attached to the hand by means of a spring. Target animation was obtained by asking participants to oscillate a lightweight robotic device that provided (or not) haptic feedback consistent with the target dynamics. Results showed that as long as 7 s after target occlusion, smooth pursuit continued to be the main contributor to total eye displacement (∼60%). However, the accuracy of eye-tracking varied substantially across experimental conditions. In general, eye-tracking was less accurate under the nonrigid mapping, as reflected by higher positional and velocity errors. Interestingly, haptic feedback helped to reduce the detrimental effects of target occlusion when participants used the nonrigid mapping, but not when they used the rigid one. Overall, we conclude that the ability to maintain smooth pursuit in the absence of visual information can extend to complex hand-target mappings, but the provision of haptic feedback is critical for the maintenance of accurate eye-tracking performance.

  9. Eye Tracking of Occluded Self-Moved Targets: Role of Haptic Feedback and Hand-Target Dynamics

    PubMed Central

    Mathew, James

    2017-01-01

    Abstract Previous studies on smooth pursuit eye movements have shown that humans can continue to track the position of their hand, or a target controlled by the hand, after it is occluded, thereby demonstrating that arm motor commands contribute to the prediction of target motion driving pursuit eye movements. Here, we investigated this predictive mechanism by manipulating both the complexity of the hand-target mapping and the provision of haptic feedback. Two hand-target mappings were used, either a rigid (simple) one in which hand and target motion matched perfectly or a nonrigid (complex) one in which the target behaved as a mass attached to the hand by means of a spring. Target animation was obtained by asking participants to oscillate a lightweight robotic device that provided (or not) haptic feedback consistent with the target dynamics. Results showed that as long as 7 s after target occlusion, smooth pursuit continued to be the main contributor to total eye displacement (∼60%). However, the accuracy of eye-tracking varied substantially across experimental conditions. In general, eye-tracking was less accurate under the nonrigid mapping, as reflected by higher positional and velocity errors. Interestingly, haptic feedback helped to reduce the detrimental effects of target occlusion when participants used the nonrigid mapping, but not when they used the rigid one. Overall, we conclude that the ability to maintain smooth pursuit in the absence of visual information can extend to complex hand-target mappings, but the provision of haptic feedback is critical for the maintenance of accurate eye-tracking performance. PMID:28680964

  10. Haptics-based immersive telerobotic system for improvised explosive device disposal: Are two hands better than one?

    NASA Astrophysics Data System (ADS)

    Erickson, David; Lacheray, Hervé; Lambert, Jason Michel; Mantegh, Iraj; Crymble, Derry; Daly, John; Zhao, Yan

    2012-06-01

    State-of-the-art robotic explosive ordnance disposal robotics have not, in general, adopted recent advances in control technology and man-machine interfaces and lag many years behind academia. This paper describes the Haptics-based Immersive Telerobotic System project investigating an immersive telepresence envrionment incorporating advanced vehicle control systems, Augmented immersive sensory feedback, dynamic 3D visual information, and haptic feedback for explosive ordnance disposal operators. The project aim is to provide operatiors a more sophisticated interface and expand sensory input to perform complex tasks to defeat improvised explosive devices successfully. The introduction of haptics and immersive teleprescence has the potential to shift the way teleprescence systems work for explosive ordnance disposal tasks or more widely for first responders scenarios involving remote unmanned ground vehicles.

  11. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.

    PubMed

    Maisto, Maurizio; Pacchierotti, Claudio; Chinello, Francesco; Salvietti, Gionata; De Luca, Alessandro; Prattichizzo, Domenico

    2017-01-01

    Although Augmented Reality (AR) has been around for almost five decades, only recently we have witnessed AR systems and applications entering in our everyday life. Representative examples of this technological revolution are the smartphone games "Pokémon GO" and "Ingress" or the Google Translate real-time sign interpretation app. Even if AR applications are already quite compelling and widespread, users are still not able to physically interact with the computer-generated reality. In this respect, wearable haptics can provide the compelling illusion of touching the superimposed virtual objects without constraining the motion or the workspace of the user. In this paper, we present the experimental evaluation of two wearable haptic interfaces for the fingers in three AR scenarios, enrolling 38 participants. In the first experiment, subjects were requested to write on a virtual board using a real chalk. The haptic devices provided the interaction forces between the chalk and the board. In the second experiment, subjects were asked to pick and place virtual and real objects. The haptic devices provided the interaction forces due to the weight of the virtual objects. In the third experiment, subjects were asked to balance a virtual sphere on a real cardboard. The haptic devices provided the interaction forces due to the weight of the virtual sphere rolling on the cardboard. Providing haptic feedback through the considered wearable device significantly improved the performance of all the considered tasks. Moreover, subjects significantly preferred conditions providing wearable haptic feedback.

  12. Using haptic feedback to increase seat belt use of service vehicle drivers.

    DOT National Transportation Integrated Search

    2011-01-01

    This study pilot-tested a new application of a technology-based intervention to increase seat belt use. The technology was based on a : contingency in which unbelted drivers experienced sustained haptic feedback to the gas pedal when they exceeded 25...

  13. [Haptic tracking control for minimally invasive robotic surgery].

    PubMed

    Xu, Zhaohong; Song, Chengli; Wu, Wenwu

    2012-06-01

    Haptic feedback plays a significant role in minimally invasive robotic surgery (MIRS). A major deficiency of the current MIRS is the lack of haptic perception for the surgeon, including the commercially available robot da Vinci surgical system. In this paper, a dynamics model of a haptic robot is established based on Newton-Euler method. Because it took some period of time in exact dynamics solution, we used a digital PID arithmetic dependent on robot dynamics to ensure real-time bilateral control, and it could improve tracking precision and real-time control efficiency. To prove the proposed method, an experimental system in which two Novint Falcon haptic devices acting as master-slave system has been developed. Simulations and experiments showed proposed methods could give instrument force feedbacks to operator, and bilateral control strategy is an effective method to master-slave MIRS. The proposed methods could be used to tele-robotic system.

  14. Enhancing the Performance of Passive Teleoperation Systems via Cutaneous Feedback.

    PubMed

    Pacchierotti, Claudio; Tirmizi, Asad; Bianchini, Gianni; Prattichizzo, Domenico

    2015-01-01

    We introduce a novel method to improve the performance of passive teleoperation systems with force reflection. It consists of integrating kinesthetic haptic feedback provided by common grounded haptic interfaces with cutaneous haptic feedback. The proposed approach can be used on top of any time-domain control technique that ensures a stable interaction by scaling down kinesthetic feedback when this is required to satisfy stability conditions (e.g., passivity) at the expense of transparency. Performance is recovered by providing a suitable amount of cutaneous force through custom wearable cutaneous devices. The viability of the proposed approach is demonstrated through an experiment of perceived stiffness and an experiment of teleoperated needle insertion in soft tissue.

  15. Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure safety and improve transparency in bimanual haptic interaction.

    PubMed

    Meli, Leonardo; Pacchierotti, Claudio; Prattichizzo, Domenico

    2014-04-01

    This study presents a novel approach to force feedback in robot-assisted surgery. It consists of substituting haptic stimuli, composed of a kinesthetic component and a skin deformation, with cutaneous stimuli only. The force generated can then be thought as a subtraction between the complete haptic interaction, cutaneous, and kinesthetic, and the kinesthetic part of it. For this reason, we refer to this approach as sensory subtraction. Sensory subtraction aims at outperforming other nonkinesthetic feedback techniques in teleoperation (e.g., sensory substitution) while guaranteeing the stability and safety of the system. We tested the proposed approach in a challenging 7-DoF bimanual teleoperation task, similar to the Pegboard experiment of the da Vinci Skills Simulator. Sensory subtraction showed improved performance in terms of completion time, force exerted, and total displacement of the rings with respect to two popular sensory substitution techniques. Moreover, it guaranteed a stable interaction in the presence of a communication delay in the haptic loop.

  16. A one degree of freedom haptic system to investigate issues in human perception with particular application to probing tissue.

    PubMed

    Dibble, Edward; Zivanovic, Aleksandar; Davies, Brian

    2004-01-01

    This paper presents the results of several early studies relating to human haptic perception sensitivity when probing a virtual object. A 1 degree of freedom (DoF) rotary haptic system, that was designed and built for this purpose, is also presented. The experiments were to assess the maximum forces applied in a minimally invasive surgery (MIS) procedure, quantify the compliance sensitivity threshold when probing virtual tissue and identify the haptic system loop rate necessary for haptic feedback to feel realistic.

  17. Finite Element Methods for real-time Haptic Feedback of Soft-Tissue Models in Virtual Reality Simulators

    NASA Technical Reports Server (NTRS)

    Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.

  18. Faster acquisition of laparoscopic skills in virtual reality with haptic feedback and 3D vision.

    PubMed

    Hagelsteen, Kristine; Langegård, Anders; Lantz, Adam; Ekelund, Mikael; Anderberg, Magnus; Bergenfelz, Anders

    2017-10-01

    The study investigated whether 3D vision and haptic feedback in combination in a virtual reality environment leads to more efficient learning of laparoscopic skills in novices. Twenty novices were allocated to two groups. All completed a training course in the LapSim ® virtual reality trainer consisting of four tasks: 'instrument navigation', 'grasping', 'fine dissection' and 'suturing'. The study group performed with haptic feedback and 3D vision and the control group without. Before and after the LapSim ® course, the participants' metrics were recorded when tying a laparoscopic knot in the 2D video box trainer Simball ® Box. The study group completed the training course in 146 (100-291) minutes compared to 215 (175-489) minutes in the control group (p = .002). The number of attempts to reach proficiency was significantly lower. The study group had significantly faster learning of skills in three out of four individual tasks; instrument navigation, grasping and suturing. Using the Simball ® Box, no difference in laparoscopic knot tying after the LapSim ® course was noted when comparing the groups. Laparoscopic training in virtual reality with 3D vision and haptic feedback made training more time efficient and did not negatively affect later video box-performance in 2D. [Formula: see text].

  19. Precise Haptic Device Co-Location for Visuo-Haptic Augmented Reality.

    PubMed

    Eck, Ulrich; Pankratz, Frieder; Sandor, Christian; Klinker, Gudrun; Laga, Hamid

    2015-12-01

    Visuo-haptic augmented reality systems enable users to see and touch digital information that is embedded in the real world. PHANToM haptic devices are often employed to provide haptic feedback. Precise co-location of computer-generated graphics and the haptic stylus is necessary to provide a realistic user experience. Previous work has focused on calibration procedures that compensate the non-linear position error caused by inaccuracies in the joint angle sensors. In this article we present a more complete procedure that additionally compensates for errors in the gimbal sensors and improves position calibration. The proposed procedure further includes software-based temporal alignment of sensor data and a method for the estimation of a reference for position calibration, resulting in increased robustness against haptic device initialization and external tracker noise. We designed our procedure to require minimal user input to maximize usability. We conducted an extensive evaluation with two different PHANToMs, two different optical trackers, and a mechanical tracker. Compared to state-of-the-art calibration procedures, our approach significantly improves the co-location of the haptic stylus. This results in higher fidelity visual and haptic augmentations, which are crucial for fine-motor tasks in areas such as medical training simulators, assembly planning tools, or rapid prototyping applications.

  20. Haptic augmentation of science instruction: Does touch matter?

    NASA Astrophysics Data System (ADS)

    Jones, M. Gail; Minogue, James; Tretter, Thomas R.; Negishi, Atsuko; Taylor, Russell

    2006-01-01

    This study investigated the impact of haptic augmentation of a science inquiry program on students' learning about viruses and nanoscale science. The study assessed how the addition of different types of haptic feedback (active touch and kinesthetic feedback) combined with computer visualizations influenced middle and high school students' experiences. The influences of a PHANToM (a sophisticated haptic desktop device), a Sidewinder (a haptic gaming joystick), and a mouse (no haptic feedback) interface were compared. The levels of engagement in the instruction and students' attitudes about the instructional program were assessed using a combination of constructed response and Likert scale items. Potential cognitive differences were examined through an analysis of spontaneously generated analogies that appeared during student discourse. Results showed that the addition of haptic feedback from the haptic-gaming joystick and the PHANToM provided a more immersive learning environment that not only made the instruction more engaging but may also influence the way in which the students construct their understandings about abstract science concepts.

  1. Haptic Stylus and Empirical Studies on Braille, Button, and Texture Display

    PubMed Central

    Kyung, Ki-Uk; Lee, Jun-Young; Park, Junseok

    2008-01-01

    This paper presents a haptic stylus interface with a built-in compact tactile display module and an impact module as well as empirical studies on Braille, button, and texture display. We describe preliminary evaluations verifying the tactile display's performance indicating that it can satisfactorily represent Braille numbers for both the normal and the blind. In order to prove haptic feedback capability of the stylus, an experiment providing impact feedback mimicking the click of a button has been conducted. Since the developed device is small enough to be attached to a force feedback device, its applicability to combined force and tactile feedback display in a pen-held haptic device is also investigated. The handle of pen-held haptic interface was replaced by the pen-like interface to add tactile feedback capability to the device. Since the system provides combination of force, tactile and impact feedback, three haptic representation methods for texture display have been compared on surface with 3 texture groups which differ in direction, groove width, and shape. In addition, we evaluate its capacity to support touch screen operations by providing tactile sensations when a user rubs against an image displayed on a monitor. PMID:18317520

  2. Haptic stylus and empirical studies on braille, button, and texture display.

    PubMed

    Kyung, Ki-Uk; Lee, Jun-Young; Park, Junseok

    2008-01-01

    This paper presents a haptic stylus interface with a built-in compact tactile display module and an impact module as well as empirical studies on Braille, button, and texture display. We describe preliminary evaluations verifying the tactile display's performance indicating that it can satisfactorily represent Braille numbers for both the normal and the blind. In order to prove haptic feedback capability of the stylus, an experiment providing impact feedback mimicking the click of a button has been conducted. Since the developed device is small enough to be attached to a force feedback device, its applicability to combined force and tactile feedback display in a pen-held haptic device is also investigated. The handle of pen-held haptic interface was replaced by the pen-like interface to add tactile feedback capability to the device. Since the system provides combination of force, tactile and impact feedback, three haptic representation methods for texture display have been compared on surface with 3 texture groups which differ in direction, groove width, and shape. In addition, we evaluate its capacity to support touch screen operations by providing tactile sensations when a user rubs against an image displayed on a monitor.

  3. Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments.

    PubMed

    Li, Min; Sareh, Sina; Xu, Guanghua; Ridzuan, Maisarah Binti; Luo, Shan; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2016-01-01

    This paper proposes a pseudo-haptic feedback method conveying simulated soft surface stiffness information through a visual interface. The method exploits a combination of two feedback techniques, namely visual feedback of soft surface deformation and control of the indenter avatar speed, to convey stiffness information of a simulated surface of a soft object in virtual environments. The proposed method was effective in distinguishing different sizes of virtual hard nodules integrated into the simulated soft bodies. To further improve the interactive experience, the approach was extended creating a multi-point pseudo-haptic feedback system. A comparison with regards to (a) nodule detection sensitivity and (b) elapsed time as performance indicators in hard nodule detection experiments to a tablet computer incorporating vibration feedback was conducted. The multi-point pseudo-haptic interaction is shown to be more time-efficient than the single-point pseudo-haptic interaction. It is noted that multi-point pseudo-haptic feedback performs similarly well when compared to a vibration-based feedback method based on both performance measures elapsed time and nodule detection sensitivity. This proves that the proposed method can be used to convey detailed haptic information for virtual environmental tasks, even subtle ones, using either a computer mouse or a pressure sensitive device as an input device. This pseudo-haptic feedback method provides an opportunity for low-cost simulation of objects with soft surfaces and hard inclusions, as, for example, occurring in ever more realistic video games with increasing emphasis on interaction with the physical environment and minimally invasive surgery in the form of soft tissue organs with embedded cancer nodules. Hence, the method can be used in many low-budget applications where haptic sensation is required, such as surgeon training or video games, either using desktop computers or portable devices, showing reasonably high

  4. Haptic feedback for virtual assembly

    NASA Astrophysics Data System (ADS)

    Luecke, Greg R.; Zafer, Naci

    1998-12-01

    Assembly operations require high speed and precision with low cost. The manufacturing industry has recently turned attenuation to the possibility of investigating assembly procedures using graphical display of CAD parts. For these tasks, some sort of feedback to the person is invaluable in providing a real sense of interaction with virtual parts. This research develops the use of a commercial assembly robot as the haptic display in such tasks. For demonstration, a peg-hole insertion task is studied. Kane's Method is employed to derive the dynamics of the peg and the contact motions between the peg and the hole. A handle modeled as a cylindrical peg is attached to the end effector of a PUMA 560 robotic arm. The arm is handle modeled as a cylindrical peg is attached to the end effector of a PUMA 560 robotic arm. The arm is equipped with a six axis force/torque transducer. The use grabs the handle and the user-applied forces are recorded. A 300 MHz Pentium computer is used to simulate the dynamics of the virtual peg and its interactions as it is inserted in the virtual hole. The computed torque control is then employed to exert the full dynamics of the task to the user hand. Visual feedback is also incorporated to help the user in the process of inserting the peg into the hole. Experimental results are presented to show several contact configurations for this virtually simulated task.

  5. Role of combined tactile and kinesthetic feedback in minimally invasive surgery.

    PubMed

    Lim, Soo-Chul; Lee, Hyung-Kew; Park, Joonah

    2014-10-18

    Haptic feedback is of critical importance in surgical tasks. However, conventional surgical robots do not provide haptic feedback to surgeons during surgery. Thus, in this study, a combined tactile and kinesthetic feedback system was developed to provide haptic feedback to surgeons during robotic surgery. To assess haptic feasibility, the effects of two types of haptic feedback were examined empirically - kinesthetic and tactile feedback - to measure object-pulling force with a telesurgery robotics system at two desired pulling forces (1 N and 2 N). Participants answered a set of questionnaires after experiments. The experimental results reveal reductions in force error (39.1% and 40.9%) when using haptic feedback during 1 N and 2 N pulling tasks. Moreover, survey analyses show the effectiveness of the haptic feedback during teleoperation. The combined tactile and kinesthetic feedback of the master device in robotic surgery improves the surgeon's ability to control the interaction force applied to the tissue. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery

    NASA Astrophysics Data System (ADS)

    Gomez-Rodriguez, M.; Peters, J.; Hill, J.; Schölkopf, B.; Gharabaghi, A.; Grosse-Wentrup, M.

    2011-06-01

    The combination of brain-computer interfaces (BCIs) with robot-assisted physical therapy constitutes a promising approach to neurorehabilitation of patients with severe hemiparetic syndromes caused by cerebrovascular brain damage (e.g. stroke) and other neurological conditions. In such a scenario, a key aspect is how to reestablish the disrupted sensorimotor feedback loop. However, to date it is an open question how artificially closing the sensorimotor feedback loop influences the decoding performance of a BCI. In this paper, we answer this issue by studying six healthy subjects and two stroke patients. We present empirical evidence that haptic feedback, provided by a seven degrees of freedom robotic arm, facilitates online decoding of arm movement intention. The results support the feasibility of future rehabilitative treatments based on the combination of robot-assisted physical therapy with BCIs.

  7. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.

    PubMed

    Seung, Sungmin; Choi, Hongseok; Jang, Jongseong; Kim, Young Soo; Park, Jong-Oh; Park, Sukho; Ko, Seong Young

    2017-01-01

    This article presents a haptic-guided teleoperation for a tumor removal surgical robotic system, so-called a SIROMAN system. The system was developed in our previous work to make it possible to access tumor tissue, even those that seat deeply inside the brain, and to remove the tissue with full maneuverability. For a safe and accurate operation to remove only tumor tissue completely while minimizing damage to the normal tissue, a virtual wall-based haptic guidance together with a medical image-guided control is proposed and developed. The virtual wall is extracted from preoperative medical images, and the robot is controlled to restrict its motion within the virtual wall using haptic feedback. Coordinate transformation between sub-systems, a collision detection algorithm, and a haptic-guided teleoperation using a virtual wall are described in the context of using SIROMAN. A series of experiments using a simplified virtual wall are performed to evaluate the performance of virtual wall-based haptic-guided teleoperation. With haptic guidance, the accuracy of the robotic manipulator's trajectory is improved by 57% compared to one without. The tissue removal performance is also improved by 21% ( p < 0.05). The experiments show that virtual wall-based haptic guidance provides safer and more accurate tissue removal for single-port brain surgery.

  8. OzBot and haptics: remote surveillance to physical presence

    NASA Astrophysics Data System (ADS)

    Mullins, James; Fielding, Mick; Nahavandi, Saeid

    2009-05-01

    This paper reports on robotic and haptic technologies and capabilities developed for the law enforcement and defence community within Australia by the Centre for Intelligent Systems Research (CISR). The OzBot series of small and medium surveillance robots have been designed in Australia and evaluated by law enforcement and defence personnel to determine suitability and ruggedness in a variety of environments. Using custom developed digital electronics and featuring expandable data busses including RS485, I2C, RS232, video and Ethernet, the robots can be directly connected to many off the shelf payloads such as gas sensors, x-ray sources and camera systems including thermal and night vision. Differentiating the OzBot platform from its peers is its ability to be integrated directly with haptic technology or the 'haptic bubble' developed by CISR. Haptic interfaces allow an operator to physically 'feel' remote environments through position-force control and experience realistic force feedback. By adding the capability to remotely grasp an object, feel its weight, texture and other physical properties in real-time from the remote ground control unit, an operator's situational awareness is greatly improved through Haptic augmentation in an environment where remote-system feedback is often limited.

  9. Incorporating Haptic Feedback in Simulation for Learning Physics

    ERIC Educational Resources Information Center

    Han, Insook; Black, John B.

    2011-01-01

    The purpose of this study was to investigate the effectiveness of a haptic augmented simulation in learning physics. The results indicate that haptic augmented simulations, both the force and kinesthetic and the purely kinesthetic simulations, were more effective than the equivalent non-haptic simulation in providing perceptual experiences and…

  10. A study on haptic collaborative game in shared virtual environment

    NASA Astrophysics Data System (ADS)

    Lu, Keke; Liu, Guanyang; Liu, Lingzhi

    2013-03-01

    A study on collaborative game in shared virtual environment with haptic feedback over computer networks is introduced in this paper. A collaborative task was used where the players located at remote sites and played the game together. The player can feel visual and haptic feedback in virtual environment compared to traditional networked multiplayer games. The experiment was desired in two conditions: visual feedback only and visual-haptic feedback. The goal of the experiment is to assess the impact of force feedback on collaborative task performance. Results indicate that haptic feedback is beneficial for performance enhancement for collaborative game in shared virtual environment. The outcomes of this research can have a powerful impact on the networked computer games.

  11. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality

    PubMed Central

    Kim, Mingyu; Jeon, Changyu; Kim, Jinmo

    2017-01-01

    This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality. PMID:28513545

  12. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality.

    PubMed

    Kim, Mingyu; Jeon, Changyu; Kim, Jinmo

    2017-05-17

    This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality.

  13. Roughness based perceptual analysis towards digital skin imaging system with haptic feedback.

    PubMed

    Kim, K

    2016-08-01

    To examine psoriasis or atopic eczema, analyzing skin roughness by palpation is essential to precisely diagnose skin diseases. However, optical sensor based skin imaging systems do not allow dermatologists to touch skin images. To solve the problem, a new haptic rendering technology that can accurately display skin roughness must be developed. In addition, the rendering algorithm must be able to filter spatial noises created during 2D to 3D image conversion without losing the original roughness on the skin image. In this study, a perceptual way to design a noise filter that will remove spatial noises and in the meantime recover maximized roughness is introduced by understanding human sensitivity on surface roughness. A visuohaptic rendering system that can provide a user with seeing and touching digital skin surface roughness has been developed including a geometric roughness estimation method from a meshed surface. In following, a psychophysical experiment was designed and conducted with 12 human subjects to measure human perception with the developed visual and haptic interfaces to examine surface roughness. From the psychophysical experiment, it was found that touch is more sensitive at lower surface roughness, and vice versa. Human perception with both senses, vision and touch, becomes less sensitive to surface distortions as roughness increases. When interact with both channels, visual and haptic interfaces, the performance to detect abnormalities on roughness is greatly improved by sensory integration with the developed visuohaptic rendering system. The result can be used as a guideline to design a noise filter that can perceptually remove spatial noises while recover maximized roughness values from a digital skin image obtained by optical sensors. In addition, the result also confirms that the developed visuohaptic rendering system can help dermatologists or skin care professionals examine skin conditions by using vision and touch at the same time. © 2015

  14. Mechatronic design of haptic forceps for robotic surgery.

    PubMed

    Rizun, P; Gunn, D; Cox, B; Sutherland, G

    2006-12-01

    Haptic feedback increases operator performance and comfort during telerobotic manipulation. Feedback of grasping pressure is critical in many microsurgical tasks, yet no haptic interface for surgical tools is commercially available. Literature on the psychophysics of touch was reviewed to define the spectrum of human touch perception and the fidelity requirements of an ideal haptic interface. Mechanical design and control literature was reviewed to translate the psychophysical requirements to engineering specification. High-fidelity haptic forceps were then developed through an iterative process between engineering and surgery. The forceps are a modular device that integrate with a haptic hand controller to add force feedback for tool actuation in telerobotic or virtual surgery. Their overall length is 153 mm and their mass is 125 g. A contact-free voice coil actuator generates force feedback at frequencies up to 800 Hz. Maximum force output is 6 N (2N continuous) and the force resolution is 4 mN. The forceps employ a contact-free magnetic position sensor as well as micro-machined accelerometers to measure opening/closing acceleration. Position resolution is 0.6 microm with 1.3 microm RMS noise. The forceps can simulate stiffness greater than 20N/mm or impedances smaller than 15 g with no noticeable haptic artifacts or friction. As telerobotic surgery evolves, haptics will play an increasingly important role. Copyright 2006 John Wiley & Sons, Ltd.

  15. Prototype tactile feedback system for examination by skin touch.

    PubMed

    Lee, O; Lee, K; Oh, C; Kim, K; Kim, M

    2014-08-01

    Diagnosis of conditions such as psoriasis and atopic dermatitis, in the case of induration, involves palpating the infected area via hands and then selecting a ratings score. However, the score is determined based on the tester's experience and standards, making it subjective. To provide tactile feedback on the skin, we developed a prototype tactile feedback system to simulate skin wrinkles with PHANToM OMNI. To provide the user with tactile feedback on skin wrinkles, a visual and haptic Augmented Reality system was developed. First, a pair of stereo skin images obtained by a stereo camera generates a disparity map of skin wrinkles. Second, the generated disparity map is sent to an implemented tactile rendering algorithm that computes a reaction force according to the user's interaction with the skin image. We first obtained a stereo image of skin wrinkles from the in vivo stereo imaging system, which has a baseline of 50.8 μm, and obtained the disparity map with a graph cuts algorithm. The left image is displayed on the monitor to enable the user to recognize the location visually. The disparity map of the skin wrinkle image sends skin wrinkle information as a tactile response to the user through a haptic device. We successfully developed a tactile feedback system for virtual skin wrinkle simulation by means of a commercialized haptic device that provides the user with a single point of contact to feel the surface roughness of a virtual skin sample. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Haptic feedback improves surgeons' user experience and fracture reduction in facial trauma simulation.

    PubMed

    Girod, Sabine; Schvartzman, Sara C; Gaudilliere, Dyani; Salisbury, Kenneth; Silva, Rebeka

    2016-01-01

    Computer-assisted surgical (CAS) planning tools are available for craniofacial surgery, but are usually based on computer-aided design (CAD) tools that lack the ability to detect the collision of virtual objects (i.e., fractured bone segments). We developed a CAS system featuring a sense of touch (haptic) that enables surgeons to physically interact with individual, patient-specific anatomy and immerse in a three-dimensional virtual environment. In this study, we evaluated initial user experience with our novel system compared to an existing CAD system. Ten surgery resident trainees received a brief verbal introduction to both the haptic and CAD systems. Users simulated mandibular fracture reduction in three clinical cases within a 15 min time limit for each system and completed a questionnaire to assess their subjective experience. We compared standard landmarks and linear and angular measurements between the simulated results and the actual surgical outcome and found that haptic simulation results were not significantly different from actual postoperative outcomes. In contrast, CAD results significantly differed from both the haptic simulation and actual postoperative results. In addition to enabling a more accurate fracture repair, the haptic system provided a better user experience than the CAD system in terms of intuitiveness and self-reported quality of repair.

  17. Physical Student-Robot Interaction with the ETHZ Haptic Paddle

    ERIC Educational Resources Information Center

    Gassert, R.; Metzger, J.; Leuenberger, K.; Popp, W. L.; Tucker, M. R.; Vigaru, B.; Zimmermann, R.; Lambercy, O.

    2013-01-01

    Haptic paddles--low-cost one-degree-of-freedom force feedback devices--have been used with great success at several universities throughout the US to teach the basic concepts of dynamic systems and physical human-robot interaction (pHRI) to students. The ETHZ haptic paddle was developed for a new pHRI course offered in the undergraduate…

  18. Multi-fingered haptic palpation utilizing granular jamming stiffness feedback actuators

    NASA Astrophysics Data System (ADS)

    Li, Min; Ranzani, Tommaso; Sareh, Sina; Seneviratne, Lakmal D.; Dasgupta, Prokar; Wurdemann, Helge A.; Althoefer, Kaspar

    2014-09-01

    This paper describes a multi-fingered haptic palpation method using stiffness feedback actuators for simulating tissue palpation procedures in traditional and in robot-assisted minimally invasive surgery. Soft tissue stiffness is simulated by changing the stiffness property of the actuator during palpation. For the first time, granular jamming and pneumatic air actuation are combined to realize stiffness modulation. The stiffness feedback actuator is validated by stiffness measurements in indentation tests and through stiffness discrimination based on a user study. According to the indentation test results, the introduction of a pneumatic chamber to granular jamming can amplify the stiffness variation range and reduce hysteresis of the actuator. The advantage of multi-fingered palpation using the proposed actuators is proven by the comparison of the results of the stiffness discrimination performance using two-fingered (sensitivity: 82.2%, specificity: 88.9%, positive predicative value: 80.0%, accuracy: 85.4%, time: 4.84 s) and single-fingered (sensitivity: 76.4%, specificity: 85.7%, positive predicative value: 75.3%, accuracy: 81.8%, time: 7.48 s) stiffness feedback.

  19. A design of hardware haptic interface for gastrointestinal endoscopy simulation.

    PubMed

    Gu, Yunjin; Lee, Doo Yong

    2011-01-01

    Gastrointestinal endoscopy simulations have been developed to train endoscopic procedures which require hundreds of practices to be competent in the skills. Even though realistic haptic feedback is important to provide realistic sensation to the user, most of previous simulations including commercialized simulation have mainly focused on providing realistic visual feedback. In this paper, we propose a novel design of portable haptic interface, which provides 2DOF force feedback, for the gastrointestinal endoscopy simulation. The haptic interface consists of translational and rotational force feedback mechanism which are completely decoupled, and gripping mechanism for controlling connection between the endoscope and the force feedback mechanism.

  20. Haptic Foot Pedal: Influence of Shoe Type, Age, and Gender on Subjective Pulse Perception.

    PubMed

    Geitner, Claudia; Birrell, Stewart; Krehl, Claudia; Jennings, Paul

    2018-06-01

    This study investigates the influence of shoe type (sneakers and safety boots), age, and gender on the perception of haptic pulse feedback provided by a prototype accelerator pedal in a running stationary vehicle. Haptic feedback can be a less distracting alternative to traditionally visual and auditory in-vehicle feedback. However, to be effective, the device delivering the haptic feedback needs to be in contact with the person. Factors such as shoe type vary naturally over the season and could render feedback that is perceived well in one situation, unnoticeable in another. In this study, we evaluate factors that can influence the subjective perception of haptic feedback in a stationary but running car: shoe type, age, and gender. Thirty-six drivers within three age groups (≤39, 40-59, and ≥60) took part. For each haptic feedback, participants rated intensity, urgency, and comfort via a questionnaire. The perception of the haptic feedback is significantly influenced by the interaction between the pulse's duration and force amplitude and the participant's age and gender but not shoe type. The results indicate that it is important to consider different age groups and gender in the evaluation of haptic feedback. Future research might also look into approaches to adapt haptic feedback to the individual driver's preferences. Findings from this study can be applied to the design of an accelerator pedal in a car, for example, for a nonvisual in-vehicle warning, but also to plan user studies with a haptic pedal in general.

  1. It Pays to Go Off-Track: Practicing with Error-Augmenting Haptic Feedback Facilitates Learning of a Curve-Tracing Task

    PubMed Central

    Williams, Camille K.; Tremblay, Luc; Carnahan, Heather

    2016-01-01

    Researchers in the domain of haptic training are now entering the long-standing debate regarding whether or not it is best to learn a skill by experiencing errors. Haptic training paradigms provide fertile ground for exploring how various theories about feedback, errors and physical guidance intersect during motor learning. Our objective was to determine how error minimizing, error augmenting and no haptic feedback while learning a self-paced curve-tracing task impact performance on delayed (1 day) retention and transfer tests, which indicate learning. We assessed performance using movement time and tracing error to calculate a measure of overall performance – the speed accuracy cost function. Our results showed that despite exhibiting the worst performance during skill acquisition, the error augmentation group had significantly better accuracy (but not overall performance) than the error minimization group on delayed retention and transfer tests. The control group’s performance fell between that of the two experimental groups but was not significantly different from either on the delayed retention test. We propose that the nature of the task (requiring online feedback to guide performance) coupled with the error augmentation group’s frequent off-target experience and rich experience of error-correction promoted information processing related to error-detection and error-correction that are essential for motor learning. PMID:28082937

  2. A novel shape-changing haptic table-top display

    NASA Astrophysics Data System (ADS)

    Wang, Jiabin; Zhao, Lu; Liu, Yue; Wang, Yongtian; Cai, Yi

    2018-01-01

    A shape-changing table-top display with haptic feedback allows its users to perceive 3D visual and texture displays interactively. Since few existing devices are developed as accurate displays with regulatory haptic feedback, a novel attentive and immersive shape changing mechanical interface (SCMI) consisting of image processing unit and transformation unit was proposed in this paper. In order to support a precise 3D table-top display with an offset of less than 2 mm, a custommade mechanism was developed to form precise surface and regulate the feedback force. The proposed image processing unit was capable of extracting texture data from 2D picture for rendering shape-changing surface and realizing 3D modeling. The preliminary evaluation result proved the feasibility of the proposed system.

  3. A haptics-assisted cranio-maxillofacial surgery planning system for restoring skeletal anatomy in complex trauma cases.

    PubMed

    Olsson, Pontus; Nysjö, Fredrik; Hirsch, Jan-Michaél; Carlbom, Ingrid B

    2013-11-01

       Cranio-maxillofacial (CMF) surgery to restore normal skeletal anatomy in patients with serious trauma to the face can be both complex and time-consuming. But it is generally accepted that careful pre-operative planning leads to a better outcome with a higher degree of function and reduced morbidity in addition to reduced time in the operating room. However, today's surgery planning systems are primitive, relying mostly on the user's ability to plan complex tasks with a two-dimensional graphical interface.    A system for planning the restoration of skeletal anatomy in facial trauma patients using a virtual model derived from patient-specific CT data. The system combines stereo visualization with six degrees-of-freedom, high-fidelity haptic feedback that enables analysis, planning, and preoperative testing of alternative solutions for restoring bone fragments to their proper positions. The stereo display provides accurate visual spatial perception, and the haptics system provides intuitive haptic feedback when bone fragments are in contact as well as six degrees-of-freedom attraction forces for precise bone fragment alignment.    A senior surgeon without prior experience of the system received 45 min of system training. Following the training session, he completed a virtual reconstruction in 22 min of a complex mandibular fracture with an adequately reduced result.    Preliminary testing with one surgeon indicates that our surgery planning system, which combines stereo visualization with sophisticated haptics, has the potential to become a powerful tool for CMF surgery planning. With little training, it allows a surgeon to complete a complex plan in a short amount of time.

  4. Force Sensitive Handles and Capacitive Touch Sensor for Driving a Flexible Haptic-Based Immersive System

    PubMed Central

    Covarrubias, Mario; Bordegoni, Monica; Cugini, Umberto

    2013-01-01

    In this article, we present an approach that uses both two force sensitive handles (FSH) and a flexible capacitive touch sensor (FCTS) to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object. Specifically, the user interacts with the FSH to move the virtual object and to appropriately position the haptic interface for retrieving the six degrees of freedom required for both manipulation and modification modalities. The FCTS allows the system to track the movement and position of the user's fingers on the strip, which is used for rendering visual and sound feedback. Two evaluation experiments are described, which involve both the evaluation and the modification of a 3D shape. Results show that the use of the haptic strip for the evaluation of aesthetic shapes is effective and supports product designers in the appreciation of the aesthetic qualities of the shape. PMID:24113680

  5. Force sensitive handles and capacitive touch sensor for driving a flexible haptic-based immersive system.

    PubMed

    Covarrubias, Mario; Bordegoni, Monica; Cugini, Umberto

    2013-10-09

    In this article, we present an approach that uses both two force sensitive handles (FSH) and a flexible capacitive touch sensor (FCTS) to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object. Specifically, the user interacts with the FSH to move the virtual object and to appropriately position the haptic interface for retrieving the six degrees of freedom required for both manipulation and modification modalities. The FCTS allows the system to track the movement and position of the user's fingers on the strip, which is used for rendering visual and sound feedback. Two evaluation experiments are described, which involve both the evaluation and the modification of a 3D shape. Results show that the use of the haptic strip for the evaluation of aesthetic shapes is effective and supports product designers in the appreciation of the aesthetic qualities of the shape.

  6. Development of haptic system for surgical robot

    NASA Astrophysics Data System (ADS)

    Gang, Han Gyeol; Park, Jiong Min; Choi, Seung-Bok; Sohn, Jung Woo

    2017-04-01

    In this paper, a new type of haptic system for surgical robot application is proposed and its performances are evaluated experimentally. The proposed haptic system consists of an effective master device and a precision slave robot. The master device has 3-DOF rotational motion as same as human wrist motion. It has lightweight structure with a gyro sensor and three small-sized MR brakes for position measurement and repulsive torque generation, respectively. The slave robot has 3-DOF rotational motion using servomotors, five bar linkage and a torque sensor is used to measure resistive torque. It has been experimentally demonstrated that the proposed haptic system has good performances on tracking control of desired position and repulsive torque. It can be concluded that the proposed haptic system can be effectively applied to the surgical robot system in real field.

  7. Assessment of Haptic Interaction for Home-Based Physical Tele-Therapy using Wearable Devices and Depth Sensors.

    PubMed

    Barmpoutis, Angelos; Alzate, Jose; Beekhuizen, Samantha; Delgado, Horacio; Donaldson, Preston; Hall, Andrew; Lago, Charlie; Vidal, Kevin; Fox, Emily J

    2016-01-01

    In this paper a prototype system is presented for home-based physical tele-therapy using a wearable device for haptic feedback. The haptic feedback is generated as a sequence of vibratory cues from 8 vibrator motors equally spaced along an elastic wearable band. The motors guide the patients' movement as they perform a prescribed exercise routine in a way that replaces the physical therapists' haptic guidance in an unsupervised or remotely supervised home-based therapy session. A pilot study of 25 human subjects was performed that focused on: a) testing the capability of the system to guide the users in arbitrary motion paths in the space and b) comparing the motion of the users during typical physical therapy exercises with and without haptic-based guidance. The results demonstrate the efficacy of the proposed system.

  8. Advanced Maintenance Simulation by Means of Hand-Based Haptic Interfaces

    NASA Astrophysics Data System (ADS)

    Nappi, Michele; Paolino, Luca; Ricciardi, Stefano; Sebillo, Monica; Vitiello, Giuliana

    Aerospace industry has been involved in virtual simulation for design and testing since the birth of virtual reality. Today this industry is showing a growing interest in the development of haptic-based maintenance training applications, which represent the most advanced way to simulate maintenance and repair tasks within a virtual environment by means of a visual-haptic approach. The goal is to allow the trainee to experiment the service procedures not only as a workflow reproduced at a visual level but also in terms of the kinaesthetic feedback involved with the manipulation of tools and components. This study, conducted in collaboration with aerospace industry specialists, is aimed to the development of an immersive virtual capable of immerging the trainees into a virtual environment where mechanics and technicians can perform maintenance simulation or training tasks by directly manipulating 3D virtual models of aircraft parts while perceiving force feedback through the haptic interface. The proposed system is based on ViRstperson, a virtual reality engine under development at the Italian Center for Aerospace Research (CIRA) to support engineering and technical activities such as design-time maintenance procedure validation, and maintenance training. This engine has been extended to support haptic-based interaction, enabling a more complete level of interaction, also in terms of impedance control, and thus fostering the development of haptic knowledge in the user. The user’s “sense of touch” within the immersive virtual environment is simulated through an Immersion CyberForce® hand-based force-feedback device. Preliminary testing of the proposed system seems encouraging.

  9. The Efficacy of Surface Haptics and Force Feedback in Education

    ERIC Educational Resources Information Center

    Gorlewicz, Jenna Lynn

    2013-01-01

    This dissertation bridges the fields of haptics, engineering, and education to realize some of the potential benefits haptic devices may have in Science, Technology, Engineering, and Math (STEM) education. Specifically, this dissertation demonstrates the development, implementation, and assessment of two haptic devices in engineering and math…

  10. Study on real-time force feedback for a master-slave interventional surgical robotic system.

    PubMed

    Guo, Shuxiang; Wang, Yuan; Xiao, Nan; Li, Youxiang; Jiang, Yuhua

    2018-04-13

    In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.

  11. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback.

    PubMed

    Lemole, G Michael; Banerjee, P Pat; Luciano, Cristian; Neckrysh, Sergey; Charbel, Fady T

    2007-07-01

    Mastery of the neurosurgical skill set involves many hours of supervised intraoperative training. Convergence of political, economic, and social forces has limited neurosurgical resident operative exposure. There is need to develop realistic neurosurgical simulations that reproduce the operative experience, unrestricted by time and patient safety constraints. Computer-based, virtual reality platforms offer just such a possibility. The combination of virtual reality with dynamic, three-dimensional stereoscopic visualization, and haptic feedback technologies makes realistic procedural simulation possible. Most neurosurgical procedures can be conceptualized and segmented into critical task components, which can be simulated independently or in conjunction with other modules to recreate the experience of a complex neurosurgical procedure. We use the ImmersiveTouch (ImmersiveTouch, Inc., Chicago, IL) virtual reality platform, developed at the University of Illinois at Chicago, to simulate the task of ventriculostomy catheter placement as a proof-of-concept. Computed tomographic data are used to create a virtual anatomic volume. Haptic feedback offers simulated resistance and relaxation with passage of a virtual three-dimensional ventriculostomy catheter through the brain parenchyma into the ventricle. A dynamic three-dimensional graphical interface renders changing visual perspective as the user's head moves. The simulation platform was found to have realistic visual, tactile, and handling characteristics, as assessed by neurosurgical faculty, residents, and medical students. We have developed a realistic, haptics-based virtual reality simulator for neurosurgical education. Our first module recreates a critical component of the ventriculostomy placement task. This approach to task simulation can be assembled in a modular manner to reproduce entire neurosurgical procedures.

  12. Characterization of a smartphone size haptic rendering system based on thin-film AlN actuators on glass substrates

    NASA Astrophysics Data System (ADS)

    Bernard, F.; Casset, F.; Danel, J. S.; Chappaz, C.; Basrour, S.

    2016-08-01

    This paper presents for the first time the characterization of a smartphone-size haptic rendering system based on the friction modulation effect. According to previous work and finite element modeling, the homogeneous flexural modes are needed to get the haptic feedback effect. The device studied consists of a thin film AlN transducers deposited on an 110  ×  65 mm2 glass substrate. The transducer’s localization on the glass plate allows a transparent central area of 90  ×  49 mm2. Electrical and mechanical parameters of the system are extracted from measurement. From this extraction, the electrical impedance matching reduced the applied voltage to 17.5 V AC and the power consumption to 1.53 W at the resonance frequency of the vibrating system to reach the haptic rendering specification. Transient characterizations of the actuation highlight a delay under the dynamic tactile detection. The characterization of the AlN transducers used as sensors, including the noise rejection, the delay or the output charge amplitude allows detections with high accuracy of any variation due to external influences. Those specifications are the first step to a low-power-consumption feedback-looped system.

  13. [Visual cuing effect for haptic angle judgment].

    PubMed

    Era, Ataru; Yokosawa, Kazuhiko

    2009-08-01

    We investigated whether visual cues are useful for judging haptic angles. Participants explored three-dimensional angles with a virtual haptic feedback device. For visual cues, we use a location cue, which synchronizes haptic exploration, and a space cue, which specifies the haptic space. In Experiment 1, angles were judged more correctly with both cues, but were overestimated with a location cue only. In Experiment 2, the visual cues emphasized depth, and overestimation with location cues occurred, but space cues had no influence. The results showed that (a) when both cues are presented, haptic angles are judged more correctly. (b) Location cues facilitate only motion information, and not depth information. (c) Haptic angles are apt to be overestimated when there is both haptic and visual information.

  14. A real-time haptic interface for interventional radiology procedures.

    PubMed

    Moix, Thomas; Ilic, Dejan; Fracheboud, Blaise; Zoethout, Jurjen; Bleuler, Hannes

    2005-01-01

    Interventional Radiology (IR) is a minimally-invasive surgery technique (MIS) where guidewires and catheters are steered in the vascular system under X-ray imaging. In order to perform these procedures, a radiologist has to be correctly trained to master hand-eye coordination, instrument manipulation and procedure protocols. This paper proposes a computer-assisted training environment dedicated to IR. The system is composed of a virtual reality (VR) simulation of the anatomy of the patient linked to a robotic interface providing haptic force feedback.The paper focuses on the requirements, design and prototyping of a specific part of the haptic interface dedicated to catheters. Translational tracking and force feedback on the catheter is provided by two cylinders forming a friction drive arrangement. The whole friction can be set in rotation with an additional motor providing torque feedback. A force and a torque sensor are integrated in the cylinders for direct measurement on the catheter enabling disturbance cancellation with a close-loop force control strategy.

  15. Overview Electrotactile Feedback for Enhancing Human Computer Interface

    NASA Astrophysics Data System (ADS)

    Pamungkas, Daniel S.; Caesarendra, Wahyu

    2018-04-01

    To achieve effective interaction between a human and a computing device or machine, adequate feedback from the computing device or machine is required. Recently, haptic feedback is increasingly being utilised to improve the interactivity of the Human Computer Interface (HCI). Most existing haptic feedback enhancements aim at producing forces or vibrations to enrich the user’s interactive experience. However, these force and/or vibration actuated haptic feedback systems can be bulky and uncomfortable to wear and only capable of delivering a limited amount of information to the user which can limit both their effectiveness and the applications they can be applied to. To address this deficiency, electrotactile feedback is used. This involves delivering haptic sensations to the user by electrically stimulating nerves in the skin via electrodes placed on the surface of the skin. This paper presents a review and explores the capability of electrotactile feedback for HCI applications. In addition, a description of the sensory receptors within the skin for sensing tactile stimulus and electric currents alsoseveral factors which influenced electric signal to transmit to the brain via human skinare explained.

  16. Shared control of a medical robot with haptic guidance.

    PubMed

    Xiong, Linfei; Chng, Chin Boon; Chui, Chee Kong; Yu, Peiwu; Li, Yao

    2017-01-01

    Tele-operation of robotic surgery reduces the radiation exposure during the interventional radiological operations. However, endoscope vision without force feedback on the surgical tool increases the difficulty for precise manipulation and the risk of tissue damage. The shared control of vision and force provides a novel approach of enhanced control with haptic guidance, which could lead to subtle dexterity and better maneuvrability during MIS surgery. The paper provides an innovative shared control method for robotic minimally invasive surgery system, in which vision and haptic feedback are incorporated to provide guidance cues to the clinician during surgery. The incremental potential field (IPF) method is utilized to generate a guidance path based on the anatomy of tissue and surgical tool interaction. Haptic guidance is provided at the master end to assist the clinician during tele-operative surgical robotic task. The approach has been validated with path following and virtual tumor targeting experiments. The experiment results demonstrate that comparing with vision only guidance, the shared control with vision and haptics improved the accuracy and efficiency of surgical robotic manipulation, where the tool-position error distance and execution time are reduced. The validation experiment demonstrates that the shared control approach could help the surgical robot system provide stable assistance and precise performance to execute the designated surgical task. The methodology could also be implemented with other surgical robot with different surgical tools and applications.

  17. Human-computer interface including haptically controlled interactions

    DOEpatents

    Anderson, Thomas G.

    2005-10-11

    The present invention provides a method of human-computer interfacing that provides haptic feedback to control interface interactions such as scrolling or zooming within an application. Haptic feedback in the present method allows the user more intuitive control of the interface interactions, and allows the user's visual focus to remain on the application. The method comprises providing a control domain within which the user can control interactions. For example, a haptic boundary can be provided corresponding to scrollable or scalable portions of the application domain. The user can position a cursor near such a boundary, feeling its presence haptically (reducing the requirement for visual attention for control of scrolling of the display). The user can then apply force relative to the boundary, causing the interface to scroll the domain. The rate of scrolling can be related to the magnitude of applied force, providing the user with additional intuitive, non-visual control of scrolling.

  18. Fiber optical sensor system for shape and haptics for flexible instruments in minimally invasive surgery: overview and status quo

    NASA Astrophysics Data System (ADS)

    Ledermann, Christoph; Pauer, Hendrikje; Woern, Heinz

    2014-05-01

    In minimally invasive surgery, exible mechatronic instruments promise to improve the overall performance of surgical interventions. However, those instruments require highly developed sensors in order to provide haptic feedback to the surgeon or to enable (semi-)autonomous tasks. Precisely, haptic sensors and a shape sensor are required. In this paper, we present our ber optical sensor system of Fiber Bragg Gratings, which consists of a shape sensor, a kinesthetic sensor and a tactile sensor. The status quo of each of the three sensors is described, as well as the concept to integrate them into one ber optical sensor system.

  19. Performance Evaluation of Passive Haptic Feedback for Tactile HMI Design in CAVEs.

    PubMed

    Lassagne, Antoine; Kemeny, Andras; Posselt, Javier; Merienne, Frederic

    2018-01-01

    This article presents a comparison of different haptic systems, which are designed to simulate flat Human Machine Interfaces (HMIs) like touchscreens in virtual environments (VEs) such as CAVEs, and their respective performance. We compare a tangible passive transparent slate to a classic tablet and a sensory substitution system. These systems were tested during a controlled experiment. The performance and impressions from 20 subjects were collected to understand more about the modalities in the given context. The results show that the preferences of the subjects are strongly related to the use-cases and needs. In terms of performance, passive haptics proved to be significantly useful, acting as a space reference and a real-time continuous calibration system, allowing subjects to have lower execution durations and relative errors. Sensory substitution induced perception drifts during the experiment, causing significant performance disparities, demonstrating the low robustness of perception when spatial cues are insufficiently available. Our findings offer a better understanding on the nature of perception drifts and the need of strong multisensory spatial markers for such use-cases in CAVEs. The importance of a relevant haptic modality specifically designed to match a precise use-case is also emphasized.

  20. Integration of Haptics in Agricultural Robotics

    NASA Astrophysics Data System (ADS)

    Kannan Megalingam, Rajesh; Sreekanth, M. M.; Sivanantham, Vinu; Sai Kumar, K.; Ghanta, Sriharsha; Surya Teja, P.; Reddy, Rajesh G.

    2017-08-01

    Robots can differentiate with open loop system and closed loop system robots. We face many problems when we do not have a feedback from robots. In this research paper, we are discussing all possibilities to achieve complete closed loop system for Multiple-DOF Robotic Arm, which is used in a coconut tree climbing and cutting robot by introducing a Haptic device. We are working on various sensors like tactile, vibration, force and proximity sensors for getting feedback. For monitoring the robotic arm achieved by graphical user interference software which simulates the working of the robotic arm, send the feedback of all the real time analog values which are produced by various sensors and provide real-time graphs for estimate the efficiency of the Robot.

  1. Safe Local Navigation for Visually Impaired Users With a Time-of-Flight and Haptic Feedback Device.

    PubMed

    Katzschmann, Robert K; Araki, Brandon; Rus, Daniela

    2018-03-01

    This paper presents ALVU (Array of Lidars and Vibrotactile Units), a contactless, intuitive, hands-free, and discreet wearable device that allows visually impaired users to detect low- and high-hanging obstacles, as well as physical boundaries in their immediate environment. The solution allows for safe local navigation in both confined and open spaces by enabling the user to distinguish free space from obstacles. The device presented is composed of two parts: a sensor belt and a haptic strap. The sensor belt is an array of time-of-flight distance sensors worn around the front of a user's waist, and the pulses of infrared light provide reliable and accurate measurements of the distances between the user and surrounding obstacles or surfaces. The haptic strap communicates the measured distances through an array of vibratory motors worn around the user's upper abdomen, providing haptic feedback. The linear vibration motors are combined with a point-loaded pretensioned applicator to transmit isolated vibrations to the user. We validated the device's capability in an extensive user study entailing 162 trials with 12 blind users. Users wearing the device successfully walked through hallways, avoided obstacles, and detected staircases.

  2. Passive haptics in a knee arthroscopy simulator: is it valid for core skills training?

    PubMed

    McCarthy, Avril D; Moody, Louise; Waterworth, Alan R; Bickerstaff, Derek R

    2006-01-01

    Previous investigation of a cost-effective virtual reality arthroscopic training system, the Sheffield Knee Arthroscopy Training System (SKATS), indicated the desirability of including haptic feedback. A formal task analysis confirmed the importance of knee positioning as a core skill for trainees learning to navigate the knee arthroscopically. The system cost and existing limb interface, which permits knee positioning, would be compromised by the addition of commercial active haptic devices available currently. The validation results obtained when passive haptic feedback (resistance provided by physical structures) is provided indicate that SKATS has construct, predictive and face validity for navigation and triangulation training. When tested using SKATS, experienced surgeons (n = 11) performed significantly faster, located significantly more pathologies, and showed significantly shorter arthroscope path lengths than a less experienced surgeon cohort (n = 12). After SKATS training sessions, novices (n = 3) showed significant improvements in: task completion time, shorter arthroscope path lengths, shorter probe path lengths, and fewer arthroscope tip contacts. Main improvements occurred after the first two practice sessions, indicating rapid familiarization and a training effect. Feedback from questionnaires completed by orthopaedic surgeons indicates that the system has face validity for its remit of basic arthroscopic training.

  3. Haptically facilitated bimanual training combined with augmented visual feedback in moderate to severe hemiplegia.

    PubMed

    Boos, Amy; Qiu, Qinyin; Fluet, Gerard G; Adamovich, Sergei V

    2011-01-01

    This study describes the design and feasibility testing of a hand rehabilitation system that provides haptic assistance for hand opening in moderate to severe hemiplegia while subjects attempt to perform bilateral hand movements. A cable-actuated exoskeleton robot assists the subjects in performing impaired finger movements but is controlled by movement of the unimpaired hand. In an attempt to combine the neurophysiological stimuli of bilateral movement and action observation during training, visual feedback of the impaired hand is replaced by feedback of the unimpaired hand, either by using a sagittaly oriented mirror or a virtual reality setup with a pair of virtual hands presented on a flat screen controlled with movement of the unimpaired hand, providing a visual image of their paretic hand moving normally. Joint angles for both hands are measured using data gloves. The system is programmed to maintain a symmetrical relationship between the two hands as they respond to commands to open and close simultaneously. Three persons with moderate to severe hemiplegia secondary to stroke trained with the system for eight, 30 to 60 minute sessions without adverse events. Each demonstrated positive motor adaptations to training. The system was well tolerated by persons with moderate to severe upper extremity hemiplegia. Further testing of its effects on motor ability with a broader range of clinical presentations is indicated.

  4. Co-located haptic and 3D graphic interface for medical simulations.

    PubMed

    Berkelman, Peter; Miyasaka, Muneaki; Bozlee, Sebastian

    2013-01-01

    We describe a system which provides high-fidelity haptic feedback in the same physical location as a 3D graphical display, in order to enable realistic physical interaction with virtual anatomical tissue during modelled procedures such as needle driving, palpation, and other interventions performed using handheld instruments. The haptic feedback is produced by the interaction between an array of coils located behind a thin flat LCD screen, and permanent magnets embedded in the instrument held by the user. The coil and magnet configuration permits arbitrary forces and torques to be generated on the instrument in real time according to the dynamics of the simulated tissue by activating the coils in combination. A rigid-body motion tracker provides position and orientation feedback of the handheld instrument to the computer simulation, and the 3D display is produced using LCD shutter glasses and a head-tracking system for the user.

  5. A pseudo-haptic knot diagram interface

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Weng, Jianguang; Hanson, Andrew J.

    2011-01-01

    To make progress in understanding knot theory, we will need to interact with the projected representations of mathematical knots which are of course continuous in 3D but significantly interrupted in the projective images. One way to achieve such a goal would be to design an interactive system that allows us to sketch 2D knot diagrams by taking advantage of a collision-sensing controller and explore their underlying smooth structures through a continuous motion. Recent advances of interaction techniques have been made that allow progress to be made in this direction. Pseudo-haptics that simulates haptic effects using pure visual feedback can be used to develop such an interactive system. This paper outlines one such pseudo-haptic knot diagram interface. Our interface derives from the familiar pencil-and-paper process of drawing 2D knot diagrams and provides haptic-like sensations to facilitate the creation and exploration of knot diagrams. A centerpiece of the interaction model simulates a "physically" reactive mouse cursor, which is exploited to resolve the apparent conflict between the continuous structure of the actual smooth knot and the visual discontinuities in the knot diagram representation. Another value in exploiting pseudo-haptics is that an acceleration (or deceleration) of the mouse cursor (or surface locator) can be used to indicate the slope of the curve (or surface) of whom the projective image is being explored. By exploiting these additional visual cues, we proceed to a full-featured extension to a pseudo-haptic 4D visualization system that simulates the continuous navigation on 4D objects and allows us to sense the bumps and holes in the fourth dimension. Preliminary tests of the software show that main features of the interface overcome some expected perceptual limitations in our interaction with 2D knot diagrams of 3D knots and 3D projective images of 4D mathematical objects.

  6. A Haptic-Enhanced System for Molecular Sensing

    NASA Astrophysics Data System (ADS)

    Comai, Sara; Mazza, Davide

    The science of haptics has received an enormous attention in the last decade. One of the major application trends of haptics technology is data visualization and training. In this paper, we present a haptically-enhanced system for manipulation and tactile exploration of molecules.The geometrical models of molecules is extracted either from theoretical or empirical data using file formats widely adopted in chemical and biological fields. The addition of information computed with computational chemistry tools, allows users to feel the interaction forces between an explored molecule and a charge associated to the haptic device, and to visualize a huge amount of numerical data in a more comprehensible way. The developed tool can be used either for teaching or research purposes due to its high reliance on both theoretical and experimental data.

  7. A haptic device for guide wire in interventional radiology procedures.

    PubMed

    Moix, Thomas; Ilic, Dejan; Bleuler, Hannes; Zoethout, Jurjen

    2006-01-01

    Interventional Radiology (IR) is a minimally invasive procedure where thin tubular instruments, guide wires and catheters, are steered through the patient's vascular system under X-ray imaging. In order to perform these procedures, a radiologist has to be trained to master hand-eye coordination, instrument manipulation and procedure protocols. The existing simulation systems all have major drawbacks: the use of modified instruments, unrealistic insertion lengths, high inertia of the haptic device that creates a noticeably degraded dynamic behavior or excessive friction that is not properly compensated for. In this paper we propose a quality training environment dedicated to IR. The system is composed of a virtual reality (VR) simulation of the patient's anatomy linked to a robotic interface providing haptic force feedback. This paper focuses on the requirements, design and prototyping of a specific haptic interface for guide wires.

  8. The Use of Haptic Display Technology in Education

    ERIC Educational Resources Information Center

    Barfield, Woodrow

    2009-01-01

    The experience of "virtual reality" can consist of head-tracked and stereoscopic virtual worlds, spatialized sound, haptic feedback, and to a lesser extent olfactory cues. Although virtual reality systems have been proposed for numerous applications, the field of education is one particular application that seems well-suited for virtual…

  9. A kinesthetic washout filter for force-feedback rendering.

    PubMed

    Danieau, Fabien; Lecuyer, Anatole; Guillotel, Philippe; Fleureau, Julien; Mollet, Nicolas; Christie, Marc

    2015-01-01

    Today haptic feedback can be designed and associated to audiovisual content (haptic-audiovisuals or HAV). Although there are multiple means to create individual haptic effects, the issue of how to properly adapt such effects on force-feedback devices has not been addressed and is mostly a manual endeavor. We propose a new approach for the haptic rendering of HAV, based on a washout filter for force-feedback devices. A body model and an inverse kinematics algorithm simulate the user's kinesthetic perception. Then, the haptic rendering is adapted in order to handle transitions between haptic effects and to optimize the amplitude of effects regarding the device capabilities. Results of a user study show that this new haptic rendering can successfully improve the HAV experience.

  10. Evaluation of haptic interfaces for simulation of drill vibration in virtual temporal bone surgery.

    PubMed

    Ghasemloonia, Ahmad; Baxandall, Shalese; Zareinia, Kourosh; Lui, Justin T; Dort, Joseph C; Sutherland, Garnette R; Chan, Sonny

    2016-11-01

    Surgical training is evolving from an observership model towards a new paradigm that includes virtual-reality (VR) simulation. In otolaryngology, temporal bone dissection has become intimately linked with VR simulation as the complexity of anatomy demands a high level of surgeon aptitude and confidence. While an adequate 3D visualization of the surgical site is available in current simulators, the force feedback rendered during haptic interaction does not convey vibrations. This lack of vibration rendering limits the simulation fidelity of a surgical drill such as that used in temporal bone dissection. In order to develop an immersive simulation platform capable of haptic force and vibration feedback, the efficacy of hand controllers for rendering vibration in different drilling circumstances needs to be investigated. In this study, the vibration rendering ability of four different haptic hand controllers were analyzed and compared to find the best commercial haptic hand controller. A test-rig was developed to record vibrations encountered during temporal bone dissection and a software was written to render the recorded signals without adding hardware to the system. An accelerometer mounted on the end-effector of each device recorded the rendered vibration signals. The newly recorded vibration signal was compared with the input signal in both time and frequency domains by coherence and cross correlation analyses to quantitatively measure the fidelity of these devices in terms of rendering vibrotactile drilling feedback in different drilling conditions. This method can be used to assess the vibration rendering ability in VR simulation systems and selection of ideal haptic devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Multi-arm multilateral haptics-based immersive tele-robotic system (HITS) for improvised explosive device disposal

    NASA Astrophysics Data System (ADS)

    Erickson, David; Lacheray, Hervé; Lai, Gilbert; Haddadi, Amir

    2014-06-01

    This paper presents the latest advancements of the Haptics-based Immersive Tele-robotic System (HITS) project, a next generation Improvised Explosive Device (IED) disposal (IEDD) robotic interface containing an immersive telepresence environment for a remotely-controlled three-articulated-robotic-arm system. While the haptic feedback enhances the operator's perception of the remote environment, a third teleoperated dexterous arm, equipped with multiple vision sensors and cameras, provides stereo vision with proper visual cues, and a 3D photo-realistic model of the potential IED. This decentralized system combines various capabilities including stable and scaled motion, singularity avoidance, cross-coupled hybrid control, active collision detection and avoidance, compliance control and constrained motion to provide a safe and intuitive control environment for the operators. Experimental results and validation of the current system are presented through various essential IEDD tasks. This project demonstrates that a two-armed anthropomorphic Explosive Ordnance Disposal (EOD) robot interface can achieve complex neutralization techniques against realistic IEDs without the operator approaching at any time.

  12. Shifty: A Weight-Shifting Dynamic Passive Haptic Proxy to Enhance Object Perception in Virtual Reality.

    PubMed

    Zenner, Andre; Kruger, Antonio

    2017-04-01

    We define the concept of Dynamic Passive Haptic Feedback (DPHF) for virtual reality by introducing the weight-shifting physical DPHF proxy object Shifty. This concept combines actuators known from active haptics and physical proxies known from passive haptics to construct proxies that automatically adapt their passive haptic feedback. We describe the concept behind our ungrounded weight-shifting DPHF proxy Shifty and the implementation of our prototype. We then investigate how Shifty can, by automatically changing its internal weight distribution, enhance the user's perception of virtual objects interacted with in two experiments. In a first experiment, we show that Shifty can enhance the perception of virtual objects changing in shape, especially in length and thickness. Here, Shifty was shown to increase the user's fun and perceived realism significantly, compared to an equivalent passive haptic proxy. In a second experiment, Shifty is used to pick up virtual objects of different virtual weights. The results show that Shifty enhances the perception of weight and thus the perceived realism by adapting its kinesthetic feedback to the picked-up virtual object. In the same experiment, we additionally show that specific combinations of haptic, visual and auditory feedback during the pick-up interaction help to compensate for visual-haptic mismatch perceived during the shifting process.

  13. An augmented reality haptic training simulator for spinal needle procedures.

    PubMed

    Sutherland, Colin; Hashtrudi-Zaad, Keyvan; Sellens, Rick; Abolmaesumi, Purang; Mousavi, Parvin

    2013-11-01

    This paper presents the prototype for an augmented reality haptic simulation system with potential for spinal needle insertion training. The proposed system is composed of a torso mannequin, a MicronTracker2 optical tracking system, a PHANToM haptic device, and a graphical user interface to provide visual feedback. The system allows users to perform simulated needle insertions on a physical mannequin overlaid with an augmented reality cutaway of patient anatomy. A tissue model based on a finite-element model provides force during the insertion. The system allows for training without the need for the presence of a trained clinician or access to live patients or cadavers. A pilot user study demonstrates the potential and functionality of the system.

  14. Haptic force-feedback devices for the office computer: performance and musculoskeletal loading issues.

    PubMed

    Dennerlein, J T; Yang, M C

    2001-01-01

    Pointing devices, essential input tools for the graphical user interface (GUI) of desktop computers, require precise motor control and dexterity to use. Haptic force-feedback devices provide the human operator with tactile cues, adding the sense of touch to existing visual and auditory interfaces. However, the performance enhancements, comfort, and possible musculoskeletal loading of using a force-feedback device in an office environment are unknown. Hypothesizing that the time to perform a task and the self-reported pain and discomfort of the task improve with the addition of force feedback, 26 people ranging in age from 22 to 44 years performed a point-and-click task 540 times with and without an attractive force field surrounding the desired target. The point-and-click movements were approximately 25% faster with the addition of force feedback (paired t-tests, p < 0.001). Perceived user discomfort and pain, as measured through a questionnaire, were also smaller with the addition of force feedback (p < 0.001). However, this difference decreased as additional distracting force fields were added to the task environment, simulating a more realistic work situation. These results suggest that for a given task, use of a force-feedback device improves performance, and potentially reduces musculoskeletal loading during mouse use. Actual or potential applications of this research include human-computer interface design, specifically that of the pointing device extensively used for the graphical user interface.

  15. A pervasive visual-haptic framework for virtual delivery training.

    PubMed

    Abate, Andrea F; Acampora, Giovanni; Loia, Vincenzo; Ricciardi, Stefano; Vasilakos, Athanasios V

    2010-03-01

    Thanks to the advances of voltage regulator (VR) technologies and haptic systems, virtual simulators are increasingly becoming a viable alternative to physical simulators in medicine and surgery, though many challenges still remain. In this study, a pervasive visual-haptic framework aimed to the training of obstetricians and midwives to vaginal delivery is described. The haptic feedback is provided by means of two hand-based haptic devices able to reproduce force-feedbacks on fingers and arms, thus enabling a much more realistic manipulation respect to stylus-based solutions. The interactive simulation is not solely driven by an approximated model of complex forces and physical constraints but, instead, is approached by a formal modeling of the whole labor and of the assistance/intervention procedures performed by means of a timed automata network and applied to a parametrical 3-D model of the anatomy, able to mimic a wide range of configurations. This novel methodology is able to represent not only the sequence of the main events associated to either a spontaneous or to an operative childbirth process, but also to help in validating the manual intervention as the actions performed by the user during the simulation are evaluated according to established medical guidelines. A discussion on the first results as well as on the challenges still unaddressed is included.

  16. Invited Article: A review of haptic optical tweezers for an interactive microworld exploration

    NASA Astrophysics Data System (ADS)

    Pacoret, Cécile; Régnier, Stéphane

    2013-08-01

    This paper is the first review of haptic optical tweezers, a new technique which associates force feedback teleoperation with optical tweezers. This technique allows users to explore the microworld by sensing and exerting picoNewton-scale forces with trapped microspheres. Haptic optical tweezers also allow improved dexterity of micromanipulation and micro-assembly. One of the challenges of this technique is to sense and magnify picoNewton-scale forces by a factor of 1012 to enable human operators to perceive interactions that they have never experienced before, such as adhesion phenomena, extremely low inertia, and high frequency dynamics of extremely small objects. The design of optical tweezers for high quality haptic feedback is challenging, given the requirements for very high sensitivity and dynamic stability. The concept, design process, and specification of optical tweezers reviewed here are focused on those intended for haptic teleoperation. In this paper, two new specific designs as well as the current state-of-the-art are presented. Moreover, the remaining important issues are identified for further developments. The initial results obtained are promising and demonstrate that optical tweezers have a significant potential for haptic exploration of the microworld. Haptic optical tweezers will become an invaluable tool for force feedback micromanipulation of biological samples and nano- and micro-assembly parts.

  17. Review of Designs for Haptic Data Visualization.

    PubMed

    Paneels, Sabrina; Roberts, Jonathan C

    2010-01-01

    There are many different uses for haptics, such as training medical practitioners, teleoperation, or navigation of virtual environments. This review focuses on haptic methods that display data. The hypothesis is that haptic devices can be used to present information, and consequently, the user gains quantitative, qualitative, or holistic knowledge about the presented data. Not only is this useful for users who are blind or partially sighted (who can feel line graphs, for instance), but also the haptic modality can be used alongside other modalities, to increase the amount of variables being presented, or to duplicate some variables to reinforce the presentation. Over the last 20 years, a significant amount of research has been done in haptic data presentation; e.g., researchers have developed force feedback line graphs, bar charts, and other forms of haptic representations. However, previous research is published in different conferences and journals, with different application emphases. This paper gathers and collates these various designs to provide a comprehensive review of designs for haptic data visualization. The designs are classified by their representation: Charts, Maps, Signs, Networks, Diagrams, Images, and Tables. This review provides a comprehensive reference for researchers and learners, and highlights areas for further research.

  18. Visual-haptic integration with pliers and tongs: signal “weights” take account of changes in haptic sensitivity caused by different tools

    PubMed Central

    Takahashi, Chie; Watt, Simon J.

    2014-01-01

    When we hold an object while looking at it, estimates from visual and haptic cues to size are combined in a statistically optimal fashion, whereby the “weight” given to each signal reflects their relative reliabilities. This allows object properties to be estimated more precisely than would otherwise be possible. Tools such as pliers and tongs systematically perturb the mapping between object size and the hand opening. This could complicate visual-haptic integration because it may alter the reliability of the haptic signal, thereby disrupting the determination of appropriate signal weights. To investigate this we first measured the reliability of haptic size estimates made with virtual pliers-like tools (created using a stereoscopic display and force-feedback robots) with different “gains” between hand opening and object size. Haptic reliability in tool use was straightforwardly determined by a combination of sensitivity to changes in hand opening and the effects of tool geometry. The precise pattern of sensitivity to hand opening, which violated Weber's law, meant that haptic reliability changed with tool gain. We then examined whether the visuo-motor system accounts for these reliability changes. We measured the weight given to visual and haptic stimuli when both were available, again with different tool gains, by measuring the perceived size of stimuli in which visual and haptic sizes were varied independently. The weight given to each sensory cue changed with tool gain in a manner that closely resembled the predictions of optimal sensory integration. The results are consistent with the idea that different tool geometries are modeled by the brain, allowing it to calculate not only the distal properties of objects felt with tools, but also the certainty with which those properties are known. These findings highlight the flexibility of human sensory integration and tool-use, and potentially provide an approach for optimizing the design of visual-haptic

  19. Haptic display for the VR arthroscopy training simulator

    NASA Astrophysics Data System (ADS)

    Ziegler, Rolf; Brandt, Christoph; Kunstmann, Christian; Mueller, Wolfgang; Werkhaeuser, Holger

    1997-05-01

    A specific desire to find new training methods arose from the new fields called 'minimal invasive surgery.' With the technical advance modern video arthroscopy became the standard procedure in the ORs. Holding the optical system with the video camera in one hand, watching the operation field on the monitor, the other hand was free to guide, e.g., a probe. As arthroscopy became a more common procedure it became obvious that some sort of special training was necessary to guarantee a certain level of qualification of the surgeons. Therefore, a hospital in Frankfurt, Germany approached the Fraunhofer Institute for Computer Graphics to develop a training system for arthroscopy based on VR techniques. At least the main drawback of the developed simulator is the missing of haptic perception, especially of force feedback. In cooperation with the Department of Electro-Mechanical Construction at the Darmstadt Technical University we have designed and built a haptic display for the VR arthroscopy training simulator. In parallel we developed a concept for the integration of the haptic display in a configurable way.

  20. Human eye haptics-based multimedia.

    PubMed

    Velandia, David; Uribe-Quevedo, Alvaro; Perez-Gutierrez, Byron

    2014-01-01

    Immersive and interactive multimedia applications offer complementary study tools in anatomy as users can explore 3D models while obtaining information about the organ, tissue or part being explored. Haptics increases the sense of interaction with virtual objects improving user experience in a more realistic manner. Common eye studying tools are books, illustrations, assembly models, and more recently these are being complemented with mobile apps whose 3D capabilities, computing power and customers are increasing. The goal of this project is to develop a complementary eye anatomy and pathology study tool using deformable models within a multimedia application, offering the students the opportunity for exploring the eye from up close and within with relevant information. Validation of the tool provided feedback on the potential of the development, along with suggestions on improving haptic feedback and navigation.

  1. Development of a novel haptic glove for improving finger dexterity in poststroke rehabilitation.

    PubMed

    Lin, Chi-Ying; Tsai, Chia-Min; Shih, Pei-Cheng; Wu, Hsiao-Ching

    2015-01-01

    Almost all stroke patients experience a certain degree of fine motor impairment, and impeded finger movement may limit activities in daily life. Thus, to improve the quality of life of stroke patients, designing an efficient training device for fine motor rehabilitation is crucial. This study aimed to develop a novel fine motor training glove that integrates a virtual-reality based interactive environment with vibrotactile feedback for more effective post stroke hand rehabilitation. The proposed haptic rehabilitation device is equipped with small DC vibration motors for vibrotactile feedback stimulation and piezoresistive thin-film force sensors for motor function evaluation. Two virtual-reality based games ``gopher hitting'' and ``musical note hitting'' were developed as a haptic interface. According to the designed rehabilitation program, patients intuitively push and practice their fingers to improve the finger isolation function. Preliminary tests were conducted to assess the feasibility of the developed haptic rehabilitation system and to identify design concerns regarding the practical use in future clinical testing.

  2. Investigating Students' Ideas about Buoyancy and the Influence of Haptic Feedback

    ERIC Educational Resources Information Center

    Minogue, James; Borland, David

    2016-01-01

    While haptics (simulated touch) represents a potential breakthrough technology for science teaching and learning, there is relatively little research into its differential impact in the context of teaching and learning. This paper describes the testing of a haptically enhanced simulation (HES) for learning about buoyancy. Despite a lifetime of…

  3. Integration of soft tissue model and open haptic device for medical training simulator

    NASA Astrophysics Data System (ADS)

    Akasum, G. F.; Ramdhania, L. N.; Suprijanto; Widyotriatmo, A.

    2016-03-01

    Minimally Invasive Surgery (MIS) has been widely used to perform any surgical procedures nowadays. Currently, MIS has been applied in some cases in Indonesia. Needle insertion is one of simple MIS procedure that can be used for some purposes. Before the needle insertion technique used in the real situation, it essential to train this type of medical student skills. The research has developed an open platform of needle insertion simulator with haptic feedback that providing the medical student a realistic feel encountered during the actual procedures. There are three main steps in build the training simulator, which are configure hardware system, develop a program to create soft tissue model and the integration of hardware and software. For evaluating its performance, haptic simulator was tested by 24 volunteers on a scenario of soft tissue model. Each volunteer must insert the needle on simulator until rearch the target point with visual feedback that visualized on the monitor. From the result it can concluded that the soft tissue model can bring the sensation of touch through the perceived force feedback on haptic actuator by looking at the different force in accordance with different stiffness in each layer.

  4. Portable haptic interface with omni-directional movement and force capability.

    PubMed

    Avizzano, Carlo Alberto; Satler, Massimo; Ruffaldi, Emanuele

    2014-01-01

    We describe the design of a new mobile haptic interface that employs wheels for force rendering. The interface, consisting of an omni-directional Killough type platform, provides 2DOF force feedback with different control modalities. The system autonomously performs sensor fusion for localization and force rendering. This paper explains the relevant choices concerning the functional aspects, the control design, the mechanical and electronic solution. Experimental results for force feedback characterization are reported.

  5. Stereoscopic visualization and haptic technology used to create a virtual environment for remote surgery - biomed 2011.

    PubMed

    Bornhoft, J M; Strabala, K W; Wortman, T D; Lehman, A C; Oleynikov, D; Farritor, S M

    2011-01-01

    The objective of this research is to study the effectiveness of using a stereoscopic visualization system for performing remote surgery. The use of stereoscopic vision has become common with the advent of the da Vinci® system (Intuitive, Sunnyvale CA). This system creates a virtual environment that consists of a 3-D display for visual feedback and haptic tactile feedback, together providing an intuitive environment for remote surgical applications. This study will use simple in vivo robotic surgical devices and compare the performance of surgeons using the stereoscopic interfacing system to the performance of surgeons using one dimensional monitors. The stereoscopic viewing system consists of two cameras, two monitors, and four mirrors. The cameras are mounted to a multi-functional miniature in vivo robot; and mimic the depth perception of the actual human eyes. This is done by placing the cameras at a calculated angle and distance apart. Live video streams from the left and right cameras are displayed on the left and right monitors, respectively. A system of angled mirrors allows the left and right eyes to see the video stream from the left and right monitor, respectively, creating the illusion of depth. The haptic interface consists of two PHANTOM Omni® (SensAble, Woburn Ma) controllers. These controllers measure the position and orientation of a pen-like end effector with three degrees of freedom. As the surgeon uses this interface, they see a 3-D image and feel force feedback for collision and workspace limits. The stereoscopic viewing system has been used in several surgical training tests and shows a potential improvement in depth perception and 3-D vision. The haptic system accurately gives force feedback that aids in surgery. Both have been used in non-survival animal surgeries, and have successfully been used in suturing and gallbladder removal. Bench top experiments using the interfacing system have also been conducted. A group of participants completed

  6. Self-Control of Haptic Assistance for Motor Learning: Influences of Frequency and Opinion of Utility

    PubMed Central

    Williams, Camille K.; Tseung, Victrine; Carnahan, Heather

    2017-01-01

    Studies of self-controlled practice have shown benefits when learners controlled feedback schedule, use of assistive devices and task difficulty, with benefits attributed to information processing and motivational advantages of self-control. Although haptic assistance serves as feedback, aids task performance and modifies task difficulty, researchers have yet to explore whether self-control over haptic assistance could be beneficial for learning. We explored whether self-control of haptic assistance would be beneficial for learning a tracing task. Self-controlled participants selected practice blocks on which they would receive haptic assistance, while participants in a yoked group received haptic assistance on blocks determined by a matched self-controlled participant. We inferred learning from performance on retention tests without haptic assistance. From qualitative analysis of open-ended questions related to rationales for/experiences of the haptic assistance that was chosen/provided, themes emerged regarding participants’ views of the utility of haptic assistance for performance and learning. Results showed that learning was directly impacted by the frequency of haptic assistance for self-controlled participants only and view of haptic assistance. Furthermore, self-controlled participants’ views were significantly associated with their requested haptic assistance frequency. We discuss these findings as further support for the beneficial role of self-controlled practice for motor learning. PMID:29255438

  7. Unpacking Students' Conceptualizations through Haptic Feedback

    ERIC Educational Resources Information Center

    Magana, A. J.; Balachandran, S.

    2017-01-01

    While it is clear that the use of computer simulations has a beneficial effect on learning when compared to instruction without computer simulations, there is still room for improvement to fully realize their benefits for learning. Haptic technologies can fulfill the educational potential of computer simulations by adding the sense of touch.…

  8. The role of haptic feedback in laparoscopic training using the LapMentor II.

    PubMed

    Salkini, Mohamad W; Doarn, Charles R; Kiehl, Nicholai; Broderick, Timothy J; Donovan, James F; Gaitonde, Krishnanath

    2010-01-01

    Laparoscopic surgery has become the standard of care for many surgical diseases. Haptic (tactile) feedback (HFB) is considered an important component of laparoscopic surgery. Virtual reality simulation (VRS) is an alternative method to teach surgical skills to surgeons in training. Newer VRS trainers such as the Simbionix Lap Mentor II provide significantly improved tactile feedback. However, VRSs are expensive and adding HFB software adds an estimated cost of $30,000 to the commercial price. The HFB provided by the Lap Mentor II has not been validated by an independent party. We used the Simbionix Lap Mentor II in this study to demonstrate the effect of adding an HFB mechanism in the VRS trainer. The study was approved by the University of Cincinnati Institutional Review Board. Twenty laparoscopically novice medical students were enrolled. Each student was asked to perform three different tasks on the Lap Mentor II and repeat each one five times. The chosen tasks demanded significant amount of traction and counter traction. The first task was to pull leaking tubes enough and clip them. The second task was stretching a jelly plate enough to see its attachments to the floor and cut these attachments. In the third task, the trainee had to separate the gallbladder from its bed on the liver. The students were randomized into two groups to perform the tasks with and without HFB. We used accuracy, speed, and economy of movement as scales to compare the performance between the two groups. The participants also completed a simple questionnaire that highlighted age, sex, and experiences in videogame usage. The two groups were comparable in age, sex, and videogame playing. No differences in the accuracy, the economy, and the speed of hand movement were noticed. In fact, adding HFB to the Lap Mentor II simulator did not contribute to any improvement in the performance of the trainees. Interestingly, we found that videogame expert players tend to have faster and more economic

  9. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps.

    PubMed

    Whitwell, Robert L; Ganel, Tzvi; Byrne, Caitlin M; Goodale, Melvyn A

    2015-01-01

    Investigators study the kinematics of grasping movements (prehension) under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. "Natural" prehensile acts are directed at the goal object and are executed using real-time vision. Typically, they also entail the use of tactile, proprioceptive, and kinesthetic sources of haptic feedback about the object ("haptics-based object information") once contact with the object has been made. Natural and simulated (pantomimed) forms of prehension are thought to recruit different cortical structures: patient DF, who has visual form agnosia following bilateral damage to her temporal-occipital cortex, loses her ability to scale her grasp aperture to the size of targets ("grip scaling") when her prehensile movements are based on a memory of a target previewed 2 s before the cue to respond or when her grasps are directed towards a visible virtual target but she is denied haptics-based information about the target. In the first of two experiments, we show that when DF performs real-time pantomimed grasps towards a 7.5 cm displaced imagined copy of a visible object such that her fingers make contact with the surface of the table, her grip scaling is in fact quite normal. This finding suggests that real-time vision and terminal tactile feedback are sufficient to preserve DF's grip scaling slopes. In the second experiment, we examined an "unnatural" grasping task variant in which a tangible target (along with any proxy such as the surface of the table) is denied (i.e., no terminal tactile feedback). To do this, we used a mirror-apparatus to present virtual targets with and without a spatially coincident copy for the participants to grasp. We compared the grasp kinematics from trials with and without terminal tactile feedback to a real-time-pantomimed grasping task (one without tactile feedback) in which participants visualized a copy of the visible target as instructed in our laboratory in the

  10. Haptic feedback can provide an objective assessment of arthroscopic skills.

    PubMed

    Chami, George; Ward, James W; Phillips, Roger; Sherman, Kevin P

    2008-04-01

    The outcome of arthroscopic procedures is related to the surgeon's skills in arthroscopy. Currently, evaluation of such skills relies on direct observation by a surgeon trainer. This type of assessment, by its nature, is subjective and time-consuming. The aim of our study was to identify whether haptic information generated from arthroscopic tools could distinguish between skilled and less skilled surgeons. A standard arthroscopic probe was fitted with a force/torque sensor. The probe was used by five surgeons with different levels of experience in knee arthroscopy performing 11 different tasks in 10 standard knee arthroscopies. The force/torque data from the hand and tool interface were recorded and synchronized with a video recording of the procedure. The torque magnitude and patterns generated were analyzed and compared. A computerized system was used to analyze the force/torque signature based on general principles for quality of performance using such measures as economy in movement, time efficiency, and consistency in performance. The results showed a considerable correlation between three haptic parameters and the surgeon's experience, which could be used in an automated objective assessment system for arthroscopic surgery. Level II, diagnostic study. See the Guidelines for Authors for a complete description of levels of evidence.

  11. Discriminating Tissue Stiffness with a Haptic Catheter: Feeling the Inside of the Beating Heart.

    PubMed

    Kesner, Samuel B; Howe, Robert D

    2011-01-01

    Catheter devices allow physicians to access the inside of the human body easily and painlessly through natural orifices and vessels. Although catheters allow for the delivery of fluids and drugs, the deployment of devices, and the acquisition of the measurements, they do not allow clinicians to assess the physical properties of tissue inside the body due to the tissue motion and transmission limitations of the catheter devices, including compliance, friction, and backlash. The goal of this research is to increase the tactile information available to physicians during catheter procedures by providing haptic feedback during palpation procedures. To accomplish this goal, we have developed the first motion compensated actuated catheter system that enables haptic perception of fast moving tissue structures. The actuated catheter is instrumented with a distal tip force sensor and a force feedback interface that allows users to adjust the position of the catheter while experiencing the forces on the catheter tip. The efficacy of this device and interface is evaluated through a psychophyisical study comparing how accurately users can differentiate various materials attached to a cardiac motion simulator using the haptic device and a conventional manual catheter. The results demonstrate that haptics improves a user's ability to differentiate material properties and decreases the total number of errors by 50% over the manual catheter system.

  12. Discriminating Tissue Stiffness with a Haptic Catheter: Feeling the Inside of the Beating Heart

    PubMed Central

    Kesner, Samuel B.; Howe, Robert D.

    2011-01-01

    Catheter devices allow physicians to access the inside of the human body easily and painlessly through natural orifices and vessels. Although catheters allow for the delivery of fluids and drugs, the deployment of devices, and the acquisition of the measurements, they do not allow clinicians to assess the physical properties of tissue inside the body due to the tissue motion and transmission limitations of the catheter devices, including compliance, friction, and backlash. The goal of this research is to increase the tactile information available to physicians during catheter procedures by providing haptic feedback during palpation procedures. To accomplish this goal, we have developed the first motion compensated actuated catheter system that enables haptic perception of fast moving tissue structures. The actuated catheter is instrumented with a distal tip force sensor and a force feedback interface that allows users to adjust the position of the catheter while experiencing the forces on the catheter tip. The efficacy of this device and interface is evaluated through a psychophyisical study comparing how accurately users can differentiate various materials attached to a cardiac motion simulator using the haptic device and a conventional manual catheter. The results demonstrate that haptics improves a user's ability to differentiate material properties and decreases the total number of errors by 50% over the manual catheter system. PMID:25285321

  13. Experimental evaluation of a miniature MR device for a wide range of human perceivable haptic sensations

    NASA Astrophysics Data System (ADS)

    Yang, Tae-Heon; Koo, Jeong-Hoi

    2017-12-01

    Humans can experience a realistic and vivid haptic sensations by the sense of touch. In order to have a fully immersive haptic experience, both kinaesthetic and vibrotactile information must be presented to human users. Currently, little haptic research has been performed on small haptic actuators that can covey both vibrotactile feedback based on the frequency of vibrations up to the human-perceivable limit and multiple levels of kinaesthetic feedback rapidly. Therefore, this study intends to design a miniature haptic device based on MR fluid and experimentally evaluate its ability to convey vibrotactile feedback up to 300 Hz along with kinaesthetic feedback. After constructing a prototype device, a series of testing was performed to evaluate its performance of the prototype using an experimental setup, consisting of a precision dynamic mechanical analyzer and an accelerometer. The kinaesthetic testing results show that the prototype device can provide the force rate up to 89% at 5 V (360 mA), which can be discretized into multiple levels of ‘just noticeable difference’ force rate, indicating that the device can convey a wide range of kinaesthetic sensations. To evaluate the high frequency vibrotactile feedback performance of the device, its acceleration responses were measured and processed using the FFT analysis. The results indicate that the device can convey high frequency vibrotactile sensations up to 300 Hz with the sufficiently large intensity of accelerations that human can feel.

  14. Development of Velocity Guidance Assistance System by Haptic Accelerator Pedal Reaction Force Control

    NASA Astrophysics Data System (ADS)

    Yin, Feilong; Hayashi, Ryuzo; Raksincharoensak, Pongsathorn; Nagai, Masao

    This research proposes a haptic velocity guidance assistance system for realizing eco-driving as well as enhancing traffic capacity by cooperating with ITS (Intelligent Transportation Systems). The proposed guidance system generates the desired accelerator pedal (abbreviated as pedal) stroke with respect to the desired velocity obtained from ITS considering vehicle dynamics, and provides the desired pedal stroke to the driver via a haptic pedal whose reaction force is controllable and guides the driver in order to trace the desired velocity in real time. The main purpose of this paper is to discuss the feasibility of the haptic velocity guidance. A haptic velocity guidance system for research is developed on the Driving Simulator of TUAT (DS), by attaching a low-inertia, low-friction motor to the pedal, which does not change the original characteristics of the original pedal when it is not operated, implementing an algorithm regarding the desired pedal stroke calculation and the reaction force controller. The haptic guidance maneuver is designed based on human pedal stepping experiments. A simple velocity profile with acceleration, deceleration and cruising is synthesized according to naturalistic driving for testing the proposed system. The experiment result of 9 drivers shows that the haptic guidance provides high accuracy and quick response in velocity tracking. These results prove that the haptic guidance is a promising velocity guidance method from the viewpoint of HMI (Human Machine Interface).

  15. Haptic-STM: a human-in-the-loop interface to a scanning tunneling microscope.

    PubMed

    Perdigão, Luís M A; Saywell, Alex

    2011-07-01

    The operation of a haptic device interfaced with a scanning tunneling microscope (STM) is presented here. The user moves the STM tip in three dimensions by means of a stylus attached to the haptic instrument. The tunneling current measured by the STM is converted to a vertical force, applied to the stylus and felt by the user, with the user being incorporated into the feedback loop that controls the tip-surface distance. A haptic-STM interface of this nature allows the user to feel atomic features on the surface and facilitates the tactile manipulation of the adsorbate/substrate system. The operation of this device is demonstrated via the room temperature STM imaging of C(60) molecules adsorbed on an Au(111) surface in ultra-high vacuum.

  16. Development of Remote-Type Haptic Catheter Sensor System using Piezoelectric Transducer

    NASA Astrophysics Data System (ADS)

    Haruta, Mineyuki; Murayama, Yoshinobu; Omata, Sadao

    This study describes the development of Remote-Type Haptic Catheter Sensor System which enables the mechanical property evaluation of a blood vessel. This system consists of a feedback circuit and a piezoelectric ultrasound transducer, and is operated based on a phase shift method so that the entire system oscillates at its inherent resonance frequency. Ultrasound reflected by the blood vessel makes a phase shift of the resonance system depending on the acoustic impedance of the reflector. The phase shift is then measured as a change in resonance frequency of the system; therefore, the detection resolution is highly improved. The correlation between the acoustic impedance and the resonance frequency change of the sensor system was demonstrated using silicone rubbers, metals and actual blood vessels from a pig. The performance of the sensor was also examined using vessel shaped phantom model. Finally, the discussion surveys a possibility of the novel sensor system in an application for intra vascular diagnosis.

  17. A haptic unit designed for magnetic-resonance-guided biopsy.

    PubMed

    Tse, Z T H; Elhawary, H; Rea, M; Young, I; Davis, B L; Lamperth, M

    2009-02-01

    The magnetic fields present in the magnetic resonance (MR) environment impose severe constraints on any mechatronic device present in its midst, requiring alternative actuators, sensors, and materials to those conventionally used in traditional system engineering. In addition the spatial constraints of closed-bore scanners require a physical separation between the radiologist and the imaged region of the patient. This configuration produces a loss of the sense of touch from the target anatomy for the clinician, which often provides useful information. To recover the force feedback from the tissue, an MR-compatible haptic unit, designed to be integrated with a five-degrees-of-freedom mechatronic system for MR-guided prostate biopsy, has been developed which incorporates position control and force feedback to the operator. The haptic unit is designed to be located inside the scanner isocentre with the master console in the control room. MR compatibility of the device has been demonstrated, showing a negligible degradation of the signal-to-noise ratio and virtually no geometric distortion. By combining information from the position encoder and force sensor, tissue stiffness measurement along the needle trajectory is demonstrated in a lamb liver to aid diagnosis of suspected cancerous tissue.

  18. Low cost heads-up virtual reality (HUVR) with optical tracking and haptic feedback

    NASA Astrophysics Data System (ADS)

    Margolis, Todd; DeFanti, Thomas A.; Dawe, Greg; Prudhomme, Andrew; Schulze, Jurgen P.; Cutchin, Steve

    2011-03-01

    Researchers at the University of California, San Diego, have created a new, relatively low-cost augmented reality system that enables users to touch the virtual environment they are immersed in. The Heads-Up Virtual Reality device (HUVR) couples a consumer 3D HD flat screen TV with a half-silvered mirror to project any graphic image onto the user's hands and into the space surrounding them. With his or her head position optically tracked to generate the correct perspective view, the user maneuvers a force-feedback (haptic) device to interact with the 3D image, literally 'touching' the object's angles and contours as if it was a tangible physical object. HUVR can be used for training and education in structural and mechanical engineering, archaeology and medicine as well as other tasks that require hand-eye coordination. One of the most unique characteristics of HUVR is that a user can place their hands inside of the virtual environment without occluding the 3D image. Built using open-source software and consumer level hardware, HUVR offers users a tactile experience in an immersive environment that is functional, affordable and scalable.

  19. Haptics-based dynamic implicit solid modeling.

    PubMed

    Hua, Jing; Qin, Hong

    2004-01-01

    This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.

  20. Haptic interface of the KAIST-Ewha colonoscopy simulator II.

    PubMed

    Woo, Hyun Soo; Kim, Woo Seok; Ahn, Woojin; Lee, Doo Yong; Yi, Sun Young

    2008-11-01

    This paper presents an improved haptic interface for the Korea Advanced Institute of Science and Technology Ewha Colonoscopy Simulator II. The haptic interface enables the distal portion of the colonoscope to be freely bent while guaranteeing sufficient workspace and reflective forces for colonoscopy simulation. Its force-torque sensor measures the profiles of the user. Manipulation of the colonoscope tip is monitored by four deflection sensors and triggers computations to render accurate graphic images corresponding to the rotation of the angle knob. Tack sensors are attached to the valve-actuation buttons of the colonoscope to simulate air injection or suction as well as the corresponding deformation of the colon. A survey study for face validation was conducted, and the result shows that the developed haptic interface provides realistic haptic feedback for colonoscopy simulations.

  1. A "virtually minimal" visuo-haptic training of attention in severe traumatic brain injury.

    PubMed

    Dvorkin, Assaf Y; Ramaiya, Milan; Larson, Eric B; Zollman, Felise S; Hsu, Nancy; Pacini, Sonia; Shah, Amit; Patton, James L

    2013-08-09

    Although common during the early stages of recovery from severe traumatic brain injury (TBI), attention deficits have been scarcely investigated. Encouraging evidence suggests beneficial effects of attention training in more chronic and higher functioning patients. Interactive technology may provide new opportunities for rehabilitation in inpatients who are earlier in their recovery. We designed a "virtually minimal" approach using robot-rendered haptics in a virtual environment to train severely injured inpatients in the early stages of recovery to sustain attention to a visuo-motor task. 21 inpatients with severe TBI completed repetitive reaching toward targets that were both seen and felt. Patients were tested over two consecutive days, experiencing 3 conditions (no haptic feedback, a break-through force, and haptic nudge) in 12 successive, 4-minute blocks. The interactive visuo-haptic environments were well-tolerated and engaging. Patients typically remained attentive to the task. However, patients exhibited attention loss both before (prolonged initiation) and during (pauses during motion) a movement. Compared to no haptic feedback, patients benefited from haptic nudge cues but not break-through forces. As training progressed, patients increased the number of targets acquired and spontaneously improved from one day to the next. Interactive visuo-haptic environments could be beneficial for attention training for severe TBI patients in the early stages of recovery and warrants further and more prolonged clinical testing.

  2. Haptic simulation framework for determining virtual dental occlusion.

    PubMed

    Wu, Wen; Chen, Hui; Cen, Yuhai; Hong, Yang; Khambay, Balvinder; Heng, Pheng Ann

    2017-04-01

    The surgical treatment of many dentofacial deformities is often complex due to its three-dimensional nature. To determine the dental occlusion in the most stable position is essential for the success of the treatment. Computer-aided virtual planning on individualized patient-specific 3D model can help formulate the surgical plan and predict the surgical change. However, in current computer-aided planning systems, it is not possible to determine the dental occlusion of the digital models in the intuitive way during virtual surgical planning because of absence of haptic feedback. In this paper, a physically based haptic simulation framework is proposed, which can provide surgeons with the intuitive haptic feedback to determine the dental occlusion of the digital models in their most stable position. To provide the physically realistic force feedback when the dental models contact each other during the searching process, the contact model is proposed to describe the dynamic and collision properties of the dental models during the alignment. The simulated impulse/contact-based forces are integrated into the unified simulation framework. A validation study has been conducted on fifteen sets of virtual dental models chosen at random and covering a wide range of the dental relationships found clinically. The dental occlusions obtained by an expert were employed as a benchmark to compare the virtual occlusion results. The mean translational and angular deviations of the virtual occlusion results from the benchmark were small. The experimental results show the validity of our method. The simulated forces can provide valuable insights to determine the virtual dental occlusion. The findings of this work and the validation of proposed concept lead the way for full virtual surgical planning on patient-specific virtual models allowing fully customized treatment plans for the surgical correction of dentofacial deformities.

  3. The Role of Direct and Visual Force Feedback in Suturing Using a 7-DOF Dual-Arm Teleoperated System.

    PubMed

    Talasaz, Ali; Trejos, Ana Luisa; Patel, Rajni V

    2017-01-01

    The lack of haptic feedback in robotics-assisted surgery can result in tissue damage or accidental tool-tissue hits. This paper focuses on exploring the effect of haptic feedback via direct force reflection and visual presentation of force magnitudes on performance during suturing in robotics-assisted minimally invasive surgery (RAMIS). For this purpose, a haptics-enabled dual-arm master-slave teleoperation system capable of measuring tool-tissue interaction forces in all seven Degrees-of-Freedom (DOFs) was used. Two suturing tasks, tissue puncturing and knot-tightening, were chosen to assess user skills when suturing on phantom tissue. Sixteen subjects participated in the trials and their performance was evaluated from various points of view: force consistency, number of accidental hits with tissue, amount of tissue damage, quality of the suture knot, and the time required to accomplish the task. According to the results, visual force feedback was not very useful during the tissue puncturing task as different users needed different amounts of force depending on the penetration of the needle into the tissue. Direct force feedback, however, was more useful for this task to apply less force and to minimize the amount of damage to the tissue. Statistical results also reveal that both visual and direct force feedback were required for effective knot tightening: direct force feedback could reduce the number of accidental hits with the tissue and also the amount of tissue damage, while visual force feedback could help to securely tighten the suture knots and maintain force consistency among different trials/users. These results provide evidence of the importance of 7-DOF force reflection when performing complex tasks in a RAMIS setting.

  4. Should drivers be operating within an automation-free bandwidth? Evaluating haptic steering support systems with different levels of authority.

    PubMed

    Petermeijer, Sebastiaan M; Abbink, David A; de Winter, Joost C F

    2015-02-01

    The aim of this study was to compare continuous versus bandwidth haptic steering guidance in terms of lane-keeping behavior, aftereffects, and satisfaction. An important human factors question is whether operators should be supported continuously or only when tolerance limits are exceeded. We aimed to clarify this issue for haptic steering guidance by investigating costs and benefits of both approaches in a driving simulator. Thirty-two participants drove five trials, each with a different level of haptic support: no guidance (Manual); guidance outside a 0.5-m bandwidth (Band1); a hysteresis version of Band1, which guided back to the lane center once triggered (Band2); continuous guidance (Cont); and Cont with double feedback gain (ContS). Participants performed a reaction time task while driving. Toward the end of each trial, the guidance was unexpectedly disabled to investigate aftereffects. All four guidance systems prevented large lateral errors (>0.7 m). Cont and especially ContS yielded smaller lateral errors and higher time to line crossing than Manual, Band1, and Band2. Cont and ContS yielded short-lasting aftereffects, whereas Band1 and Band2 did not. Cont yielded higher self-reported satisfaction and faster reaction times than Band1. Continuous and bandwidth guidance both prevent large driver errors. Continuous guidance yields improved performance and satisfaction over bandwidth guidance at the cost of aftereffects and variability in driver torque (indicating human-automation conflicts). The presented results are useful for designers of haptic guidance systems and support critical thinking about the costs and benefits of automation support systems.

  5. Effects of Grip-Force, Contact, and Acceleration Feedback on a Teleoperated Pick-and-Place Task.

    PubMed

    Khurshid, Rebecca P; Fitter, Naomi T; Fedalei, Elizabeth A; Kuchenbecker, Katherine J

    2017-01-01

    The multifaceted human sense of touch is fundamental to direct manipulation, but technical challenges prevent most teleoperation systems from providing even a single modality of haptic feedback, such as force feedback. This paper postulates that ungrounded grip-force, fingertip-contact-and-pressure, and high-frequency acceleration haptic feedback will improve human performance of a teleoperated pick-and-place task. Thirty subjects used a teleoperation system consisting of a haptic device worn on the subject's right hand, a remote PR2 humanoid robot, and a Vicon motion capture system to move an object to a target location. Each subject completed the pick-and-place task 10 times under each of the eight haptic conditions obtained by turning on and off grip-force feedback, contact feedback, and acceleration feedback. To understand how object stiffness affects the utility of the feedback, half of the subjects completed the task with a flexible plastic cup, and the others used a rigid plastic block. The results indicate that the addition of grip-force feedback with gain switching enables subjects to hold both the flexible and rigid objects more stably, and it also allowed subjects who manipulated the rigid block to hold the object more delicately and to better control the motion of the remote robot's hand. Contact feedback improved the ability of subjects who manipulated the flexible cup to move the robot's arm in space, but it deteriorated this ability for subjects who manipulated the rigid block. Contact feedback also caused subjects to hold the flexible cup less stably, but the rigid block more securely. Finally, adding acceleration feedback slightly improved the subject's performance when setting the object down, as originally hypothesized; interestingly, it also allowed subjects to feel vibrations produced by the robot's motion, causing them to be more careful when completing the task. This study supports the utility of grip-force and high-frequency acceleration

  6. Shadow-driven 4D haptic visualization.

    PubMed

    Zhang, Hui; Hanson, Andrew

    2007-01-01

    Just as we can work with two-dimensional floor plans to communicate 3D architectural design, we can exploit reduced-dimension shadows to manipulate the higher-dimensional objects generating the shadows. In particular, by taking advantage of physically reactive 3D shadow-space controllers, we can transform the task of interacting with 4D objects to a new level of physical reality. We begin with a teaching tool that uses 2D knot diagrams to manipulate the geometry of 3D mathematical knots via their projections; our unique 2D haptic interface allows the user to become familiar with sketching, editing, exploration, and manipulation of 3D knots rendered as projected imageson a 2D shadow space. By combining graphics and collision-sensing haptics, we can enhance the 2D shadow-driven editing protocol to successfully leverage 2D pen-and-paper or blackboard skills. Building on the reduced-dimension 2D editing tool for manipulating 3D shapes, we develop the natural analogy to produce a reduced-dimension 3D tool for manipulating 4D shapes. By physically modeling the correct properties of 4D surfaces, their bending forces, and their collisions in the 3D haptic controller interface, we can support full-featured physical exploration of 4D mathematical objects in a manner that is otherwise far beyond the experience accessible to human beings. As far as we are aware, this paper reports the first interactive system with force-feedback that provides "4D haptic visualization" permitting the user to model and interact with 4D cloth-like objects.

  7. Real-time mandibular angle reduction surgical simulation with haptic rendering.

    PubMed

    Wang, Qiong; Chen, Hui; Wu, Wen; Jin, Hai-Yang; Heng, Pheng-Ann

    2012-11-01

    Mandibular angle reduction is a popular and efficient procedure widely used to alter the facial contour. The primary surgical instruments, the reciprocating saw and the round burr, employed in the surgery have a common feature: operating at a high-speed. Generally, inexperienced surgeons need a long-time practice to learn how to minimize the risks caused by the uncontrolled contacts and cutting motions in manipulation of instruments with high-speed reciprocation or rotation. A virtual reality-based surgical simulator for the mandibular angle reduction was designed and implemented on a CUDA-based platform in this paper. High-fidelity visual and haptic feedbacks are provided to enhance the perception in a realistic virtual surgical environment. The impulse-based haptic models were employed to simulate the contact forces and torques on the instruments. It provides convincing haptic sensation for surgeons to control the instruments under different reciprocation or rotation velocities. The real-time methods for bone removal and reconstruction during surgical procedures have been proposed to support realistic visual feedbacks. The simulated contact forces were verified by comparing against the actual force data measured through the constructed mechanical platform. An empirical study based on the patient-specific data was conducted to evaluate the ability of the proposed system in training surgeons with various experiences. The results confirm the validity of our simulator.

  8. Operator dynamics for stability condition in haptic and teleoperation system: A survey.

    PubMed

    Li, Hongbing; Zhang, Lei; Kawashima, Kenji

    2018-04-01

    Currently, haptic systems ignore the varying impedance of the human hand with its countless configurations and thus cannot recreate the complex haptic interactions. The literature does not reveal a comprehensive survey on the methods proposed and this study is an attempt to bridge this gap. The paper includes an extensive review of human arm impedance modeling and control deployed to address inherent stability and transparency issues in haptic interaction and teleoperation systems. Detailed classification and comparative study of various contributions in human arm modeling are presented and summarized in tables and diagrams. The main challenges in modeling human arm impedance for haptic robotic applications are identified. The possible future research directions are outlined based on the gaps identified in the survey. Copyright © 2018 John Wiley & Sons, Ltd.

  9. A “virtually minimal” visuo-haptic training of attention in severe traumatic brain injury

    PubMed Central

    2013-01-01

    Background Although common during the early stages of recovery from severe traumatic brain injury (TBI), attention deficits have been scarcely investigated. Encouraging evidence suggests beneficial effects of attention training in more chronic and higher functioning patients. Interactive technology may provide new opportunities for rehabilitation in inpatients who are earlier in their recovery. Methods We designed a “virtually minimal” approach using robot-rendered haptics in a virtual environment to train severely injured inpatients in the early stages of recovery to sustain attention to a visuo-motor task. 21 inpatients with severe TBI completed repetitive reaching toward targets that were both seen and felt. Patients were tested over two consecutive days, experiencing 3 conditions (no haptic feedback, a break-through force, and haptic nudge) in 12 successive, 4-minute blocks. Results The interactive visuo-haptic environments were well-tolerated and engaging. Patients typically remained attentive to the task. However, patients exhibited attention loss both before (prolonged initiation) and during (pauses during motion) a movement. Compared to no haptic feedback, patients benefited from haptic nudge cues but not break-through forces. As training progressed, patients increased the number of targets acquired and spontaneously improved from one day to the next. Conclusions Interactive visuo-haptic environments could be beneficial for attention training for severe TBI patients in the early stages of recovery and warrants further and more prolonged clinical testing. PMID:23938101

  10. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a “natural” grasping task induces pantomime-like grasps

    PubMed Central

    Whitwell, Robert L.; Ganel, Tzvi; Byrne, Caitlin M.; Goodale, Melvyn A.

    2015-01-01

    Investigators study the kinematics of grasping movements (prehension) under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. “Natural” prehensile acts are directed at the goal object and are executed using real-time vision. Typically, they also entail the use of tactile, proprioceptive, and kinesthetic sources of haptic feedback about the object (“haptics-based object information”) once contact with the object has been made. Natural and simulated (pantomimed) forms of prehension are thought to recruit different cortical structures: patient DF, who has visual form agnosia following bilateral damage to her temporal-occipital cortex, loses her ability to scale her grasp aperture to the size of targets (“grip scaling”) when her prehensile movements are based on a memory of a target previewed 2 s before the cue to respond or when her grasps are directed towards a visible virtual target but she is denied haptics-based information about the target. In the first of two experiments, we show that when DF performs real-time pantomimed grasps towards a 7.5 cm displaced imagined copy of a visible object such that her fingers make contact with the surface of the table, her grip scaling is in fact quite normal. This finding suggests that real-time vision and terminal tactile feedback are sufficient to preserve DF’s grip scaling slopes. In the second experiment, we examined an “unnatural” grasping task variant in which a tangible target (along with any proxy such as the surface of the table) is denied (i.e., no terminal tactile feedback). To do this, we used a mirror-apparatus to present virtual targets with and without a spatially coincident copy for the participants to grasp. We compared the grasp kinematics from trials with and without terminal tactile feedback to a real-time-pantomimed grasping task (one without tactile feedback) in which participants visualized a copy of the visible target as instructed in our

  11. Emotion Telepresence: Emotion Augmentation through Affective Haptics and Visual Stimuli

    NASA Astrophysics Data System (ADS)

    Tsetserukou, D.; Neviarouskaya, A.

    2012-03-01

    The paper focuses on a novel concept of emotional telepresence. The iFeel_IM! system which is in the vanguard of this technology integrates 3D virtual world Second Life, intelligent component for automatic emotion recognition from text messages, and innovative affective haptic interfaces providing additional nonverbal communication channels through simulation of emotional feedback and social touch (physical co-presence). Users can not only exchange messages but also emotionally and physically feel the presence of the communication partner (e.g., family member, friend, or beloved person). The next prototype of the system will include the tablet computer. The user can realize haptic interaction with avatar, and thus influence its mood and emotion of the partner. The finger gesture language will be designed for communication with avatar. This will bring new level of immersion of on-line communication.

  12. Virtual-Reality Simulator System for Double Interventional Cardiac Catheterization Using Fractional-Order Vascular Access Tracker and Haptic Force Producer

    PubMed Central

    Chen, Guan-Chun; Lin, Chia-Hung; Hsieh, Kai-Sheng; Du, Yi-Chun; Chen, Tainsong

    2015-01-01

    This study proposes virtual-reality (VR) simulator system for double interventional cardiac catheterization (ICC) using fractional-order vascular access tracker and haptic force producer. An endoscope or a catheter for diagnosis and surgery of cardiovascular disease has been commonly used in minimally invasive surgery. It needs specific skills and experiences for young surgeons or postgraduate year (PGY) students to operate a Berman catheter and a pigtail catheter in the inside of the human body and requires avoiding damaging vessels. To improve the training in inserting catheters, a double-catheter mechanism is designed for the ICC procedures. A fractional-order vascular access tracker is used to trace the senior surgeons' consoled trajectories and transmit the frictional feedback and visual feedback during the insertion of catheters. Based on the clinical feeling through the aortic arch, vein into the ventricle, or tortuous blood vessels, haptic force producer is used to mock the elasticity of the vessel wall using voice coil motors (VCMs). The VR establishment with surgeons' consoled vessel trajectories and hand feeling is achieved, and the experimental results show the effectiveness for the double ICC procedures. PMID:26171419

  13. A Review of Simulators with Haptic Devices for Medical Training.

    PubMed

    Escobar-Castillejos, David; Noguez, Julieta; Neri, Luis; Magana, Alejandra; Benes, Bedrich

    2016-04-01

    Medical procedures often involve the use of the tactile sense to manipulate organs or tissues by using special tools. Doctors require extensive preparation in order to perform them successfully; for example, research shows that a minimum of 750 operations are needed to acquire sufficient experience to perform medical procedures correctly. Haptic devices have become an important training alternative and they have been considered to improve medical training because they let users interact with virtual environments by adding the sense of touch to the simulation. Previous articles in the field state that haptic devices enhance the learning of surgeons compared to current training environments used in medical schools (corpses, animals, or synthetic skin and organs). Consequently, virtual environments use haptic devices to improve realism. The goal of this paper is to provide a state of the art review of recent medical simulators that use haptic devices. In particular we focus on stitching, palpation, dental procedures, endoscopy, laparoscopy, and orthopaedics. These simulators are reviewed and compared from the viewpoint of used technology, the number of degrees of freedom, degrees of force feedback, perceived realism, immersion, and feedback provided to the user. In the conclusion, several observations per area and suggestions for future work are provided.

  14. Haptic exploration of fingertip-sized geometric features using a multimodal tactile sensor

    NASA Astrophysics Data System (ADS)

    Ponce Wong, Ruben D.; Hellman, Randall B.; Santos, Veronica J.

    2014-06-01

    Haptic perception remains a grand challenge for artificial hands. Dexterous manipulators could be enhanced by "haptic intelligence" that enables identification of objects and their features via touch alone. Haptic perception of local shape would be useful when vision is obstructed or when proprioceptive feedback is inadequate, as observed in this study. In this work, a robot hand outfitted with a deformable, bladder-type, multimodal tactile sensor was used to replay four human-inspired haptic "exploratory procedures" on fingertip-sized geometric features. The geometric features varied by type (bump, pit), curvature (planar, conical, spherical), and footprint dimension (1.25 - 20 mm). Tactile signals generated by active fingertip motions were used to extract key parameters for use as inputs to supervised learning models. A support vector classifier estimated order of curvature while support vector regression models estimated footprint dimension once curvature had been estimated. A distal-proximal stroke (along the long axis of the finger) enabled estimation of order of curvature with an accuracy of 97%. Best-performing, curvature-specific, support vector regression models yielded R2 values of at least 0.95. While a radial-ulnar stroke (along the short axis of the finger) was most helpful for estimating feature type and size for planar features, a rolling motion was most helpful for conical and spherical features. The ability to haptically perceive local shape could be used to advance robot autonomy and provide haptic feedback to human teleoperators of devices ranging from bomb defusal robots to neuroprostheses.

  15. Ergonomic evaluation of 3D plane positioning using a mouse and a haptic device.

    PubMed

    Paul, Laurent; Cartiaux, Olivier; Docquier, Pierre-Louis; Banse, Xavier

    2009-12-01

    Preoperative planning and intraoperative assistance are needed to improve accuracy in tumour surgery. To be accepted, these processes must be efficient. An experiment was conducted to compare a mouse and a haptic device, with and without force feedback, to perform plan positioning in a 3D space. Ergonomics and performance factors were investigated during the experiment. Positioning strategies were observed. The task completion time, number of 3D orientations and failure rate were analysed. A questionnaire on ergonomics was filled out by each participant. The haptic device showed a significantly lower failure rate and was quicker and more ergonomic than the mouse. The force feedback was not beneficial to the accomplishment of the task. The haptic device is intuitive, ergonomic and more efficient than the mouse for positioning a 3D plane into a 3D space. Useful observations regarding positioning strategies will improve the integration of haptic devices into medical applications. Copyright (c) 2009 John Wiley & Sons, Ltd.

  16. Seeing a haptically explored face: visual facial-expression aftereffect from haptic adaptation to a face.

    PubMed

    Matsumiya, Kazumichi

    2013-10-01

    Current views on face perception assume that the visual system receives only visual facial signals. However, I show that the visual perception of faces is systematically biased by adaptation to a haptically explored face. Recently, face aftereffects (FAEs; the altered perception of faces after adaptation to a face) have been demonstrated not only in visual perception but also in haptic perception; therefore, I combined the two FAEs to examine whether the visual system receives face-related signals from the haptic modality. I found that adaptation to a haptically explored facial expression on a face mask produced a visual FAE for facial expression. This cross-modal FAE was not due to explicitly imaging a face, response bias, or adaptation to local features. Furthermore, FAEs transferred from vision to haptics. These results indicate that visual face processing depends on substrates adapted by haptic faces, which suggests that face processing relies on shared representation underlying cross-modal interactions.

  17. Synergistic Effects on the Elderly People's Motor Control by Wearable Skin-Stretch Device Combined with Haptic Joystick

    PubMed Central

    Yoon, Han U.; Anil Kumar, Namita; Hur, Pilwon

    2017-01-01

    Cutaneous sensory feedback can be used to provide additional sensory cues to a person performing a motor task where vision is a dominant feedback signal. A haptic joystick has been widely used to guide a user by providing force feedback. However, the benefit of providing force feedback is still debatable due to performance dependency on factors such as the user's skill-level, task difficulty. Meanwhile, recent studies have shown the feasibility of improving a motor task performance by providing skin-stretch feedback. Therefore, a combination of two aforementioned feedback types is deemed to be promising to promote synergistic effects to consistently improve the person's motor performance. In this study, we aimed at identifying the effect of the combined haptic and skin-stretch feedbacks on the aged person's driving motor performance. For the experiment, 15 healthy elderly subjects (age 72.8 ± 6.6 years) were recruited and were instructed to drive a virtual power-wheelchair through four different courses with obstacles. Four augmented sensory feedback conditions were tested: no feedback, force feedback, skin-stretch feedback, and a combination of both force and skin-stretch feedbacks. While the haptic force was provided to the hand by the joystick, the skin-stretch was provided to the steering forearm by a custom-designed wearable skin-stretch device. We tested two hypotheses: (i) an elderly individual's motor control would benefit from receiving information about a desired trajectory from multiple sensory feedback sources, and (ii) the benefit does not depend on task difficulty. Various metrics related to skills and safety were used to evaluate the control performance. Repeated measure ANOVA was performed for those metrics with two factors: task scenario and the type of the augmented sensory feedback. The results revealed that elderly subjects' control performance significantly improved when the combined feedback of both haptic force and skin-stretch feedback was

  18. Haptic-assistive technologies for audition and vision sensory disabilities.

    PubMed

    Sorgini, Francesca; Caliò, Renato; Carrozza, Maria Chiara; Oddo, Calogero Maria

    2018-05-01

    The aim of this review is to analyze haptic sensory substitution technologies for deaf, blind and deaf-blind individuals. The literature search has been performed in Scopus, PubMed and Google Scholar databases using selected keywords, analyzing studies from 1960s to present. Search on databases for scientific publications has been accompanied by web search for commercial devices. Results have been classified by sensory disability and functionality, and analyzed by assistive technology. Complementary analyses have also been carried out on websites of public international agencies, such as the World Health Organization (WHO), and of associations representing sensory disabled persons. The reviewed literature provides evidences that sensory substitution aids are able to mitigate in part the deficits in language learning, communication and navigation for deaf, blind and deaf-blind individuals, and that the tactile sense can be a means of communication to provide some kind of information to sensory disabled individuals. A lack of acceptance emerged from the discussion of capabilities and limitations of haptic assistive technologies. Future researches shall go towards miniaturized, custom-designed and low-cost haptic interfaces and integration with personal devices such as smartphones for a major diffusion of sensory aids among disabled. Implications for rehabilitation Systematic review of state of the art of haptic assistive technologies for vision and audition sensory disabilities. Sensory substitution systems for visual and hearing disabilities have a central role in the transmission of information for patients with sensory impairments, enabling users to interact with the not disabled community in daily activities. Visual and auditory inputs are converted in haptic feedback via different actuation technologies. The information is presented in the form of static or dynamic stimulation of the skin. Their effectiveness and ease of use make haptic sensory substitution

  19. Simulation and training of lumbar punctures using haptic volume rendering and a 6DOF haptic device

    NASA Astrophysics Data System (ADS)

    Färber, Matthias; Heller, Julika; Handels, Heinz

    2007-03-01

    The lumbar puncture is performed by inserting a needle into the spinal chord of the patient to inject medicaments or to extract liquor. The training of this procedure is usually done on the patient guided by experienced supervisors. A virtual reality lumbar puncture simulator has been developed in order to minimize the training costs and the patient's risk. We use a haptic device with six degrees of freedom (6DOF) to feedback forces that resist needle insertion and rotation. An improved haptic volume rendering approach is used to calculate the forces. This approach makes use of label data of relevant structures like skin, bone, muscles or fat and original CT data that contributes information about image structures that can not be segmented. A real-time 3D visualization with optional stereo view shows the punctured region. 2D visualizations of orthogonal slices enable a detailed impression of the anatomical context. The input data consisting of CT and label data and surface models of relevant structures is defined in an XML file together with haptic rendering and visualization parameters. In a first evaluation the visible human male data has been used to generate a virtual training body. Several users with different medical experience tested the lumbar puncture trainer. The simulator gives a good haptic and visual impression of the needle insertion and the haptic volume rendering technique enables the feeling of unsegmented structures. Especially, the restriction of transversal needle movement together with rotation constraints enabled by the 6DOF device facilitate a realistic puncture simulation.

  20. Real-time surgery simulation of intracranial aneurysm clipping with patient-specific geometries and haptic feedback

    NASA Astrophysics Data System (ADS)

    Fenz, Wolfgang; Dirnberger, Johannes

    2015-03-01

    Providing suitable training for aspiring neurosurgeons is becoming more and more problematic. The increasing popularity of the endovascular treatment of intracranial aneurysms leads to a lack of simple surgical situations for clipping operations, leaving mainly the complex cases, which present even experienced surgeons with a challenge. To alleviate this situation, we have developed a training simulator with haptic interaction allowing trainees to practice virtual clipping surgeries on real patient-specific vessel geometries. By using specialized finite element (FEM) algorithms (fast finite element method, matrix condensation) combined with GPU acceleration, we can achieve the necessary frame rate for smooth real-time interaction with the detailed models needed for a realistic simulation of the vessel wall deformation caused by the clamping with surgical clips. Vessel wall geometries for typical training scenarios were obtained from 3D-reconstructed medical image data, while for the instruments (clipping forceps, various types of clips, suction tubes) we use models provided by manufacturer Aesculap AG. Collisions between vessel and instruments have to be continuously detected and transformed into corresponding boundary conditions and feedback forces, calculated using a contact plane method. After a training, the achieved result can be assessed based on various criteria, including a simulation of the residual blood flow into the aneurysm. Rigid models of the surgical access and surrounding brain tissue, plus coupling a real forceps to the haptic input device further increase the realism of the simulation.

  1. Improving Challenge/Skill Ratio in a Multimodal Interface by Simultaneously Adapting Game Difficulty and Haptic Assistance through Psychophysiological and Performance Feedback

    PubMed Central

    Rodriguez-Guerrero, Carlos; Knaepen, Kristel; Fraile-Marinero, Juan C.; Perez-Turiel, Javier; Gonzalez-de-Garibay, Valentin; Lefeber, Dirk

    2017-01-01

    In order to harmonize robotic devices with human beings, the robots should be able to perceive important psychosomatic impact triggered by emotional states such as frustration or boredom. This paper presents a new type of biocooperative control architecture, which acts toward improving the challenge/skill relation perceived by the user when interacting with a robotic multimodal interface in a cooperative scenario. In the first part of the paper, open-loop experiments revealed which physiological signals were optimal for inclusion in the feedback loop. These were heart rate, skin conductance level, and skin conductance response frequency. In the second part of the paper, the proposed controller, consisting of a biocooperative architecture with two degrees of freedom, simultaneously modulating game difficulty and haptic assistance through performance and psychophysiological feedback, is presented. With this setup, the perceived challenge can be modulated by means of the game difficulty and the perceived skill by means of the haptic assistance. A new metric (FlowIndex) is proposed to numerically quantify and visualize the challenge/skill relation. The results are contrasted with comparable previously published work and show that the new method afforded a higher FlowIndex (i.e., a superior challenge/skill relation) and an improved balance between augmented performance and user satisfaction (higher level of valence, i.e., a more enjoyable and satisfactory experience). PMID:28507503

  2. Haptic Guidance Improves the Visuo-Manual Tracking of Trajectories

    PubMed Central

    Bluteau, Jérémy; Coquillart, Sabine; Payan, Yohan; Gentaz, Edouard

    2008-01-01

    Background Learning to perform new movements is usually achieved by following visual demonstrations. Haptic guidance by a force feedback device is a recent and original technology which provides additional proprioceptive cues during visuo-motor learning tasks. The effects of two types of haptic guidances-control in position (HGP) or in force (HGF)–on visuo-manual tracking (“following”) of trajectories are still under debate. Methodology/Principals Findings Three training techniques of haptic guidance (HGP, HGF or control condition, NHG, without haptic guidance) were evaluated in two experiments. Movements produced by adults were assessed in terms of shapes (dynamic time warping) and kinematics criteria (number of velocity peaks and mean velocity) before and after the training sessions. Trajectories consisted of two Arabic and two Japanese-inspired letters in Experiment 1 and ellipses in Experiment 2. We observed that the use of HGF globally improves the fluency of the visuo-manual tracking of trajectories while no significant improvement was found for HGP or NHG. Conclusion/Significance These results show that the addition of haptic information, probably encoded in force coordinates, play a crucial role on the visuo-manual tracking of new trajectories. PMID:18335049

  3. Do Haptic Representations Help Complex Molecular Learning?

    ERIC Educational Resources Information Center

    Bivall, Petter; Ainsworth, Shaaron; Tibell, Lena A. E.

    2011-01-01

    This study explored whether adding a haptic interface (that provides users with somatosensory information about virtual objects by force and tactile feedback) to a three-dimensional (3D) chemical model enhanced students' understanding of complex molecular interactions. Two modes of the model were compared in a between-groups pre- and posttest…

  4. Training Surgical Residents With a Haptic Robotic Central Venous Catheterization Simulator.

    PubMed

    Pepley, David F; Gordon, Adam B; Yovanoff, Mary A; Mirkin, Katelin A; Miller, Scarlett R; Han, David C; Moore, Jason Z

    Ultrasound guided central venous catheterization (CVC) is a common surgical procedure with complication rates ranging from 5 to 21 percent. Training is typically performed using manikins that do not simulate anatomical variations such as obesity and abnormal vessel positioning. The goal of this study was to develop and validate the effectiveness of a new virtual reality and force haptic based simulation platform for CVC of the right internal jugular vein. A CVC simulation platform was developed using a haptic robotic arm, 3D position tracker, and computer visualization. The haptic robotic arm simulated needle insertion force that was based on cadaver experiments. The 3D position tracker was used as a mock ultrasound device with realistic visualization on a computer screen. Upon completion of a practice simulation, performance feedback is given to the user through a graphical user interface including scoring factors based on good CVC practice. The effectiveness of the system was evaluated by training 13 first year surgical residents using the virtual reality haptic based training system over a 3 month period. The participants' performance increased from 52% to 96% on the baseline training scenario, approaching the average score of an expert surgeon: 98%. This also resulted in improvement in positive CVC practices including a 61% decrease between final needle tip position and vein center, a decrease in mean insertion attempts from 1.92 to 1.23, and a 12% increase in time spent aspirating the syringe throughout the procedure. A virtual reality haptic robotic simulator for CVC was successfully developed. Surgical residents training on the simulation improved to near expert levels after three robotic training sessions. This suggests that this system could act as an effective training device for CVC. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  5. Stereo camera based virtual cane system with identifiable distance tactile feedback for the blind.

    PubMed

    Kim, Donghun; Kim, Kwangtaek; Lee, Sangyoun

    2014-06-13

    In this paper, we propose a new haptic-assisted virtual cane system operated by a simple finger pointing gesture. The system is developed by two stages: development of visual information delivery assistant (VIDA) with a stereo camera and adding a tactile feedback interface with dual actuators for guidance and distance feedbacks. In the first stage, user's pointing finger is automatically detected using color and disparity data from stereo images and then a 3D pointing direction of the finger is estimated with its geometric and textural features. Finally, any object within the estimated pointing trajectory in 3D space is detected and the distance is then estimated in real time. For the second stage, identifiable tactile signals are designed through a series of identification experiments, and an identifiable tactile feedback interface is developed and integrated into the VIDA system. Our approach differs in that navigation guidance is provided by a simple finger pointing gesture and tactile distance feedbacks are perfectly identifiable to the blind.

  6. Stereo Camera Based Virtual Cane System with Identifiable Distance Tactile Feedback for the Blind

    PubMed Central

    Kim, Donghun; Kim, Kwangtaek; Lee, Sangyoun

    2014-01-01

    In this paper, we propose a new haptic-assisted virtual cane system operated by a simple finger pointing gesture. The system is developed by two stages: development of visual information delivery assistant (VIDA) with a stereo camera and adding a tactile feedback interface with dual actuators for guidance and distance feedbacks. In the first stage, user's pointing finger is automatically detected using color and disparity data from stereo images and then a 3D pointing direction of the finger is estimated with its geometric and textural features. Finally, any object within the estimated pointing trajectory in 3D space is detected and the distance is then estimated in real time. For the second stage, identifiable tactile signals are designed through a series of identification experiments, and an identifiable tactile feedback interface is developed and integrated into the VIDA system. Our approach differs in that navigation guidance is provided by a simple finger pointing gesture and tactile distance feedbacks are perfectly identifiable to the blind. PMID:24932864

  7. Virtual Reality Robotic Operation Simulations Using MEMICA Haptic System

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Mavroidis, C.; Bouzit, M.; Dolgin, B.; Harm, D. L.; Kopchok, G. E.; White, R.

    2000-01-01

    There is an increasing realization that some tasks can be performed significantly better by humans than robots but, due to associated hazards, distance, etc., only a robot can be employed. Telemedicine is one area where remotely controlled robots can have a major impact by providing urgent care at remote sites. In recent years, remotely controlled robotics has been greatly advanced. The robotic astronaut, "Robonaut," at NASA Johnson Space Center is one such example. Unfortunately, due to the unavailability of force and tactile feedback capability the operator must determine the required action using only visual feedback from the remote site, which limits the tasks that Robonaut can perform. There is a great need for dexterous, fast, accurate teleoperated robots with the operator?s ability to "feel" the environment at the robot's field. Recently, we conceived a haptic mechanism called MEMICA (Remote MEchanical MIrroring using Controlled stiffness and Actuators) that can enable the design of high dexterity, rapid response, and large workspace system. Our team is developing novel MEMICA gloves and virtual reality models to allow the simulation of telesurgery and other applications. The MEMICA gloves are designed to have a high dexterity, rapid response, and large workspace and intuitively mirror the conditions at a virtual site where a robot is simulating the presence of the human operator. The key components of MEMICA are miniature electrically controlled stiffness (ECS) elements and Electrically Controlled Force and Stiffness (ECFS) actuators that are based on the sue of Electro-Rheological Fluids (ERF). In this paper the design of the MEMICA system and initial experimental results are presented.

  8. Absence of modulatory action on haptic height perception with musical pitch

    PubMed Central

    Geronazzo, Michele; Avanzini, Federico; Grassi, Massimo

    2015-01-01

    Although acoustic frequency is not a spatial property of physical objects, in common language, pitch, i.e., the psychological correlated of frequency, is often labeled spatially (i.e., “high in pitch” or “low in pitch”). Pitch-height is known to modulate (and interact with) the response of participants when they are asked to judge spatial properties of non-auditory stimuli (e.g., visual) in a variety of behavioral tasks. In the current study we investigated whether the modulatory action of pitch-height extended to the haptic estimation of height of a virtual step. We implemented a HW/SW setup which is able to render virtual 3D objects (stair-steps) haptically through a PHANTOM device, and to provide real-time continuous auditory feedback depending on the user interaction with the object. The haptic exploration was associated with a sinusoidal tone whose pitch varied as a function of the interaction point's height within (i) a narrower and (ii) a wider pitch range, or (iii) a random pitch variation acting as a control audio condition. Explorations were also performed with no sound (haptic only). Participants were instructed to explore the virtual step freely, and to communicate height estimation by opening their thumb and index finger to mimic the step riser height, or verbally by reporting the height in centimeters of the step riser. We analyzed the role of musical expertise by dividing participants into non-musicians and musicians. Results showed no effects of musical pitch on high-realistic haptic feedback. Overall there is no difference between the two groups in the proposed multimodal conditions. Additionally, we observed a different haptic response distribution between musicians and non-musicians when estimations of the auditory conditions are matched with estimations in the no sound condition. PMID:26441745

  9. Virtual reality robotic telesurgery simulations using MEMICA haptic system

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mavroidis, Constantinos; Bouzit, Mourad; Dolgin, Benjamin; Harm, Deborah L.; Kopchok, George E.; White, Rodney

    2001-01-01

    The authors conceived a haptic mechanism called MEMICA (Remote Mechanical Mirroring using Controlled stiffness and Actuators) that can enable the design of high dexterity, rapid response, and large workspace haptic system. The development of a novel MEMICA gloves and virtual reality models are being explored to allow simulation of telesurgery and other applications. The MEMICA gloves are being designed to provide intuitive mirroring of the conditions at a virtual site where a robot simulates the presence of a human operator. The key components of MEMICA are miniature electrically controlled stiffness (ECS) elements and electrically controlled force and stiffness (ECFS) actuators that are based on the use of Electro-Rheological Fluids (ERF. In this paper the design of the MEMICA system and initial experimental results are presented.

  10. Experimental Study on the Perception Characteristics of Haptic Texture by Multidimensional Scaling.

    PubMed

    Wu, Juan; Li, Na; Liu, Wei; Song, Guangming; Zhang, Jun

    2015-01-01

    Recent works regarding real texture perception demonstrate that physical factors such as stiffness and spatial period play a fundamental role in texture perception. This research used a multidimensional scaling (MDS) analysis to further characterize and quantify the effects of the simulation parameters on haptic texture rendering and perception. In a pilot experiment, 12 haptic texture samples were generated by using a 3-degrees-of-freedom (3-DOF) force-feedback device with varying spatial period, height, and stiffness coefficient parameter values. The subjects' perceptions of the virtual textures indicate that roughness, denseness, flatness and hardness are distinguishing characteristics of texture. In the main experiment, 19 participants rated the dissimilarities of the textures and estimated the magnitudes of their characteristics. The MDS method was used to recover the underlying perceptual space and reveal the significance of the space from the recorded data. The physical parameters and their combinations have significant effects on the perceptual characteristics. A regression model was used to quantitatively analyze the parameters and their effects on the perceptual characteristics. This paper is to illustrate that haptic texture perception based on force feedback can be modeled in two- or three-dimensional space and provide suggestions on improving perception-based haptic texture rendering.

  11. Human detection and discrimination of tactile repeatability, mechanical backlash, and temporal delay in a combined tactile-kinesthetic haptic display system.

    PubMed

    Doxon, Andrew J; Johnson, David E; Tan, Hong Z; Provancher, William R

    2013-01-01

    Many of the devices used in haptics research are over-engineered for the task and are designed with capabilities that go far beyond human perception levels. Designing devices that more closely match the limits of human perception will make them smaller, less expensive, and more useful. However, many device-centric perception thresholds have yet to be evaluated. To this end, three experiments were conducted, using one degree-of-freedom contact location feedback device in combination with a kinesthetic display, to provide a more explicit set of specifications for similar tactile-kinesthetic haptic devices. The first of these experiments evaluated the ability of humans to repeatedly localize tactile cues across the fingerpad. Subjects could localize cues to within 1.3 mm and showed bias toward the center of the fingerpad. The second experiment evaluated the minimum perceptible difference of backlash at the tactile element. Subjects were able to discriminate device backlash in excess of 0.46 mm on low-curvature models and 0.93 mm on high-curvature models. The last experiment evaluated the minimum perceptible difference of system delay between user action and device reaction. Subjects were able to discriminate delays in excess of 61 ms. The results from these studies can serve as the maximum (i.e., most demanding) device specifications for most tactile-kinesthetic haptic systems.

  12. Haptic-based perception-empathy biofeedback system for balance rehabilitation in patients with chronic stroke: Concepts and initial feasibility study.

    PubMed

    Yasuda, Kazuhiro; Saichi, Kenta; Kaibuki, Naomi; Harashima, Hiroaki; Iwata, Hiroyasu

    2018-05-01

    Most individuals have sensory disturbances post stroke, and these deficits contribute to post-stroke balance impairment. The haptic-based biofeedback (BF) system appears to be one of the promising tools for balance rehabilitation in patients with stroke, and the BF system can increase the objectivity of feedback and encouragement than that provided by a therapist. Studies in skill science indicated that feedback or encouragement from a coach or trainer enhances motor learning effect. Nevertheless, the optimal BF system (or its concept) which would refine the interpersonal feedback between patients and therapist has not been proposed. Thus, the purpose of this study was to propose a haptic-based perception-empathy BF system which provides information regarding the patient's center-of-foot pressure (CoP) pattern to the patient and the physical therapist to enhance the motor learning effect and validate the feasibility of this balance-training regimen in patients with chronic stroke. This study used a pre-post design without control group. Nine chronic stroke patients (mean age: 64.4 ± 9.2 years) received a balance-training regimen using this BF system twice a week for 4 weeks. Testing comprised quantitative measures (i.e., CoP) and clinical balance scale (Berg Balance Scale, BBS; Functional Reach Test, FRT; and Timed-Up and Go test, TUG). Post training, patients demonstrated marginally reduced postural spatial variability (i.e., 95% confidence elliptical area), and clinical balance performance significantly improved at post-training. Although the changes in FRT and TUG exceeded the minimal detectable change (MDC), changes in BBS did not reach clinical significance (i.e., smaller than MDC). These results may provide initial knowledge (i.e., beneficial effects, utility and its limitation) of the proposed BF system in designing effective motor learning strategies for stroke rehabilitation. More studies are required addressing limitations due to research design and

  13. Identification of walked-upon materials in auditory, kinesthetic, haptic, and audio-haptic conditions.

    PubMed

    Giordano, Bruno L; Visell, Yon; Yao, Hsin-Yun; Hayward, Vincent; Cooperstock, Jeremy R; McAdams, Stephen

    2012-05-01

    Locomotion generates multisensory information about walked-upon objects. How perceptual systems use such information to get to know the environment remains unexplored. The ability to identify solid (e.g., marble) and aggregate (e.g., gravel) walked-upon materials was investigated in auditory, haptic or audio-haptic conditions, and in a kinesthetic condition where tactile information was perturbed with a vibromechanical noise. Overall, identification performance was better than chance in all experimental conditions and for both solids and the better identified aggregates. Despite large mechanical differences between the response of solids and aggregates to locomotion, for both material categories discrimination was at its worst in the auditory and kinesthetic conditions and at its best in the haptic and audio-haptic conditions. An analysis of the dominance of sensory information in the audio-haptic context supported a focus on the most accurate modality, haptics, but only for the identification of solid materials. When identifying aggregates, response biases appeared to produce a focus on the least accurate modality--kinesthesia. When walking on loose materials such as gravel, individuals do not perceive surfaces by focusing on the most accurate modality, but by focusing on the modality that would most promptly signal postural instabilities.

  14. Palpation imaging using a haptic system for virtual reality applications in medicine.

    PubMed

    Khaled, W; Reichling, S; Bruhns, O T; Boese, H; Baumann, M; Monkman, G; Egersdoerfer, S; Klein, D; Tunayar, A; Freimuth, H; Lorenz, A; Pessavento, A; Ermert, H

    2004-01-01

    In the field of medical diagnosis, there is a strong need to determine mechanical properties of biological tissue, which are of histological and pathological relevance. Malignant tumors are significantly stiffer than surrounding healthy tissue. One of the established diagnosis procedures is the palpation of body organs and tissue. Palpation is used to measure swelling, detect bone fracture, find and measure pulse, or to locate changes in the pathological state of tissue and organs. Current medical practice routinely uses sophisticated diagnostic tests through magnetic resonance imaging (MRI), computed tomography (CT) and ultrasound (US) imaging. However, they cannot provide direct measure of tissue elasticity. Last year we presented the concept of the first haptic sensor actuator system to visualize and reconstruct mechanical properties of tissue using ultrasonic elastography and a haptic display with electrorheological fluids. We developed a real time strain imaging system for tumor diagnosis. It allows biopsies simultaneously to conventional ultrasound B-Mode and strain imaging investigations. We deduce the relative mechanical properties by using finite element simulations and numerical solution models solving the inverse problem. Various modifications on the haptic sensor actuator system have been investigated. This haptic system has the potential of inducing real time substantial forces, using a compact lightweight mechanism which can be applied to numerous areas including intraoperative navigation, telemedicine, teaching and telecommunication.

  15. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.

    PubMed

    Ottensmeyer, M P; Ben-Ur, E; Salisbury, J K

    2000-01-01

    Current efforts in surgical simulation very often focus on creating realistic graphical feedback, but neglect some or all tactile and force (haptic) feedback that a surgeon would normally receive. Simulations that do include haptic feedback do not typically use real tissue compliance properties, favoring estimates and user feedback to determine realism. When tissue compliance data are used, there are virtually no in vivo property measurements to draw upon. Together with the Center for Innovative Minimally Invasive Therapy at the Massachusetts General Hospital, the Haptics Group is developing tools to introduce more comprehensive haptic feedback in laparoscopy simulators and to provide biological tissue material property data for our software simulation. The platform for providing haptic feedback is a PHANToM Haptic Interface, produced by SensAble Technologies, Inc. Our devices supplement the PHANToM to provide for grasping and optionally, for the roll axis of the tool. Together with feedback from the PHANToM, which provides the pitch, yaw and thrust axes of a typical laparoscopy tool, we can recreate all of the haptic sensations experienced during laparoscopy. The devices integrate real laparoscopy toolhandles and a compliant torso model to complete the set of visual and tactile sensations. Biological tissues are known to exhibit non-linear mechanical properties, and change their properties dramatically when removed from a living organism. To measure the properties in vivo, two devices are being developed. The first is a small displacement, 1-D indenter. It will measure the linear tissue compliance (stiffness and damping) over a wide range of frequencies. These data will be used as inputs to a finite element or other model. The second device will be able to deflect tissues in 3-D over a larger range, so that the non-linearities due to changes in the tissue geometry will be measured. This will allow us to validate the performance of the model on large tissue

  16. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback

    PubMed Central

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.

    2014-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N. PMID:25126446

  17. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback.

    PubMed

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S

    2013-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N.

  18. Human-Centered Design and Evaluation of Haptic Cueing for Teleoperation of Multiple Mobile Robots.

    PubMed

    Son, Hyoung Il; Franchi, Antonio; Chuang, Lewis L; Kim, Junsuk; Bulthoff, Heinrich H; Giordano, Paolo Robuffo

    2013-04-01

    In this paper, we investigate the effect of haptic cueing on a human operator's performance in the field of bilateral teleoperation of multiple mobile robots, particularly multiple unmanned aerial vehicles (UAVs). Two aspects of human performance are deemed important in this area, namely, the maneuverability of mobile robots and the perceptual sensitivity of the remote environment. We introduce metrics that allow us to address these aspects in two psychophysical studies, which are reported here. Three fundamental haptic cue types were evaluated. The Force cue conveys information on the proximity of the commanded trajectory to obstacles in the remote environment. The Velocity cue represents the mismatch between the commanded and actual velocities of the UAVs and can implicitly provide a rich amount of information regarding the actual behavior of the UAVs. Finally, the Velocity+Force cue is a linear combination of the two. Our experimental results show that, while maneuverability is best supported by the Force cue feedback, perceptual sensitivity is best served by the Velocity cue feedback. In addition, we show that large gains in the haptic feedbacks do not always guarantee an enhancement in the teleoperator's performance.

  19. Research of the master-slave robot surgical system with the function of force feedback.

    PubMed

    Shi, Yunyong; Zhou, Chaozheng; Xie, Le; Chen, Yongjun; Jiang, Jun; Zhang, Zhenfeng; Deng, Ze

    2017-12-01

    Surgical robots lack force feedback, which may lead to operation errors. In order to improve surgical outcomes, this research developed a new master-slave surgical robot, which was designed with an integrated force sensor. The new structure designed for the master-slave robot employs a force feedback mechanism. A six-dimensional force sensor was mounted on the tip of the slave robot's actuator. Sliding model control was adopted to control the slave robot. According to the movement of the master system manipulated by the surgeon, the slave's movement and the force feedback function were validated. The motion was completed, the standard deviation was calculated, and the force data were detected. Hence, force feedback was realized in the experiment. The surgical robot can help surgeons to complete trajectory motions with haptic sensation. Copyright © 2017 John Wiley & Sons, Ltd.

  20. A haptic-inspired audio approach for structural health monitoring decision-making

    NASA Astrophysics Data System (ADS)

    Mao, Zhu; Todd, Michael; Mascareñas, David

    2015-03-01

    Haptics is the field at the interface of human touch (tactile sensation) and classification, whereby tactile feedback is used to train and inform a decision-making process. In structural health monitoring (SHM) applications, haptic devices have been introduced and applied in a simplified laboratory scale scenario, in which nonlinearity, representing the presence of damage, was encoded into a vibratory manual interface. In this paper, the "spirit" of haptics is adopted, but here ultrasonic guided wave scattering information is transformed into audio (rather than tactile) range signals. After sufficient training, the structural damage condition, including occurrence and location, can be identified through the encoded audio waveforms. Different algorithms are employed in this paper to generate the transformed audio signals and the performance of each encoding algorithms is compared, and also compared with standard machine learning classifiers. In the long run, the haptic decision-making is aiming to detect and classify structural damages in a more rigorous environment, and approaching a baseline-free fashion with embedded temperature compensation.

  1. Perception of synchronization errors in haptic and visual communications

    NASA Astrophysics Data System (ADS)

    Kameyama, Seiji; Ishibashi, Yutaka

    2006-10-01

    This paper deals with a system which conveys the haptic sensation experimented by a user to a remote user. In the system, the user controls a haptic interface device with another remote haptic interface device while watching video. Haptic media and video of a real object which the user is touching are transmitted to another user. By subjective assessment, we investigate the allowable range and imperceptible range of synchronization error between haptic media and video. We employ four real objects and ask each subject whether the synchronization error is perceived or not for each object in the assessment. Assessment results show that we can more easily perceive the synchronization error in the case of haptic media ahead of video than in the case of the haptic media behind the video.

  2. A haptic sensing upgrade for the current EOD robotic fleet

    NASA Astrophysics Data System (ADS)

    Rowe, Patrick

    2014-06-01

    The past decade and a half has seen a tremendous rise in the use of mobile manipulator robotic platforms for bomb inspection and disposal, explosive ordnance disposal, and other extremely hazardous tasks in both military and civilian settings. Skilled operators are able to control these robotic vehicles in amazing ways given the very limited situational awareness obtained from a few on-board camera views. Future generations of robotic platforms will, no doubt, provide some sort of additional force or haptic sensor feedback to further enhance the operator's interaction with the robot, especially when dealing with fragile, unstable, and explosive objects. Unfortunately, the robot operators need this capability today. This paper discusses an approach to provide existing (and future) robotic mobile manipulator platforms, with which trained operators are already familiar and highly proficient, this desired haptic and force feedback capability. The goals of this technology are to be rugged, reliable, and affordable. It should also be able to be applied to a wide range of existing robots with a wide variety of manipulator/gripper sizes and styles. Finally, the presentation of the haptic information to the operator is discussed, given the fact that control devices that physically interact with the operators are not widely available and still in the research stages.

  3. Perception of force and stiffness in the presence of low-frequency haptic noise

    PubMed Central

    Gurari, Netta; Okamura, Allison M.; Kuchenbecker, Katherine J.

    2017-01-01

    Objective This work lays the foundation for future research on quantitative modeling of human stiffness perception. Our goal was to develop a method by which a human’s ability to perceive suprathreshold haptic force stimuli and haptic stiffness stimuli can be affected by adding haptic noise. Methods Five human participants performed a same-different task with a one-degree-of-freedom force-feedback device. Participants used the right index finger to actively interact with variations of force (∼5 and ∼8 N) and stiffness (∼290 N/m) stimuli that included one of four scaled amounts of haptically rendered noise (None, Low, Medium, High). The haptic noise was zero-mean Gaussian white noise that was low-pass filtered with a 2 Hz cut-off frequency; the resulting low-frequency signal was added to the force rendered while the participant interacted with the force and stiffness stimuli. Results We found that the precision with which participants could identify the magnitude of both the force and stiffness stimuli was affected by the magnitude of the low-frequency haptically rendered noise added to the haptic stimulus, as well as the magnitude of the haptic stimulus itself. The Weber fraction strongly correlated with the standard deviation of the low-frequency haptic noise with a Pearson product-moment correlation coefficient of ρ > 0.83. The mean standard deviation of the low-frequency haptic noise in the haptic stimuli ranged from 0.184 N to 1.111 N across the four haptically rendered noise levels, and the corresponding mean Weber fractions spanned between 0.042 and 0.101. Conclusions The human ability to perceive both suprathreshold haptic force and stiffness stimuli degrades in the presence of added low-frequency haptic noise. Future work can use the reported methods to investigate how force perception and stiffness perception may relate, with possible applications in haptic watermarking and in the assessment of the functionality of peripheral pathways in

  4. Does haptic steering guidance instigate speeding? A driving simulator study into causes and remedies.

    PubMed

    Melman, T; de Winter, J C F; Abbink, D A

    2017-01-01

    An important issue in road traffic safety is that drivers show adverse behavioral adaptation (BA) to driver assistance systems. Haptic steering guidance is an upcoming assistance system which facilitates lane-keeping performance while keeping drivers in the loop, and which may be particularly prone to BA. Thus far, experiments on haptic steering guidance have measured driver performance while the vehicle speed was kept constant. The aim of the present driving simulator study was to examine whether haptic steering guidance causes BA in the form of speeding, and to evaluate two types of haptic steering guidance designed not to suffer from BA. Twenty-four participants drove a 1.8m wide car for 13.9km on a curved road, with cones demarcating a single 2.2m narrow lane. Participants completed four conditions in a counterbalanced design: no guidance (Manual), continuous haptic guidance (Cont), continuous guidance that linearly reduced feedback gains from full guidance at 125km/h towards manual control at 130km/h and above (ContRF), and haptic guidance provided only when the predicted lateral position was outside a lateral bandwidth (Band). Participants were familiarized with each condition prior to the experimental runs and were instructed to drive as they normally would while minimizing the number of cone hits. Compared to Manual, the Cont condition yielded a significantly higher driving speed (on average by 7km/h), whereas ContRF and Band did not. All three guidance conditions yielded better lane-keeping performance than Manual, whereas Cont and ContRF yielded lower self-reported workload than Manual. In conclusion, continuous steering guidance entices drivers to increase their speed, thereby diminishing its potential safety benefits. It is possible to prevent BA while retaining safety benefits by making a design adjustment either in lateral (Band) or in longitudinal (ContRF) direction. Copyright © 2016. Published by Elsevier Ltd.

  5. Detection thresholds for small haptic effects

    NASA Astrophysics Data System (ADS)

    Dosher, Jesse A.; Hannaford, Blake

    2002-02-01

    We are interested in finding out whether or not haptic interfaces will be useful in portable and hand held devices. Such systems will have severe constraints on force output. Our first step is to investigate the lower limits at which haptic effects can be perceived. In this paper we report on experiments studying the effects of varying the amplitude, size, shape, and pulse-duration of a haptic feature. Using a specific haptic device we measure the smallest detectable haptics effects, with active exploration of saw-tooth shaped icons sized 3, 4 and 5 mm, a sine-shaped icon 5 mm wide, and static pulses 50, 100, and 150 ms in width. Smooth shaped icons resulted in a detection threshold of approximately 55 mN, almost twice that of saw-tooth shaped icons which had a threshold of 31 mN.

  6. User Acceptance of a Haptic Interface for Learning Anatomy

    ERIC Educational Resources Information Center

    Yeom, Soonja; Choi-Lundberg, Derek; Fluck, Andrew; Sale, Arthur

    2013-01-01

    Visualizing the structure and relationships in three dimensions (3D) of organs is a challenge for students of anatomy. To provide an alternative way of learning anatomy engaging multiple senses, we are developing a force-feedback (haptic) interface for manipulation of 3D virtual organs, using design research methodology, with iterations of system…

  7. Learning in a Virtual Environment Using Haptic Systems for Movement Re-Education: Can This Medium Be Used for Remodeling Other Behaviors and Actions?

    PubMed Central

    Merians, Alma S; Fluet, Gerard G; Qiu, Qinyin; Lafond, Ian; Adamovich, Sergei V

    2011-01-01

    Robotic systems that are interfaced with virtual reality gaming and task simulations are increasingly being developed to provide repetitive intensive practice to promote increased compliance and facilitate better outcomes in rehabilitation post-stroke. A major development in the use of virtual environments (VEs) has been to incorporate tactile information and interaction forces into what was previously an essentially visual experience. Robots of varying complexity are being interfaced with more traditional virtual presentations to provide haptic feedback that enriches the sensory experience and adds physical task parameters. This provides forces that produce biomechanical and neuromuscular interactions with the VE that approximate real-world movement more accurately than visual-only VEs, simulating the weight and force found in upper extremity tasks. The purpose of this article is to present an overview of several systems that are commercially available for ambulation training and for training movement of the upper extremity. We will also report on the system that we have developed (NJIT-RAVR system) that incorporates motivating and challenging haptic feedback effects into VE simulations to facilitate motor recovery of the upper extremity post-stroke. The NJIT-RAVR system trains both the upper arm and the hand. The robotic arm acts as an interface between the participants and the VEs, enabling multiplanar movements against gravity in a three-dimensional workspace. The ultimate question is whether this medium can provide a motivating, challenging, gaming experience with dramatically decreased physical difficulty levels, which would allow for participation by an obese person and facilitate greater adherence to exercise regimes. PMID:21527097

  8. Learning in a virtual environment using haptic systems for movement re-education: can this medium be used for remodeling other behaviors and actions?

    PubMed

    Merians, Alma S; Fluet, Gerard G; Qiu, Qinyin; Lafond, Ian; Adamovich, Sergei V

    2011-03-01

    Robotic systems that are interfaced with virtual reality gaming and task simulations are increasingly being developed to provide repetitive intensive practice to promote increased compliance and facilitate better outcomes in rehabilitation post-stroke. A major development in the use of virtual environments (VEs) has been to incorporate tactile information and interaction forces into what was previously an essentially visual experience. Robots of varying complexity are being interfaced with more traditional virtual presentations to provide haptic feedback that enriches the sensory experience and adds physical task parameters. This provides forces that produce biomechanical and neuromuscular interactions with the VE that approximate real-world movement more accurately than visual-only VEs, simulating the weight and force found in upper extremity tasks. The purpose of this article is to present an overview of several systems that are commercially available for ambulation training and for training movement of the upper extremity. We will also report on the system that we have developed (NJIT-RAVR system) that incorporates motivating and challenging haptic feedback effects into VE simulations to facilitate motor recovery of the upper extremity post-stroke. The NJIT-RAVR system trains both the upper arm and the hand. The robotic arm acts as an interface between the participants and the VEs, enabling multiplanar movements against gravity in a three-dimensional workspace. The ultimate question is whether this medium can provide a motivating, challenging, gaming experience with dramatically decreased physical difficulty levels, which would allow for participation by an obese person and facilitate greater adherence to exercise regimes. © 2011 Diabetes Technology Society.

  9. Structural impact detection with vibro-haptic interfaces

    NASA Astrophysics Data System (ADS)

    Jung, Hwee-Kwon; Park, Gyuhae; Todd, Michael D.

    2016-07-01

    This paper presents a new sensing paradigm for structural impact detection using vibro-haptic interfaces. The goal of this study is to allow humans to ‘feel’ structural responses (impact, shape changes, and damage) and eventually determine health conditions of a structure. The target applications for this study are aerospace structures, in particular, airplane wings. Both hardware and software components are developed to realize the vibro-haptic-based impact detection system. First, L-shape piezoelectric sensor arrays are deployed to measure the acoustic emission data generated by impacts on a wing. Unique haptic signals are then generated by processing the measured acoustic emission data. These haptic signals are wirelessly transmitted to human arms, and with vibro-haptic interface, human pilots could identify impact location, intensity and possibility of subsequent damage initiation. With the haptic interface, the experimental results demonstrate that human could correctly identify such events, while reducing false indications on structural conditions by capitalizing on human’s classification capability. Several important aspects of this study, including development of haptic interfaces, design of optimal human training strategies, and extension of the haptic capability into structural impact detection are summarized in this paper.

  10. Design of a 7-DOF haptic master using a magneto-rheological devices for robot surgery

    NASA Astrophysics Data System (ADS)

    Kang, Seok-Rae; Choi, Seung-Bok; Hwang, Yong-Hoon; Cha, Seung-Woo

    2017-04-01

    This paper presents a 7 degrees-of-freedom (7-DOF) haptic master which is applicable to the robot-assisted minimally invasive surgery (RMIS). By utilizing a controllable magneto-rheological (MR) fluid, the haptic master can provide force information to the surgeon during surgery. The proposed haptic master consists of three degrees motions of X, Y, Z and four degrees motions of the pitch, yaw, roll and grasping. All of them have force feedback capability. The proposed haptic master can generate the repulsive forces or torques by activating MR clutch and MR brake. Both MR clutch and MR brake are designed and manufactured with consideration of the size and output torque which is usable to the robotic surgery. A proportional-integral-derivative (PID) controller is then designed and implemented to achieve torque/force tracking trajectories. It is verified that the proposed haptic master can track well the desired torque and force occurred in the surgical place by controlling the input current applied to MR clutch and brake.

  11. Evaluation of Motor Control Using Haptic Device

    NASA Astrophysics Data System (ADS)

    Nuruki, Atsuo; Kawabata, Takuro; Shimozono, Tomoyuki; Yamada, Masafumi; Yunokuchi, Kazutomo

    When the kinesthesia and the touch act at the same time, such perception is called haptic perception. This sense has the key role in motor information on the force and position control. The haptic perception is important in the field where the evaluation of the motor control is needed. The purpose of this paper is to evaluate the motor control, perception of heaviness and distance in normal and fatigue conditions using psychophysical experiment. We used a haptic device in order to generate precise force and distance, but the precedent of the evaluation system with the haptic device has been few. Therefore, it is another purpose to examine whether the haptic device is useful as evaluation system for the motor control. The psychophysical quantity of force and distance was measured by two kinds of experiments. Eight healthy subjects participated in this study. The stimulation was presented by haptic device [PHANTOM Omni: SensAble Company]. The subjects compared between standard and test stimulation, and answered it had felt which stimulation was strong. In the result of the psychophysical quantity of force, just noticeable difference (JND) had a significant difference, and point of subjective equality (PSE) was not different between normal and muscle fatigue. On the other hand, in the result of the psychophysical quantity of distance, JND and PSE were not difference between normal and muscle fatigue. These results show that control of force was influenced, but control of distance was not influenced in muscle fatigue. Moreover, these results suggested that the haptic device is useful as the evaluation system for the motor control.

  12. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.

    PubMed

    Cuppone, Anna Vera; Squeri, Valentina; Semprini, Marianna; Masia, Lorenzo; Konczak, Jürgen

    2016-01-01

    This study examined the trainability of the proprioceptive sense and explored the relationship between proprioception and motor learning. With vision blocked, human learners had to perform goal-directed wrist movements relying solely on proprioceptive/haptic cues to reach several haptically specified targets. One group received additional somatosensory movement error feedback in form of vibro-tactile cues applied to the skin of the forearm. We used a haptic robotic device for the wrist and implemented a 3-day training regimen that required learners to make spatially precise goal-directed wrist reaching movements without vision. We assessed whether training improved the acuity of the wrist joint position sense. In addition, we checked if sensory learning generalized to the motor domain and improved spatial precision of wrist tracking movements that were not trained. The main findings of the study are: First, proprioceptive acuity of the wrist joint position sense improved after training for the group that received the combined proprioceptive/haptic and vibro-tactile feedback (VTF). Second, training had no impact on the spatial accuracy of the untrained tracking task. However, learners who had received VTF significantly reduced their reliance on haptic guidance feedback when performing the untrained motor task. That is, concurrent VTF was highly salient movement feedback and obviated the need for haptic feedback. Third, VTF can be also provided by the limb not involved in the task. Learners who received VTF to the contralateral limb equally benefitted. In conclusion, somatosensory training can significantly enhance proprioceptive acuity within days when learning is coupled with vibro-tactile sensory cues that provide feedback about movement errors. The observable sensory improvements in proprioception facilitates motor learning and such learning may generalize to the sensorimotor control of the untrained motor tasks. The implications of these findings for

  13. Haptic interfaces: Hardware, software and human performance

    NASA Technical Reports Server (NTRS)

    Srinivasan, Mandayam A.

    1995-01-01

    Virtual environments are computer-generated synthetic environments with which a human user can interact to perform a wide variety of perceptual and motor tasks. At present, most of the virtual environment systems engage only the visual and auditory senses, and not the haptic sensorimotor system that conveys the sense of touch and feel of objects in the environment. Computer keyboards, mice, and trackballs constitute relatively simple haptic interfaces. Gloves and exoskeletons that track hand postures have more interaction capabilities and are available in the market. Although desktop and wearable force-reflecting devices have been built and implemented in research laboratories, the current capabilities of such devices are quite limited. To realize the full promise of virtual environments and teleoperation of remote systems, further developments of haptic interfaces are critical. In this paper, the status and research needs in human haptics, technology development and interactions between the two are described. In particular, the excellent performance characteristics of Phantom, a haptic interface recently developed at MIT, are highlighted. Realistic sensations of single point of contact interactions with objects of variable geometry (e.g., smooth, textured, polyhedral) and material properties (e.g., friction, impedance) in the context of a variety of tasks (e.g., needle biopsy, switch panels) achieved through this device are described and the associated issues in haptic rendering are discussed.

  14. Design and Calibration of a New 6 DOF Haptic Device

    PubMed Central

    Qin, Huanhuan; Song, Aiguo; Liu, Yuqing; Jiang, Guohua; Zhou, Bohe

    2015-01-01

    For many applications such as tele-operational robots and interactions with virtual environments, it is better to have performance with force feedback than without. Haptic devices are force reflecting interfaces. They can also track human hand positions simultaneously. A new 6 DOF (degree-of-freedom) haptic device was designed and calibrated in this study. It mainly contains a double parallel linkage, a rhombus linkage, a rotating mechanical structure and a grasping interface. Benefited from the unique design, it is a hybrid structure device with a large workspace and high output capability. Therefore, it is capable of multi-finger interactions. Moreover, with an adjustable base, operators can change different postures without interrupting haptic tasks. To investigate the performance regarding position tracking accuracy and static output forces, we conducted experiments on a three-dimensional electric sliding platform and a digital force gauge, respectively. Displacement errors and force errors are calculated and analyzed. To identify the capability and potential of the device, four application examples were programmed. PMID:26690449

  15. Feel, imagine and learn! - Haptic augmented simulation and embodied instruction in physics learning

    NASA Astrophysics Data System (ADS)

    Han, In Sook

    The purpose of this study was to investigate the potentials and effects of an embodied instructional model in abstract concept learning. This embodied instructional process included haptic augmented educational simulation as an instructional tool to provide perceptual experiences as well as further instruction to activate those previous experiences with perceptual simulation. In order to verify the effectiveness of this instructional model, haptic augmented simulation with three different haptic levels (force and kinesthetic, kinesthetic, and non-haptic) and instructional materials (narrative and expository) were developed and their effectiveness tested. 220 fifth grade students were recruited to participate in the study from three elementary schools located in lower SES neighborhoods in Bronx, New York. The study was conducted for three consecutive weeks in regular class periods. The data was analyzed using ANCOVA, ANOVA, and MANOVA. The result indicates that haptic augmented simulations, both the force and kinesthetic and the kinesthetic simulations, was more effective than the non-haptic simulation in providing perceptual experiences and helping elementary students to create multimodal representations about machines' movements. However, in most cases, force feedback was needed to construct a fully loaded multimodal representation that could be activated when the instruction with less sensory modalities was being given. In addition, the force and kinesthetic simulation was effective in providing cognitive grounding to comprehend a new learning content based on the multimodal representation created with enhanced force feedback. Regarding the instruction type, it was found that the narrative and the expository instructions did not make any difference in activating previous perceptual experiences. These findings suggest that it is important to help students to make a solid cognitive ground with perceptual anchor. Also, sequential abstraction process would deepen

  16. A predictive bone drilling force model for haptic rendering with experimental validation using fresh cadaveric bone.

    PubMed

    Lin, Yanping; Chen, Huajiang; Yu, Dedong; Zhang, Ying; Yuan, Wen

    2017-01-01

    Bone drilling simulators with virtual and haptic feedback provide a safe, cost-effective and repeatable alternative to traditional surgical training methods. To develop such a simulator, accurate haptic rendering based on a force model is required to feedback bone drilling forces based on user input. Current predictive bone drilling force models based on bovine bones with various drilling conditions and parameters are not representative of the bone drilling process in bone surgery. The objective of this study was to provide a bone drilling force model for haptic rendering based on calibration and validation experiments in fresh cadaveric bones with different bone densities. Using a commonly used drill bit geometry (2 mm diameter), feed rates (20-60 mm/min) and spindle speeds (4000-6000 rpm) in orthognathic surgeries, the bone drilling forces of specimens from two groups were measured and the calibration coefficients of the specific normal and frictional pressures were determined. The comparison of the predicted forces and the measured forces from validation experiments with a large range of feed rates and spindle speeds demonstrates that the proposed bone drilling forces can predict the trends and average forces well. The presented bone drilling force model can be used for haptic rendering in surgical simulators.

  17. Effects of Visual Force Feedback on Robot-Assisted Surgical Task Performance

    PubMed Central

    Reiley, Carol E.; Akinbiyi, Takintope; Burschka, Darius; Chang, David C.; Okamura, Allison M.; Yuh, David D.

    2009-01-01

    Background Direct haptic (force or tactile) feedback is negligible in current surgical robotic systems. The relevance of haptic feedback in robot-assisted performances of surgical tasks is controversial. We studied the effects of visual force feedback (VFF), a haptic feedback surrogate, on tying surgical knots with fine sutures similar to those used in cardiovascular surgery. Methods Using a modified da Vinci robotic system (Intuitive Surgical, Inc.) equipped with force-sensing instrument tips and real-time VFF overlays in the console image, ten surgeons each tied 10 knots with and 10 knots without VFF. Four surgeons had significant prior da Vinci experience while the remaining six surgeons did not. Performance parameters, including suture breakage and secure knots, peak and standard deviation of applied forces, and completion times using 5-0 silk sutures were recorded. Chi-square and Student’s t-test analyses determined differences between groups. Results Among surgeon subjects with robotic experience, no differences in measured performance parameters were found between robot-assisted knot ties executed with and without VFF. Among surgeons without robotic experience, however, VFF was associated with lower suture breakage rates, peak applied forces, and standard deviations of applied forces. VFF did not impart differences in knot completion times or loose knots for either surgeon group. Conclusions VFF resulted in reduced suture breakage, lower forces, and decreased force inconsistencies among novice robotic surgeons, although elapsed time and knot quality were unaffected. In contrast, VFF did not affect these metrics among experienced da Vinci surgeons. These results suggest that VFF primarily benefits novice robot-assisted surgeons, with diminishing benefits among experienced surgeons. PMID:18179942

  18. Real-time haptic cutting of high-resolution soft tissues.

    PubMed

    Wu, Jun; Westermann, Rüdiger; Dick, Christian

    2014-01-01

    We present our systematic efforts in advancing the computational performance of physically accurate soft tissue cutting simulation, which is at the core of surgery simulators in general. We demonstrate a real-time performance of 15 simulation frames per second for haptic soft tissue cutting of a deformable body at an effective resolution of 170,000 finite elements. This is achieved by the following innovative components: (1) a linked octree discretization of the deformable body, which allows for fast and robust topological modifications of the simulation domain, (2) a composite finite element formulation, which thoroughly reduces the number of simulation degrees of freedom and thus enables to carefully balance simulation performance and accuracy, (3) a highly efficient geometric multigrid solver for solving the linear systems of equations arising from implicit time integration, (4) an efficient collision detection algorithm that effectively exploits the composition structure, and (5) a stable haptic rendering algorithm for computing the feedback forces. Considering that our method increases the finite element resolution for physically accurate real-time soft tissue cutting simulation by an order of magnitude, our technique has a high potential to significantly advance the realism of surgery simulators.

  19. A haptic pedal for surgery assistance.

    PubMed

    Díaz, Iñaki; Gil, Jorge Juan; Louredo, Marcos

    2014-09-01

    The research and development of mechatronic aids for surgery is a persistent challenge in the field of robotic surgery. This paper presents a new haptic pedal conceived to assist surgeons in the operating room by transmitting real-time surgical information through the foot. An effective human-robot interaction system for medical practice must exchange appropriate information with the operator as quickly and accurately as possible. Moreover, information must flow through the appropriate sensory modalities for a natural and simple interaction. However, users of current robotic systems might experience cognitive overload and be increasingly overwhelmed by data streams from multiple modalities. A new haptic channel is thus explored to complement and improve existing systems. A preliminary set of experiments has been carried out to evaluate the performance of the proposed system in a virtual surgical drilling task. The results of the experiments show the effectiveness of the haptic pedal in providing surgical information through the foot. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Intact haptic priming in normal aging and Alzheimer's disease: evidence for dissociable memory systems.

    PubMed

    Ballesteros, Soledad; Reales, José Manuel

    2004-01-01

    This study is the first to report complete priming in Alzheimer's disease (AD) patients and older control subjects for objects presented haptically. To investigate possible dissociations between implicit and explicit objects representations, young adults, Alzheimer's patients, and older controls performed a speeded object naming task followed by a recognition task. Similar haptic priming was exhibited by the three groups, although young adults responded faster than the two older groups. Furthermore, there was no difference in performance between the two healthy groups. On the other hand, younger and older healthy adults did not differ on explicit recognition while, as expected, AD patients were highly impaired. The double dissociation suggests that different memory systems mediate both types of memory tasks. The preservation of intact haptic priming in AD provides strong support to the idea that object implicit memory is mediated by a memory system that is different from the medial-temporal diencephalic system underlying explicit memory, which is impaired early in AD. Recent imaging and behavioral studies suggest that the implicit memory system may depend on extrastriate areas of the occipital cortex although somatosensory cortical mechanisms may also be involved.

  1. Haptic Distal Spatial Perception Mediated by Strings: Haptic "Looming"

    ERIC Educational Resources Information Center

    Cabe, Patrick A.

    2011-01-01

    Five experiments tested a haptic analog of optical looming, demonstrating string-mediated haptic distal spatial perception. Horizontally collinear hooks supported a weighted string held taut by a blindfolded participant's finger midway between the hooks. At the finger, the angle between string segments increased as the finger approached…

  2. Preserved Haptic Shape Processing after Bilateral LOC Lesions.

    PubMed

    Snow, Jacqueline C; Goodale, Melvyn A; Culham, Jody C

    2015-10-07

    The visual and haptic perceptual systems are understood to share a common neural representation of object shape. A region thought to be critical for recognizing visual and haptic shape information is the lateral occipital complex (LOC). We investigated whether LOC is essential for haptic shape recognition in humans by studying behavioral responses and brain activation for haptically explored objects in a patient (M.C.) with bilateral lesions of the occipitotemporal cortex, including LOC. Despite severe deficits in recognizing objects using vision, M.C. was able to accurately recognize objects via touch. M.C.'s psychophysical response profile to haptically explored shapes was also indistinguishable from controls. Using fMRI, M.C. showed no object-selective visual or haptic responses in LOC, but her pattern of haptic activation in other brain regions was remarkably similar to healthy controls. Although LOC is routinely active during visual and haptic shape recognition tasks, it is not essential for haptic recognition of object shape. The lateral occipital complex (LOC) is a brain region regarded to be critical for recognizing object shape, both in vision and in touch. However, causal evidence linking LOC with haptic shape processing is lacking. We studied recognition performance, psychophysical sensitivity, and brain response to touched objects, in a patient (M.C.) with extensive lesions involving LOC bilaterally. Despite being severely impaired in visual shape recognition, M.C. was able to identify objects via touch and she showed normal sensitivity to a haptic shape illusion. M.C.'s brain response to touched objects in areas of undamaged cortex was also very similar to that observed in neurologically healthy controls. These results demonstrate that LOC is not necessary for recognizing objects via touch. Copyright © 2015 the authors 0270-6474/15/3513745-16$15.00/0.

  3. a New ER Fluid Based Haptic Actuator System for Virtual Reality

    NASA Astrophysics Data System (ADS)

    Böse, H.; Baumann, M.; Monkman, G. J.; Egersdörfer, S.; Tunayar, A.; Freimuth, H.; Ermert, H.; Khaled, W.

    The concept and some steps in the development of a new actuator system which enables the haptic perception of mechanically inhomogeneous virtual objects are introduced. The system consists of a two-dimensional planar array of actuator elements containing an electrorheological (ER) fluid. When a user presses his fingers onto the surface of the actuator array, he perceives locally variable resistance forces generated by vertical pistons which slide in the ER fluid through the gaps between electrode pairs. The voltage in each actuator element can be individually controlled by a novel sophisticated switching technology based on optoelectric gallium arsenide elements. The haptic information which is represented at the actuator array can be transferred from a corresponding sensor system based on ultrasonic elastography. The combined sensor-actuator system may serve as a technology platform for various applications in virtual reality, like telemedicine where the information on the consistency of tissue of a real patient is detected by the sensor part and recorded by the actuator part at a remote location.

  4. Teaching bovine abdominal anatomy: use of a haptic simulator.

    PubMed

    Kinnison, Tierney; Forrest, Neil David; Frean, Stephen Philip; Baillie, Sarah

    2009-01-01

    Traditional methods of teaching anatomy to undergraduate medical and veterinary students are being challenged and need to adapt to modern concerns and requirements. There is a move away from the use of cadavers to new technologies as a way of complementing the traditional approaches and addressing resource and ethical problems. Haptic (touch) technology, which allows the student to feel a 3D computer-generated virtual environment, provides a novel way to address some of these challenges. To evaluate the practicalities and usefulness of a haptic simulator, first year veterinary students at the Royal Veterinary College, University of London, were taught basic bovine abdominal anatomy using a rectal palpation simulator: "The Haptic Cow." Over two days, 186 students were taught in small groups and 184 provided feedback via a questionnaire. The results were positive; the majority of students considered that the simulator had been useful for appreciating both the feel and location of key internal anatomical structures, had helped with their understanding of bovine abdominal anatomy and 3D visualization, and the tutorial had been enjoyable. The students were mostly in favor of the small group tutorial format, but some requested more time on the simulator. The findings indicate that the haptic simulator is an engaging way of teaching bovine abdominal anatomy to a large number of students in an efficient manner without using cadavers, thereby addressing some of the current challenges in anatomy teaching.

  5. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model

    PubMed Central

    Konstantinova, Jelizaveta; Xu, Guanghua; He, Bo; Aminzadeh, Vahid; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2017-01-01

    Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation. PMID:28248996

  6. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model.

    PubMed

    Li, Min; Konstantinova, Jelizaveta; Xu, Guanghua; He, Bo; Aminzadeh, Vahid; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2017-01-01

    Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.

  7. A review of haptic simulator for oral and maxillofacial surgery based on virtual reality.

    PubMed

    Chen, Xiaojun; Hu, Junlei

    2018-06-01

    Traditional medical training in oral and maxillofacial surgery (OMFS) may be limited by its low efficiency and high price due to the shortage of cadaver resources. With the combination of visual rendering and feedback force, surgery simulators become increasingly popular in hospitals and medical schools as an alternative to the traditional training. Areas covered: The major goal of this review is to provide a comprehensive reference source of current and future developments of haptic OMFS simulators based on virtual reality (VR) for relevant researchers. Expert commentary: Visual rendering, haptic rendering, tissue deformation, and evaluation are key components of haptic surgery simulator based on VR. Compared with traditional medical training, virtual and tactical fusion of virtual environment in surgery simulator enables considerably vivid sensation, and the operators have more opportunities to practice surgical skills and receive objective evaluation as reference.

  8. Mastoidectomy simulation with combined visual and haptic feedback.

    PubMed

    Agus, Marco; Giachetti, Andrea; Gobbetti, Enrico; Zanetti, Gianluigi; Zorcolo, Antonio; John, Nigel W; Stone, Robert J

    2002-01-01

    Mastoidectomy is one of the most common surgical procedures relating to the petrous bone. In this paper we describe our preliminary results in the realization of a virtual reality mastoidectomy simulator. Our system is designed to work on patient-specific volumetric object models directly derived from 3D CT and MRI images. The paper summarizes the detailed task analysis performed in order to define the system requirements, introduces the architecture of the prototype simulator, and discusses the initial feedback received from selected end users.

  9. End-to-End Flow Control for Visual-Haptic Communication under Bandwidth Change

    NASA Astrophysics Data System (ADS)

    Yashiro, Daisuke; Tian, Dapeng; Yakoh, Takahiro

    This paper proposes an end-to-end flow controller for visual-haptic communication. A visual-haptic communication system transmits non-real-time packets, which contain large-size visual data, and real-time packets, which contain small-size haptic data. When the transmission rate of visual data exceeds the communication bandwidth, the visual-haptic communication system becomes unstable owing to buffer overflow. To solve this problem, an end-to-end flow controller is proposed. This controller determines the optimal transmission rate of visual data on the basis of the traffic conditions, which are estimated by the packets for haptic communication. Experimental results confirm that in the proposed method, a short packet-sending interval and a short delay are achieved under bandwidth change, and thus, high-precision visual-haptic communication is realized.

  10. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.

    PubMed

    Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama

    2013-01-01

    A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration.

  11. Force Control and Nonlinear Master-Slave Force Profile to Manage an Admittance Type Multi-Fingered Haptic User Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony L. Crawford

    2012-08-01

    Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in remote and/or hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space to name a few. In order to achieve this end the research presented in this paper has developed an admittance type exoskeleton like multi-fingered haptic hand user interface that secures the user’s palm and provides 3-dimensional force feedback to the user’s fingertips. Atypical to conventional haptic hand user interfaces that limit themselves to integrating the human hand’s characteristics just into the system’smore » mechanical design this system also perpetuates that inspiration into the designed user interface’s controller. This is achieved by manifesting the property differences of manipulation and grasping activities as they pertain to the human hand into a nonlinear master-slave force relationship. The results presented in this paper show that the admittance-type system has sufficient bandwidth that it appears nearly transparent to the user when the user is in free motion and when the system is subjected to a manipulation task, increased performance is achieved using the nonlinear force relationship compared to the traditional linear scaling techniques implemented in the vast majority of systems.« less

  12. Grounded Learning Experience: Helping Students Learn Physics through Visuo-Haptic Priming and Instruction

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Chieh Douglas

    In this dissertation, I investigate the effects of a grounded learning experience on college students' mental models of physics systems. The grounded learning experience consisted of a priming stage and an instruction stage, and within each stage, one of two different types of visuo-haptic representation was applied: visuo-gestural simulation (visual modality and gestures) and visuo-haptic simulation (visual modality, gestures, and somatosensory information). A pilot study involving N = 23 college students examined how using different types of visuo-haptic representation in instruction affected people's mental model construction for physics systems. Participants' abilities to construct mental models were operationalized through their pretest-to-posttest gain scores for a basic physics system and their performance on a transfer task involving an advanced physics system. Findings from this pilot study revealed that, while both simulations significantly improved participants' mental modal construction for physics systems, visuo-haptic simulation was significantly better than visuo-gestural simulation. In addition, clinical interviews suggested that participants' mental model construction for physics systems benefited from receiving visuo-haptic simulation in a tutorial prior to the instruction stage. A dissertation study involving N = 96 college students examined how types of visuo-haptic representation in different applications support participants' mental model construction for physics systems. Participant's abilities to construct mental models were again operationalized through their pretest-to-posttest gain scores for a basic physics system and their performance on a transfer task involving an advanced physics system. Participants' physics misconceptions were also measured before and after the grounded learning experience. Findings from this dissertation study not only revealed that visuo-haptic simulation was significantly more effective in promoting mental model

  13. Functional Contour-following via Haptic Perception and Reinforcement Learning.

    PubMed

    Hellman, Randall B; Tekin, Cem; van der Schaar, Mihaela; Santos, Veronica J

    2018-01-01

    Many tasks involve the fine manipulation of objects despite limited visual feedback. In such scenarios, tactile and proprioceptive feedback can be leveraged for task completion. We present an approach for real-time haptic perception and decision-making for a haptics-driven, functional contour-following task: the closure of a ziplock bag. This task is challenging for robots because the bag is deformable, transparent, and visually occluded by artificial fingertip sensors that are also compliant. A deep neural net classifier was trained to estimate the state of a zipper within a robot's pinch grasp. A Contextual Multi-Armed Bandit (C-MAB) reinforcement learning algorithm was implemented to maximize cumulative rewards by balancing exploration versus exploitation of the state-action space. The C-MAB learner outperformed a benchmark Q-learner by more efficiently exploring the state-action space while learning a hard-to-code task. The learned C-MAB policy was tested with novel ziplock bag scenarios and contours (wire, rope). Importantly, this work contributes to the development of reinforcement learning approaches that account for limited resources such as hardware life and researcher time. As robots are used to perform complex, physically interactive tasks in unstructured or unmodeled environments, it becomes important to develop methods that enable efficient and effective learning with physical testbeds.

  14. Electrorheological Fluid Based Force Feedback Device

    NASA Technical Reports Server (NTRS)

    Pfeiffer, Charles; Bar-Cohen, Yoseph; Mavroidis, Constantinos; Dolgin, Benjamin

    1999-01-01

    Parallel to the efforts to develop fully autonomous robots, it is increasingly being realized that there are applications where it is essential to have a fully controlled robot and "feel" its operating conditions, i.e. telepresence. This trend is a result of the increasing efforts to address tasks where humans can perform significantly better but, due to associated hazards, distance, physical limitations and other causes, only robots can be employed to perform these tasks. Such robots need to be assisted by a human that remotely controls the operation. To address the goal of operating robots as human surrogates, the authors launched a study of mechanisms that provide mechanical feedback. For this purpose, electrorheological fluids (ERF) are being investigated for the potential application as miniature haptic devices. This family of electroactive fluids has the property of changing the viscosity during electrical stimulation. Consequently, ERF can be used to produce force feedback haptic devices for tele-operated control of medical and space robotic systems. Forces applied at the robot end-effector due to a compliant environment are reflected to the user using an ERF device where a change in the system viscosity will occur proportionally to the transmitted force. Analytical model and control algorithms are being developed taking into account the non-linearities of these type of devices. This paper will describe the concept and the developed mechanism of ERF based force feedback. The test process and the physical properties of this device will be described and the results of preliminary tests will be presented.

  15. Perceptual grouping determines haptic contextual modulation.

    PubMed

    Overvliet, K E; Sayim, B

    2016-09-01

    Since the early phenomenological demonstrations of Gestalt principles, one of the major challenges of Gestalt psychology has been to quantify these principles. Here, we show that contextual modulation, i.e. the influence of context on target perception, can be used as a tool to quantify perceptual grouping in the haptic domain, similar to the visual domain. We investigated the influence of target-flanker grouping on performance in haptic vernier offset discrimination. We hypothesized that when, despite the apparent differences between vision and haptics, similar grouping principles are operational, a similar pattern of flanker interference would be observed in the haptic as in the visual domain. Participants discriminated the offset of a haptic vernier. The vernier was flanked by different flanker configurations: no flankers, single flanking lines, 10 flanking lines, rectangles and single perpendicular lines, varying the degree to which the vernier grouped with the flankers. Additionally, we used two different flanker widths (same width as and narrower than the target), again to vary target-flanker grouping. Our results show a clear effect of flankers: performance was much better when the vernier was presented alone compared to when it was presented with flankers. In the majority of flanker configurations, grouping between the target and the flankers determined the strength of interference, similar to the visual domain. However, in the same width rectangular flanker condition we found aberrant results. We discuss the results of our study in light of similarities and differences between vision and haptics and the interaction between different grouping principles. We conclude that in haptics, similar organization principles apply as in visual perception and argue that grouping and Gestalt are key organization principles not only of vision, but of the perceptual system in general. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Mechanical model of orthopaedic drilling for augmented-haptics-based training.

    PubMed

    Pourkand, Ashkan; Zamani, Naghmeh; Grow, David

    2017-10-01

    In this study, augmented-haptic feedback is used to combine a physical object with virtual elements in order to simulate anatomic variability in bone. This requires generating levels of force/torque consistent with clinical bone drilling, which exceed the capabilities of commercially available haptic devices. Accurate total force generation is facilitated by a predictive model of axial force during simulated orthopaedic drilling. This model is informed by kinematic data collected while drilling into synthetic bone samples using an instrumented linkage attached to the orthopaedic drill. Axial force is measured using a force sensor incorporated into the bone fixture. A nonlinear function, relating force to axial position and velocity, was used to fit the data. The normalized root-mean-square error (RMSE) of forces predicted by the model compared to those measured experimentally was 0.11 N across various bones with significant differences in geometry and density. This suggests that a predictive model can be used to capture relevant variations in the thickness and hardness of cortical and cancellous bone. The practical performance of this approach is measured using the Phantom Premium haptic device, with some required customizations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Introduction to haptics for neurosurgeons.

    PubMed

    L'Orsa, Rachael; Macnab, Chris J B; Tavakoli, Mahdi

    2013-01-01

    Robots are becoming increasingly relevant to neurosurgeons, extending a neurosurgeon's physical capabilities, improving navigation within the surgical landscape when combined with advanced imaging, and propelling the movement toward minimally invasive surgery. Most surgical robots, however, isolate surgeons from the full range of human senses during a procedure. This forces surgeons to rely on vision alone for guidance through the surgical corridor, which limits the capabilities of the system, requires significant operator training, and increases the surgeon's workload. Incorporating haptics into these systems, ie, enabling the surgeon to "feel" forces experienced by the tool tip of the robot, could render these limitations obsolete by making the robot feel more like an extension of the surgeon's own body. Although the use of haptics in neurosurgical robots is still mostly the domain of research, neurosurgeons who keep abreast of this emerging field will be more prepared to take advantage of it as it becomes more prevalent in operating theaters. Thus, this article serves as an introduction to the field of haptics for neurosurgeons. We not only outline the current and future benefits of haptics but also introduce concepts in the fields of robotic technology and computer control. This knowledge will allow readers to be better aware of limitations in the technology that can affect performance and surgical outcomes, and "knowing the right questions to ask" will be invaluable for surgeons who have purchasing power within their departments.

  18. Factors Influencing Undergraduate Students' Acceptance of a Haptic Interface for Learning Gross Anatomy

    ERIC Educational Resources Information Center

    Yeom, Soonja; Choi-Lundberg, Derek L.; Fluck, Andrew Edward; Sale, Arthur

    2017-01-01

    Purpose: This study aims to evaluate factors influencing undergraduate students' acceptance of a computer-aided learning resource using the Phantom Omni haptic stylus to enable rotation, touch and kinaesthetic feedback and display of names of three-dimensional (3D) human anatomical structures on a visual display. Design/methodology/approach: The…

  19. Active skin as new haptic interface

    NASA Astrophysics Data System (ADS)

    Vuong, Nguyen Huu Lam; Kwon, Hyeok Yong; Chuc, Nguyen Huu; Kim, Duksang; An, Kuangjun; Phuc, Vuong Hong; Moon, Hyungpil; Koo, Jachoon; Lee, Youngkwan; Nam, Jae-Do; Choi, Hyouk Ryeol

    2010-04-01

    In this paper, we present a new haptic interface, called "active skin", which is configured with a tactile sensor and a tactile stimulator in single haptic cell, and multiple haptic cells are embedded in a dielectric elastomer. The active skin generates a wide variety of haptic feel in response to the touch by synchronizing the sensor and the stimulator. In this paper, the design of the haptic cell is derived via iterative analysis and design procedures. A fabrication method dedicated to the proposed device is investigated and a controller to drive multiple haptic cells is developed. In addition, several experiments are performed to evaluate the performance of the active skin.

  20. The contributions of vision and haptics to reaching and grasping

    PubMed Central

    Stone, Kayla D.; Gonzalez, Claudia L. R.

    2015-01-01

    This review aims to provide a comprehensive outlook on the sensory (visual and haptic) contributions to reaching and grasping. The focus is on studies in developing children, normal, and neuropsychological populations, and in sensory-deprived individuals. Studies have suggested a right-hand/left-hemisphere specialization for visually guided grasping and a left-hand/right-hemisphere specialization for haptically guided object recognition. This poses the interesting possibility that when vision is not available and grasping relies heavily on the haptic system, there is an advantage to use the left hand. We review the evidence for this possibility and dissect the unique contributions of the visual and haptic systems to grasping. We ultimately discuss how the integration of these two sensory modalities shape hand preference. PMID:26441777

  1. Development of a virtual reality haptic Veress needle insertion simulator for surgical skills training.

    PubMed

    Okrainec, A; Farcas, M; Henao, O; Choy, I; Green, J; Fotoohi, M; Leslie, R; Wight, D; Karam, P; Gonzalez, N; Apkarian, J

    2009-01-01

    The Veress needle is the most commonly used technique for creating the pneumoperitoneum at the start of a laparoscopic surgical procedure. Inserting the Veress needle correctly is crucial since errors can cause significant harm to patients. Unfortunately, this technique can be difficult to teach since surgeons rely heavily on tactile feedback while advancing the needle through the various layers of the abdominal wall. This critical step in laparoscopy, therefore, can be challenging for novice trainees to learn without adequate opportunities to practice in a safe environment with no risk of injury to patients. To address this issue, we have successfully developed a prototype of a virtual reality haptic needle insertion simulator using the tactile feedback of 22 surgeons to set realistic haptic parameters. A survey of these surgeons concluded that our device appeared and felt realistic, and could potentially be a useful tool for teaching the proper technique of Veress needle insertion.

  2. A brain-computer interface with vibrotactile biofeedback for haptic information.

    PubMed

    Chatterjee, Aniruddha; Aggarwal, Vikram; Ramos, Ander; Acharya, Soumyadipta; Thakor, Nitish V

    2007-10-17

    It has been suggested that Brain-Computer Interfaces (BCI) may one day be suitable for controlling a neuroprosthesis. For closed-loop operation of BCI, a tactile feedback channel that is compatible with neuroprosthetic applications is desired. Operation of an EEG-based BCI using only vibrotactile feedback, a commonly used method to convey haptic senses of contact and pressure, is demonstrated with a high level of accuracy. A Mu-rhythm based BCI using a motor imagery paradigm was used to control the position of a virtual cursor. The cursor position was shown visually as well as transmitted haptically by modulating the intensity of a vibrotactile stimulus to the upper limb. A total of six subjects operated the BCI in a two-stage targeting task, receiving only vibrotactile biofeedback of performance. The location of the vibration was also systematically varied between the left and right arms to investigate location-dependent effects on performance. Subjects are able to control the BCI using only vibrotactile feedback with an average accuracy of 56% and as high as 72%. These accuracies are significantly higher than the 15% predicted by random chance if the subject had no voluntary control of their Mu-rhythm. The results of this study demonstrate that vibrotactile feedback is an effective biofeedback modality to operate a BCI using motor imagery. In addition, the study shows that placement of the vibrotactile stimulation on the biceps ipsilateral or contralateral to the motor imagery introduces a significant bias in the BCI accuracy. This bias is consistent with a drop in performance generated by stimulation of the contralateral limb. Users demonstrated the capability to overcome this bias with training.

  3. Design of a 4-DOF MR haptic master for application to robot surgery: virtual environment work

    NASA Astrophysics Data System (ADS)

    Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok

    2014-09-01

    This paper presents the design and control performance of a novel type of 4-degrees-of-freedom (4-DOF) haptic master in cyberspace for a robot-assisted minimally invasive surgery (RMIS) application. By using a controllable magnetorheological (MR) fluid, the proposed haptic master can have a feedback function for a surgical robot. Due to the difficulty in utilizing real human organs in the experiment, the cyberspace that features the virtual object is constructed to evaluate the performance of the haptic master. In order to realize the cyberspace, a volumetric deformable object is represented by a shape-retaining chain-linked (S-chain) model, which is a fast volumetric model and is suitable for real-time applications. In the haptic architecture for an RMIS application, the desired torque and position induced from the virtual object of the cyberspace and the haptic master of real space are transferred to each other. In order to validate the superiority of the proposed master and volumetric model, a tracking control experiment is implemented with a nonhomogenous volumetric cubic object to demonstrate that the proposed model can be utilized in real-time haptic rendering architecture. A proportional-integral-derivative (PID) controller is then designed and empirically implemented to accomplish the desired torque trajectories. It has been verified from the experiment that tracking the control performance for torque trajectories from a virtual slave can be successfully achieved.

  4. Telerobotic Haptic Exploration in Art Galleries and Museums for Individuals with Visual Impairments.

    PubMed

    Park, Chung Hyuk; Ryu, Eun-Seok; Howard, Ayanna M

    2015-01-01

    This paper presents a haptic telepresence system that enables visually impaired users to explore locations with rich visual observation such as art galleries and museums by using a telepresence robot, a RGB-D sensor (color and depth camera), and a haptic interface. The recent improvement on RGB-D sensors has enabled real-time access to 3D spatial information in the form of point clouds. However, the real-time representation of this data in the form of tangible haptic experience has not been challenged enough, especially in the case of telepresence for individuals with visual impairments. Thus, the proposed system addresses the real-time haptic exploration of remote 3D information through video encoding and real-time 3D haptic rendering of the remote real-world environment. This paper investigates two scenarios in haptic telepresence, i.e., mobile navigation and object exploration in a remote environment. Participants with and without visual impairments participated in our experiments based on the two scenarios, and the system performance was validated. In conclusion, the proposed framework provides a new methodology of haptic telepresence for individuals with visual impairments by providing an enhanced interactive experience where they can remotely access public places (art galleries and museums) with the aid of haptic modality and robotic telepresence.

  5. Haptic Exploration in Humans and Machines: Attribute Integration and Machine Recognition/Implementation.

    DTIC Science & Technology

    1988-04-30

    side it necessary and Identify’ by’ block n~nmbot) haptic hand, touch , vision, robot, object recognition, categorization 20. AGSTRPACT (Continue an...established that the haptic system has remarkable capabilities for object recognition. We define haptics as purposive touch . The basic tactual system...gathered ratings of the importance of dimensions for categorizing common objects by touch . Texture and hardness ratings strongly co-vary, which is

  6. Real-time, haptics-enabled simulator for probing ex vivo liver tissue.

    PubMed

    Lister, Kevin; Gao, Zhan; Desai, Jaydev P

    2009-01-01

    The advent of complex surgical procedures has driven the need for realistic surgical training simulators. Comprehensive simulators that provide realistic visual and haptic feedback during surgical tasks are required to familiarize surgeons with the procedures they are to perform. Complex organ geometry inherent to biological tissues and intricate material properties drive the need for finite element methods to assure accurate tissue displacement and force calculations. Advances in real-time finite element methods have not reached the state where they are applicable to soft tissue surgical simulation. Therefore a real-time, haptics-enabled simulator for probing of soft tissue has been developed which utilizes preprocessed finite element data (derived from accurate constitutive model of the soft-tissue obtained from carefully collected experimental data) to accurately replicate the probing task in real-time.

  7. Haptic wearables as sensory replacement, sensory augmentation and trainer - a review.

    PubMed

    Shull, Peter B; Damian, Dana D

    2015-07-20

    Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful electronics have enabled the recent development of wearable systems aimed to improve function for individuals with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn devices that interact with skin directly or through clothing and can be used in natural environments outside a laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This review found that wearable haptic devices improved function for a variety of clinical applications including: rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and biomechanical compliance for long-term usage.

  8. Haptics using a smart material for eyes-free interaction in personal devices

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Lane, William Brian; Pappas, Devin; Duque, Bryam; Leong, John

    2014-03-01

    In this paper we present a prototype using a dry ionic polymer metal composite (IPMC) in interactive personal devices such as bracelet, necklace, pocket key chain or mobile devices for haptic interaction when audio or visual feedback is not possible or practical. This prototype interface is an electro-mechanical system that realizes a shape-changing haptic display for information communication. A dry IPMC will change its dimensions due to the electrostatic effect when an electrical potential is provided to them. The IPMC can operate at a lower voltage (less than 2.5V) which is compatible with requirements for personal electrical devices or mobile devices. The prototype consists of the addressable arrays of the IPMCs with different dimensions which are deformable to different shapes with proper handling or customization. 3D printing technology will be used to form supporting parts. Microcontrollers (about 3cm square) from DigiKey will be imbedded into this personal device. An Android based mobile APP will be developed to talk with microcontrollers to control IPMCs. When personal devices receive information signals, the original shape of the prototype will change to another shape related to the specific sender or types of information sources. This interactive prototype can simultaneously realize multiple methods for conveying haptic information such as dimension, force, and texture due to the flexible array design. We conduct several studies of user experience to explore how users' respond to shape change information.

  9. Clinical and optical intraocular performance of rotationally asymmetric multifocal IOL plate-haptic design versus C-loop haptic design.

    PubMed

    Alió, Jorge L; Plaza-Puche, Ana B; Javaloy, Jaime; Ayala, María José; Vega-Estrada, Alfredo

    2013-04-01

    To compare the visual and intraocular optical quality outcomes with different designs of the refractive rotationally asymmetric multifocal intraocular lens (MFIOL) (Lentis Mplus; Oculentis GmbH, Berlin, Germany) with or without capsular tension ring (CTR) implantation. One hundred thirty-five consecutive eyes of 78 patients with cataract (ages 36 to 82 years) were divided into three groups: 43 eyes implanted with the C-Loop haptic design without CTR (C-Loop haptic only group); 47 eyes implanted with the C-Loop haptic design with CTR (C-Loop haptic with CTR group); and 45 eyes implanted with the plate-haptic design (plate-haptic group). Visual acuity, contrast sensitivity, defocus curve, and ocular and intraocular optical quality were evaluated at 3 months postoperatively. Significant differences in the postoperative sphere were found (P = .01), with a more myopic postoperative refraction for the C-Loop haptic only group. No significant differences were detected in photopic and scotopic contrast sensitivity among groups (P ⩾ .05). Significantly better visual acuities were present in the C-Loop haptic with CTR group for the defocus levels of -2.0, -1.5, -1.0, and -0.50 D (P ⩽.03). Statistically significant differences among groups were found in total intraocular root mean square (RMS), high-order intraocular RMS, and intraocular coma-like RMS aberrations (P ⩽.04), with lower values from the plate-haptic group. The plate-haptic design and the C-Loop haptic design with CTR implantation both allow good visual rehabilitation. However, better refractive predictability and intraocular optical quality was obtained with the plate-haptic design without CTR implantation. The plate-haptic design seems to be a better design to support rotational asymmetric MFIOL optics. Copyright 2013, SLACK Incorporated.

  10. Investigations into haptic space and haptic perception of shape for active touch

    NASA Astrophysics Data System (ADS)

    Sanders, A. F. J.

    2008-12-01

    This thesis presents a number of psychophysical investigations into haptic space and haptic perception of shape. Haptic perception is understood to include the two subsystems of the cutaneous sense and kinesthesis. Chapter 2 provides an extensive quantitative study into haptic perception of curvature. I investigated bimanual curvature discrimination of cylindrically curved, hand-sized surfaces. I found that discrimination thresholds were in the same range as unimanual thresholds reported in previous studies. Moreover, the distance between the surfaces or the position of the setup with respect to the observer had no effect on thresholds. Finally, I found idiosyncratic biases: A number of observers judged two surfaces that had different radii as equally curved. Biases were of the same order of magnitude as thresholds. In Chapter 3, I investigated haptic space. Here, haptic space is understood to be (1) the set of observer’s judgments of spatial relations in physical space, and (2) a set of constraints by which these judgments are internally consistent. I asked blindfolded observers to construct straight lines in a number of different tasks. I show that the shape of the haptically straight line depends on the task used to produce it. I therefore conclude that there is no unique definition of the haptically straight line and that doubts are cast on the usefulness of the concept of haptic space. In Chapter 4, I present a new experiment into haptic length perception. I show that when observers trace curved pathways with their index finger and judge distance traversed, their distance estimates depend on the geometry of the paths: Lengths of convex, cylindrically curved pathways were overestimated and lengths of concave pathways were underestimated. In addition, I show that a kinematic mechanism must underlie this interaction: (1) the geometry of the path traced by the finger affects movement speed and consequently movement time, and (2) movement time is taken as a

  11. Saving and Reproduction of Human Motion Data by Using Haptic Devices with Different Configurations

    NASA Astrophysics Data System (ADS)

    Tsunashima, Noboru; Yokokura, Yuki; Katsura, Seiichiro

    Recently, there has been increased focus on “haptic recording” development of a motion-copying system is an efficient method for the realization of haptic recording. Haptic recording involves saving and reproduction of human motion data on the basis of haptic information. To increase the number of applications of the motion-copying system in various fields, it is necessary to reproduce human motion data by using haptic devices with different configurations. In this study, a method for the above-mentioned haptic recording is developed. In this method, human motion data are saved and reproduced on the basis of work space information, which is obtained by coordinate transformation of motor space information. The validity of the proposed method is demonstrated by experiments. With the proposed method, saving and reproduction of human motion data by using various devices is achieved. Furthermore, it is also possible to use haptic recording in various fields.

  12. Optimal visual-haptic integration with articulated tools.

    PubMed

    Takahashi, Chie; Watt, Simon J

    2017-05-01

    When we feel and see an object, the nervous system integrates visual and haptic information optimally, exploiting the redundancy in multiple signals to estimate properties more precisely than is possible from either signal alone. We examined whether optimal integration is similarly achieved when using articulated tools. Such tools (tongs, pliers, etc) are a defining characteristic of human hand function, but complicate the classical sensory 'correspondence problem' underlying multisensory integration. Optimal integration requires establishing the relationship between signals acquired by different sensors (hand and eye) and, therefore, in fundamentally unrelated units. The system must also determine when signals refer to the same property of the world-seeing and feeling the same thing-and only integrate those that do. This could be achieved by comparing the pattern of current visual and haptic input to known statistics of their normal relationship. Articulated tools disrupt this relationship, however, by altering the geometrical relationship between object properties and hand posture (the haptic signal). We examined whether different tool configurations are taken into account in visual-haptic integration. We indexed integration by measuring the precision of size estimates, and compared our results to optimal predictions from a maximum-likelihood integrator. Integration was near optimal, independent of tool configuration/hand posture, provided that visual and haptic signals referred to the same object in the world. Thus, sensory correspondence was determined correctly (trial-by-trial), taking tool configuration into account. This reveals highly flexible multisensory integration underlying tool use, consistent with the brain constructing internal models of tools' properties.

  13. Roughness Perception of Haptically Displayed Fractal Surfaces

    NASA Technical Reports Server (NTRS)

    Costa, Michael A.; Cutkosky, Mark R.; Lau, Sonie (Technical Monitor)

    2000-01-01

    Surface profiles were generated by a fractal algorithm and haptically rendered on a force feedback joystick, Subjects were asked to use the joystick to explore pairs of surfaces and report to the experimenter which of the surfaces they felt was rougher. Surfaces were characterized by their root mean square (RMS) amplitude and their fractal dimension. The most important factor affecting the perceived roughness of the fractal surfaces was the RMS amplitude of the surface. When comparing surfaces of fractal dimension 1.2-1.35 it was found that the fractal dimension was negatively correlated with perceived roughness.

  14. Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning.

    PubMed

    Sigrist, Roland; Rauter, Georg; Marchal-Crespo, Laura; Riener, Robert; Wolf, Peter

    2015-03-01

    Concurrent augmented feedback has been shown to be less effective for learning simple motor tasks than for complex tasks. However, as mostly artificial tasks have been investigated, transfer of results to tasks in sports and rehabilitation remains unknown. Therefore, in this study, the effect of different concurrent feedback was evaluated in trunk-arm rowing. It was then investigated whether multimodal audiovisual and visuohaptic feedback are more effective for learning than visual feedback only. Naïve subjects (N = 24) trained in three groups on a highly realistic virtual reality-based rowing simulator. In the visual feedback group, the subject's oar was superimposed to the target oar, which continuously became more transparent when the deviation between the oars decreased. Moreover, a trace of the subject's trajectory emerged if deviations exceeded a threshold. The audiovisual feedback group trained with oar movement sonification in addition to visual feedback to facilitate learning of the velocity profile. In the visuohaptic group, the oar movement was inhibited by path deviation-dependent braking forces to enhance learning of spatial aspects. All groups significantly decreased the spatial error (tendency in visual group) and velocity error from baseline to the retention tests. Audiovisual feedback fostered learning of the velocity profile significantly more than visuohaptic feedback. The study revealed that well-designed concurrent feedback fosters complex task learning, especially if the advantages of different modalities are exploited. Further studies should analyze the impact of within-feedback design parameters and the transferability of the results to other tasks in sports and rehabilitation.

  15. Different haptic tools reduce trunk velocity in the frontal plane during walking, but haptic anchors have advantages over lightly touching a railing.

    PubMed

    Hedayat, Isabel; Moraes, Renato; Lanovaz, Joel L; Oates, Alison R

    2017-06-01

    There are different ways to add haptic input during walking which may affect walking balance. This study compared the use of two different haptic tools (rigid railing and haptic anchors) and investigated whether any effects on walking were the result of the added sensory input and/or the posture generated when using those tools. Data from 28 young healthy adults were collected using the Mobility Lab inertial sensor system (APDM, Oregon, USA). Participants walked with and without both haptic tools and while pretending to use both haptic tools (placebo trials), with eyes opened and eyes closed. Using the tools or pretending to use both tools decreased normalized stride velocity (p < .001-0.008) and peak medial-lateral (ML) trunk velocity (p < .001-0.001). Normalized stride velocity was slower when actually using the railing compared to placebo railing trials (p = .006). Using the anchors resulted in lower peak ML trunk velocity than the railing (p = .002). The anchors had lower peak ML trunk velocity than placebo anchors (p < .001), but there was no difference between railing and placebo railing (p > .999). These findings highlight a difference in the type of tool used to add haptic input and suggest that changes in balance control strategy resulting from using the railing are based on arm placement, where it is the posture combined with added sensory input that affects balance control strategies with the haptic anchors. These findings provide a strong framework for additional research to be conducted on the effects of haptic input on walking in populations known to have decreased walking balance.

  16. Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.

    PubMed

    Pacchierotti, Claudio; Prattichizzo, Domenico; Kuchenbecker, Katherine J

    2016-02-01

    Despite its expected clinical benefits, current teleoperated surgical robots do not provide the surgeon with haptic feedback largely because grounded forces can destabilize the system's closed-loop controller. This paper presents an alternative approach that enables the surgeon to feel fingertip contact deformations and vibrations while guaranteeing the teleoperator's stability. We implemented our cutaneous feedback solution on an Intuitive Surgical da Vinci Standard robot by mounting a SynTouch BioTac tactile sensor to the distal end of a surgical instrument and a custom cutaneous display to the corresponding master controller. As the user probes the remote environment, the contact deformations, dc pressure, and ac pressure (vibrations) sensed by the BioTac are directly mapped to input commands for the cutaneous device's motors using a model-free algorithm based on look-up tables. The cutaneous display continually moves, tilts, and vibrates a flat plate at the operator's fingertip to optimally reproduce the tactile sensations experienced by the BioTac. We tested the proposed approach by having eighteen subjects use the augmented da Vinci robot to palpate a heart model with no haptic feedback, only deformation feedback, and deformation plus vibration feedback. Fingertip deformation feedback significantly improved palpation performance by reducing the task completion time, the pressure exerted on the heart model, and the subject's absolute error in detecting the orientation of the embedded plastic stick. Vibration feedback significantly improved palpation performance only for the seven subjects who dragged the BioTac across the model, rather than pressing straight into it.

  17. Haptic Glove Technology: Skill Development through Video Game Play

    ERIC Educational Resources Information Center

    Bargerhuff, Mary Ellen; Cowan, Heidi; Oliveira, Francisco; Quek, Francis; Fang, Bing

    2010-01-01

    This article introduces a recently developed haptic glove system and describes how the participants used a video game that was purposely designed to train them in skills that are needed for the efficient use of the haptic glove. Assessed skills included speed, efficiency, embodied skill, and engagement. The findings and implications for future…

  18. Haptic Feedback Manipulation During Botulinum Toxin Injection Therapy for Focal Hand Dystonia Patients: A Possible New Assistive Strategy.

    PubMed

    Atashzar, Seyed Farokh; Shahbazi, Mahya; Ward, Christopher; Samotus, Olivia; Delrobaei, Mehdi; Rahimi, Fariborz; Lee, Jack; Jackman, Mallory; Jog, Mandar S; Patel, Rajni V

    2016-01-01

    Abnormality of sensorimotor integration in the basal ganglia and cortex has been reported in the literature for patients with task-specific focal hand dystonia (FHD). In this study, we investigate the effect of manipulation of kinesthetic input in people living with writer's cramp disorder (a major form of FHD). For this purpose, severity of dystonia is studied for 11 participants while the symptoms of seven participants have been tracked during five sessions of assessment and Botulinum toxin injection (BoNT-A) therapy (one of the current suggested therapies for dystonia). BoNT-A therapy is delivered in the first and the third session. The goal is to analyze the effect of haptic manipulation as a potential assistive technique during BoNT-A therapy. The trial includes writing, hovering, and spiral/sinusoidal drawing subtasks. In each session, the subtasks are repeated twice when (a) a participant uses a normal pen, and (b) when the participant uses a robotics-assisted system (supporting the pen) which provides a compliant virtual writing surface and manipulates the kinesthetic sensory input. The results show (p-value using one-sample t-tests) that reducing the writing surface rigidity significantly decreases the severity of dystonia and results in better control of grip pressure (an indicator of dystonic cramping). It is also shown that (p-value based on paired-samples t-test) using the proposed haptic manipulation strategy, it is possible to augment the effectiveness of BoNT-A therapy. The outcome of this study is then used in the design of an actuated pen as a writing-assistance tool that can provide compliant haptic interaction during writing for FHD patients.

  19. Haptic/graphic rehabilitation: integrating a robot into a virtual environment library and applying it to stroke therapy.

    PubMed

    Sharp, Ian; Patton, James; Listenberger, Molly; Case, Emily

    2011-08-08

    Recent research that tests interactive devices for prolonged therapy practice has revealed new prospects for robotics combined with graphical and other forms of biofeedback. Previous human-robot interactive systems have required different software commands to be implemented for each robot leading to unnecessary developmental overhead time each time a new system becomes available. For example, when a haptic/graphic virtual reality environment has been coded for one specific robot to provide haptic feedback, that specific robot would not be able to be traded for another robot without recoding the program. However, recent efforts in the open source community have proposed a wrapper class approach that can elicit nearly identical responses regardless of the robot used. The result can lead researchers across the globe to perform similar experiments using shared code. Therefore modular "switching out"of one robot for another would not affect development time. In this paper, we outline the successful creation and implementation of a wrapper class for one robot into the open-source H3DAPI, which integrates the software commands most commonly used by all robots.

  20. A 3-RSR Haptic Wearable Device for Rendering Fingertip Contact Forces.

    PubMed

    Leonardis, Daniele; Solazzi, Massimiliano; Bortone, Ilaria; Frisoli, Antonio

    2017-01-01

    A novel wearable haptic device for modulating contact forces at the fingertip is presented. Rendering of forces by skin deformation in three degrees of freedom (DoF), with contact-no contact capabilities, was implemented through rigid parallel kinematics. The novel asymmetrical three revolute-spherical-revolute (3-RSR) configuration allowed compact dimensions with minimum encumbrance of the hand workspace. The device was designed to render constant to low frequency deformation of the fingerpad in three DoF, combining light weight with relatively high output forces. A differential method for solving the non-trivial inverse kinematics is proposed and implemented in real time for controlling the device. The first experimental activity evaluated discrimination of different fingerpad stretch directions in a group of five subjects. The second experiment, enrolling 19 subjects, evaluated cutaneous feedback provided in a virtual pick-and-place manipulation task. Stiffness of the fingerpad plus device was measured and used to calibrate the physics of the virtual environment. The third experiment with 10 subjects evaluated interaction forces in a virtual lift-and-hold task. Although with different performance in the two manipulation experiments, overall results show that participants better controlled interaction forces when the cutaneous feedback was active, with significant differences between the visual and visuo-haptic experimental conditions.

  1. Preliminary assessment of faculty and student perception of a haptic virtual reality simulator for training dental manual dexterity.

    PubMed

    Gal, Gilad Ben; Weiss, Ervin I; Gafni, Naomi; Ziv, Amitai

    2011-04-01

    Virtual reality force feedback simulators provide a haptic (sense of touch) feedback through the device being held by the user. The simulator's goal is to provide a learning experience resembling reality. A newly developed haptic simulator (IDEA Dental, Las Vegas, NV, USA) was assessed in this study. Our objectives were to assess the simulator's ability to serve as a tool for dental instruction, self-practice, and student evaluation, as well as to evaluate the sensation it provides. A total of thirty-three evaluators were divided into two groups. The first group consisted of twenty-one experienced dental educators; the second consisted of twelve fifth-year dental students. Each participant performed drilling tasks using the simulator and filled out a questionnaire regarding the simulator and potential ways of using it in dental education. The results show that experienced dental faculty members as well as advanced dental students found that the simulator could provide significant potential benefits in the teaching and self-learning of manual dental skills. Development of the simulator's tactile sensation is needed to attune it to genuine sensation. Further studies relating to aspects of the simulator's structure and its predictive validity, its scoring system, and the nature of the performed tasks should be conducted.

  2. Spatial asymmetry in tactile sensor skin deformation aids perception of edge orientation during haptic exploration.

    PubMed

    Ponce Wong, Ruben D; Hellman, Randall B; Santos, Veronica J

    2014-01-01

    Upper-limb amputees rely primarily on visual feedback when using their prostheses to interact with others or objects in their environment. A constant reliance upon visual feedback can be mentally exhausting and does not suffice for many activities when line-of-sight is unavailable. Upper-limb amputees could greatly benefit from the ability to perceive edges, one of the most salient features of 3D shape, through touch alone. We present an approach for estimating edge orientation with respect to an artificial fingertip through haptic exploration using a multimodal tactile sensor on a robot hand. Key parameters from the tactile signals for each of four exploratory procedures were used as inputs to a support vector regression model. Edge orientation angles ranging from -90 to 90 degrees were estimated with an 85-input model having an R (2) of 0.99 and RMS error of 5.08 degrees. Electrode impedance signals provided the most useful inputs by encoding spatially asymmetric skin deformation across the entire fingertip. Interestingly, sensor regions that were not in direct contact with the stimulus provided particularly useful information. Methods described here could pave the way for semi-autonomous capabilities in prosthetic or robotic hands during haptic exploration, especially when visual feedback is unavailable.

  3. Towards open-source, low-cost haptics for surgery simulation.

    PubMed

    Suwelack, Stefan; Sander, Christian; Schill, Julian; Serf, Manuel; Danz, Marcel; Asfour, Tamim; Burger, Wolfgang; Dillmann, Rüdiger; Speidel, Stefanie

    2014-01-01

    In minimally invasive surgery (MIS), virtual reality (VR) training systems have become a promising education tool. However, the adoption of these systems in research and clinical settings is still limited by the high costs of dedicated haptics hardware for MIS. In this paper, we present ongoing research towards an open-source, low-cost haptic interface for MIS simulation. We demonstrate the basic mechanical design of the device, the sensor setup as well as its software integration.

  4. In vivo biomechanical measurement and haptic simulation of portal placement procedure in shoulder arthroscopic surgery

    PubMed Central

    Chae, Sanghoon; Jung, Sung-Weon

    2018-01-01

    A survey of 67 experienced orthopedic surgeons indicated that precise portal placement was the most important skill in arthroscopic surgery. However, none of the currently available virtual reality simulators include simulation / training in portal placement, including haptic feedback of the necessary puncture force. This study aimed to: (1) measure the in vivo force and stiffness during a portal placement procedure in an actual operating room and (2) implement active haptic simulation of a portal placement procedure using the measured in vivo data. We measured the force required for port placement and the stiffness of the joint capsule during portal placement procedures performed by an experienced arthroscopic surgeon. Based on the acquired mechanical property values, we developed a cable-driven active haptic simulator designed to train the portal placement skill and evaluated the validity of the simulated haptics. Ten patients diagnosed with rotator cuff tears were enrolled in this experiment. The maximum peak force and joint capsule stiffness during posterior portal placement procedures were 66.46 (±10.76N) and 2560.82(±252.92) N/m, respectively. We then designed an active haptic simulator using the acquired data. Our cable-driven mechanism structure had a friction force of 3.763 ± 0.341 N, less than 6% of the mean puncture force. Simulator performance was evaluated by comparing the target stiffness and force with the stiffness and force reproduced by the device. R-squared values were 0.998 for puncture force replication and 0.902 for stiffness replication, indicating that the in vivo data can be used to implement a realistic haptic simulator. PMID:29494691

  5. Virtual Cerebral Aneurysm Clipping with Real-Time Haptic Force Feedback in Neurosurgical Education.

    PubMed

    Gmeiner, Matthias; Dirnberger, Johannes; Fenz, Wolfgang; Gollwitzer, Maria; Wurm, Gabriele; Trenkler, Johannes; Gruber, Andreas

    2018-04-01

    Realistic, safe, and efficient modalities for simulation-based training are highly warranted to enhance the quality of surgical education, and they should be incorporated in resident training. The aim of this study was to develop a patient-specific virtual cerebral aneurysm-clipping simulator with haptic force feedback and real-time deformation of the aneurysm and vessels. A prototype simulator was developed from 2012 to 2016. Evaluation of virtual clipping by blood flow simulation was integrated in this software, and the prototype was evaluated by 18 neurosurgeons. In 4 patients with different medial cerebral artery aneurysms, virtual clipping was performed after real-life surgery, and surgical results were compared regarding clip application, surgical trajectory, and blood flow. After head positioning and craniotomy, bimanual virtual aneurysm clipping with an original forceps was performed. Blood flow simulation demonstrated residual aneurysm filling or branch stenosis. The simulator improved anatomic understanding for 89% of neurosurgeons. Simulation of head positioning and craniotomy was considered realistic by 89% and 94% of users, respectively. Most participants agreed that this simulator should be integrated into neurosurgical education (94%). Our illustrative cases demonstrated that virtual aneurysm surgery was possible using the same trajectory as in real-life cases. Both virtual clipping and blood flow simulation were realistic in broad-based but not calcified aneurysms. Virtual clipping of a calcified aneurysm could be performed using the same surgical trajectory, but not the same clip type. We have successfully developed a virtual aneurysm-clipping simulator. Next, we will prospectively evaluate this device for surgical procedure planning and education. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Modeling and Design of an Electro-Rheological Fluid Based Haptic System for Tele-Operation of Space Robots

    NASA Technical Reports Server (NTRS)

    Mavroidis, Constantinos; Pfeiffer, Charles; Paljic, Alex; Celestino, James; Lennon, Jamie; Bar-Cohen, Yoseph

    2000-01-01

    For many years, the robotic community sought to develop robots that can eventually operate autonomously and eliminate the need for human operators. However, there is an increasing realization that there are some tasks that human can perform significantly better but, due to associated hazards, distance, physical limitations and other causes, only robot can be employed to perform these tasks. Remotely performing these types of tasks requires operating robots as human surrogates. While current "hand master" haptic systems are able to reproduce the feeling of rigid objects, they present great difficulties in emulating the feeling of remote/virtual stiffness. In addition, they tend to be heavy, cumbersome and usually they only allow limited operator workspace. In this paper a novel haptic interface is presented to enable human-operators to "feel" and intuitively mirror the stiffness/forces at remote/virtual sites enabling control of robots as human-surrogates. This haptic interface is intended to provide human operators intuitive feeling of the stiffness and forces at remote or virtual sites in support of space robots performing dexterous manipulation tasks (such as operating a wrench or a drill). Remote applications are referred to the control of actual robots whereas virtual applications are referred to simulated operations. The developed haptic interface will be applicable to IVA operated robotic EVA tasks to enhance human performance, extend crew capability and assure crew safety. The electrically controlled stiffness is obtained using constrained ElectroRheological Fluids (ERF), which changes its viscosity under electrical stimulation. Forces applied at the robot end-effector due to a compliant environment will be reflected to the user using this ERF device where a change in the system viscosity will occur proportionally to the force to be transmitted. In this paper, we will present the results of our modeling, simulation, and initial testing of such an

  7. Tactile Evaluation Feedback System for Multi-Layered Structure Inspired by Human Tactile Perception Mechanism.

    PubMed

    Hashim, Iza Husna Mohamad; Kumamoto, Shogo; Takemura, Kenjiro; Maeno, Takashi; Okuda, Shin; Mori, Yukio

    2017-11-11

    Tactile sensation is one type of valuable feedback in evaluating a product. Conventionally, sensory evaluation is used to get direct subjective responses from the consumers, in order to improve the product's quality. However, this method is a time-consuming and costly process. Therefore, this paper proposes a novel tactile evaluation system that can give tactile feedback from a sensor's output. The main concept of this system is hierarchically layering the tactile sensation, which is inspired by the flow of human perception. The tactile sensation is classified from low-order of tactile sensation (LTS) to high-order of tactile sensation (HTS), and also to preference. Here, LTS will be correlated with physical measures. Furthermore, the physical measures that are used to correlate with LTS are selected based on four main aspects of haptic information (roughness, compliance, coldness, and slipperiness), which are perceived through human tactile sensors. By using statistical analysis, the correlation between each hierarchy was obtained, and the preference was derived in terms of physical measures. A verification test was conducted by using unknown samples to determine the reliability of the system. The results showed that the system developed was capable of estimating preference with an accuracy of approximately 80%.

  8. Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.

    PubMed

    Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias

    2013-04-01

    Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training.

  9. Design and performance evaluation of collision protection-based safety operation for a haptic robot-assisted catheter operating system.

    PubMed

    Zhang, Linshuai; Guo, Shuxiang; Yu, Huadong; Song, Yu; Tamiya, Takashi; Hirata, Hideyuki; Ishihara, Hidenori

    2018-02-23

    The robot-assisted catheter system can increase operating distance thus preventing the exposure radiation of the surgeon to X-ray for endovascular catheterization. However, few designs have considered the collision protection between the catheter tip and the vessel wall. This paper presents a novel catheter operating system based on tissue protection to prevent vessel puncture caused by collision. The integrated haptic interface not only allows the operator to feel the real force feedback, but also combines with the newly proposed collision protection mechanism (CPM) to mitigate the collision trauma. The CPM can release the catheter quickly when the measured force exceeds a certain threshold, so as to avoid the vessel puncture. A significant advantage is that the proposed mechanism can adjust the protection threshold in real time by the current according to the actual characteristics of the blood vessel. To verify the effectiveness of the tissue protection by the system, the evaluation experiments in vitro were carried out. The results show that the further collision damage can be effectively prevented by the CPM, which implies the realization of relative safe catheterization. This research provides some insights into the functional improvements of safe and reliable robot-assisted catheter systems.

  10. Haptic Recreation of Elbow Spasticity

    PubMed Central

    Kim, Jonghyun; Damiano, Diane L.

    2013-01-01

    The aim of this paper is to develop a haptic device capable of presenting standardized recreation of elbow spasticity. Using the haptic device, clinicians will be able to repeatedly practice the assessment of spasticity without requiring patient involvement, and these practice opportunities will help improve accuracy and reliability of the assessment itself. Haptic elbow spasticity simulator (HESS) was designed and prototyped according to mechanical requirements to recreate the feel of elbow spasticity. Based on the data collected from subjects with elbow spasticity, a mathematical model representing elbow spasticity is proposed. As an attempt to differentiate the feel of each score in Modified Ashworth Scale (MAS), parameters of the model were obtained respectively for three different MAS scores 1, 1+, and 2. The implemented haptic recreation was evaluated by experienced clinicians who were asked to give MAS scores by manipulating the haptic device. The clinicians who participated in the study were blinded to each other’s scores and to the given models. They distinguished the three models and the MAS scores given to the recreated models matched 100% with the original MAS scores from the patients. PMID:22275660

  11. Visual and visually mediated haptic illusions with Titchener's ⊥.

    PubMed

    Landwehr, Klaus

    2014-05-01

    For a replication and expansion of a previous experiment of mine, 14 newly recruited participants provided haptic and verbal estimates of the lengths of the two lines that make up Titchener's ⊥. The stimulus was presented at two different orientations (frontoparallel vs. horizontal) and rotated in steps of 45 deg around 2π. Haptically, the divided line of the ⊥ was generally underestimated, especially at a horizontal orientation. Verbal judgments also differed according to presentation condition and to which line was the target, with the overestimation of the undivided line ranging between 6.2 % and 15.3 %. The results are discussed with reference to the two-visual-systems theory of perception and action, neuroscientific accounts, and also recent historical developments (the use of handheld touchscreens, in particular), because the previously reported "haptic induction effect" (the scaling of haptic responses to the divided line of the ⊥, depending on the length of the undivided one) did not replicate.

  12. Sharing control with haptics: seamless driver support from manual to automatic control.

    PubMed

    Mulder, Mark; Abbink, David A; Boer, Erwin R

    2012-10-01

    Haptic shared control was investigated as a human-machine interface that can intuitively share control between drivers and an automatic controller for curve negotiation. As long as automation systems are not fully reliable, a role remains for the driver to be vigilant to the system and the environment to catch any automation errors. The conventional binary switches between supervisory and manual control has many known issues, and haptic shared control is a promising alternative. A total of 42 respondents of varying age and driving experience participated in a driving experiment in a fixed-base simulator, in which curve negotiation behavior during shared control was compared to during manual control, as well as to three haptic tunings of an automatic controller without driver intervention. Under the experimental conditions studied, the main beneficial effect of haptic shared control compared to manual control was that less control activity (16% in steering wheel reversal rate, 15% in standard deviation of steering wheel angle) was needed for realizing an improved safety performance (e.g., 11% in peak lateral error). Full automation removed the need for any human control activity and improved safety performance (e.g., 35% in peak lateral error) but put the human in a supervisory position. Haptic shared control kept the driver in the loop, with enhanced performance at reduced control activity, mitigating the known issues that plague full automation. Haptic support for vehicular control ultimately seeks to intuitively combine human intelligence and creativity with the benefits of automation systems.

  13. Haptic biofeedback for improving compliance with lower-extremity partial weight bearing.

    PubMed

    Fu, Michael C; DeLuke, Levi; Buerba, Rafael A; Fan, Richard E; Zheng, Ying Jean; Leslie, Michael P; Baumgaertner, Michael R; Grauer, Jonathan N

    2014-11-01

    After lower-extremity orthopedic trauma and surgery, patients are often advised to restrict weight bearing on the affected limb. Conventional training methods are not effective at enabling patients to comply with recommendations for partial weight bearing. The current study assessed a novel method of using real-time haptic (vibratory/vibrotactile) biofeedback to improve compliance with instructions for partial weight bearing. Thirty healthy, asymptomatic participants were randomized into 1 of 3 groups: verbal instruction, bathroom scale training, and haptic biofeedback. Participants were instructed to restrict lower-extremity weight bearing in a walking boot with crutches to 25 lb, with an acceptable range of 15 to 35 lb. A custom weight bearing sensor and biofeedback system was attached to all participants, but only those in the haptic biofeedback group were given a vibrotactile signal if they exceeded the acceptable range. Weight bearing in all groups was measured with a separate validated commercial system. The verbal instruction group bore an average of 60.3±30.5 lb (mean±standard deviation). The bathroom scale group averaged 43.8±17.2 lb, whereas the haptic biofeedback group averaged 22.4±9.1 lb (P<.05). As a percentage of body weight, the verbal instruction group averaged 40.2±19.3%, the bathroom scale group averaged 32.5±16.9%, and the haptic biofeedback group averaged 14.5±6.3% (P<.05). In this initial evaluation of the use of haptic biofeedback to improve compliance with lower-extremity partial weight bearing, haptic biofeedback was superior to conventional physical therapy methods. Further studies in patients with clinical orthopedic trauma are warranted. Copyright 2014, SLACK Incorporated.

  14. Design and Evaluation of Shape-Changing Haptic Interfaces for Pedestrian Navigation Assistance.

    PubMed

    Spiers, Adam J; Dollar, Aaron M

    2017-01-01

    Shape-changing interfaces are a category of device capable of altering their form in order to facilitate communication of information. In this work, we present a shape-changing device that has been designed for navigation assistance. 'The Animotus' (previously, 'The Haptic Sandwich' ), resembles a cube with an articulated upper half that is able to rotate and extend (translate) relative to the bottom half, which is fixed in the user's grasp. This rotation and extension, generally felt via the user's fingers, is used to represent heading and proximity to navigational targets. The device is intended to provide an alternative to screen or audio based interfaces for visually impaired, hearing impaired, deafblind, and sighted pedestrians. The motivation and design of the haptic device is presented, followed by the results of a navigation experiment that aimed to determine the role of each device DOF, in terms of facilitating guidance. An additional device, 'The Haptic Taco', which modulated its volume in response to target proximity (negating directional feedback), was also compared. Results indicate that while the heading (rotational) DOF benefited motion efficiency, the proximity (translational) DOF benefited velocity. Combination of the two DOF improved overall performance. The volumetric Taco performed comparably to the Animotus' extension DOF.

  15. Algorithms for Haptic Rendering of 3D Objects

    NASA Technical Reports Server (NTRS)

    Basdogan, Cagatay; Ho, Chih-Hao; Srinavasan, Mandayam

    2003-01-01

    Algorithms have been developed to provide haptic rendering of three-dimensional (3D) objects in virtual (that is, computationally simulated) environments. The goal of haptic rendering is to generate tactual displays of the shapes, hardnesses, surface textures, and frictional properties of 3D objects in real time. Haptic rendering is a major element of the emerging field of computer haptics, which invites comparison with computer graphics. We have already seen various applications of computer haptics in the areas of medicine (surgical simulation, telemedicine, haptic user interfaces for blind people, and rehabilitation of patients with neurological disorders), entertainment (3D painting, character animation, morphing, and sculpting), mechanical design (path planning and assembly sequencing), and scientific visualization (geophysical data analysis and molecular manipulation).

  16. Percutaneous spinal fixation simulation with virtual reality and haptics.

    PubMed

    Luciano, Cristian J; Banerjee, P Pat; Sorenson, Jeffery M; Foley, Kevin T; Ansari, Sameer A; Rizzi, Silvio; Germanwala, Anand V; Kranzler, Leonard; Chittiboina, Prashant; Roitberg, Ben Z

    2013-01-01

    In this study, we evaluated the use of a part-task simulator with 3-dimensional and haptic feedback as a training tool for percutaneous spinal needle placement. To evaluate the learning effectiveness in terms of entry point/target point accuracy of percutaneous spinal needle placement on a high-performance augmented-reality and haptic technology workstation with the ability to control the duration of computer-simulated fluoroscopic exposure, thereby simulating an actual situation. Sixty-three fellows and residents performed needle placement on the simulator. A virtual needle was percutaneously inserted into a virtual patient's thoracic spine derived from an actual patient computed tomography data set. Ten of 126 needle placement attempts by 63 participants ended in failure for a failure rate of 7.93%. From all 126 needle insertions, the average error (15.69 vs 13.91), average fluoroscopy exposure (4.6 vs 3.92), and average individual performance score (32.39 vs 30.71) improved from the first to the second attempt. Performance accuracy yielded P = .04 from a 2-sample t test in which the rejected null hypothesis assumes no improvement in performance accuracy from the first to second attempt in the test session. The experiments showed evidence (P = .04) of performance accuracy improvement from the first to the second percutaneous needle placement attempt. This result, combined with previous learning retention and/or face validity results of using the simulator for open thoracic pedicle screw placement and ventriculostomy catheter placement, supports the efficacy of augmented reality and haptics simulation as a learning tool.

  17. Haptic-Based Perception-Empathy Biofeedback Enhances Postural Motor Learning During High-Cognitive Load Task in Healthy Older Adults

    PubMed Central

    Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu

    2018-01-01

    Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in

  18. Haptic-Based Perception-Empathy Biofeedback Enhances Postural Motor Learning During High-Cognitive Load Task in Healthy Older Adults.

    PubMed

    Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu

    2018-01-01

    Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in

  19. EMG-based visual-haptic biofeedback: a tool to improve motor control in children with primary dystonia.

    PubMed

    Casellato, Claudia; Pedrocchi, Alessandra; Zorzi, Giovanna; Vernisse, Lea; Ferrigno, Giancarlo; Nardocci, Nardo

    2013-05-01

    New insights suggest that dystonic motor impairments could also involve a deficit of sensory processing. In this framework, biofeedback, making covert physiological processes more overt, could be useful. The present work proposes an innovative integrated setup which provides the user with an electromyogram (EMG)-based visual-haptic biofeedback during upper limb movements (spiral tracking tasks), to test if augmented sensory feedbacks can induce motor control improvement in patients with primary dystonia. The ad hoc developed real-time control algorithm synchronizes the haptic loop with the EMG reading; the brachioradialis EMG values were used to modify visual and haptic features of the interface: the higher was the EMG level, the higher was the virtual table friction and the background color proportionally moved from green to red. From recordings on dystonic and healthy subjects, statistical results showed that biofeedback has a significant impact, correlated with the local impairment, on the dystonic muscular control. These tests pointed out the effectiveness of biofeedback paradigms in gaining a better specific-muscle voluntary motor control. The flexible tool developed here shows promising prospects of clinical applications and sensorimotor rehabilitation.

  20. Sensorimotor enhancement with a mixed reality system for balance and mobility rehabilitation.

    PubMed

    Fung, Joyce; Perez, Claire F

    2011-01-01

    We have developed a mixed reality system incorporating virtual reality (VR), surface perturbations and light touch for gait rehabilitation. Haptic touch has emerged as a novel and efficient technique to improve postural control and dynamic stability. Our system combines visual display with the manipulation of physical environments and addition of haptic feedback to enhance balance and mobility post stroke. A research study involving 9 participants with stroke and 9 age-matched healthy individuals show that the haptic cue provided while walking is an effective means of improving gait stability in people post stroke, especially during challenging environmental conditions such as downslope walking.

  1. Limited value of haptics in virtual reality laparoscopic cholecystectomy training.

    PubMed

    Thompson, Jonathan R; Leonard, Anthony C; Doarn, Charles R; Roesch, Matt J; Broderick, Timothy J

    2011-04-01

    Haptics is an expensive addition to virtual reality (VR) simulators, and the added value to training has not been proven. This study evaluated the benefit of haptics in VR laparoscopic surgery training for novices. The Simbionix LapMentor II haptic VR simulator was used in the study. Randomly, 33 laparoscopic novice students were placed in one of three groups: control, haptics-trained, or nonhaptics-trained group. The control group performed nine basic laparoscopy tasks and four cholecystectomy procedural tasks one time with haptics engaged at the default setting. The haptics group was trained to proficiency in the basic tasks and then performed each of the procedural tasks one time with haptics engaged. The nonhaptics group used the same training protocol except that haptics was disengaged. The proficiency values used were previously published expert values. Each group was assessed in the performance of 10 laparoscopic cholecystectomies (alternating with and without haptics). Performance was measured via automatically collected simulator data. The three groups exhibited no differences in terms of sex, education level, hand dominance, video game experience, surgical experience, and nonsurgical simulator experience. The number of attempts required to reach proficiency did not differ between the haptics- and nonhaptics-training groups. The haptics and nonhaptics groups exhibited no difference in performance. Both training groups outperformed the control group in number of movements as well as path length of the left instrument. In addition, the nonhaptics group outperformed the control group in total time. Haptics does not improve the efficiency or effectiveness of LapMentor II VR laparoscopic surgery training. The limited benefit and the significant cost of haptics suggest that haptics should not be included routinely in VR laparoscopic surgery training.

  2. A Haptics Symposium Retrospective: 20 Years

    NASA Technical Reports Server (NTRS)

    Colgate, J. Edward; Adelstein, Bernard

    2012-01-01

    The very first "Haptics Symposium" actually went by the name "Issues in the Development of Kinesthetic Displays of Teleoperation and Virtual environments." The word "Haptic" didn't make it into the name until the next year. Not only was the most important word absent but so were RFPs, journals and commercial markets. And yet, as we prepare for the 2012 symposium, haptics is a thriving and amazingly diverse field of endeavor. In this talk we'll reflect on the origins of this field and on its evolution over the past twenty years, as well as the evolution of the Haptics Symposium itself. We hope to share with you some of the excitement we've felt along the way, and that we continue to feel as we look toward the future of our field.

  3. Real-time dual-band haptic music player for mobile devices.

    PubMed

    Hwang, Inwook; Lee, Hyeseon; Choi, Seungmoon

    2013-01-01

    We introduce a novel dual-band haptic music player for real-time simultaneous vibrotactile playback with music in mobile devices. Our haptic music player features a new miniature dual-mode actuator that can produce vibrations consisting of two principal frequencies and a real-time vibration generation algorithm that can extract vibration commands from a music file for dual-band playback (bass and treble). The algorithm uses a "haptic equalizer" and provides plausible sound-to-touch modality conversion based on human perceptual data. In addition, we present a user study carried out to evaluate the subjective performance (precision, harmony, fun, and preference) of the haptic music player, in comparison with the current practice of bass-band-only vibrotactile playback via a single-frequency voice-coil actuator. The evaluation results indicated that the new dual-band playback outperforms the bass-only rendering, also providing several insights for further improvements. The developed system and experimental findings have implications for improving the multimedia experience with mobile devices.

  4. Neurosurgery simulation using non-linear finite element modeling and haptic interaction

    NASA Astrophysics Data System (ADS)

    Lee, Huai-Ping; Audette, Michel; Joldes, Grand R.; Enquobahrie, Andinet

    2012-02-01

    Real-time surgical simulation is becoming an important component of surgical training. To meet the realtime requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.

  5. Dynamics modeling for parallel haptic interfaces with force sensing and control.

    PubMed

    Bernstein, Nicholas; Lawrence, Dale; Pao, Lucy

    2013-01-01

    Closed-loop force control can be used on haptic interfaces (HIs) to mitigate the effects of mechanism dynamics. A single multidimensional force-torque sensor is often employed to measure the interaction force between the haptic device and the user's hand. The parallel haptic interface at the University of Colorado (CU) instead employs smaller 1D force sensors oriented along each of the five actuating rods to build up a 5D force vector. This paper shows that a particular manipulandum/hand partition in the system dynamics is induced by the placement and type of force sensing, and discusses the implications on force and impedance control for parallel haptic interfaces. The details of a "squaring down" process are also discussed, showing how to obtain reduced degree-of-freedom models from the general six degree-of-freedom dynamics formulation.

  6. Development of haptic based piezoresistive artificial fingertip: Toward efficient tactile sensing systems for humanoids.

    PubMed

    TermehYousefi, Amin; Azhari, Saman; Khajeh, Amin; Hamidon, Mohd Nizar; Tanaka, Hirofumi

    2017-08-01

    Haptic sensors are essential devices that facilitate human-like sensing systems such as implantable medical devices and humanoid robots. The availability of conducting thin films with haptic properties could lead to the development of tactile sensing systems that stretch reversibly, sense pressure (not just touch), and integrate with collapsible. In this study, a nanocomposite based hemispherical artificial fingertip fabricated to enhance the tactile sensing systems of humanoid robots. To validate the hypothesis, proposed method was used in the robot-like finger system to classify the ripe and unripe tomato by recording the metabolic growth of the tomato as a function of resistivity change during a controlled indention force. Prior to fabrication, a finite element modeling (FEM) was investigated for tomato to obtain the stress distribution and failure point of tomato by applying different external loads. Then, the extracted computational analysis information was utilized to design and fabricate nanocomposite based artificial fingertip to examine the maturity analysis of tomato. The obtained results demonstrate that the fabricated conformable and scalable artificial fingertip shows different electrical property for ripe and unripe tomato. The artificial fingertip is compatible with the development of brain-like systems for artificial skin by obtaining periodic response during an applied load. Copyright © 2017. Published by Elsevier B.V.

  7. Using the PhysX engine for physics-based virtual surgery with force feedback.

    PubMed

    Maciel, Anderson; Halic, Tansel; Lu, Zhonghua; Nedel, Luciana P; De, Suvranu

    2009-09-01

    The development of modern surgical simulators is highly challenging, as they must support complex simulation environments. The demand for higher realism in such simulators has driven researchers to adopt physics-based models, which are computationally very demanding. This poses a major problem, since real-time interactions must permit graphical updates of 30 Hz and a much higher rate of 1 kHz for force feedback (haptics). Recently several physics engines have been developed which offer multi-physics simulation capabilities, including rigid and deformable bodies, cloth and fluids. While such physics engines provide unique opportunities for the development of surgical simulators, their higher latencies, compared to what is necessary for real-time graphics and haptics, offer significant barriers to their use in interactive simulation environments. In this work, we propose solutions to this problem and demonstrate how a multimodal surgical simulation environment may be developed based on NVIDIA's PhysX physics library. Hence, models that are undergoing relatively low-frequency updates in PhysX can exist in an environment that demands much higher frequency updates for haptics. We use a collision handling layer to interface between the physical response provided by PhysX and the haptic rendering device to provide both real-time tissue response and force feedback. Our simulator integrates a bimanual haptic interface for force feedback and per-pixel shaders for graphics realism in real time. To demonstrate the effectiveness of our approach, we present the simulation of the laparoscopic adjustable gastric banding (LAGB) procedure as a case study. To develop complex and realistic surgical trainers with realistic organ geometries and tissue properties demands stable physics-based deformation methods, which are not always compatible with the interaction level required for such trainers. We have shown that combining different modelling strategies for behaviour, collision and

  8. An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device.

    PubMed

    Su, Hao; Shang, Weijian; Li, Gang; Patel, Niravkumar; Fischer, Gregory S

    2017-08-01

    This paper presents a surgical master-slave teleoperation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. The slave robot consists of a piezoelectrically actuated 6-degree-of-freedom (DOF) robot for needle placement with an integrated fiber optic force sensor (1-DOF axial force measurement) using the Fabry-Perot interferometry (FPI) sensing principle; it is configured to operate inside the bore of the MRI scanner during imaging. By leveraging the advantages of pneumatic and piezoelectric actuation in force and position control respectively, we have designed a pneumatically actuated master robot (haptic device) with strain gauge based force sensing that is configured to operate the slave from within the scanner room during imaging. The slave robot follows the insertion motion of the haptic device while the haptic device displays the needle insertion force as measured by the FPI sensor. Image interference evaluation demonstrates that the telesurgery system presents a signal to noise ratio reduction of less than 17% and less than 1% geometric distortion during simultaneous robot motion and imaging. Teleoperated needle insertion and rotation experiments were performed to reach 10 targets in a soft tissue-mimicking phantom with 0.70 ± 0.35 mm Cartesian space error.

  9. fMRI-Compatible Electromagnetic Haptic Interface.

    PubMed

    Riener, R; Villgrattner, T; Kleiser, R; Nef, T; Kollias, S

    2005-01-01

    A new haptic interface device is suggested, which can be used for functional magnetic resonance imaging (fMRI) studies. The basic component of this 1 DOF haptic device are two coils that produce a Lorentz force induced by the large static magnetic field of the MR scanner. A MR-compatible optical angular encoder and a optical force sensor enable the implementation of different control architectures for haptic interactions. The challenge was to provide a large torque, and not to affect image quality by the currents applied in the device. The haptic device was tested in a 3T MR scanner. With a current of up to 1A and a distance of 1m to the focal point of the MR-scanner it was possible to generate torques of up to 4 Nm. Within these boundaries image quality was not affected.

  10. GPU-based real-time soft tissue deformation with cutting and haptic feedback.

    PubMed

    Courtecuisse, Hadrien; Jung, Hoeryong; Allard, Jérémie; Duriez, Christian; Lee, Doo Yong; Cotin, Stéphane

    2010-12-01

    This article describes a series of contributions in the field of real-time simulation of soft tissue biomechanics. These contributions address various requirements for interactive simulation of complex surgical procedures. In particular, this article presents results in the areas of soft tissue deformation, contact modelling, simulation of cutting, and haptic rendering, which are all relevant to a variety of medical interventions. The contributions described in this article share a common underlying model of deformation and rely on GPU implementations to significantly improve computation times. This consistency in the modelling technique and computational approach ensures coherent results as well as efficient, robust and flexible solutions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Haptics – Touchfeedback Technology Widening the Horizon of Medicine

    PubMed Central

    Kapoor, Shalini; Arora, Pallak; Kapoor, Vikas; Jayachandran, Mahesh; Tiwari, Manish

    2014-01-01

    Haptics, or touchsense haptic technology is a major breakthrough in medical and dental interventions. Haptic perception is the process of recognizing objects through touch. Haptic sensations are created by actuators or motors which generate vibrations to the users and are controlled by embedded software which is integrated into the device. It takes the advantage of a combination of somatosensory pattern of skin and proprioception of hand position. Anatomical and diagnostic knowledge, when it is combined with this touch sense technology, has revolutionized medical education. This amalgamation of the worlds of diagnosis and surgical intervention adds precise robotic touch to the skill of the surgeon. A systematic literature review was done by using MEDLINE, GOOGLE SEARCH AND PubMed. The aim of this article was to introduce the fundamentals of haptic technology, its current applications in medical training and robotic surgeries, limitations of haptics and future aspects of haptics in medicine. PMID:24783164

  12. Haptic Classification of Common Objects: Knowledge-Driven Exploration.

    ERIC Educational Resources Information Center

    Lederman, Susan J.; Klatzky, Roberta L.

    1990-01-01

    Theoretical and empirical issues relating to haptic exploration and the representation of common objects during haptic classification were investigated in 3 experiments involving a total of 112 college students. Results are discussed in terms of a computational model of human haptic object classification with implications for dextrous robot…

  13. A magnetorheological haptic cue accelerator for manual transmission vehicles

    NASA Astrophysics Data System (ADS)

    Han, Young-Min; Noh, Kyung-Wook; Lee, Yang-Sub; Choi, Seung-Bok

    2010-07-01

    This paper proposes a new haptic cue function for manual transmission vehicles to achieve optimal gear shifting. This function is implemented on the accelerator pedal by utilizing a magnetorheological (MR) brake mechanism. By combining the haptic cue function with the accelerator pedal, the proposed haptic cue device can transmit the optimal moment of gear shifting for manual transmission to a driver without requiring the driver's visual attention. As a first step to achieve this goal, a MR fluid-based haptic device is devised to enable rotary motion of the accelerator pedal. Taking into account spatial limitations, the design parameters are optimally determined using finite element analysis to maximize the relative control torque. The proposed haptic cue device is then manufactured and its field-dependent torque and time response are experimentally evaluated. Then the manufactured MR haptic cue device is integrated with the accelerator pedal. A simple virtual vehicle emulating the operation of the engine of a passenger vehicle is constructed and put into communication with the haptic cue device. A feed-forward torque control algorithm for the haptic cue is formulated and control performances are experimentally evaluated and presented in the time domain.

  14. Aging and solid shape recognition: Vision and haptics.

    PubMed

    Norman, J Farley; Cheeseman, Jacob R; Adkins, Olivia C; Cox, Andrea G; Rogers, Connor E; Dowell, Catherine J; Baxter, Michael W; Norman, Hideko F; Reyes, Cecia M

    2015-10-01

    The ability of 114 younger and older adults to recognize naturally-shaped objects was evaluated in three experiments. The participants viewed or haptically explored six randomly-chosen bell peppers (Capsicum annuum) in a study session and were later required to judge whether each of twelve bell peppers was "old" (previously presented during the study session) or "new" (not presented during the study session). When recognition memory was tested immediately after study, the younger adults' (Experiment 1) performance for vision and haptics was identical when the individual study objects were presented once. Vision became superior to haptics, however, when the individual study objects were presented multiple times. When 10- and 20-min delays (Experiment 2) were inserted in between study and test sessions, no significant differences occurred between vision and haptics: recognition performance in both modalities was comparable. When the recognition performance of older adults was evaluated (Experiment 3), a negative effect of age was found for visual shape recognition (younger adults' overall recognition performance was 60% higher). There was no age effect, however, for haptic shape recognition. The results of the present experiments indicate that the visual recognition of natural object shape is different from haptic recognition in multiple ways: visual shape recognition can be superior to that of haptics and is affected by aging, while haptic shape recognition is less accurate and unaffected by aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Haptic fMRI: Reliability and performance of electromagnetic haptic interfaces for motion and force neuroimaging experiments.

    PubMed

    Menon, Samir; Zhu, Jack; Goyal, Deeksha; Khatib, Oussama

    2017-07-01

    Haptic interfaces compatible with functional magnetic resonance imaging (Haptic fMRI) promise to enable rich motor neuroscience experiments that study how humans perform complex manipulation tasks. Here, we present a large-scale study (176 scans runs, 33 scan sessions) that characterizes the reliability and performance of one such electromagnetically actuated device, Haptic fMRI Interface 3 (HFI-3). We outline engineering advances that ensured HFI-3 did not interfere with fMRI measurements. Observed fMRI temporal noise levels with HFI-3 operating were at the fMRI baseline (0.8% noise to signal). We also present results from HFI-3 experiments demonstrating that high resolution fMRI can be used to study spatio-temporal patterns of fMRI blood oxygenation dependent (BOLD) activation. These experiments include motor planning, goal-directed reaching, and visually-guided force control. Observed fMRI responses are consistent with existing literature, which supports Haptic fMRI's effectiveness at studying the brain's motor regions.

  16. Learning, retention, and generalization of haptic categories

    NASA Astrophysics Data System (ADS)

    Do, Phuong T.

    This dissertation explored how haptic concepts are learned, retained, and generalized to the same or different modality. Participants learned to classify objects into three categories either visually or haptically via different training procedures, followed by an immediate or delayed transfer test. Experiment I involved visual versus haptic learning and transfer. Intermodal matching between vision and haptics was investigated in Experiment II. Experiments III and IV examined intersensory conflict in within- and between-category bimodal situations to determine the degree of perceptual dominance between sight and touch. Experiment V explored the intramodal relationship between similarity and categorization in a psychological space, as revealed by MDS analysis of similarity judgments. Major findings were: (1) visual examination resulted in relatively higher performance accuracy than haptic learning; (2) systematic training produced better category learning of haptic concepts across all modality conditions; (3) the category prototypes were rated newer than any transfer stimulus followed learning both immediately and after a week delay; and, (4) although they converged at the apex of two transformational trajectories, the category prototypes became more central to their respective categories and increasingly structured as a function of learning. Implications for theories of multimodal similarity and categorization behavior are discussed in terms of discrimination learning, sensory integration, and dominance relation.

  17. Design of a 7-DOF slave robot integrated with a magneto-rheological haptic master

    NASA Astrophysics Data System (ADS)

    Hwang, Yong-Hoon; Cha, Seung-Woo; Kang, Seok-Rae; Choi, Seung-Bok

    2017-04-01

    In this study, a 7-DOF slave robot integrated with the haptic master is designed and its dynamic motion is controlled. The haptic master is made using a controllable magneto-rheological (MR) clutch and brake and it provides the surgeon with a sense of touch by using both kinetic and kinesthetic information. Due to the size constraint of the slave robot, a wire actuating is adopted to make the desired motion of the end-effector which has 3-DOF instead of a conventional direct-driven motor. Another motions of the link parts that have 4-DOF use direct-driven motor. In total system, for working as a haptic device, the haptic master need to receive the information of repulsive forces applied on the slave robot. Therefore, repulsive forces on the end-effector are sensed by using three uniaxial torque transducer inserted in the wire actuating system and another repulsive forces applied on link part are sensed by using 6-axis transducer that is able to sense forces and torques. Using another 6-axis transducer, verify the reliability of force information on final end of slave robot. Lastly, integrated with a MR haptic master, psycho-physical test is conducted by different operators who can feel the different repulsive force or torque generated from the haptic master which is equivalent to the force or torque occurred on the end-effector to demonstrate the effectiveness of the proposed system.

  18. Adaptation of a haptic robot in a 3T fMRI.

    PubMed

    Snider, Joseph; Plank, Markus; May, Larry; Liu, Thomas T; Poizner, Howard

    2011-10-04

    Functional magnetic resonance imaging (fMRI) provides excellent functional brain imaging via the BOLD signal with advantages including non-ionizing radiation, millimeter spatial accuracy of anatomical and functional data, and nearly real-time analyses. Haptic robots provide precise measurement and control of position and force of a cursor in a reasonably confined space. Here we combine these two technologies to allow precision experiments involving motor control with haptic/tactile environment interaction such as reaching or grasping. The basic idea is to attach an 8 foot end effecter supported in the center to the robot allowing the subject to use the robot, but shielding it and keeping it out of the most extreme part of the magnetic field from the fMRI machine (Figure 1). The Phantom Premium 3.0, 6DoF, high-force robot (SensAble Technologies, Inc.) is an excellent choice for providing force-feedback in virtual reality experiments, but it is inherently non-MR safe, introduces significant noise to the sensitive fMRI equipment, and its electric motors may be affected by the fMRI's strongly varying magnetic field. We have constructed a table and shielding system that allows the robot to be safely introduced into the fMRI environment and limits both the degradation of the fMRI signal by the electrically noisy motors and the degradation of the electric motor performance by the strongly varying magnetic field of the fMRI. With the shield, the signal to noise ratio (SNR: mean signal/noise standard deviation) of the fMRI goes from a baseline of ~380 to ~330, and ~250 without the shielding. The remaining noise appears to be uncorrelated and does not add artifacts to the fMRI of a test sphere (Figure 2). The long, stiff handle allows placement of the robot out of range of the most strongly varying parts of the magnetic field so there is no significant effect of the fMRI on the robot. The effect of the handle on the robot's kinematics is minimal since it is lightweight (~2

  19. Force modeling for incision surgery into tissue with haptic application

    NASA Astrophysics Data System (ADS)

    Kim, Pyunghwa; Kim, Soomin; Choi, Seung-Hyun; Oh, Jong-Seok; Choi, Seung-Bok

    2015-04-01

    This paper presents a novel force modeling for an incision surgery into tissue and its haptic application for a surgeon. During the robot-assisted incision surgery, it is highly urgent to develop the haptic system for realizing sense of touch in the surgical area because surgeons cannot sense sensations. To achieve this goal, the force modeling related to reaction force of biological tissue is proposed in the perspective on energy. The force model describes reaction force focused on the elastic feature of tissue during the incision surgery. Furthermore, the force is realized using calculated information from the model by haptic device using magnetorheological fluid (MRF). The performance of realized force that is controlled by PID controller with open loop control is evaluated.

  20. Command Recognition of Robot with Low Dimension Whole-Body Haptic Sensor

    NASA Astrophysics Data System (ADS)

    Ito, Tatsuya; Tsuji, Toshiaki

    The authors have developed “haptic armor”, a whole-body haptic sensor that has an ability to estimate contact position. Although it is developed for safety assurance of robots in human environment, it can also be used as an interface. This paper proposes a command recognition method based on finger trace information. This paper also discusses some technical issues for improving recognition accuracy of this system.

  1. Haptic augmented skin surface generation toward telepalpation from a mobile skin image.

    PubMed

    Kim, K

    2018-05-01

    Very little is known about the methods of integrating palpation techniques to existing mobile teleskin imaging that delivers low quality tactile information (roughness) for telepalpation. However, no study has been reported yet regarding telehaptic palpation using mobile phone images for teledermatology or teleconsultations of skincare. This study is therefore aimed at introducing a new algorithm accurately reconstructing a haptic augmented skin surface for telehaptic palpation using a low-cost clip-on microscope simply attached to a mobile phone. Multiple algorithms such as gradient-based image enhancement, roughness-adaptive tactile mask generation, roughness-enhanced 3D tactile map building, and visual and haptic rendering with a three-degrees-of-freedom (DOF) haptic device were developed and integrated as one system. Evaluation experiments have been conducted to test the performance of 3D roughness reconstruction with/without the tactile mask. The results confirm that reconstructed haptic roughness with the tactile mask is superior to the reconstructed haptic roughness without the tactile mask. Additional experiments demonstrate that the proposed algorithm is robust against varying lighting conditions and blurring. In last, a user study has been designed to see the effect of the haptic modality to the existing visual only interface and the results attest that the haptic skin palpation can significantly improve the skin exam performance. Mobile image-based telehaptic palpation technology was proposed, and an initial version was developed. The developed technology was tested with several skin images and the experimental results showed the superiority of the proposed scheme in terms of the performance of haptic augmentation of real skin images. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Feedback System Theory

    DTIC Science & Technology

    1978-11-01

    R 2. GOVT A $ SION NO. 3 RIEqLPýIVT’S.;TALOG NUMBER r/ 4. TITLE (and wbiFflT, -L M4 1 , FEEDBACK SYSTEM THEORY ~r Inter in- 6. PERFORMING ORG. REPORT...ANNUAL REPORT FEEDBACK SYSTEM THEORY AFOSR GRANT NO. 76-2946B Air Force Office of Scientific Research for year ending October 31, 1978 79 02 08 L|I...re less stringent than in other synthesis techniques which cannot handle significant parameter uncertainty. _I FEEDBACK SYSTEM THEORY 1. Introduction

  3. Multiple reference frames in haptic spatial processing

    NASA Astrophysics Data System (ADS)

    Volčič, R.

    2008-08-01

    The present thesis focused on haptic spatial processing. In particular, our interest was directed to the perception of spatial relations with the main focus on the perception of orientation. To this end, we studied haptic perception in different tasks, either in isolation or in combination with vision. The parallelity task, where participants have to match the orientations of two spatially separated bars, was used in its two-dimensional and three-dimensional versions in Chapter 2 and Chapter 3, respectively. The influence of non-informative vision and visual interference on performance in the parallelity task was studied in Chapter 4. A different task, the mental rotation task, was introduced in a purely haptic study in Chapter 5 and in a visuo-haptic cross-modal study in Chapter 6. The interaction of multiple reference frames and their influence on haptic spatial processing were the common denominators of these studies. In this thesis we approached the problems of which reference frames play the major role in haptic spatial processing and how the relative roles of distinct reference frames change depending on the available information and the constraints imposed by different tasks. We found that the influence of a reference frame centered on the hand was the major cause of the deviations from veridicality observed in both the two-dimensional and three-dimensional studies. The results were described by a weighted average model, in which the hand-centered egocentric reference frame is supposed to have a biasing influence on the allocentric reference frame. Performance in haptic spatial processing has been shown to depend also on sources of information or processing that are not strictly connected to the task at hand. When non-informative vision was provided, a beneficial effect was observed in the haptic performance. This improvement was interpreted as a shift from the egocentric to the allocentric reference frame. Moreover, interfering visual information presented

  4. Graphic and haptic simulation for transvaginal cholecystectomy training in NOTES.

    PubMed

    Pan, Jun J; Ahn, Woojin; Dargar, Saurabh; Halic, Tansel; Li, Bai C; Sankaranarayanan, Ganesh; Roberts, Kurt; Schwaitzberg, Steven; De, Suvranu

    2016-04-01

    Natural Orifice Transluminal Endoscopic Surgery (NOTES) provides an emerging surgical technique which usually needs a long learning curve for surgeons. Virtual reality (VR) medical simulators with vision and haptic feedback can usually offer an efficient and cost-effective alternative without risk to the traditional training approaches. Under this motivation, we developed the first virtual reality simulator for transvaginal cholecystectomy in NOTES (VTEST™). This VR-based surgical simulator aims to simulate the hybrid NOTES of cholecystectomy. We use a 6DOF haptic device and a tracking sensor to construct the core hardware component of simulator. For software, an innovative approach based on the inner-spheres is presented to deform the organs in real time. To handle the frequent collision between soft tissue and surgical instruments, an adaptive collision detection method based on GPU is designed and implemented. To give a realistic visual performance of gallbladder fat tissue removal by cautery hook, a multi-layer hexahedral model is presented to simulate the electric dissection of fat tissue. From the experimental results, trainees can operate in real time with high degree of stability and fidelity. A preliminary study was also performed to evaluate the realism and the usefulness of this hybrid NOTES simulator. This prototyped simulation system has been verified by surgeons through a pilot study. Some items of its visual performance and the utility were rated fairly high by the participants during testing. It exhibits the potential to improve the surgical skills of trainee and effectively shorten their learning curve. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. What you can't feel won't hurt you: Evaluating haptic hardware using a haptic contrast sensitivity function.

    PubMed

    Salisbury, C M; Gillespie, R B; Tan, H Z; Barbagli, F; Salisbury, J K

    2011-01-01

    In this paper, we extend the concept of the contrast sensitivity function - used to evaluate video projectors - to the evaluation of haptic devices. We propose using human observers to determine if vibrations rendered using a given haptic device are accompanied by artifacts detectable to humans. This determination produces a performance measure that carries particular relevance to applications involving texture rendering. For cases in which a device produces detectable artifacts, we have developed a protocol that localizes deficiencies in device design and/or hardware implementation. In this paper, we present results from human vibration detection experiments carried out using three commercial haptic devices and one high performance voice coil motor. We found that all three commercial devices produced perceptible artifacts when rendering vibrations near human detection thresholds. Our protocol allowed us to pinpoint the deficiencies, however, and we were able to show that minor modifications to the haptic hardware were sufficient to make these devices well suited for rendering vibrations, and by extension, the vibratory components of textures. We generalize our findings to provide quantitative design guidelines that ensure the ability of haptic devices to proficiently render the vibratory components of textures.

  6. Haptic-Multimodal Flight Control System Update

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.

    2011-01-01

    The rapidly advancing capabilities of autonomous aircraft suggest a future where many of the responsibilities of today s pilot transition to the vehicle, transforming the pilot s job into something akin to driving a car or simply being a passenger. Notionally, this transition will reduce the specialized skills, training, and attention required of the human user while improving safety and performance. However, our experience with highly automated aircraft highlights many challenges to this transition including: lack of automation resilience; adverse human-automation interaction under stress; and the difficulty of developing certification standards and methods of compliance for complex systems performing critical functions traditionally performed by the pilot (e.g., sense and avoid vs. see and avoid). Recognizing these opportunities and realities, researchers at NASA Langley are developing a haptic-multimodal flight control (HFC) system concept that can serve as a bridge between today s state of the art aircraft that are highly automated but have little autonomy and can only be operated safely by highly trained experts (i.e., pilots) to a future in which non-experts (e.g., drivers) can safely and reliably use autonomous aircraft to perform a variety of missions. This paper reviews the motivation and theoretical basis of the HFC system, describes its current state of development, and presents results from two pilot-in-the-loop simulation studies. These preliminary studies suggest the HFC reshapes human-automation interaction in a way well-suited to revolutionary ease-of-use.

  7. Neodymium:YAG laser cutting of intraocular lens haptics in vitro and in vivo.

    PubMed

    Feder, J M; Rosenberg, M A; Farber, M D

    1989-09-01

    Various complications following intraocular lens (IOL) surgery result in explantation of the lenses. Haptic fibrosis may necessitate cutting the IOL haptics prior to removal. In this study we used the neodymium: YAG (Nd:YAG) laser to cut polypropylene and poly(methyl methacrylate) (PMMA) haptics in vitro and in rabbit eyes. In vitro we were able to cut 100% of both haptic types successfully (28 PMMA and 30 polypropylene haptics). In rabbit eyes we were able to cut 50% of the PMMA haptics and 43% of the polypropylene haptics. Poly(methyl methacrylate) haptics were easier to cut in vitro and in vivo than polypropylene haptics, requiring fewer shots for transection. Complications of Nd:YAG laser use frequently interfered with haptic transections in rabbit eyes. Haptic transection may be more easily accomplished in human eyes.

  8. Perceptualization of geometry using intelligent haptic and visual sensing

    NASA Astrophysics Data System (ADS)

    Weng, Jianguang; Zhang, Hui

    2013-01-01

    We present a set of paradigms for investigating geometric structures using haptic and visual sensing. Our principal test cases include smoothly embedded geometry shapes such as knotted curves embedded in 3D and knotted surfaces in 4D, that contain massive intersections when projected to one lower dimension. One can exploit a touch-responsive 3D interactive probe to haptically override this conflicting evidence in the rendered images, by forcing continuity in the haptic representation to emphasize the true topology. In our work, we exploited a predictive haptic guidance, a "computer-simulated hand" with supplementary force suggestion, to support intelligent exploration of geometry shapes that will smooth and maximize the probability of recognition. The cognitive load can be reduced further when enabling an attention-driven visual sensing during the haptic exploration. Our methods combine to reveal the full richness of the haptic exploration of geometric structures, and to overcome the limitations of traditional 4D visualization.

  9. A remote instruction system empowered by tightly shared haptic sensation

    NASA Astrophysics Data System (ADS)

    Nishino, Hiroaki; Yamaguchi, Akira; Kagawa, Tsuneo; Utsumiya, Kouichi

    2007-09-01

    We present a system to realize an on-line instruction environment among physically separated participants based on a multi-modal communication strategy. In addition to visual and acoustic information, commonly used communication modalities in network environments, our system provides a haptic channel to intuitively conveying partners' sense of touch. The human touch sensation, however, is very sensitive for delays and jitters in the networked virtual reality (NVR) systems. Therefore, a method to compensate for such negative factors needs to be provided. We show an NVR architecture to implement a basic framework that can be shared by various applications and effectively deals with the problems. We take a hybrid approach to implement both data consistency by client-server and scalability by peer-to-peer models. As an application system built on the proposed architecture, a remote instruction system targeted at teaching handwritten characters and line patterns on a Korea-Japan high-speed research network also is mentioned.

  10. Vibration Influences Haptic Perception of Surface Compliance During Walking

    PubMed Central

    Visell, Yon; Giordano, Bruno L.; Millet, Guillaume; Cooperstock, Jeremy R.

    2011-01-01

    Background The haptic perception of ground compliance is used for stable regulation of dynamic posture and the control of locomotion in diverse natural environments. Although rarely investigated in relation to walking, vibrotactile sensory channels are known to be active in the discrimination of material properties of objects and surfaces through touch. This study investigated how the perception of ground surface compliance is altered by plantar vibration feedback. Methodology/Principal Findings Subjects walked in shoes over a rigid floor plate that provided plantar vibration feedback, and responded indicating how compliant it felt, either in subjective magnitude or via pairwise comparisons. In one experiment, the compliance of the floor plate was also varied. Results showed that perceived compliance of the plate increased monotonically with vibration feedback intensity, and depended to a lesser extent on the temporal or frequency distribution of the feedback. When both plate stiffness (inverse compliance) and vibration amplitude were manipulated, the effect persisted, with both factors contributing to compliance perception. A significant influence of vibration was observed even for amplitudes close to psychophysical detection thresholds. Conclusions/Significance These findings reveal that vibrotactile sensory channels are highly salient to the perception of surface compliance, and suggest that correlations between vibrotactile sensory information and motor activity may be of broader significance for the control of human locomotion than has been previously acknowledged. PMID:21464979

  11. Haptic perception accuracy depending on self-produced movement.

    PubMed

    Park, Chulwook; Kim, Seonjin

    2014-01-01

    This study measured whether self-produced movement influences haptic perception ability (experiment 1) as well as the factors associated with levels of influence (experiment 2) in racket sports. For experiment 1, the haptic perception accuracy levels of five male table tennis experts and five male novices were examined under two different conditions (no movement vs. movement). For experiment 2, the haptic afferent subsystems of five male table tennis experts and five male novices were investigated in only the self-produced movement-coupled condition. Inferential statistics (ANOVA, t-test) and custom-made devices (shock & vibration sensor, Qualisys Track Manager) of the data were used to determine the haptic perception accuracy (experiment 1, experiment 2) and its association with expertise. The results of this research show that expert-level players acquire higher accuracy with less variability (racket vibration and angle) than novice-level players, especially in their self-produced movement coupled performances. The important finding from this result is that, in terms of accuracy, the skill-associated differences were enlarged during self-produced movement. To explain the origin of this difference between experts and novices, the functional variability of haptic afferent subsystems can serve as a reference. These two factors (self-produced accuracy and the variability of haptic features) as investigated in this study would be useful criteria for educators in racket sports and suggest a broader hypothesis for further research into the effects of the haptic accuracy related to variability.

  12. Control of repulsive force in a virtual environment using an electrorheological haptic master for a surgical robot application

    NASA Astrophysics Data System (ADS)

    Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok

    2014-01-01

    This paper presents control performances of a new type of four-degrees-of-freedom (4-DOF) haptic master that can be used for robot-assisted minimally invasive surgery (RMIS). By adopting a controllable electrorheological (ER) fluid, the function of the proposed master is realized as a haptic feedback as well as remote manipulation. In order to verify the efficacy of the proposed master and method, an experiment is conducted with deformable objects featuring human organs. Since the use of real human organs is difficult for control due to high cost and moral hazard, an excellent alternative method, the virtual reality environment, is used for control in this work. In order to embody a human organ in the virtual space, the experiment adopts a volumetric deformable object represented by a shape-retaining chain linked (S-chain) model which has salient properties such as fast and realistic deformation of elastic objects. In haptic architecture for RMIS, the desired torque/force and desired position originating from the object of the virtual slave and operator of the haptic master are transferred to each other. In order to achieve the desired torque/force trajectories, a sliding mode controller (SMC) which is known to be robust to uncertainties is designed and empirically implemented. Tracking control performances for various torque/force trajectories from the virtual slave are evaluated and presented in the time domain.

  13. Control of a haptic gear shifting assistance device utilizing a magnetorheological clutch

    NASA Astrophysics Data System (ADS)

    Han, Young-Min; Choi, Seung-Bok

    2014-10-01

    This paper proposes a haptic clutch driven gear shifting assistance device that can help when the driver shifts the gear of a transmission system. In order to achieve this goal, a magnetorheological (MR) fluid-based clutch is devised to be capable of the rotary motion of an accelerator pedal to which the MR clutch is integrated. The proposed MR clutch is then manufactured, and its transmission torque is experimentally evaluated according to the magnetic field intensity. The manufactured MR clutch is integrated with the accelerator pedal to transmit a haptic cue signal to the driver. The impending control issue is to cue the driver to shift the gear via the haptic force. Therefore, a gear-shifting decision algorithm is constructed by considering the vehicle engine speed concerned with engine combustion dynamics, vehicle dynamics and driving resistance. Then, the algorithm is integrated with a compensation strategy for attaining the desired haptic force. In this work, the compensator is also developed and implemented through the discrete version of the inverse hysteretic model. The control performances, such as the haptic force tracking responses and fuel consumption, are experimentally evaluated.

  14. Influence of surgical gloves on haptic perception thresholds.

    PubMed

    Hatzfeld, Christian; Dorsch, Sarah; Neupert, Carsten; Kupnik, Mario

    2018-02-01

    Impairment of haptic perception by surgical gloves could reduce requirements on haptic systems for surgery. While grip forces and manipulation capabilities were not impaired in previous studies, no data is available for perception thresholds. Absolute and differential thresholds (20 dB above threshold) of 24 subjects were measured for frequencies of 25 and 250 Hz with a Ψ-method. Effects of wearing a surgical glove, moisture on the contact surface and subject's experience with gloves were incorporated in a full-factorial experimental design. Absolute thresholds of 12.8 dB and -29.6 dB (means for 25 and 250 Hz, respectively) and differential thresholds of -12.6 dB and -9.5 dB agree with previous studies. A relevant effect of the frequency on absolute thresholds was found. Comparisons of glove- and no-glove-conditions did not reveal a significant mean difference. Wearing a single surgical glove does not affect absolute and differential haptic perception thresholds. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Visuo-Haptic Mixed Reality with Unobstructed Tool-Hand Integration.

    PubMed

    Cosco, Francesco; Garre, Carlos; Bruno, Fabio; Muzzupappa, Maurizio; Otaduy, Miguel A

    2013-01-01

    Visuo-haptic mixed reality consists of adding to a real scene the ability to see and touch virtual objects. It requires the use of see-through display technology for visually mixing real and virtual objects, and haptic devices for adding haptic interaction with the virtual objects. Unfortunately, the use of commodity haptic devices poses obstruction and misalignment issues that complicate the correct integration of a virtual tool and the user's real hand in the mixed reality scene. In this work, we propose a novel mixed reality paradigm where it is possible to touch and see virtual objects in combination with a real scene, using commodity haptic devices, and with a visually consistent integration of the user's hand and the virtual tool. We discuss the visual obstruction and misalignment issues introduced by commodity haptic devices, and then propose a solution that relies on four simple technical steps: color-based segmentation of the hand, tracking-based segmentation of the haptic device, background repainting using image-based models, and misalignment-free compositing of the user's hand. We have developed a successful proof-of-concept implementation, where a user can touch virtual objects and interact with them in the context of a real scene, and we have evaluated the impact on user performance of obstruction and misalignment correction.

  16. Validation of the updated ArthroS simulator: face and construct validity of a passive haptic virtual reality simulator with novel performance metrics.

    PubMed

    Garfjeld Roberts, Patrick; Guyver, Paul; Baldwin, Mathew; Akhtar, Kash; Alvand, Abtin; Price, Andrew J; Rees, Jonathan L

    2017-02-01

    To assess the construct and face validity of ArthroS, a passive haptic VR simulator. A secondary aim was to evaluate the novel performance metrics produced by this simulator. Two groups of 30 participants, each divided into novice, intermediate or expert based on arthroscopic experience, completed three separate tasks on either the knee or shoulder module of the simulator. Performance was recorded using 12 automatically generated performance metrics and video footage of the arthroscopic procedures. The videos were blindly assessed using a validated global rating scale (GRS). Participants completed a survey about the simulator's realism and training utility. This new simulator demonstrated construct validity of its tasks when evaluated against a GRS (p ≤ 0.003 in all cases). Regarding it's automatically generated performance metrics, established outputs such as time taken (p ≤ 0.001) and instrument path length (p ≤ 0.007) also demonstrated good construct validity. However, two-thirds of the proposed 'novel metrics' the simulator reports could not distinguish participants based on arthroscopic experience. Face validity assessment rated the simulator as a realistic and useful tool for trainees, but the passive haptic feedback (a key feature of this simulator) is rated as less realistic. The ArthroS simulator has good task construct validity based on established objective outputs, but some of the novel performance metrics could not distinguish between surgical experience. The passive haptic feedback of the simulator also needs improvement. If simulators could offer automated and validated performance feedback, this would facilitate improvements in the delivery of training by allowing trainees to practise and self-assess.

  17. A review of invasive and non-invasive sensory feedback in upper limb prostheses.

    PubMed

    Svensson, Pamela; Wijk, Ulrika; Björkman, Anders; Antfolk, Christian

    2017-06-01

    The constant challenge to restore sensory feedback in prosthetic hands has provided several research solutions, but virtually none has reached clinical fruition. A prosthetic hand with sensory feedback that closely imitates an intact hand and provides a natural feeling may induce the prosthetic hand to be included in the body image and also reinforces the control of the prosthesis. Areas covered: This review presents non-invasive sensory feedback systems such as mechanotactile, vibrotactile, electrotactile and combinational systems which combine the modalities; multi-haptic feedback. Invasive sensory feedback has been tried less, because of the inherent risk, but it has successfully shown to restore some afferent channels. In this review, invasive methods are also discussed, both extraneural and intraneural electrodes, such as cuff electrodes and transverse intrafascicular multichannel electrodes. The focus of the review is on non-invasive methods of providing sensory feedback to upper-limb amputees. Expert commentary: Invoking embodiment has shown to be of importance for the control of prosthesis and acceptance by the prosthetic wearers. It is a challenge to provide conscious feedback to cover the lost sensibility of a hand, not be overwhelming and confusing for the user, and to integrate technology within the constraint of a wearable prosthesis.

  18. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.

    PubMed

    Ben-Tzvi, Pinhas; Ma, Zhou

    2015-11-01

    This paper presents the design, implementation and experimental validation of a novel robotic haptic exoskeleton device to measure the user's hand motion and assist hand motion while remaining portable and lightweight. The device consists of a five-finger mechanism actuated with miniature DC motors through antagonistically routed cables at each finger, which act as both active and passive force actuators. The SAFE Glove is a wireless and self-contained mechatronic system that mounts over the dorsum of a bare hand and provides haptic force feedback to each finger. The glove is adaptable to a wide variety of finger sizes without constraining the range of motion. This makes it possible to accurately and comfortably track the complex motion of the finger and thumb joints associated with common movements of hand functions, including grip and release patterns. The glove can be wirelessly linked to a computer for displaying and recording the hand status through 3D Graphical User Interface (GUI) in real-time. The experimental results demonstrate that the SAFE Glove is capable of reliably modeling hand kinematics, measuring finger motion and assisting hand grasping motion. Simulation and experimental results show the potential of the proposed system in rehabilitation therapy and virtual reality applications.

  19. A comparison of haptic material perception in blind and sighted individuals.

    PubMed

    Baumgartner, Elisabeth; Wiebel, Christiane B; Gegenfurtner, Karl R

    2015-10-01

    We investigated material perception in blind participants to explore the influence of visual experience on material representations and the relationship between visual and haptic material perception. In a previous study with sighted participants, we had found participants' visual and haptic judgments of material properties to be very similar (Baumgartner, Wiebel, & Gegenfurtner, 2013). In a categorization task, however, visual exploration had led to higher categorization accuracy than haptic exploration. Here, we asked congenitally blind participants to explore different materials haptically and rate several material properties in order to assess the role of the visual sense for the emergence of haptic material perception. Principal components analyses combined with a procrustes superimposition showed that the material representations of blind and blindfolded sighted participants were highly similar. We also measured haptic categorization performance, which was equal for the two groups. We conclude that haptic material representations can emerge independently of visual experience, and that there are no advantages for either group of observers in haptic categorization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Solid shape discrimination from vision and haptics: natural objects (Capsicum annuum) and Gibson's "feelies".

    PubMed

    Norman, J Farley; Phillips, Flip; Holmin, Jessica S; Norman, Hideko F; Beers, Amanda M; Boswell, Alexandria M; Cheeseman, Jacob R; Stethen, Angela G; Ronning, Cecilia

    2012-10-01

    A set of three experiments evaluated 96 participants' ability to visually and haptically discriminate solid object shape. In the past, some researchers have found haptic shape discrimination to be substantially inferior to visual shape discrimination, while other researchers have found haptics and vision to be essentially equivalent. A primary goal of the present study was to understand these discrepant past findings and to determine the true capabilities of the haptic system. All experiments used the same task (same vs. different shape discrimination) and stimulus objects (James Gibson's "feelies" and a set of naturally shaped objects--bell peppers). However, the methodology varied across experiments. Experiment 1 used random 3-dimensional (3-D) orientations of the stimulus objects, and the conditions were full-cue (active manipulation of objects and rotation of the visual objects in depth). Experiment 2 restricted the 3-D orientations of the stimulus objects and limited the haptic and visual information available to the participants. Experiment 3 compared restricted and full-cue conditions using random 3-D orientations. We replicated both previous findings in the current study. When we restricted visual and haptic information (and placed the stimulus objects in the same orientation on every trial), the participants' visual performance was superior to that obtained for haptics (replicating the earlier findings of Davidson et al. in Percept Psychophys 15(3):539-543, 1974). When the circumstances resembled those of ordinary life (e.g., participants able to actively manipulate objects and see them from a variety of perspectives), we found no significant difference between visual and haptic solid shape discrimination.

  1. Opportunities of hydrostatically coupled dielectric elastomer actuators for haptic interfaces

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Frediani, Gabriele; De Rossi, Danilo

    2011-04-01

    As a means to improve versatility and safety of dielectric elastomer actuators (DEAs) for several fields of application, so-called 'hydrostatically coupled' DEAs (HC-DEAs) have recently been described. HC-DEAs are based on an incompressible fluid that mechanically couples a DE-based active part to a passive part interfaced to the load, so as to enable hydrostatic transmission. This paper presents ongoing developments of HC-DEAs and potential applications in the field of haptics. Three specific examples are considered. The first deals with a wearable tactile display used to provide users with tactile feedback during electronic navigation in virtual environments. The display consists of HCDEAs arranged in contact with finger tips. As a second example, an up-scaled prototype version of an 8-dots refreshable cell for dynamic Braille displays is shown. Each Braille dot consists of a miniature HC-DEA, with a diameter lower than 2 mm. The third example refers to a device for finger rehabilitation, conceived to work as a sort of active version of a rehabilitation squeezing ball. The device is designed to dynamically change its compliance according to an electric control. The three examples of applications intend to show the potential of the new technology and the prospective opportunities for haptic interfaces.

  2. Modal-Power-Based Haptic Motion Recognition

    NASA Astrophysics Data System (ADS)

    Kasahara, Yusuke; Shimono, Tomoyuki; Kuwahara, Hiroaki; Sato, Masataka; Ohnishi, Kouhei

    Motion recognition based on sensory information is important for providing assistance to human using robots. Several studies have been carried out on motion recognition based on image information. However, in the motion of humans contact with an object can not be evaluated precisely by image-based recognition. This is because the considering force information is very important for describing contact motion. In this paper, a modal-power-based haptic motion recognition is proposed; modal power is considered to reveal information on both position and force. Modal power is considered to be one of the defining features of human motion. A motion recognition algorithm based on linear discriminant analysis is proposed to distinguish between similar motions. Haptic information is extracted using a bilateral master-slave system. Then, the observed motion is decomposed in terms of primitive functions in a modal space. The experimental results show the effectiveness of the proposed method.

  3. Size-Sensitive Perceptual Representations Underlie Visual and Haptic Object Recognition

    PubMed Central

    Craddock, Matt; Lawson, Rebecca

    2009-01-01

    A variety of similarities between visual and haptic object recognition suggests that the two modalities may share common representations. However, it is unclear whether such common representations preserve low-level perceptual features or whether transfer between vision and haptics is mediated by high-level, abstract representations. Two experiments used a sequential shape-matching task to examine the effects of size changes on unimodal and crossmodal visual and haptic object recognition. Participants felt or saw 3D plastic models of familiar objects. The two objects presented on a trial were either the same size or different sizes and were the same shape or different but similar shapes. Participants were told to ignore size changes and to match on shape alone. In Experiment 1, size changes on same-shape trials impaired performance similarly for both visual-to-visual and haptic-to-haptic shape matching. In Experiment 2, size changes impaired performance on both visual-to-haptic and haptic-to-visual shape matching and there was no interaction between the cost of size changes and direction of transfer. Together the unimodal and crossmodal matching results suggest that the same, size-specific perceptual representations underlie both visual and haptic object recognition, and indicate that crossmodal memory for objects must be at least partly based on common perceptual representations. PMID:19956685

  4. An implementation of sensor-based force feedback in a compact laparoscopic surgery robot.

    PubMed

    Lee, Duk-Hee; Choi, Jaesoon; Park, Jun-Woo; Bach, Du-Jin; Song, Seung-Jun; Kim, Yoon-Ho; Jo, Yungho; Sun, Kyung

    2009-01-01

    Despite the rapid progress in the clinical application of laparoscopic surgery robots, many shortcomings have not yet been fully overcome, one of which is the lack of reliable haptic feedback. This study implemented a force-feedback structure in our compact laparoscopic surgery robot. The surgery robot is a master-slave configuration robot with 5 DOF (degree of freedom corresponding laparoscopic surgical motion. The force-feedback implementation was made in the robot with torque sensors and controllers installed in the pitch joint of the master and slave robots. A simple dynamic model of action-reaction force in the slave robot was used, through which the reflective force was estimated and fed back to the master robot. The results showed the system model could be identified with significant fidelity and the force feedback at the master robot was feasible. However, the qualitative human assessment of the fed-back force showed only limited level of object discrimination ability. Further developments are underway with this result as a framework.

  5. Adaptive displays and controllers using alternative feedback.

    PubMed

    Repperger, D W

    2004-12-01

    Investigations on the design of haptic (force reflecting joystick or force display) controllers were conducted by viewing the display of force information within the context of several different paradigms. First, using analogies from electrical and mechanical systems, certain schemes of the haptic interface were hypothesized which may improve the human-machine interaction with respect to various criteria. A discussion is given on how this interaction benefits the electrical and mechanical system. To generalize this concept to the design of human-machine interfaces, three studies with haptic mechanisms were then synthesized and analyzed.

  6. Haptic Technologies for MEMS Design

    NASA Astrophysics Data System (ADS)

    Calis, Mustafa; Desmulliez, Marc P. Y.

    2006-04-01

    This paper presents for the first time a design methodology for MEMS/NEMS based on haptic sensing technologies. The software tool created as a result of this methodology will enable designers to model and interact in real time with their virtual prototype. One of the main advantages of haptic sensing is the ability to bring unusual microscopic forces back to the designer's world. Other significant benefits for developing such a methodology include gain productivity and the capability to include manufacturing costs within the design cycle.

  7. Improving manual skills in persons with disabilities (PWD) through a multimodal assistance system.

    PubMed

    Covarrubias, Mario; Gatti, Elia; Bordegoni, Monica; Cugini, Umberto; Mansutti, Alessandro

    2014-07-01

    In this research work, we present a Multimodal Guidance System (MGS) whose aim is to provide dynamic assistance to persons with disabilities (PWD) while performing manual activities such as drawing, coloring in and foam-cutting tasks. The MGS provides robotic assistance in the execution of 2D tasks through haptic and sound interactions. Haptic technology provides the virtual path of 2D shapes through the point-based approach, while sound technology provides audio feedback inputs related to the hand's velocity while sketching and filling or cutting operations. By combining this Multimodal System with the haptic assistance, we have created a new approach with possible applications to such diverse fields as physical rehabilitation, scientific investigation of sensorimotor learning and assessment of hand movements in PWD. The MGS has been tested by people with specific disorders affecting coordination, such as Down syndrome and developmental disabilities, under the supervision of their teachers and care assistants inside their learning environment. A Graphic User Interface has been designed for teachers and care assistants in order to provide training during the test sessions. Our results provide conclusive evidence that the effect of using the MGS increases the accuracy in the tasks operations. The Multimodal Guidance System (MGS) is an interface that offers haptic and sound feedback while performing manual tasks. Several studies demonstrated that the haptic guidance systems can help people in recovering cognitive function at different levels of complexity and impairment. The applications supported by our device could also have an important role in supporting physical therapist and cognitive psychologist in helping patients to recover motor and visuo-spatial abilities.

  8. The role of haptic versus visual volume cues in the size-weight illusion.

    PubMed

    Ellis, R R; Lederman, S J

    1993-03-01

    Three experiments establish the size-weight illusion as a primarily haptic phenomenon, despite its having been more traditionally considered an example of vision influencing haptic processing. Experiment 1 documents, across a broad range of stimulus weights and volumes, the existence of a purely haptic size-weight illusion, equal in strength to the traditional illusion. Experiment 2 demonstrates that haptic volume cues are both sufficient and necessary for a full-strength illusion. In contrast, visual volume cues are merely sufficient, and produce a relatively weaker effect. Experiment 3 establishes that congenitally blind subjects experience an effect as powerful as that of blindfolded sighted observers, thus demonstrating that visual imagery is also unnecessary for a robust size-weight illusion. The results are discussed in terms of their implications for both sensory and cognitive theories of the size-weight illusion. Applications of this work to a human factors design and to sensor-based systems for robotic manipulation are also briefly considered.

  9. Haptic spatial matching in near peripersonal space.

    PubMed

    Kaas, Amanda L; Mier, Hanneke I van

    2006-04-01

    Research has shown that haptic spatial matching at intermanual distances over 60 cm is prone to large systematic errors. The error pattern has been explained by the use of reference frames intermediate between egocentric and allocentric coding. This study investigated haptic performance in near peripersonal space, i.e. at intermanual distances of 60 cm and less. Twelve blindfolded participants (six males and six females) were presented with two turn bars at equal distances from the midsagittal plane, 30 or 60 cm apart. Different orientations (vertical/horizontal or oblique) of the left bar had to be matched by adjusting the right bar to either a mirror symmetric (/ \\) or parallel (/ /) position. The mirror symmetry task can in principle be performed accurately in both an egocentric and an allocentric reference frame, whereas the parallel task requires an allocentric representation. Results showed that parallel matching induced large systematic errors which increased with distance. Overall error was significantly smaller in the mirror task. The task difference also held for the vertical orientation at 60 cm distance, even though this orientation required the same response in both tasks, showing a marked effect of task instruction. In addition, men outperformed women on the parallel task. Finally, contrary to our expectations, systematic errors were found in the mirror task, predominantly at 30 cm distance. Based on these findings, we suggest that haptic performance in near peripersonal space might be dominated by different mechanisms than those which come into play at distances over 60 cm. Moreover, our results indicate that both inter-individual differences and task demands affect task performance in haptic spatial matching. Therefore, we conclude that the study of haptic spatial matching in near peripersonal space might reveal important additional constraints for the specification of adequate models of haptic spatial performance.

  10. Haptic shape discrimination and interhemispheric communication.

    PubMed

    Dowell, Catherine J; Norman, J Farley; Moment, Jackie R; Shain, Lindsey M; Norman, Hideko F; Phillips, Flip; Kappers, Astrid M L

    2018-01-10

    In three experiments participants haptically discriminated object shape using unimanual (single hand explored two objects) and bimanual exploration (both hands were used, but each hand, left or right, explored a separate object). Such haptic exploration (one versus two hands) requires somatosensory processing in either only one or both cerebral hemispheres; previous studies related to the perception of shape/curvature found superior performance for unimanual exploration, indicating that shape comparison is more effective when only one hemisphere is utilized. The current results, obtained for naturally shaped solid objects (bell peppers, Capsicum annuum) and simple cylindrical surfaces demonstrate otherwise: bimanual haptic exploration can be as effective as unimanual exploration, showing that there is no necessary reduction in ability when haptic shape comparison requires interhemispheric communication. We found that while successive bimanual exploration produced high shape discriminability, the participants' bimanual performance deteriorated for simultaneous shape comparisons. This outcome suggests that either interhemispheric interference or the need to attend to multiple objects simultaneously reduces shape discrimination ability. The current results also reveal a significant effect of age: older adults' shape discrimination abilities are moderately reduced relative to younger adults, regardless of how objects are manipulated (left hand only, right hand only, or bimanual exploration).

  11. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.

    PubMed

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2011-06-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.

  12. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery

    PubMed Central

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2013-01-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information. PMID:24398557

  13. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface.

    PubMed

    Aleotti, Jacopo; Micconi, Giorgio; Caselli, Stefano; Benassi, Giacomo; Zambelli, Nicola; Bettelli, Manuele; Zappettini, Andrea

    2017-09-29

    A visuo-haptic augmented reality (VHAR) interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV) equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the situation awareness of the operator. The user teleoperates the UAV using a 3DOF haptic device that provides an attractive force feedback around the location of the most intense detected radiation source. Moreover, a fixed camera on the ground observes the environment where the UAV is flying. A 3D augmented reality scene is displayed on a computer screen accessible to the operator. Multiple types of graphical overlays are shown, including sensor data acquired by the nuclear radiation detector, a virtual cursor that tracks the UAV and geographical information, such as buildings. Experiments performed in a real environment are reported using an intense nuclear source.

  14. The effect of a haptic biofeedback system on postural control in patients with stroke: An experimental pilot study.

    PubMed

    Yasuda, Kazuhiro; Kaibuki, Naomi; Harashima, Hiroaki; Iwata, Hiroyasu

    2017-06-01

    Impaired balance in patients with hemiparesis caused by stroke is frequently related to deficits in the central integration of afferent inputs, and traditional rehabilitation reinforces excessive visual reliance by focusing on visual compensation. The present study investigated whether a balance task involving a haptic biofeedback (BF) system, which provided supplementary vibrotactile sensory cues associated with center-of-foot-pressure displacement, improved postural control in patients with stroke. Seventeen stroke patients were assigned to two groups: the Vibrotactile BF and Control groups. During the balance task (i.e., standing on a foam mat), participants in the Vibrotactile BF group tried to stabilize their postural sway while wearing the BF system around the pelvic girdle. In the Control group, participants performed an identical postural task without the BF system. Pre- and post-test measurements of postural control using a force plate revealed that the stability of bipedal posture in the Vibrotactile BF group was markedly improved compared with that in the Control group. A balance task involving a vibrotactile BF system improved postural stability in patients with stroke immediately. This confirms the potential of a haptic-based BF system for balance training, both in routine clinical practice and in everyday life.

  15. Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback.

    PubMed

    Pacchierotti, Claudio; Abayazid, Momen; Misra, Sarthak; Prattichizzo, Domenico

    2014-01-01

    Needle insertion in soft-tissue is a minimally invasive surgical procedure that demands high accuracy. In this respect, robotic systems with autonomous control algorithms have been exploited as the main tool to achieve high accuracy and reliability. However, for reasons of safety and responsibility, autonomous robotic control is often not desirable. Therefore, it is necessary to focus also on techniques enabling clinicians to directly control the motion of the surgical tools. In this work, we address that challenge and present a novel teleoperated robotic system able to steer flexible needles. The proposed system tracks the position of the needle using an ultrasound imaging system and computes needle's ideal position and orientation to reach a given target. The master haptic interface then provides the clinician with mixed kinesthetic-vibratory navigation cues to guide the needle toward the computed ideal position and orientation. Twenty participants carried out an experiment of teleoperated needle insertion into a soft-tissue phantom, considering four different experimental conditions. Participants were provided with either mixed kinesthetic-vibratory feedback or mixed kinesthetic-visual feedback. Moreover, we considered two different ways of computing ideal position and orientation of the needle: with or without set-points. Vibratory feedback was found more effective than visual feedback in conveying navigation cues, with a mean targeting error of 0.72 mm when using set-points, and of 1.10 mm without set-points.

  16. Evaluation of a virtual-reality-based simulator using passive haptic feedback for knee arthroscopy.

    PubMed

    Fucentese, Sandro F; Rahm, Stefan; Wieser, Karl; Spillmann, Jonas; Harders, Matthias; Koch, Peter P

    2015-04-01

    The aim of this work is to determine face validity and construct validity of a new virtual-reality-based simulator for diagnostic and therapeutic knee arthroscopy. The study tests a novel arthroscopic simulator based on passive haptics. Sixty-eight participants were grouped into novices, intermediates, and experts. All participants completed two exercises. In order to establish face validity, all participants filled out a questionnaire concerning different aspects of simulator realism, training capacity, and different statements using a seven-point Likert scale (range 1-7). Construct validity was tested by comparing various simulator metric values between novices and experts. Face validity could be established: overall realism was rated with a mean value of 5.5 points. Global training capacity scored a mean value of 5.9. Participants considered the simulator as useful for procedural training of diagnostic and therapeutic arthroscopy. In the foreign body removal exercise, experts were overall significantly faster in the whole procedure (6 min 24 s vs. 8 min 24 s, p < 0.001), took less time to complete the diagnostic tour (2 min 49 s vs. 3 min 32 s, p = 0.027), and had a shorter camera path length (186 vs. 246 cm, p = 0.006). The simulator achieved high scores in terms of realism. It was regarded as a useful training tool, which is also capable of differentiating between varying levels of arthroscopic experience. Nevertheless, further improvements of the simulator especially in the field of therapeutic arthroscopy are desirable. In general, the findings support that virtual-reality-based simulation using passive haptics has the potential to complement conventional training of knee arthroscopy skills. II.

  17. New tools for sculpting cranial implants in a shared haptic augmented reality environment.

    PubMed

    Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary

    2006-01-01

    New volumetric tools were developed for the design and fabrication of high quality cranial implants from patient CT data. These virtual tools replace time consuming physical sculpting, mold making and casting steps. The implant is designed by medical professionals in tele-immersive collaboration. Virtual clay is added in the virtual defect area on the CT data using the adding tool. With force feedback the modeler can feel the edge of the defect and fill only the space where no bone is present. A carving tool and a smoothing tool are then used to sculpt and refine the implant. To make a physical evaluation, the skull with simulated defect and the implant are fabricated via stereolithography to allow neurosurgeons to evaluate the quality of the implant. Initial tests demonstrate a very high quality fit. These new haptic volumetric sculpting tools are a critical component of a comprehensive tele-immersive system.

  18. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.

    PubMed

    Prasad, M S Raghu; Manivannan, Muniyandi; Manoharan, Govindan; Chandramohan, S M

    2016-01-01

    Most of the commercially available virtual reality-based laparoscopic simulators do not effectively evaluate combined psychomotor and force-based laparoscopic skills. Consequently, the lack of training on these critical skills leads to intraoperative errors. To assess the effectiveness of the novel virtual reality-based simulator, this study analyzed the combined psychomotor (i.e., motion or movement) and force skills of residents and expert surgeons. The study also examined the effectiveness of real-time visual force feedback and tool motion during training. Bimanual fundamental (i.e., probing, pulling, sweeping, grasping, and twisting) and complex tasks (i.e., tissue dissection) were evaluated. In both tasks, visual feedback on applied force and tool motion were provided. The skills of the participants while performing the early tasks were assessed with and without visual feedback. Participants performed 5 repetitions of fundamental and complex tasks. Reaction force and instrument acceleration were used as metrics. Surgical Gastroenterology, Government Stanley Medical College and Hospital; Institute of Surgical Gastroenterology, Madras Medical College and Rajiv Gandhi Government General Hospital. Residents (N = 25; postgraduates and surgeons with <2 years of laparoscopic surgery) and expert surgeons (N = 25; surgeons with >4 and ≤10 years of laparoscopic surgery). Residents applied large forces compared with expert surgeons and performed abrupt tool movements (p < 0.001). However, visual + haptic feedback improved the performance of residents (p < 0.001). In complex tasks, visual + haptic feedback did not influence the applied force of expert surgeons, but influenced their tool motion (p < 0.001). Furthermore, in complex tissue sweeping task, expert surgeons applied more force, but were within the tissue damage limits. In both groups, exertion of large forces and abrupt tool motion were observed during grasping, probing or pulling, and tissue sweeping maneuvers

  19. Feedbacks in Human-Landscape Systems

    NASA Astrophysics Data System (ADS)

    Chin, Anne; Florsheim, Joan L.; Wohl, Ellen; Collins, Brian D.

    2014-01-01

    This article identifies key questions and challenges for geomorphologists in investigating coupled feedbacks in human-landscape systems. While feedbacks occur in the absence of human influences, they are also altered by human activity. Feedbacks are a key element to understanding human-influenced geomorphic systems in ways that extend our traditional approach of considering humans as unidirectional drivers of change. Feedbacks have been increasingly identified in Earth-environmental systems, with studies of coupled human-natural systems emphasizing ecological phenomena in producing emerging concepts for social-ecological systems. Enormous gaps or uncertainties in knowledge remain with respect to understanding impact-feedback loops within geomorphic systems with significant human alterations, where the impacted geomorphic systems in turn affect humans. Geomorphology should play an important role in public policy by identifying the many diffuse and subtle feedbacks of both local- and global-scale processes. This role is urgent, while time may still be available to mitigate the impacts that limit the sustainability of human societies. Challenges for geomorphology include identification of the often weak feedbacks that occur over varied time and space scales ranging from geologic time to single isolated events and very short time periods, the lack of available data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, the varied tools and metrics needed to represent both physical and human processes, and the need to collaborate with social scientists with expertise in the human causes of geomorphic change, as well as the human responses to such change.

  20. Haptic interfaces using dielectric electroactive polymers

    NASA Astrophysics Data System (ADS)

    Ozsecen, Muzaffer Y.; Sivak, Mark; Mavroidis, Constantinos

    2010-04-01

    Quality, amplitude and frequency of the interaction forces between a human and an actuator are essential traits for haptic applications. A variety of Electro-Active Polymer (EAP) based actuators can provide these characteristics simultaneously with quiet operation, low weight, high power density and fast response. This paper demonstrates a rolled Dielectric Elastomer Actuator (DEA) being used as a telepresence device in a heart beat measurement application. In the this testing, heart signals were acquired from a remote location using a wireless heart rate sensor, sent through a network and DEA was used to haptically reproduce the heart beats at the medical expert's location. A series of preliminary human subject tests were conducted that demonstrated that a) DE based haptic feeling can be used in heart beat measurement tests and b) through subjective testing the stiffness and actuator properties of the EAP can be tuned for a variety of applications.

  1. Teaching Classical Mechanics Concepts Using Visuo-Haptic Simulators

    ERIC Educational Resources Information Center

    Neri, Luis; Noguez, Julieta; Robledo-Rella, Victor; Escobar-Castillejos, David; Gonzalez-Nucamendi, Andres

    2018-01-01

    In this work, the design and implementation of several physics scenarios using haptic devices are presented and discussed. Four visuo-haptic applications were developed for an undergraduate engineering physics course. Experiments with experimental and control groups were designed and implemented. Activities and exercises related to classical…

  2. Multilateral haptics-based immersive teleoperation for improvised explosive device disposal

    NASA Astrophysics Data System (ADS)

    Erickson, David; Lacheray, Hervé; Daly, John

    2013-05-01

    Of great interest to police and military organizations is the development of effective improvised explosive device (IED) disposal (IEDD) technology to aid in activities such as mine field clearing, and bomb disposal. At the same time minimizing risk to personnel. This paper presents new results in the research and development of a next generation mobile immersive teleoperated explosive ordnance disposal system. This system incorporates elements of 3D vision, multilateral teleoperation for high transparency haptic feedback, immersive augmented reality operator control interfaces, and a realistic hardware-in-the-loop (HIL) 3D simulation environment incorporating vehicle and manipulator dynamics for both operator training and algorithm development. In the past year, new algorithms have been developed to facilitate incorporating commercial off-the-shelf (COTS) robotic hardware into the teleoperation system. In particular, a real-time numerical inverse position kinematics algorithm that can be applied to a wide range of manipulators has been implemented, an inertial measurement unit (IMU) attitude stabilization system for manipulators has been developed and experimentally validated, and a voice­operated manipulator control system has been developed and integrated into the operator control station. The integration of these components into a vehicle simulation environment with half-car vehicle dynamics has also been successfully carried out. A physical half-car plant is currently being constructed for HIL integration with the simulation environment.

  3. Improved PMMA single-piece haptic materials

    NASA Astrophysics Data System (ADS)

    Healy, Donald D.; Wilcox, Christopher D.

    1991-12-01

    During the past fifteen years, Intraocular lens (IOL) haptic preferences have shifted from a variety of multi-piece haptic materials to single-piece PMMA. This is due in part to the research of David Apple, M.D., and other who have suggested that All-PMMA implants result in reduced cell flare and better centration. Consequently, single-piece IOLs now represent 45% of all IOL implants. However, many surgeons regard single-piece IOL designs as nonflexible and more difficult to implant than multipiece IOLs. These handling characteristics have slowed the shift from multi-piece to single-piece IOLs. As a result of these handling characteristics, single-piece lenses experience relatively high breakage rates because of handling before insertion and during insertion. To improve these characteristics, manufacturers have refined single-piece IOL haptic designs by pushing the limits of PMMA's physical properties. Furthermore, IOL manufacturers have begun to alter the material itself to change its physical properties. In particular, two new PMMA materials have emerged in the marketplace: Flexeon trademark, a crosslinked polymer and CM trademark, a material with molecularly realigned PMMA. This paper examines three specific measurements of a haptic's strength and flexibility: tensile strength, plastic memory and material plasticity/elasticity. The paper compares with Flexeon trademark and CM trademark lenses to noncrosslinked one-piece lenses and standard polypropylene multi-piece lenses.

  4. Face and Construct Validity of a Novel Virtual Reality-Based Bimanual Laparoscopic Force-Skills Trainer With Haptics Feedback.

    PubMed

    Prasad, Raghu; Muniyandi, Manivannan; Manoharan, Govindan; Chandramohan, Servarayan M

    2018-05-01

    The purpose of this study was to examine the face and construct validity of a custom-developed bimanual laparoscopic force-skills trainer with haptics feedback. The study also examined the effect of handedness on fundamental and complex tasks. Residents (n = 25) and surgeons (n = 25) performed virtual reality-based bimanual fundamental and complex tasks. Tool-tissue reaction forces were summed, recorded, and analysed. Seven different force-based measures and a 1-time measure were used as metrics. Subsequently, participants filled out face validity and demographic questionnaires. Residents and surgeons were positive on the design, workspace, and usefulness of the simulator. Construct validity results showed significant differences between residents and experts during the execution of fundamental and complex tasks. In both tasks, residents applied large forces with higher coefficient of variation and force jerks (P < .001). Experts, with their dominant hand, applied lower forces in complex tasks and higher forces in fundamental tasks (P < .001). The coefficients of force variation (CoV) of residents and experts were higher in complex tasks (P < .001). Strong correlations were observed between CoV and task time for fundamental (r = 0.70) and complex tasks (r = 0.85). Range of smoothness of force was higher for the non-dominant hand in both fundamental and complex tasks. The simulator was able to differentiate the force-skills of residents and surgeons, and objectively evaluate the effects of handedness on laparoscopic force-skills. Competency-based laparoscopic skills assessment curriculum should be updated to meet the requirements of bimanual force-based training.

  5. Development of optical FBG force measurement system for the medical application

    NASA Astrophysics Data System (ADS)

    Song, Hoseok; Kim, Kiyoung; Suh, Jungwook; Lee, Jungju

    2010-03-01

    Haptic feedback plays a very important role in medical surgery. In minimally invasive surgery (MIS), however, very long and stiff bar of instruments take haptic feeling away from the surgeon. In minimally invasive robotic surgery (MIRS), moreover, haptic feelings are totally eliminated. Previous researchers have reported that the absence of force feedback increased the average force magnitude applied to the tissue by at least 50%, and increased the peakforce magnitude by at least a factor of two. Therefore, it is very important to provide haptic information in MIRS. Recently, many sensors are being developed for MIS or MIRS, but they have some obstacles in their application to real situations of medical surgery. The most critical problems are size limit and sterilizability. Optical fiber sensors are one of the most suitable sensors for this environment. Especially, optical fiber Bragg grating (FBG) sensor has one additional advantage than the other optical fiber sensors. FBG sensor is not influenced by intensity of light source. In this paper, we would like to present the initial results of study on the application of the FBG sensor to measure reflected forces in MIRS environments and then suggest the possibility of successful application to the MIRS systems.

  6. Development of optical FBG force measurement system for the medical application

    NASA Astrophysics Data System (ADS)

    Song, Hoseok; Kim, Kiyoung; Suh, Jungwook; Lee, Jungju

    2009-12-01

    Haptic feedback plays a very important role in medical surgery. In minimally invasive surgery (MIS), however, very long and stiff bar of instruments take haptic feeling away from the surgeon. In minimally invasive robotic surgery (MIRS), moreover, haptic feelings are totally eliminated. Previous researchers have reported that the absence of force feedback increased the average force magnitude applied to the tissue by at least 50%, and increased the peakforce magnitude by at least a factor of two. Therefore, it is very important to provide haptic information in MIRS. Recently, many sensors are being developed for MIS or MIRS, but they have some obstacles in their application to real situations of medical surgery. The most critical problems are size limit and sterilizability. Optical fiber sensors are one of the most suitable sensors for this environment. Especially, optical fiber Bragg grating (FBG) sensor has one additional advantage than the other optical fiber sensors. FBG sensor is not influenced by intensity of light source. In this paper, we would like to present the initial results of study on the application of the FBG sensor to measure reflected forces in MIRS environments and then suggest the possibility of successful application to the MIRS systems.

  7. Haptograph Representation of Real-World Haptic Information by Wideband Force Control

    NASA Astrophysics Data System (ADS)

    Katsura, Seiichiro; Irie, Kouhei; Ohishi, Kiyoshi

    Artificial acquisition and reproduction of human sensations are basic technologies of communication engineering. For example, auditory information is obtained by a microphone, and a speaker reproduces it by artificial means. Furthermore, a video camera and a television make it possible to transmit visual sensation by broadcasting. On the contrary, since tactile or haptic information is subject to the Newton's “law of action and reaction” in the real world, a device which acquires, transmits, and reproduces the information has not been established. From the point of view, real-world haptics is the key technology for future haptic communication engineering. This paper proposes a novel acquisition method of haptic information named “haptograph”. The haptograph visualizes the haptic information like photograph. The proposed haptograph is applied to haptic recognition of the contact environment. A linear motor contacts to the surface of the environment and its reaction force is used to make a haptograph. A robust contact motion and sensor-less sensing of the reaction force are attained by using a disturbance observer. As a result, an encyclopedia of contact environment is attained. Since temporal and spatial analyses are conducted to represent haptic information as the haptograph, it is possible to be recognized and to be evaluated intuitively.

  8. Human haptic perception is interrupted by explorative stops of milliseconds

    PubMed Central

    Grunwald, Martin; Muniyandi, Manivannan; Kim, Hyun; Kim, Jung; Krause, Frank; Mueller, Stephanie; Srinivasan, Mandayam A.

    2014-01-01

    Introduction: The explorative scanning movements of the hands have been compared to those of the eyes. The visual process is known to be composed of alternating phases of saccadic eye movements and fixation pauses. Descriptive results suggest that during the haptic exploration of objects short movement pauses occur as well. The goal of the present study was to detect these “explorative stops” (ES) during one-handed and two-handed haptic explorations of various objects and patterns, and to measure their duration. Additionally, the associations between the following variables were analyzed: (a) between mean exploration time and duration of ES, (b) between certain stimulus features and ES frequency, and (c) the duration of ES during the course of exploration. Methods: Five different Experiments were used. The first two Experiments were classical recognition tasks of unknown haptic stimuli (A) and of common objects (B). In Experiment C space-position information of angle legs had to be perceived and reproduced. For Experiments D and E the PHANToM haptic device was used for the exploration of virtual (D) and real (E) sunken reliefs. Results: In each Experiment we observed explorative stops of different average durations. For Experiment A: 329.50 ms, Experiment B: 67.47 ms, Experiment C: 189.92 ms, Experiment D: 186.17 ms and Experiment E: 140.02 ms. Significant correlations were observed between exploration time and the duration of the ES. Also, ES occurred more frequently, but not exclusively, at defined stimulus features like corners, curves and the endpoints of lines. However, explorative stops do not occur every time a stimulus feature is explored. Conclusions: We assume that ES are a general aspect of human haptic exploration processes. We have tried to interpret the occurrence and duration of ES with respect to the Hypotheses-Rebuild-Model and the Limited Capacity Control System theory. PMID:24782797

  9. A Multi-Finger Interface with MR Actuators for Haptic Applications.

    PubMed

    Qin, Huanhuan; Song, Aiguo; Gao, Zhan; Liu, Yuqing; Jiang, Guohua

    2018-01-01

    Haptic devices with multi-finger input are highly desirable in providing realistic and natural feelings when interacting with the remote or virtual environment. Compared with the conventional actuators, MR (Magneto-rheological) actuators are preferable options in haptics because of larger passive torque and torque-volume ratios. Among the existing haptic MR actuators, most of them are still bulky and heavy. If they were smaller and lighter, they would become more suitable for haptics. In this paper, a small-scale yet powerful MR actuator was designed to build a multi-finger interface for the 6 DOF haptic device. The compact structure was achieved by adopting the multi-disc configuration. Based on this configuration, the MR actuator can generate the maximum torque of 480 N.mm with dimensions of only 36 mm diameter and 18 mm height. Performance evaluation showed that it can exhibit a relatively high dynamic range and good response characteristics when compared with some other haptic MR actuators. The multi-finger interface is equipped with three MR actuators and can provide up to 8 N passive force to the thumb, index and middle fingers, respectively. An application example was used to demonstrate the effectiveness and potential of this new MR actuator based interface.

  10. A systematic review: the influence of real time feedback on wheelchair propulsion biomechanics.

    PubMed

    Symonds, Andrew; Barbareschi, Giulia; Taylor, Stephen; Holloway, Catherine

    2018-01-01

    Clinical guidelines recommend that, in order to minimize upper limb injury risk, wheelchair users adopt a semi-circular pattern with a slow cadence and a large push arc. To examine whether real time feedback can be used to influence manual wheelchair propulsion biomechanics. Clinical trials and case series comparing the use of real time feedback against no feedback were included. A general review was performed and methodological quality assessed by two independent practitioners using the Downs and Black checklist. The review was completed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines. Six papers met the inclusion criteria. Selected studies involved 123 participants and analysed the effect of visual and, in one case, haptic feedback. Across the studies it was shown that participants were able to achieve significant changes in propulsion biomechanics, when provided with real time feedback. However, the effect of targeting a single propulsion variable might lead to unwanted alterations in other parameters. Methodological assessment identified weaknesses in external validity. Visual feedback could be used to consistently increase push arc and decrease push rate, and may be the best focus for feedback training. Further investigation is required to assess such intervention during outdoor propulsion. Implications for Rehabilitation Upper limb pain and injuries are common secondary disorders that negatively affect wheelchair users' physical activity and quality of life. Clinical guidelines suggest that manual wheelchair users should aim to propel with a semi-circular pattern with low a push rate and large push arc in the range in order to minimise upper limbs' loading. Real time visual and haptic feedback are effective tools for improving propulsion biomechanics in both complete novices and experienced manual wheelchair users.

  11. A flexible tactile-feedback touch screen using transparent ferroelectric polymer film vibrators

    NASA Astrophysics Data System (ADS)

    Ju, Woo-Eon; Moon, Yong-Ju; Park, Cheon-Ho; Choi, Seung Tae

    2014-07-01

    To provide tactile feedback on flexible touch screens, transparent relaxor ferroelectric polymer film vibrators were designed and fabricated in this study. The film vibrator can be integrated underneath a transparent cover film or glass, and can also produce acoustic waves that cause a tactile sensation on human fingertips. Poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] polymer was used as the relaxor ferroelectric polymer because it produces a large strain under applied electric fields, shows a fast response, and has excellent optical transparency. The natural frequency of this tactile-feedback touch screen was designed to be around 200-240 Hz, at which the haptic perception of human fingertips is the most sensitive; therefore, the resonance of the touch screen at its natural frequency provides maximum haptic sensation. A multilayered relaxor ferroelectric polymer film vibrator was also demonstrated to provide the same vibration power at reduced voltage. The flexible P(VDF-TrFE-CTFE) film vibrators developed in this study are expected to provide tactile sensation not only in large-area flat panel displays, but also in flexible displays and touch screens.

  12. Development of a Haptic Interface for Natural Orifice Translumenal Endoscopic Surgery Simulation

    PubMed Central

    Dargar, Saurabh; Sankaranarayanan, Ganesh

    2016-01-01

    Natural orifice translumenal endoscopic surgery (NOTES) is a minimally invasive procedure, which utilizes the body’s natural orifices to gain access to the peritoneal cavity. The NOTES procedure is designed to minimize external scarring and patient trauma, however flexible endoscopy based pure NOTES procedures require critical scope handling skills. The delicate nature of the NOTES procedure requires extensive training, thus to improve access to training while reducing risk to patients we have designed and developed the VTEST©, a virtual reality NOTES simulator. As part of the simulator, a novel decoupled 2-DOF haptic device was developed to provide realistic force feedback to the user in training. A series of experiments were performed to determine the behavioral characteristics of the device. The device was found capable of rendering up to 5.62N and 0.190Nm of continuous force and torque in the translational and rotational DOF, respectively. The device possesses 18.1Hz and 5.7Hz of force bandwidth in the translational and rotational DOF, respectively. A feedforward friction compensator was also successfully implemented to minimize the negative impact of friction during the interaction with the device. In this work we have presented the detailed development and evaluation of the haptic device for the VTEST©. PMID:27008674

  13. A haptic sensor-actor-system based on ultrasound elastography and electrorheological fluids for virtual reality applications in medicine.

    PubMed

    Khaled, W; Ermert, H; Bruhns, O; Boese, H; Baumann, M; Monkman, G J; Egersdoerfer, S; Meier, A; Klein, D; Freimuth, H

    2003-01-01

    Mechanical properties of biological tissue represent important diagnostic information and are of histological relevance (hard lesions, "nodes" in organs: tumors; calcifications in vessels: arteriosclerosis). The problem is, that such information is usually obtained by digital palpation only, which is limited with respect to sensitivity. It requires intuitive assessment and does not allow quantitative documentation. A suitable sensor is required for quantitative detection of mechanical tissue properties. On the other hand, there is also some need for a realistic mechanical display of those tissue properties. Suitable actuator arrays with high spatial resolution and real-time capabilities are required operating in a haptic sensor actuator system with different applications. The sensor system uses real time ultrasonic elastography whereas the tactile actuator is based on electrorheological fluids. Due to their small size the actuator array elements have to be manufactured by micro-mechanical production methods. In order to supply the actuator elements with individual high voltages a sophisticated switching and control concept have been designed. This haptic system has the potential of inducing real time substantial forces, using a compact lightweight mechanism which can be applied to numerous areas including intraoperative navigation, telemedicine, teaching, space and telecommunication.

  14. G2H--graphics-to-haptic virtual environment development tool for PC's.

    PubMed

    Acosta, E; Temkin, B; Krummel, T M; Heinrichs, W L

    2000-01-01

    For surgical training and preparations, the existing surgical virtual environments have shown great improvement. However, these improvements are more in the visual aspect. The incorporation of haptics into virtual reality base surgical simulations would enhance the sense of realism greatly. To aid in the development of the haptic surgical virtual environment we have created a graphics to haptic, G2H, virtual environment developer tool. G2H transforms graphical virtual environments (created or imported) to haptic virtual environments without programming. The G2H capability has been demonstrated using the complex 3D pelvic model of Lucy 2.0, the Stanford Visible Female. The pelvis was made haptic using G2H without any further programming effort.

  15. A Haptic Guided Robotic System for Endoscope Positioning and Holding.

    PubMed

    Cabuk, Burak; Ceylan, Savas; Anik, Ihsan; Tugasaygi, Mehtap; Kizir, Selcuk

    2015-01-01

    To determine the feasibility, advantages, and disadvantages of using a robot for holding and maneuvering the endoscope in transnasal transsphenoidal surgery. The system used in this study was a Stewart Platform based robotic system that was developed by Kocaeli University Department of Mechatronics Engineering for positioning and holding of endoscope. After the first use on an artificial head model, the system was used on six fresh postmortem bodies that were provided by the Morgue Specialization Department of the Forensic Medicine Institute (Istanbul, Turkey). The setup required for robotic system was easy, the time for registration procedure and setup of the robot takes 15 minutes. The resistance was felt on haptic arm in case of contact or friction with adjacent tissues. The adaptation process was shorter with the mouse to manipulate the endoscope. The endoscopic transsphenoidal approach was achieved with the robotic system. The endoscope was guided to the sphenoid ostium with the help of the robotic arm. This robotic system can be used in endoscopic transsphenoidal surgery as an endoscope positioner and holder. The robot is able to change the position easily with the help of an assistant and prevents tremor, and provides a better field of vision for work.

  16. Haptics in forensics: the possibilities and advantages in using the haptic device for reconstruction approaches in forensic science.

    PubMed

    Buck, Ursula; Naether, Silvio; Braun, Marcel; Thali, Michael

    2008-09-18

    Non-invasive documentation methods such as surface scanning and radiological imaging are gaining in importance in the forensic field. These three-dimensional technologies provide digital 3D data, which are processed and handled in the computer. However, the sense of touch gets lost using the virtual approach. The haptic device enables the use of the sense of touch to handle and feel digital 3D data. The multifunctional application of a haptic device for forensic approaches is evaluated and illustrated in three different cases: the representation of bone fractures of the lower extremities, by traffic accidents, in a non-invasive manner; the comparison of bone injuries with the presumed injury-inflicting instrument; and in a gunshot case, the identification of the gun by the muzzle imprint, and the reconstruction of the holding position of the gun. The 3D models of the bones are generated from the Computed Tomography (CT) images. The 3D models of the exterior injuries, the injury-inflicting tools and the bone injuries, where a higher resolution is necessary, are created by the optical surface scan. The haptic device is used in combination with the software FreeForm Modelling Plus for touching the surface of the 3D models to feel the minute injuries and the surface of tools, to reposition displaced bone parts and to compare an injury-causing instrument with an injury. The repositioning of 3D models in a reconstruction is easier, faster and more precisely executed by means of using the sense of touch and with the user-friendly movement in the 3D space. For representation purposes, the fracture lines of bones are coloured. This work demonstrates that the haptic device is a suitable and efficient application in forensic science. The haptic device offers a new way in the handling of digital data in the virtual 3D space.

  17. Control of a Robot Dancer for Enhancing Haptic Human-Robot Interaction in Waltz.

    PubMed

    Hongbo Wang; Kosuge, K

    2012-01-01

    Haptic interaction between a human leader and a robot follower in waltz is studied in this paper. An inverted pendulum model is used to approximate the human's body dynamics. With the feedbacks from the force sensor and laser range finders, the robot is able to estimate the human leader's state by using an extended Kalman filter (EKF). To reduce interaction force, two robot controllers, namely, admittance with virtual force controller, and inverted pendulum controller, are proposed and evaluated in experiments. The former controller failed the experiment; reasons for the failure are explained. At the same time, the use of the latter controller is validated by experiment results.

  18. Force modeling for incisions into various tissues with MRF haptic master

    NASA Astrophysics Data System (ADS)

    Kim, Pyunghwa; Kim, Soomin; Park, Young-Dai; Choi, Seung-Bok

    2016-03-01

    This study proposes a new model to predict the reaction force that occurs in incisions during robot-assisted minimally invasive surgery. The reaction force is fed back to the manipulator by a magneto-rheological fluid (MRF) haptic master, which is featured by a bi-directional clutch actuator. The reaction force feedback provides similar sensations to laparotomy that cannot be provided by a conventional master for surgery. This advantage shortens the training period for robot-assisted minimally invasive surgery and can improve the accuracy of operations. The reaction force modeling of incisions can be utilized in a surgical simulator that provides a virtual reaction force. In this work, in order to model the reaction force during incisions, the energy aspect of the incision process is adopted and analyzed. Each mode of the incision process is classified by the tendency of the energy change, and modeled for realistic real-time application. The reaction force model uses actual reaction force information with three types of actual tissues: hard tissue, medium tissue, and soft tissue. This modeled force is realized by the MRF haptic master through an algorithm based on the position and velocity of a scalpel using two different control methods: an open-loop algorithm and a closed-loop algorithm. The reaction forces obtained from the proposed model are compared with a desired force in time domain.

  19. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface

    PubMed Central

    Micconi, Giorgio; Caselli, Stefano; Benassi, Giacomo; Zambelli, Nicola; Bettelli, Manuele

    2017-01-01

    A visuo-haptic augmented reality (VHAR) interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV) equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the situation awareness of the operator. The user teleoperates the UAV using a 3DOF haptic device that provides an attractive force feedback around the location of the most intense detected radiation source. Moreover, a fixed camera on the ground observes the environment where the UAV is flying. A 3D augmented reality scene is displayed on a computer screen accessible to the operator. Multiple types of graphical overlays are shown, including sensor data acquired by the nuclear radiation detector, a virtual cursor that tracks the UAV and geographical information, such as buildings. Experiments performed in a real environment are reported using an intense nuclear source. PMID:28961198

  20. Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling

    NASA Astrophysics Data System (ADS)

    Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.

    This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.

  1. The effect of perceptual grouping on haptic numerosity perception.

    PubMed

    Verlaers, K; Wagemans, J; Overvliet, K E

    2015-01-01

    We used a haptic enumeration task to investigate whether enumeration can be facilitated by perceptual grouping in the haptic modality. Eight participants were asked to count tangible dots as quickly and accurately as possible, while moving their finger pad over a tactile display. In Experiment 1, we manipulated the number and organization of the dots, while keeping the total exploration area constant. The dots were either evenly distributed on a horizontal line (baseline condition) or organized into groups based on either proximity (dots placed in closer proximity to each other) or configural cues (dots placed in a geometric configuration). In Experiment 2, we varied the distance between the subsets of dots. We hypothesized that when subsets of dots can be grouped together, the enumeration time will be shorter and accuracy will be higher than in the baseline condition. The results of both experiments showed faster enumeration for the configural condition than for the baseline condition, indicating that configural grouping also facilitates haptic enumeration. In Experiment 2, faster enumeration was also observed for the proximity condition than for the baseline condition. Thus, perceptual grouping speeds up haptic enumeration by both configural and proximity cues, suggesting that similar mechanisms underlie perceptual grouping in both visual and haptic enumeration.

  2. Differential effects of delay upon visually and haptically guided grasping and perceptual judgments.

    PubMed

    Pettypiece, Charles E; Culham, Jody C; Goodale, Melvyn A

    2009-05-01

    Experiments with visual illusions have revealed a dissociation between the systems that mediate object perception and those responsible for object-directed action. More recently, an experiment on a haptic version of the visual size-contrast illusion has provided evidence for the notion that the haptic modality shows a similar dissociation when grasping and estimating the size of objects in real-time. Here we present evidence suggesting that the similarities between the two modalities begin to break down once a delay is introduced between when people feel the target object and when they perform the grasp or estimation. In particular, when grasping after a delay in a haptic paradigm, people scale their grasps differently when the target is presented with a flanking object of a different size (although the difference does not reflect a size-contrast effect). When estimating after a delay, however, it appears that people ignore the size of the flanking objects entirely. This does not fit well with the results commonly found in visual experiments. Thus, introducing a delay reveals important differences in the way in which haptic and visual memories are stored and accessed.

  3. Integration of serious games and wearable haptic interfaces for Neuro Rehabilitation of children with movement disorders: A feasibility study.

    PubMed

    Bortone, Ilaria; Leonardis, Daniele; Solazzi, Massimiliano; Procopio, Caterina; Crecchi, Alessandra; Bonfiglio, Luca; Frisoli, Antonio

    2017-07-01

    The past decade has seen the emergence of rehabilitation treatments using virtual reality environments. One of the advantages in using this technology is the potential to create positive motivation, by means of engaging environments and tasks shaped in the form of serious games. In this work, we propose a novel Neuro Rehabilitation System for children with movement disorders, that is based on serious games in immersive virtual reality with haptic feedback. The system design aims to enhance involvement and engagement of patients, to provide congruent multi-sensory afferent feedback during motor exercises, and to benefit from the flexibility of virtual reality in adapting exercises to the patient's needs. We present a feasibility study of the method conducted through an experimental rehabilitation session in a group of 4 children with Cerebral Palsy and Developmental Dyspraxia, 4 Typically Developing children and 4 healthy adults. Subjects and patients were able to accomplish the proposed rehabilitation session and average performance of the motor exercises in patients were lower, although comparable, to healthy subjects. Together with positive comments reported by children after the rehabilitation session, results are encouraging for application of the method in a prolonged rehabilitation treatment.

  4. The effects of perceptual priming on 4-year-olds' haptic-to-visual cross-modal transfer.

    PubMed

    Kalagher, Hilary

    2013-01-01

    Four-year-old children often have difficulty visually recognizing objects that were previously experienced only haptically. This experiment attempts to improve their performance in these haptic-to-visual transfer tasks. Sixty-two 4-year-old children participated in priming trials in which they explored eight unfamiliar objects visually, haptically, or visually and haptically together. Subsequently, all children participated in the same haptic-to-visual cross-modal transfer task. In this task, children haptically explored the objects that were presented in the priming phase and then visually identified a match from among three test objects, each matching the object on only one dimension (shape, texture, or color). Children in all priming conditions predominantly made shape-based matches; however, the most shape-based matches were made in the Visual and Haptic condition. All kinds of priming provided the necessary memory traces upon which subsequent haptic exploration could build a strong enough representation to enable subsequent visual recognition. Haptic exploration patterns during the cross-modal transfer task are discussed and the detailed analyses provide a unique contribution to our understanding of the development of haptic exploratory procedures.

  5. The effect of force feedback on student reasoning about gravity, mass, force and motion

    NASA Astrophysics Data System (ADS)

    Bussell, Linda

    The purpose of this study was to examine whether force feedback within a computer simulation had an effect on reasoning by fifth grade students about gravity, mass, force, and motion, concepts which can be difficult for learners to grasp. Few studies have been done on cognitive learning and haptic feedback, particularly with young learners, but there is an extensive base of literature on children's conceptions of science and a number of studies focus specifically on children's conceptions of force and motion. This case study used a computer-based paddleball simulation with guided inquiry as the primary stimulus. Within the simulation, the learner could adjust the mass of the ball and the gravitational force. The experimental group used the simulation with visual and force feedback; the control group used the simulation with visual feedback but without force feedback. The proposition was that there would be differences in reasoning between the experimental and control groups, with force feedback being helpful with concepts that are more obvious when felt. Participants were 34 fifth-grade students from three schools. Students completed a modal (visual, auditory, and haptic) learning preference assessment and a pretest. The sessions, including participant experimentation and interviews, were audio recorded and observed. The interviews were followed by a written posttest. These data were analyzed to determine whether there were differences based on treatment, learning style, demographics, prior gaming experience, force feedback experience, or prior knowledge. Work with the simulation, regardless of group, was found to increase students' understanding of key concepts. The experimental group appeared to benefit from the supplementary help that force feedback provided. Those in the experimental group scored higher on the posttest than those in the control group. The greatest difference between mean group scores was on a question concerning the effects of increased

  6. The contribution of cutaneous and kinesthetic sensory modalities in haptic perception of orientation.

    PubMed

    Frisoli, Antonio; Solazzi, Massimiliano; Reiner, Miriam; Bergamasco, Massimo

    2011-06-30

    The aim of this study was to understand the integration of cutaneous and kinesthetic sensory modalities in haptic perception of shape orientation. A specific robotic apparatus was employed to simulate the exploration of virtual surfaces by active touch with two fingers, with kinesthetic only, cutaneous only and combined sensory feedback. The cutaneous feedback was capable of displaying the local surface orientation at the contact point, through a small plate indenting the fingerpad at contact. A psychophysics test was conducted with SDT methodology on 6 subjects to assess the discrimination threshold of angle perception between two parallel surfaces, with three sensory modalities and two shape sizes. Results show that the cutaneous sensor modality is not affected by size of shape, but kinesthetic performance is decreasing with smaller size. Cutaneous and kinesthetic sensory cues are integrated according to a Bayesian model, so that the combined sensory stimulation always performs better than single modalities alone. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Enhancing Mediated Interpersonal Communication through Affective Haptics

    NASA Astrophysics Data System (ADS)

    Tsetserukou, Dzmitry; Neviarouskaya, Alena; Prendinger, Helmut; Kawakami, Naoki; Ishizuka, Mitsuru; Tachi, Susumu

    Driven by the motivation to enhance emotionally immersive experience of real-time messaging in 3D virtual world Second Life, we are proposing a conceptually novel approach to reinforcing (intensifying) own feelings and reproducing (simulating) the emotions felt by the partner through specially designed system, iFeel_IM!. In the paper we are describing the development of novel haptic devices (HaptiHeart, HaptiHug, HaptiTickler, HaptiCooler, and HaptiWarmer) integrated into iFeel_IM! system, which architecture is presented in detail.

  8. Haptic guidance of overt visual attention.

    PubMed

    List, Alexandra; Iordanescu, Lucica; Grabowecky, Marcia; Suzuki, Satoru

    2014-11-01

    Research has shown that information accessed from one sensory modality can influence perceptual and attentional processes in another modality. Here, we demonstrated a novel crossmodal influence of haptic-shape information on visual attention. Participants visually searched for a target object (e.g., an orange) presented among distractor objects, fixating the target as quickly as possible. While searching for the target, participants held (never viewed and out of sight) an item of a specific shape in their hands. In two experiments, we demonstrated that the time for the eyes to reach a target-a measure of overt visual attention-was reduced when the shape of the held item (e.g., a sphere) was consistent with the shape of the visual target (e.g., an orange), relative to when the held shape was unrelated to the target (e.g., a hockey puck) or when no shape was held. This haptic-to-visual facilitation occurred despite the fact that the held shapes were not predictive of the visual targets' shapes, suggesting that the crossmodal influence occurred automatically, reflecting shape-specific haptic guidance of overt visual attention.

  9. Differential effects of non-informative vision and visual interference on haptic spatial processing

    PubMed Central

    van Rheede, Joram J.; Postma, Albert; Kappers, Astrid M. L.

    2008-01-01

    The primary purpose of this study was to examine the effects of non-informative vision and visual interference upon haptic spatial processing, which supposedly derives from an interaction between an allocentric and egocentric reference frame. To this end, a haptic parallelity task served as baseline to determine the participant-dependent biasing influence of the egocentric reference frame. As expected, large systematic participant-dependent deviations from veridicality were observed. In the second experiment we probed the effect of non-informative vision on the egocentric bias. Moreover, orienting mechanisms (gazing directions) were studied with respect to the presentation of haptic information in a specific hemispace. Non-informative vision proved to have a beneficial effect on haptic spatial processing. No effect of gazing direction or hemispace was observed. In the third experiment we investigated the effect of simultaneously presented interfering visual information on the haptic bias. Interfering visual information parametrically influenced haptic performance. The interplay of reference frames that subserves haptic spatial processing was found to be related to both the effects of non-informative vision and visual interference. These results suggest that spatial representations are influenced by direct cross-modal interactions; inter-participant differences in the haptic modality resulted in differential effects of the visual modality. PMID:18553074

  10. A Model for Steering with Haptic-Force Guidance

    NASA Astrophysics Data System (ADS)

    Yang, Xing-Dong; Irani, Pourang; Boulanger, Pierre; Bischof, Walter F.

    Trajectory-based tasks are common in many applications and have been widely studied. Recently, researchers have shown that even very simple tasks, such as selecting items from cascading menus, can benefit from haptic-force guidance. Haptic guidance is also of significant value in many applications such as medical training, handwriting learning, and in applications requiring precise manipulations. There are, however, only very few guiding principles for selecting parameters that are best suited for proper force guiding. In this paper, we present a model, derived from the steering law that relates movement time to the essential components of a tunneling task in the presence of haptic-force guidance. Results of an experiment show that our model is highly accurate for predicting performance times in force-enhanced tunneling tasks.

  11. Feedbacks in human-landscape systems

    NASA Astrophysics Data System (ADS)

    Chin, Anne

    2015-04-01

    As human interactions with Earth systems intensify in the "Anthropocene", understanding the complex relationships among human activity, landscape change, and societal responses to those changes is increasingly important. Interdisciplinary research centered on the theme of "feedbacks" in human-landscape systems serves as a promising focus for unraveling these interactions. Deciphering interacting human-landscape feedbacks extends our traditional approach of considering humans as unidirectional drivers of change. Enormous challenges exist, however, in quantifying impact-feedback loops in landscapes with significant human alterations. This paper illustrates an example of human-landscape interactions following a wildfire in Colorado (USA) that elicited feedback responses. After the 2012 Waldo Canyon Fire, concerns for heightened flood potential and debris flows associated with post-fire hydrologic changes prompted local landowners to construct tall fences at the base of a burned watershed. These actions changed the sediment transport regime and promoted further landscape change and human responses in a positive feedback cycle. The interactions ultimately increase flood and sediment hazards, rather than dampening the effects of fire. A simple agent-based model, capable of integrating social and hydro-geomorphological data, demonstrates how such interacting impacts and feedbacks could be simulated. Challenges for fully capturing human-landscape feedback interactions include the identification of diffuse and subtle feedbacks at a range of scales, the availability of data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, and the varied metrics and data needed to represent both the physical and human systems. By collaborating with social scientists with expertise in the human causes of landscape change, as well as the human responses to those changes, geoscientists could more fully recognize and anticipate the coupled

  12. Magnetorheological fluid based automotive steer-by-wire systems

    NASA Astrophysics Data System (ADS)

    Ahmadkhanlou, Farzad; Washington, Gregory N.; Bechtel, Stephen E.; Wang, Yingru

    2006-03-01

    The idea of this paper is to design a Magnetorheological (MR) fluid based damper for steer-by-wire systems to provide sensory feedback to the driver. The advantages of using MR fluids in haptic devices stem from the increase in transparency gained from the lightweight semiactive system and controller implementation. The performance of MR fluid based steer-by wire system depends on MR fluid model and specifications, MR damper geometry, and the control algorithm. All of these factors are addressed in this study. The experimental results show the improvements in steer-by-wire by adding force feedback to the system.

  13. Visual and haptic integration in the estimation of softness of deformable objects

    PubMed Central

    Cellini, Cristiano; Kaim, Lukas; Drewing, Knut

    2013-01-01

    Softness perception intrinsically relies on haptic information. However, through everyday experiences we learn correspondences between felt softness and the visual effects of exploratory movements that are executed to feel softness. Here, we studied how visual and haptic information is integrated to assess the softness of deformable objects. Participants discriminated between the softness of two softer or two harder objects using only-visual, only-haptic or both visual and haptic information. We assessed the reliabilities of the softness judgments using the method of constant stimuli. In visuo-haptic trials, discrepancies between the two senses' information allowed us to measure the contribution of the individual senses to the judgments. Visual information (finger movement and object deformation) was simulated using computer graphics; input in visual trials was taken from previous visuo-haptic trials. Participants were able to infer softness from vision alone, and vision considerably contributed to bisensory judgments (∼35%). The visual contribution was higher than predicted from models of optimal integration (senses are weighted according to their reliabilities). Bisensory judgments were less reliable than predicted from optimal integration. We conclude that the visuo-haptic integration of softness information is biased toward vision, rather than being optimal, and might even be guided by a fixed weighting scheme. PMID:25165510

  14. Ambulatory Feedback System

    NASA Technical Reports Server (NTRS)

    Finger, Herbert; Weeks, Bill

    1985-01-01

    This presentation discusses instrumentation that will be used for a specific event, which we hope will carry on to future events within the Space Shuttle program. The experiment is the Autogenic Feedback Training Experiment (AFTE) scheduled for Spacelab 3, currently scheduled to be launched in November, 1984. The objectives of the AFTE are to determine the effectiveness of autogenic feedback in preventing or reducing space adaptation syndrome (SAS), to monitor and record in-flight data from the crew, to determine if prediction criteria for SAS can be established, and, finally, to develop an ambulatory instrument package to mount the crew throughout the mission. The purpose of the Ambulatory Feedback System (AFS) is to record the responses of the subject during a provocative event in space and provide a real-time feedback display to reinforce the training.

  15. Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback.

    PubMed

    Shokur, Solaiman; Gallo, Simone; Moioli, Renan C; Donati, Ana Rita C; Morya, Edgard; Bleuler, Hannes; Nicolelis, Miguel A L

    2016-09-19

    Spinal cord injuries disrupt bidirectional communication between the patient's brain and body. Here, we demonstrate a new approach for reproducing lower limb somatosensory feedback in paraplegics by remapping missing leg/foot tactile sensations onto the skin of patients' forearms. A portable haptic display was tested in eight patients in a setup where the lower limbs were simulated using immersive virtual reality (VR). For six out of eight patients, the haptic display induced the realistic illusion of walking on three different types of floor surfaces: beach sand, a paved street or grass. Additionally, patients experienced the movements of the virtual legs during the swing phase or the sensation of the foot rolling on the floor while walking. Relying solely on this tactile feedback, patients reported the position of the avatar leg during virtual walking. Crossmodal interference between vision of the virtual legs and tactile feedback revealed that patients assimilated the virtual lower limbs as if they were their own legs. We propose that the addition of tactile feedback to neuroprosthetic devices is essential to restore a full lower limb perceptual experience in spinal cord injury (SCI) patients, and will ultimately, lead to a higher rate of prosthetic acceptance/use and a better level of motor proficiency.

  16. Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback

    PubMed Central

    Shokur, Solaiman; Gallo, Simone; Moioli, Renan C.; Donati, Ana Rita C.; Morya, Edgard; Bleuler, Hannes; Nicolelis, Miguel A.L.

    2016-01-01

    Spinal cord injuries disrupt bidirectional communication between the patient’s brain and body. Here, we demonstrate a new approach for reproducing lower limb somatosensory feedback in paraplegics by remapping missing leg/foot tactile sensations onto the skin of patients’ forearms. A portable haptic display was tested in eight patients in a setup where the lower limbs were simulated using immersive virtual reality (VR). For six out of eight patients, the haptic display induced the realistic illusion of walking on three different types of floor surfaces: beach sand, a paved street or grass. Additionally, patients experienced the movements of the virtual legs during the swing phase or the sensation of the foot rolling on the floor while walking. Relying solely on this tactile feedback, patients reported the position of the avatar leg during virtual walking. Crossmodal interference between vision of the virtual legs and tactile feedback revealed that patients assimilated the virtual lower limbs as if they were their own legs. We propose that the addition of tactile feedback to neuroprosthetic devices is essential to restore a full lower limb perceptual experience in spinal cord injury (SCI) patients, and will ultimately, lead to a higher rate of prosthetic acceptance/use and a better level of motor proficiency. PMID:27640345

  17. Improved haptic interface for colonoscopy simulation.

    PubMed

    Woo, Hyun Soo; Kim, Woo Seok; Ahn, Woojin; Lee, Doo Yong; Yi, Sun Young

    2007-01-01

    This paper presents an improved haptic interface of the KAIST-Ewha colonoscopy simulator II. The haptic interface enables the distal portion of the colonoscope to be freely bent while guaranteeing enough workspace and reflective forces for colonoscopy simulation. Its force-torque sensor measures profiles of the user. Manipulation of the colonoscope tip is monitored by four deflection sensors, and triggers computation to render accurate graphic images corresponding to the angle knob rotation. Tack switches are attached on the valve-actuation buttons of the colonoscope to simulate air-injection or suction, and the corresponding deformation of the colon.

  18. Direct Visuo-Haptic 4D Volume Rendering Using Respiratory Motion Models.

    PubMed

    Fortmeier, Dirk; Wilms, Matthias; Mastmeyer, Andre; Handels, Heinz

    2015-01-01

    This article presents methods for direct visuo-haptic 4D volume rendering of virtual patient models under respiratory motion. Breathing models are computed based on patient-specific 4D CT image data sequences. Virtual patient models are visualized in real-time by ray casting based rendering of a reference CT image warped by a time-variant displacement field, which is computed using the motion models at run-time. Furthermore, haptic interaction with the animated virtual patient models is provided by using the displacements computed at high rendering rates to translate the position of the haptic device into the space of the reference CT image. This concept is applied to virtual palpation and the haptic simulation of insertion of a virtual bendable needle. To this aim, different motion models that are applicable in real-time are presented and the methods are integrated into a needle puncture training simulation framework, which can be used for simulated biopsy or vessel puncture in the liver. To confirm real-time applicability, a performance analysis of the resulting framework is given. It is shown that the presented methods achieve mean update rates around 2,000 Hz for haptic simulation and interactive frame rates for volume rendering and thus are well suited for visuo-haptic rendering of virtual patients under respiratory motion.

  19. Superior haptic-to-visual shape matching in autism spectrum disorders.

    PubMed

    Nakano, Tamami; Kato, Nobumasa; Kitazawa, Shigeru

    2012-04-01

    A weak central coherence theory in autism spectrum disorder (ASD) proposes that a cognitive bias toward local processing in ASD derives from a weakness in integrating local elements into a coherent whole. Using this theory, we hypothesized that shape perception through active touch, which requires sequential integration of sensorimotor traces of exploratory finger movements into a shape representation, would be impaired in ASD. Contrary to our expectation, adults with ASD showed superior performance in a haptic-to-visual delayed shape-matching task compared to adults without ASD. Accuracy in discriminating haptic lengths or haptic orientations, which lies within the somatosensory modality, did not differ between adults with ASD and adults without ASD. Moreover, this superior ability in inter-modal haptic-to-visual shape matching was not explained by the score in a unimodal visuospatial rotation task. These results suggest that individuals with ASD are not impaired in integrating sensorimotor traces into a global visual shape and that their multimodal shape representations and haptic-to-visual information transfer are more accurate than those of individuals without ASD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Haptic-2D: A new haptic test battery assessing the tactual abilities of sighted and visually impaired children and adolescents with two-dimensional raised materials.

    PubMed

    Mazella, Anaïs; Albaret, Jean-Michel; Picard, Delphine

    2016-01-01

    To fill an important gap in the psychometric assessment of children and adolescents with impaired vision, we designed a new battery of haptic tests, called Haptic-2D, for visually impaired and sighted individuals aged five to 18 years. Unlike existing batteries, ours uses only two-dimensional raised materials that participants explore using active touch. It is composed of 11 haptic tests, measuring scanning skills, tactile discrimination skills, spatial comprehension skills, short-term tactile memory, and comprehension of tactile pictures. We administered this battery to 138 participants, half of whom were sighted (n=69), and half visually impaired (blind, n=16; low vision, n=53). Results indicated a significant main effect of age on haptic scores, but no main effect of vision or Age × Vision interaction effect. Reliability of test items was satisfactory (Cronbach's alpha, α=0.51-0.84). Convergent validity was good, as shown by a significant correlation (age partialled out) between total haptic scores and scores on the B101 test (rp=0.51, n=47). Discriminant validity was also satisfactory, as attested by a lower but still significant partial correlation between total haptic scores and the raw score on the verbal WISC (rp=0.43, n=62). Finally, test-retest reliability was good (rs=0.93, n=12; interval of one to two months). This new psychometric tool should prove useful to practitioners working with young people with impaired vision. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of Auditory Interference on Memory of Haptic Perceptions.

    ERIC Educational Resources Information Center

    Anater, Paul F.

    1980-01-01

    The effect of auditory interference on the processing of haptic information by 61 visually impaired students (8 to 20 years old) was the focus of the research described in this article. It was assumed that as the auditory interference approximated the verbalized activity of the haptic task, accuracy of recall would decline. (Author)

  2. Human-arm-and-hand-dynamic model with variability analyses for a stylus-based haptic interface.

    PubMed

    Fu, Michael J; Cavuşoğlu, M Cenk

    2012-12-01

    Haptic interface research benefits from accurate human arm models for control and system design. The literature contains many human arm dynamic models but lacks detailed variability analyses. Without accurate measurements, variability is modeled in a very conservative manner, leading to less than optimal controller and system designs. This paper not only presents models for human arm dynamics but also develops inter- and intrasubject variability models for a stylus-based haptic device. Data from 15 human subjects (nine male, six female, ages 20-32) were collected using a Phantom Premium 1.5a haptic device for system identification. In this paper, grip-force-dependent models were identified for 1-3-N grip forces in the three spatial axes. Also, variability due to human subjects and grip-force variation were modeled as both structured and unstructured uncertainties. For both forms of variability, the maximum variation, 95 %, and 67 % confidence interval limits were examined. All models were in the frequency domain with force as input and position as output. The identified models enable precise controllers targeted to a subset of possible human operator dynamics.

  3. Design and simulation of a new bidirectional actuator for haptic systems featuring MR fluid

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Quoc; Tri, Diep Bao; Cuong, Vo Van; Choi, Seung-Bok

    2017-04-01

    In this research, a new configuration of bidirectional actuator featuring MR fluid (BMRA) is proposed for haptic application. The proposed BMRA consists of a driving disc, a driving housing and a driven disc. The driving disc is placed inside the driving housing and rotates counter to each other by a servo DC motor and a bevel gear system. The driven shaft is also placed inside the housing and next to the driving disc. The gap between the two disc and the gap between the discs and the housing are filled with MR fluid. On the driven disc, two mutual magnetic coils are placed. By applying currents to the two coils mutually, the torque at the output shaft, which is fixed to the driven disc, can be controlled with positive, zero or negative value. This make the actuator be suitable for haptic application. After a review of MR fluid and its application, configuration of the proposed BMRA is presented. The modeling of the actuator is then derived based on Bingham rheological model of MRF and magnetic finite element analysis (FEA). The optimal design of the actuator is then performed to minimize the mass of the BMRA. From the optimal design result, performance characteristics of the actuator is simulated and detailed design of a prototype actuator is conducted.

  4. Exploring Relationships between Students' Interaction and Learning with a Haptic Virtual Biomolecular Model

    ERIC Educational Resources Information Center

    Schonborn, Konrad J.; Bivall, Petter; Tibell, Lena A. E.

    2011-01-01

    This study explores tertiary students' interaction with a haptic virtual model representing the specific binding of two biomolecules, a core concept in molecular life science education. Twenty students assigned to a "haptics" (experimental) or "no-haptics" (control) condition performed a "docking" task where users sought the most favourable…

  5. A Virtual Reality System for PTCD Simulation Using Direct Visuo-Haptic Rendering of Partially Segmented Image Data.

    PubMed

    Fortmeier, Dirk; Mastmeyer, Andre; Schröder, Julian; Handels, Heinz

    2016-01-01

    This study presents a new visuo-haptic virtual reality (VR) training and planning system for percutaneous transhepatic cholangio-drainage (PTCD) based on partially segmented virtual patient models. We only use partially segmented image data instead of a full segmentation and circumvent the necessity of surface or volume mesh models. Haptic interaction with the virtual patient during virtual palpation, ultrasound probing and needle insertion is provided. Furthermore, the VR simulator includes X-ray and ultrasound simulation for image-guided training. The visualization techniques are GPU-accelerated by implementation in Cuda and include real-time volume deformations computed on the grid of the image data. Computation on the image grid enables straightforward integration of the deformed image data into the visualization components. To provide shorter rendering times, the performance of the volume deformation algorithm is improved by a multigrid approach. To evaluate the VR training system, a user evaluation has been performed and deformation algorithms are analyzed in terms of convergence speed with respect to a fully converged solution. The user evaluation shows positive results with increased user confidence after a training session. It is shown that using partially segmented patient data and direct volume rendering is suitable for the simulation of needle insertion procedures such as PTCD.

  6. Performance evaluation of haptic hand-controllers in a robot-assisted surgical system.

    PubMed

    Zareinia, Kourosh; Maddahi, Yaser; Ng, Canaan; Sepehri, Nariman; Sutherland, Garnette R

    2015-12-01

    This paper presents the experimental evaluation of three commercially available haptic hand-controllers to evaluate which was more suitable to the participants. Two surgeons and seven engineers performed two peg-in-hole tasks with different levels of difficulty. Each operator guided the end-effector of a Kuka manipulator that held surgical forceps and was equipped with a surgical microscope. Sigma 7, HD(2) and PHANToM Premium 3.0 hand-controllers were compared. Ten measures were adopted to evaluate operators' performances with respect to effort, speed and accuracy in completing a task, operator improvement during the tests, and the force applied by each haptic device. The best performance was observed with the Premium 3.0; the hand-piece was able to be held in a similar way to that used by surgeons to hold conventional tools. Hand-controllers with a linkage structure similar to the human upper extremity take advantage of the inherent human brain connectome, resulting in improved surgeon performance during robotic-assisted surgery. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Personalized Learning in Medical Education: Designing a User Interface for a Dynamic Haptic Robotic Trainer for Central Venous Catheterization

    PubMed Central

    Yovanoff, Mary; Pepley, David; Mirkin, Katelin; Moore, Jason; Han, David; Miller, Scarlett

    2017-01-01

    While Virtual Reality (VR) has emerged as a viable method for training new medical residents, it has not yet reached all areas of training. One area lacking such development is surgical residency programs where there are large learning curves associated with skill development. In order to address this gap, a Dynamic Haptic Robotic Trainer (DHRT) was developed to help train surgical residents in the placement of ultrasound guided Internal Jugular Central Venous Catheters and to incorporate personalized learning. In order to accomplish this, a 2-part study was conducted to: (1) systematically analyze the feedback given to 18 third year medical students by trained professionals to identify the items necessary for a personalized learning system and (2) develop and experimentally test the usability of the personalized learning interface within the DHRT system. The results can be used to inform the design of VR and personalized learning systems within the medical community. PMID:29123361

  8. Fragility of haptic memory in human full-term newborns.

    PubMed

    Lejeune, Fleur; Borradori Tolsa, Cristina; Gentaz, Edouard; Barisnikov, Koviljka

    2018-05-31

    Numerous studies have established that newborns can memorize tactile information about the specific features of an object with their hands and detect differences with another object. However, the robustness of haptic memory abilities has already been examined in preterm newborns and in full-term infants, but not yet in full-term newborns. This research is aimed to better understand the robustness of haptic memory abilities at birth by examining the effects of a change in the objects' temperature and haptic interference. Sixty-eight full-term newborns (mean postnatal age: 2.5 days) were included. The two experiments were conducted in three phases: habituation (repeated presentation of the same object, a prism or cylinder in the newborn's hand), discrimination (presentation of a novel object), and recognition (presentation of the familiar object). In Experiment 1, the change in the objects' temperature was controlled during the three phases. Results reveal that newborns can memorize specific features that differentiate prism and cylinder shapes by touch, and discriminate between them, but surprisingly they did not show evidence of recognizing them after interference. As no significant effect of the temperature condition was observed in habituation, discrimination and recognition abilities, these findings suggest that discrimination abilities in newborns may be determined by the detection of shape differences. Overall, it seems that the ontogenesis of haptic recognition memory is not linear. The developmental schedule is likely crucial for haptic development between 34 and 40 GW. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Graphical Understanding of Simple Feedback Systems.

    ERIC Educational Resources Information Center

    Janvier, Claude; Garancon, Maurice

    1989-01-01

    Shows that graphs can reveal much about feedback systems that formula conceal, especially as microcomputers can provide complex graphs presented as animations and allow students to interact easily with them. Describes feedback systems, evolution of the system, and phase diagram. (YP)

  10. Haptic device development based on electro static force of cellulose electro active paper

    NASA Astrophysics Data System (ADS)

    Yun, Gyu-young; Kim, Sang-Youn; Jang, Sang-Dong; Kim, Dong-Gu; Kim, Jaehwan

    2011-04-01

    Haptic is one of well-considered device which is suitable for demanding virtual reality applications such as medical equipment, mobile devices, the online marketing and so on. Nowadays, many of concepts for haptic devices have been suggested to meet the demand of industries. Cellulose has received much attention as an emerging smart material, named as electro-active paper (EAPap). The EAPap is attractive for mobile haptic devices due to its unique characteristics in terms of low actuation power, suitability for thin devices and transparency. In this paper, we suggest a new concept of haptic actuator with the use of cellulose EAPap. Its performance is evaluated depending on various actuation conditions. As a result, cellulose electrostatic force actuator shows a large output displacement and fast response, which is suitable for mobile haptic devices.

  11. Haptic Cues for Balance: Use of a Cane Provides Immediate Body Stabilization

    PubMed Central

    Sozzi, Stefania; Crisafulli, Oscar; Schieppati, Marco

    2017-01-01

    Haptic cues are important for balance. Knowledge of the temporal features of their effect may be crucial for the design of neural prostheses. Touching a stable surface with a fingertip reduces body sway in standing subjects eyes closed (EC), and removal of haptic cue reinstates a large sway pattern. Changes in sway occur rapidly on changing haptic conditions. Here, we describe the effects and time-course of stabilization produced by a haptic cue derived from a walking cane. We intended to confirm that cane use reduces body sway, to evaluate the effect of vision on stabilization by a cane, and to estimate the delay of the changes in body sway after addition and withdrawal of haptic input. Seventeen healthy young subjects stood in tandem position on a force platform, with eyes closed or open (EO). They gently lowered the cane onto and lifted it from a second force platform. Sixty trials per direction of haptic shift (Touch → NoTouch, T-NT; NoTouch → Touch, NT-T) and visual condition (EC-EO) were acquired. Traces of Center of foot Pressure (CoP) and the force exerted by cane were filtered, rectified, and averaged. The position in space of a reflective marker positioned on the cane tip was also acquired by an optoelectronic device. Cross-correlation (CC) analysis was performed between traces of cane tip and CoP displacement. Latencies of changes in CoP oscillation in the frontal plane EC following the T-NT and NT-T haptic shift were statistically estimated. The CoP oscillations were larger in EC than EO under both T and NT (p < 0.001) and larger during NT than T conditions (p < 0.001). Haptic-induced effect under EC (Romberg quotient NT/T ~ 1.2) was less effective than that of vision under NT condition (EC/EO ~ 1.5) (p < 0.001). With EO cane had little effect. Cane displacement lagged CoP displacement under both EC and EO. Latencies to changes in CoP oscillations were longer after addition (NT-T, about 1.6 s) than withdrawal (T-NT, about 0.9 s) of haptic input (p

  12. Haptic identification of objects and their depictions.

    PubMed

    Klatzky, R L; Loomis, J M; Lederman, S J; Wake, H; Fujita, N

    1993-08-01

    Haptic identification of real objects is superior to that of raised two-dimensional (2-D) depictions. Three explanations of real-object superiority were investigated: contribution of material information, contribution of 3-D shape and size, and greater potential for integration across the fingers. In Experiment 1, subjects, while wearing gloves that gently attenuated material information, haptically identified real objects that provided reduced cues to compliance, mass, and part motion. The gloves permitted exploration with free hand movement, a single outstretched finger, or five outstretched fingers. Performance decreased over these three conditions but was superior to identification of pictures of the same objects in all cases, indicating the contribution of 3-D structure and integration across the fingers. Picture performance was also better with five fingers than with one. In Experiment 2, the subjects wore open-fingered gloves, which provided them with material information. Consequently, the effect of type of exploration was substantially reduced but not eliminated. Material compensates somewhat for limited access to object structure but is not the primary basis for haptic object identification.

  13. The mere exposure effect in the domain of haptics.

    PubMed

    Jakesch, Martina; Carbon, Claus-Christian

    2012-01-01

    Zajonc showed that the attitude towards stimuli that one had been previously exposed to is more positive than towards novel stimuli. This mere exposure effect (MEE) has been tested extensively using various visual stimuli. Research on the MEE is sparse, however, for other sensory modalities. We used objects of two material categories (stone and wood) and two complexity levels (simple and complex) to test the influence of exposure frequency (F0 = novel stimuli, F2 = stimuli exposed twice, F10 = stimuli exposed ten times) under two sensory modalities (haptics only and haptics & vision). Effects of exposure frequency were found for high complex stimuli with significantly increasing liking from F0 to F2 and F10, but only for the stone category. Analysis of "Need for Touch" data showed the MEE in participants with high need for touch, which suggests different sensitivity or saturation levels of MEE. This different sensitivity or saturation levels might also reflect the effects of expertise on the haptic evaluation of objects. It seems that haptic and cross-modal MEEs are influenced by factors similar to those in the visual domain indicating a common cognitive basis.

  14. Feedback-Equivalence of Nonlinear Systems with Applications to Power System Equations.

    NASA Astrophysics Data System (ADS)

    Marino, Riccardo

    The key concept of the dissertation is feedback equivalence among systems affine in control. Feedback equivalence to linear systems in Brunovsky canonical form and the construction of the corresponding feedback transformation are used to: (i) design a nonlinear regulator for a detailed nonlinear model of a synchronous generator connected to an infinite bus; (ii) establish which power system network structures enjoy the feedback linearizability property and design a stabilizing control law for these networks with a constraint on the control space which comes from the use of d.c. lines. It is also shown that the feedback linearizability property allows the use of state feedback to contruct a linear controllable system with a positive definite linear Hamiltonian structure for the uncontrolled part if the state space is even; a stabilizing control law is derived for such systems. Feedback linearizability property is characterized by the involutivity of certain nested distributions for strongly accessible analytic systems; if the system is defined on a manifold M diffeomorphic to the Euclidean space, it is established that the set where the property holds is a submanifold open and dense in M. If an analytic output map is defined, a set of nested involutive distributions can be always defined and that allows the introduction of an observability property which is the dual concept, in some sense, to feedback linearizability: the goal is to investigate when a nonlinear system affine in control with an analytic output map is feedback equivalent to a linear controllable and observable system. Finally a nested involutive structure of distributions is shown to guarantee the existence of a state feedback that takes a nonlinear system affine in control to a single input one, both feedback equivalent to linear controllable systems, preserving one controlled vector field.

  15. A haptic-robotic platform for upper-limb reaching stroke therapy: Preliminary design and evaluation results

    PubMed Central

    Lam, Paul; Hebert, Debbie; Boger, Jennifer; Lacheray, Hervé; Gardner, Don; Apkarian, Jacob; Mihailidis, Alex

    2008-01-01

    Background It has been shown that intense training can significantly improve post-stroke upper-limb functionality. However, opportunities for stroke survivors to practice rehabilitation exercises can be limited because of the finite availability of therapists and equipment. This paper presents a haptic-enabled exercise platform intended to assist therapists and moderate-level stroke survivors perform upper-limb reaching motion therapy. This work extends on existing knowledge by presenting: 1) an anthropometrically-inspired design that maximizes elbow and shoulder range of motions during exercise; 2) an unobtrusive upper body postural sensing system; and 3) a vibratory elbow stimulation device to encourage muscle movement. Methods A multi-disciplinary team of professionals were involved in identifying the rehabilitation needs of stroke survivors incorporating these into a prototype device. The prototype system consisted of an exercise device, postural sensors, and a elbow stimulation to encourage the reaching movement. Eight experienced physical and occupational therapists participated in a pilot study exploring the usability of the prototype. Each therapist attended two sessions of one hour each to test and evaluate the proposed system. Feedback about the device was obtained through an administered questionnaire and combined with quantitative data. Results Seven of the nine questions regarding the haptic exercise device scored higher than 3.0 (somewhat good) out of 4.0 (good). The postural sensors detected 93 of 96 (97%) therapist-simulated abnormal postures and correctly ignored 90 of 96 (94%) of normal postures. The elbow stimulation device had a score lower than 2.5 (neutral) for all aspects that were surveyed, however the therapists felt the rehabilitation system was sufficient for use without the elbow stimulation device. Conclusion All eight therapists felt the exercise platform could be a good tool to use in upper-limb rehabilitation as the prototype was

  16. Displaying Sensed Tactile Cues with a Fingertip Haptic Device.

    PubMed

    Pacchierotti, Claudio; Prattichizzo, Domenico; Kuchenbecker, Katherine J

    2015-01-01

    Telerobotic systems enable humans to explore and manipulate remote environments for applications such as surgery and disaster response, but few such systems provide the operator with cutaneous feedback. This article presents a novel approach to remote cutaneous interaction; our method is compatible with any fingertip tactile sensor and any mechanical tactile display device, and it does not require a position/force or skin deformation model. Instead, it directly maps the sensed stimuli to the best possible input commands for the device's motors using a data set recorded with the tactile sensor inside the device. As a proof of concept, we considered a haptic system composed of a BioTac tactile sensor, in charge of measuring contact deformations, and a custom 3-DoF cutaneous device with a flat contact platform, in charge of applying deformations to the user's fingertip. To validate the proposed approach and discover its inherent tradeoffs, we carried out two remote tactile interaction experiments. The first one evaluated the error between the tactile sensations registered by the BioTac in a remote environment and the sensations created by the cutaneous device for six representative tactile interactions and 27 variations of the display algorithm. The normalized average errors in the best condition were 3.0 percent of the BioTac's full 12-bit scale. The second experiment evaluated human subjects' experiences for the same six remote interactions and eight algorithm variations. The average subjective rating for the best algorithm variation was 8.2 out of 10, where 10 is best.

  17. Using mixed reality, force feedback and tactile augmentation to improve the realism of medical simulation.

    PubMed

    Fisher, J Brian; Porter, Susan M

    2002-01-01

    This paper describes an application of a display approach which uses chromakey techniques to composite real and computer-generated images allowing a user to see his hands and medical instruments collocated with the display of virtual objects during a medical training simulation. Haptic feedback is provided through the use of a PHANTOM force feedback device in addition to tactile augmentation, which allows the user to touch virtual objects by introducing corresponding real objects in the workspace. A simplified catheter introducer insertion simulation was developed to demonstrate the capabilities of this approach.

  18. Feedback coupling in dynamical systems

    NASA Astrophysics Data System (ADS)

    Trimper, Steffen; Zabrocki, Knud

    2003-05-01

    Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.

  19. Torque Measurement of 3-DOF Haptic Master Operated by Controllable Electrorheological Fluid

    NASA Astrophysics Data System (ADS)

    Oh, Jong-Seok; Choi, Seung-Bok; Lee, Yang-Sub

    2015-02-01

    This work presents a torque measurement method of 3-degree-of-freedom (3-DOF) haptic master featuring controllable electrorheological (ER) fluid. In order to reflect the sense of an organ for a surgeon, the ER haptic master which can generate the repulsive torque of an organ is utilized as a remote controller for a surgery robot. Since accurate representation of organ feeling is essential for the success of the robot-assisted surgery, it is indispensable to develop a proper torque measurement method of 3-DOF ER haptic master. After describing the structural configuration of the haptic master, the torque models of ER spherical joint are mathematically derived based on the Bingham model of ER fluid. A new type of haptic device which has pitching, rolling, and yawing motions is then designed and manufactured using a spherical joint mechanism. Subsequently, the field-dependent parameters of the Bingham model are identified and generating repulsive torque according to applied electric field is measured. In addition, in order to verify the effectiveness of the proposed torque model, a comparative work between simulated and measured torques is undertaken.

  20. Mental rotation of tactile stimuli: using directional haptic cues in mobile devices.

    PubMed

    Gleeson, Brian T; Provancher, William R

    2013-01-01

    Haptic interfaces have the potential to enrich users' interactions with mobile devices and convey information without burdening the user's visual or auditory attention. Haptic stimuli with directional content, for example, navigational cues, may be difficult to use in handheld applications; the user's hand, where the cues are delivered, may not be aligned with the world, where the cues are to be interpreted. In such a case, the user would be required to mentally transform the stimuli between different reference frames. We examine the mental rotation of directional haptic stimuli in three experiments, investigating: 1) users' intuitive interpretation of rotated stimuli, 2) mental rotation of haptic stimuli about a single axis, and 3) rotation about multiple axes and the effects of specific hand poses and joint rotations. We conclude that directional haptic stimuli are suitable for use in mobile applications, although users do not naturally interpret rotated stimuli in any one universal way. We find evidence of cognitive processes involving the rotation of analog, spatial representations and discuss how our results fit into the larger body of mental rotation research. For small angles (e.g., less than 40 degree), these mental rotations come at little cost, but rotations with larger misalignment angles impact user performance. When considering the design of a handheld haptic device, our results indicate that hand pose must be carefully considered, as certain poses increase the difficulty of stimulus interpretation. Generally, all tested joint rotations impact task difficulty, but finger flexion and wrist rotation interact to greatly increase the cost of stimulus interpretation; such hand poses should be avoided when designing a haptic interface.

  1. Haptic perception and body representation in lateral and medial occipito-temporal cortices.

    PubMed

    Costantini, Marcello; Urgesi, Cosimo; Galati, Gaspare; Romani, Gian Luca; Aglioti, Salvatore M

    2011-04-01

    Although vision is the primary sensory modality that humans and other primates use to identify objects in the environment, we can recognize crucial object features (e.g., shape, size) using the somatic modality. Previous studies have shown that the occipito-temporal areas dedicated to the visual processing of object forms, faces and bodies also show category-selective responses when the preferred stimuli are haptically explored out of view. Visual processing of human bodies engages specific areas in lateral (extrastriate body area, EBA) and medial (fusiform body area, FBA) occipito-temporal cortex. This study aimed at exploring the relative involvement of EBA and FBA in the haptic exploration of body parts. During fMRI scanning, participants were asked to haptically explore either real-size fake body parts or objects. We found a selective activation of right and left EBA, but not of right FBA, while participants haptically explored body parts as compared to real objects. This suggests that EBA may integrate visual body representations with somatosensory information regarding body parts and form a multimodal representation of the body. Furthermore, both left and right EBA showed a comparable level of body selectivity during haptic perception and visual imagery. However, right but not left EBA was more activated during haptic exploration than visual imagery of body parts, ruling out that the response to haptic body exploration was entirely due to the use of visual imagery. Overall, the results point to the existence of different multimodal body representations in the occipito-temporal cortex which are activated during perception and imagery of human body parts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Depth Camera-Based 3D Hand Gesture Controls with Immersive Tactile Feedback for Natural Mid-Air Gesture Interactions

    PubMed Central

    Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun

    2015-01-01

    Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback. PMID:25580901

  3. Depth camera-based 3D hand gesture controls with immersive tactile feedback for natural mid-air gesture interactions.

    PubMed

    Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun

    2015-01-08

    Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback.

  4. Morphologic compatibility or intraocular lens haptics and the lens capsule.

    PubMed

    Nagamoto, T; Eguchi, G

    1997-10-01

    To evaluate the mechanical relationship between the intraocular lens (IOL) haptic and the capsular bag by quantitatively analyzing the fit of the haptic with the capsule equator and the capsular bag deformity induced by the implanted lens haptics. Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Japan. Following implantation of a poly(methyl methacrylate)(PMMA) ring in three excised human capsular bags with continuous curvilinear capsulorhexis (CCC), IOLs with different overall lengths or haptic designs were implanted in the bags and photographed. The straight length of the area of contact between the haptic and the capsule equator on the photographs was measured to provide a quantitative index of in-the-bag fixation and the length from the external margin of the PMMA ring to the external margin of the loop along the maximal diameter of the capsular bag, to indicate the quantitative degree of capsular deformity induced by an IOL. An IOL with modified-C loops produced better fit along the capsule equator and less deformity than an IOL with modified-J loops, and an IOL with an overall length of 12.0 or 12.5 mm produced a sufficiently good fit and less distortion of the capsular bag than an IOL with an overall length over 13.0 mm. An IOL with modified-C loops and an overall length of 12.0 or 12.5 mm is adequate for in-the-bag implantation following CCC.

  5. The Mere Exposure Effect in the Domain of Haptics

    PubMed Central

    Jakesch, Martina; Carbon, Claus-Christian

    2012-01-01

    Background Zajonc showed that the attitude towards stimuli that one had been previously exposed to is more positive than towards novel stimuli. This mere exposure effect (MEE) has been tested extensively using various visual stimuli. Research on the MEE is sparse, however, for other sensory modalities. Methodology/Principal Findings We used objects of two material categories (stone and wood) and two complexity levels (simple and complex) to test the influence of exposure frequency (F0 = novel stimuli, F2 = stimuli exposed twice, F10 = stimuli exposed ten times) under two sensory modalities (haptics only and haptics & vision). Effects of exposure frequency were found for high complex stimuli with significantly increasing liking from F0 to F2 and F10, but only for the stone category. Analysis of “Need for Touch” data showed the MEE in participants with high need for touch, which suggests different sensitivity or saturation levels of MEE. Conclusions/Significance This different sensitivity or saturation levels might also reflect the effects of expertise on the haptic evaluation of objects. It seems that haptic and cross-modal MEEs are influenced by factors similar to those in the visual domain indicating a common cognitive basis. PMID:22347451

  6. Modeling Auditory-Haptic Interface Cues from an Analog Multi-line Telephone

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Anderson, Mark R.; Bittner, Rachael M.

    2012-01-01

    The Western Electric Company produced a multi-line telephone during the 1940s-1970s using a six-button interface design that provided robust tactile, haptic and auditory cues regarding the "state" of the communication system. This multi-line telephone was used as a model for a trade study comparison of two interfaces: a touchscreen interface (iPad)) versus a pressure-sensitive strain gauge button interface (Phidget USB interface controllers). The experiment and its results are detailed in the authors' AES 133rd convention paper " Multimodal Information Management: Evaluation of Auditory and Haptic Cues for NextGen Communication Dispays". This Engineering Brief describes how the interface logic, visual indications, and auditory cues of the original telephone were synthesized using MAX/MSP, including the logic for line selection, line hold, and priority line activation.

  7. Training haptic stiffness discrimination: time course of learning with or without visual information and knowledge of results.

    PubMed

    Teodorescu, Kinneret; Bouchigny, Sylvain; Korman, Maria

    2013-08-01

    In this study, we explored the time course of haptic stiffness discrimination learning and how it was affected by two experimental factors, the addition of visual information and/or knowledge of results (KR) during training. Stiffness perception may integrate both haptic and visual modalities. However, in many tasks, the visual field is typically occluded, forcing stiffness perception to be dependent exclusively on haptic information. No studies to date addressed the time course of haptic stiffness perceptual learning. Using a virtual environment (VE) haptic interface and a two-alternative forced-choice discrimination task, the haptic stiffness discrimination ability of 48 participants was tested across 2 days. Each day included two haptic test blocks separated by a training block Additional visual information and/or KR were manipulated between participants during training blocks. Practice repetitions alone induced significant improvement in haptic stiffness discrimination. Between days, accuracy was slightly improved, but decision time performance was deteriorated. The addition of visual information and/or KR had only temporary effects on decision time, without affecting the time course of haptic discrimination learning. Learning in haptic stiffness discrimination appears to evolve through at least two distinctive phases: A single training session resulted in both immediate and latent learning. This learning was not affected by the training manipulations inspected. Training skills in VE in spaced sessions can be beneficial for tasks in which haptic perception is critical, such as surgery procedures, when the visual field is occluded. However, training protocols for such tasks should account for low impact of multisensory information and KR.

  8. Sensorimotor Interactions in the Haptic Perception of Virtual Objects

    DTIC Science & Technology

    1997-01-01

    the human user. 2 Compared to our understanding of vision and audition , our knowledge of the human haptic perception is very limited. Many basic...modalities such as vision and audition on haptic perception of viscosity or mass, for example. 116 Some preliminary work has already been done in this...string[3]; *posx="x" *forf="f’ *velv="v" * acca ="a" trial[64]; resp[64]; /* random number */ /* trial number */ /* index */ /* array holding stim

  9. A force transmission system based on a tulip-shaped electrostatic clutch for haptic display devices

    NASA Astrophysics Data System (ADS)

    Sasaki, Hikaru; Shikida, Mitsuhiro; Sato, Kazuo

    2006-12-01

    This paper describes a novel type of force transmission system for haptic display devices. The system consists of an array of end-effecter elements, a force/displacement transmitter and a single actuator producing a large force/displacement. It has tulip-shaped electrostatic clutch devices to distribute the force/displacement from the actuator among the individual end effecters. The specifications of three components were determined to stimulate touched human fingers. The components were fabricated by using micro-electromechanical systems and conventional machining technologies, and finally they were assembled by hand. The performance of the assembled transmission system was experimentally examined and it was confirmed that each projection in the arrayed end effecters could be moved individually. The actuator in a system whose total size was only 3.0 cm × 3.0 cm × 4.0 cm produced a 600 mN force and displaced individual array elements by 18 µm.

  10. Designing Crowdcritique Systems for Formative Feedback

    ERIC Educational Resources Information Center

    Easterday, Matthew W.; Rees Lewis, Daniel; Gerber, Elizabeth M.

    2017-01-01

    Intelligent tutors based on expert systems often struggle to provide formative feedback on complex, ill-defined problems where answers are unknown. Hybrid crowdsourcing systems that combine the intelligence of multiple novices in face-to-face settings might provide an alternate approach for providing intelligent formative feedback. The purpose of…

  11. Mathematical model of bone drilling for virtual surgery system

    NASA Astrophysics Data System (ADS)

    Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.

    2018-04-01

    The bone drilling is an essential part of surgeries in ENT and Dentistry. A proper training of drilling machine handling skills is impossible without proper modelling of the drilling process. Utilization of high precision methods like FEM is limited due to the requirement of 1000 Hz update rate for haptic feedback. The study presents a mathematical model of the drilling process that accounts the properties of materials, the geometry and the rotation rate of a burr to compute the removed material volume. The simplicity of the model allows for integrating it in the high-frequency haptic thread. The precision of the model is enough for a virtual surgery system targeted on the training of the basic surgery skills.

  12. Customization, control, and characterization of a commercial haptic device for high-fidelity rendering of weak forces.

    PubMed

    Gurari, Netta; Baud-Bovy, Gabriel

    2014-09-30

    The emergence of commercial haptic devices offers new research opportunities to enhance our understanding of the human sensory-motor system. Yet, commercial device capabilities have limitations which need to be addressed. This paper describes the customization of a commercial force feedback device for displaying forces with a precision that exceeds the human force perception threshold. The device was outfitted with a multi-axis force sensor and closed-loop controlled to improve its transparency. Additionally, two force sensing resistors were attached to the device to measure grip force. Force errors were modeled in the frequency- and time-domain to identify contributions from the mass, viscous friction, and Coulomb friction during open- and closed-loop control. The effect of user interaction on system stability was assessed in the context of a user study which aimed to measure force perceptual thresholds. Findings based on 15 participants demonstrate that the system maintains stability when rendering forces ranging from 0-0.20 N, with an average maximum absolute force error of 0.041 ± 0.013 N. Modeling the force errors revealed that Coulomb friction and inertia were the main contributors to force distortions during respectively slow and fast motions. Existing commercial force feedback devices cannot render forces with the required precision for certain testing scenarios. Building on existing robotics work, this paper shows how a device can be customized to make it reliable for studying the perception of weak forces. The customized and closed-loop controlled device is suitable for measuring force perceptual thresholds. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A coherent optical feedback system for optical information processing

    NASA Technical Reports Server (NTRS)

    Jablonowski, D. P.; Lee, S. H.

    1975-01-01

    A unique optical feedback system for coherent optical data processing is described. With the introduction of feedback, the well-known transfer function for feedback systems is obtained in two dimensions. Operational details of the optical feedback system are given. Experimental results of system applications in image restoration, contrast control and analog computation are presented.

  14. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.

    PubMed

    Gaffary, Yoren; Le Gouis, Benoit; Marchal, Maud; Argelaguet, Ferran; Arnaldi, Bruno; Lecuyer, Anatole

    2017-11-01

    Does it feel the same when you touch an object in Augmented Reality (AR) or in Virtual Reality (VR)? In this paper we study and compare the haptic perception of stiffness of a virtual object in two situations: (1) a purely virtual environment versus (2) a real and augmented environment. We have designed an experimental setup based on a Microsoft HoloLens and a haptic force-feedback device, enabling to press a virtual piston, and compare its stiffness successively in either Augmented Reality (the virtual piston is surrounded by several real objects all located inside a cardboard box) or in Virtual Reality (the same virtual piston is displayed in a fully virtual scene composed of the same other objects). We have conducted a psychophysical experiment with 12 participants. Our results show a surprising bias in perception between the two conditions. The virtual piston is on average perceived stiffer in the VR condition compared to the AR condition. For instance, when the piston had the same stiffness in AR and VR, participants would select the VR piston as the stiffer one in 60% of cases. This suggests a psychological effect as if objects in AR would feel "softer" than in pure VR. Taken together, our results open new perspectives on perception in AR versus VR, and pave the way to future studies aiming at characterizing potential perceptual biases.

  15. Aging and the haptic perception of 3D surface shape.

    PubMed

    Norman, J Farley; Kappers, Astrid M L; Beers, Amanda M; Scott, A Kate; Norman, Hideko F; Koenderink, Jan J

    2011-04-01

    Two experiments evaluated the ability of older and younger adults to perceive the three-dimensional (3D) shape of object surfaces from active touch (haptics). The ages of the older adults ranged from 64 to 84 years, while those of the younger adults ranged from 18 to 27 years. In Experiment 1, the participants haptically judged the shape of large (20 cm diameter) surfaces with an entire hand. In contrast, in Experiment 2, the participants explored the shape of small (5 cm diameter) surfaces with a single finger. The haptic surfaces varied in shape index (Koenderink, Solid shape, 1990; Koenderink, Image and Vision Computing, 10, 557-564, 1992) from -1.0 to +1.0 in steps of 0.25. For both types of surfaces (large and small), the participants were able to judge surface shape reliably. The older participants' judgments of surface shape were just as accurate and precise as those of the younger participants. The results of the current study demonstrate that while older adults do possess reductions in tactile sensitivity and acuity, they nevertheless can effectively perceive 3D surface shape from haptic exploration.

  16. Development of visuo-haptic transfer for object recognition in typical preschool and school-aged children.

    PubMed

    Purpura, Giulia; Cioni, Giovanni; Tinelli, Francesca

    2018-07-01

    Object recognition is a long and complex adaptive process and its full maturation requires combination of many different sensory experiences as well as cognitive abilities to manipulate previous experiences in order to develop new percepts and subsequently to learn from the environment. It is well recognized that the transfer of visual and haptic information facilitates object recognition in adults, but less is known about development of this ability. In this study, we explored the developmental course of object recognition capacity in children using unimodal visual information, unimodal haptic information, and visuo-haptic information transfer in children from 4 years to 10 years and 11 months of age. Participants were tested through a clinical protocol, involving visual exploration of black-and-white photographs of common objects, haptic exploration of real objects, and visuo-haptic transfer of these two types of information. Results show an age-dependent development of object recognition abilities for visual, haptic, and visuo-haptic modalities. A significant effect of time on development of unimodal and crossmodal recognition skills was found. Moreover, our data suggest that multisensory processes for common object recognition are active at 4 years of age. They facilitate recognition of common objects, and, although not fully mature, are significant in adaptive behavior from the first years of age. The study of typical development of visuo-haptic processes in childhood is a starting point for future studies regarding object recognition in impaired populations.

  17. Cortical mechanisms underlying sensorimotor enhancement promoted by walking with haptic inputs in a virtual environment.

    PubMed

    Sangani, Samir; Lamontagne, Anouk; Fung, Joyce

    2015-01-01

    Sensorimotor integration is a complex process in the central nervous system that produces task-specific motor output based on selective and rapid integration of sensory information from multiple sources. This chapter reviews briefly the role of haptic cues in postural control during tandem stance and locomotion, focusing on sensorimotor enhancement of locomotion post stroke. The use of mixed-reality systems incorporating both haptic cues and virtual reality technology in gait rehabilitation post stroke is discussed. Over the last decade, researchers and clinicians have shown evidence of cerebral reorganization that underlies functional recovery after stroke based on results from neuroimaging techniques such as positron emission tomography and functional magnetic resonance imaging. These imaging modalities are however limited in their capacity to measure cortical changes during extensive body motions in upright stance. Functional near-infrared spectroscopy (fNIRS) on the other hand provides a unique opportunity to measure cortical activity associated with postural control during locomotion. Evidence of cortical changes associated with sensorimotor enhancement induced by haptic touch during locomotion is revealed through fNIRS in a pilot study involving healthy individuals and a case study involving a chronic stroke patient. © 2015 Elsevier B.V. All rights reserved.

  18. Description of European Space Agency (ESA) Remote Manipulator (RM) System Breadboard Currently Under Development for Demonstration of Critical Technology Foreseen to be Used in the Mars Sample Receiving Facility (MSRF)

    NASA Astrophysics Data System (ADS)

    Vrublevskis, J.; Duncan, S.; Berthoud, L.; Bowman, P.; Hills, R.; McCulloch, Y.; Pisla, D.; Vaida, C.; Gherman, B.; Hofbaur, M.; Dieber, B.; Neythalath, N.; Smith, C.; van Winnendael, M.; Duvet, L.

    2018-04-01

    In order to avoid the use of 'double walled' gloves, a haptic feedback Remote Manipulation (RM) system rather than a gloved isolator is needed inside a Double Walled Isolator (DWI) to handle a sample returned from Mars.

  19. Effects of Motion and Figural Goodness on Haptic Object Perception in Infancy.

    ERIC Educational Resources Information Center

    Streri, Arlette; Spelke, Elizabeth S.

    1989-01-01

    After haptic habituation to a ring display, infants perceived the rings in two experiments as parts of one connected object. In both haptic and visual modes, infants appeared to perceive object unity by analyzing motion but not by analyzing figural goodness. (RH)

  20. New Transverse Bunch-by-Bunch Feedback System at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, K. H.; Kuo, C. H.; Hsu, S. Y.

    2007-01-19

    An FPGA based transverse bunch-by-bunch feedback system was implemented and commissioned to replace the existing analog transverse feedback system in order to suppress more effectively multi-bunch instabilities caused by the resistive wall of the vacuum chamber, cavity-like structures and ions related instability. This system replaces existing analog transverse feedback system to enlarge the tunability of the working point. Lower chromaticity is possible with feedback system that is very helpful for injection efficiency improvement. Top-up and high current operation is benefit for this upgrade. One feedback loop suppresses horizontal and vertical multi-bunch instabilities simultaneously. The clean and simple structure makes themore » system simple and reliable. This study also presents the preliminary result of commissioning the new transverse feedback system.« less

  1. Haptic Cues Used for Outdoor Wayfinding by Individuals with Visual Impairments

    ERIC Educational Resources Information Center

    Koutsoklenis, Athanasios; Papadopoulos, Konstantinos

    2014-01-01

    Introduction: The study presented here examines which haptic cues individuals with visual impairments use more frequently and determines which of these cues are deemed by these individuals to be the most important for way-finding in urban environments. It also investigates the ways in which these haptic cues are used by individuals with visual…

  2. Development of a Whole-Body Haptic Sensor with Multiple Supporting Points and Its Application to a Manipulator

    NASA Astrophysics Data System (ADS)

    Hanyu, Ryosuke; Tsuji, Toshiaki

    This paper proposes a whole-body haptic sensing system that has multiple supporting points between the body frame and the end-effector. The system consists of an end-effector and multiple force sensors. Using this mechanism, the position of a contact force on the surface can be calculated without any sensor array. A haptic sensing system with a single supporting point structure has previously been developed by the present authors. However, the system has drawbacks such as low stiffness and low strength. Therefore, in this study, a mechanism with multiple supporting points was proposed and its performance was verified. In this paper, the basic concept of the mechanism is first introduced. Next, an evaluation of the proposed method, performed by conducting some experiments, is presented.

  3. Aging and Haptic-Visual Solid Shape Matching.

    PubMed

    Norman, J Farley; Adkins, Olivia C; Dowell, Catherine J; Hoyng, Stevie C; Gilliam, Ashley N; Pedersen, Lauren E

    2017-08-01

    A total of 36 younger (mean age = 21.3 years) and older adults (mean age = 73.8 years) haptically explored plastic copies of naturally shaped objects (bell peppers, Capsicum annuum) one at a time for 7 s each. The participants' task was to then choose which of 12 concurrently visible objects had the same solid shape as the one they felt. The younger and older participants explored the object shapes using either one, three, or five fingers (there were six participants for each combination of number of fingers and age group). The outcome was different from that of previous research conducted with manmade objects. Unlike Jansson and Monaci (2006) , we found that for most objects, our participants' performance was unaffected by variations in the number of fingers used for haptic exploration. While there was no significant overall effect of the number of fingers, there was a significant main effect of age. The younger adults' shape matching performance was 48.6% higher than that of the older adults. When perceiving naturally shaped objects such as bell peppers, it appears that the usage of a single finger can be as effective as haptic exploration with a whole complement of five fingers.

  4. Haptic computer-assisted patient-specific preoperative planning for orthopedic fractures surgery.

    PubMed

    Kovler, I; Joskowicz, L; Weil, Y A; Khoury, A; Kronman, A; Mosheiff, R; Liebergall, M; Salavarrieta, J

    2015-10-01

    The aim of orthopedic trauma surgery is to restore the anatomy and function of displaced bone fragments to support osteosynthesis. For complex cases, including pelvic bone and multi-fragment femoral neck and distal radius fractures, preoperative planning with a CT scan is indicated. The planning consists of (1) fracture reduction-determining the locations and anatomical sites of origin of the fractured bone fragments and (2) fracture fixation-selecting and placing fixation screws and plates. The current bone fragment manipulation, hardware selection, and positioning processes based on 2D slices and a computer mouse are time-consuming and require a technician. We present a novel 3D haptic-based system for patient-specific preoperative planning of orthopedic fracture surgery based on CT scans. The system provides the surgeon with an interactive, intuitive, and comprehensive, planning tool that supports fracture reduction and fixation. Its unique features include: (1) two-hand haptic manipulation of 3D bone fragments and fixation hardware models; (2) 3D stereoscopic visualization and multiple viewing modes; (3) ligaments and pivot motion constraints to facilitate fracture reduction; (4) semiautomatic and automatic fracture reduction modes; and (5) interactive custom fixation plate creation to fit the bone morphology. We evaluate our system with two experimental studies: (1) accuracy and repeatability of manual fracture reduction and (2) accuracy of our automatic virtual bone fracture reduction method. The surgeons achieved a mean accuracy of less than 1 mm for the manual reduction and 1.8 mm (std [Formula: see text] 1.1 mm) for the automatic reduction. 3D haptic-based patient-specific preoperative planning of orthopedic fracture surgery from CT scans is useful and accurate and may have significant advantages for evaluating and planning complex fractures surgery.

  5. Forces on intraocular lens haptics induced by capsular fibrosis. An experimental study.

    PubMed

    Guthoff, R; Abramo, F; Draeger, J; Chumbley, L C; Lang, G K; Neumann, W

    1990-01-01

    Electronic dynamometry measurements, performed upon intraocular lens (IOL) haptics of prototype one-piece three-loop silicone lenses, accurately defined the relationships between elastic force and haptic displacement. Lens implantations in the capsular bag of dogs (loop span equal to capsular bag diameter, loops underformed immediately after the operation) were evaluated macrophotographically 5-8 months postoperatively. The highly constant elastic property of silicon rubber permitted quantitative correlation of subsequent in vivo haptic displacement with the resultant force vectors responsible for tissue contraction. The lens optics were well centered in 17 (85%) and slightly offcenter in 3 (15%) of 20 implanted eyes. Of the 60 supporting loops, 28 could be visualized sufficiently well to permit reliable haptic measurement. Of these 28, 20 (71%) were clearly displaced, ranging from 0.45 mm away from to 1.4 mm towards the lens' optic center. These extremes represented resultant vector forces of 0.20 and 1.23 mN respectively. Quantitative vector analysis permits better understanding of IOL-capsular interactions.

  6. Multimodal Virtual Environments: MAGIC Toolkit and Visual-Haptic Interaction Paradigms

    DTIC Science & Technology

    1998-01-01

    2.7.3 Load/Save Options ..... 2.7.4 Information Display .... 2.8 Library Files. 2.9 Evaluation .............. 3 Visual-Haptic Interactions 3.1...Northwestern University[ Colgate , 1994]. It is possible for a user to touch one side of a thin object and be propelled out the opposite side, because...when there is a high correlation in motion and force between the visual and haptic realms. * Chapter 7 concludes with an evaluation of the application

  7. Control of an ER haptic master in a virtual slave environment for minimally invasive surgery applications

    NASA Astrophysics Data System (ADS)

    Han, Young-Min; Choi, Seung-Bok

    2008-12-01

    This paper presents the control performance of an electrorheological (ER) fluid-based haptic master device connected to a virtual slave environment that can be used for minimally invasive surgery (MIS). An already developed haptic joint featuring controllable ER fluid and a spherical joint mechanism is adopted for the master system. Medical forceps and an angular position measuring device are devised and integrated with the joint to establish the MIS master system. In order to embody a human organ in virtual space, a volumetric deformable object is used. The virtual object is then mathematically formulated by a shape-retaining chain-linked (S-chain) model. After evaluating the reflection force, computation time and compatibility with real-time control, the haptic architecture for MIS is established by incorporating the virtual slave with the master device so that the reflection force for the object of the virtual slave and the desired position for the master operator are transferred to each other. In order to achieve the desired force trajectories, a sliding mode controller is formulated and then experimentally realized. Tracking control performances for various force trajectories are evaluated and presented in the time domain.

  8. Topographic modelling of haptic properties of tissue products

    NASA Astrophysics Data System (ADS)

    Rosen, B.-G.; Fall, A.; Rosen, S.; Farbrot, A.; Bergström, P.

    2014-03-01

    The way a product or material feels when touched, haptics, has been shown to be a property that plays an important role when consumers determine the quality of products For tissue products in constant touch with the skin, softness" becomes a primary quality parameter. In the present work, the relationship between topography and the feeling of the surface has been investigated for commercial tissues with varying degree of texture from the low textured crepe tissue to the highly textured embossed- and air-dried tissue products. A trained sensory panel at was used to grade perceived haptic "roughness". The technique used to characterize the topography was Digital light projection (DLP) technique, By the use of multivariate statistics, strong correlations between perceived roughness and topography were found with predictability of above 90 percent even though highly textured products were included. Characterization was made using areal ISO 25178-2 topography parameters in combination with non-contacting topography measurement. The best prediction ability was obtained when combining haptic properties with the topography parameters auto-correlation length (Sal), peak material volume (Vmp), core roughness depth (Sk) and the maximum height of the surface (Sz).

  9. Fast global orbit feedback system in PLS-II

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, C.; Kim, J. M.; Kim, K. R.; Lee, E. H.; Lee, J. W.; Lee, T. Y.; Park, C. D.; Shin, S.; Yoon, J. C.; Cho, W. S.; Park, G. S.; Kim, S. C.

    2016-12-01

    The transverse position of the electron beam in the Pohang Light Source-II is stabilized by the global orbit feedback system. A slow orbit feedback system has been operating at 2 Hz, and a fast orbit feedback (FOFB) system at 813 Hz was installed recently. This FOFB system consists of 96 electron-beam-position monitors, 48 horizontal fast correctors, 48 vertical fast correctors and Versa Module Europa bus control system. We present the design and implementation of the FOFB system and its test result. Simulation analysis is presented and future improvements are suggested.

  10. Rehabilitation of activities of daily living in virtual environments with intuitive user interface and force feedback.

    PubMed

    Chiang, Vico Chung-Lim; Lo, King-Hung; Choi, Kup-Sze

    2017-10-01

    To investigate the feasibility of using a virtual rehabilitation system with intuitive user interface and force feedback to improve the skills in activities of daily living (ADL). A virtual training system equipped with haptic devices was developed for the rehabilitation of three ADL tasks - door unlocking, water pouring and meat cutting. Twenty subjects with upper limb disabilities, supervised by two occupational therapists, received a four-session training using the system. The task completion time and the amount of water poured into a virtual glass were recorded. The performance of the three tasks in reality was assessed before and after the virtual training. Feedback of the participants was collected with questionnaires after the study. The completion time of the virtual tasks decreased during the training (p < 0.01) while the percentage of water successfully poured increased (p = 0.051). The score of the Borg scale of perceived exertion was 1.05 (SD = 1.85; 95% CI =  0.18-1.92) and that of the task specific feedback questionnaire was 31 (SD =  4.85; 95% CI =  28.66-33.34). The feedback of the therapists suggested a positive rehabilitation effect. The participants had positive perception towards the system. The system can potentially be used as a tool to complement conventional rehabilitation approaches of ADL. Implications for rehabilitation Rehabilitation of activities of daily living can be facilitated using computer-assisted approaches. The existing approaches focus on cognitive training rather than the manual skills. A virtual training system with intuitive user interface and force feedback was designed to improve the learning of the manual skills. The study shows that system could be used as a training tool to complement conventional rehabilitation approaches.

  11. Haptic Tracking Permits Bimanual Independence

    ERIC Educational Resources Information Center

    Rosenbaum, David A.; Dawson, Amanda A.; Challis, John H.

    2006-01-01

    This study shows that in a novel task--bimanual haptic tracking--neurologically normal human adults can move their 2 hands independently for extended periods of time with little or no training. Participants lightly touched buttons whose positions were moved either quasi-randomly in the horizontal plane by 1 or 2 human drivers (Experiment 1), in…

  12. Fusion of Haptic and Gesture Sensors for Rehabilitation of Bimanual Coordination and Dexterous Manipulation.

    PubMed

    Yu, Ningbo; Xu, Chang; Li, Huanshuai; Wang, Kui; Wang, Liancheng; Liu, Jingtai

    2016-03-18

    Disabilities after neural injury, such as stroke, bring tremendous burden to patients, families and society. Besides the conventional constrained-induced training with a paretic arm, bilateral rehabilitation training involves both the ipsilateral and contralateral sides of the neural injury, fitting well with the fact that both arms are needed in common activities of daily living (ADLs), and can promote good functional recovery. In this work, the fusion of a gesture sensor and a haptic sensor with force feedback capabilities has enabled a bilateral rehabilitation training therapy. The Leap Motion gesture sensor detects the motion of the healthy hand, and the omega.7 device can detect and assist the paretic hand, according to the designed cooperative task paradigm, as much as needed, with active force feedback to accomplish the manipulation task. A virtual scenario has been built up, and the motion and force data facilitate instantaneous visual and audio feedback, as well as further analysis of the functional capabilities of the patient. This task-oriented bimanual training paradigm recruits the sensory, motor and cognitive aspects of the patient into one loop, encourages the active involvement of the patients into rehabilitation training, strengthens the cooperation of both the healthy and impaired hands, challenges the dexterous manipulation capability of the paretic hand, suits easy of use at home or centralized institutions and, thus, promises effective potentials for rehabilitation training.

  13. Fusion of Haptic and Gesture Sensors for Rehabilitation of Bimanual Coordination and Dexterous Manipulation

    PubMed Central

    Yu, Ningbo; Xu, Chang; Li, Huanshuai; Wang, Kui; Wang, Liancheng; Liu, Jingtai

    2016-01-01

    Disabilities after neural injury, such as stroke, bring tremendous burden to patients, families and society. Besides the conventional constrained-induced training with a paretic arm, bilateral rehabilitation training involves both the ipsilateral and contralateral sides of the neural injury, fitting well with the fact that both arms are needed in common activities of daily living (ADLs), and can promote good functional recovery. In this work, the fusion of a gesture sensor and a haptic sensor with force feedback capabilities has enabled a bilateral rehabilitation training therapy. The Leap Motion gesture sensor detects the motion of the healthy hand, and the omega.7 device can detect and assist the paretic hand, according to the designed cooperative task paradigm, as much as needed, with active force feedback to accomplish the manipulation task. A virtual scenario has been built up, and the motion and force data facilitate instantaneous visual and audio feedback, as well as further analysis of the functional capabilities of the patient. This task-oriented bimanual training paradigm recruits the sensory, motor and cognitive aspects of the patient into one loop, encourages the active involvement of the patients into rehabilitation training, strengthens the cooperation of both the healthy and impaired hands, challenges the dexterous manipulation capability of the paretic hand, suits easy of use at home or centralized institutions and, thus, promises effective potentials for rehabilitation training. PMID:26999149

  14. The simulation of the half-dry stroke based on the force feedback technology

    NASA Astrophysics Data System (ADS)

    Guo, Chao; Hou, Zeng-xuan; Zheng, Shuan-zhu; Yang, Guang-qing

    2017-02-01

    A novel stroke simulation method of the Half-dry style of Chinese calligraphy based on the force feedback technology is proposed for the virtual painting. Firstly, according to the deformation of the brush when the force is exerted on it, the brush footprint between the brush and paper is calculated. The complete brush stroke is obtained by superimposing brush footprints along the painting direction, and the dynamic painting of the brush stroke is implemented. Then, we establish the half-dry texture databases and propose the concept of half-dry value by researching the main factors that affect the effects of the half-dry stroke. In the virtual painting, the half-dry texture is mapped into the stroke in real time according to the half-dry value and painting technique. A technique of texture blending based on the KM model is applied to avoid the seams while texture mapping. The proposed method has been successfully applied to the virtual painting system based on the force feedback technology. In this system, users can implement the painting in real time with a Phantom Desktop haptic device, which can effectively enhance reality to users.

  15. Blindness enhances tactile acuity and haptic 3-D shape discrimination.

    PubMed

    Norman, J Farley; Bartholomew, Ashley N

    2011-10-01

    This study compared the sensory and perceptual abilities of the blind and sighted. The 32 participants were required to perform two tasks: tactile grating orientation discrimination (to determine tactile acuity) and haptic three-dimensional (3-D) shape discrimination. The results indicated that the blind outperformed their sighted counterparts (individually matched for both age and sex) on both tactile tasks. The improvements in tactile acuity that accompanied blindness occurred for all blind groups (congenital, early, and late). However, the improvements in haptic 3-D shape discrimination only occurred for the early-onset and late-onset blindness groups; the performance of the congenitally blind was no better than that of the sighted controls. The results of the present study demonstrate that blindness does lead to an enhancement of tactile abilities, but they also suggest that early visual experience may play a role in facilitating haptic 3-D shape discrimination.

  16. Generalized fast feedback system in the SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, L.; Allison, S.; Gromme, T.

    A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLCmore » and have proven to be invaluable in stabilizing the machine.« less

  17. Balanced bridge feedback control system

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J. (Inventor)

    1990-01-01

    In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.

  18. Immediate Memory for Haptically-Examined Braille Symbols by Blind and Sighted Subjects.

    ERIC Educational Resources Information Center

    Newman, Slater E.; And Others

    The paper reports on two experiments in Braille learning which compared blind and sighted subjects on the immediate recall of haptically-examined Braille symbols. In the first study, sighted subjects (N=64) haptically examined each of a set of Braille symbols with their preferred or nonpreferred hand and immediately recalled the symbol by drawing…

  19. Learning to perceive haptic distance-to-break in the presence of friction.

    PubMed

    Altenhoff, Bliss M; Pagano, Christopher C; Kil, Irfan; Burg, Timothy C

    2017-02-01

    Two experiments employed attunement and calibration training to investigate whether observers are able to identify material break points in compliant materials through haptic force application. The task required participants to attune to a recently identified haptic invariant, distance-to-break (DTB), rather than haptic stimulation not related to the invariant, including friction. In the first experiment participants probed simulated force-displacement relationships (materials) under 3 levels of friction with the aim of pushing as far as possible into the materials without breaking them. In a second experiment a different set of participants pulled on the materials. Results revealed that participants are sensitive to DTB for both pushing and pulling, even in the presence of varying levels of friction, and this sensitivity can be improved through training. The results suggest that the simultaneous presence of friction may assist participants in perceiving DTB. Potential applications include the development of haptic training programs for minimally invasive (laparoscopic) surgery to reduce accidental tissue damage. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Face, content, and construct validity of human placenta as a haptic training tool in neurointerventional surgery.

    PubMed

    Ribeiro de Oliveira, Marcelo Magaldi; Nicolato, Arthur; Santos, Marcilea; Godinho, Joao Victor; Brito, Rafael; Alvarenga, Alexandre; Martins, Ana Luiza Valle; Prosdocimi, André; Trivelato, Felipe Padovani; Sabbagh, Abdulrahman J; Reis, Augusto Barbosa; Maestro, Rolando Del

    2016-05-01

    OBJECT The development of neurointerventional treatments of central nervous system disorders has resulted in the need for adequate training environments for novice interventionalists. Virtual simulators offer anatomical definition but lack adequate tactile feedback. Animal models, which provide more lifelike training, require an appropriate infrastructure base. The authors describe a training model for neurointerventional procedures using the human placenta (HP), which affords haptic training with significantly fewer resource requirements, and discuss its validation. METHODS Twelve HPs were prepared for simulated endovascular procedures. Training exercises performed by interventional neuroradiologists and novice fellows were placental angiography, stent placement, aneurysm coiling, and intravascular liquid embolic agent injection. RESULTS The endovascular training exercises proposed can be easily reproduced in the HP. Face, content, and construct validity were assessed by 6 neurointerventional radiologists and 6 novice fellows in interventional radiology. CONCLUSIONS The use of HP provides an inexpensive training model for the training of neurointerventionalists. Preliminary validation results show that this simulation model has face and content validity and has demonstrated construct validity for the interventions assessed in this study.

  1. Enhanced visuo-haptic integration for the non-dominant hand.

    PubMed

    Yalachkov, Yavor; Kaiser, Jochen; Doehrmann, Oliver; Naumer, Marcus J

    2015-07-21

    Visuo-haptic integration contributes essentially to object shape recognition. Although there has been a considerable advance in elucidating the neural underpinnings of multisensory perception, it is still unclear whether seeing an object and exploring it with the dominant hand elicits the same brain response as compared to the non-dominant hand. Using fMRI to measure brain activation in right-handed participants, we found that for both left- and right-hand stimulation the left lateral occipital complex (LOC) and anterior cerebellum (aCER) were involved in visuo-haptic integration of familiar objects. These two brain regions were then further investigated in another study, where unfamiliar, novel objects were presented to a different group of right-handers. Here the left LOC and aCER were more strongly activated by bimodal than unimodal stimuli only when the left but not the right hand was used. A direct comparison indicated that the multisensory gain of the fMRI activation was significantly higher for the left than the right hand. These findings are in line with the principle of "inverse effectiveness", implying that processing of bimodally presented stimuli is particularly enhanced when the unimodal stimuli are weak. This applies also when right-handed subjects see and simultaneously touch unfamiliar objects with their non-dominant left hand. Thus, the fMRI signal in the left LOC and aCER induced by visuo-haptic stimulation is dependent on which hand was employed for haptic exploration. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.

    PubMed

    Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike

    2015-01-01

    Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

  3. Visual and Haptic Shape Processing in the Human Brain: Unisensory Processing, Multisensory Convergence, and Top-Down Influences.

    PubMed

    Lee Masson, Haemy; Bulthé, Jessica; Op de Beeck, Hans P; Wallraven, Christian

    2016-08-01

    Humans are highly adept at multisensory processing of object shape in both vision and touch. Previous studies have mostly focused on where visually perceived object-shape information can be decoded, with haptic shape processing receiving less attention. Here, we investigate visuo-haptic shape processing in the human brain using multivoxel correlation analyses. Importantly, we use tangible, parametrically defined novel objects as stimuli. Two groups of participants first performed either a visual or haptic similarity-judgment task. The resulting perceptual object-shape spaces were highly similar and matched the physical parameter space. In a subsequent fMRI experiment, objects were first compared within the learned modality and then in the other modality in a one-back task. When correlating neural similarity spaces with perceptual spaces, visually perceived shape was decoded well in the occipital lobe along with the ventral pathway, whereas haptically perceived shape information was mainly found in the parietal lobe, including frontal cortex. Interestingly, ventrolateral occipito-temporal cortex decoded shape in both modalities, highlighting this as an area capable of detailed visuo-haptic shape processing. Finally, we found haptic shape representations in early visual cortex (in the absence of visual input), when participants switched from visual to haptic exploration, suggesting top-down involvement of visual imagery on haptic shape processing. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Haptic fMRI: using classification to quantify task-correlated noise during goal-directed reaching motions.

    PubMed

    Menon, Samir; Quigley, Paul; Yu, Michelle; Khatib, Oussama

    2014-01-01

    Neuroimaging artifacts in haptic functional magnetic resonance imaging (Haptic fMRI) experiments have the potential to induce spurious fMRI activation where there is none, or to make neural activation measurements appear correlated across brain regions when they are actually not. Here, we demonstrate that performing three-dimensional goal-directed reaching motions while operating Haptic fMRI Interface (HFI) does not create confounding motion artifacts. To test for artifacts, we simultaneously scanned a subject's brain with a customized soft phantom placed a few centimeters away from the subject's left motor cortex. The phantom captured task-related motion and haptic noise, but did not contain associated neural activation measurements. We quantified the task-related information present in fMRI measurements taken from the brain and the phantom by using a linear max-margin classifier to predict whether raw time series data could differentiate between motion planning or reaching. fMRI measurements in the phantom were uninformative (2σ, 45-73%; chance=50%), while those in primary motor, visual, and somatosensory cortex accurately classified task-conditions (2σ, 90-96%). We also localized artifacts due to the haptic interface alone by scanning a stand-alone fBIRN phantom, while an operator performed haptic tasks outside the scanner's bore with the interface at the same location. The stand-alone phantom had lower temporal noise and had similar mean classification but a tighter distribution (bootstrap Gaussian fit) than the brain phantom. Our results suggest that any fMRI measurement artifacts for Haptic fMRI reaching experiments are dominated by actual neural responses.

  5. A three-axis force sensor for dual finger haptic interfaces.

    PubMed

    Fontana, Marco; Marcheschi, Simone; Salsedo, Fabio; Bergamasco, Massimo

    2012-10-10

    In this work we present the design process, the characterization and testing of a novel three-axis mechanical force sensor. This sensor is optimized for use in closed-loop force control of haptic devices with three degrees of freedom. In particular the sensor has been conceived for integration with a dual finger haptic interface that aims at simulating forces that occur during grasping and surface exploration. The sensing spring structure has been purposely designed in order to match force and layout specifications for the application. In this paper the design of the sensor is presented, starting from an analytic model that describes the characteristic matrix of the sensor. A procedure for designing an optimal overload protection mechanism is proposed. In the last part of the paper the authors describe the experimental characterization and the integrated test on a haptic hand exoskeleton showing the improvements in the controller performances provided by the inclusion of the force sensor.

  6. A Three-Axis Force Sensor for Dual Finger Haptic Interfaces

    PubMed Central

    Fontana, Marco; Marcheschi, Simone; Salsedo, Fabio; Bergamasco, Massimo

    2012-01-01

    In this work we present the design process, the characterization and testing of a novel three-axis mechanical force sensor. This sensor is optimized for use in closed-loop force control of haptic devices with three degrees of freedom. In particular the sensor has been conceived for integration with a dual finger haptic interface that aims at simulating forces that occur during grasping and surface exploration. The sensing spring structure has been purposely designed in order to match force and layout specifications for the application. In this paper the design of the sensor is presented, starting from an analytic model that describes the characteristic matrix of the sensor. A procedure for designing an optimal overload protection mechanism is proposed. In the last part of the paper the authors describe the experimental characterization and the integrated test on a haptic hand exoskeleton showing the improvements in the controller performances provided by the inclusion of the force sensor. PMID:23202012

  7. Haptic device for telerobotic surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salisbury, Curt; Salisbury, Jr., J. Kenneth

    A haptic device for telerobotic surgery, including a base; a linkage system having first and second linkage members coupled to the base; a motor that provides a motor force; a transmission including first and second driving pulleys arranged such that their faces form an angle and their axes form a plane, first and second idler pulleys offset from the plane and arranged between the first and second driving pulleys such that their axes divide the angle between the first and second driving pulleys, and a cable that traverses the first and second driving pulleys and the set of idler pulleysmore » and transfers the motor force to the linkage system; an end effector coupled to distal ends of the first and second linkage members and maneuverable relative to the base; and a controller that modulates the motor force to simulate a body part at a point portion of the end effector.« less

  8. Effects of visual information regarding allocentric processing in haptic parallelity matching.

    PubMed

    Van Mier, Hanneke I

    2013-10-01

    Research has revealed that haptic perception of parallelity deviates from physical reality. Large and systematic deviations have been found in haptic parallelity matching most likely due to the influence of the hand-centered egocentric reference frame. Providing information that increases the influence of allocentric processing has been shown to improve performance on haptic matching. In this study allocentric processing was stimulated by providing informative vision in haptic matching tasks that were performed using hand- and arm-centered reference frames. Twenty blindfolded participants (ten men, ten women) explored the orientation of a reference bar with the non-dominant hand and subsequently matched (task HP) or mirrored (task HM) its orientation on a test bar with the dominant hand. Visual information was provided by means of informative vision with participants having full view of the test bar, while the reference bar was blocked from their view (task VHP). To decrease the egocentric bias of the hands, participants also performed a visual haptic parallelity drawing task (task VHPD) using an arm-centered reference frame, by drawing the orientation of the reference bar. In all tasks, the distance between and orientation of the bars were manipulated. A significant effect of task was found; performance improved from task HP, to VHP to VHPD, and HM. Significant effects of distance were found in the first three tasks, whereas orientation and gender effects were only significant in tasks HP and VHP. The results showed that stimulating allocentric processing by means of informative vision and reducing the egocentric bias by using an arm-centered reference frame led to most accurate performance on parallelity matching. © 2013 Elsevier B.V. All rights reserved.

  9. Cognitive aspects of haptic form recognition by blind and sighted subjects.

    PubMed

    Bailes, S M; Lambert, R M

    1986-11-01

    Studies using haptic form recognition tasks have generally concluded that the adventitiously blind perform better than the congenitally blind, implicating the importance of early visual experience in improved spatial functioning. The hypothesis was tested that the adventitiously blind have retained some ability to encode successive information obtained haptically in terms of a global visual representation, while the congenitally blind use a coding system based on successive inputs. Eighteen blind (adventitiously and congenitally) and 18 sighted (blindfolded and performing with vision) subjects were tested on their recognition of raised line patterns when the standard was presented in segments: in immediate succession, or with unfilled intersegmental delays of 5, 10, or 15 seconds. The results did not support the above hypothesis. Three main findings were obtained: normally sighted subjects were both faster and more accurate than the other groups; all groups improved in accuracy of recognition as a function of length of interstimulus interval; sighted subjects tended to report using strategies with a strong verbal component while the blind tended to rely on imagery coding. These results are explained in terms of information-processing theory consistent with dual encoding systems in working memory.

  10. Perceptual Grouping in Haptic Search: The Influence of Proximity, Similarity, and Good Continuation

    ERIC Educational Resources Information Center

    Overvliet, Krista E.; Krampe, Ralf Th.; Wagemans, Johan

    2012-01-01

    We conducted a haptic search experiment to investigate the influence of the Gestalt principles of proximity, similarity, and good continuation. We expected faster search when the distractors could be grouped. We chose edges at different orientations as stimuli because they are processed similarly in the haptic and visual modality. We therefore…

  11. Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics

    PubMed Central

    Liu, Xuemei; Wang, Ruiyi; Li, Yunhua; Song, Dongdong

    2015-01-01

    We study the deformation and haptic feedback of soft tissue in virtual surgery based on a liver model by using a force feedback device named PHANTOM OMNI developed by SensAble Company in USA. Although a significant amount of research efforts have been dedicated to simulating the behaviors of soft tissue and implementing force feedback, it is still a challenging problem. This paper introduces a kind of meshfree method for deformation simulation of soft tissue and force computation based on viscoelastic mechanical model and smoothed particle hydrodynamics (SPH). Firstly, viscoelastic model can present the mechanical characteristics of soft tissue which greatly promotes the realism. Secondly, SPH has features of meshless technique and self-adaption, which supply higher precision than methods based on meshes for force feedback computation. Finally, a SPH method based on dynamic interaction area is proposed to improve the real time performance of simulation. The results reveal that SPH methodology is suitable for simulating soft tissue deformation and force feedback calculation, and SPH based on dynamic local interaction area has a higher computational efficiency significantly compared with usual SPH. Our algorithm has a bright prospect in the area of virtual surgery. PMID:26417380

  12. A survey of telerobotic surface finishing

    NASA Astrophysics Data System (ADS)

    Höglund, Thomas; Alander, Jarmo; Mantere, Timo

    2018-05-01

    This is a survey of research published on the subjects of telerobotics, haptic feedback, and mixed reality applied to surface finishing. The survey especially focuses on how visuo-haptic feedback can be used to improve a grinding process using a remote manipulator or robot. The benefits of teleoperation and reasons for using haptic feedback are presented. The use of genetic algorithms for optimizing haptic sensing is briefly discussed. Ways of augmenting the operator's vision are described. Visual feedback can be used to find defects and analyze the quality of the surface resulting from the surface finishing process. Visual cues can also be used to aid a human operator in manipulating a robot precisely and avoiding collisions.

  13. Haptic device for a ventricular shunt insertion simulator.

    PubMed

    Panchaphongsaphak, Bundit; Stutzer, Diego; Schwyter, Etienne; Bernays, René-Ludwig; Riener, Robert

    2006-01-01

    In this paper we propose a new one-degree-of-freedom haptic device that can be used to simulate ventricular shunt insertion procedures. The device is used together with the BRAINTRAIN training simulator developed for neuroscience education, neurological data visualization and surgical planning. The design of the haptic device is based on a push-pull cable concept. The rendered forces produced by a linear motor connected at one end of the cable are transferred to the user via a sliding mechanism at the end-effector located at the other end of the cable. The end-effector provides the range of movement up to 12 cm. The force is controlled by an open-loop impedance algorithm and can become up to 15 N.

  14. Grounded Learning Experience: Helping Students Learn Physics through Visuo-Haptic Priming and Instruction

    ERIC Educational Resources Information Center

    Huang, Shih-Chieh Douglas

    2013-01-01

    In this dissertation, I investigate the effects of a grounded learning experience on college students' mental models of physics systems. The grounded learning experience consisted of a priming stage and an instruction stage, and within each stage, one of two different types of visuo-haptic representation was applied: visuo-gestural simulation…

  15. Cloud Feedbacks in the Climate System: A Critical Review.

    NASA Astrophysics Data System (ADS)

    Stephens, Graeme L.

    2005-01-01

    This paper offers a critical review of the topic of cloud-climate feedbacks and exposes some of the underlying reasons for the inherent lack of understanding of these feedbacks and why progress might be expected on this important climate problem in the coming decade. Although many processes and related parameters come under the influence of clouds, it is argued that atmospheric processes fundamentally govern the cloud feedbacks via the relationship between the atmospheric circulations, cloudiness, and the radiative and latent heating of the atmosphere. It is also shown how perturbations to the atmospheric radiation budget that are induced by cloud changes in response to climate forcing dictate the eventual response of the global-mean hydrological cycle of the climate model to climate forcing. This suggests that cloud feedbacks are likely to control the bulk precipitation efficiency and associated responses of the planet's hydrological cycle to climate radiative forcings.The paper provides a brief overview of the effects of clouds on the radiation budget of the earth-atmosphere system and a review of cloud feedbacks as they have been defined in simple systems, one being a system in radiative-convective equilibrium (RCE) and others relating to simple feedback ideas that regulate tropical SSTs. The systems perspective is reviewed as it has served as the basis for most feedback analyses. What emerges is the importance of being clear about the definition of the system. It is shown how different assumptions about the system produce very different conclusions about the magnitude and sign of feedbacks. Much more diligence is called for in terms of defining the system and justifying assumptions. In principle, there is also neither any theoretical basis to justify the system that defines feedbacks in terms of global-time-mean changes in surface temperature nor is there any compelling empirical evidence to do so. The lack of maturity of feedback analysis methods also suggests

  16. Analyzing Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    Interactive controls analysis (INCA) program developed to provide user-friendly environment for design and analysis of linear control systems, primarily feedback control. Designed for use with both small- and large-order systems. Using interactive-graphics capability, INCA user quickly plots root locus, frequency response, or time response of either continuous-time system or sampled-data system. Configuration and parameters easily changed, allowing user to design compensation networks and perform sensitivity analyses in very convenient manner. Written in Pascal and FORTRAN.

  17. Semi-Immersive Virtual Turbine Engine Simulation System

    NASA Astrophysics Data System (ADS)

    Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea

    2018-05-01

    The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.

  18. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.

    PubMed

    Kim, K; Lee, S

    2015-05-01

    Diagnosis of skin conditions is dependent on the assessment of skin surface properties that are represented by more tactile properties such as stiffness, roughness, and friction than visual information. Due to this reason, adding tactile feedback to existing vision based diagnosis systems can help dermatologists diagnose skin diseases or disorders more accurately. The goal of our research was therefore to develop a tactile rendering system for skin examinations by dynamic touch. Our development consists of two stages: converting a single image to a 3D haptic surface and rendering the generated haptic surface in real-time. Converting to 3D surfaces from 2D single images was implemented with concerning human perception data collected by a psychophysical experiment that measured human visual and haptic sensibility to 3D skin surface changes. For the second stage, we utilized real skin biomechanical properties found by prior studies. Our tactile rendering system is a standalone system that can be used with any single cameras and haptic feedback devices. We evaluated the performance of our system by conducting an identification experiment with three different skin images with five subjects. The participants had to identify one of the three skin surfaces by using a haptic device (Falcon) only. No visual cue was provided for the experiment. The results indicate that our system provides sufficient performance to render discernable tactile rendering with different skin surfaces. Our system uses only a single skin image and automatically generates a 3D haptic surface based on human haptic perception. Realistic skin interactions can be provided in real-time for the purpose of skin diagnosis, simulations, or training. Our system can also be used for other applications like virtual reality and cosmetic applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. The Role of Visual Experience on the Representation and Updating of Novel Haptic Scenes

    ERIC Educational Resources Information Center

    Pasqualotto, Achille; Newell, Fiona N.

    2007-01-01

    We investigated the role of visual experience on the spatial representation and updating of haptic scenes by comparing recognition performance across sighted, congenitally and late blind participants. We first established that spatial updating occurs in sighted individuals to haptic scenes of novel objects. All participants were required to…

  20. Design and Evaluation of a Cable-Driven fMRI-Compatible Haptic Interface to Investigate Precision Grip Control

    PubMed Central

    Vigaru, Bogdan; Sulzer, James; Gassert, Roger

    2016-01-01

    Our hands and fingers are involved in almost all activities of daily living and, as such, have a disproportionately large neural representation. Functional magnetic resonance imaging investigations into the neural control of the hand have revealed great advances, but the harsh MRI environment has proven to be a challenge to devices capable of delivering a large variety of stimuli necessary for well-controlled studies. This paper presents a fMRI-compatible haptic interface to investigate the neural mechanisms underlying precision grasp control. The interface, located at the scanner bore, is controlled remotely through a shielded electromagnetic actuation system positioned at the end of the scanner bed and then through a high stiffness, low inertia cable transmission. We present the system design, taking into account requirements defined by the biomechanics and dynamics of the human hand, as well as the fMRI environment. Performance evaluation revealed a structural stiffness of 3.3 N/mm, renderable forces up to 94 N, and a position control bandwidth of at least 19 Hz. MRI-compatibility tests showed no degradation in the operation of the haptic interface or the image quality. A preliminary fMRI experiment during a pilot study validated the usability of the haptic interface, illustrating the possibilities offered by this device. PMID:26441454

  1. Linear systems with structure group and their feedback invariants

    NASA Technical Reports Server (NTRS)

    Martin, C.; Hermann, R.

    1977-01-01

    A general method described by Hermann and Martin (1976) for the study of the feedback invariants of linear systems is considered. It is shown that this method, which makes use of ideas of topology and algebraic geometry, is very useful in the investigation of feedback problems for which the classical methods are not suitable. The transfer function as a curve in the Grassmanian is examined. The general concepts studied in the context of specific systems and applications are organized in terms of the theory of Lie groups and algebraic geometry. Attention is given to linear systems which have a structure group, linear mechanical systems, and feedback invariants. The investigation shows that Lie group techniques are powerful and useful tools for analysis of the feedback structure of linear systems.

  2. Diffuse reflectance spectroscopy for optical nerve identification. Preliminary ex vivo results for feedback controlled oral and maxillofacial laser surgery

    NASA Astrophysics Data System (ADS)

    Stelzle, Florian; Zam, Azhar; Adler, Werner; Douplik, Alexandre; Tangermann-Gerk, Katja; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Schmidt, Michael

    Objective: Laser surgery has many advantages. However, due to a lack of haptic feedback it is accompanied by the risk of iatrogenic nerve damage. The aim of this study was to evaluate the possibilities of optical nerve identification by diffuse reflectance spectroscopy to set the base for a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Materials and Methods: Diffuse reflectance spectra of nerve tissue, skin, mucosa, fat tissue, muscle, cartilage and bone (15120 spectra) of ex vivo pig heads were acquired in the wavelength range of 350-650 nm. Tissue differentiation was performed by principal components analysis (PCA) followed by linear discriminant analysis (LDA). Specificity and sensitivity were calculated by receiver operating characteristic (ROC) analysis and the area under curve (AUC). Results: Nerve tissue could correctly be identified and differed from skin, mucosa, fat tissue, muscle, cartilage and bone in more than 90% of the cases (AUC results) with a specificity of over 78% and a sensitivity of more than 86%. Conclusion: Nerve tissue can be identified by diffuse reflectance spectroscopy with high precision and reliability. The results may set the base for a feedback system to prevent iatrogenic nerve damage performing oral and maxillofacial laser surgery.

  3. The evaluation of a novel haptic-enabled virtual reality approach for computer-aided cephalometry.

    PubMed

    Medellín-Castillo, H I; Govea-Valladares, E H; Pérez-Guerrero, C N; Gil-Valladares, J; Lim, Theodore; Ritchie, James M

    2016-07-01

    In oral and maxillofacial surgery, conventional radiographic cephalometry is one of the standard auxiliary tools for diagnosis and surgical planning. While contemporary computer-assisted cephalometric systems and methodologies support cephalometric analysis, they tend neither to be practical nor intuitive for practitioners. This is particularly the case for 3D methods since the associated landmarking process is difficult and time consuming. In addition to this, there are no 3D cephalometry norms or standards defined; therefore new landmark selection methods are required which will help facilitate their establishment. This paper presents and evaluates a novel haptic-enabled landmarking approach to overcome some of the difficulties and disadvantages of the current landmarking processes used in 2D and 3D cephalometry. In order to evaluate this new system's feasibility and performance, 21 dental surgeons (comprising 7 Novices, 7 Semi-experts and 7 Experts) performed a range of case studies using a haptic-enabled 2D, 2½D and 3D digital cephalometric analyses. The results compared the 2D, 2½D and 3D cephalometric values, errors and standard deviations for each case study and associated group of participants and revealed that 3D cephalometry significantly reduced landmarking errors and variability compared to 2D methods. Through enhancing the process by providing a sense of touch, the haptic-enabled 3D digital cephalometric approach was found to be feasible and more intuitive than its counterparts as well effective at reducing errors, the variability of the measurements taken and associated task completion times. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Vibrotactile perception assessment for a haptic interface on an antigravity suit.

    PubMed

    Ko, Sang Min; Lee, Kwangil; Kim, Daeho; Ji, Yong Gu

    2017-01-01

    Haptic technology is used in various fields to transmit information to the user with or without visual and auditory cues. This study aimed to provide preliminary data for use in developing a haptic interface for an antigravity (anti-G) suit. With the structural characteristics of the anti-G suit in mind, we determined five areas on the body (lower back, outer thighs, inner thighs, outer calves, and inner calves) on which to install ten bar-type eccentric rotating mass (ERM) motors as vibration actuators. To determine the design factors of the haptic anti-G suit, we conducted three experiments to find the absolute threshold, moderate intensity, and subjective assessments of vibrotactile stimuli. Twenty-six fighter pilots participated in the experiments, which were conducted in a fixed-based flight simulator. From the results of our study, we recommend 1) absolute thresholds of ∼11.98-15.84 Hz and 102.01-104.06 dB, 2) moderate intensities of 74.36 Hz and 126.98 dB for the lower back and 58.65 Hz and 122.37 dB for either side of the thighs and calves, and 3) subjective assessments of vibrotactile stimuli (displeasure, easy to perceive, and level of comfort). The results of this study will be useful for the design of a haptic anti-G suit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Exploring laterality and memory effects in the haptic discrimination of verbal and non-verbal shapes.

    PubMed

    Stoycheva, Polina; Tiippana, Kaisa

    2018-03-14

    The brain's left hemisphere often displays advantages in processing verbal information, while the right hemisphere favours processing non-verbal information. In the haptic domain due to contra-lateral innervations, this functional lateralization is reflected in a hand advantage during certain functions. Findings regarding the hand-hemisphere advantage for haptic information remain contradictory, however. This study addressed these laterality effects and their interaction with memory retention times in the haptic modality. Participants performed haptic discrimination of letters, geometric shapes and nonsense shapes at memory retention times of 5, 15 and 30 s with the left and right hand separately, and we measured the discriminability index d'. The d' values were significantly higher for letters and geometric shapes than for nonsense shapes. This might result from dual coding (naming + spatial) or/and from a low stimulus complexity. There was no stimulus-specific laterality effect. However, we found a time-dependent laterality effect, which revealed that the performance of the left hand-right hemisphere was sustained up to 15 s, while the performance of the right-hand-left hemisphere decreased progressively throughout all retention times. This suggests that haptic memory traces are more robust to decay when they are processed by the left hand-right hemisphere.

  6. Motor skills, haptic perception and social abilities in children with mild speech disorders.

    PubMed

    Müürsepp, Iti; Aibast, Herje; Gapeyeva, Helena; Pääsuke, Mati

    2012-02-01

    The aim of the study was to evaluate motor skills, haptic object recognition and social interaction in 5-year-old children with mild specific expressive language impairment (expressive-SLI) and articulation disorder (AD) in comparison of age- and gender matched healthy children. Twenty nine children (23 boys and 6 girls) with expressive-SLI, 27 children (20 boys and 7 girls) with AD and 30 children (23 boys and 7 girls) with typically developing language as controls participated in our study. The children were examined for manual dexterity, ball skills, static and dynamic balance by M-ABC test, haptic object recognition and for social interaction by questionnaire completed by teachers. Children with mild expressive-SLI demonstrated significantly poorer results in all subtests of motor skills (p<0.05), in haptic object recognition and social interaction (p<0.01) compared to controls. There were no statistically significant differences (p>0.05) in measured parameters between children with AD and controls. Children with expressive-SLI performed considerably poorer compared to AD group in balance subtest (p<0.05), and in overall M-ABC test (p<0.01). In children with mild expressive-SLI the functional motor performance, haptic perception and social interaction are considerably more affected than in children with AD. Although motor difficulties in speech production are prevalent in AD, it is localised and does not involve children's general motor skills, haptic perception or social interaction. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  7. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation.

    PubMed

    Norman, J Farley; Phillips, Flip; Cheeseman, Jacob R; Thomason, Kelsey E; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped "glaven") for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object's shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions-e.g., the participants' performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision.

  8. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation

    PubMed Central

    Cheeseman, Jacob R.; Thomason, Kelsey E.; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B.; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped “glaven”) for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object’s shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions–e.g., the participants’ performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  9. Negative feedback system reduces pump oscillations

    NASA Technical Reports Server (NTRS)

    Rosenmann, W.

    1967-01-01

    External negative feedback system counteracts low frequency oscillations in rocket engine propellant pumps. The system uses a control piston to sense pump discharge fluid on one side and a gas pocket on the other.

  10. Physics-based approach to haptic display

    NASA Technical Reports Server (NTRS)

    Brown, J. Michael; Colgate, J. Edward

    1994-01-01

    This paper addresses the implementation of complex multiple degree of freedom virtual environments for haptic display. We suggest that a physics based approach to rigid body simulation is appropriate for hand tool simulation, but that currently available simulation techniques are not sufficient to guarantee successful implementation. We discuss the desirable features of a virtual environment simulation, specifically highlighting the importance of stability guarantees.

  11. Soft Somatosensitive Actuators via Embedded 3D Printing.

    PubMed

    Truby, Ryan L; Wehner, Michael; Grosskopf, Abigail K; Vogt, Daniel M; Uzel, Sebastien G M; Wood, Robert J; Lewis, Jennifer A

    2018-04-01

    Humans possess manual dexterity, motor skills, and other physical abilities that rely on feedback provided by the somatosensory system. Herein, a method is reported for creating soft somatosensitive actuators (SSAs) via embedded 3D printing, which are innervated with multiple conductive features that simultaneously enable haptic, proprioceptive, and thermoceptive sensing. This novel manufacturing approach enables the seamless integration of multiple ionically conductive and fluidic features within elastomeric matrices to produce SSAs with the desired bioinspired sensing and actuation capabilities. Each printed sensor is composed of an ionically conductive gel that exhibits both long-term stability and hysteresis-free performance. As an exemplar, multiple SSAs are combined into a soft robotic gripper that provides proprioceptive and haptic feedback via embedded curvature, inflation, and contact sensors, including deep and fine touch contact sensors. The multimaterial manufacturing platform enables complex sensing motifs to be easily integrated into soft actuating systems, which is a necessary step toward closed-loop feedback control of soft robots, machines, and haptic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A feedback system in residency to evaluate CanMEDS roles and provide high-quality feedback: Exploring its application.

    PubMed

    Renting, Nienke; Gans, Rijk O B; Borleffs, Jan C C; Van Der Wal, Martha A; Jaarsma, A Debbie C; Cohen-Schotanus, Janke

    2016-07-01

    Residents benefit from regular, high quality feedback on all CanMEDS roles during their training. However, feedback mostly concerns Medical Expert, leaving the other roles behind. A feedback system was developed to guide supervisors in providing feedback on CanMEDS roles. We analyzed whether feedback was provided on the intended roles and explored differences in quality of written feedback. In the feedback system, CanMEDS roles were assigned to five authentic situations: Patient Encounter, Morning Report, On-call, CAT, and Oral Presentation. Quality of feedback was operationalized as specificity and inclusion of strengths and improvement points. Differences in specificity between roles were tested with Mann-Whitney U tests with a Bonferroni correction (α = 0.003). Supervisors (n = 126) provided residents (n = 120) with feedback (591 times). Feedback was provided on the intended roles, most frequently on Scholar (78%) and Communicator (71%); least on Manager (47%), and Collaborator (56%). Strengths (78%) were mentioned more frequently than improvement points (52%), which were lacking in 40% of the feedback on Manager, Professional, and Collaborator. Feedback on Scholar was more frequently (p = 0.000) and on Reflective Professional was less frequently (p = 0.003) specific. Assigning roles to authentic situations guides supervisors in providing feedback on different CanMEDS roles. We recommend additional supervisor training on how to observe and evaluate the roles.

  13. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind.

    PubMed

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J; Sadato, Norihiro

    2013-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience.

  14. Feedbacks between conservation and social-ecological systems

    PubMed Central

    Miller, Brian W.; Caplow, Susan C.; Leslie, Paul W.

    2012-01-01

    Robust ways to meet objectives of environmental conservation and social and economic development remain elusive. This struggle may in part be related to insufficient understanding of the feedbacks between conservation initiatives and social-ecological systems, specifically, the ways in which conservation initiatives result in social changes that have secondary effects on the environments targeted by conservation. To explore this idea we sampled peer-reviewed articles addressing the social and environmental dimensions of conservation and coded each paper according to its research focus and characterization of these feedbacks. The majority of articles in our sample focused either on the effect of conservation initiatives on people (e.g., relocation, employment) or the effect of people on the environment (e.g., fragmentation, conservation efficacy of traditional management systems). Few studies in our sample empirically addressed both the social dynamics resulting from conservation initiatives and subsequent environmental effects. In many cases, one was measured and the other was discussed anecdotally. Among the studies that describe feedbacks between social and environmental variables, there was more evidence of positive (amplifying) feedbacks between social and environmental outcomes (i.e., undesirable social outcomes yielded undesirable environmental effects, and desirable social outcomes yielded desirable environmental effects). The major themes within the sampled literature include conflict between humans and wild animals, social movements, adaptive comanagement, loss of traditional management systems, traditional ecological knowledge, human displacement and risks to livelihoods, and conservation and development. The narratives associated with each theme can serve as hypotheses for facilitating further discussion about conservation issues and for catalyzing future studies of the feedbacks between conservation and social-ecological systems. PMID:22443128

  15. Adaptive feedback synchronization of a unified chaotic system

    NASA Astrophysics Data System (ADS)

    Lu, Junan; Wu, Xiaoqun; Han, Xiuping; Lü, Jinhu

    2004-08-01

    This Letter further improves and extends the work of Wang et al. [Phys. Lett. A 312 (2003) 34]. In detailed, the linear feedback synchronization and adaptive feedback synchronization with only one controller for a unified chaotic system are discussed here. It is noticed that this unified system contains the noted Lorenz and Chen systems. Two chaotic synchronization theorems are attained. Also, numerical simulations are given to show the effectiveness of these methods.

  16. Direct laser additive fabrication system with image feedback control

    DOEpatents

    Griffith, Michelle L.; Hofmeister, William H.; Knorovsky, Gerald A.; MacCallum, Danny O.; Schlienger, M. Eric; Smugeresky, John E.

    2002-01-01

    A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.

  17. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  18. Monitoring Digital Closed-Loop Feedback Systems

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2011-01-01

    A technique of monitoring digital closed-loop feedback systems has been conceived. The basic idea is to obtain information on the performances of closed-loop feedback circuits in such systems to aid in the determination of the functionality and integrity of the circuits and of performance margins. The need for this technique arises as follows: Some modern digital systems include feedback circuits that enable other circuits to perform with precision and are tolerant of changes in environment and the device s parameters. For example, in a precision timing circuit, it is desirable to make the circuit insensitive to variability as a result of the manufacture of circuit components and to the effects of temperature, voltage, radiation, and aging. However, such a design can also result in masking the indications of damaged and/or deteriorating components. The present technique incorporates test circuitry and associated engineering-telemetry circuitry into an embedded system to monitor the closed-loop feedback circuits, using spare gates that are often available in field programmable gate arrays (FPGAs). This technique enables a test engineer to determine the amount of performance margin in the system, detect out of family circuit performance, and determine one or more trend(s) in the performance of the system. In one system to which the technique has been applied, an ultra-stable oscillator is used as a reference for internal adjustment of 12 time-to-digital converters (TDCs). The feedback circuit produces a pulse-width-modulated signal that is fed as a control input into an amplifier, which controls the circuit s operating voltage. If the circuit s gates are determined to be operating too slowly or rapidly when their timing is compared with that of the reference signal, then the pulse width increases or decreases, respectively, thereby commanding the amplifier to increase or reduce, respectively, its output level, and "adjust" the speed of the circuits. The nominal

  19. What Aspects of Vision Facilitate Haptic Processing?

    ERIC Educational Resources Information Center

    Millar, Susanna; Al-Attar, Zainab

    2005-01-01

    We investigate how vision affects haptic performance when task-relevant visual cues are reduced or excluded. The task was to remember the spatial location of six landmarks that were explored by touch in a tactile map. Here, we use specially designed spectacles that simulate residual peripheral vision, tunnel vision, diffuse light perception, and…

  20. Recruitment of Foveal Retinotopic Cortex During Haptic Exploration of Shapes and Actions in the Dark.

    PubMed

    Monaco, Simona; Gallivan, Jason P; Figley, Teresa D; Singhal, Anthony; Culham, Jody C

    2017-11-29

    The role of the early visual cortex and higher-order occipitotemporal cortex has been studied extensively for visual recognition and to a lesser degree for haptic recognition and visually guided actions. Using a slow event-related fMRI experiment, we investigated whether tactile and visual exploration of objects recruit the same "visual" areas (and in the case of visual cortex, the same retinotopic zones) and if these areas show reactivation during delayed actions in the dark toward haptically explored objects (and if so, whether this reactivation might be due to imagery). We examined activation during visual or haptic exploration of objects and action execution (grasping or reaching) separated by an 18 s delay. Twenty-nine human volunteers (13 females) participated in this study. Participants had their eyes open and fixated on a point in the dark. The objects were placed below the fixation point and accordingly visual exploration activated the cuneus, which processes retinotopic locations in the lower visual field. Strikingly, the occipital pole (OP), representing foveal locations, showed higher activation for tactile than visual exploration, although the stimulus was unseen and location in the visual field was peripheral. Moreover, the lateral occipital tactile-visual area (LOtv) showed comparable activation for tactile and visual exploration. Psychophysiological interaction analysis indicated that the OP showed stronger functional connectivity with anterior intraparietal sulcus and LOtv during the haptic than visual exploration of shapes in the dark. After the delay, the cuneus, OP, and LOtv showed reactivation that was independent of the sensory modality used to explore the object. These results show that haptic actions not only activate "visual" areas during object touch, but also that this information appears to be used in guiding grasping actions toward targets after a delay. SIGNIFICANCE STATEMENT Visual presentation of an object activates shape

  1. Implementing a Measurement Feedback System: A Tale of Two Sites

    PubMed Central

    Douglas, Susan R.; Vides De Andrade, Ana Regina; Tomlinson, Michele; Gleacher, Alissa; Olin, Serene; Hoagwood, Kimberly

    2015-01-01

    A randomized experiment was conducted in two outpatient clinics evaluating a measurement feedback system called contextualized feedback systems. The clinicians of 257 Youth 11–18 received feedback on progress in mental health symptoms and functioning either every 6 months or as soon as the youth’s, clinician’s or caregiver’s data were entered into the system. The ITT analysis showed that only one of the two participating clinics (Clinic R) had an enhanced outcome because of feedback, and only for the clinicians’ ratings of youth symptom severity on the SFSS. A dose–response effect was found only for Clinic R for both the client and clinician ratings. Implementation analyses showed that Clinic R had better implementation of the feedback intervention. Clinicians’ questionnaire completion rate and feedback viewing at Clinic R were 50 % higher than clinicians at Clinic U. The discussion focused on the differences in implementation at each site and how these differences may have contributed to the different outcomes of the experiment. PMID:25876736

  2. Virtual reality haptic dissection.

    PubMed

    Erolin, Caroline; Wilkinson, Caroline; Soames, Roger

    2011-12-01

    This project aims to create a three-dimensional digital model of the human hand and wrist which can be virtually 'dissected' through a haptic interface. Tissue properties will be added to the various anatomical structures to replicate a realistic look and feel. The project will explore the role of the medical artist, and investigate cross-discipline collaborations in the field of virtual anatomy. The software will be used to train anatomy students in dissection skills, before experience on a real cadaver. The effectiveness of the software will be evaluated and assessed both quantitatively as well as qualitatively.

  3. Reframing the action and perception dissociation in DF: haptics matters, but how?

    PubMed

    Whitwell, Robert L; Buckingham, Gavin

    2013-02-01

    Goodale and Milner's (1992) "vision-for-action" and "vision-for-perception" account of the division of labor between the dorsal and ventral "streams" has come to dominate contemporary views of the functional roles of these two pathways. Nevertheless, some lines of evidence for the model remain controversial. Recently, Thomas Schenk reexamined visual form agnosic patient DF's spared anticipatory grip scaling to object size, one of the principal empirical pillars of the model. Based on this new evidence, Schenk rejects the original interpretation of DF's spared ability that was based on segregated processing of object size and argues that DF's spared grip scaling relies on haptic feedback to calibrate visual egocentric cues that relate the posture of the hand to the visible edges of the goal-object. However, a careful consideration of the tasks that Schenk employed reveals some problems with his claim. We suspect that the core issues of this controversy will require a closer examination of the role that cognition plays in the operation of the dorsal and ventral streams in healthy controls and in patient DF.

  4. Output transformations and separation results for feedback linearisable delay systems

    NASA Astrophysics Data System (ADS)

    Cacace, F.; Conte, F.; Germani, A.

    2018-04-01

    The class of strict-feedback systems enjoys special properties that make it similar to linear systems. This paper proves that such a class is equivalent, under a change of coordinates, to the wider class of feedback linearisable systems with multiplicative input, when the multiplicative terms are functions of the measured variables only. We apply this result to the control problem of feedback linearisable nonlinear MIMO systems with input and/or output delays. In this way, we provide sufficient conditions under which a separation result holds for output feedback control and moreover a predictor-based controller exists. When these conditions are satisfied, we obtain that the existence of stabilising controllers for arbitrarily large delays in the input and/or the output can be proved for a wider class of systems than previously known.

  5. An arm wearable haptic interface for impact sensing on unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Yunshil; Hong, Seung-Chan; Lee, Jung-Ryul

    2017-04-01

    In this paper, an impact monitoring system using fiber Bragg grating (FBG) sensors and vibro-haptic actuators has been introduced. The system is suggested for structural health monitoring (SHM) for unmanned aerial vehicles (UAVs), by making a decision with human-robot interaction. The system is composed with two major subsystems; an on-board system equipped on UAV and an arm-wearable interface for ground pilot. The on-board system acquires impact-induced wavelength changes and performs localization process, which was developed based on arrival time calculation. The arm-wearable interface helps ground pilots to make decision about impact location themselves by stimulating their tactile-sense with motor vibration.

  6. Rhythmic Haptic Stimuli Improve Short-Term Attention.

    PubMed

    Zhang, Shusheng; Wang, Dangxiao; Afzal, Naqash; Zhang, Yuru; Wu, Ruilin

    2016-01-01

    Brainwave entrainment using rhythmic visual and/or auditory stimulation has shown its efficacy in modulating neural activities and cognitive ability. In the presented study, we aim to investigate whether rhythmic haptic stimulation could enhance short-term attention. An experiment with sensorimotor rhythm (SMR) increasing protocol was performed in which participants were presented sinusoidal vibrotactile stimulus of 15 Hz on their palm. Test of Variables of Attention (T.O.V.A.) was performed before and after the stimulating session. Electroencephalograph (EEG) was recorded across the stimulating session and the two attention test sessions. SMR band power manifested a significant increase after stimulation. Results of T.O.V.A. tests indicated an improvement in the attention of participants who had received the stimulation compared to the control group who had not received the stimulation. The D prime score of T.O.V.A. reveals that participants performed better in perceptual sensitivity and sustaining attention level compared to their baseline performance before the stimulating session. These findings highlight the potential value of using haptics-based brainwave entrainment for cognitive training.

  7. A novel remote center of motion mechanism for the force-reflective master robot of haptic tele-surgery systems.

    PubMed

    Hadavand, Mostafa; Mirbagheri, Alireza; Behzadipour, Saeed; Farahmand, Farzam

    2014-06-01

    An effective master robot for haptic tele-surgery applications needs to provide a solution for the inversed movements of the surgical tool, in addition to sufficient workspace and manipulability, with minimal moving inertia. A novel 4 + 1-DOF mechanism was proposed, based on a triple parallelogram linkage, which provided a Remote Center of Motion (RCM) at the back of the user's hand. The kinematics of the robot was analyzed and a prototype was fabricated and evaluated by experimental tests. With a RCM at the back of the user's hand the actuators far from the end effector, the robot could produce the sensation of hand-inside surgery with minimal moving inertia. The target workspace was achieved with an acceptable manipulability. The trajectory tracking experiments revealed small errors, due to backlash at the joints. The proposed mechanism meets the basic requirements of an effective master robot for haptic tele-surgery applications. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind

    PubMed Central

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T.; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J.; Sadato, Norihiro

    2012-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience. PMID:23372547

  9. Feedback Systems for Use with Paper-Based Instructional Products.

    ERIC Educational Resources Information Center

    Strandberg, Joel E.

    This survey describes 15 systems that provide feedback to students. Feedback is defined as information transfer from the instructional material to the student after a response is made by the student. The feedback is directed primarily to the student, but when a permanent record of the response occurs this information is also available to the…

  10. Cortical Activation Patterns during Long-Term Memory Retrieval of Visually or Haptically Encoded Objects and Locations

    ERIC Educational Resources Information Center

    Stock, Oliver; Roder, Brigitte; Burke, Michael; Bien, Siegfried; Rosler, Frank

    2009-01-01

    The present study used functional magnetic resonance imaging to delineate cortical networks that are activated when objects or spatial locations encoded either visually (visual encoding group, n = 10) or haptically (haptic encoding group, n = 10) had to be retrieved from long-term memory. Participants learned associations between auditorily…

  11. Obstacle Crossing Differences Between Blind and Blindfolded Subjects After Haptic Exploration.

    PubMed

    Forner-Cordero, Arturo; Garcia, Valéria D; Rodrigues, Sérgio T; Duysens, Jacques

    2016-01-01

    Little is known about the ability of blind people to cross obstacles after they have explored haptically their size and position. Long-term absence of vision may affect spatial cognition in the blind while their extensive experience with the use of haptic information for guidance may lead to compensation strategies. Seven blind and 7 sighted participants (with vision available and blindfolded) walked along a flat pathway and crossed an obstacle after a haptic exploration. Blind and blindfolded subjects used different strategies to cross the obstacle. After the first 20 trials the blindfolded subjects reduced the distance between the foot and the obstacle at the toe-off instant, while the blind behaved as the subjects with full vision. Blind and blindfolded participants showed larger foot clearance than participants with vision. At foot landing the hip was more behind the foot in the blindfolded condition, while there were no differences between the blind and the vision conditions. For several parameters of the obstacle crossing task, blind people were more similar to subjects with full vision indicating that the blind subjects were able to compensate for the lack of vision.

  12. Feasibility of a computer-assisted feedback system between dispatch centre and ambulances.

    PubMed

    Lindström, Veronica; Karlsten, Rolf; Falk, Ann-Charlotte; Castrèn, Maaret

    2011-06-01

    The aim of the study was to evaluate the feasibility of a newly developed computer-assisted feedback system between dispatch centre and ambulances in Stockholm, Sweden. A computer-assisted feedback system based on a Finnish model was designed to fit the Swedish emergency medical system. Feedback codes were identified and divided into three categories; assessment of patients' primary condition when ambulance arrives at scene, no transport by the ambulance and level of priority. Two ambulances and one emergency medical communication centre (EMCC) in Stockholm participated in the study. A sample of 530 feedback codes sent through the computer-assisted feedback system was reviewed. The information on the ambulance medical records was compared with the feedback codes used and 240 assignments were further analyzed. The used feedback codes sent from ambulance to EMCC were correct in 92% of the assignments. The most commonly used feedback code sent to the emergency medical dispatchers was 'agree with the dispatchers' assessment'. In addition, in 160 assignments there was a mismatch between emergency medical dispatchers and ambulance nurse assessments. Our results have shown a high agreement between medical dispatchers and ambulance nurse assessment. The feasibility of the feedback codes seems to be acceptable based on the small margin of error. The computer-assisted feedback system may, when used on a daily basis, make it possible for the medical dispatchers to receive feedback in a structural way. The EMCC organization can directly evaluate any changes in the assessment protocol by structured feedback sent from the ambulance.

  13. Incorporating haptic effects into three-dimensional virtual environments to train the hemiparetic upper extremity

    PubMed Central

    Adamovich, Sergei; Fluet, Gerard G.; Merians, Alma S.; Mathai, Abraham; Qiu, Qinyin

    2010-01-01

    Current neuroscience has identified several constructs to increase the effectiveness of upper extremity rehabilitation. One is the use of progressive, skill acquisition-oriented training. Another approach emphasizes the use of bilateral activities. Building on these principles, this paper describes the design and feasibility testing of a robotic / virtual environment system designed to train the arm of persons who have had strokes. The system provides a variety of assistance modes, scalable workspaces and hand-robot interfaces allowing persons with strokes to train multiple joints in three dimensions. The simulations utilize assistance algorithms that adjust task difficulty both online and offline in relation to subject performance. Several distinctive haptic effects have been incorporated into the simulations. An adaptive master-slave relationship between the unimpaired and impaired arm encourages active movement of the subject's hemiparetic arm during a bimanual task. Adaptive anti-gravity support and damping stabilize the arm during virtual reaching and placement tasks. An adaptive virtual spring provides assistance to complete the movement if the subject is unable to complete the task in time. Finally, haptically rendered virtual objects help to shape the movement trajectory during a virtual placement task. A proof of concept study demonstrated this system to be safe, feasible and worthy of further study. PMID:19666345

  14. Design of high-fidelity haptic display for one-dimensional force reflection applications

    NASA Astrophysics Data System (ADS)

    Gillespie, Brent; Rosenberg, Louis B.

    1995-12-01

    This paper discusses the development of a virtual reality platform for the simulation of medical procedures which involve needle insertion into human tissue. The paper's focus is the hardware and software requirements for haptic display of a particular medical procedure known as epidural analgesia. To perform this delicate manual procedure, an anesthesiologist must carefully guide a needle through various layers of tissue using only haptic cues for guidance. As a simplifying aspect for the simulator design, all motions and forces involved in the task occur along a fixed line once insertion begins. To create a haptic representation of this procedure, we have explored both physical modeling and perceptual modeling techniques. A preliminary physical model was built based on CT-scan data of the operative site. A preliminary perceptual model was built based on current training techniques for the procedure provided by a skilled instructor. We compare and contrast these two modeling methods and discuss the implications of each. We select and defend the perceptual model as a superior approach for the epidural analgesia simulator.

  15. Surgical virtual reality - highlights in developing a high performance surgical haptic device.

    PubMed

    Custură-Crăciun, D; Cochior, D; Constantinoiu, S; Neagu, C

    2013-01-01

    Just like simulators are a standard in aviation and aerospace sciences, we expect for surgical simulators to soon become a standard in medical applications. These will correctly instruct future doctors in surgical techniques without there being a need for hands on patient instruction. Using virtual reality by digitally transposing surgical procedures changes surgery in are volutionary manner by offering possibilities for implementing new, much more efficient, learning methods, by allowing the practice of new surgical techniques and by improving surgeon abilities and skills. Perfecting haptic devices has opened the door to a series of opportunities in the fields of research,industry, nuclear science and medicine. Concepts purely theoretical at first, such as telerobotics, telepresence or telerepresentation,have become a practical reality as calculus techniques, telecommunications and haptic devices evolved,virtual reality taking a new leap. In the field of surgery barrier sand controversies still remain, regarding implementation and generalization of surgical virtual simulators. These obstacles remain connected to the high costs of this yet fully sufficiently developed technology, especially in the domain of haptic devices. Celsius.

  16. Advanced haptic sensor for measuring human skin conditions

    NASA Astrophysics Data System (ADS)

    Tsuchimi, Daisuke; Okuyama, Takeshi; Tanaka, Mami

    2009-12-01

    This paper is concerned with the development of a tactile sensor using PVDF (Polyvinylidene Fluoride) film as a sensory receptor of the sensor to evaluate softness, smoothness, and stickiness of human skin. Tactile sense is the most important sense in the sensation receptor of the human body along with eyesight, and we can examine skin condition quickly using these sense. But, its subjectivity and ambiguity make it difficult to quantify skin conditions. Therefore, development of measurement device which can evaluate skin conditions easily and objectively is demanded by dermatologists, cosmetic industries, and so on. In this paper, an advanced haptic sensor system that can measure multiple information of skin condition in various parts of human body is developed. The applications of the sensor system to evaluate softness, smoothness, and stickiness of skin are investigated through two experiments.

  17. Advanced haptic sensor for measuring human skin conditions

    NASA Astrophysics Data System (ADS)

    Tsuchimi, Daisuke; Okuyama, Takeshi; Tanaka, Mami

    2010-01-01

    This paper is concerned with the development of a tactile sensor using PVDF (Polyvinylidene Fluoride) film as a sensory receptor of the sensor to evaluate softness, smoothness, and stickiness of human skin. Tactile sense is the most important sense in the sensation receptor of the human body along with eyesight, and we can examine skin condition quickly using these sense. But, its subjectivity and ambiguity make it difficult to quantify skin conditions. Therefore, development of measurement device which can evaluate skin conditions easily and objectively is demanded by dermatologists, cosmetic industries, and so on. In this paper, an advanced haptic sensor system that can measure multiple information of skin condition in various parts of human body is developed. The applications of the sensor system to evaluate softness, smoothness, and stickiness of skin are investigated through two experiments.

  18. Diversity in School Performance Feedback Systems

    ERIC Educational Resources Information Center

    Verhaeghe, Goedele; Schildkamp, Kim; Luyten, Hans; Valcke, Martin

    2015-01-01

    As data-based decision making is receiving increased attention in education, more and more school performance feedback systems (SPFSs) are being developed and used worldwide. These systems provide schools with data on their functioning. However, little research is available on the characteristics of the different SPFSs. Therefore, this study…

  19. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    PubMed Central

    Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang

    2008-01-01

    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934

  20. Parametric model of the scala tympani for haptic-rendered cochlear implantation.

    PubMed

    Todd, Catherine; Naghdy, Fazel

    2005-01-01

    A parametric model of the human scala tympani has been designed for use in a haptic-rendered computer simulation of cochlear implant surgery. It will be the first surgical simulator of this kind. A geometric model of the Scala Tympani has been derived from measured data for this purpose. The model is compared with two existing descriptions of the cochlear spiral. A first approximation of the basilar membrane is also produced. The structures are imported into a force-rendering software application for system development.

  1. Importance of Matching Physical Friction, Hardness, and Texture in Creating Realistic Haptic Virtual Surfaces.

    PubMed

    Culbertson, Heather; Kuchenbecker, Katherine J

    2017-01-01

    Interacting with physical objects through a tool elicits tactile and kinesthetic sensations that comprise your haptic impression of the object. These cues, however, are largely missing from interactions with virtual objects, yielding an unrealistic user experience. This article evaluates the realism of virtual surfaces rendered using haptic models constructed from data recorded during interactions with real surfaces. The models include three components: surface friction, tapping transients, and texture vibrations. We render the virtual surfaces on a SensAble Phantom Omni haptic interface augmented with a Tactile Labs Haptuator for vibration output. We conducted a human-subject study to assess the realism of these virtual surfaces and the importance of the three model components. Following a perceptual discrepancy paradigm, subjects compared each of 15 real surfaces to a full rendering of the same surface plus versions missing each model component. The realism improvement achieved by including friction, tapping, or texture in the rendering was found to directly relate to the intensity of the surface's property in that domain (slipperiness, hardness, or roughness). A subsequent analysis of forces and vibrations measured during interactions with virtual surfaces indicated that the Omni's inherent mechanical properties corrupted the user's haptic experience, decreasing realism of the virtual surface.

  2. Minimal-Inversion Feedforward-And-Feedback Control System

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1990-01-01

    Recent developments in theory of control systems support concept of minimal-inversion feedforward-and feedback control system consisting of three independently designable control subsystems. Applicable to the control of linear, time-invariant plant.

  3. Implementing Audio Digital Feedback Loop Using the National Instruments RIO System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, G.; Byrd, J. M.

    2006-11-20

    Development of system for high precision RF distribution and laser synchronization at Berkeley Lab has been ongoing for several years. Successful operation of these systems requires multiple audio bandwidth feedback loops running at relatively high gains. Stable operation of the feedback loops requires careful design of the feedback transfer function. To allow for flexible and compact implementation, we have developed digital feedback loops on the National Instruments Reconfigurable Input/Output (RIO) platform. This platform uses an FPGA and multiple I/Os that can provide eight parallel channels running different filters. We present the design and preliminary experimental results of this system.

  4. Prototype of haptic device for sole of foot using magnetic field sensitive elastomer

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Masuda, Y.; Sugiyama, M.; Mitsumata, T.; Ohori, S.

    2013-02-01

    Walking is one of the most popular activities and a healthy aerobic exercise for the elderly. However, if they have physical and / or cognitive disabilities, sometimes it is challenging to go somewhere they don't know well. The final goal of this study is to develop a virtual reality walking system that allows users to walk in virtual worlds fabricated with computer graphics. We focus on a haptic device that can perform various plantar pressures on users' soles of feet as an additional sense in the virtual reality walking. In this study, we discuss a use of a magnetic field sensitive elastomer (MSE) as a working material for the haptic interface on the sole. The first prototype with MSE was developed and evaluated in this work. According to the measurement of planter pressures, it was found that this device can perform different pressures on the sole of a light-weight user by applying magnetic field on the MSE. The result also implied necessities of the improvement of the magnetic circuit and the basic structure of the mechanism of the device.

  5. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    PubMed

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  6. An NLRA Transducer for Dual Use Bone Conduction Audio and Haptic Communication. Summary Report

    DTIC Science & Technology

    2016-12-30

    VIBRANT COMPOSITES INC. 1 A16-019 Phase 1 Summary Report Vibrant Composites Inc. December 30, 2016 I. ABSTRACT A combined transducer capable of bone ...transducer core capable of both precise haptic communication and high fidelity bone conduction audio. The transducer design leverages Micro-Multilayer...head-mounted system. In this Phase I SBIR, Vibrant Composites has delivered functional dual-mode bone conduction and vibrotactile transducer prototypes

  7. The Effect of Visual Experience on Perceived Haptic Verticality When Tilted in the Roll Plane

    PubMed Central

    Cuturi, Luigi F.; Gori, Monica

    2017-01-01

    The orientation of the body in space can influence perception of verticality leading sometimes to biases consistent with priors peaked at the most common head and body orientation, that is upright. In this study, we investigate haptic perception of verticality in sighted individuals and early and late blind adults when tilted counterclockwise in the roll plane. Participants were asked to perform a stimulus orientation discrimination task with their body tilted to their left ear side 90° relative to gravity. Stimuli were presented by using a motorized haptic bar. In order to test whether different reference frames relative to the head influenced perception of verticality, we varied the position of the stimulus on the body longitudinal axis. Depending on the stimulus position sighted participants tended to have biases away or toward their body tilt. Visually impaired individuals instead show a different pattern of verticality estimations. A bias toward head and body tilt (i.e., Aubert effect) was observed in late blind individuals. Interestingly, no strong biases were observed in early blind individuals. Overall, these results posit visual sensory information to be fundamental in influencing the haptic readout of proprioceptive and vestibular information about body orientation relative to gravity. The acquisition of an idiotropic vector signaling the upright might take place through vision during development. Regarding early blind individuals, independent spatial navigation experience likely enhanced by echolocation behavior might have a role in such acquisition. In the case of participants with late onset blindness, early experience of vision might lead them to anchor their visually acquired priors to the haptic modality with no disambiguation between head and body references as observed in sighted individuals (Fraser et al., 2015). With our study, we aim to investigate haptic perception of gravity direction in unusual body tilts when vision is absent due to visual

  8. Technology-Based Feedback and Its Efficacy in Improving Gait Parameters in Patients with Abnormal Gait: A Systematic Review.

    PubMed

    Chamorro-Moriana, Gema; Moreno, Antonio José; Sevillano, José Luis

    2018-01-06

    This systematic review synthesized and analyzed clinical findings related to the effectiveness of innovative technological feedback for tackling functional gait recovery. An electronic search of PUBMED, PEDro, WOS, CINAHL, and DIALNET was conducted from January 2011 to December 2016. The main inclusion criteria were: patients with modified or abnormal gait; application of technology-based feedback to deal with functional recovery of gait; any comparison between different kinds of feedback applied by means of technology, or any comparison between technological and non-technological feedback; and randomized controlled trials. Twenty papers were included. The populations were neurological patients (75%), orthopedic and healthy subjects. All participants were adults, bar one. Four studies used exoskeletons, 6 load platforms and 5 pressure sensors. The breakdown of the type of feedback used was as follows: 60% visual, 40% acoustic and 15% haptic. 55% used terminal feedback versus 65% simultaneous feedback. Prescriptive feedback was used in 60% of cases, while 50% used descriptive feedback. 62.5% and 58.33% of the trials showed a significant effect in improving step length and speed, respectively. Efficacy in improving other gait parameters such as balance or range of movement is observed in more than 75% of the studies with significant outcomes. Treatments based on feedback using innovative technology in patients with abnormal gait are mostly effective in improving gait parameters and therefore useful for the functional recovery of patients. The most frequently highlighted types of feedback were immediate visual feedback followed by terminal and immediate acoustic feedback.

  9. What aspects of vision facilitate haptic processing?

    PubMed

    Millar, Susanna; Al-Attar, Zainab

    2005-12-01

    We investigate how vision affects haptic performance when task-relevant visual cues are reduced or excluded. The task was to remember the spatial location of six landmarks that were explored by touch in a tactile map. Here, we use specially designed spectacles that simulate residual peripheral vision, tunnel vision, diffuse light perception, and total blindness. Results for target locations differed, suggesting additional effects from adjacent touch cues. These are discussed. Touch with full vision was most accurate, as expected. Peripheral and tunnel vision, which reduce visuo-spatial cues, differed in error pattern. Both were less accurate than full vision, and significantly more accurate than touch with diffuse light perception, and touch alone. The important finding was that touch with diffuse light perception, which excludes spatial cues, did not differ from touch without vision in performance accuracy, nor in location error pattern. The contrast between spatially relevant versus spatially irrelevant vision provides new, rather decisive, evidence against the hypothesis that vision affects haptic processing even if it does not add task-relevant information. The results support optimal integration theories, and suggest that spatial and non-spatial aspects of vision need explicit distinction in bimodal studies and theories of spatial integration.

  10. Supramodality Effects in Visual and Haptic Spatial Processes

    ERIC Educational Resources Information Center

    Cattaneo, Zaira; Vecchi, Tomaso

    2008-01-01

    In this article, the authors investigated unimodal and cross-modal processes in spatial working memory. A number of locations had to be memorized within visual or haptic matrices according to different experimental conditions known to be critical in accounting for the effects of perception on imagery. Results reveal that some characteristics of…

  11. Social Touch Technology: A Survey of Haptic Technology for Social Touch.

    PubMed

    Huisman, Gijs

    2017-01-01

    This survey provides an overview of work on haptic technology for social touch. Social touch has been studied extensively in psychology and neuroscience. With the development of new technologies, it is now possible to engage in social touch at a distance or engage in social touch with artificial social agents. Social touch research has inspired research into technology mediated social touch, and this line of research has found effects similar to actual social touch. The importance of haptic stimulus qualities, multimodal cues, and contextual factors in technology mediated social touch is discussed. This survey is concluded by reflecting on the current state of research into social touch technology, and providing suggestions for future research and applications.

  12. Selective attention modulates visual and haptic repetition priming: effects in aging and Alzheimer's disease.

    PubMed

    Ballesteros, Soledad; Reales, José M; Mayas, Julia; Heller, Morton A

    2008-08-01

    In two experiments, we examined the effect of selective attention at encoding on repetition priming in normal aging and Alzheimer's disease (AD) patients for objects presented visually (experiment 1) or haptically (experiment 2). We used a repetition priming paradigm combined with a selective attention procedure at encoding. Reliable priming was found for both young adults and healthy older participants for visually presented pictures (experiment 1) as well as for haptically presented objects (experiment 2). However, this was only found for attended and not for unattended stimuli. The results suggest that independently of the perceptual modality, repetition priming requires attention at encoding and that perceptual facilitation is maintained in normal aging. However, AD patients did not show priming for attended stimuli, or for unattended visual or haptic objects. These findings suggest an early deficit of selective attention in AD. Results are discussed from a cognitive neuroscience approach.

  13. Modeling and test of a kinaesthetic actuator based on MR fluid for haptic applications.

    PubMed

    Yang, Tae-Heon; Koo, Jeong-Hoi; Kim, Sang-Youn; Kwon, Dong-Soo

    2017-03-01

    Haptic display units have been widely used for conveying button sensations to users, primarily employing vibrotactile actuators. However, the human feeling for pressing buttons mainly relies on kinaesthetic sensations (rather than vibrotactile sensations), and little studies exist on small-scale kinaesthetic haptic units. Thus, the primary goals of this paper are to design a miniature kinaesthetic actuator based on Magneto-Rheological (MR) fluid that can convey various button-clicking sensations and to experimentally evaluate its haptic performance. The design focuses of the proposed actuator were to produce sufficiently large actuation forces (resistive forces) for human users in a given size constraint and to offer a wide range of actuation forces for conveying vivid haptic sensations to users. To this end, this study first performed a series of parametric studies using mathematical force models for multiple operating modes of MR fluid in conjunction with finite element electromagnetism analysis. After selecting design parameters based on parametric studies, a prototype actuator was constructed, and its performance was evaluated using a dynamic mechanical analyzer. It measured the actuator's resistive force with a varying stroke (pressed depth) up to 1 mm and a varying input current from 0 A to 200 mA. The results show that the proposed actuator creates a wide range of resistive forces from around 2 N (off-state) to over 9.5 N at 200 mA. In order to assess the prototype's performance in the terms of the haptic application prospective, a maximum force rate was calculated to determine just noticeable difference in force changes for the 1 mm stoke of the actuator. The results show that the force rate is sufficient to mimic various levels of button sensations, indicating that the proposed kinaesthetic actuator can offer a wide range of resistive force changes that can be conveyed to human operators.

  14. Training Toddlers Seated on Mobile Robots to Steer Using Force-Feedback Joystick.

    PubMed

    Agrawal, S K; Xi Chen; Ragonesi, C; Galloway, J C

    2012-01-01

    The broader goal of our research is to train infants with special needs to safely and purposefully drive a mobile robot to explore the environment. The hypothesis is that these impaired infants will benefit from mobility in their early years and attain childhood milestones, similar to their healthy peers. In this paper, we present an algorithm and training method using a force-feedback joystick with an "assist-as-needed" paradigm for driving training. In this "assist-as-needed" approach, if the child steers the joystick outside a force tunnel centered on the desired direction, the driver experiences a bias force on the hand. We show results with a group study on typically developing toddlers that such a haptic guidance algorithm is superior to training with a conventional joystick. We also provide a case study on two special needs children, under three years old, who learn to make sharp turns during driving, when trained over a five-day period with the force-feedback joystick using the algorithm.

  15. Somato-Motor Haptic Processing in Posterior Inner Perisylvian Region (SII/pIC) of the Macaque Monkey

    PubMed Central

    Ishida, Hiroaki; Fornia, Luca; Grandi, Laura Clara; Umiltà, Maria Alessandra; Gallese, Vittorio

    2013-01-01

    The posterior inner perisylvian region including the secondary somatosensory cortex (area SII) and the adjacent region of posterior insular cortex (pIC) has been implicated in haptic processing by integrating somato-motor information during hand-manipulation, both in humans and in non-human primates. However, motor-related properties during hand-manipulation are still largely unknown. To investigate a motor-related activity in the hand region of SII/pIC, two macaque monkeys were trained to perform a hand-manipulation task, requiring 3 different grip types (precision grip, finger exploration, side grip) both in light and in dark conditions. Our results showed that 70% (n = 33/48) of task related neurons within SII/pIC were only activated during monkeys’ active hand-manipulation. Of those 33 neurons, 15 (45%) began to discharge before hand-target contact, while the remaining neurons were tonically active after contact. Thirty-percent (n = 15/48) of studied neurons responded to both passive somatosensory stimulation and to the motor task. A consistent percentage of task-related neurons in SII/pIC was selectively activated during finger exploration (FE) and precision grasping (PG) execution, suggesting they play a pivotal role in control skilled finger movements. Furthermore, hand-manipulation-related neurons also responded when visual feedback was absent in the dark. Altogether, our results suggest that somato-motor neurons in SII/pIC likely contribute to haptic processing from the initial to the final phase of grasping and object manipulation. Such motor-related activity could also provide the somato-motor binding principle enabling the translation of diachronic somatosensory inputs into a coherent image of the explored object. PMID:23936121

  16. When Neuroscience 'Touches' Architecture: From Hapticity to a Supramodal Functioning of the Human Brain.

    PubMed

    Papale, Paolo; Chiesi, Leonardo; Rampinini, Alessandra C; Pietrini, Pietro; Ricciardi, Emiliano

    2016-01-01

    In the last decades, the rapid growth of functional brain imaging methodologies allowed cognitive neuroscience to address open questions in philosophy and social sciences. At the same time, novel insights from cognitive neuroscience research have begun to influence various disciplines, leading to a turn to cognition and emotion in the fields of planning and architectural design. Since 2003, the Academy of Neuroscience for Architecture has been supporting 'neuro-architecture' as a way to connect neuroscience and the study of behavioral responses to the built environment. Among the many topics related to multisensory perceptual integration and embodiment, the concept of hapticity was recently introduced, suggesting a pivotal role of tactile perception and haptic imagery in architectural appraisal. Arguments have thus risen in favor of the existence of shared cognitive foundations between hapticity and the supramodal functional architecture of the human brain. Precisely, supramodality refers to the functional feature of defined brain regions to process and represent specific information content in a more abstract way, independently of the sensory modality conveying such information to the brain. Here, we highlight some commonalities and differences between the concepts of hapticity and supramodality according to the distinctive perspectives of architecture and cognitive neuroscience. This comparison and connection between these two different approaches may lead to novel observations in regard to people-environment relationships, and even provide empirical foundations for a renewed evidence-based design theory.

  17. Sharing control between humans and automation using haptic interface: primary and secondary task performance benefits.

    PubMed

    Griffiths, Paul G; Gillespie, R Brent

    2005-01-01

    This paper describes a paradigm for human/automation control sharing in which the automation acts through a motor coupled to a machine's manual control interface. The manual interface becomes a haptic display, continually informing the human about automation actions. While monitoring by feel, users may choose either to conform to the automation or override it and express their own control intentions. This paper's objective is to demonstrate that adding automation through haptic display can be used not only to improve performance on a primary task but also to reduce perceptual demands or free attention for a secondary task. Results are presented from three experiments in which 11 participants completed a lane-following task using a motorized steering wheel on a fixed-base driving simulator. The automation behaved like a copilot, assisting with lane following by applying torques to the steering wheel. Results indicate that haptic assist improves lane following by least 30%, p < .0001, while reducing visual demand by 29%, p < .0001, or improving reaction time in a secondary tone localization task by 18 ms, p = .0009. Potential applications of this research include the design of automation interfaces based on haptics that support human/automation control sharing better than traditional push-button automation interfaces.

  18. Audio Haptic Videogaming for Developing Wayfinding Skills in Learners Who are Blind

    PubMed Central

    Sánchez, Jaime; de Borba Campos, Marcia; Espinoza, Matías; Merabet, Lotfi B.

    2014-01-01

    Interactive digital technologies are currently being developed as a novel tool for education and skill development. Audiopolis is an audio and haptic based videogame designed for developing orientation and mobility (O&M) skills in people who are blind. We have evaluated the cognitive impact of videogame play on O&M skills by assessing performance on a series of behavioral tasks carried out in both indoor and outdoor virtual spaces. Our results demonstrate that the use of Audiopolis had a positive impact on the development and use of O&M skills in school-aged learners who are blind. The impact of audio and haptic information on learning is also discussed. PMID:25485312

  19. Computer automation for feedback system design

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Mathematical techniques and explanations of various steps used by an automated computer program to design feedback systems are summarized. Special attention was given to refining the automatic evaluation suboptimal loop transmission and the translation of time to frequency domain specifications.

  20. Virtual reality haptic human dissection.

    PubMed

    Needham, Caroline; Wilkinson, Caroline; Soames, Roger

    2011-01-01

    This project aims to create a three-dimensional digital model of the human hand and wrist which can be virtually 'dissected' through a haptic interface. Tissue properties will be added to the various anatomical structures to replicate a realistic look and feel. The project will explore the role of the medical artist and investigate the cross-discipline collaborations required in the field of virtual anatomy. The software will be used to train anatomy students in dissection skills before experience on a real cadaver. The effectiveness of the software will be evaluated and assessed both quantitatively as well as qualitatively.