Sample records for haptoglobin attracts monocytes

  1. Purification of swine haptoglobin by affinity chromatography.

    PubMed Central

    Eurell, T E; Hall, W F; Bane, D P

    1990-01-01

    A globin-agarose affinity chromatography technique was used to purify swine haptoglobin. This technique provides a highly specific, single-step purification method without the contamination of extraneous serum proteins reported by previous studies. Complex formation between the haptoglobin isolate and swine hemoglobin confirmed that biological activity was maintained during the purification process. Immunoelectrophoretic and Ouchterlony immunodiffusion methods revealed that the swine haptoglobin isolate cross-reacted with polyvalent antisera against human haptoglobin. Images Fig. 2. Fig. 3. PMID:2123414

  2. 21 CFR 866.5460 - Haptoglobin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5460 Haptoglobin immunological test system. (a) Identification. A haptoglobin immunological test system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Haptoglobin immunological test system. 866.5460...

  3. 21 CFR 866.5460 - Haptoglobin immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... that binds hemoglobin, the oxygen-carrying pigment in red blood cells) in serum. Measurement of haptoglobin may aid in the diagnosis of hemolytic diseases (diseases in which the red blood cells rupture and... Haptoglobin immunological test system. (a) Identification. A haptoglobin immunological test system is a device...

  4. 21 CFR 866.5460 - Haptoglobin immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... that binds hemoglobin, the oxygen-carrying pigment in red blood cells) in serum. Measurement of haptoglobin may aid in the diagnosis of hemolytic diseases (diseases in which the red blood cells rupture and... Haptoglobin immunological test system. (a) Identification. A haptoglobin immunological test system is a device...

  5. 21 CFR 866.5460 - Haptoglobin immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... that binds hemoglobin, the oxygen-carrying pigment in red blood cells) in serum. Measurement of haptoglobin may aid in the diagnosis of hemolytic diseases (diseases in which the red blood cells rupture and... Haptoglobin immunological test system. (a) Identification. A haptoglobin immunological test system is a device...

  6. 21 CFR 866.5460 - Haptoglobin immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... that binds hemoglobin, the oxygen-carrying pigment in red blood cells) in serum. Measurement of haptoglobin may aid in the diagnosis of hemolytic diseases (diseases in which the red blood cells rupture and... Haptoglobin immunological test system. (a) Identification. A haptoglobin immunological test system is a device...

  7. Dexamethasone-induced haptoglobin release by calf liver parenchymal cells.

    PubMed

    Higuchi, H; Katoh, N; Miyamoto, T; Uchida, E; Yuasa, A; Takahashi, K

    1994-08-01

    Parenchymal cells were isolated from the liver of male calves, and monolayer cultures formed were treated with glucocorticoids to examine whether haptoglobin, appearance of which is associated with hepatic lipidosis (fatty liver) in cattle, is induced by steroid hormones. Without addition of dexamethasone, only trace amounts of haptoglobin were detected in culture medium. With addition of dexamethasone (10(-12) to 10(-4) M), considerable amounts of haptoglobin were released into the medium. Maximal release was observed at concentrations of 10(-8) to 10(-6) M dexamethasone. Haptoglobin release was similarly induced by cortisol, although the effect was less potent than that of dexamethasone. Actinomycin D (a known protein synthesis inhibitor) dose-dependently reduced amounts of haptoglobin released in response to 10(-8) M dexamethasone. Dexamethasone also induced annexin I, which is known to be synthesized in response to glucocorticoids. Dexamethasone treatment resulted in reduced protein kinase C activity in the cell cytosol, which has been shown to be an early event in dexamethasone-treated cells. Other than glucocorticoids, estradiol induced haptoglobin release, whereas progesterone was less effective. The association of haptoglobin with hepatic lipidosis can be reasonably explained by the fact that haptoglobin production by the liver is induced by glucocorticoids and estradiol, and these steroid hormones are triggers for development of hepatic lipidosis in cattle.

  8. Analysis of monocyte infiltration in MPTP mice reveals that microglial CX3CR1 protects against neurotoxic over-induction of monocyte-attracting CCL2 by astrocytes.

    PubMed

    Parillaud, Vincent R; Lornet, Guillaume; Monnet, Yann; Privat, Anne-Laure; Haddad, Andrei T; Brochard, Vanessa; Bekaert, Amaury; de Chanville, Camille Baudesson; Hirsch, Etienne C; Combadière, Christophe; Hunot, Stéphane; Lobsiger, Christian S

    2017-03-21

    Evidence from mice suggests that brain infiltrating immune cells contribute to neurodegeneration, and we previously identified a deleterious lymphocyte infiltration in Parkinson's disease mice. However, this remains controversial for monocytes, due to artifact-prone techniques used to distinguish them from microglia. Our aim was to reassess this open question, by taking advantage of the recent recognition that chemokine receptors CCR2 and CX3CR1 can differentiate between inflammatory monocytes and microglia, enabling to test whether CCR2 + monocytes infiltrate the brain during dopaminergic (DA) neurodegeneration and whether they contribute to neuronal death. This revealed unexpected insights into possible regulation of monocyte-attracting CCL2 induction. We used acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice and assessed monocyte infiltration by combining laser microdissection-guided chemokine RNA profiling of the substantia nigra (SN) with immunohistochemistry and CCR2-GFP reporter mice. To determine contribution to neuronal loss, we used CCR2-deletion and CCL2-overexpression, to reduce and increase CCR2 + monocyte infiltration, and CX3CR1-deletion to assess a potential implication in CCL2 regulation. Nigral chemokine profiling revealed early CCL2/7/12-CCR2 axis induction, suggesting monocyte infiltration in MPTP mice. CCL2 protein showed early peak induction in nigral astrocytes, while CCR2-GFP mice revealed early but limited nigral monocyte infiltration. However, blocking infiltration by CCR2 deletion did not influence DA neuronal loss. In contrast, transgenic astrocytic CCL2 over-induction increased CCR2 + monocyte infiltration and DA neuronal loss in MPTP mice. Surprisingly, CCL2 over-induction was also detected in MPTP intoxicated CX3CR1-deleted mice, which are known to present increased DA neuronal loss. Importantly, CX3CR1/CCL2 double-deletion suggested that increased neurotoxicity was driven by astrocytic CCL2 over-induction. We show that

  9. Smoking, haptoglobin and fertility in humans

    PubMed Central

    Bottini, N; Magrini, A; MacMurray, J; Cosmi, E; Nicotra, M; Gloria-Bottini, F; Bergamaschi, A

    2003-01-01

    A prospective study on two samples of consecutive puerperae (total n° 667) from two populations has been carried out in order to investigate the possible effect of smoking habit on relationship between fertility and haptoglobin phenotype. In both populations the negative association previously reported between age of pueperae and Haptoglobin *1/*1 phenotype is present only in women with smoking habit pointing to an interaction between Hp and smoke on human fertility. This suggests that the effects of smoke on fertility are dependent on the Hp phenotype.

  10. Haptoglobin genotypes and refractory hypertension in type 2 diabetes mellitus patients.

    PubMed

    Wobeto, Vânia Pereira Albuquerque; Pinho, Paula da Cunha; Souza, José Roberto M; Zaccariotto, Tânia Regina; Zonati, Maria de Fátima

    2011-10-01

    It has been suggested that haptoglobin polymorphism may influence the pathogenesis of microvascular and macrovascular complications in diabetic patients. This cross sectional study was carried out to investigate the existence or not of an association between haptoglobin genotypes and prevalence of ischemic cardiovascular events (stable angina, unstable angina and acute myocardial infarction), systemic arterial hypertension, refractory hypertension, obesity and dyslipidemia in 120 type-2 diabetes mellitus patients followed up at Hospital de Clínicas da UNICAMP in Campinas, São Paulo state, southeastern Brazil. Haptoglobin genotyping was performed by allele-specific polymerase chain reactions. The frequencies of the haptoglobin genotypes were compared with the presence/absence of cardiovascular disease, systemic arterial hypertension, refractory hypertension, obesity and dyslipidemia; systolic and diastolic blood pressure measurements; plasma levels of glucose, cholesterol (total, high density lipoprotein-HDL and low density lipoprotein-LDL) and triglycerides; and serum creatinine levels. Although no association between haptoglobin genotype and the presence of cardiovascular disease could be identified, we found a significant excess of patients with Hp2-1 genotype among those with refractory hypertension, who also had higher systolic and diastolic blood pressure, and total and LDL cholesterol levels. Our results suggest that type-2 diabetes mellitus patients with the Hp2-1 genotype may have higher chances of developing refractory hypertension. Further studies in other diabetic populations are required to confirm these findings.

  11. Haptoglobin Preserves Vascular Nitric Oxide Signaling during Hemolysis.

    PubMed

    Schaer, Christian A; Deuel, Jeremy W; Schildknecht, Daniela; Mahmoudi, Leila; Garcia-Rubio, Ines; Owczarek, Catherine; Schauer, Stefan; Kissner, Reinhard; Banerjee, Uddyalok; Palmer, Andre F; Spahn, Donat R; Irwin, David C; Vallelian, Florence; Buehler, Paul W; Schaer, Dominik J

    2016-05-15

    Hemolysis occurs not only in conditions such as sickle cell disease and malaria but also during transfusion of stored blood, extracorporeal circulation, and sepsis. Cell-free Hb depletes nitric oxide (NO) in the vasculature, causing vasoconstriction and eventually cardiovascular complications. We hypothesize that Hb-binding proteins may preserve vascular NO signaling during hemolysis. Characterization of an archetypical function by which Hb scavenger proteins could preserve NO signaling during hemolysis. We investigated NO reaction kinetics, effects on arterial NO signaling, and tissue distribution of cell-free Hb and its scavenger protein complexes. Extravascular translocation of cell-free Hb into interstitial spaces, including the vascular smooth muscle cell layer of rat and pig coronary arteries, promotes vascular NO resistance. This critical disease process is blocked by haptoglobin. Haptoglobin does not change NO dioxygenation rates of Hb; rather, the large size of the Hb:haptoglobin complex prevents Hb extravasation, which uncouples NO/Hb interaction and vasoconstriction. Size-selective compartmentalization of Hb functions as a substitute for red blood cells after hemolysis and preserves NO signaling in the vasculature. We found that evolutionarily and structurally unrelated Hb-binding proteins, such as PIT54 found in avian species, functionally converged with haptoglobin to protect NO signaling by sequestering cell-free Hb in large protein complexes. Sequential compartmentalization of Hb by erythrocytes and scavenger protein complexes is an archetypical mechanism, which may have supported coevolution of hemolysis and normal vascular function. Therapeutic supplementation of Hb scavengers may restore vascular NO signaling and attenuate disease complications in patients with hemolysis.

  12. Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures.

    PubMed

    Miyoshi, Eiji; Nakano, Miyako

    2008-08-01

    Changes in oligosaccharide structures have been reported in certain types of malignant transformation and thus can be used as tumor markers in certain types of cancer. In the case of pancreatic cancer (PC) cell lines, a variety of fucosylated proteins are secreted into the conditioned media. To identify fucosylated proteins in the sera of patients with PC, we performed Western blot analysis using Aleuria Aurantia Lectin (AAL), which is specific for fucosylated structures. An approximately 40 kD protein was found to be highly fucosylated in PC and N-terminal analysis revealed that it was the beta chain of haptoglobin. While the appearance of fucosylated haptoglobin has been reported in other diseases such as hepatocellular carcinoma, liver cirrhosis, gastric cancer, and colorectal cancer, the incidence was significantly higher in the case of PC. Fucosylated haptoglobin was observed more frequently at the advanced stage of PC and disappeared after operation. Haptoglobin has four sites of N-glycans and site-directed oligosaccharide analysis involving MS was performed. Site-specific increases in fucosylation of bi-antennary glycans of sites 2 and 4, and of tri-antennary glycans of all sites were observed in PC, compared to in normal volunteers and chronic pancreatitis. Therefore, increases in fucosylation seem to be not due to inflammation, but cancer itself. Coculturing of a human hepatoma cell line, Hep3B, with PC cells-induced production of fucosylated haptoglobin, suggesting that PC produces a factor that induces the production of fucosylated haptoglobin. On clinical investigation of 100 cases of colorectal cancer, cases in which it was located near the liver showed a higher positive rate of fucosylated haptoglobin, suggesting that the location of the cancer might also be an important factor for fucosylated haptoglobin if cancer tissues produce such inducible factors. Thus, fucosylated haptoglobin could become a novel tumor marker for PC and complicated mechanisms

  13. Purification of a protein from serum of cattle with hepatic lipidosis, and identification of the protein as haptoglobin.

    PubMed

    Yoshino, K; Katoh, N; Takahashi, K; Yuasa, A

    1992-06-01

    A protein that has 2 subunits with molecular weight of 35,000 and 23,000 was detected in serum of cattle with hepatic lipidosis (fatty liver). The protein was purified from serum obtained from a cow with fatty liver, and was identified as haptoglobin, which is known to have hemoglobin-binding capacity and to be an acute-phase protein. To assess the relevance of haptoglobin in fatty liver, cattle were classified in 3 groups (healthy control, haptoglobin-positive, and haptoglobin-negative); liver triglyceride content and several serum biochemical variables were evaluated for the 3 groups. Compared with the control and haptoglobin-negative cattle, haptoglobin-positive cattle had significantly (P less than 0.01) higher liver triglyceride content, serum bilirubin concentration, and aspartate transaminase activity. Serum haptoglobin concentration was high in slaughter cattle (27 of 40 cattle tested), particularly in cows (20/28).

  14. Haptoglobin Phenotype Modifies Serum Iron Levels and the Effect of Smoking on Parkinson Disease Risk

    PubMed Central

    Costa-Mallen, Paola; Zabetian, Cyrus P.; Agarwal, Pinky; Hu, Shu-Ching; Yearout, Dora; Samii, Ali; Leverenz, James B.; Roberts, John W.; Checkoway, Harvey

    2015-01-01

    Introduction Haptoglobin is a hemoglobin-binding protein that exists in three functionally different phenotypes, and haptoglobin phenotype 2-1 has previously been associated with Parkinson disease (PD) risk, with mechanisms not elucidated. Some evidence is emerging that low levels of serum iron may increase PD risk. In this study we investigated whether PD patients have lower serum iron and ferritin than controls, and whether this is dependent on haptoglobin phenotype. We also investigated the effect of Hp phenotype as a modifier of the effect of smoking on PD risk. Methods The study population consisted of 128 PD patients and 226 controls. Serum iron, ferritin, and haptoglobin phenotype were determined, and compared between PD cases and controls. Stratified analysis by haptoglobin phenotype was performed to determine effect of haptoglobin phenotype on serum iron parameter differences between PD cases and controls and to investigate its role in the protective effect of smoking on PD risk. Results PD cases had lower serum iron than controls (83.28 ug/100ml vs 94.00 ug/100 ml, p 0.006), and in particular among subjects with phenotype 2-1. The protective effect of smoking on PD risk resulted stronger in subjects with phenotype 1-1 and 2-2, and weakest among subjects with phenotype 2-1. Ferritin levels were higher in PD cases than controls among subjects of White ethnicity. Conclusions Our results report for the first time that the haptoglobin phenotype may be a contributor of iron levels abnormalities in PD patients. The mechanisms for these haptoglobin-phenotype specific effects will have to be further elucidated. PMID:26228081

  15. Haptoglobin gene polymorphisms and interleukin-6 and -8 levels in patients with sickle cell anemia

    PubMed Central

    Pierrot-Gallo, Bruna Spinella; Vicari, Perla; Matsuda, Sandra Satiko; Adegoke, Samuel Ademola; Mecabo, Grazielle; Figueiredo, Maria Stella

    2015-01-01

    Background Haptoglobin genotypes, and interleukin-6 and -8 participate in the pathophysiology of sickle cell anemia. The expression of cytokines is regulated by genetic mechanisms however the effect of haptoglobin polymorphisms on these cytokines is not fully understood. This study aimed to compare the frequency of haptoglobin genotypes and the interleukin-6 and -8 concentrations in sickle cell anemia patients and controls to investigate the association between haptoglobin genotypes and cytokine levels. Methods Sixty sickle cell anemia patients and 74 healthy individuals were analyzed. Haptoglobin genotypes were determined by multiplex polymerase chain reaction, and the interleukin-6 and -8 levels by enzyme linked immunosorbent assay. The association between haptoglobin genotypes and cytokines was investigated by statistical tests. Results Hp2-1 was the most common genotype in both the cases and controls while Hp1-1 was less frequent among sickle cell anemia patients. Interleukin-6 and -8 levels were higher in patients than controls (p-value <0.0001). There was no significant difference in interleukin-6 and -8 concentrations between the genotypes (p-value >0.05). A similar trend was observed among the controls. Conclusion Although, levels of interleukin-6 and -8 were higher in the sickle cell anemia patients, they appeared not to be related to the haptoglobin genotypes. Further investigations are necessary to identify factors responsible for increased secretion of the interleukin-6 and -8 pro-inflammatory cytokines in patients with sickle cell anemia. PMID:26408368

  16. Distribution of haptoglobins in different dialect groups of Chinese, Malays and Indians in Singapore.

    PubMed

    Saha, N; Ong, Y W

    1984-07-01

    A total of 870 subjects comprising 524 Chinese (from different dialect groups), 231 Malays and 115 Tamil Indians were investigated for the distribution of haptoglobin types and ABO blood groups. Haptoglobins were typed by PAG electrophoresis using discontinuous buffer system. The frequencies of Hp,1 Hp2 and Hp0 were found to be 0.330, 0.670 and 0.029 in Chinese; 0.298, 0.702 and 0.004 in Malays; and 0.167, 0.833 and 0.009 in Indians. The Hainanese had the highest frequency of Hp1 (0.375) followed by Cantonese (0.348), Teochew (0.333) and Hakkas (0.288). The distribution of all the phenotypes of haptoglobin was at equilibrium in all the population groups studied. No association of ABO blood groups was detected with the haptoglobin types. However, there was an excess of AB blood group in persons carrying Hp2 compared with those with Hp1.

  17. Haptoglobin gene polymorphisms in peri-implantitis and chronic periodontitis.

    PubMed

    Ebadian, Ahmad R; Kadkhodazadeh, Mahdi; Naghavi, Seyed Hamid Hosseini; Torshabi, Maryam; Tamizi, Mahmood

    2014-05-01

    The haptoglobin-hemoglobin (Hp-Hb) complex plays a significant role in regulating immune responses and acts as a bacteriostatic agent. Haptoglobin polymorphisms result in different Hb binding affinities. This study sought to assess whether Hp 2-2 could be a genetic determinant for increasing the risk of peri-implantitis and chronic periodontitis. Of the Iranian subjects referred to the Department of Periodontics, Shahid Beheshti University, Tehran, 203 were entered into the study, including 117 patients and 86 periodontally healthy individuals. Polymerase chain reaction (PCR) was performed for genotyping. Data were analyzed by Kruskal-Wallis test using the SPSS statistics software package. The prevalence of Hp 2-2, 2-1, and 1-1 did not differ significantly between patients and healthy subjects (P > 0.05). The highest frequencies of Hp 1-1, 2-1, and 2-2 genotypes were seen in the control (7%), peri-implantitis (51%) and periodontitis (64%) groups, respectively. Haptoglobin polymorphisms may not play a role in development of peri-implantitis or chronic periodontitis among Iranians but we strongly suggest researchers to evaluate this polymorphism in further studies on larger sample sizes, different populations, and other types of periodontitis. © 2013 Wiley Publishing Asia Pty Ltd.

  18. Haptoglobin Reduces Inflammatory Cytokine INF-γ and Facilitates Clot Formation in Acute Severe Burn Rat Model.

    PubMed

    Koami, Hiroyuki; Sakamoto, Yuichiro; Miyasho, Taku; Noguchi, Ryo; Sato, Norio; Kai, Keita; Chris Yamada, Kosuke; Inoue, Satoshi

    2017-01-01

    Haptoglobin exerts renal protective function by scavenging free hemoglobin from the urine and blood stream in patients with hemolytic disorders. Recent studies elucidate the relationships between haptoglobin and inflammation. In addition, coagulopathy is often induced by systemic inflammation characterized by the presence of vascular endothelial damage. We hypothesize that haptoglobin might have an anti-inflammatory effect and affect hypercoagulability using rat burn model. Thirty anesthetized rats of six-weeks of age received over 30% full-thickness scald burn on the dorsal skin surface. All rats were injected with either haptoglobin (Hpt) or normal saline (NS) intraperitoneally. The rats were divided into three groups: 1) control group (NS 20 mL/kg); 2) low concentration of Hpt group, L-Hpt, (Hpt 4 mL (80 U) /kg+NS 16 mL/kg); and 3) high concentration of Hpt group, H-Hpt, (Hpt 20 mL (400 U) /kg). While under anesthesia, all rats were euthanized by exsanguination at 6 hours (N=5) and 24 hours (N=5). Inflammatory and anti-inflammatory cytokines were measured and whole-blood viscoelastic tests were performed by thromboelastometry (ROTEM). Haptoglobin significantly reduced free hemoglobin 24 hours after the injury. Improvement of hematuria was confirmed in the H-Hpt group. There were no differences in thrombin-antithrombin complex and plasmin-α2 plasmin inhibitor complex. The haptoglobin tended to decrease interferon-gamma (IFN-γ) in H-Hpt group. ROTEM findings of the L-Hpt group showed significantly higher clot firmness and shorter time to maximum clot formation velocity than the control group. Haptoglobin reduced INF-γ, and accelerated speed of clot formation in acute phase of severe burn.

  19. Haptoglobin gene subtypes in three Brazilian population groups of different ethnicities

    PubMed Central

    2009-01-01

    Haptoglobin is a plasma hemoglobin-binding protein that limits iron loss during normal erythrocyte turnover and hemolysis, thereby preventing oxidative damage mediated by iron excess in the circulation. Haptoglobin polymorphism in humans, characterized by the Hp*1 and Hp *2 alleles, results in distinct phenotypes known as Hp1-1, Hp2-1 and Hp2-2, whose frequencies vary according to the ethnic origin of the population. The Hp*1 allele has two subtypes, Hp *1F and Hp *1S , that also vary in their frequencies among populations worldwide. In this work, we examined the distribution frequencies of haptoglobin subtypes in three Brazilian population groups of different ethnicities. The haptoglobin genotypes of Kayabi Amerindians (n = 56), Kalunga Afro-descendants (n = 70) and an urban population (n = 132) were determined by allele-specific PCR. The Hp*1F allele frequency was highest in Kalunga (29.3%) and lowest in Kayabi (2.6%). The Hp*1F/Hp*1S allele frequency ratios were 0.6, 1.0 and 0.26 for the Kayabi, Kalunga and urban populations, respectively. This variation was attributable largely to the Hp*1F allele. However, despite the large variation in Hp*1F frequencies, results of F ST (0.0291) indicated slight genetic differentiation among subpopulations of the general Brazilian population studied here. This is the first Brazilian report of variations in the Hp*1F and Hp*1S frequencies among non-Amerindian Brazilians. PMID:21637505

  20. Haptoglobin gene subtypes in three Brazilian population groups of different ethnicities.

    PubMed

    Miranda-Vilela, Ana L; Akimoto, Arthur K; Alves, Penha C Z; Hiragi, Cássia O; Penalva, Guilherme C; Oliveira, Silviene F; Grisolia, Cesar K; Klautau-Guimarães, Maria N

    2009-07-01

    Haptoglobin is a plasma hemoglobin-binding protein that limits iron loss during normal erythrocyte turnover and hemolysis, thereby preventing oxidative damage mediated by iron excess in the circulation. Haptoglobin polymorphism in humans, characterized by the Hp(*1) and Hp (*2) alleles, results in distinct phenotypes known as Hp1-1, Hp2-1 and Hp2-2, whose frequencies vary according to the ethnic origin of the population. The Hp(*1) allele has two subtypes, Hp (*1F) and Hp (*1S) , that also vary in their frequencies among populations worldwide. In this work, we examined the distribution frequencies of haptoglobin subtypes in three Brazilian population groups of different ethnicities. The haptoglobin genotypes of Kayabi Amerindians (n = 56), Kalunga Afro-descendants (n = 70) and an urban population (n = 132) were determined by allele-specific PCR. The Hp(*1F) allele frequency was highest in Kalunga (29.3%) and lowest in Kayabi (2.6%). The Hp(*1F)/Hp(*1S) allele frequency ratios were 0.6, 1.0 and 0.26 for the Kayabi, Kalunga and urban populations, respectively. This variation was attributable largely to the Hp(*1F) allele. However, despite the large variation in Hp(*1F) frequencies, results of F (ST) (0.0291) indicated slight genetic differentiation among subpopulations of the general Brazilian population studied here. This is the first Brazilian report of variations in the Hp(*1F) and Hp(*1S) frequencies among non-Amerindian Brazilians.

  1. Serum amyloid A and haptoglobin concentrations and liver fat percentage in lactating dairy cows with abomasal displacement.

    PubMed

    Guzelbektes, H; Sen, I; Ok, M; Constable, P D; Boydak, M; Coskun, A

    2010-01-01

    There has been increased interest in measuring the serum concentration of acute phase reactants such as serum amyloid A [SAA] and haptoglobin [haptoglobin] in periparturient cattle in order to provide a method for detecting the presence of inflammation or bacterial infection. To determine whether [SAA] and [haptoglobin] are increased in cows with displaced abomasum as compared with healthy dairy cows. Fifty-four adult dairy cows in early lactation that had left displaced abomasum (LDA, n = 34), right displaced abomasum or abomasal volvulus (RDA/AV, n = 11), or were healthy on physical examination (control, n = 9). Inflammatory diseases or bacterial infections such as mastitis, metritis, or pneumonia were not clinically apparent in any animal. Jugular venous blood was obtained from all cows and analyzed. Liver samples were obtained by biopsy in cattle with abomasal displacement. [SAA] and [haptoglobin] concentrations were increased in cows with LDA or RDA/AV as compared with healthy controls. Cows with displaced abomasum had mild to moderate hepatic lipidosis, based on liver fat percentages of 9.3 +/- 5.3% (mean +/- SD, LDA) and 10.8 +/- 7.7% (RDA/AV). [SAA] and [haptoglobin] were most strongly associated with liver fat percentage, r(s) = +0.55 (P < .0001) and r(s) = +0.42 (P = .0041), respectively. An increase in [SAA] or [haptoglobin] in postparturient dairy cows with LDA or RDA/AV is not specific for inflammation or bacterial infection. An increase in [SAA] or [haptoglobin] may indicate the presence of hepatic lipidosis in cattle with abomasal displacement.

  2. Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation.

    PubMed

    Okuyama, Noriko; Ide, Yoshihito; Nakano, Miyako; Nakagawa, Tsutomu; Yamanaka, Kanako; Moriwaki, Kenta; Murata, Kohei; Ohigashi, Hiroaki; Yokoyama, Shigekazu; Eguchi, Hidetoshi; Ishikawa, Osamu; Ito, Toshifumi; Kato, Michio; Kasahara, Akinori; Kawano, Sunao; Gu, Jianguo; Taniguchi, Naoyuki; Miyoshi, Eiji

    2006-06-01

    Changes in oligosaccharide structures have been reported in certain types of malignant transformations and, thus, could be used for tumor markers in certain types of cancer. In the case of pancreatic cancer cell lines, a variety of fucosylated proteins are secreted into their conditioned media. To identify fucosylated proteins in the serum of patients with pancreatic cancer, we performed western blot analyses using Aleuria Aurantica Lectin (AAL), which is specific for fucosylated structures. An approximately 40 kD protein was found to be highly fucosylated in pancreatic cancer and an N-terminal analysis revealed that it was the beta chain of haptoglobin. While the appearance of fucosylated haptoglobin has been reported in other diseases such as hepatocellular carcinoma, liver cirrhosis, gastric cancer and colon cancer, the incidence was significantly higher in the case of pancreatic cancer. Fucosylated haptoglobin was observed more frequently at the advanced stage of pancreatic cancer and disappeared after an operation. A mass spectrometry analysis of haptoglobin purified from the serum of patients with pancreatic cancer and the medium from a pancreatic cancer cell line, PSN-1, showed that the alpha 1-3/alpha 1-4/alpha 1-6 fucosylation of haptoglobin was increased in pancreatic cancer. When a hepatoma cell line, Hep3B, was cultured with the conditioned media from pancreatic cancer cells, haptoglobin secretion was dramatically increased. These findings suggest that fucosylated haptoglobin could serve as a novel marker for pancreatic cancer. Two possibilities were considered in terms of the fucosylation of haptoglobin. One is that pancreatic cancer cells, themselves, produce fucosylated haptoglobin; the other is that pancreatic cancer produces a factor, which induces the production of fucosylated haptoglobin in the liver.

  3. Analysis of Serum Haptoglobin Fucosylation in Hepatocellular Carcinoma and Liver Cirrhosis of Different Etiologies

    PubMed Central

    2015-01-01

    We have developed herein a quantitative mass spectrometry-based approach to analyze the etiology-related alterations in fucosylation degree of serum haptoglobin in patients with liver cirrhosis and hepatocellular carcinoma (HCC). The three most common etiologies, including infection with hepatitis B virus (HBV), infection with hepatitis C virus (HCV), and heavy alcohol consumption (ALC), were investigated. Only 10 μL of serum was used in this assay in which haptoglobin was immunoprecipitated using a monoclonal antibody. The N-glycans of haptoglobin were released with PNGase F, desialylated, and permethylated prior to MALDI-QIT-TOF MS analysis. In total, N-glycan profiles derived from 104 individual patient samples were quantified (14 healthy controls, 40 cirrhosis, and 50 HCCs). A unique pattern of bifucosylated tetra-antennary glycan, with both core and antennary fucosylation, was identified in HCC patients. Quantitative analysis indicated that the increased fucosylation degree was highly associated with HBV- and ALC-related HCC patients compared to that of the corresponding cirrhosis patients. Notably, the bifucosylation degree was distinctly increased in HCC patients versus that in cirrhosis of all etiologies. The elevated bifucosylation degree of haptoglobin can discriminate early stage HCC patients from cirrhosis in each etiologic category, which may be used to provide a potential marker for early detection and to predict HCC in patients with cirrhosis. PMID:24807840

  4. Monocytic leukemias.

    PubMed

    Shaw, M T

    1980-05-01

    The monocytic leukemias may be subdivided into acute monocytic leukemia, acute myelomonocytic leukemia, and subacute and chronic myelomonocytic leukemia. The clinical features of acute monocytic and acute myelomonocytic leukemias are similar and are manifestations of bone marrow failure. Gingival hypertrophy and skin infiltration are more frequent in acute monocytic leukemia. Cytomorphologically the blast cells in acute monocytic leukemia may be undifferentiated or differentiated, whereas in the acute myelomonocytic variety there are mixed populations of monocytic and myeloblastic cells. Cytochemical characteristics include strongly positive reactions for nonspecific esterase, inhibited by fluoride. The functional characteristics of acute monocytic and acute myelomonocytic cells resemble those of monocytes and include glass adherence and phagocytoses, the presence of Fc receptors for IgG and C'3, and the production of colony stimulating activity. Subacute and chronic myelomonocytic leukemias are insidious and slowly progressive diseases characterized by anemia and peripheral blood monocytosis. Atypical monocytes called paramyeloid cells are characteristic. The drugs used in the treatment of acute monocytic and acute myelomonocytic leukemias include cytosine arabinoside, the anthracyclines, and VP 16-213. Drug therapy in subacute and chronic myelomonocytic leukemias is not usually indicated, although VP 16-213 has been claimed to be effective.

  5. Evolutionary diversification of the trypanosome haptoglobin-haemoglobin receptor from an ancestral haemoglobin receptor.

    PubMed

    Lane-Serff, Harriet; MacGregor, Paula; Peacock, Lori; Macleod, Olivia Js; Kay, Christopher; Gibson, Wendy; Higgins, Matthew K; Carrington, Mark

    2016-04-15

    The haptoglobin-haemoglobin receptor of the African trypanosome species, Trypanosoma brucei, is expressed when the parasite is in the bloodstream of the mammalian host, allowing it to acquire haem through the uptake of haptoglobin-haemoglobin complexes. Here we show that in Trypanosoma congolense this receptor is instead expressed in the epimastigote developmental stage that occurs in the tsetse fly, where it acts as a haemoglobin receptor. We also present the structure of the T. congolense receptor in complex with haemoglobin. This allows us to propose an evolutionary history for this receptor, charting the structural and cellular changes that took place as it adapted from a role in the insect to a new role in the mammalian host.

  6. Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor.

    PubMed

    Lane-Serff, Harriet; MacGregor, Paula; Lowe, Edward D; Carrington, Mark; Higgins, Matthew K

    2014-12-12

    The haptoglobin-haemoglobin receptor (HpHbR) of African trypanosomes allows acquisition of haem and provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. In this study, we report the structure of Trypanosoma brucei HpHbR in complex with human haptoglobin-haemoglobin (HpHb), revealing an elongated ligand-binding site that extends along its membrane distal half. This contacts haptoglobin and the β-subunit of haemoglobin, showing how the receptor selectively binds HpHb over individual components. Lateral mobility of the glycosylphosphatidylinositol-anchored HpHbR, and a ∼50° kink in the receptor, allows two receptors to simultaneously bind one HpHb dimer. Indeed, trypanosomes take up dimeric HpHb at significantly lower concentrations than monomeric HpHb, due to increased ligand avidity that comes from bivalent binding. The structure therefore reveals the molecular basis for ligand and innate immunity factor uptake by trypanosomes and identifies adaptations that allow efficient ligand uptake in the context of the complex trypanosome cell surface.

  7. Hemolysis in runners as evidenced by low serum haptoglobin: Implications for preflight monitoring of astronauts

    NASA Technical Reports Server (NTRS)

    Owens, Joyce; Spitler, Diane L.; Frey, Mary Anne Bassett

    1987-01-01

    Hematological parameters and serum haptoglobin were examined in 21 male employees of the Kennedy Space Center who were at 3 levels of physical activity: 7 subjects regularly ran more than 40 km (25 miles) per week (Group I); 7 ran 13 to 24 km (8 to 15 miles) per week (II), and 7 were sedentary (III). Blood was drawn on a different day of the week for five weeks. Differences between day of the week, visit number, and activity level were examined. No differences were observed for day of week or visit number; thus mean values for each variable were calculated for each subject. Variables did not differ among groups. However, trends with level of training were observed in some critical variables. Hemoglobin (Hb) and hematocrit (Hct) conformed to a staircase effect with Group I (14.5 gm/dl and 41.3 percent) lower than Group III (15.1 gm/dl and 42.9 percent). Reticulocyte count was higher and haptoglobin levels lower in Group I (1.35% and 75.7 gm/dl) than Group III (.99 percent and 132.9 gm/dl), with haptoglobin for the high mileage Group I in the clinically abnormal range. Since haptoglobin binds free Hb following RBC destruction, these results suggest that intravascular hemolysis occurs in trained male runners. These results may have special meaning for astronauts training before long-duration spaceflights, since the further reduction in red blood cells which is reported to occur during spaceflight could become detrimental to their health and performance.

  8. STAT3/NF-κB interactions determine the level of haptoglobin expression in male rats exposed to dietary restriction and/or acute phase stimuli.

    PubMed

    Uskoković, Aleksandra; Dinić, Svetlana; Mihailović, Mirjana; Grdović, Nevena; Arambašić, Jelena; Vidaković, Melita; Bogojević, Desanka; Ivanović-Matić, Svetlana; Martinović, Vesna; Petrović, Miodrag; Poznanović, Goran; Grigorov, Ilijana

    2012-01-01

    Haptoglobin is a constitutively expressed protein which is predominantly synthesized in the liver. During the acute-phase (AP) response haptoglobin is upregulated along with other AP proteins. Its upregulation during the AP response is mediated by cis-trans interactions between the hormone-responsive element (HRE) residing in the haptoglobin gene and inducible transcription factors STAT3 and C/EBP β. In male rats that have been subjected to chronic 50% dietary restriction (DR), the basal haptoglobin serum level is decreased. The aim of this study was to characterize the trans-acting factor(s) responsible for the reduction of haptoglobin expression in male rats subjected to 50% DR for 6 weeks. Protein-DNA interactions between C/EBP and STAT families of transcription factors and the HRE region of the haptoglobin gene were examined in livers of male rats subjected to DR, as well as during the AP response that was induced by turpentine administration. In DR rats, we observed associations between the HRE and C/EBPα/β, STAT5b and NF-κB p50, and the absence of interactions between STAT3 and NF-kB p65. Subsequent induction of the AP response in DR rats by turpentine administration elicited a normal, almost 2-fold increase in the serum haptoglobin level that was accompanied by HRE-binding of C/EBPβ, STAT3/5b and NF-kB p65/p50, and the establishment of interaction between STAT3 and NF-κB p65. These results suggest that STAT3 and NF-κB p65 crosstalk plays a central role while C/EBPβ acquires an accessory role in establishing the level of haptoglobin gene expression in male rats exposed to DR and AP stimuli.

  9. Identification of a haptoglobin-hemoglobin complex in the Alaskan Least Cisco (Coregonus sardinella).

    PubMed

    Wahl, S M; Boger, J K; Michael, V; Duffy, L K

    1992-01-01

    The hemoglobin and a hemoglobin binding protein have been characterized in the Arctic fish (Coregonus sardinella). The evolutionary significance of the hemoglobin and plasma protein differences between fish and mammals is still unresolved. Blood samples from the Alaskan Least Cisco were separated into plasma and hemoglobin fractions and the proteins in these fractions were analyzed both by alkaline agarose gel electrophoresis, by isolelectric focusing, and by capillary electrophoresis. Staining the plasma proteins gels with o-dianisidine revealed hemoglobin containing protein complexes. A hemoglobin-containing band was observed in hemolyzed plasma which did not migrate with free hemoglobin, and is believed to be hemoglobin-haptoglobin complex. Size exclusion chromatography further characterized the hemoglobin as disassociating freely into dimers, and hemoglobin-haptoglobin complex having a molecular weight greater then 200,000 daltons.

  10. Role of splenic reservoir monocytes in pulmonary vascular monocyte accumulation in experimental hepatopulmonary syndrome

    PubMed Central

    Wu, Wei; Zhang, Junlan; Yang, Wenli; Hu, Bingqian

    2016-01-01

    Abstract Background and Aim Pulmonary monocyte infiltration plays a significant role in the development of angiogenesis in experimental hepatopulmonary syndrome (HPS) after common bile duct ligation (CBDL). Hepatic monocytes are also increased after CBDL, but the origins remain unclear. Splenic reservoir monocytes have been identified as a major source of monocytes that accumulate in injured tissues. Whether splenic monocytes contribute to monocyte alterations after CBDL is unknown. This study evaluates monocyte distributions and assesses effects of splenectomy on monocyte levels and pulmonary vascular and hepatic abnormalities in experimental HPS. Methods Splenectomy was performed in CBDL animals. Monocyte levels in different tissues and circulation were assessed with CD68. Pulmonary alterations of HPS were evaluated with vascular endothelial growth factor‐A (VEGF‐A) levels, angiogenesis, and alveolar–arterial oxygen gradient (AaPO2). Liver abnormalities were evaluated with fibrosis (Sirius red), bile duct proliferation (CK‐19), and enzymatic changes. Results Monocyte levels increased in the lung and liver after CBDL and were accompanied by elevated circulating monocyte numbers. Splenectomy significantly decreased monocyte accumulation, VEGF‐A levels, and angiogenesis in CBDL animal lung and improved AaPO2 levels. In contrast, hepatic monocyte levels, fibrosis, and functional abnormalities were further exacerbated by spleen removal. Conclusions Splenic reservoir monocytes are a major source for lung monocyte accumulation after CBDL, and spleen removal attenuates the development of experimental HPS. Liver monocytes may have different origins, and accumulation is exacerbated after depletion of splenic reservoir monocytes. Tissue specific monocyte alterations, influenced by the spleen reservoir, have a significant impact on pulmonary complications of liver disease. PMID:27029414

  11. Development of monoclonal antibodies to pre-haptoglobin 2 and their use in an enzyme-linked immunosorbent assay (ELISA).

    PubMed

    Flanagan, J J; Arjomandi, A; Delanoy, M L; Du Paty, E; Galea, P; Laune, D; Rieunier, F; Walker, R P; Binder, S R

    2014-04-01

    Haptoglobins (HPs) are alpha 2-globulin proteins that bind free hemoglobin in plasma to prevent oxidative damage. HPs are produced as preproteins that are proteolytically cleaved in the ER into alpha and beta chains prior to forming mature, functional tetramers. Two alleles exist in humans (HP1 and HP2), therefore three genotypes are present in the population, i.e., HP1-1, HP2-1, and HP2-2. A biochemical role for nascent haptoglobin 2 (pre-haptoglobin 2 or pre-HP2) as the only known modulator of intestinal permeability has been established. In addition, elevated levels of serum pre-HP2 have been detected in multiple conditions including celiac disease and type I diabetes, which are believed to result in part through dysregulation of the intestinal barrier. In this study, we report the development of a monoclonal antibody that is specific for pre-HP2 with a binding affinity in the nanomolar range. Additional antibodies with specificities for preHP but not mature haptoglobin were also characterized. A sandwich enzyme-linked immunosorbent assay (ELISA) was established and validated. The ELISA showed high specificity for pre-HP2 even in the presence of excess pre-HP1 or mature haptoglobins, and has excellent linearity and inter- and intra-assay reproducibility with a working range from 3.1ng/mL to 200ng/mL. Testing of sera from 76 healthy patients revealed a non-Gaussian distribution of pre-HP2 levels with a mean concentration of 221.2ng/mL (95% CI: 106.5-335.9ng/mL) and a median value of 23.9ng/mL. Compared to current approaches, this ELISA offers a validated, monoclonal-based method with high sensitivity and specificity for measuring pre-HP2 in human serum. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. STAT3 activation in monocytes accelerates liver cancer progression.

    PubMed

    Wu, Wen-Yong; Li, Jun; Wu, Zheng-Sheng; Zhang, Chang-Le; Meng, Xiang-Ling

    2011-12-05

    Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood. Immunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN), which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver. Phosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN)-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC. Our data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical patients and animal experiments. Thus, STAT3 in tumor

  13. Mycobacterium leprae upregulates IRGM expression in monocytes and monocyte-derived macrophages.

    PubMed

    Yang, Degang; Chen, Jia; Zhang, Linglin; Cha, Zhanshan; Han, Song; Shi, Weiwei; Ding, Ru; Ma, Lan; Xiao, Hong; Shi, Chao; Jing, Zhichun; Song, Ningjing

    2014-08-01

    Leprosy is caused by the infection of Mycobacterium leprae, which evokes a strong inflammatory response and leads to nerve damage. Immunity-related GTPase family M protein (IRGM) plays critical roles in controlling inflammation. The objective of the study was to investigate whether IRGM is involved in the infection of M. leprae. Levels of IRGM were assessed in M. leprae-infected CD4(+) T cells, monocytes, and monocyte-derived macrophages. Data revealed that both protein and mRNA levels of IRGM were increased in monocytes after M. leprae infection. Interestingly, monocyte-derived macrophages showed more prominent IRGM expression with M. leprae infection, whereas the bacteria did not affect IRGM in CD4(+) T cells. Furthermore, we assessed levels of IRGM in CD4(+) T cells and monocytes from 78 leprosy patients and 40 healthy controls, and observed upregulated protein level of IRGM in the monocytes from leprosy patients. Also, IRGM expression was inversely correlated with the severity of the disease. These findings suggested a close involvement of IRGM in M. leprae infection and indicated a potential mechanism of defending M. leprae infection.

  14. Harnessing the power of macrophages/monocytes for enhanced bone tissue engineering.

    PubMed

    Dong, Lei; Wang, Chunming

    2013-06-01

    Bone tissue engineering has attracted considerable attention as a promising treatment modality for severe bone degeneration. The pressing need for more sophisticated and fully functional bone substitutes has spurred a refocus on the development of bone constructs in a way more comparable to the physiological process. Current research is increasingly revealing the central roles of macrophages/monocytes in regulating bone development and repair, so we propose that these immunocytes can play a similar pivotal role in directing engineered bone regeneration. Accordingly, we discuss two possible strategies to exemplify how the distinctive power of macrophages/monocytes--particularly their cytokine-secretion ability and chemotactic response to foreign materials--can be harnessed to enhance the performance of bone tissue engineering applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Evaluation of Gallium as a Tracer of Exogenous Hemoglobin-Haptoglobin Complexes for Targeted Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Xu, Shengsheng; Kaltashov, Igor A.

    2016-12-01

    Haptoglobin (Hp) is a plasma glycoprotein that generates significant interest in the drug delivery community because of its potential for delivery of antiretroviral medicines with high selectivity to macrophages and monocytes, the latent reservoirs of human immunodeficiency virus. As is the case with other therapies that exploit transport networks for targeted drug delivery, the success of the design and optimization of Hp-based therapies will critically depend on the ability to accurately localize and quantitate Hp-drug conjugates on the varying and unpredictable background of endogenous proteins having identical structure. In this work, we introduce a new strategy for detecting and quantitating exogenous Hp and Hp-based drugs with high sensitivity in complex biological samples using gallium as a tracer of this protein and inductively coupled plasma mass spectrometry (ICP MS) as a method of detection. Metal label is introduced by reconstituting hemoglobin (Hb) with gallium(III)-protoporphyrin IX followed by its complexation with Hp. Formation of the Hp/Hb assembly and its stability are evaluated with native electrospray ionization mass spectrometry. Both stable isotopes of Ga give rise to an abundant signal in ICP MS of a human plasma sample spiked with the metal-labeled Hp/Hb complex. The metal label signal exceeds the spectral interferences' contributions by more than an order of magnitude even with the concentration of the exogenous protein below 10 nM, the level that is more than adequate for the planned pharmacokinetic studies of Hp-based therapeutics.

  16. Quantitative liquid chromatography-mass spectrometry-multiple reaction monitoring (LC-MS-MRM) analysis of site-specific glycoforms of haptoglobin in liver disease.

    PubMed

    Sanda, Miloslav; Pompach, Petr; Brnakova, Zuzana; Wu, Jing; Makambi, Kepher; Goldman, Radoslav

    2013-05-01

    Development of liver disease is associated with the appearance of multiply fucosylated glycoforms of haptoglobin. To analyze the disease-related haptoglobin glycoforms in liver cirrhosis and hepatocellular carcinoma, we have optimized an LC-MS-multiple reaction monitoring (MRM) workflow for glycopeptide quantification. The final quantitative analysis included 24 site-specific glycoforms generated by treatment of a tryptic digest of haptoglobin with α(2-3,6,8)-neuraminidase and β(1-4)-galactosidase. The combination of LC-MS-MRM with exoglycosidase digests allowed resolution of isobaric glycoforms of the haptoglobin-T3 glycopeptide for quantification of the multiply fucosylated Lewis Y-containing glycoforms we have identified in the context of liver disease. Fourteen multiply fucosylated glycoforms of the 20 examined increased significantly in the liver disease group compared with healthy controls with an average 5-fold increase in intensity (p < 0.05). At the same time, two tri-antennary glycoforms without fucoses did not increase in the liver disease group, and two tetra-antennary glycoforms without fucoses showed a marginal increase (at most 40%) in intensity. Our analysis of 30 individual patient samples (10 healthy controls, 10 cirrhosis patients, and 10 hepatocellular carcinoma patients) showed that these glycoforms were substantially increased in a small subgroup of liver disease patients but did not significantly differ between the groups of hepatocellular carcinoma and cirrhosis patients. The tri- and tetra-antennary singly fucosylated glycoforms are associated with a MELD score and low platelet counts (p < 0.05). The exoglycosidase-assisted LC-MS-MRM workflow, optimized for the quantification of fucosylated glycoforms of haptoglobin, can be used for quantification of these glycoforms on other glycopeptides with appropriate analytical behavior.

  17. Quantitative Liquid Chromatography-Mass Spectrometry-Multiple Reaction Monitoring (LC-MS-MRM) Analysis of Site-specific Glycoforms of Haptoglobin in Liver Disease*

    PubMed Central

    Sanda, Miloslav; Pompach, Petr; Brnakova, Zuzana; Wu, Jing; Makambi, Kepher; Goldman, Radoslav

    2013-01-01

    Development of liver disease is associated with the appearance of multiply fucosylated glycoforms of haptoglobin. To analyze the disease-related haptoglobin glycoforms in liver cirrhosis and hepatocellular carcinoma, we have optimized an LC-MS-multiple reaction monitoring (MRM) workflow for glycopeptide quantification. The final quantitative analysis included 24 site-specific glycoforms generated by treatment of a tryptic digest of haptoglobin with α(2–3,6,8)-neuraminidase and β(1–4)-galactosidase. The combination of LC-MS-MRM with exoglycosidase digests allowed resolution of isobaric glycoforms of the haptoglobin-T3 glycopeptide for quantification of the multiply fucosylated Lewis Y-containing glycoforms we have identified in the context of liver disease. Fourteen multiply fucosylated glycoforms of the 20 examined increased significantly in the liver disease group compared with healthy controls with an average 5-fold increase in intensity (p < 0.05). At the same time, two tri-antennary glycoforms without fucoses did not increase in the liver disease group, and two tetra-antennary glycoforms without fucoses showed a marginal increase (at most 40%) in intensity. Our analysis of 30 individual patient samples (10 healthy controls, 10 cirrhosis patients, and 10 hepatocellular carcinoma patients) showed that these glycoforms were substantially increased in a small subgroup of liver disease patients but did not significantly differ between the groups of hepatocellular carcinoma and cirrhosis patients. The tri- and tetra-antennary singly fucosylated glycoforms are associated with a MELD score and low platelet counts (p < 0.05). The exoglycosidase-assisted LC-MS-MRM workflow, optimized for the quantification of fucosylated glycoforms of haptoglobin, can be used for quantification of these glycoforms on other glycopeptides with appropriate analytical behavior. PMID:23389048

  18. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development.

    PubMed

    Schaer, Dominik J; Vinchi, Francesca; Ingoglia, Giada; Tolosano, Emanuela; Buehler, Paul W

    2014-01-01

    Hemolysis, which occurs in many disease states, can trigger a diverse pathophysiologic cascade that is related to the specific biochemical activities of free Hb and its porphyrin component heme. Normal erythropoiesis and concomitant removal of senescent red blood cells (RBC) from the circulation occurs at rates of approximately 2 × 10(6) RBCs/second. Within this physiologic range of RBC turnover, a small fraction of hemoglobin (Hb) is released into plasma as free extracellular Hb. In humans, there is an efficient multicomponent system of Hb sequestration, oxidative neutralization and clearance. Haptoglobin (Hp) is the primary Hb-binding protein in human plasma, which attenuates the adverse biochemical and physiologic effects of extracellular Hb. The cellular receptor target of Hp is the monocyte/macrophage scavenger receptor, CD163. Following Hb-Hp binding to CD163, cellular internalization of the complex leads to globin and heme metabolism, which is followed by adaptive changes in antioxidant and iron metabolism pathways and macrophage phenotype polarization. When Hb is released from RBCs within the physiologic range of Hp, the potential deleterious effects of Hb are prevented. However, during hyper-hemolytic conditions or with chronic hemolysis, Hp is depleted and Hb readily distributes to tissues where it might be exposed to oxidative conditions. In such conditions, heme can be released from ferric Hb. The free heme can then accelerate tissue damage by promoting peroxidative reactions and activation of inflammatory cascades. Hemopexin (Hx) is another plasma glycoprotein able to bind heme with high affinity. Hx sequesters heme in an inert, non-toxic form and transports it to the liver for catabolism and excretion. In the present review we discuss the components of physiologic Hb/heme detoxification and their potential therapeutic application in a wide range of hemolytic conditions.

  19. Exploring Site-Specific N-Glycosylation Microheterogeneity of Haptoglobin using Glycopeptide CID Tandem Mass Spectra and Glycan Database Search

    PubMed Central

    Chandler, Kevin Brown; Pompach, Petr; Goldman, Radoslav

    2013-01-01

    Glycosylation is a common protein modification with a significant role in many vital cellular processes and human diseases, making the characterization of protein-attached glycan structures important for understanding cell biology and disease processes. Direct analysis of protein N-glycosylation by tandem mass spectrometry of glycopeptides promises site-specific elucidation of N-glycan microheterogeneity, something which detached N-glycan and de-glycosylated peptide analyses cannot provide. However, successful implementation of direct N-glycopeptide analysis by tandem mass spectrometry remains a challenge. In this work, we consider algorithmic techniques for the analysis of LC-MS/MS data acquired from glycopeptide-enriched fractions of enzymatic digests of purified proteins. We implement a computational strategy which takes advantage of the properties of CID fragmentation spectra of N-glycopeptides, matching the MS/MS spectra to peptide-glycan pairs from protein sequences and glycan structure databases. Significantly, we also propose a novel false-discovery-rate estimation technique to estimate and manage the number of false identifications. We use a human glycoprotein standard, haptoglobin, digested with trypsin and GluC, enriched for glycopeptides using HILIC chromatography, and analyzed by LC-MS/MS to demonstrate our algorithmic strategy and evaluate its performance. Our software, GlycoPeptideSearch (GPS), assigned glycopeptide identifications to 246 of the spectra at false-discovery-rate 5.58%, identifying 42 distinct haptoglobin peptide-glycan pairs at each of the four haptoglobin N-linked glycosylation sites. We further demonstrate the effectiveness of this approach by analyzing plasma-derived haptoglobin, identifying 136 N-linked glycopeptide spectra at false-discovery-rate 0.4%, representing 15 distinct glycopeptides on at least three of the four N-linked glycosylation sites. The software, GlycoPeptideSearch, is available for download from http

  20. S100A8/A9 increases the mobilization of pro-inflammatory Ly6Chigh monocytes to the synovium during experimental osteoarthritis.

    PubMed

    Cremers, Niels A J; van den Bosch, Martijn H J; van Dalen, Stephanie; Di Ceglie, Irene; Ascone, Giuliana; van de Loo, Fons; Koenders, Marije; van der Kraan, Peter; Sloetjes, Annet; Vogl, Thomas; Roth, Johannes; Geven, Edwin J W; Blom, Arjen B; van Lent, Peter L E M

    2017-09-29

    Monocytes are dominant cells present within the inflamed synovium during osteoarthritis (OA). In mice, two functionally distinct monocyte subsets are described: pro-inflammatory Ly6C high and patrolling Ly6C low monocytes. Alarmins S100A8/A9 locally released by the synovium during inflammatory OA for prolonged periods may be dominant proteins involved in stimulating recruitment of Ly6C high monocytes from the circulation to the joint. Our objective was to investigate the role of S100A8/A9 in the mobilization of Ly6C high and Ly6C low monocytic populations to the inflamed joint in collagenase-induced OA (CiOA). S100A8 was injected intra-articularly to investigate monocyte influx. CiOA was induced by injection of collagenase into knee joints of wild-type C57BL/6 (WT), and S100a9 -/- mice. Mice were sacrificed together with age-matched saline-injected control mice (n = 6/group), and expression of monocyte markers, pro-inflammatory cytokines, and chemokines was determined in the synovium using ELISA and RT-qPCR. Cells were isolated from the bone marrow (BM), spleen, blood, and synovium and monocytes were identified using FACS. S100A8/A9 was highly expressed during CiOA. Intra-articular injection of S100A8 leads to elevated expression of monocyte markers and the monocyte-attracting chemokines CCL2 and CX3CL1 in the synovium. At day 7 (d7) after CiOA induction in WT mice, numbers of Ly6C high , but not Ly6C low monocytes, were strongly increased (7.6-fold) in the synovium compared to saline-injected controls. This coincided with strong upregulation of CCL2, which preferentially attracts Ly6C high monocytes. In contrast, S100a9 -/- mice showed a significant increase in Ly6C low monocytes (twofold) within the synovium at CiOA d7, whereas the number of Ly6C high monocytes remained unaffected. In agreement with this finding, the Ly6C low mobilization marker CX3CL1 was significantly higher within the synovium of S100a9 -/- mice. Next, we studied the effect of S100A8/A9 on

  1. A polymorphism in the haptoglobin, haptoglobin related protein locus is associated with risk of human sleeping sickness within Cameroonian populations.

    PubMed

    Ofon, Elvis; Noyes, Harry; Mulindwa, Julius; Ilboudo, Hamidou; Simuunza, Martin; Ebo'o, Vincent; Njiokou, Flobert; Koffi, Mathurin; Bucheton, Bruno; Fogue, Pythagore; Hertz-Fowler, Christiane; MacLeod, Annette; Simo, Gustave

    2017-10-01

    Human African Trypanosomiasis (HAT) is a neglected disease targeted for elimination as a public health problem by 2020. Elimination requires a better understanding of the epidemiology and clinical evolution of HAT. In addition to the classical clinical evolution of HAT, asymptomatic carriers and spontaneous cure have been reported in West Africa. A genetic component to human susceptibility to HAT has been suggested to explain these newly observed responses to infection. In order to test for genetic associations with infection response, genetic polymorphism in 17 genes were tested (APOL1, IL1B, IL4, IL4R, IL6, IL8, IL12B, IL12RB1, IL10, TNFA, INFG, MIF, HLA-G, HLA-A, HP, HPR and CFH). A case-control study was performed on 180 blood samples collected from 56 cases and 124 controls from Cameroon. DNA was extracted from blood samples. After quality control, 25 samples (24 controls and 1 case) were eliminated. The genotyping undertaken on 155 individuals including 55 cases and 100 controls were investigated at 96 loci (88 SNPs and 8 indels) located on 17 genes. Associations between these loci and HAT were estimated via a case-control association test. Analyses of 64 SNPs and 4 indels out of 96 identified in the selected genes reveal that the minor allele (T) of rs8062041 in haptoglobin (HP) appeared to be protective against HAT (p = 0.0002395, OR 0.359 (CI95 [0.204-0.6319])); indicating higher frequency in cases compared to controls. This minor allele with adjusted p value of 0.0163 is associated with a lower risk (protective effect) of developing sleeping sickness. The haptoglobin related protein HPR and HP are tightly linked and both are duplicated in some people and may lead to higher activity. This increased production could be responsible of the protection associated with rs8062041 even though this SNP is within HP.

  2. A polymorphism in the haptoglobin, haptoglobin related protein locus is associated with risk of human sleeping sickness within Cameroonian populations

    PubMed Central

    Ofon, Elvis; Noyes, Harry; Mulindwa, Julius; Ilboudo, Hamidou; Simuunza, Martin; Ebo’o, Vincent; Njiokou, Flobert; Koffi, Mathurin; Bucheton, Bruno; Fogue, Pythagore; Hertz-Fowler, Christiane; MacLeod, Annette

    2017-01-01

    Background Human African Trypanosomiasis (HAT) is a neglected disease targeted for elimination as a public health problem by 2020. Elimination requires a better understanding of the epidemiology and clinical evolution of HAT. In addition to the classical clinical evolution of HAT, asymptomatic carriers and spontaneous cure have been reported in West Africa. A genetic component to human susceptibility to HAT has been suggested to explain these newly observed responses to infection. In order to test for genetic associations with infection response, genetic polymorphism in 17 genes were tested (APOL1, IL1B, IL4, IL4R, IL6, IL8, IL12B, IL12RB1, IL10, TNFA, INFG, MIF, HLA-G, HLA-A, HP, HPR and CFH). Methodology A case-control study was performed on 180 blood samples collected from 56 cases and 124 controls from Cameroon. DNA was extracted from blood samples. After quality control, 25 samples (24 controls and 1 case) were eliminated. The genotyping undertaken on 155 individuals including 55 cases and 100 controls were investigated at 96 loci (88 SNPs and 8 indels) located on 17 genes. Associations between these loci and HAT were estimated via a case-control association test. Results Analyses of 64 SNPs and 4 indels out of 96 identified in the selected genes reveal that the minor allele (T) of rs8062041 in haptoglobin (HP) appeared to be protective against HAT (p = 0.0002395, OR 0.359 (CI95 [0.204–0.6319])); indicating higher frequency in cases compared to controls. This minor allele with adjusted p value of 0.0163 is associated with a lower risk (protective effect) of developing sleeping sickness. Conclusion The haptoglobin related protein HPR and HP are tightly linked and both are duplicated in some people and may lead to higher activity. This increased production could be responsible of the protection associated with rs8062041 even though this SNP is within HP. PMID:29077717

  3. Serum apolipoprotein A1 and haptoglobin, in patients with suspected drug-induced liver injury (DILI) as biomarkers of recovery

    PubMed Central

    Peta, Valentina; Tse, Chantal; Perazzo, Hugo; Munteanu, Mona; Ngo, Yen; Ngo, An; Ramanujam, Nittia; Verglas, Lea; Mallet, Maxime; Ratziu, Vlad; Thabut, Dominique; Rudler, Marika; Thibault, Vincent; Schuppe-Koistinen, Ina; Bonnefont-Rousselot, Dominique; Hainque, Bernard; Imbert-Bismut, Françoise; Merz, Michael; Kullak-Ublick, Gerd; Andrade, Raul; van Boemmel, Florian; Schott, Eckart

    2017-01-01

    Background There is a clear need for better biomarkers of drug-induced-liver-injury (DILI). Aims We aimed to evaluate the possible prognostic value of ActiTest and FibroTest proteins apoliprotein-A1, haptoglobin and alpha-2-macroglobulin, in patients with DILI. Methods We analyzed cases and controls included in the IMI-SAFE-T-DILI European project, from which serum samples had been stored in a dedicated biobank. The analyses of ActiTest and FibroTest had been prospectively scheduled. The primary objective was to analyze the performance (AUROC) of ActiTest components as predictors of recovery outcome defined as an ALT <2x the upper limit of normal (ULN), and BILI <2x ULN. Results After adjudication, 154 patients were considered to have DILI and 22 were considered to have acute liver injury without DILI. A multivariate regression analysis (ActiTest-DILI patent pending) combining the ActiTest components without BILI and ALT (used as references), apolipoprotein-A1, haptoglobin, alpha-2-macroglobulin and GGT, age and gender, resulted in a significant prediction of recovery with 67.0% accuracy (77/115) and an AUROC of 0.724 (P<0.001 vs. no prediction 0.500). Repeated apolipoprotein-A1 and haptoglobin remained significantly higher in the DILI cases that recovered (n = 65) versus those that did not (n = 16), at inclusion, at 4–8 weeks and at 8–12 weeks. The same results were observed after stratification on APAP cases and non-APAP cases. Conclusions We identified that apolipoprotein-A1 and haptoglobin had significant predictive values for the prediction of recovery at 12 weeks in DILI, enabling the construction of a new prognostic panel, the DILI-ActiTest, which needs to be independently validated. PMID:29287080

  4. EMMPRIN (CD147/basigin) mediates platelet-monocyte interactions in vivo and augments monocyte recruitment to the vascular wall.

    PubMed

    Schulz, C; von Brühl, M-L; Barocke, V; Cullen, P; Mayer, K; Okrojek, R; Steinhart, A; Ahmad, Z; Kremmer, E; Nieswandt, B; Frampton, J; Massberg, S; Schmidt, R

    2011-05-01

    Platelets play a central role in hemostasis, in inflammatory diseases such as atherosclerosis, and during thrombus formation following vascular injury. Thereby, platelets interact intensively with monocytes and enhance their recruitment to the vascular wall. To investigate the role of the extracellular matrix metalloproteinase inducer (EMMPRIN) in platelet-monocyte interactions. Isolated human monocytes were perfused in vitro over firmly adherent platelets to allow investigation of the role of EMMPRIN in platelet-monocyte interactions under flow conditions. Monocytes readily bound to surface-adherent platelets. Both antibody blockade and gene silencing of monocyte EMMPRIN substantially attenuated firm adhesion of monocytes to platelets at arterial and venous shear rates. In vivo, platelet interactions with the murine monocyte cell line ANA-1 were significantly decreased when ANA-1 cells were pretreated with EMMPRIN-silencing small interfering RNA prior to injection into wild-type mice. Using intravital microscopy, we showed that recruitment of EMMPRIN-silenced ANA-1 to the injured carotid artery was significantly reduced as compared with control cells. Further silencing of EMMPRIN resulted in significantly fewer ANA-1-platelet aggregates in the mouse circulation as determined by flow cytometry. Finally, we identified glycoprotein (GP)VI as a critical corresponding receptor on platelets that mediates interaction with monocyte EMMPRIN. Thus, blocking of GPVI inhibited the effect of EMMPRIN on firm monocyte adhesion to platelets under arterial flow conditions in vitro, and abrogated EMMPRIN-mediated platelet-monocyte aggregate formation in vivo. EMMPRIN supports platelet-monocyte interactions and promotes monocyte recruitment to the arterial wall. Therefore, EMMPRIN might represent a novel target to reduce vascular inflammation and atherosclerotic lesion development. © 2011 International Society on Thrombosis and Haemostasis.

  5. Endothelial microparticles (EMP) bind and activate monocytes: elevated EMP-monocyte conjugates in multiple sclerosis.

    PubMed

    Jy, Wenche; Minagar, Alireza; Jimenez, Joaquin J; Sheremata, William A; Mauro, Lucia M; Horstman, Lawrence L; Bidot, Carlos; Ahn, Yeon S

    2004-09-01

    Elevated plasma endothelial microparticles (EMP) have been documented in MS during exacerbation. However, the role of EMP in pathogenesis of MS remains unclear. We investigated the formation of EMP-monocyte conjugates (EMP-MoC) and their potential role in transendothelial migration of inflammatory cells in MS. EMP-MoC were assayed in 30 MS patients in exacerbation, 20 in remission and in 35 controls. EMP-leukocyte conjugation was investigated flowcytometrically by employing alpha-CD54 or alpha-CD62E for EMP, and alpha-CD45 for leukocytes. EMP-MoC were characterized by identifying adhesion molecules involved and their effect on monocyte function. In vivo (clinical): EMP-MoC were markedly elevated in exacerbation vs. remission and controls, correlating with presence of GD+ MRI lesions. Free CD54+ EMP were not elevated but free CD62E+ EMP were. In vitro: EMP bound preferentially to monocytes, less to neutrophils, but little to lymphocytes. Bound EMP activated monocytes: CD11b expression increased 50% and migration through cerebral endothelial cell layer increased 2.6-fold. Blockade of CD54 reduced binding by 80%. Most CD54+ EMP bound to monocytes, leaving little free EMP, while CD62+ EMP were found both free and bound. These results demonstrated that phenotypic subsets of EMP interacted differently with monocytes. Based on our observations, EMP may enhance inflammation and increase transendothelial migration of monocytes in MS by binding to and activating monocytes through CD54. EMP-MoC were markedly increased in MS patients in exacerbation compared to remission and may serve as a sensitive marker of MS disease activity.

  6. Repair of astrocytes, blood vessels, and myelin in the injured brain: possible roles of blood monocytes

    PubMed Central

    2013-01-01

    Inflammation in injured tissue has both repair functions and cytotoxic consequences. However, the issue of whether brain inflammation has a repair function has received little attention. Previously, we demonstrated monocyte infiltration and death of neurons and resident microglia in LPS-injected brains (Glia. 2007. 55:1577; Glia. 2008. 56:1039). Here, we found that astrocytes, oligodendrocytes, myelin, and endothelial cells disappeared in the damage core within 1–3 d and then re-appeared at 7–14 d, providing evidence of repair of the brain microenvironment. Since round Iba-1+/CD45+ monocytes infiltrated before the repair, we examined whether these cells were involved in the repair process. Analysis of mRNA expression profiles showed significant upregulation of repair/resolution-related genes, whereas proinflammatory-related genes were barely detectable at 3 d, a time when monocytes filled injury sites. Moreover, Iba-1+/CD45+ cells highly expressed phagocytic activity markers (e.g., the mannose receptors, CD68 and LAMP2), but not proinflammatory mediators (e.g., iNOS and IL1β). In addition, the distribution of round Iba-1+/CD45+ cells was spatially and temporally correlated with astrocyte recovery. We further found that monocytes in culture attracted astrocytes by releasing soluble factor(s). Together, these results suggest that brain inflammation mediated by monocytes functions to repair the microenvironment of the injured brain. PMID:23758980

  7. Differential infection outcome of Chlamydia trachomatis in human blood monocytes and monocyte-derived dendritic cells

    PubMed Central

    2014-01-01

    Background Chlamydia trachomatis is an intracellular bacteria which consist of three biovariants; trachoma (serovars A-C), urogenital (serovars D-K) and lymphogranuloma venereum (L1-L3), causing a wide spectrum of disease in humans. Monocytes are considered to disseminate this pathogen throughout the body while dendritic cells (DCs) play an important role in mediating immune response against bacterial infection. To determine the fate of C. trachomatis within human peripheral blood monocytes and monocyte-derived DCs, these two sets of immune cells were infected with serovars Ba, D and L2, representative of the three biovariants of C. trachomatis. Results Our study revealed that the different serovars primarily infect monocytes and DCs in a comparable fashion, however undergo differential infection outcome, serovar L2 being the only candidate to inflict active infection. Moreover, the C. trachomatis serovars Ba and D become persistent in monocytes while the serovars predominantly suffer degradation within DCs. Effects of persistence gene Indoleamine 2, 3-dioxygenase (IDO) was not clearly evident in the differential infection outcome. The heightened levels of inflammatory cytokines secreted by the chlamydial infection in DCs compared to monocytes seemed to be instrumental for this consequence. The immune genes induced in monocytes and DCs against chlamydial infection involves a different set of Toll-like receptors, indicating that distinct intracellular signalling pathways are adopted for immune response. Conclusion Our results demonstrate that the host pathogen interaction in chlamydia infection is not only serovar specific but manifests cell specific features, inducing separate immune response cascade in monocytes and DCs. PMID:25123797

  8. Age Increases Monocyte Adhesion on Collagen

    NASA Astrophysics Data System (ADS)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  9. Changes in Monocyte Functions of Astronauts

    NASA Technical Reports Server (NTRS)

    Kaur, I.; Simons, E.; Castro, V.; Ott, C. Mark; Pierson, Duane L.

    2004-01-01

    Monocyte cell numbers and functions, including phagocytosis, oxidative burst capacity, and degranulation and expression of related surface molecules, were studied in blood specimens from 25 astronauts and 9 healthy control subjects. Blood samples were obtained 10 days before a space flight, 3 hours after landing and 3 days after landing. The number of monocytes in astronauts did not change significantly among the three sample collection periods. Following space flight, the monocytes ability to phagocytize Escherichia coli, to exhibit an oxidative burst, and to degranulate was reduced as compared to monocytes from control subjects. These alterations in monocyte functions after space flight correlated with alterations in the expression of CD32 and CD64.

  10. Monocytes and macrophages in malignant melanoma. III. Reduction of nitroblue tetrazolium by peripheral blood monocytes.

    PubMed Central

    Hedley, D. W.; Currie, G. A.

    1978-01-01

    Peripheral-blood monocytes from normal individuals and from patients with malignant melanoma reduce nitroblue tetrazolium (NBT). A quantitative assay for dye reduction was applied to 25 healthy donors and 31 patients with malignant melanoma. NBT reduction expressed as dye reduction per monocyte was significantly impaired in patients with disseminated disease, and they responded poorly to a phagocytic stimulus. Monocytes from patients with micrometastatic disease, however, showed normal resting NBT reduction but, following exposure to a suspension of latex-polystyrene, showed significantly greater NBT reduction than those from normal individuals. Since NBT reduction is an indirect measure of intracellular hexose-monophosphate-shunt activity we conclude that the monocytes from patients with minimal disease are in some way activated. PMID:656304

  11. Haptoglobin concentrations in free-range and temporarily captive juvenile steller sea lions.

    PubMed

    Thomton, Jamie D; Mellish, Jo-Ann E

    2007-04-01

    Haptoglobin (Hp) is an acute-phase protein synthesized in the liver that circulates at elevated concentrations in response to tissue damage caused by inflammation, infection, and trauma. As part of a larger study, sera Hp concentrations were measured in temporarily captive (n = 21) and free-range (n = 38) western stock juvenile Steller sea lions (Eumetopias jubatus) sampled from 2003 to 2006. Baseline Hp concentration at time of capture was 133.3 +/- 17.4 mg/dl. Temporarily captive animals exhibited a 3.2-fold increase in Hp concentrations during the first 4 wk of captivity, followed by a return to entry levels by week 5. Haptoglobin levels were not influenced by age, season, or parasite load. There was a significant positive correlation between Hp concentrations and white blood cell count (P < 0.001) and globulin levels (P < 0.001) and a negative correlation to red blood cell count and hematocrit (P < 0.001 for both). There was no correlation between Hp levels and platelet count (P = 0.095) or hemoglobin (P = 0.457). Routine blubber biopsies collected under gas anesthesia did not produce a measurable Hp response. One animal with a large abscess had an Hp spike of 1,006.0 mg/dl that returned to entry levels after treatment. In conclusion, serum Hp levels correlate to the stable clinical health status observed during captivity, with moderate Hp response during capture and initial acclimation to captivity and acute response to inflammation and infection.

  12. Association between haptoglobin gene and insulin resistance in Arab-Americans.

    PubMed

    Burghardt, Kyle J; Masri, Dana El; Dass, Sabrina E; Shikwana, Sara S; Jaber, Linda A

    2017-11-01

    To analyze associations between variation in the HP gene and lipid and glucose-related measures in Arab-Americans. Secondary analyses were performed based on sex. Genomic DNA was extracted from samples obtained from a previous epidemiological study of diabetes in Arab-Americans. The HP 1 and 2 alleles were analyzed by polymerase chain reaction and gel electrophoresis. Associations were analyzed by linear regression. Associations were identified between the heterozygous haptoglobin 2-1 genotype and insulin resistance, fasting insulin and fasting c-peptide. The effect of sex did not remain significant after adjustment for relevant variables. HP genetic variation may have utility as a biomarker of insulin resistance and diabetes risk in Arab-Americans, however, future prospective studies are needed.

  13. Interferon-gamma inhibits HIV-induced invasiveness of monocytes.

    PubMed

    Dhawan, S; Wahl, L M; Heredia, A; Zhang, Y; Epstein, J S; Meltzer, M S; Hewlett, I K

    1995-12-01

    HIV-infected monocytes form highly invasive network on basement membrane matrix and secrete high levels of 92-kd metalloproteinase (MMP-9), an enzyme that degrades basement membrane proteins. In the present study, using matrigel as a model basement membrane system, we demonstrate that treatment of human immunodeficiency virus (HIV)-infected monocytes with interferon-gamma at 50 U/ml inhibited the ability of infected monocytes to form an invasive network on matrigel and their invasion through the matrigel matrix. These effects were associated with a significant reduction in the levels of MMP-9 produced by HIV-infected monocytes treated with interferon-gamma 1 day prior to infection with HIV as compared with that of untreated HIV-infected monocytes. Monocytes treated with interferon-gamma 1 day after HIV infection showed the presence of integrated HIV sequences; however, the levels of MMP-9 were substantially lower than those produced by monocytes inoculated with live HIV, heat-inactivated HIV, or even the control uninfected monocytes. Exposure of monocytes to heat-inactivated HIV did not result in increased invasiveness or high MMP-9 production, suggesting that regulation of metalloproteinase by monocytes was independent of CD4-gp120 interactions and required active virus infection. Furthermore, addition of interferon-gamma to monocytes on day 10 after infection inhibited MMP-9 production by more than threefold with no significant reduction of virus replication. These results indicate that the mechanism of interferon-gamma-induced down-regulation of MMP-9 levels and reduced monocyte invasiveness may be mediated by a mechanism independent of antiviral activity of IFN-gamma in monocytes. Down-regulation of MMP-9 in HIV-infected monocytes by interferon-gamma may play an important role in the control of HIV pathogenesis.

  14. An in vitro monocyte culture method and establishment of a human monocytic cell line (K63).

    PubMed

    Kadoi, Katsuyuki

    2011-01-01

    A novel method of monocyte culture in vitro was developed. The fraction of monocytes was obtained by density centrifugation of heparinised human venous blood samples. Monocytes were suspended in a modified Rosewell Park Memorial Institute medium (RPMI)-1640 (mRPMI) supplemented with 10% non-inactivated autologous serum added to the feeder cells. An avian cell line was used for feeder cells. Only those monocytes that settled on feeder cells grew rapidly at 37°C-38°C into a formation of clumped masses within two to three days. The cell mass was harvested and subcultures were made without feeder cells. A stable cell line (K63) was established from subcultures using a limited dilution method and cell cloning in microplates. K63 cells were adapted for later growth in the mRPMI medium supplemented with 10% foetal calf serum. The cells were well maintained at over 50th passage levels. This method proved to be applicable for monocyte cultures of animals as well.

  15. Umbilical Cord-derived Mesenchymal Stem Cells Instruct Monocytes Towards an IL10-producing Phenotype by Secreting IL6 and HGF.

    PubMed

    Deng, Yinan; Zhang, Yingcai; Ye, Linsen; Zhang, Tong; Cheng, Jintao; Chen, Guihua; Zhang, Qi; Yang, Yang

    2016-12-05

    Human UC-MSCs are regarded as an attractive alternative to BM-MSCs for clinical applications due to their easy preparation, higher proliferation and lower immunogenicity. However, the mechanisms underlying immune suppression by UC-MSCs are still unclear. We studied the mechanism of inhibition by UC-MSCs during the differentiation of monocytes into DCs and focused on the specific source and the role of the involved cytokines. We found that UC-MSCs suppressed monocyte differentiation into DCs and instructed monocytes towards other cell types, with clear decreases in the expression of co-stimulatory molecules, in the secretion of inflammatory factors and in allostimulatory capacity. IL6, HGF and IL10 might be involved in this process because they were detected at higher levels in a coculture system. UC-MSCs produce IL-6 and HGF, and neutralization of IL-6 and HGF reversed the suppressive effect of UC-MSCs. IL10 was not produced by UC-MSCs but was exclusively produced by monocytes after exposure to UC-MSCs, IL-6 or HGF. In summary, we found that the UC-MSC-mediated inhibitory effect was dependent on IL6 and HGF secreted by UC-MSCs and that this effect induced monocyte-derived cells to produce IL10, which might indirectly strengthen the suppressive effect of UC-MSCs.

  16. Omega-3 Fatty Acids Ameliorate Atherosclerosis by Favorably Altering Monocyte Subsets and Limiting Monocyte Recruitment to Aortic Lesions

    PubMed Central

    Brown, Amanda L.; Zhu, Xuewei; Rong, Shunxing; Shewale, Swapnil; Seo, Jeongmin; Boudyguina, Elena; Gebre, Abraham K.; Alexander-Miller, Martha A.; Parks, John S.

    2012-01-01

    Objective Fish oil (FO), containing n-3 fatty acids (FAs), attenuates atherosclerosis. We hypothesized that n-3 FA-enriched oils are atheroprotective through alteration of monocyte subsets and their trafficking into atherosclerotic lesions. Methods and Results Low density lipoprotein receptor knockout (LDLr−/−) and apolipoprotein E−/− (apoE) mice were fed diets containing 10% (calories) as palm oil (PO) and 0.2% cholesterol, supplemented with an additional 10% PO, echium oil (EO; containing 18:4 n-3) or FO. Compared to PO-fed LDLr−/− mice, EO and FO significantly reduced plasma cholesterol, splenic Ly6Chi monocytosis by ~50%, atherosclerosis by 40–70%, monocyte trafficking into the aortic root by ~50%, and atherosclerotic lesion macrophage content by 30–44%. In contrast, atherosclerosis and monocyte trafficking into the artery wall was not altered by n-3 FAs in apoE−/− mice; however, Ly6Chi splenic monocytes positively correlated with aortic root intimal area across all diet groups. In apoE−/− mice, FO reduced the percentage of blood Ly6Chi monocytes, despite an average two-fold higher plasma cholesterol relative to PO. Conclusions The presence of splenic Ly6Chi monocytes parallels the appearance of atherosclerotic disease in both LDLr−/− and apoE−/− mice. Furthermore, n-3 FAs favorably alter monocyte subsets independently from effects on plasma cholesterol, and reduce monocyte recruitment into atherosclerotic lesions. PMID:22814747

  17. Monocyte recruitment and expression of monocyte chemoattractant protein-1 are developmentally regulated in remodeling bone in the mouse.

    PubMed Central

    Volejnikova, S.; Laskari, M.; Marks, S. C.; Graves, D. T.

    1997-01-01

    Tooth eruption is defined as the movement of a tooth from its site of development within the alveolar bone to its position of function in the oral cavity. It represents an excellent model to examine osseous metabolism as bone resorption and bone formation occur simultaneously and are spatially separated. Bone resorption occurs in the coronal (occlusal) area, whereas bone formation occurs in the basal area. Monocytes are thought to have a significant role in the regulation of osseous metabolism. The goal of this study was to examine the recruitment of monocytes to bone in C57BL/6J mice that are undergoing developmentally regulated bone remodeling. Monocytes were detected by immunohistochemistry and osteoclasts were counted as bone-associated multi-nucleated, tartrate-resistant acid phosphatase (TRAP)-positive cells. Cell numbers were obtained from histological sections of animals sacrificed daily for 14 days after birth; an image analysis system was used for quantification. The results demonstrated that, immediately after birth, there were relatively few monocytic cells. In the area of bone resorption, the number of monocytes increased with time, reaching peaks at 5 and 9 days, and decreased thereafter. A similar pattern was observed for osteoclasts. In the area of bone formation, there was a time-dependent increase in the number of monocytes. In contrast, the number of osteoclasts in this area was highest at the earliest time points and decreased after day 3. To investigate potential mechanisms for the recruitment of monocytes, expression of monocyte chemoattractant protein (MCP)-1 was assessed. The number of MCP-1-positive cells increased with time and was generally proportional to the recruitment of mononuclear phagocytes. Osteoblasts were the principal bone cell type expressing MCP-1. The results demonstrate that the recruitment of mononuclear cells in the occlusal area is associated with bone resorption. In contrast, recruitment of monocytes in the basal area

  18. The human haptoglobin gene promoter: interleukin-6-responsive elements interact with a DNA-binding protein induced by interleukin-6.

    PubMed Central

    Oliviero, S; Cortese, R

    1989-01-01

    Transcription of the human haptoglobin (Hp) gene is induced by interleukin-6 (IL-6) in the human hepatoma cell line Hep3B. Cis-acting elements responsible for this response are localized within the first 186 bp of the 5'-flanking region. Site-specific mutants of the Hp promoter fused to the chloramphenicol acetyl transferase (CAT) gene were analysed by transient transfection into uninduced and IL-6-treated Hep3B cells. We identified three regions, A, B and C, defined by mutation, which are important for the IL-6 response. Band shift experiments using nuclear extracts from untreated or IL-6-treated cells revealed the presence of IL-6-inducible DNA binding activities when DNA fragments containing the A or the C sequences were used. Competition experiments showed that both sequences bind to the same nuclear factors. Polymers of oligonucleotides containing either the A or the C regions confer IL-6 responsiveness to a truncated SV40 promoter. The B region forms several complexes with specific DNA-binding proteins different from those which bind to the A and C region. The B region complexes are identical in nuclear extracts from IL-6-treated and untreated cells. While important for IL-6 induction in the context of the haptoglobin promoter, the B site does not confer IL-6 inducibility to the SV40 promoter. Our results indicate that the IL-6 response of the haptoglobin promoter is dependent on the presence of multiple, partly redundant, cis-acting elements. Images PMID:2787245

  19. Haptoglobin polymorphism among Saharian and West African groups. Haptoglobin phenotype determination by radioimmunoelectrophoresis on Hp O samples.

    PubMed Central

    Constans, J; Viau, M; Gouaillard, C; Clerc, A

    1981-01-01

    The haptoglobin (Hp) polymorphism is investigated in 11 African groups living in an area from the Algerian Sahara to Central Africa. More than 4,000 samples were examined. In the Saharian samples, the Hp1 gene frequency is higher than in any other African group. From north to south, a decrease in the Hp1 gene frequency is observed; in the Pygmy sample only, this frequency is lower than the frequency of the Hp2 gene. By means of a sensitive radioimmunoelectrophoresis, the presence of a residual Hp in Hp O sera in which the Hp polymorphism can also be determined can be revealed. Absence of Hp 1-1 and significant excess of Hp 2-2 individuals were observed. More Hp 2-1M phenotypes were detected in the Hp O population than in the non-Hp O population examined. In the Hp O samples, the influence of the phenotype distribution on the Hp gene frequencies is discussed. The heavy polymers of the Hp related to the presence of the alpha 2 chain (Hp2 gene product) are involved only in the biological mechanisms responsible for the presence of Hp O and Hp 2-1 M phenotypes among African groups. Images Fig. 1 PMID:7258189

  20. Postprandial Monocyte Activation in Individuals With Metabolic Syndrome

    PubMed Central

    Khan, Ilvira M.; Pokharel, Yashashwi; Dadu, Razvan T.; Lewis, Dorothy E.; Hoogeveen, Ron C.; Wu, Huaizhu

    2016-01-01

    Context: Postprandial hyperlipidemia has been suggested to contribute to atherogenesis by inducing proinflammatory changes in monocytes. Individuals with metabolic syndrome (MS), shown to have higher blood triglyceride concentration and delayed triglyceride clearance, may thus have increased risk for development of atherosclerosis. Objective: Our objective was to examine fasting levels and effects of a high-fat meal on phenotypes of monocyte subsets in individuals with obesity and MS and in healthy controls. Design, Setting, Participants, Intervention: Individuals with obesity and MS and gender- and age-matched healthy controls were recruited. Blood was collected from participants after an overnight fast (baseline) and at 3 and 5 hours after ingestion of a high-fat meal. At each time point, monocyte phenotypes were examined by multiparameter flow cytometry. Main Outcome Measures: Baseline levels of activation markers and postprandial inflammatory response in each of the three monocyte subsets were measured. Results: At baseline, individuals with obesity and MS had higher proportions of circulating lipid-laden foamy monocytes than controls, which were positively correlated with fasting triglyceride levels. Additionally, the MS group had increased counts of nonclassical monocytes, higher CD11c, CX3CR1, and human leukocyte antigen-DR levels on intermediate monocytes, and higher CCR5 and tumor necrosis factor-α levels on classical monocytes in the circulation. Postprandial triglyceride increases in both groups were paralleled by upregulation of lipid-laden foamy monocytes. MS, but not control, subjects had significant postprandial increases of CD11c and percentages of IL-1β+ and tumor necrosis factor-α+ cells in nonclassical monocytes. Conclusions: Compared to controls, individuals with obesity and MS had increased fasting and postprandial monocyte lipid accumulation and activation. PMID:27575945

  1. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury

    PubMed Central

    Dal-Secco, Daniela; Wang, Jing; Zeng, Zhutian; Kolaczkowska, Elzbieta; Wong, Connie H.Y.; Petri, Björn; Ransohoff, Richard M.; Charo, Israel F.

    2015-01-01

    Monocytes are recruited from the blood to sites of inflammation, where they contribute to wound healing and tissue repair. There are at least two subsets of monocytes: classical or proinflammatory (CCR2hiCX3CR1low) and nonclassical, patrolling, or alternative (CCR2lowCX3CR1hi) monocytes. Using spinning-disk confocal intravital microscopy and mice with fluorescent reporters for each of these subsets, we were able to track the dynamic spectrum of monocytes that enter a site of sterile hepatic injury in vivo. We observed that the CCR2hiCX3CR1low monocytes were recruited early and persisted for at least 48 h, forming a ringlike structure around the injured area. These monocytes transitioned, in situ, from CCR2hiCx3CR1low to CX3CR1hiCCR2low within the ringlike structure and then entered the injury site. This phenotypic conversion was essential for optimal repair. These results demonstrate a local, cytokine driven reprogramming of classic, proinflammatory monocytes into nonclassical or alternative monocytes to facilitate proper wound-healing. PMID:25800956

  2. Umbilical Cord-derived Mesenchymal Stem Cells Instruct Monocytes Towards an IL10-producing Phenotype by Secreting IL6 and HGF

    PubMed Central

    Deng, Yinan; Zhang, Yingcai; Ye, Linsen; Zhang, Tong; Cheng, Jintao; Chen, Guihua; Zhang, Qi; Yang, Yang

    2016-01-01

    Human UC-MSCs are regarded as an attractive alternative to BM-MSCs for clinical applications due to their easy preparation, higher proliferation and lower immunogenicity. However, the mechanisms underlying immune suppression by UC-MSCs are still unclear. We studied the mechanism of inhibition by UC-MSCs during the differentiation of monocytes into DCs and focused on the specific source and the role of the involved cytokines. We found that UC-MSCs suppressed monocyte differentiation into DCs and instructed monocytes towards other cell types, with clear decreases in the expression of co-stimulatory molecules, in the secretion of inflammatory factors and in allostimulatory capacity. IL6, HGF and IL10 might be involved in this process because they were detected at higher levels in a coculture system. UC-MSCs produce IL-6 and HGF, and neutralization of IL-6 and HGF reversed the suppressive effect of UC-MSCs. IL10 was not produced by UC-MSCs but was exclusively produced by monocytes after exposure to UC-MSCs, IL-6 or HGF. In summary, we found that the UC-MSC-mediated inhibitory effect was dependent on IL6 and HGF secreted by UC-MSCs and that this effect induced monocyte-derived cells to produce IL10, which might indirectly strengthen the suppressive effect of UC-MSCs. PMID:27917866

  3. Monocyte dysregulation and systemic inflammation during pediatric falciparum malaria

    PubMed Central

    Dobbs, Katherine R.; Embury, Paula; Odada, Peter S.; Rosa, Bruce A.; Mitreva, Makedonka; Kazura, James W.; Dent, Arlene E.

    2017-01-01

    BACKGROUND. Inflammation and monocytes are thought to be important to human malaria pathogenesis. However, the relationship of inflammation and various monocyte functions to acute malaria, recovery from acute malaria, and asymptomatic parasitemia in endemic populations is poorly understood. METHODS. We evaluated plasma cytokine levels, monocyte subsets, monocyte functional responses, and monocyte inflammatory transcriptional profiles of 1- to 10-year-old Kenyan children at the time of presentation with acute uncomplicated malaria and at recovery 6 weeks later; these results were compared with analogous data from asymptomatic children and adults in the same community. RESULTS. Acute malaria was marked by elevated levels of proinflammatory and regulatory cytokines and expansion of the inflammatory “intermediate” monocyte subset that returned to levels of healthy asymptomatic children 6 weeks later. Monocytes displayed activated phenotypes during acute malaria, with changes in surface expression of markers important to innate and adaptive immunity. Functionally, acute malaria monocytes and monocytes from asymptomatic infected children had impaired phagocytosis of P. falciparum–infected erythrocytes relative to asymptomatic children with no blood-stage infection. Monocytes from both acute malaria and recovery time points displayed strong and equivalent cytokine responsiveness to innate immune agonists that were independent of infection status. Monocyte transcriptional profiles revealed regulated and balanced proinflammatory and antiinflammatory and altered phagocytosis gene expression patterns distinct from malaria-naive monocytes. CONCLUSION. These observations provide insights into monocyte functions and the innate immune response during uncomplicated malaria and suggest that asymptomatic parasitemia in children is not clinically benign. FUNDING. Support for this work was provided by NIH/National Institute of Allergy and Infectious Diseases (R01AI095192

  4. Role of monocyte recruitment in hemangiosarcoma metastasis in dogs.

    PubMed

    Regan, D P; Escaffi, A; Coy, J; Kurihara, J; Dow, S W

    2017-12-01

    Canine hemangiosarcoma (HSA) is a highly malignant tumour associated with short survival times because of early and widespread metastasis. In humans and rodents, monocytes play key roles in promoting tumour metastasis through stimulating tumour cell extravasation, seeding, growth and angiogenesis. Therefore, we investigated the potential association between monocyte infiltration and tumour metastasis in HSA and other common canine tumours. Immunohistochemistry was used to quantify CD18 + monocytes within metastases. We found that HSA metastases had significantly greater numbers of CD18 + monocytes compared with metastases from other tumour types. HSA cells were the highest producers of the monocyte chemokine CCL2, and stimulated canine monocyte migration in a CCL2 dependent manner. These results are consistent with the hypothesis that overexpression of CCL2 and recruitment of large numbers of monocytes may explain in part the aggressive metastatic nature of canine HSA. Thus, therapies designed to block monocyte recruitment may be an effective adjuvant strategy for suppressing HSA metastasis in dogs. © 2016 John Wiley & Sons Ltd.

  5. Haptoglobin 2-2 Phenotype Is Associated With Increased Acute Kidney Injury After Elective Cardiac Surgery in Patients With Diabetes Mellitus.

    PubMed

    Feng, Chenzhuo; Naik, Bhiken I; Xin, Wenjun; Ma, Jennie Z; Scalzo, David C; Thammishetti, Swapna; Thiele, Robert H; Zuo, Zhiyi; Raphael, Jacob

    2017-10-05

    Recent studies reported an association between the 2-2 phenotype of haptoglobin (Hp 2-2) and increased cardiorenal morbidity in nonsurgical diabetic patients. Our goal was to determine whether the Hp 2-2 phenotype was associated with acute kidney injury (AKI) after elective cardiac surgery in patients with diabetes mellitus. We prospectively enrolled 99 diabetic patients requiring elective cardiac surgery with cardiopulmonary bypass. Haptoglobin phenotypes were determined by gel electrophoresis. Cell-free hemoglobin, haptoglobin, and total serum bilirubin were quantified as hemolysis markers. The primary outcome was postoperative AKI, as defined by the Acute Kidney Injury Network classification. The incidence of AKI was significantly higher in Hp 2-2 patients compared with patients without this phenotype (non-Hp-2-2; 55.6% versus 27%, P <0.01). The need for renal replacement therapy was also significantly higher in the Hp 2-2 group (5 patients versus 1 patient, P =0.02). Thirty-day mortality (3 versus 0 patients, P =0.04) and 1-year mortality (5 versus 0 patients, P <0.01) were also significantly higher in patients with the Hp 2-2 phenotype. In multivariable analysis, Hp 2-2 was an independent predictor of postoperative AKI ( P =0.01; odds ratio: 4.17; 95% confidence interval, 1.35-12.48). Hp 2-2 phenotype is an independent predictor of postoperative AKI and is associated with decreased short and long-term survival after cardiac surgery in patients with diabetes mellitus. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  6. Rapid Detection of Haptoglobin Gene Deletion in Alkaline-Denatured Blood by Loop-Mediated Isothermal Amplification Reaction

    PubMed Central

    Soejima, Mikiko; Egashira, Kouichi; Kawano, Hiroyuki; Kawaguchi, Atsushi; Sagawa, Kimitaka; Koda, Yoshiro

    2011-01-01

    Anhaptoglobinemic patients run the risk of severe anaphylactic transfusion reaction because they produce serum haptoglobin antibodies. Being homozygous for the haptoglobin gene deletion allele (HPdel) is the only known cause of congenital anhaptoglobinemia, and detection of HPdel before transfusion is important to prevent anaphylactic shock. In this study, we developed a loop-mediated isothermal amplification (LAMP)-based screening for HPdel. Optimal primer sets and temperature for LAMP were selected for HPdel and the 5′ region of the HP using genomic DNA as a template. Then, the effects of diluent and boiling on LAMP amplification were examined using whole blood as a template. Blood samples diluted 1:100 with 50 mmol/L NaOH without boiling gave optimal results as well as those diluted 1:2 with water followed by boiling. The results from 100 blood samples were fully concordant with those obtained by real-time PCR methods. Detection of the HPdel allele by LAMP using alkaline-denatured blood samples is rapid, simple, accurate, and cost effective, and is readily applicable in various clinical settings because this method requires only basic instruments. In addition, the simple preparation of blood samples using NaOH saves time and effort for various genetic tests. PMID:21497293

  7. Molecular identification and characterization of haptoglobin in teleosts revealed an important role on fish viral infections.

    PubMed

    Cordero, Héctor; Li, Chang Hong; Chaves-Pozo, Elena; Esteban, María Ángeles; Cuesta, Alberto

    2017-11-01

    Haptoglobin (Hp) molecule has been cloned and characterized in two marine teleosts (gilthead seabream and European sea bass), obtaining putative proteins of 319 residues encoded by an ORF of 960 bp in both species. However, the matrix of similarity revealed low identities among bony fish species 78.9% (seabream-sea bass), 43% (seabream/seabass-zebrafish) and lower than 20% with sharks and human. The protein sequences showed a signal peptide from the position 1 to 23, a trypsin domain from 47 to 297, and several predicted disulfide bridges and glycosylation sites. The expression of hp transcript levels during ontogeny showed a progressive increase of expression in seabream whilst remained almost unaltered in sea bass. By tissues, this gene was found constitutively expressed with the highest levels on liver in both species. The main results on hp transcript levels showed the up-regulation in gilthead seabream suffering from naturally occurring lymphocystis disease; and the down-regulation and up-regulation after nodavirus infection in the resistant gilthead seabream and the susceptible European sea bass, respectively. These findings demonstrate for the first time an important role of haptoglobin against viral infections, operating differently in two of the most important marine farmed fish species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A three-dimensional in vitro model to demonstrate the haptotactic effect of monocyte chemoattractant protein-1 on atherosclerosis-associated monocyte migration

    PubMed Central

    Ghousifam, Neda; Mortazavian, Seyyed Hamid; Bhowmick, Rudra; Vasquez, Yolanda; Blum, Frank D.; Gappa-Fahlenkamp, Heather

    2017-01-01

    Monocyte transendothelial migration is a multi-step process critical for the initiation and development of atherosclerosis. The chemokine monocyte chemoattractant protein-1 (MCP-1) is overexpressed during atheroma and its concentration gradients in the extracellular matrix (ECM) is critical for the transendothelial recruitment of monocytes. Based on prior observations, we hypothesize that both free and bound gradients of MCP-1 within the ECM are involved in directing monocyte migration. The interaction between a three-dimensional (3D), cell-free, collagen matrix and MCP-1; and its effect on monocyte migration was measured in this study. Our results showed such an interaction existed between MCP-1 and collagen, as 26% of the total MCP-1 added to the collagen matrix was bound to the matrix after extensive washes. We also characterized the collagen-MCP-1 interaction using biophysical techniques. The treatment of the collagen matrix with MCP-1 lead to increased monocyte migration, and this phenotype was abrogated by treating the matrix with an anti-MCP-1 antibody. Thus, our results indicate a binding interaction between MCP-1 and the collagen matrix, which could elicit a haptotactic effect on monocyte migration. A better understanding of such mechanisms controlling monocyte migration will help identify target cytokines and lead to the development of better anti-inflammatory therapeutic strategies. PMID:28041913

  9. Effect and possible mechanism of monocyte-derived VEGF on monocyte-endothelial cellular adhesion after electrical burns.

    PubMed

    Ruan, Qiongfang; Zhao, Chaoli; Ye, Ziqing; Ruan, Jingjing; Xie, Qionghui; Xie, Weiguo

    2015-06-01

    One of the major obstacles in the treatment of severe electrical burns is properly handling the resulting uncontrolled inflammation. Such inflammation often causes secondary injury and necrosis, thus complicating patient outcomes. Vascular endothelial grow factor (VEGF) has emerged as an important mediator for the recruitment of monocytes to the site inflammation. This study was designed to explore the effects and possible mechanism of VEGF on monocyte-endothelial cellular adhesion. To do so, we used a cultured human monocytic cell line (THP-1) that was stimulated with serum derived from rats that had received electrical burns. Serum was obtained from rats that had received electrical burns. Both the VEGF and soluble flt-1 (sflt-1) concentrations of the serum were determined by double-antibody sandwich ELISA. The concentrations of VEGF, sflt-1, and TNF-α obtained from the cell-free cultured supernatant of THP-1 cells that had been exposed to the serum were then determined by double-antibody sandwich ELISA. Serum-stimulated THP-1 cells were added to wells with a monolayer of endothelial cells to detect the level of monocyte-endothelial cells adhesion. Finally, the state of phosphorylation of AKT was determined by Western blotting. Both in vivo and in vitro studies showed that compared to controls, the levels of VEGF were significantly increased after electrical burns. This increased was accompanied by a reduction of sflt-1 levels. Furthermore, the serum of rats that had received electrical burns was able to both activate monocytes to secrete TNF-α and enhance monocyte-endothelial cell adhesion. Treatment with the serum also resulted in an up-regulation of the phosphorylation of AKT, but had no effect on the total levels of AKT. Phosphatidylinositide 3-kinases (PI3K) inhibition decreased the number of THP-1 cells that were adhered to endothelial cells. Finally, sequestering VEGF with sflt-1 was able to reduce the effect on monocyte-endothelial cells adhesion by

  10. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4{sup +} T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependentmore » phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion.

  11. [Changes of monocyte and monocyte-platelet aggregates in different subgroups of thrombotic events in patients with acute myocardial infarction during PCI].

    PubMed

    Wang, Sheng; Sun, Cuifang; Liao, Wang; Wu, Zhongwei; Wang, Yudai; Huang, Xiuxian; Lu, Sijia; Dong, Xiaoli; Shuai, Fujie; Li, Bin

    2017-07-01

    Objective To investigate the impact of thrombotic events on the alterations of monocyte and monocyte-platelet aggregates (MPAs) in patients with acute myocardial infarction (AMI) during percutaneous coronary intervention (PCI). Methods Blood was collected before PCI for flow cytometry. Monocyte subsets and MPAs were detected by four-color platform (CDl4-APC, CDl6-PE-Cy7, CD86-PE and CD41-Alexa Fluor R 488). According to the expression of the platelet surface marker CD41, the number of monocyte subsets and MPAs was analyzed using the fluorescent microspheres of absolute counting tube. The Wilcoxon rank sum test and receiver operating characteristic (ROC) curve analysis were performed. Results CD14 + CD16 ++ monocytes in intraprocedural thrombotic events (IPTE) group were significantly fewer than those in non-IPTE group, and the percentage in total mononuclear cells decreased. Compared with non-IPTE group, MPA binding ratio and monocyte subset MPA binding ratio were significantly higher in IPTE group. ROC analysis showed that MPA binding ratio and subgroup MPA binding ratio had a better predictive value for IPTE in patients with AMI. Conclusion The CD14 + CD16 ++ monocytes in IPTE group were significantly fewer than those in the non-IPTE group. MPA binding ratio and MPA binding ratio of monocyte subsets were significantly higher in the IPTE group than in the non-IPTE group, so they have a good predictive value for IPTE in patients with AMI.

  12. Chronic psoriatic skin inflammation leads to increased monocyte adhesion and aggregation

    PubMed Central

    Golden, Jackelyn B.; Groft, Sarah G.; Squeri, Michael V.; Debanne, Sara M.; Ward, Nicole L.; McCormick, Thomas S.; Cooper, Kevin D.

    2015-01-01

    Psoriasis patients exhibit an increased risk of death by cardiovascular disease (CVD) and have elevated levels of circulating intermediate (CD14++CD16+) monocytes. This elevation could represent evidence of monocyte dysfunction in psoriasis patients at risk of CVD, as increases in circulating CD14++CD16+ monocytes are predictive of myocardial infarction and death. An elevation in the CD14++CD16+ cell population has been previously reported in patients with psoriatic disease, which has been confirmed in the cohort of our human psoriasis patients. CD16 expression was induced in CD14++CD16neg classical monocytes following plastic adhesion, which also elicited enhanced β2 but not β1 integrin surface expression, suggesting increased adhesive capacity. Indeed, we found that psoriasis patients have increased monocyte aggregation among circulating PBMCs which is recapitulated in the KC-Tie2 murine model of psoriasis. Visualization of human monocyte aggregates using imaging cytometry revealed that classical CD14++CD16neg monocytes are the predominant cell type participating in these aggregate pairs. Many of these pairs also included CD16+ monocytes, which could account for apparent elevations of intermediate monocytes. Additionally, intermediate monocytes and monocyte aggregates were the predominant cell type to adhere to TNF-α and IL-17A-stimulated dermal endothelium. Ingenuity Pathway Analysis (IPA) demonstrated that monocyte aggregates have a distinct transcriptional profile from singlet monocytes and monocytes following plastic adhesion, suggesting that circulating monocyte responses to aggregation are not fully accounted for by homotypic adhesion, and that further factors influence their functionality. PMID:26223654

  13. Monocyte activation by smooth muscle cell-derived matrices.

    PubMed

    Kaufmann, J; Jorgensen, R W; Martin, B M; Franzblau, C

    1990-12-01

    Mononuclear phagocytes adhere to and penetrate the vessel wall endothelium and contact the subendothelial space prior to the development of the atherosclerotic plaque. In an attempt to model the early events of plaque development we used an elastin-rich, multicomponent, cell-derived matrix from neonatal rat aortic smooth muscle cells as a substratum for monocytes. Using this model, we show that human monocyte morphology and metabolism are markedly altered by the matrix substratum. When a mixed mononuclear cell population is seeded on matrix or plastic, only monocytes adhere to the matrix surface. In contrast, lymphocytes as well as monocytes adhere to the plastic surface. The matrix-adherent monocytes develop large intracellular granules and form extensive clusters of individual cells. Metabolically, these cells develop sodium fluoride resistant non-specific esterase activity and their media contain more growth factor activity and PGE2. Although total protein synthesis is equivalent in both cultures, the matrix contact induces an increase in specific proteins in the media. We also show that a purified alpha-elastin substratum induces some, but not all, of the monocyte changes seen when using the matrix substratum. Using the alpha-elastin substratum, there is selective adhesion of monocytes and increased growth factor activity, however, the cells are morphologically different from the matrix-adherent cells. Thus, the use of the smooth muscle cell-derived matrix, in conjunction with purified matrix components, serves as a model that can provide insight into the mechanisms of monocyte adhesion and stimulation by the matrix environment that exists in vivo. Such mechanisms may be particularly important in atherogenesis.

  14. High-Density Lipoprotein Reduction Differentially Modulates to Classical and Nonclassical Monocyte Subpopulations in Metabolic Syndrome Patients and in LPS-Stimulated Primary Human Monocytes In Vitro

    PubMed Central

    Grün, Johanna L.; Manjarrez-Reyna, Aaron N.; Gómez-Arauz, Angélica Y.; Leon-Cabrera, Sonia; Bueno-Hernández, Nallely; Islas-Andrade, Sergio

    2018-01-01

    The effect of metabolic syndrome on human monocyte subpopulations has not yet been studied. Our main goal was to examine monocyte subpopulations in metabolic syndrome patients, while also identifying the risk factors that could directly influence these cells. Eighty-six subjects were divided into metabolic syndrome patients and controls. Monocyte subpopulations were quantified by flow cytometry, and interleukin- (IL-) 1β secretion levels were measured by ELISA. Primary human monocytes were cultured in low or elevated concentrations of high-density lipoprotein (HDL) and stimulated with lipopolysaccharide (LPS). The nonclassical monocyte (NCM) percentage was significantly increased in metabolic syndrome patients as compared to controls, whereas classical monocytes (CM) were reduced. Among all metabolic syndrome risk factors, HDL reduction exhibited the most important correlation with monocyte subpopulations and then was studied in vitro. Low HDL concentration reduced the CM percentage, whereas it increased the NCM percentage and IL-1β secretion in LPS-treated monocytes. The LPS effect was abolished when monocytes were cultured in elevated HDL concentrations. Concurring with in vitro results, IL-1β serum values significantly increased in metabolic syndrome patients with low HDL levels as compared to metabolic syndrome patients without HDL reduction. Our data demonstrate that HDL directly modulates monocyte subpopulations in metabolic syndrome. PMID:29850624

  15. Increased monocyte chemotactic protein-1 concentration and monocyte count independently associate with a poor prognosis in dogs with lymphoma.

    PubMed

    Perry, J A; Thamm, D H; Eickhoff, J; Avery, A C; Dow, S W

    2011-03-01

    Overexpression of the chemokine monocyte chemotactic protein-1 (MCP-1) has been associated with a poor prognosis in many human cancers. Increased MCP-1 concentrations may promote tumour progression by increasing mobilization of myeloid derived suppressor cells such as immature monocytes and neutrophils. We hypothesized that increased numbers of peripheral neutrophils or monocytes and increased MCP-1 concentrations would predict a worse outcome in dogs with multicentric lymphoma. In this retrospective study involving 26 client-owned dogs diagnosed with lymphoma, we show that peripheral neutrophil and monocyte counts as well as serum MCP-1 concentrations were significantly elevated relative to healthy control animals, and that such increases were associated with a decreased disease-free interval in dogs treated with chemotherapy based on cyclophosphamide, vincristine, doxorubicin and prednisone (CHOP). To our knowledge, this is the first study showing that pretreatment evaluation of monocyte and neutrophil counts can provide important prognostic information in dogs with lymphoma. The mechanisms underlying these observations remain to be determined. © 2010 Blackwell Publishing Ltd.

  16. Serum amyloid A secretion from monocytic leukaemia cell line THP-1 and cultured human peripheral monocytes.

    PubMed

    Yamada, T; Wada, A; Itoh, K; Igari, J

    2000-07-01

    Serum amyloid A (SAA), an acute-phase protein and a precursor of fibrous components in reactive amyloid deposits, is synthesized mainly in the liver under the stimulation of inflammation-related cytokines. In addition, the SAA gene is expressed in monocytes/macrophages, which are believed to play a central role in amyloid fibrillogenesis. Consequently, the pathogenic implication of SAA produced from these cells has been of major concern. Because SAA synthesis at the protein level in such cells has never been analyzed quantitatively, in this study an enzyme-linked immunosorbent assay was generated with a detection level sufficiently high to measure SAA concentrations in the culture supernatants of the human monocytic leukaemia cell line THP-1. SAA secretion by THP-1 with interleukin (IL)-1beta required the presence of dexamethasone as proposed previously. We also found that unidentified components in fetal calf serum (FCS) could induce SAA production by THP-1 in the presence of dexamethasone. These findings are in contrast to the results obtained from hepatoma cell line HepG2, in which IL-1beta alone could induce SAA secretion, while dexamethasone-supplemented FCS could not. The method was able to quantify SAA secreted from cultured human peripheral monocytes. The findings suggest that monocytes produce SAA in almost the same manner as THP-1. Thus, THP-1 cells can be utilized to investigate a distinctive manner of SAA production from monocytes.

  17. The effects of alpha tocopherol supplementation on monocyte function. Decreased lipid oxidation, interleukin 1 beta secretion, and monocyte adhesion to endothelium.

    PubMed Central

    Devaraj, S; Li, D; Jialal, I

    1996-01-01

    Low levels of alpha tocopherol are related to a higher incidence of cardiovascular disease and increased intake appears to afford protection against cardiovascular disease. In addition to decreasing LDL oxidation, alpha tocopherol may exert intracellular effects on cells crucial in atherogenesis, such as monocytes. Hence, the aim of this study was to test the effect of alpha tocopherol supplementation on monocyte function relevant to atherogenesis. Monocyte function was assessed in 21 healthy subjects at baseline, after 8 wk of supplementation with d-alpha tocopherol (1,200 IU/d) and after a 6-wk washout phase. The release of reactive oxygen species (superoxide anion, hydrogen peroxide), lipid oxidation, release of the potentially atherogenic cytokine, interleukin 1 beta, and monocyte-endothelial adhesion were studied in the resting state and after activation of the monocytes with lipopolysaccharide at 0, 8, and 14 wk. There was a 2.5-fold increase in plasma lipid-standardized and monocyte alpha tocopherol levels in the supplemented phase. After alpha tocopherol supplementation, there were significant decreases in release of reactive oxygen species, lipid oxidation, IL-1 beta secretion, and monocyte-endothelial cell adhesion, both in resting and activated cells compared with baseline and washout phases. Studies with the protein kinase C inhibitor, Calphostin C, suggest that the inhibition of reactive oxygen species release and lipid oxidation is due to an inhibition of protein kinase C activity by alpha tocopherol. Thus, this study provides novel evidence for an intracellular effect of alpha tocopherol in monocytes that is antiatherogenic. PMID:8698868

  18. Phenotypic and Functional Heterogeneity of Bovine Blood Monocytes

    PubMed Central

    Hussen, Jamal; Düvel, Anna; Sandra, Olivier; Smith, David; Sheldon, Iain Martin; Zieger, Peter; Schuberth, Hans-Joachim

    2013-01-01

    Murine and human peripheral blood monocytes are heterogeneous in size, granularity, nuclear morphology, phenotype and function. Whether and how bovine blood monocytes follow this pattern was analyzed in this study. Flow cytometrically, classical monocytes (cM) CD14+ CD16−, intermediate monocytes (intM) CD14+ CD16+ and nonclassical monocytes (ncM) CD14+ CD16+ were identified, with cM being the predominant subset (89%). cM showed a significant lower expression of CD172a, intM expressed the highest level of MHC class II molecules, and ncM were low positive for CD163. Compared to cM and intM, ncM showed a significantly reduced phagocytosis capacity, a significantly reduced generation of reactive oxygen species, and reduced mRNA expression of CXCL8, CXCL1 and IL-1β after LPS stimulation. Based on IL-1β secretion after LPS/ATP stimulation, the inflammasome could be activated in cM and intM, but not in ncM. IFNγ increased the expression of CD16 selectively on cM and induced a shift from cM into intM in vitro. In summary, bovine CD172a-positive mononuclear cells define three monocyte subsets with distinct phenotypic and functional differences. Bovine cM and intM share homologies with their human counterparts, whereas bovine ncM are not inflammatory monocytes. PMID:23967219

  19. Differential effects of HIV transmission from monocyte-derived dendritic cells vs. monocytes to IL-17+CD4+ T cells

    PubMed Central

    Mitsuki, Yu-ya; Tuen, Michael; Hioe, Catarina E.

    2017-01-01

    HIV infection leads to CD4 helper T cell (Th) loss, but not all Th cells are equally depleted. The contribution of other immune cells in the Th depletion also remains unclear. This study investigates HIV transmission from monocyte-derived dendritic cells (MDDCs) vs. monocytes to Th17 and Th1 cells using an allogeneic coculture model. The addition of HIV to MDDCs increased the expression of the negative regulatory molecule PD-L1 and decreased the expression of the activation markers HLA-DR and CD86, whereas the virus up-regulated HLA-DR and CD86, but not PD-L1, on monocytes. Coculturing of CD4+ T cells with MDDCs pretreated with HIV led to the decline of Th17, but not Th1, responses. In contrast, pretreatment of monocytes with HIV increased Th17 without affecting Th1 responses. The enhanced Th17 responses in the cocultures with HIV-treated monocytes were also accompanied by high numbers of virus-infected CD4+ T cells. The Th17 expansion arose from memory CD4+ T cells with minimal contribution from naïve CD4+ T cells. The Th17-enhancing activity was mediated by the HIV envelope and did not require productive virus infection. Comparison of MDDCs and monocytes further showed that, although HIV-treated MDDCs reduced Th proliferation and increased the activation of the apoptosis mediator caspase-3, HIV-treated monocytes enhanced Th proliferation without increasing the active caspase-3 levels. This study indicates the potential role of distinct myeloid cell populations in shaping Th17 responses during HIV infection. PMID:27531931

  20. FC-99 ameliorates sepsis-induced liver dysfunction by modulating monocyte/macrophage differentiation via Let-7a related monocytes apoptosis.

    PubMed

    Zhao, Yarong; Zhu, Haiyan; Wang, Haining; Ding, Liang; Xu, Lizhi; Chen, Dai; Shen, Sunan; Hou, Yayi; Dou, Huan

    2018-03-13

    The liver is a vital target for sepsis-related injury, leading to inflammatory pathogenesis, multiple organ dysfunction and high mortality rates. Monocyte-derived macrophage transformations are key events in hepatic inflammation. N 1 -[(4-methoxy)methyl]-4-methyl-1,2-benzenediamine (FC-99) previously displayed therapeutic potential on experimental sepsis. However, the underlying mechanism of this protective effect is still not clear. FC-99 treatment attenuated the liver dysfunction in septic mice that was accompanied with reduced numbers of pro-inflammatory Ly6C hi monocytes in the peripheral blood and CD11b + F4/80 lo monocyte-derived macrophages in the liver. These effects were attributed to the FC-99-induced apoptosis of CD11b + cells. In PMA-differentiated THP-1 cells, FC-99 repressed the expression of CD11b, CD14 and caspase3 and resulted in a high proportion of Annexin V + cells. Moreover, let-7a-5p expression was abrogated upon CLP stimulation in vivo , whereas it was restored by FC-99 treatment. TargetScan analysis and luciferase assays indicated that the anti-apoptotic protein BCL-XL was targeted by let-7a-5p. BCL-XL was inhibited by FC-99 in order to induce monocyte apoptosis, leading to the impaired monocyte-to-macrophage differentiation. Murine acute liver failure was generated by caecal ligation puncture surgery after FC-99 administration; Blood samples and liver tissues were collected to determine the monocyte/macrophage subsets and the induction of apoptosis. Human acute monocytic leukemia cell line (THP-1) cells were pretreated with FC-99 followed by phorbol-12-myristate-13-acetate (PMA) stimulation, in order to induce monocyte-to-macrophage differentiation. The target of FC-99 and the mechanistic analyses were conducted by microarrays, qRT-PCR validation, TargetScan algorithms and a luciferase report assay. FC-99 exhibits potential therapeutic effects on CLP-induced liver dysfunction by restoring let-7a-5p levels.

  1. FC-99 ameliorates sepsis-induced liver dysfunction by modulating monocyte/macrophage differentiation via Let-7a related monocytes apoptosis

    PubMed Central

    Zhao, Yarong; Zhu, Haiyan; Wang, Haining; Ding, Liang; Xu, Lizhi; Chen, Dai; Shen, Sunan; Hou, Yayi; Dou, Huan

    2018-01-01

    Background The liver is a vital target for sepsis-related injury, leading to inflammatory pathogenesis, multiple organ dysfunction and high mortality rates. Monocyte-derived macrophage transformations are key events in hepatic inflammation. N1-[(4-methoxy)methyl]-4-methyl-1,2-benzenediamine (FC-99) previously displayed therapeutic potential on experimental sepsis. However, the underlying mechanism of this protective effect is still not clear. Results FC-99 treatment attenuated the liver dysfunction in septic mice that was accompanied with reduced numbers of pro-inflammatory Ly6Chi monocytes in the peripheral blood and CD11b+F4/80lo monocyte-derived macrophages in the liver. These effects were attributed to the FC-99-induced apoptosis of CD11b+ cells. In PMA-differentiated THP-1 cells, FC-99 repressed the expression of CD11b, CD14 and caspase3 and resulted in a high proportion of Annexin V+ cells. Moreover, let-7a-5p expression was abrogated upon CLP stimulation in vivo, whereas it was restored by FC-99 treatment. TargetScan analysis and luciferase assays indicated that the anti-apoptotic protein BCL-XL was targeted by let-7a-5p. BCL-XL was inhibited by FC-99 in order to induce monocyte apoptosis, leading to the impaired monocyte-to-macrophage differentiation. Materials and Methods Murine acute liver failure was generated by caecal ligation puncture surgery after FC-99 administration; Blood samples and liver tissues were collected to determine the monocyte/macrophage subsets and the induction of apoptosis. Human acute monocytic leukemia cell line (THP-1) cells were pretreated with FC-99 followed by phorbol-12-myristate-13-acetate (PMA) stimulation, in order to induce monocyte-to-macrophage differentiation. The target of FC-99 and the mechanistic analyses were conducted by microarrays, qRT-PCR validation, TargetScan algorithms and a luciferase report assay. Conclusions FC-99 exhibits potential therapeutic effects on CLP-induced liver dysfunction by restoring let-7a-5

  2. Protein Thiol Redox Signaling in Monocytes and Macrophages.

    PubMed

    Short, John D; Downs, Kevin; Tavakoli, Sina; Asmis, Reto

    2016-11-20

    Monocyte and macrophage dysfunction plays a critical role in a wide range of inflammatory disease processes, including obesity, impaired wound healing diabetic complications, and atherosclerosis. Emerging evidence suggests that the earliest events in monocyte or macrophage dysregulation include elevated reactive oxygen species production, thiol modifications, and disruption of redox-sensitive signaling pathways. This review focuses on the current state of research in thiol redox signaling in monocytes and macrophages, including (i) the molecular mechanisms by which reversible protein-S-glutathionylation occurs, (ii) the identification of bona fide S-glutathionylated proteins that occur under physiological conditions, and (iii) how disruptions of thiol redox signaling affect monocyte and macrophage functions and contribute to atherosclerosis. Recent Advances: Recent advances in redox biochemistry and biology as well as redox proteomic techniques have led to the identification of many new thiol redox-regulated proteins and pathways. In addition, major advances have been made in expanding the list of S-glutathionylated proteins and assessing the role that protein-S-glutathionylation and S-glutathionylation-regulating enzymes play in monocyte and macrophage functions, including monocyte transmigration, macrophage polarization, foam cell formation, and macrophage cell death. Protein-S-glutathionylation/deglutathionylation in monocytes and macrophages has emerged as a new and important signaling paradigm, which provides a molecular basis for the well-established relationship between metabolic disorders, oxidative stress, and cardiovascular diseases. The identification of specific S-glutathionylated proteins as well as the mechanisms that control this post-translational protein modification in monocytes and macrophages will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis and other metabolic diseases. Antioxid. Redox Signal

  3. Cyclooxygenase metabolites mediate glomerular monocyte chemoattractant protein-1 formation and monocyte recruitment in experimental glomerulonephritis.

    PubMed

    Schneider, A; Harendza, S; Zahner, G; Jocks, T; Wenzel, U; Wolf, G; Thaiss, F; Helmchen, U; Stahl, R A

    1999-02-01

    Monocyte chemoattractant protein-1 (MCP-1) has been shown to play a significant role in the recruitment of monocytes/macrophages in experimental glomerulonephritis. Whereas a number of inflammatory mediators have been characterized that are involved in the expression of MCP-1 in renal disease, little is known about repressors of chemokine formation in vivo. We hypothesized that cyclooxygenase (COX) products influence the formation of MCP-1 and affect inflammatory cell recruitment in glomerulonephritis. The effect of COX inhibitors was evaluated in the antithymocyte antibody model and an anti-glomerular basement membrane model of glomerulonephritis. Rats were treated with the COX-1/COX-2 inhibitor indomethacin and the selective COX-2 inhibitors meloxicam and SC 58125. Animals were studied at 1 hour, 24 hours, and 5 days after induction of the disease. Indomethacin, to a lesser degree the selective COX-2 inhibitors, enhanced glomerular MCP-1 and RANTES mRNA levels. Indomethacin enhanced glomerular monocyte chemoattractant activity an the infiltration of monocytes/macrophages at 24 hours and 5 days. Our studies demonstrate that COX products may serve as endogenous repressors of MCP-1 formation in experimental glomerulonephritis. The data suggest that COX-1 and COX-2 products mediate these effects differently because the selective COX-2 inhibitors had less influence on chemokine expression.

  4. Association of Canine Osteosarcoma and Monocyte Phenotype and Chemotactic Function.

    PubMed

    Tuohy, J L; Lascelles, B D X; Griffith, E H; Fogle, J E

    2016-07-01

    Monocytes/macrophages are likely key cells in immune modulation in dogs with osteosarcoma (OSA). Increased peripheral monocyte counts are negatively correlated with shorter disease-free intervals in dogs with OSA. Understanding the monocyte/macrophage's modulatory role in dogs with OSA can direct further studies in immunotherapy development for OSA. That OSA evades the immune response by down-regulating monocyte chemokine receptor expression and migratory function, and suppresses host immune responses. Eighteen dogs with OSA that have not received definitive treatment and 14 healthy age-matched controls Clinical study-expression of peripheral blood monocyte cell surface receptors, monocyte mRNA expression and cytokine secretion, monocyte chemotaxis, and survival were compared between clinical dogs with OSA and healthy control dogs. Cell surface expression of multiple chemokine receptors is significantly down-regulated in peripheral blood monocytes of dogs with OSA. The percentage expression of CCR2 (median 58%, range 2-94%) and CXCR2 expression (median 54%, range 2-92%) was higher in control dogs compared to dogs with OSA (CCR2 median 29%, range 3-45%, P = 0.0006; CXCR2 median 23%, range 0.2-52%, P = 0.0007). Prostaglandin E2 (PGE2 ) (OSA, median 347.36 pg/mL, range 103.4-1268.5; control, 136.23 pg/mL, range 69.93-542.6, P = .04) and tumor necrosis factor-alpha (TNF-α) (P = .02) levels are increased in OSA monocyte culture supernatants compared to controls. Peripheral blood monocytes of dogs with OSA exhibit decreased chemotactic function when compared to control dogs (OSA, median 1.2 directed to random migration, range 0.8-1.25; control, 1.6, range of 0.9-1.8, P = .018). Dogs with OSA have decreased monocyte chemokine receptor expression and monocyte chemotaxis, potential mechanisms by which OSA might evade the immune response. Reversal of monocyte dysfunction using immunotherapy could improve survival in dogs with OSA. Copyright © 2016 The Authors. Journal of

  5. Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation

    PubMed Central

    Kajahn, Jennifer; Franz, Sandra; Rueckert, Erik; Forstreuter, Inka; Hintze, Vera; Moeller, Stephanie; Simon, Jan C.

    2012-01-01

    Integration of biomaterials into tissues is often disturbed by unopposed activation of macrophages. Immediately after implantation, monocytes are attracted from peripheral blood to the implantation site where they differentiate into macrophages. Inflammatory signals from the sterile tissue injury around the implanted biomaterial mediate the differentiation of monocytes into inflammatory M1 macrophages (M1) via autocrine and paracrine mechanisms. Suppression of sustained M1 differentiation is thought to be crucial to improve implant healing. Here, we explore whether artificial extracellular matrix (aECM) composed of collagen I and hyaluronan (HA) or sulfated HA-derivatives modulate this monocyte differentiation. We mimicked conditions of sterile tissue injury in vitro using a specific cytokine cocktail containing MCP-1, IL-6 and IFNγ, which induced in monocytes a phenotype similar to M1 macrophages (high expression of CD71, HLA-DR but no CD163 and release of high amounts of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-12 and TNFα). In the presence of aECMs containing high sulfated HA this monocyte to M1 differentiation was disturbed. Specifically, pro-inflammatory functions were impaired as shown by reduced secretion of IL-1β, IL-8, IL-12 and TNFα. Instead, release of the immunregulatory cytokine IL-10 and expression of CD163, both markers specific for anti-inflammatory M2 macrophages (M2), were induced. We conclude that aECMs composed of collagen I and high sulfated HA possess immunomodulating capacities and skew monocyte to macrophage differentiation induced by pro-inflammatory signals of sterile injury toward M2 polarization suggesting them as an effective coating for biomaterials to improve their integration. PMID:23507888

  6. Adding exercise to rosuvastatin treatment: influence on C-reactive protein, monocyte toll-like receptor 4 expression, and inflammatory monocyte (CD14+CD16+) population.

    PubMed

    Coen, Paul M; Flynn, Michael G; Markofski, Melissa M; Pence, Brandt D; Hannemann, Robert E

    2010-12-01

    Statin treatment and exercise training can reduce markers of inflammation when administered separately. The purpose of this study was to determine the effect of rosuvastatin treatment and the addition of exercise training on circulating markers of inflammation including C-reactive protein (CRP), monocyte toll-like receptor 4 (TLR4) expression, and CD14+CD16+ monocyte population size. Thirty-three hypercholesterolemic and physically inactive subjects were randomly assigned to rosuvastatin (R) or rosuvastatin/exercise (RE) groups. A third group of physically active hypercholesterolemic subjects served as a control (AC). The R and RE groups received rosuvastatin treatment (10 mg/d) for 20 weeks. From week 10 to week 20, the RE group also participated in an exercise training program (3d/wk). Measurements were made at baseline (Pre), week 10 (Mid), and week 20 (Post), and included TLR4 expression on CD14+ monocytes and CD14+CD16+ monocyte population size as determined by 3-color flow cytometry. Serum CRP was quantified by enzyme-linked immunosorbent assay. TLR4 expression on CD14+ monocytes was higher in the R group at week 20. When treatment groups (R and RE) were combined, serum CRP was lower across time. Furthermore, serum CRP and inflammatory monocyte population size were lower in the RE group compared with the R group at the Post time point. When all groups (R, RE, and AC) were combined, TLR4 expression was greater on inflammatory monocytes (CD14+CD16+) compared with classic monocytes (CD14+CD16⁻) at all time points. In conclusion, rosuvastatin may influence monocyte inflammatory response by increasing TLR4 expression on circulating monocytes. The addition of exercise training to rosuvastatin treatment further lowered CRP and reduced the size of the inflammatory monocyte population, suggesting an additive anti-inflammatory effect of exercise. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. PSGL-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice

    PubMed Central

    An, Guangyu; Wang, Huan; Tang, Rong; Yago, Tadayuki; McDaniel, J. Michael; McGee, Samuel; Huo, Yuqing; Xia, Lijun

    2008-01-01

    Background Ly-6Chi monocytes are key contributors to atherosclerosis in mice. However, how Ly-6Chi monocytes selectively accumulate in atherosclerotic lesions is largely unknown. Monocyte homing to sites of atherosclerosis is primarily initiated by rolling on P- and E-selectin expressed on endothelium. We hypothesize that P-selectin glycoprotein ligand-1 (PSGL-1), the common ligand of P- and E-selectin on leukocytes, contributes to the preferential homing of Ly-6Chi monocytes to atherosclerotic lesions. Methods and Results To test this hypothesis, we examined the expression and function of PSGL-1 on Ly-6Chi and Ly-6Clo monocytes from wild-type mice, ApoE-/- mice, and mice lacking both ApoE and PSGL-1 genes (ApoE-/-/PSGL-1-/-). We found that Ly-6Chi monocytes expressed a higher level of PSGL-1, and had enhanced binding to fluid-phase P- and E-selectin, compared to Ly-6Clo monocytes. Under in vitro flow conditions, more Ly-6Chi monocytes rolled on P-, E-, and L-selectin at slower velocities than Ly-6Clo cells. In an ex vivo perfused carotid artery model, Ly-6Chi monocytes interacted preferentially with atherosclerotic endothelium compared with Ly-6Clo monocytes in a PSGL-1-dependent manner. In vivo, ApoE-/- mice lacking PSGL-1 had impaired Ly-6Chi monocyte recruitment to atherosclerotic lesions. Moreover, ApoE-/-/PSGL-1-/- mice exhibited significantly reduced monocyte infiltration in wire injury-induced neointima and in atherosclerotic lesions. ApoE-/-/PSGL-1-/- mice also developed smaller neointima and atherosclerotic plaques. Conclusions These data indicate that PSGL-1 is a new marker for Ly-6Chi monocytes and a major determinant for Ly-6Chi cell recruitment to sites of atherosclerosis in mice. PMID:18519846

  8. [Inhibition of monocytes adhesion to the intima of arterial wall by local expression of antisense monocyte chemotactic protein-1].

    PubMed

    Wu, Q; Qiao, H; Wang, Z; Zhang, H; Liu, P; Xu, M; Ren, G; Zhao, S; She, M

    2000-04-01

    To study the mechanism of monocyte recruitment in atherogenesis and to clarify the effect of monocyte chemotactic protein-1 (MCP-1) in this process. Femoral arteries isolated from the rabbits which had been fed with a high cholesterol diet and locally perfused with MM-LDL within the artery beforehand, were used as the models. Antisense MCP-1cDNA was transferred into the arterial wall by injecting recombinant LNCX-anti-MCP-1/liposomal complex in the femoral sheath and the periarterial tissue. Expression of antisense MCP-1 mediated by recombinant LNCX plasmid/lipsomal complex gene transfer enabled to inhibit MCP-1 gene expression and adhesion of monocyte to the intima. MCP-1 plays an important role on the recruitment of monocytes in the arterial wall, which provides a potential clue in developing a gene therapy project for the prevention and treatment of atherogenesis.

  9. Deficient Adipogenesis of Scleroderma Patient and Healthy African American Monocytes

    PubMed Central

    Lee, Rebecca; Reese, Charles; Carmen-Lopez, Gustavo; Perry, Beth; Bonner, Michael; Zemskova, Marina; Wilson, Carole L.; Helke, Kristi L.; Silver, Richard M.; Hoffman, Stanley; Tourkina, Elena

    2017-01-01

    Monocytes from systemic sclerosis (SSc, scleroderma) patients and healthy African Americans (AA) are deficient in the regulatory protein caveolin-1 leading to enhanced migration toward chemokines and fibrogenic differentiation. While dermal fibrosis is the hallmark of SSc, loss of subcutaneous adipose tissue is a lesser-known feature. To better understand the etiology of SSc and the predisposition of AA to SSc, we studied the adipogenic potential of SSc and healthy AA monocytes. The ability of SSc and healthy AA monocytes to differentiate into adipocyte-like cells (ALC) is inhibited compared to healthy Caucasian (C) monocytes. We validated that monocyte-derived ALCs are distinct from macrophages by flow cytometry and immunocytochemistry. Like their enhanced fibrogenic differentiation, their inhibited adipogenic differentiation is reversed by the caveolin-1 scaffolding domain peptide (CSD, a surrogate for caveolin-1). The altered differentiation of SSc and healthy AA monocytes is additionally regulated by peroxisome proliferator-activated receptor γ (PPARγ) which is also present at reduced levels in these cells. In vivo studies further support the importance of caveolin-1 and PPARγ in fibrogenesis and adipogenesis. In SSc patients, healthy AA, and mice treated systemically with bleomycin, adipocytes lose caveolin-1 and PPARγ and the subcutaneous adipose layer is diminished. CSD treatment of these mice leads to a reappearance of the caveolin-1+/PPARγ+/FABP4+ subcutaneous adipose layer. Moreover, many of these adipocytes are CD45+, suggesting they are monocyte derived. Tracing experiments with injected EGFP+ monocytes confirm that monocytes contribute to the repair of the adipose layer when it is damaged by bleomycin treatment. Our observations strongly suggest that caveolin-1 and PPARγ work together to maintain a balance between the fibrogenic and adipogenic differentiation of monocytes, that this balance is altered in SSc and in healthy AA, and that monocytes

  10. Antiviral Regulation in Porcine Monocytic Cells at Different Activation States

    PubMed Central

    Rowland, Raymond R. R.

    2014-01-01

    ABSTRACT Monocytic cells, including macrophages and dendritic cells, exist in different activation states that are critical to the regulation of antimicrobial immunity. Many pandemic viruses are monocytotropic, including porcine reproductive and respiratory syndrome virus (PRRSV), which directly infects subsets of monocytic cells and interferes with antiviral responses. To study antiviral responses in PRRSV-infected monocytic cells, we characterized inflammatory cytokine responses and genome-wide profiled signature genes to investigate response pathways in uninfected and PRRSV-infected monocytic cells at different activation states. Our findings showed suppressed interferon (IFN) production in macrophages in non-antiviral states and an arrest of lipid metabolic pathways in macrophages at antiviral states. Importantly, porcine monocytic cells at different activation states were susceptible to PRRSV and responded differently to viral infection. Based on Gene Ontology (GO) analysis, two approaches were used to potentiate antiviral activity: (i) pharmaceutical modulation of cellular lipid metabolism and (ii) in situ PRRSV replication-competent expression of interferon alpha (IFN-α). Both approaches significantly suppressed exogenous viral infection in monocytic cells. In particular, the engineered IFN-expressing PRRSV strain eliminated exogenous virus infection and sustained cell viability at 4 days postinfection in macrophages. These findings suggest an intricate interaction of viral infection with the activation status of porcine monocytic cells. An understanding and integration of antiviral infection with activation status of monocytic cells may provide a means of potentiating antiviral immunity. IMPORTANCE Activation statuses of monocytic cells, including monocytes, macrophages (Mϕs), and dendritic cells (DCs), are critically important for antiviral immunity. Unfortunately, the activation status of porcine monocytic cells or how cell activation status

  11. Substance P - Neurokinin-1 Receptor Interaction Upregulates Monocyte Tissue Factor

    PubMed Central

    Khan, Mohammad M; Douglas, Steven D; Benton, Tami D

    2011-01-01

    Monocytes play an important role in hemostasis. In this study, the prothrombotic effects of the neuropeptide substance P (SP) on human monocytes through neurokinin-1 receptor (NK1-R) were characterized. SP upregulated monocyte tissue factor (TF), the major coagulation cascade stimulator, in a concentration and time dependent manner. Specific inhibition of NK1-R completely blocked TF expression. Monocytes stimulated by SP released cytokines and chemokines. When monocytes were stimulated with cytokines or chemokines, TF was expressed by the cytokines (GM-CSF, IFN-γ and TNF-α). Cytokines may play a major role in the mechanism of SP induced monocyte TF expression. NK1-R antagonists (NK1-RA) may have a role in developing novel therapeutic approaches to patients vulnerable to vaso-occlusive disorders. PMID:22115773

  12. Elevated plasma haptoglobin concentrations following parturition are associated with elevated leukocyte responses and decreased subsequent reproductive efficiency in multiparous Holstein dairy cows.

    PubMed

    Nightingale, Cameron R; Sellers, Matthew D; Ballou, Michael A

    2015-03-15

    The objectives were to describe the relationship between the intensity of the acute phase response and the metabolic status and leukocyte responses of early postpartum, multiparous cows and determine if subsequent reproductive performance was impaired in cows with a greater acute phase response. Peripheral blood was collected from 240 Holstein cows, 2-8 days in milk and 2nd-8th parity from 8 dairies in Western TX and Eastern NM across 5 days (n=6 cows/dairy/day). Plasma concentrations of haptoglobin were measured and cows were classified as Low (1st quartile), Moderate (2nd and 3rd quartiles), or High (4th quartile) responders. Metabolic measurements included: plasma glucose, urea nitrogen, non-esterified fatty acids and β-hydroxybutyrate concentrations. Leukocyte response measurements included: total leukocyte counts and differentials, neutrophil surface expression of L-selectin, neutrophil oxidative burst capacity when co-cultured with an environmental Escherichia coli, as well as the secretion of tumor necrosis factor-α and interferon-γ when diluted whole blood were co-cultured with lipopolysaccharide and phytohemagglutinin-P, respectively. All data are reported as Low, Moderate, and High haptoglobin responders. Plasma haptoglobin concentrations ranged from below the limit of detection to 8.4 μg/mL, 8.5 to 458 μg/mL, and 459 to 1757 μg/mL. The High cows had more severe neutropenia (3.45, 3.31, and 2.23 ± 0.31 × 10(6)cells/mL; P=0.013) Additionally, the innate leukocyte responses of the High cows were stimulated as evident by increased secretion of tumor necrosis factor-α (568, 565, and 730 ± 73.4 pg/mL; P=0.003), surface expression of L-selectin on neutrophils (70.8, 71.9, and 119.8 ± 7.9 geometric mean fluorescence intensity; P=0.001), and greater neutrophil oxidative burst capacity (37.9, 40.4, and 47.9 ± 0.31 geometric mean fluorescence intensity; P=0.002). In contrast, the secretion of the T-lymphocyte derived cytokine, interferon-γ, was

  13. Interaction of PRRS virus with bone marrow monocyte subsets.

    PubMed

    Fernández-Caballero, Teresa; Álvarez, Belén; Alonso, Fernando; Revilla, Concepción; Martínez-Lobo, Javier; Prieto, Cinta; Ezquerra, Ángel; Domínguez, Javier

    2018-06-01

    PRRSV can replicate for months in lymphoid organs leading to persistent host infections. Porcine bone marrow comprises two major monocyte subsets, one of which expresses CD163 and CD169, two receptors involved in the entry of PRRSV in macrophages. In this study, we investigate the permissiveness of these subsets to PRRSV infection. PRRSV replicates efficiently in BM CD163 + monocytes reaching titers similar to those obtained in alveolar macrophages, but with a delayed kinetics. Infection of BM CD163 - monocytes was variable and yielded lower titers. This may be related with the capacity of BM CD163 - monocytes to differentiate into CD163 + CD169 + cells after culture in presence of M-CSF. Both subsets secreted IL-8 in response to virus but CD163 + cells tended to produce higher amounts. The infection of BM monocytes by PRRSV may contribute to persistence of the virus in this compartment and to hematological disorders found in infected animals such as the reduction in the number of peripheral blood monocytes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Directional budding of human immunodeficiency virus from monocytes.

    PubMed Central

    Perotti, M E; Tan, X; Phillips, D M

    1996-01-01

    Time-lapse cinematography revealed that activated human immunodeficiency virus (HIV)-infected monocytes crawl along surfaces, putting forward a leading pseudopod. Scanning electron micrographs showed monocyte pseudopods associated with spherical structures the size of HIV virions, and transmission electron micrographs revealed HIV virions budding from pseudopods. Filamentous actin (F-actin) was localized by electron microscopy in the pseudopod by heavy meromyosin decoration. Colocalization of F-actin and p24 viral antigen by light microscopy immunofluorescence indicated that F-actin and virus were present on the same pseudopod. These observations indicate that monocytes produce virus from a leading pseudopod. We suggest that HIV secretion at the leading edges of donor monocytes/macrophages may be an efficient way for HIV to infect target cells. PMID:8709212

  15. Caprine Monocytes Release Extracellular Traps against Neospora caninum In Vitro

    PubMed Central

    Yang, Zhengtao; Wei, Zhengkai; Hermosilla, Carlos; Taubert, Anja; He, Xuexiu; Wang, Xiaocen; Gong, Pengtao; Li, Jianhua; Zhang, Xichen

    2018-01-01

    Neospora caninum is an obligate intracellular apicomplexan parasite that causes reproductive loss and severe economic losses in dairy and goat industry. In the present study, we aim to investigate the effects of N. caninum tachyzoites on the release of extracellular traps (ETs) in caprine monocytes and furthermore elucidated parts of its molecular mechanisms. N. caninum tachyzoite-induced monocytes-derived ETs formation was detected by scanning electron microscopy. H3 and myeloperoxidase (MPO) within monocyte-ETs structures were examined using laser scanning confocal microscopy analyses. The results showed that N. caninum tachyzoites were not only able to trigger ETs formation in caprine monocytes, but also that monocyte-released ETs were capable of entrapping viable tachyzoites. Histones and MPO were found to be decorating the DNA within the monocytes derived-ETs structures thus proving the classical components of ETs. Furthermore, inhibitors of NADPH oxidase-, MPO-, ERK 1/2-, or p38 MAPK-signaling pathway significantly decreased N. caninum tachyzoite-triggered caprine monocyte-derived ETosis. This is the first report of ETs release extruded from caprine monocytes after N. caninum exposure and thus showing that this early innate immune effector mechanism might be relevant during the acute phase of caprine neosporosis. PMID:29403487

  16. [Prognostic value of absolute monocyte count in chronic lymphocytic leukaemia].

    PubMed

    Szerafin, László; Jakó, János; Riskó, Ferenc

    2015-04-01

    The low peripheral absolute lymphocyte and high monocyte count have been reported to correlate with poor clinical outcome in various lymphomas and other cancers. However, a few data known about the prognostic value of absolute monocyte count in chronic lymphocytic leukaemia. The aim of the authors was to investigate the impact of absolute monocyte count measured at the time of diagnosis in patients with chronic lymphocytic leukaemia on the time to treatment and overal survival. Between January 1, 2005 and December 31, 2012, 223 patients with newly-diagnosed chronic lymphocytic leukaemia were included. The rate of patients needing treatment, time to treatment, overal survival and causes of mortality based on Rai stages, CD38, ZAP-70 positivity and absolute monocyte count were analyzed. Therapy was necessary in 21.1%, 57.4%, 88.9%, 88.9% and 100% of patients in Rai stage 0, I, II, III an IV, respectively; in 61.9% and 60.8% of patients exhibiting CD38 and ZAP-70 positivity, respectively; and in 76.9%, 21.2% and 66.2% of patients if the absolute monocyte count was <0.25 G/l, between 0.25-0.75 G/l and >0.75 G/l, respectively. The median time to treatment and the median overal survival were 19.5, 65, and 35.5 months; and 41.5, 65, and 49.5 months according to the three groups of monocyte counts. The relative risk of beginning the therapy was 1.62 (p<0.01) in patients with absolute monocyte count <0.25 G/l or >0.75 G/l, as compared to those with 0.25-0.75 G/l, and the risk of overal survival was 2.41 (p<0.01) in patients with absolute monocyte count lower than 0.25 G/l as compared to those with higher than 0.25 G/l. The relative risks remained significant in Rai 0 patients, too. The leading causes of mortality were infections (41.7%) and the chronic lymphocytic leukaemia (58.3%) in patients with low monocyte count, while tumours (25.9-35.3%) and other events (48.1 and 11.8%) occurred in patients with medium or high monocyte counts. Patients with low and high monocyte

  17. Monocytes/Macrophages Control Resolution of Transient Inflammatory Pain

    PubMed Central

    Willemen, Hanneke L. D. M.; Eijkelkamp, Niels; Carbajal, Anibal Garza; Wang, Huijing; Mack, Matthias; Zijlstra, Jitske; Heijnen, Cobi J.; Kavelaars, Annemieke

    2014-01-01

    Insights into mechanisms governing resolution of inflammatory pain are of great importance for many chronic pain–associated diseases. Here we investigate the role of macrophages/monocytes and the anti-inflammatory cytokine interleukin-10 (IL-10) in the resolution of transient inflammatory pain. Depletion of mice from peripheral monocytes/macrophages delayed resolution of intraplantar IL-1β- and carrageenan-induced inflammatory hyperalgesia from 1 to 3 days to >1 week. Intrathecal administration of a neutralizing IL-10 antibody also markedly delayed resolution of IL-1β- and carrageenan-induced inflammatory hyperalgesia. Recently, we showed that IL-1β- and carrageenan-induced hyperalgesia is significantly prolonged in LysM-GRK2+/− mice, which have reduced levels of G-protein-coupled receptor kinase 2 (GRK2) in LysM+ myeloid cells. Here we show that adoptive transfer of wild-type, but not of GRK2+/−, bone marrow-derived monocytes normalizes the resolution of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Adoptive transfer of IL-10−/− bone marrow-derived monocytes failed to normalize the duration of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Mechanistically, we show that GRK2+/− macrophages produce less IL-10 in vitro. In addition, intrathecal IL-10 administration attenuated IL-1β-induced hyperalgesia in LysM-GRK2+/− mice, whereas it had no effect in wild-type mice. Our data uncover a key role for monocytes/macrophages in promoting resolution of inflammatory hyperalgesia via a mechanism dependent on IL-10 signaling in dorsal root ganglia. Perspective We show that IL-10-producing monocytes/macrophages promote resolution of transient inflammatory hyperalgesia. Additionally, we show that reduced monocyte/macrophage GRK2 impairs resolution of hyperalgesia and reduces IL-10 production. We propose that low GRK2 expression and/or impaired IL-10 production by monocytes/macrophages represent peripheral biomarkers for the risk of developing

  18. Platelet density per monocyte predicts adverse events in patients after percutaneous coronary intervention.

    PubMed

    Rutten, Bert; Roest, Mark; McClellan, Elizabeth A; Sels, Jan W; Stubbs, Andrew; Jukema, J Wouter; Doevendans, Pieter A; Waltenberger, Johannes; van Zonneveld, Anton-Jan; Pasterkamp, Gerard; De Groot, Philip G; Hoefer, Imo E

    2016-01-01

    Monocyte recruitment to damaged endothelium is enhanced by platelet binding to monocytes and contributes to vascular repair. Therefore, we studied whether the number of platelets per monocyte affects the recurrence of adverse events in patients after percutaneous coronary intervention (PCI). Platelet-monocytes complexes with high and low median fluorescence intensities (MFI) of the platelet marker CD42b were isolated using cell sorting. Microscopic analysis revealed that a high platelet marker MFI on monocytes corresponded with a high platelet density per monocyte while a low platelet marker MFI corresponded with a low platelet density per monocyte (3.4 ± 0.7 vs 1.4 ± 0.1 platelets per monocyte, P=0.01). Using real-time video microscopy, we observed increased recruitment of high platelet density monocytes to endothelial cells as compared with low platelet density monocytes (P=0.01). Next, we classified PCI scheduled patients (N=263) into groups with high, medium and low platelet densities per monocyte and assessed the recurrence of adverse events. After multivariate adjustment for potential confounders, we observed a 2.5-fold reduction in the recurrence of adverse events in patients with a high platelet density per monocyte as compared with a low platelet density per monocyte [hazard ratio=0.4 (95% confidence interval, 0.2-0.8), P=0.01]. We show that a high platelet density per monocyte increases monocyte recruitment to endothelial cells and predicts a reduction in the recurrence of adverse events in patients after PCI. These findings may imply that a high platelet density per monocyte protects against recurrence of adverse events.

  19. Radon and monocytic leukaemia in England.

    PubMed

    Eatough, J P; Henshaw, D L

    1993-12-01

    The relationship between the standardised registration ratio (SRR) for monocytic leukaemia and the radon concentration by county in England was investigated. Leukaemia data were obtained from the OPCS and cover the age range 0-74 years and the period 1975-86. Radon concentrations were obtained from a recent National Radiological Protection Board report. A significant correlation was observed between the SRR for monocytic leukaemia and the radon concentration by county.

  20. Effects of 17β-estradiol on the release of monocyte chemotactic protein-1 and MAPK activity in monocytes stimulated with peritoneal fluid from endometriosis patients.

    PubMed

    Lee, Dong-Hyung; Kim, Seung-Chul; Joo, Jong-Kil; Kim, Hwi-Gon; Na, Young-Jin; Kwak, Jong-Young; Lee, Kyu-Sup

    2012-03-01

    Hormones and inflammation have been implicated in the pathological process of endometriosis; therefore, we investigated the combined effects of 17β-estradiol (E2) and peritoneal fluid obtained from patients with endometriosis (ePF) or a control peritoneal fluid (cPF) obtained from patients without endometriosis on the release of monocyte chemotactic protein-1 (MCP-1) by monocytes and the role of signaling pathways. Monocytes were cultured with ePF and cPF in the presence of E2; the MCP-1 levels in the supernatants were then measured by ELISA. In addition, mitogen activated protein kinase (MAPK) activation was measured by Western blotting of phosphorylated proteins. E2 down-regulated MCP-1 release by lipopolysaccharide- or cPF-treated monocytes, but failed to suppress its release by ePF-treated monocytes. The release of MCP-1 by ePF- and cPF-treated monocytes was efficiently abrogated by p38 mitogen activated protein kinase (MAPK) inhibitors; however, the MCP-1 release by cPF-treated monocytes, but not by ePF-treated monocytes, was blocked by a MAPK kinase inhibitor. In addition, ePF and cPF induced the phosphorylation of extracellular stress regulated kinase (ERK)1/2, p38 MAPK and c-Jun N-terminal kinase (JNK). E2 decreased the phosphorylation of p38 MAPK, but not ERK1/2 in ePF-treated monocytes; however, E2 decreased the phosphorylation of p38 MAPK, ERK1/2 and JNK in cPF-treated monocytes. The ability of E2 to modulate MCP-1 production is impaired in ePF-treated monocytes, which may be related to regulation of MAPK activity. These findings suggest that the failure of E2 to suppress ePF-treated production of MCP-1 may be involved in the pathogenesis of endometriosis. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  1. Evidence for specific annexin I-binding proteins on human monocytes.

    PubMed Central

    Goulding, N J; Pan, L; Wardwell, K; Guyre, V C; Guyre, P M

    1996-01-01

    Recombinant human annexin I and a monoclonal antibody specific for this protein (mAb 1B) were used to investigate surface binding of this member of the annexin family of proteins to peripheral blood monocytes. Flow cytometric analysis demonstrated trypsin-sensitive, saturable binding of annexin I to human peripheral blood monocytes but not to admixed lymphocytes. A monoclonal antibody that blocks the anti-phospholipase activity of annexin I also blocked its binding to monocytes. These findings suggest the presence of specific binding sites on monocytes. Furthermore, surface iodination, immunoprecipitation and SDS/PAGE analysis were used to identify two annexin I-binding proteins on the surface of monocytes with molecular masses of 15 kDa and 18 kDa respectively. The identification and characterization of these annexin I-binding molecules should help us to better understand the specific interactions of annexin I with monocytes that lead to down-regulation of pro-inflammatory cell functions. PMID:8687405

  2. Monocyte function in infectious mononucleosis: evidence for a reversible cellular defect.

    PubMed

    Britton, S

    1976-10-01

    Migration of blood monocytes from patients with acute infectious mononucleosis and from normal controls was measured against chemotactic factors in serum. Moncytes from patients with acute infectious mononucleosis showed decreased migration as compared with that of control monocytes. However, serum from patients with infectious mononucleosis contained normal or above normal amounts of chemotaxins for monocytes. The migratory defect of monocytes from patients with infectious mononucleosis was reversible within three months after the onset of diesease. The cause of this monocyte migration defect in infectious mononucleosis is though to be an in vivo blockade of receptors on monocytes for chemotaxins, and it is speculated that this defect can partially explain the explain the ablated delayed-hypersensitivity skin reactions in this disease.

  3. Radon and monocytic leukaemia in England.

    PubMed Central

    Eatough, J P; Henshaw, D L

    1993-01-01

    The relationship between the standardised registration ratio (SRR) for monocytic leukaemia and the radon concentration by county in England was investigated. Leukaemia data were obtained from the OPCS and cover the age range 0-74 years and the period 1975-86. Radon concentrations were obtained from a recent National Radiological Protection Board report. A significant correlation was observed between the SRR for monocytic leukaemia and the radon concentration by county. PMID:8120509

  4. Galectin-3 expression in response to LPS, immunomodulatory drugs and exogenously added galectin-3 in monocyte-like THP-1 cells.

    PubMed

    Dabelic, Sanja; Novak, Ruder; Goreta, Sandra Supraha; Dumic, Jerka

    2012-09-01

    Galectin-3, a structurally unique beta-galactoside-binding lectin, through the specific protein-protein and protein-carbohydrate interactions participates in numerous biological processes, such as cell proliferation and apoptosis, adhesion and activation. Its expression and secretion by until now an unknown mechanism are modulated by diverse molecules and are dependent on different physiological and pathophysiological conditions. By autocrine and paracrine actions, galectin-3 modulates many immune reactions and affects various immune cells, particularly those of monocyte-macrophage lineage. This is why galectin-3 has recently become an attractive therapeutic target. However, molecular mechanisms of its actions as well as regulatory mechanism of its expression and activation are still largely unknown. In this study, we show that lipopolysaccharide (LPS) provokes upregulation of galectin-3 expression on both gene and protein level in monocyte-like THP-1 cells, which can be inhibited by dexamethasone, but not with non-steroidal anti-inflammatory drugs aspirin and indomethacin. Resting and LPS-challenged monocyte-like THP-1 cells do not have detectable amount of surface-bound galectin-3, but are able to bind exogenously added galectin-3 with the same capacity. Although galectin-3 is generally considered to be a pro-inflammatory molecule, here we show that the exogenously added galectin-3 does not affect interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12p70 and TNF-α production in resting and LPS-activated monocyte-like THP-1 cells nor influences its own gene expression level in those cells.

  5. Characterization of Gene Expression Phenotype in Amyotrophic Lateral Sclerosis Monocytes

    PubMed Central

    Zhao, Weihua; Beers, David R.; Hooten, Kristopher G.; Sieglaff, Douglas H.; Zhang, Aijun; Kalyana-Sundaram, Shanker; Traini, Christopher M.; Halsey, Wendy S.; Hughes, Ashley M.; Sathe, Ganesh M.; Livi, George P.; Fan, Guo-Huang

    2017-01-01

    Importance Amyotrophic lateral sclerosis (ALS) is a common adult-onset neurodegenerative disease characterized by selective loss of upper and lower motor neurons. Patients with ALS have persistent peripheral and central inflammatory responses including abnormally functioning T cells and activated microglia. However, much less is known about the inflammatory gene profile of circulating innate immune monocytes in these patients. Objective To characterize the transcriptomics of peripheral monocytes in patients with ALS. Design, Setting, and Participants Monocytes were isolated from peripheral blood of 43 patients with ALS and 22 healthy control individuals. Total RNA was extracted from the monocytes and subjected to deep RNA sequencing, and these results were validated by quantitative reverse transcription polymerase chain reaction. Main Outcomes and Measures The differential expressed gene signatures of these monocytes were identified using unbiased RNA sequencing strategy for gene expression profiling. Results The demographics between the patients with ALS (mean [SD] age, 58.8 [1.57] years; 55.8% were men and 44.2% were women; 90.7% were white, 4.65% were Hispanic, 2.33% were black, and 2.33% were Asian) and control individuals were similar (mean [SD] age, 57.6 [2.15] years; 50.0% were men and 50.0% were women; 90.9% were white, none were Hispanic, none were black, and 9.09% were Asian). RNA sequencing data from negative selected monocytes revealed 233 differential expressed genes in ALS monocytes compared with healthy control monocytes. Notably, ALS monocytes demonstrated a unique inflammation-related gene expression profile, the most prominent of which, including IL1B, IL8, FOSB, CXCL1, and CXCL2, were confirmed by quantitative reverse transcription polymerase chain reaction (IL8, mean [SE], 1.00 [0.18]; P = .002; FOSB, 1.00 [0.21]; P = .009; CXCL1, 1.00 [0.14]; P = .002; and CXCL2, 1.00 [0.11]; P = .01). Amyotrophic lateral sclerosis monocytes

  6. Altered monocyte cyclo-oxygenase response in non-obese diabetic mice.

    PubMed

    Beyan, H; Buckley, L R; Bustin, S A; Yousaf, N; Pozzilli, P; Leslie, R D

    2009-02-01

    Monocytes infiltrate islets in non-obese diabetic (NOD) mice. Activated monocyte/macrophages express cyclo-oxygenase-2 (COX-2) promoting prostaglandin-E(2) (PGE(2)) secretion, while COX-1 expression is constitutive. We investigated in female NOD mice: (i) natural history of monocyte COX expression basally and following lipopolysaccharide (LPS) stimulation; (ii) impact of COX-2 specific inhibitor (Vioxx) on PGE(2), insulitis and diabetes. CD11b(+) monocytes were analysed for COX mRNA expression from NOD (n = 48) and C57BL/6 control (n = 18) mice. NOD mice were treated with either Vioxx (total dose 80 mg/kg) (n = 29) or methylcellulose as control (n = 29) administered by gavage at 4 weeks until diabetes developed or age 30 weeks. In all groups, basal monocyte COX mRNA and PGE(2) secretion were normal, while following LPS, after 5 weeks of age monocyte/macrophage COX-1 mRNA decreased (P < 0.01) and COX-2 mRNA increased (P < 0.01). However, diabetic NOD mice had reduced COX mRNA response (P = 0.03). Vioxx administration influenced neither PGE(2), insulitis nor diabetes. We demonstrate an isoform switch in monocyte/macrophage COX mRNA expression following LPS, which is altered in diabetic NOD mice as in human diabetes. However, Vioxx failed to affect insulitis or diabetes. We conclude that monocyte responses are altered in diabetic NOD mice but COX-2 expression is unlikely to be critical to disease risk.

  7. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype.

    PubMed

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor

    2017-03-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4 + T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling.

    PubMed

    Gamrekelashvili, Jaba; Giagnorio, Roberto; Jussofie, Jasmin; Soehnlein, Oliver; Duchene, Johan; Briseño, Carlos G; Ramasamy, Saravana K; Krishnasamy, Kashyap; Limbourg, Anne; Kapanadze, Tamar; Ishifune, Chieko; Hinkel, Rabea; Radtke, Freddy; Strobl, Lothar J; Zimber-Strobl, Ursula; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Yasutomo, Koji; Kupatt, Christian; Murphy, Kenneth M; Adams, Ralf H; Weber, Christian; Limbourg, Florian P

    2016-08-31

    A population of monocytes, known as Ly6C(lo) monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6C(hi) monocytes into Ly6C(lo) monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation.

  9. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling

    PubMed Central

    Gamrekelashvili, Jaba; Giagnorio, Roberto; Jussofie, Jasmin; Soehnlein, Oliver; Duchene, Johan; Briseño, Carlos G.; Ramasamy, Saravana K.; Krishnasamy, Kashyap; Limbourg, Anne; Häger, Christine; Kapanadze, Tamar; Ishifune, Chieko; Hinkel, Rabea; Radtke, Freddy; Strobl, Lothar J.; Zimber-Strobl, Ursula; Napp, L. Christian; Bauersachs, Johann; Haller, Hermann; Yasutomo, Koji; Kupatt, Christian; Murphy, Kenneth M.; Adams, Ralf H.; Weber, Christian; Limbourg, Florian P.

    2016-01-01

    A population of monocytes, known as Ly6Clo monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6Chi monocytes into Ly6Clo monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation. PMID:27576369

  10. Shear Stress Enhances Chemokine Secretion from Chlamydia pneumoniae-infected Monocytes.

    PubMed

    Evani, Shankar J; Dallo, Shatha F; Murthy, Ashlesh K; Ramasubramanian, Anand K

    2013-09-01

    Chlamydia pneumoniae is a common respiratory pathogen that is considered a highly likely risk factor for atherosclerosis. C. pneumoniae is disseminated from the lung into systemic circulation via infected monocytes and lodges at the atherosclerotic sites. During transit, C. pneumoniae -infected monocytes in circulation are subjected to shear stress due to blood flow. The effect of mechanical stimuli on infected monocytes is largely understudied in the context of C. pneumoniae infection and inflammation. We hypothesized that fluid shear stress alters the inflammatory response of C. pneumoniae -infected monocytes and contributes to immune cell recruitment to the site of tissue damage. Using an in vitro model of blood flow, we determined that a physiological shear stress of 7.5 dyn/cm 2 for 1 h on C. pneumoniae -infected monocytes enhances the production of several chemokines, which in turn is correlated with the recruitment of significantly large number of monocytes. Taken together, these results suggest synergistic interaction between mechanical and chemical factors in C. pneumoniae infection and associated inflammation.

  11. HCMV Reprogramming of Infected Monocyte Survival and Differentiation: A Goldilocks Phenomenon

    PubMed Central

    Stevenson, Emily V.; Collins-McMillen, Donna; Kim, Jung Heon; Cieply, Stephen J.; Bentz, Gretchen L.; Yurochko, Andrew D.

    2014-01-01

    The wide range of disease pathologies seen in multiple organ sites associated with human cytomegalovirus (HCMV) infection results from the systemic hematogenous dissemination of the virus, which is mediated predominately by infected monocytes. In addition to their role in viral spread, infected monocytes are also known to play a key role in viral latency and life-long persistence. However, in order to utilize infected monocytes for viral spread and persistence, HCMV must overcome a number of monocyte biological hurdles, including their naturally short lifespan and their inability to support viral gene expression and replication. Our laboratory has shown that HCMV is able to manipulate the biology of infected monocytes in order to overcome these biological hurdles by inducing the survival and differentiation of infected monocytes into long-lived macrophages capable of supporting viral gene expression and replication. In this current review, we describe the unique aspects of how HCMV promotes monocyte survival and differentiation by inducing a “finely-tuned” macrophage cell type following infection. Specifically, we describe the induction of a uniquely polarized macrophage subset from infected monocytes, which we argue is the ideal cellular environment for the initiation of viral gene expression and replication and, ultimately, viral spread and persistence within the infected host. PMID:24531335

  12. Dysregulation of in vitro cytokine production by monocytes during sepsis.

    PubMed Central

    Munoz, C; Carlet, J; Fitting, C; Misset, B; Blériot, J P; Cavaillon, J M

    1991-01-01

    The production by monocytes of interleukin-1 alpha (IL-1 alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF alpha) in intensive care unit (ICU) patients with sepsis syndrome (n = 23) or noninfectious shock (n = 6) is reported. Plasma cytokines, cell-associated cytokines within freshly isolated monocytes and LPS-induced in vitro cytokine production were assessed at admission and at regular intervals during ICU stay. TNF alpha and IL-6 were the most frequently detected circulating cytokines. Despite the fact that IL-1 alpha is the main cytokine found within monocytes upon in vitro activation of cells from healthy individuals, it was very rarely detected within freshly isolated monocytes from septic patients, and levels of cell-associated IL-1 beta were lower than those of TNF alpha. Cell-associated IL-1 beta and TNF alpha were not correlated with corresponding levels in plasma. Upon LPS stimulation, we observed a profound decrease of in vitro IL-1 alpha production by monocytes in all patients, and of IL-1 beta, IL-6, and TNF alpha in septic patients. This reduced LPS-induced production of cytokines was most pronounced in patients with gram-negative infections. Finally, monocytes from survival patients, but not from nonsurvival ones recovered their capacity to produce normal amounts of cytokines upon LPS stimulation. In conclusion, our data indicate an in vivo activation of circulating monocytes during sepsis as well as in noninfectious shock and suggest that complex regulatory mechanisms can downregulate the production of cytokines by monocytes during severe infections. Images PMID:1939659

  13. The continuum of monocyte phenotypes: Experimental evidence and prognostic utility in assessing cardiovascular risk.

    PubMed

    Cignarella, Andrea; Tedesco, Serena; Cappellari, Roberta; Fadini, Gian Paolo

    2018-03-30

    The monocyte-macrophage cell lineage represents a major player in innate immunity, and is involved in many physiologic and pathologic conditions. Particularly, monocyte-macrophages play a very important role in atherosclerosis and cardiovascular disease. Monocyte heterogeneity is well recognized but the biologic and clinical meaning of the various monocyte subtypes is not entirely understood. Traditionally, monocytes can be divided in classical, intermediate, and nonclassical based on expression of the surface antigens CD14 and CD16. While macrophage diversity is now well recognized to organize as a continuum, monocyte subsets have long been considered as separated entities. However, mounting evidence obtained by tracking the ontology of human monocytes help clarifying that monocytes mature from classical to nonclassical ones, through an intermediate phenotype. This concept is therefore best depicted as a continuum, whereas the subdivision into discrete CD14/CD16 subsets appears an oversimplification. In this review, we discuss the evidence supporting the existence of a monocyte continuum along with the technical challenges of monocyte characterization. In particular, we describe the advantage of considering monocytes along a continuous distribution for the evaluation of cardiovascular risk. We make the point that small transition along the monocyte continuum better reflects cardiovascular risk than a simplified analysis of discrete monocyte subsets. Recognizing the monocyte continuum can be helpful to model other pathophysiologic conditions where these cells are involved. ©2018 Society for Leukocyte Biology.

  14. Phenotypic and Functional Changes in Blood Monocytes Following Adherence to Endothelium

    PubMed Central

    Tso, Colin; Rye, Kerry-Anne; Barter, Philip

    2012-01-01

    Objective Blood monocytes are known to express endothelial-like genes during co-culture with endothelium. In this study, the time-dependent change in the phenotype pattern of primary blood monocytes after adhering to endothelium is reported using a novel HLA-A2 mistyped co-culture model. Methods and Results Freshly isolated human PBMCs were co-cultured with human umbilical vein endothelial cells or human coronary arterial endothelial cells of converse human leukocyte antigen A2 (HLA-A2) status. This allows the tracking of the PBMC-derived cells by HLA-A2 expression and assessment of their phenotype pattern over time. PBMCs that adhered to the endothelium at the start of the co-culture were predominantly CD11b+ blood monocytes. After 24 to 72 hours in co-culture, the endothelium-adherent monocytes acquired endothelial-like properties including the expression of endothelial nitric oxide synthase, CD105, CD144 and vascular endothelial growth factor receptor 2. The expression of monocyte/macrophage lineage antigens CD14, CD11b and CD36 were down regulated concomitantly. The adherent monocytes did not express CD115 after 1 day of co-culture. By day 6, the monocyte-derived cells expressed vascular cell adhesion molecule 1 in response to tumour necrosis factor alpha. Up to 10% of the PBMCs adhered to the endothelium. These monocyte-derived cells contributed up to 30% of the co-cultured cell layer and this was dose-dependent on the PBMC seeding density. Conclusions Human blood monocytes undergo rapid phenotype change to resemble endothelial cells after adhering to endothelium. PMID:22615904

  15. Lactic acid delays the inflammatory response of human monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, Katrin, E-mail: katrin.peter@ukr.de; Rehli, Michael, E-mail: michael.rehli@ukr.de; RCI Regensburg Center for Interventional Immunology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg

    2015-02-13

    Lactic acid (LA) accumulates under inflammatory conditions, e.g. in wounds or tumors, and influences local immune cell functions. We previously noted inhibitory effects of LA on glycolysis and TNF secretion of human LPS-stimulated monocytes. Here, we globally analyze the influence of LA on gene expression during monocyte activation. To separate LA-specific from lactate- or pH-effects, monocytes were treated for one or four hours with LPS in the presence of physiological concentrations of LA, sodium lactate (NaL) or acidic pH. Analyses of global gene expression profiles revealed striking effects of LA during the early stimulation phase. Up-regulation of most LPS-induced genesmore » was significantly delayed in the presence of LA, while this inhibitory effect was attenuated in acidified samples and not detected after incubation with NaL. LA targets included genes encoding for important monocyte effector proteins like cytokines (e.g. TNF and IL-23) or chemokines (e.g. CCL2 and CCL7). LA effects were validated for several targets by quantitative RT-PCR and/or ELISA. Further analysis of LPS-signaling pathways revealed that LA delayed the phosphorylation of protein kinase B (AKT) as well as the degradation of IκBα. Consistently, the LPS-induced nuclear accumulation of NFκB was also diminished in response to LA. These results indicate that the broad effect of LA on gene expression and function of human monocytes is at least partially caused by its interference with immediate signal transduction events after activation. This mechanism might contribute to monocyte suppression in the tumor environment. - Highlights: • Lactic acid broadly delays LPS-induced gene expression in human monocytes. • Expression of important monocyte effector molecules is affected by lactic acid. • Interference of lactic acid with TLR signaling causes the delayed gene expression. • The profound effect of lactic acid might contribute to immune suppression in tumors.« less

  16. Properties of human blood monocytes. I. CD91 expression and log orthogonal light scatter provide a robust method to identify monocytes that is more accurate than CD14 expression.

    PubMed

    Hudig, Dorothy; Hunter, Kenneth W; Diamond, W John; Redelman, Doug

    2014-03-01

    This study was designed to improve identification of human blood monocytes by using antibodies to molecules that occur consistently on all stages of monocyte development and differentiation. We examined blood samples from 200 healthy adults without clinically diagnosed immunological abnormalities by flow cytometry (FCM) with multiple combinations of antibodies and with a hematology analyzer (Beckman LH750). CD91 (α2 -macroglobulin receptor) was expressed only by monocytes and to a consistent level among subjects [mean median fluorescence intensity (MFI) = 16.2 ± 3.2]. Notably, only 85.7 ± 5.82% of the CD91(+) monocytes expressed high levels of the classical monocyte marker CD14, with some CD91(+) CD16(+) cells having negligible CD14, indicating that substantial FCM under-counts will occur when monocytes are identified by high CD14. CD33 (receptor for sialyl conjugates) was co-expressed with CD91 on monocytes but CD33 expression varied by nearly ten-fold among subjects (mean MFI = 17.4 ± 7.7). In comparison to FCM analyses, the hematology analyzer systematically over-counted monocytes and eosinophils while lymphocyte and neutrophil differential values generally agreed with FCM methods. CD91 is a better marker to identify monocytes than CD14 or CD33. Furthermore, FCM (with anti-CD91) identifies monocytes better than a currently used clinical CBC instrument. Use of anti-CD91 together with anti-CD14 and anti-CD16 supports the identification of the diagnostically significant monocyte populations with variable expression of CD14 and CD16. Copyright © 2013 Clinical Cytometry Society.

  17. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes

    PubMed Central

    Das, Hiranmoy; Kumar, Ajay; Lin, Zhiyong; Patino, Willmar D.; Hwang, Paul M.; Feinberg, Mark W.; Majumder, Pradip K.; Jain, Mukesh K.

    2006-01-01

    The mechanisms regulating activation of monocytes remain incompletely understood. Herein we provide evidence that Kruppel-like factor 2 (KLF2) inhibits proinflammatory activation of monocytes. In vitro, KLF2 expression in monocytes is reduced by cytokine activation or differentiation. Consistent with this observation, KLF2 expression in circulating monocytes is reduced in patients with chronic inflammatory conditions such as coronary artery disease. Adenoviral overexpression of KLF2 inhibits the LPS-mediated induction of proinflammatory factors, cytokines, and chemokines and reduces phagocytosis. Conversely, short interfering RNA-mediated reduction in KLF2 increased inflammatory gene expression. Reconstitution of immunodeficient mice with KLF2-overexpressing monocytes significantly reduced carrageenan-induced acute paw edema formation. Mechanistically, KLF2 inhibits the transcriptional activity of both NF-κB and activator protein 1, in part by means of recruitment of transcriptional coactivator p300/CBP-associated factor. These observations identify KLF2 as a novel negative regulator of monocytic activation. PMID:16617118

  18. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus.

    PubMed

    Varvel, Nicholas H; Neher, Jonas J; Bosch, Andrea; Wang, Wenyi; Ransohoff, Richard M; Miller, Richard J; Dingledine, Raymond

    2016-09-20

    The generalized seizures of status epilepticus (SE) trigger a series of molecular and cellular events that produce cognitive deficits and can culminate in the development of epilepsy. Known early events include opening of the blood-brain barrier (BBB) and astrocytosis accompanied by activation of brain microglia. Whereas circulating monocytes do not infiltrate the healthy CNS, monocytes can enter the brain in response to injury and contribute to the immune response. We examined the cellular components of innate immune inflammation in the days following SE by discriminating microglia vs. brain-infiltrating monocytes. Chemokine receptor 2 (CCR2(+)) monocytes invade the hippocampus between 1 and 3 d after SE. In contrast, only an occasional CD3(+) T lymphocyte was encountered 3 d after SE. The initial cellular sources of the chemokine CCL2, a ligand for CCR2, included perivascular macrophages and microglia. The induction of the proinflammatory cytokine IL-1β was greater in FACS-isolated microglia than in brain-invading monocytes. However, Ccr2 knockout mice displayed greatly reduced monocyte recruitment into brain and reduced levels of the proinflammatory cytokine IL-1β in hippocampus after SE, which was explained by higher expression of the cytokine in circulating and brain monocytes in wild-type mice. Importantly, preventing monocyte recruitment accelerated weight regain, reduced BBB degradation, and attenuated neuronal damage. Our findings identify brain-infiltrating monocytes as a myeloid-cell subclass that contributes to neuroinflammation and morbidity after SE. Inhibiting brain invasion of CCR2(+) monocytes could represent a viable method for alleviating the deleterious consequences of SE.

  19. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus

    PubMed Central

    Varvel, Nicholas H.; Neher, Jonas J.; Bosch, Andrea; Wang, Wenyi; Ransohoff, Richard M.; Miller, Richard J.; Dingledine, Raymond

    2016-01-01

    The generalized seizures of status epilepticus (SE) trigger a series of molecular and cellular events that produce cognitive deficits and can culminate in the development of epilepsy. Known early events include opening of the blood–brain barrier (BBB) and astrocytosis accompanied by activation of brain microglia. Whereas circulating monocytes do not infiltrate the healthy CNS, monocytes can enter the brain in response to injury and contribute to the immune response. We examined the cellular components of innate immune inflammation in the days following SE by discriminating microglia vs. brain-infiltrating monocytes. Chemokine receptor 2 (CCR2+) monocytes invade the hippocampus between 1 and 3 d after SE. In contrast, only an occasional CD3+ T lymphocyte was encountered 3 d after SE. The initial cellular sources of the chemokine CCL2, a ligand for CCR2, included perivascular macrophages and microglia. The induction of the proinflammatory cytokine IL-1β was greater in FACS-isolated microglia than in brain-invading monocytes. However, Ccr2 knockout mice displayed greatly reduced monocyte recruitment into brain and reduced levels of the proinflammatory cytokine IL-1β in hippocampus after SE, which was explained by higher expression of the cytokine in circulating and brain monocytes in wild-type mice. Importantly, preventing monocyte recruitment accelerated weight regain, reduced BBB degradation, and attenuated neuronal damage. Our findings identify brain-infiltrating monocytes as a myeloid-cell subclass that contributes to neuroinflammation and morbidity after SE. Inhibiting brain invasion of CCR2+ monocytes could represent a viable method for alleviating the deleterious consequences of SE. PMID:27601660

  20. Methylglyoxal-bis-guanylhydrazone inhibits osteopontin expression and differentiation in cultured human monocytes.

    PubMed

    Jin, Xia; Xu, Hua; McGrath, Michael S

    2018-01-01

    Monocyte activation and polarization play essential roles in many chronic inflammatory diseases. An imbalance of M1 and M2 macrophage activation (pro-inflammatory and alternatively activated, respectively) is believed to be a key aspect in the etiology of these diseases, thus a therapeutic approach that regulates macrophage activation could be of broad clinical relevance. Methylglyoxal-bis-guanylhydrazone (MGBG), a regulator of polyamine metabolism, has recently been shown to be concentrated in monocytes and macrophages, and interfere with HIV integration into the DNA of these cells in vitro. RNA expression analysis of monocytes from HIV+ and control donors with or without MGBG treatment revealed the only gene to be consistently down regulated by MGBG to be osteopontin (OPN). The elevated expression of this pro-inflammatory cytokine and monocyte chemoattractant is associated with various chronic inflammatory diseases. We demonstrate that MGBG is a potent inhibitor of secreted OPN (sOPN) in cultured monocytes with 50% inhibition achieved at 0.1 μM of the drug. Furthermore, inhibition of OPN RNA transcription in monocyte cultures occurs at similar concentrations of the drug. During differentiation of monocytes into macrophages in vitro, monocytes express cell surface CD16 and the cells undergo limited DNA synthesis as measured by uptake of BrdU. MGBG inhibited both activities at similar doses to those regulating OPN expression. In addition, monocyte treatment with MGBG inhibited differentiation into both M1 and M2 classes of macrophages at non-toxic doses. The inhibition of differentiation and anti-OPN effects of MGBG were specific for monocytes in that differentiated macrophages were nearly resistant to MGBG activities. Thus MGBG may have potential therapeutic utility in reducing or normalizing OPN levels and regulating monocyte activation in diseases that involve chronic inflammation.

  1. Heterotropic Effect of β-lactam Antibiotics on Antioxidant Property of Haptoglobin (2-2)-Hemoglobin Complex.

    PubMed

    Tayari, Masoumeh; Moosavi-Nejad, Zahra; Moosavi Nejad, Fatemeh; Rezaei-Tavirani, Mostafa; Dehghan Shasaltaneh, Marzieh

    2011-01-01

    Haptoglobin (Hp) is a mammalian serum glycoprotein showing a genetic polymorphism with three types, 1-1, 2-2 and 1-2. Hp appears to conserve the recycling of heme-iron by forming an essentially irreversible but non-covalent complex with hemoglobin which is released into the plasma by erythrocyte lysis. As an important consequence, Haptoglobin-Hemoglobin complex (Hp-Hb) shows considerable antioxidant property. In this study, antioxidant activity of Hp (2-2)-Hb complex on hydrogen peroxide has been studied and analyzed in the absence and presence of two beta-lactam antibiotics in-vitro. For this purpose, non-Michaelis behavior of peroxidase activity of Hp (2-2)-Hb complex was analyzed using Eadie-Hofstee, Clearance and Hill plots, in the absence and presence of pharmaceutical dose of ampicillin and coamoxiclav. The results have shown that peroxidase activity of Hp (2-2)-Hb complex is modulated via homotropic effect of hydrogen peroxide as an allostric substrate. On the other hand antioxidant property of Hp (2-2)-Hb complex increased via heterotropic effect of both antibiotics on the peroxidase activity of the complex. Both drugs also have mild effect on quality of homotropic property of the peroxidase activity of Hp (2-2)-Hb complex. Therefore, it can be concluded from our study that both beta-lactam antibiotics can increase peroxidase activity of Hp (2-2)-Hb complex via heterotropic effect. Thus, the two antibiotics (especially ampicillin) may help those individuals with Hp (2-2) phenotype to improve the Hp-Hb complex efficiency of removing hydrogen peroxide from serum under oxidative stress. This can be important in the individuals with phenotype Hp 2-2 who have less antioxidant activity relative to other phenotypes and are susceptible to cardiovascular disorders, as has been reported by other researchers.

  2. The acute monocytic leukemias: multidisciplinary studies in 45 patients.

    PubMed

    Straus, D J; Mertelsmann, R; Koziner, B; McKenzie, S; de Harven, E; Arlin, Z A; Kempin, S; Broxmeyer, H; Moore, M A; Menendez-Botet, C J; Gee, T S; Clarkson, B D

    1980-11-01

    The clinical and laboratory features of 37 patients with variants of acute monocytic leukemia are described. Three of these 37 patients who had extensive extramedullary leukemic tissue infiltration are examples of true histiocytic "lymphomas." Three additional patients with undifferentiated leukemias, one patient with refractory anemia with excess of blasts, one patient with chronic myelomonocytic leukemia, one patient with B-lymphocyte diffuse "histiocytic" lymphoma and one patient with "null" cell, terminal deoxynucleotidyl transferase-positive lymphoblastic lymphoma had bone marrow cells with monocytic features. Another patient had dual populations of lymphoid and monocytoid leukemic cells. The true monocytic leukemias, acute monocytic leukemia (AMOL) and acute myelomonocytic leukemia (AMMOL), are closely related to acute myelocytic leukemia (AML) morphologically and by their response to chemotherapy. like AML, the leukemic cells from the AMMOL and AMOL patients form leukemic clusters in semisolid media. Cytochemical staining of leukemic cells for nonspecific esterases, presence of Fc receptor on the cell surface, phagocytic ability, low TdT activity, presence of surface "ruffles" and "ridges" on scanning EM, elevations of serum lysozyme, and clinical manifestations of leukemic tissue infiltration are features which accompanied monocytic differentiation in these cases.

  3. Cerebrospinal fluid monocytes in bacterial meningitis, viral meningitis, and neuroborreliosis.

    PubMed

    Martinot, M; Greigert, V; Souply, L; Rosolen, B; De Briel, D; Mohseni Zadeh, M; Kaiser, J-D

    2018-04-05

    Cerebrospinal fluid (CSF) leukocytes analysis is commonly used to diagnose meningitis and to differentiate bacterial from viral meningitis. Interpreting CSF monocytes can be difficult for physicians, especially in France where lymphocytes and monocytes results are sometimes pooled. We assessed SF monocytes in patients presenting with microbiologically confirmed meningitis (CSF leukocyte count>10/mm 3 for adults or >30/mm 3 for children<2 months), i.e. bacterial meningitis (BM), viral meningitis (VM), and neuroborreliosis (NB). Two-hundred patients (82 BM, 86 VM, and 32 NB) were included. The proportions of monocytes were higher in VM (median 8%; range 0-57%) than in BM (median 5%; range 0-60%, P=0.03) or NB (median 5%; range 0-53%, P=0.46), with a high value overlap between conditions. CSF monocytes should not be used to discriminate BM from VM and NB because of value overlaps. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Innate immune responses of equine monocytes cultured in equine platelet lysate.

    PubMed

    Naskou, Maria C; Norton, Natalie A; Copland, Ian B; Galipeau, Jacques; Peroni, John F

    2018-01-01

    Platelet lysate (PL) has been extensively used for the laboratory expansion of human mesenchymal stem cells (MSC) in order to avoid fetal bovine serum (FBS) which has been associated with immune-mediated host reactions and transmission of bovine-origin microbial contaminants. Before suggesting the routine use of PL for MSC culture, we wanted to further investigate whether PL alone might trigger inflammatory responses when exposed to reactive white blood cells such as monocytes. Our objectives were to evaluate the inflammatory profile of equine monocytes cultured with equine PL (ePL) and to determine if ePL can modulate the expression of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated monocytes. In a first experiment, equine monocytes were isolated and incubated with donor horse serum (DHS), FBS, six individual donors ePL or pooled ePL from all horses. In a second experiment, monocytes were stimulated with E. coli LPS in the presence of 1, 5 or 10% DHS and/or pooled ePL. After 6h of incubation, cell culture supernatants were assayed via ELISA for production of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and Interleukin 1β (IL-1β) as well as for the anti-inflammatory Interleukin 10 (IL-10). Equine monocytes incubated with pooled ePL produced significantly less TNF-α and significantly more IL-10 than monocytes incubated in FBS. A statistically significant difference was not identified for the production of IL-1β. The second experiment showed that pooled ePL added to LPS-stimulated equine monocytes resulted in a significant reduction in TNF-α and IL-1β production. IL-10 production was not significantly upregulated by the addition of ePL to LPS-stimulated monocytes. Finally, the addition of ePL to LPS-stimulated monocytes in the presence of various concentrations of DHS resulted to statistically significant decrease of TNF-α and IL-1β compared to the control groups. This is the first study to demonstrate that ePL suppresses

  5. Signals of monocyte activation in patients with SLE.

    PubMed Central

    Kávai, M; Zsindely, A; Sonkoly, I; Major, M; Demján, I; Szegedi, G

    1983-01-01

    The Fc receptor mediated reaction, the beta-glucuronidase and the lactic dehydrogenase activities of monocytes and the serum lysozyme level were tested together with the circulating immune complex content of patients with systemic lupus erythematosus. Simultaneously with the increasing FC receptor-mediated reaction and the elevated enzyme activities of patient monocytes, the secretion of lysozyme and the immune complex content of the sera were higher than those of the controls. A positive correlation was demonstrated between the Fc receptor-mediated reaction, the beta-glucuronidase activity, the lysozyme secretion and the immune complex content of the sera. Thus, the monocytes of patients appeared to be activated by the circulating immune complexes. PMID:6839541

  6. Monocyte profile in peripheral blood of gestational diabetes mellitus patients.

    PubMed

    Angelo, Ana G S; Neves, Carla T C; Lobo, Thalita F; Godoy, Ramon V C; Ono, Érika; Mattar, Rosiane; Daher, Silvia

    2018-07-01

    Gestational diabetes Mellitus has been considered an inflammatory disease involving different cells and mediators in its development. The role of innate immune cells in GDM physiopathology remains unclear, therefore this study was conducted to assess monocyte profile in GDM patients. This was a case-control study including 20 glucose-tolerant pregnant women (controls) and 18 GDM patients. Flow cytometry was used to assess peripheral blood monocytes subsets (classical, intermediate, non-classical), the expression of TLR4 and CCR2 chemokine receptor (CD192) and cytokines (TNFA, IL6, IL10) secretion by monocytes subsets. In addition, sCD14 serum levels were evaluated by ELISA. We observed increased percentage of CD14 + cells, decreased frequency of intermediate monocytes (CD14 + CD16 + ), and lower percentage of circulating monocytes (classical, intermediate and non-classical) that express TLR4 in the diabetic group compared to controls. Soluble CD14 + serum levels were higher in GDM patients compared to controls. There were no differences in the expression of the CCR2 chemokine receptor and cytokines (TNFA, IL6 and IL10) secretion between the studied groups. Our results demonstrated that GDM patients present impaired monocyte profile in the peripheral blood, suggesting that these cells are involved in GDM physiopathology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Plasmacytoid monocytes in epithelioid cell granulomas: ultrastructural and immunoelectron microscopic study.

    PubMed

    De Vos, R; De Wolf-Peeters, C; Facchetti, F; Desmet, V

    1990-01-01

    Plasmacytoid monocytes, the so-called plasmacytoid T cells, were originally described in rare cases of lymphadenitis. Recent immunohistochemical studies have demonstrated their monocytic origin. Plasmacytoid monocytes have in common with epithelioid cells and multinucleated giant cells the expression of several antigens; they also occur in close topographic association with epithelioid and multinucleated giant cells in epithelioid cell granulomas. On the basis of these data it has been suggested that plasmacytoid monocytes may transform into epithelioid cells. The present ultrastructural and immunoelectron microscopic study of epithelioid cell granulomas provides further arguments in favor of this hypothesis. Moreover, the existence of a transitional cell type with characteristics of plasmacytoid monocytes and epithelioid cells is documented. Subplasmalemmal linear densities present on focal areas of the plasma membrane of the main cell components of granulomas are also discussed.

  8. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation

    PubMed Central

    Wolf, Yochai; Shemer, Anat; Polonsky, Michal; Gross, Mor; Mildner, Alexander; David, Eyal; Amit, Ido; Heikenwalder, Mathias; Nedospasov, Sergei; Prinz, Marco; Friedman, Nir

    2017-01-01

    Monocytes are circulating mononuclear phagocytes, poised to extravasate to sites of inflammation and differentiate into monocyte-derived macrophages and dendritic cells. Tumor necrosis factor (TNF) and its receptors are up-regulated during monopoiesis and expressed by circulating monocytes, as well as effector monocytes infiltrating certain sites of inflammation, such as the spinal cord, during experimental autoimmune encephalomyelitis (EAE). In this study, using competitive in vitro and in vivo assays, we show that monocytes deficient for TNF or TNF receptors are outcompeted by their wild-type counterpart. Moreover, monocyte-autonomous TNF is critical for the function of these cells, as TNF ablation in monocytes/macrophages, but not in microglia, delayed the onset of EAE in challenged animals and was associated with reduced acute spinal cord infiltration of Ly6Chi effector monocytes. Collectively, our data reveal a previously unappreciated critical cell-autonomous role of TNF on monocytes for their survival, maintenance, and function. PMID:28330904

  9. Visualization of T Cell-Regulated Monocyte Clusters Mediating Keratinocyte Death in Acquired Cutaneous Immunity.

    PubMed

    Liu, Zheng; Yang, Fei; Zheng, Hao; Fan, Zhan; Qiao, Sha; Liu, Lei; Tao, Juan; Luo, Qingming; Zhang, Zhihong

    2018-06-01

    It remains unclear how monocytes are mobilized to amplify inflammatory reactions in T cell-mediated adaptive immunity. Here, we investigate dynamic cellular events in the cascade of inflammatory responses through intravital imaging of a multicolor-labeled murine contact hypersensitivity model. We found that monocytes formed clusters around hair follicles in the contact hypersensitivity model. In this process, effector T cells encountered dendritic cells under regions of monocyte clusters and secreted IFN-γ, which mobilizes CCR2-dependent monocyte interstitial migration and CXCR2-dependent monocyte cluster formation. We showed that hair follicles shaped the inflammatory microenvironment for communication among the monocytes, keratinocytes, and effector T cells. After disrupting the T cell-mobilized monocyte clusters through CXCR2 antagonization, monocyte activation and keratinocyte apoptosis were significantly inhibited. Our study provides a new perspective on effector T cell-regulated monocyte behavior, which amplifies the inflammatory reaction in acquired cutaneous immunity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Effects of acute exercise on monocyte subpopulations in metabolic syndrome patients.

    PubMed

    Wonner, Ralph; Wallner, Stefan; Orsó, Evelyn; Schmitz, Gerd

    2016-06-10

    Acute exercise induces numerous changes in peripheral blood, e.g. counts of leukocytes. CD16 pos monocytes, which play a role in the pathogenesis of arteriosclerosis and the metabolic syndrome (MetS), are among the blood cells with the highest fold increase through exercise. So far no studies have investigated the effect of exercise on the blood cell composition of patients with MetS. Blood cell counts, a wide panel of laboratory tests, as well as lipid and protein content of monocytes and granulocytes were determined in healthy subjects, persons with metabolic risk and MetS patients before and after one minute of exercise at 400 W. Leukocyte counts increased significantly in all groups with CD14 pos CD16 pos monocytes showing the highest fold-change. In MetS patients the fold increase was smaller. They had a higher resting level of CD14 pos CD16 pos monocytes and a lower basal ratio of CD16 neg /CD16 pos monocytes. A similar ratio of these cells was induced in control and risk subjects after exercise. However, absolute counts of mobilized pro-inflammatory monocytes did not differ significantly. Furthermore, we detected a decrease in protein content of monocytes in controls, but not in MetS patients. As strenuous exercise is able to mobilize the same amount of pro-inflammatory monocytes in MetS patients as in healthy persons, the elevated basal level of these cells in MetS patients is likely to be caused by enhanced maturation rather than chronic mobilization. The removal of these monocytes from the endothelium might be part of the beneficial effect of exercise on vascular disease. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  11. Mechanisms of haptoglobin protection against hemoglobin peroxidation triggered endothelial damage.

    PubMed

    Schaer, C A; Deuel, J W; Bittermann, A G; Rubio, I G; Schoedon, G; Spahn, D R; Wepf, R A; Vallelian, F; Schaer, D J

    2013-11-01

    Extracellular hemoglobin (Hb) has been recognized as a disease trigger in hemolytic conditions such as sickle cell disease, malaria, and blood transfusion. In vivo, many of the adverse effects of free Hb can be attenuated by the Hb scavenger acute-phase protein haptoglobin (Hp). The primary physiologic disturbances that can be caused by free Hb are found within the cardiovascular system and Hb-triggered oxidative toxicity toward the endothelium has been promoted as a potential mechanism. The molecular mechanisms of this toxicity as well as of the protective activities of Hp are not yet clear. Within this study, we systematically investigated the structural, biochemical, and cell biologic nature of Hb toxicity in an endothelial cell system under peroxidative stress. We identified two principal mechanisms of oxidative Hb toxicity that are mediated by globin degradation products and by modified lipoprotein species, respectively. The two damage pathways trigger diverse and discriminative inflammatory and cytotoxic responses. Hp provides structural stabilization of Hb and shields Hb's oxidative reactions with lipoproteins, providing dramatic protection against both pathways of toxicity. By these mechanisms, Hp shifts Hb's destructive pseudo-peroxidative reaction to a potential anti-oxidative function during peroxidative stress.

  12. Increase of infiltrating monocytes in the livers of patients with chronic liver diseases.

    PubMed

    Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Pan, Zhiyun; Xia, Juan; Xiong, Yali; Wang, Guiyang; Sun, Zhenhua; Chen, Jun; Yan, Xiaomin; Zhang, Zhaoping; Wu, Chao

    2016-01-01

    Infiltrating monocytes have been demonstrated to contribute to tissue damage in experimental models of liver injury and fibrosis. However, less is known about monocyte infiltration in the livers of patients with chronic liver diseases (CLD). In the present study, we demonstrated that CD68+ hepatic macrophages and MAC387+ infiltrating monocytes were significantly increased in the livers of CLD patients with different etiologies as compared with normal liver tissue. In addition, CLD patients with higher inflammatory grading scores had more CD68+ macrophages and MAC387+ monocytes infiltration in their livers compared to those with lower scores. Significantly more MAC387+ infiltrating monocytes were found in the liver tissue of CLD patients with higher fibrotic staging scores compared to those with lower scores. Monocyte chemoattractant protein-1 (MCP-1) expression was significantly increased in the livers of CLD patients with different etiologies. MCP-1 staining scores were significantly positively associated with the numbers of MAC387+ infiltrating monocytes in CLD patients. Taken together, our results demonstrate that infiltrating monocytes may play a pathological role in exacerbating chronic liver inflammation and fibrosis in CLD. MCP-1 may be involved in the monocyte infiltration and progression of liver inflammation and fibrosis in CLD.

  13. Periodontitis-activated monocytes/macrophages cause aortic inflammation

    PubMed Central

    Miyajima, Shin-ichi; Naruse, Keiko; Kobayashi, Yasuko; Nakamura, Nobuhisa; Nishikawa, Toru; Adachi, Kei; Suzuki, Yuki; Kikuchi, Takeshi; Mitani, Akio; Mizutani, Makoto; Ohno, Norikazu; Noguchi, Toshihide; Matsubara, Tatsuaki

    2014-01-01

    A relationship between periodontal disease and atherosclerosis has been suggested by epidemiological studies. Ligature-induced experimental periodontitis is an adequate model for clinical periodontitis, which starts from plaque accumulation, followed by inflammation in the periodontal tissue. Here we have demonstrated using a ligature-induced periodontitis model that periodontitis activates monocytes/macrophages, which subsequently circulate in the blood and adhere to vascular endothelial cells without altering the serum TNF-α concentration. Adherent monocytes/macrophages induced NF-κB activation and VCAM-1 expression in the endothelium and increased the expression of the TNF-α signaling cascade in the aorta. Peripheral blood-derived mononuclear cells from rats with experimental periodontitis showed enhanced adhesion and increased NF-κB/VCAM-1 in cultured vascular endothelial cells. Our results suggest that periodontitis triggers the initial pathogenesis of atherosclerosis, inflammation of the vasculature, through activating monocytes/macrophages. PMID:24893991

  14. Monocytes and Macrophages in Pregnancy and Pre-Eclampsia

    PubMed Central

    Faas, Marijke M.; Spaans, Floor; De Vos, Paul

    2014-01-01

    Preeclampsia is an important complication in pregnancy, characterized by hypertension and proteinuria in the second half of pregnancy. Generalized activation of the inflammatory response is thought to play a role in the pathogenesis of pre-eclampsia. Monocytes may play a central role in this inflammatory response. Monocytes are short lived cells that mature in the circulation and invade into tissues upon an inflammatory stimulus and develop into macrophages. Macrophages are abundantly present in the endometrium and play a role in implantation and placentation in normal pregnancy. In pre-eclampsia, these macrophages appear to be present in larger numbers and are also activated. In the present review, we focused on the role of monocytes and macrophages in the pathophysiology of pre-eclampsia. PMID:25071761

  15. Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis

    PubMed Central

    Robben, Paul M.; LaRegina, Marie; Kuziel, William A.; Sibley, L. David

    2005-01-01

    Circulating murine monocytes comprise two largely exclusive subpopulations that are responsible for seeding normal tissues (Gr-1−/CCR2−/CX3CR1high) or responding to sites of inflammation (Gr-1+/CCR2+/CX3CR1lo). Gr-1+ monocytes are recruited to the site of infection during the early stages of immune response to the intracellular pathogen Toxoplasma gondii. A murine model of toxoplasmosis was thus used to examine the importance of Gr-1+ monocytes in the control of disseminated parasitic infection in vivo. The recruitment of Gr-1+ monocytes was intimately associated with the ability to suppress early parasite replication at the site of inoculation. Infection of CCR2−/− and MCP-1−/− mice with typically nonlethal, low doses of T. gondii resulted in the abrogated recruitment of Gr-1+ monocytes. The failure to recruit Gr-1+ monocytes resulted in greatly enhanced mortality despite the induction of normal Th1 cell responses leading to high levels of IL-12, TNF-α, and IFN-γ. The profound susceptibility of CCR2−/− mice establishes Gr-1+ monocytes as necessary effector cells in the resistance to acute toxoplasmosis and suggests that the CCR2-dependent recruitment of Gr-1+ monocytes may be an important general mechanism for resistance to intracellular pathogens. PMID:15928200

  16. Induction of endothelial cell proliferation by angiogenic factors released by activated monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakala, Rajbabu; Watanabe, Takuya; Benedict, Claude R

    2002-06-01

    Introduction: Cell-cell interaction is an essential component of atherosclerotic plaque development. Activated monocytes appear to play a central role in the development of atherosclerosis, not only through foam cell formation but also via the production of various growth factors that induce proliferation of different cell types that are involved in the plaque development. Using serum free co-culture method, we determined the effect of monocytes on endothelial cell proliferation. Methods: Endothelial cell proliferation is determined by the amount of [{sup 3}H]thymidine incorporated in to the DNA. Basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) levels inmore » the conditioned medium were determined by ELISA. Results: Conditioned medium from unactivated monocytes partially inhibited endothelial cell proliferation, whereas conditioned medium from activated monocytes promoted endothelial cell proliferation. The mitogenic effect of conditioned medium derived from activated monocytes is due to the presence of b-FGF, VEGF and IL-8. Neutralizing antibodies against b-FGF, VEGF and IL-8 partially reversed the mitogenic effect of conditioned medium derived from activated monocytes. When b-FGF, VEGF and IL-8 were immunoprecipitated from conditioned medium derived from activated monocytes, it is less mitogenic to endothelial cells. Conclusion: Activated monocytes may play an important role in the development of atherosclerotic plaque by producing endothelial cell growth factors.« less

  17. Ursodeoxycholic acid inhibits TNFα-induced IL-8 release from monocytes.

    PubMed

    O'Dwyer, Aoife M; Lajczak, Natalia K; Keyes, Jennifer A; Ward, Joseph B; Greene, Catherine M; Keely, Stephen J

    2016-08-01

    Monocytes are critical to the pathogenesis of inflammatory bowel disease (IBD) as they infiltrate the mucosa and release cytokines that drive the inflammatory response. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid with anti-inflammatory actions, has been proposed as a potential new therapy for IBD. However, its effects on monocyte function are not yet known. Primary monocytes from healthy volunteers or cultured U937 monocytes were treated with either the proinflammatory cytokine, TNFα (5 ng/ml) or the bacterial endotoxin, lipopolysaccharide (LPS; 1 μg/ml) for 24 h, in the absence or presence of UDCA (25-100 μM). IL-8 release into the supernatant was measured by ELISA. mRNA levels were quantified by qPCR and changes in cell signaling proteins were determined by Western blotting. Toxicity was assessed by measuring lactate dehydrogenase (LDH) release. UDCA treatment significantly attenuated TNFα-, but not LPS-driven, release of IL-8 from both primary and cultured monocytes. UDCA inhibition of TNFα-driven responses was associated with reduced IL-8 mRNA expression. Both TNFα and LPS stimulated NFκB activation in monocytes, while IL-8 release in response to both cytokines was attenuated by an NFκB inhibitor, BMS-345541. Interestingly, UDCA inhibited TNFα-, but not LPS-stimulated, NFκB activation. Finally, TNFα, but not LPS, induced phosphorylation of TNF receptor associated factor (TRAF2), while UDCA cotreatment attenuated this response. We conclude that UDCA specifically inhibits TNFα-induced IL-8 release from monocytes by inhibiting TRAF2 activation. Since such actions would serve to dampen mucosal immune responses in vivo, our data support the therapeutic potential of UDCA for IBD. Copyright © 2016 the American Physiological Society.

  18. A Critical Role for Monocytes/Macrophages During Intestinal Inflammation-associated Lymphangiogenesis

    PubMed Central

    Becker, Felix; Kurmaeva, Elvira; Gavins, Felicity N. E.; Stevenson, Emily V.; Navratil, Aaron R.; Jin, Long; Tsunoda, Ikuo; Orr, A. Wayne; Alexander, Jonathan S.; Ostanin, Dmitry V.

    2016-01-01

    Background Inflammation-associated lymphangiogenesis (IAL) is frequently observed in inflammatory bowel diseases. IAL is believed to limit inflammation by enhancing fluid and immune cell clearance. Although monocytes/macrophages (MΦ) are known to contribute to intestinal pathology in inflammatory bowel disease, their role in intestinal IAL has never been studied mechanistically. We investigated contributions of monocytes/MΦ to the development of intestinal inflammation and IAL. Methods Because inflammatory monocytes express CC chemokine receptor 2 (CCR2), we used CCR2 diphtheria toxin receptor transgenic (CCR2.DTR) mice, in which monocytes can be depleted by diphtheria toxin injection, and CCR2−/− mice, which have reduced circulating monocytes. Acute or chronic colitis was induced by dextran sodium sulfate or adoptive transfer of CD4+CD45RBhigh T cells, respectively. Intestinal inflammation was assessed by flow cytometry, immunofluorescence, disease activity, and histopathology, whereas IAL was assessed by lymphatic vessel morphology and density. Results We demonstrated that intestinal MΦ expressed vascular endothelial growth factor-C/D. In acute colitis, monocyte-depleted mice were protected from intestinal injury and showed reduced IAL, which was reversed after transfer of wild-type monocytes into CCR2−/− mice. In chronic colitis, CCR2 deficiency did not attenuate inflammation but reduced IAL. Conclusions We propose a dual role of MΦ in (1) promoting acute inflammation and (2) contributing to IAL. Our data suggest that intestinal inflammation and IAL could occur independently, because IAL was reduced in the absence of monocytes/MΦ, even when inflammation was present. Future inflammatory bowel disease therapies might exploit promotion of IAL and suppression of MΦ independently, to restore lymphatic clearance and reduce inflammation. PMID:26950310

  19. The Role of Monocyte Percentage in Osteoporosis in Male Rheumatic Diseases.

    PubMed

    Su, Yu-Jih; Chen, Chao Tung; Tsai, Nai-Wen; Huang, Chih-Cheng; Wang, Hung-Chen; Kung, Chia-Te; Lin, Wei-Che; Cheng, Ben-Chung; Su, Chih-Min; Hsiao, Sheng-Yuan; Lu, Cheng-Hsien

    2017-11-01

    Osteoporosis is easily overlooked in male patients, especially in the field of rheumatic diseases mostly prevalent with female patients, and its link to pathogenesis is still lacking. Attenuated monocyte apoptosis from a transcriptome-wide expression study illustrates the role of monocytes in osteoporosis. This study tested the hypothesis that the monocyte percentage among leukocytes could be a biomarker of osteoporosis in rheumatic diseases. Eighty-seven males with rheumatic diseases were evaluated in rheumatology outpatient clinics for bone mineral density (BMD) and surrogate markers, such as routine peripheral blood parameters and autoantibodies. From the total number of 87 patients included in this study, only 15 met the criteria for diagnosis of osteoporosis. Both age and monocyte percentage remained independently associated with the presence of osteoporosis. Steroid dose (equivalent prednisolone dose) was negatively associated with BMD of the hip area and platelet counts were negatively associated with BMD and T score of the spine area. Besides age, monocyte percentage meets the major requirements for osteoporosis in male rheumatic diseases. A higher monocyte percentage in male rheumatic disease patients, aged over 50 years in this study, and BMD study should be considered in order to reduce the risk of osteoporosis-related fractures.

  20. Monocyte Subset Dynamics in Human Atherosclerosis Can Be Profiled with Magnetic Nano-Sensors

    PubMed Central

    Wildgruber, Moritz; Lee, Hakho; Chudnovskiy, Aleksey; Yoon, Tae-Jong; Etzrodt, Martin; Pittet, Mikael J.; Nahrendorf, Matthias; Croce, Kevin; Libby, Peter; Weissleder, Ralph; Swirski, Filip K.

    2009-01-01

    Monocytes are circulating macrophage and dendritic cell precursors that populate healthy and diseased tissue. In humans, monocytes consist of at least two subsets whose proportions in the blood fluctuate in response to coronary artery disease, sepsis, and viral infection. Animal studies have shown that specific shifts in the monocyte subset repertoire either exacerbate or attenuate disease, suggesting a role for monocyte subsets as biomarkers and therapeutic targets. Assays are therefore needed that can selectively and rapidly enumerate monocytes and their subsets. This study shows that two major human monocyte subsets express similar levels of the receptor for macrophage colony stimulating factor (MCSFR) but differ in their phagocytic capacity. We exploit these properties and custom-engineer magnetic nanoparticles for ex vivo sensing of monocytes and their subsets. We present a two-dimensional enumerative mathematical model that simultaneously reports number and proportion of monocyte subsets in a small volume of human blood. Using a recently described diagnostic magnetic resonance (DMR) chip with 1 µl sample size and high throughput capabilities, we then show that application of the model accurately quantifies subset fluctuations that occur in patients with atherosclerosis. PMID:19461894

  1. Surface receptors on neutrophils and monocytes from immunodeficient and normal horses.

    PubMed Central

    Banks, K L; McGuire, T C

    1975-01-01

    Surface receptors on peripheral blood neutrophils and monocytes from normal and immunodeficient horses have been studied. Sheep erythrocytes (SRBC) coated with IgG, IgM, and complement but not IgG(T), readily bound to normal equine monocytes and neutrophils. More than 4000 molecules of IgG were required to sensitize each SRBC for adherence to monocytes, and more than 12,000 molecules were required for adherence to neutrophils. Young horses with a severe combined immunodeficiency had an almost total absence of lymphocytes, but normal numbers of monocytes and neutrophils. The number of receptors for immunoglobulin, complement, and phytolectin on monocytes and neutrophils from immunodeficient animals were similar to those on the cells of normal horses. Although the precursor cells of lymphocytes of horses with combined immunodeficiency appear to be defective, no defect in the other cellular products of the bone marrow were apparent. PMID:1126740

  2. Aberrant glycosylation of plasma proteins in severe preeclampsia promotes monocyte adhesion.

    PubMed

    Flood-Nichols, Shannon K; Kazanjian, Avedis A; Tinnemore, Deborah; Gafken, Philip R; Ogata, Yuko; Napolitano, Peter G; Stallings, Jonathan D; Ippolito, Danielle L

    2014-02-01

    Glycosylation of plasma proteins increases during pregnancy. Our objectives were to investigate an anti-inflammatory role of these proteins in normal pregnancies and determine whether aberrant protein glycosylation promotes monocyte adhesion in preeclampsia. Plasma was prospectively collected from nonpregnant controls and nulliparous patients in all 3 trimesters. Patients were divided into cohorts based on the applicable postpartum diagnosis. U937 monocytes were preconditioned with enzymatically deglycosylated plasma, and monocyte adhesion to endothelial cell monolayers was quantified by spectrophotometry. Plasma from nonpregnant controls, first trimester normotensives, and first trimester patients with mild preeclampsia inhibited monocyte-endothelial cell adhesion (P < .05), but plasma from first trimester patients with severe preeclampsia and second and third trimester normotensives did not. Deglycosylating plasma proteins significantly increased adhesion in all the cohorts. These results support a role of plasma glycoprotein interaction in monocyte-endothelial cell adhesion and could suggest a novel therapeutic target for severe preeclampsia.

  3. Culture of Macrophage Colony-stimulating Factor Differentiated Human Monocyte-derived Macrophages.

    PubMed

    Jin, Xueting; Kruth, Howard S

    2016-06-30

    A protocol is presented for cell culture of macrophage colony-stimulating factor (M-CSF) differentiated human monocyte-derived macrophages. For initiation of experiments, fresh or frozen monocytes are cultured in flasks for 1 week with M-CSF to induce their differentiation into macrophages. Then, the macrophages can be harvested and seeded into culture wells at required cell densities for carrying out experiments. The use of defined numbers of macrophages rather than defined numbers of monocytes to initiate macrophage cultures for experiments yields macrophage cultures in which the desired cell density can be more consistently attained. Use of cryopreserved monocytes reduces dependency on donor availability and produces more homogeneous macrophage cultures.

  4. The haptoglobin promoter polymorphism rs5471 is the most definitive genetic determinant of serum haptoglobin level in a Ghanaian population.

    PubMed

    Soejima, Mikiko; Teye, Kwesi; Koda, Yoshiro

    2018-08-01

    The serum haptoglobin (HP) level varies in various clinical conditions and among individuals. Recently, the common HP alleles, rs5472, and rs2000999 have been reported to associate with serum HP level, but no studies have been done on Africans. Here, we explored the relationship of not only these polymorphisms but also rs5470 and rs5471 to the serum HP level in 121 Ghanaians. Genotyping of rs2000999 was performed by PCR using hydrolysis probes, while the other polymorphisms have been already genotyped. Serum HP level was measured by a sandwich ELISA. We observed a significant association between rs5471 and the serum HP level (p = 0.026). It was also observed within the subgroups of HP 2 /HP 2 and HP 2 /HP 1 . In addition, we detected a trend toward lower HP levels for individuals with the A allele of rs2000999 than those without A, but it was not statistically significant (p = 0.156). However, we did not observe the clear associations between other polymorphisms and serum HP level that were observed for Europeans and Asians because of the small sample size and the complexity of SNPs affecting the HP level. We suggest that rs5471 is a strong genetic determinant of HP levels in Ghanaians, and this seems to be characteristic of Africans. Further investigation using large scale samples will help in understanding the genetic background of individual variability of the serum HP level. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Infection and Activation of Monocytes by Marburg and Ebola Viruses

    PubMed Central

    Ströher, Ute; West, Elmar; Bugany, Harald; Klenk, Hans-Dieter; Schnittler, Hans-Joachim; Feldmann, Heinz

    2001-01-01

    In this study we investigated the effects of Marburg virus and Ebola virus (species Zaire and Reston) infections on freshly isolated suspended monocytes in comparison to adherent macrophages under culture conditions. Our data showed that monocytes are permissive for both filoviruses. As is the case in macrophages, infection resulted in the activation of monocytes which was largely independent of virus replication. The activation was triggered similarly by Marburg and Ebola viruses, species Zaire and Reston, as indicated by the release of the proinflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor α, and IL-6 as well as the chemokines IL-8 and gro-α. Our data suggest that infected monocytes may play an important role in the spread of filoviruses and in the pathogenesis of filoviral hemorrhagic disease. PMID:11602743

  6. CD16+ monocytes control T-cell subset development in immune thrombocytopenia

    PubMed Central

    Zhong, Hui; Bao, Weili; Li, Xiaojuan; Miller, Allison; Seery, Caroline; Haq, Naznin; Bussel, James

    2012-01-01

    Immune thrombocytopenia (ITP) results from decreased platelet production and accelerated platelet destruction. Impaired CD4+ regulatory T-cell (Treg) compartment and skewed Th1 and possibly Th17 responses have been described in ITP patients. The trigger for aberrant T-cell polarization remains unknown. Because monocytes have a critical role in development and polarization of T-cell subsets, we explored the contribution of monocyte subsets in control of Treg and Th development in patients with ITP. Unlike circulating classic CD14hiCD16− subpopulation, the CD16+ monocyte subset was expanded in ITP patients with low platelet counts on thrombopoietic agents and positively correlated with T-cell CD4+IFN-γ+ levels, but negatively with circulating CD4+CD25hiFoxp3+ and IL-17+ Th cells. Using a coculture model, we found that CD16+ ITP monocytes promoted the expansion of IFN-γ+CD4+ cells and concomitantly inhibited the proliferation of Tregs and IL-17+ Th cells. Th-1–polarizing cytokine IL-12, secreted after direct contact of patient T-cell and CD16+ monocytes, was responsible for the inhibitory effect on Treg and IL-17+CD4+ cell proliferation. Our findings are consistent with ITP CD16+ monocytes promoting Th1 development, which in turn negatively regulates IL-17 and Treg induction. This underscores the critical role of CD16+ monocytes in the generation of potentially pathogenic Th responses in ITP. PMID:22915651

  7. Aliphatic alcohols in spirits inhibit phagocytosis by human monocytes.

    PubMed

    Pál, László; Árnyas, Ervin M; Bujdosó, Orsolya; Baranyi, Gergő; Rácz, Gábor; Ádány, Róza; McKee, Martin; Szűcs, Sándor

    2015-04-01

    A large volume of alcoholic beverages containing aliphatic alcohols is consumed worldwide. Previous studies have confirmed the presence of ethanol-induced immunosuppression in heavy drinkers, thereby increasing susceptibility to infectious diseases. However, the aliphatic alcohols contained in alcoholic beverages might also impair immune cell function, thereby contributing to a further decrease in microbicidal activity. Previous research has shown that aliphatic alcohols inhibit phagocytosis by granulocytes but their effect on human monocytes has not been studied. This is important as they play a crucial role in engulfment and killing of pathogenic microorganisms and a decrease in their phagocytic activity could lead to impaired antimicrobial defence in heavy drinkers. The aim of this study was to measure monocyte phagocytosis following their treatment with those aliphatic alcohols detected in alcoholic beverages. Monocytes were separated from human peripheral blood and phagocytosis of opsonized zymosan particles by monocytes treated with ethanol and aliphatic alcohols individually and in combination was determined. It was shown that these alcohols could suppress the phagocytic activity of monocytes in a concentration-dependent manner and when combined with ethanol, they caused a further decrease in phagocytosis. Due to their additive effects, it is possible that they may inhibit phagocytosis in a clinically meaningful way in alcoholics and episodic heavy drinkers thereby contribute to their increased susceptibility to infectious diseases. However, further research is needed to address this question.

  8. Human monocyte adhesion and activation on crystalline polymers with different morphology and wettability in vitro.

    PubMed

    Young, T H; Lin, D T; Chen, L Y

    2000-06-15

    This study evaluated the effects of crystalline polyamide (Nylon-66), poly(ethylene-co-vinyl alcohol) (PEVA), and poly(vinylidene fluoride) (PVDF) polymers with nonporous and porous morphologies on the ability of monocytes to adhere and subsequently activate to produce IL-1beta, IL-6, and tumor necrosis factor alpha. The results indicated monocyte adhesion and activation on a material might differ to a great extent, depending on the surface morphology and wettability. As the polymer wettability increases, the ability of monocytes to adhere increases but the ability to produce cytokines decreases. Similarly, these polymers, when prepared with porous surfaces, enhance monocyte adhesion but suppress monocyte release of cytokines. Therefore, the hydrophobic PVDF with a nonporous surface stimulates the most activity in adherent monocytes but shows the greatest inhibition of monocyte adhesion when compared with all of the other membranes. In contrast, the hydrophilic Nylon-66, which has a porous surface, is a relatively better substrate for this work. Therefore, monocyte behavior on a biomaterial may be influenced by a specific surface property. Based on this result, we propose that monocyte adhesion is regulated by a different mechanism than monocyte activation. Consequently, the generation of cytokines by monocytes is not proportional to the number of cells adherent to the surface. Copyright 2000 John Wiley & Sons, Inc.

  9. Buprenorphine decreases the CCL2-mediated chemotactic response of monocytes.

    PubMed

    Carvallo, Loreto; Lopez, Lillie; Che, Fa-Yun; Lim, Jihyeon; Eugenin, Eliseo A; Williams, Dionna W; Nieves, Edward; Calderon, Tina M; Madrid-Aliste, Carlos; Fiser, Andras; Weiss, Louis; Angeletti, Ruth Hogue; Berman, Joan W

    2015-04-01

    Despite successful combined antiretroviral therapy, ∼ 60% of HIV-infected people exhibit HIV-associated neurocognitive disorders (HAND). CCL2 is elevated in the CNS of infected people with HAND and mediates monocyte influx into the CNS, which is critical in neuroAIDS. Many HIV-infected opiate abusers have increased neuroinflammation that may augment HAND. Buprenorphine is used to treat opiate addiction. However, there are few studies that examine its impact on HIV neuropathogenesis. We show that buprenorphine reduces the chemotactic phenotype of monocytes. Buprenorphine decreases the formation of membrane projections in response to CCL2. It also decreases CCL2-induced chemotaxis and mediates a delay in reinsertion of the CCL2 receptor, CCR2, into the cell membrane after CCL2-mediated receptor internalization, suggesting a mechanism of action of buprenorphine. Signaling pathways in CCL2-induced migration include increased phosphorylation of p38 MAPK and of the junctional protein JAM-A. We show that buprenorphine decreases these phosphorylations in CCL2-treated monocytes. Using DAMGO, CTAP, and Nor-BNI, we demonstrate that the effect of buprenorphine on CCL2 signaling is opioid receptor mediated. To identify additional potential mechanisms by which buprenorphine inhibits CCL2-induced monocyte migration, we performed proteomic analyses to characterize additional proteins in monocytes whose phosphorylation after CCL2 treatment was inhibited by buprenorphine. Leukosialin and S100A9 were identified and had not been shown previously to be involved in monocyte migration. We propose that buprenorphine limits CCL2-mediated monocyte transmigration into the CNS, thereby reducing neuroinflammation characteristic of HAND. Our findings underscore the use of buprenorphine as a therapeutic for neuroinflammation as well as for addiction. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. Mycobacterium leprae alters classical activation of human monocytes in vitro.

    PubMed

    Fallows, Dorothy; Peixoto, Blas; Kaplan, Gilla; Manca, Claudia

    2016-01-01

    Macrophages play a central role in the pathogenesis of leprosy, caused by Mycobacterium leprae. The polarized clinical presentations in leprosy are associated with differential immune activation. In tuberculoid leprosy, macrophages show a classical activation phenotype (M1), while macrophages in lepromatous disease display characteristics of alternative activation (M2). Bacille Calmette-Guérin (BCG) vaccination, which protects against leprosy, can promote sustained changes in monocyte response to unrelated pathogens and may preferentially direct monocytes towards an M1 protective phenotype. We previously reported that M. leprae can dampen the response of naïve human monocytes to a strong inducer of pro-inflammatory cytokines, such as BCG. Here, we investigated the ability of the pathogen to alter the direction of macrophage polarization and the impact of BCG vaccination on the monocyte response to M. leprae. We show that in vitro exposure of monocytes from healthy donors to M. leprae interferes with subsequent M1 polarization, indicated by lower levels of M1-associated cytokine/chemokines released and reduced expression of M1 cell surface markers. Exposure to M. leprae phenolic glycolipid (PGL) 1, instead of whole bacteria, demonstrated a similar effect on M1 cytokine/chemokine release. In addition, we found that monocytes from 10-week old BCG-vaccinated infants released higher levels of the pro-inflammatory cytokines TNF-α and IL-1β in response to M. leprae compared to those from unvaccinated infants. Exposure to M. leprae has an inhibitory effect on M1 macrophage polarization, likely mediated through PGL-1. By directing monocyte/macrophages preferentially towards M1 activation, BCG vaccination may render the cells more refractory to the inhibitory effects of subsequent M. leprae infection.

  11. PKC-Dependent Human Monocyte Adhesion Requires AMPK and Syk Activation

    PubMed Central

    Chang, Mei-Ying; Huang, Duen-Yi; Ho, Feng-Ming; Huang, Kuo-Chin; Lin, Wan-Wan

    2012-01-01

    PKC plays a pivotal role in mediating monocyte adhesion; however, the underlying mechanisms of PKC-mediated cell adhesion are still unclear. In this study, we elucidated the signaling network of phorbol ester PMA-stimulated human monocyte adhesion. Our results with pharmacological inhibitors suggested the involvement of AMPK, Syk, Src and ERK in PKC-dependent adhesion of THP-1 monocytes to culture plates. Biochemical analysis further confirmed the ability of PMA to activate these kinases, as well as the involvement of AMPK-Syk-Src signaling in this event. Direct protein interaction between AMPK and Syk, which requires the kinase domain of AMPK and linker region of Syk, was observed following PMA stimulation. Notably, we identified Syk as a novel downstream target of AMPK; AICAR can induce Syk phosphorylation at Ser178 and activation of this kinase. However, activation of AMPK alone, either by stimulation with AICAR or by overexpression, is not sufficient to induce monocyte adhesion. Studies further demonstrated that PKC-mediated ERK signaling independent of AMPK activation is also involved in cell adhesion. Moreover, AMPK, Syk, Src and ERK signaling were also required for PMA to induce THP-1 cell adhesion to endothelial cells as well as to induce adhesion response of human primary monocytes. Taken together, we propose a bifurcated kinase signaling pathway involved in PMA-mediated adhesion of monocytes. PKC can activate LKB1/AMPK, leading to phosphorylation and activation of Syk, and subsequent activation of Src and FAK. In addition, PKC-dependent ERK activation induces a coordinated signal for cytoskeleton rearrangement and cell adhesion. For the first time we demonstrate Syk as a novel substrate target of AMPK, and shed new light on the role of AMPK in monocyte adhesion, in addition to its well identified functions in energy homeostasis. PMID:22848421

  12. Upregulation of Monocyte/Macrophage HGFIN (Gpnmb/Osteoactivin) Expression in End-Stage Renal Disease

    PubMed Central

    Vaziri, Nosratola D.; Yuan, Jun; Adler, Sharon G.

    2010-01-01

    Background and objectives: Hematopoietic growth factor–inducible neurokinin 1 (HGFIN), also known as Gpnmb and osteoactivin, is a transmembrane glycoprotein that is expressed in numerous cells, including osteoclasts, macrophages, and dendritic cells. It serves as an osteoblast differentiation factor, participates in bone mineralization, and functions as a negative regulator of inflammation in macrophages. Although measurable at low levels in monocytes, monocyte-to-macrophage transformation causes substantial increase in HGFIN expression. HGFIN is involved in systemic inflammation, bone demineralization, and soft tissue vascular calcification. Design, setting, participants, & measurements: We explored HGFIN expression in monocytes and monocyte-derived macrophages in 21 stable hemodialysis patients and 22 control subjects. Results: Dialysis patients exhibited marked upregulation of colony-stimulating factor and IL-6 and significant downregulation of IL-10 in intact monocytes and transformed macrophages. HGFIN expression in intact monocytes was negligible in control subjects but conspicuously elevated (8.6-fold) in dialysis patients. As expected, in vitro monocyte-to-macrophage transformation resulted in marked upregulation of HGFIN in cells obtained from both groups but much more so in dialysis patients (17.5-fold higher). Upregulation of HGFIN and inflammatory cytokines in the uremic monocyte-derived macrophages occurred when grown in the presence of either normal or uremic serum, suggesting the enduring effect of the in vivo uremic milieu on monocyte/macrophage phenotype and function. Conclusions: Uremic macrophages exhibit increased HGFIN gene and protein expression and heightened expression of proinflammatory and a suppressed expression of anti-inflammatory cytokines. Further studies are needed to determine the role of heightened monocyte/macrophage HGFIN expression in the pathogenesis of ESRD-induced inflammation and vascular and soft tissue calcification

  13. Haptoglobin genotyping of Vietnamese: global distribution of HP del, complete deletion allele of the HP gene.

    PubMed

    Soejima, Mikiko; Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Lan, Vi Thi Mai; Minh, Tu Binh; Takahashi, Shin; Trang, Pham Thi Kim; Viet, Pham Hung; Tanabe, Shinsuke; Koda, Yoshiro

    2015-01-01

    The haptoglobin (HP) gene deletion allele (HP(del)) is responsible for anhaptoglobinemia and a genetic risk factor for anaphylaxis reaction after transfusion due to production of the anti-HP antibody. The distribution of this allele has been explored by several groups including ours. Here, we studied the frequency of HP(del) in addition to the distribution of common HP genotypes in 293 Vietnamese. The HP(del) was encountered with the frequency of 0.020. The present result suggested that this deletion allele is restricted to East and Southeast Asians. Thus, this allele seems to be a potential ancestry informative marker for these populations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Effect of Native and Minimally Modified Low-density Lipoprotein on the Activation of Monocyte Subsets.

    PubMed

    Blanco-Favela, Francisco; Espinosa-Luna, José Esteban; Chávez-Rueda, Adriana Karina; Madrid-Miller, Alejandra; Chávez-Sánchez, Luis

    2017-07-01

    In atherosclerosis, monocytes are essential and secrete pro-inflammatory cytokines in response to modified low-density lipoprotein (LDL). Human CD14 ++ CD16 - , CD14 ++ CD16 + and CD14 + CD16 ++ monocytes produce different cytokines. The objective of this research was to determine the number of monocyte subsets positives to cytokines in response to native (nLDL) and minimally modified LDL (mmLDL). Human monocytes from healthy individuals were purified by negative selection and were stimulated with nLDL, mmLDL or LPS. Subsequently, human total monocytes were incubated with monoclonal antibodies specific for CD14 or both CD14 and CD16 to characterize total monocytes and monocyte subsets and with antibodies specific to anti-tumor necrosis factor (TNF)-α, anti-interleukin (IL)-6 and anti-IL-10. The number of cells positive for cytokines was determined and cells cultured with nLDL, mmLDL and LPS were compared with cells cultured only with culture medium. We found that nLDL does not induce in the total monocyte population or in the three monocyte subsets positives to cytokines. MmLDL induced in total monocytes positives to TNF-α and IL-6 as well as in both CD14 ++ CD16 + and CD14 + CD16 ++ and in CD14 ++ CD16 + monocytes, respectively. Moreover, total monocytes and the three monocyte subsets expressed few amounts of cells positives to IL-10 in response to mmLDL. Our study demonstrated that nLDL did not induce cells positives to cytokines and that the CD14 ++ CD16 + and CD14 + CD16 ++ monocyte subsets could be the main sources of TNF-α and IL-6, respectively, in response to mmLDL, which promotes the development and progression of atherosclerotic plaque. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  15. Meat juice: An alternative matrix for assessing animal health by measuring acute phase proteins. Correlations of pig-MAP and haptoglobin concentrations in pig meat juice and plasma.

    PubMed

    Piñeiro, M; Gymnich, S; Knura, S; Piñeiro, C; Petersen, B

    2009-10-01

    Quantification of acute phase proteins (APPs) in blood can be used for monitoring animal health and welfare on farms, and could be also of interest for the detection of diseased animals during the meat inspection process. However serum or plasma is not always available for end-point analysis at slaughter. Meat juice might provide an adequate, alternative matrix that can be easily obtained for post-mortem analysis at abattoirs. The concentrations of pig Major Acute phase Protein (pig-MAP) and haptoglobin, two of the main APPs in pigs, were determined in approximately 300 paired samples of plasma and meat juice from the diaphragm (pars costalis), obtained after freezing and thawing the muscle. APPs concentrations in meat juice were closely correlated to those in plasma (r=0.695 for haptoglobin, r=0.858 for pig-MAP, p<0.001). These results open new possibilities for the assessment of animal health in pig production, with implications for food safety and meat quality.

  16. Biophysical regulation of Chlamydia pneumoniae-infected monocyte recruitment to atherosclerotic foci

    NASA Astrophysics Data System (ADS)

    Evani, Shankar J.; Ramasubramanian, Anand K.

    2016-01-01

    Chlamydia pneumoniae infection is implicated in atherosclerosis although the contributory mechanisms are poorly understood. We hypothesize that C. pneumoniae infection favors the recruitment of monocytes to atherosclerotic foci by altering monocyte biophysics. Primary, fresh human monocytes were infected with C. pneumoniae for 8 h, and the interactions between monocytes and E-selectin or aortic endothelium under flow were characterized by video microscopy and image analysis. The distribution of membrane lipid rafts and adhesion receptors were analyzed by imaging flow cytometry. Infected cells rolled on E-selectin and endothelial surfaces, and this rolling was slower, steady and uniform compared to uninfected cells. Infection decreases cholesterol levels, increases membrane fluidity, disrupts lipid rafts, and redistributes CD44, which is the primary mediator of rolling interactions. Together, these changes translate to higher firm adhesion of infected monocytes on endothelium, which is enhanced in the presence of LDL. Uninfected monocytes treated with LDL or left untreated were used as baseline control. Our results demonstrate that the membrane biophysical changes due to infection and hyperlipidemia are one of the key mechanisms by which C. pneumoniae can exacerbate atherosclerotic pathology. These findings provide a framework to characterize the role of ‘infectious burden’ in the development and progression of atherosclerosis.

  17. Neuropeptide Y Negatively Influences Monocyte Recruitment to the Central Nervous System during Retrovirus Infection.

    PubMed

    Woods, Tyson A; Du, Min; Carmody, Aaron; Peterson, Karin E

    2015-12-30

    Monocyte infiltration into the CNS is a hallmark of several viral infections of the central nervous system (CNS), including retrovirus infection. Understanding the factors that mediate monocyte migration in the CNS is essential for the development of therapeutics that can alter the disease process. In the current study, we found that neuropeptide Y (NPY) suppressed monocyte recruitment to the CNS in a mouse model of polytropic retrovirus infection. NPY(-/-) mice had increased incidence and kinetics of retrovirus-induced neurological disease, which correlated with a significant increase in monocytes in the CNS compared to wild-type mice. Both Ly6C(hi) inflammatory and Ly6C(lo) alternatively activated monocytes were increased in the CNS of NPY(-/-) mice following virus infection, suggesting that NPY suppresses the infiltration of both cell types. Ex vivo analysis of myeloid cells from brain tissue demonstrated that infiltrating monocytes expressed high levels of the NPY receptor Y2R. Correlating with the expression of Y2R on monocytes, treatment of NPY(-/-) mice with a truncated, Y2R-specific NPY peptide suppressed the incidence of retrovirus-induced neurological disease. These data demonstrate a clear role for NPY as a negative regulator of monocyte recruitment into the CNS and provide a new mechanism for suppression of retrovirus-induced neurological disease. Monocyte recruitment to the brain is associated with multiple neurological diseases. However, the factors that influence the recruitment of these cells to the brain are still not well understood. In the current study, we found that neuropeptide Y, a protein produced by neurons, affected monocyte recruitment to the brain during retrovirus infection. We show that mice deficient in NPY have increased influx of monocytes into the brain and that this increase in monocytes correlates with neurological-disease development. These studies provide a mechanism by which the nervous system, through the production of NPY

  18. Cannabidiol induced a contrasting pro-apoptotic effect between freshly isolated and precultured human monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hsin-Ying; Chang, An-Chi; Wang, Chia-Chi

    2010-08-01

    It has been documented that cannabidiol (CBD) induced apoptosis in a variety of transformed cells, including lymphocytic and monocytic leukemias. In contrast, a differential sensitivity between normal lymphocytes and monocytes to CBD-mediated apoptosis has been reported. The present study investigated the pro-apoptotic effect of CBD on human peripheral monocytes that were either freshly isolated or precultured for 72 h. CBD markedly enhanced apoptosis of freshly isolated monocytes in a time- and concentration-dependent manner, whereas precultured monocytes were insensitive. By comparison, both cells were sensitive to doxorubicin-induced apoptosis. CBD significantly diminished the cellular thiols and glutathione in freshly isolated monocytes. Themore » apoptosis induced by CBD was abrogated in the presence of N-acetyl-{sub L}-cysteine, a precursor of glutathione. In addition, precultured monocytes contained a significantly greater level of glutathione and heme oxygenase-1 (HO-1) compared to the freshly isolated cells. The HO-1 competitive inhibitor zinc protoporphyrin partially but significantly restored the sensitivity of precultured monocytes to CBD-mediated apoptosis. Collectively, our results demonstrated a contrasting pro-apoptotic effect of CBD between precultured and freshly isolated monocytes, which was closely associated with the cellular level of glutathione and the antioxidative capability of the cells.« less

  19. Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells

    PubMed Central

    Son, Yonghae; Kim, Bo-Young; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi

    2016-01-01

    Oxysterol like 27-hydroxycholesterol (27OHChol) has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx) affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells. PMID:27340507

  20. Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells.

    PubMed

    Son, Yonghae; Kim, Bo-Young; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi

    2016-01-01

    Oxysterol like 27-hydroxycholesterol (27OHChol) has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx) affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells.

  1. Evaluating the Use of Monocytes with a Degradable Polyurethane for Vascular Tissue Regeneration

    NASA Astrophysics Data System (ADS)

    Battiston, Kyle Giovanni

    Monocytes are one of the first cell types present following the implantation of a biomaterial or tissue engineered construct. Depending on the monocyte activation state supported by the biomaterial, monocytes and their derived macrophages (MDMs) can act as positive contributors to tissue regeneration and wound healing, or conversely promote a chronic inflammatory response that leads to fibrous encapsulation and implant rejection. A degradable polar hydrophobic iconic polyurethane (D-PHI) has been shown to reduce pro-inflammatory monocyte/macrophage response compared to tissue culture polystyrene (TCPS), a substrate routinely used for in vitro culture of cells, as well as poly(lactide- co-glycolide) (PLGA), a standard synthetic biodegradable biomaterial in the tissue engineering field. D-PHI has also shown properties suitable for use in a vascular tissue engineering context. In order to understand the mechanism through which D-PHI attenuates pro-inflammatory monocyte response, this thesis investigated the ability of D-PHI to modulate interactions with adsorbed serum proteins and the properties of D-PHI that were important for this activity. D-PHI was shown to regulate protein adsorption in a manner that produced divergent monocyte responses compared to TCPS and PLGA when coated with the serum proteins alpha2-macroglobulin or immunoglobulin G (IgG). In the case of IgG, D-PHI was shown to reduce pro-inflammatory binding site exposure as a function of the material's polar, hydrophobic, and ionic character. Due to the favourable monocyte activation state supported by D-PHI, and the importance of monocytes/macrophages in regulating the response of tissue-specific cell types in vivo, the ability of a D-PHI-stimulated monocyte/macrophage activation state to contribute to modulating the response of vascular smooth muscle cells (VSMCs) in a vascular tissue engineering context was investigated. D-PHI- stimulated monocytes promoted VSMC growth and migration through biomolecule

  2. Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes.

    PubMed

    Magatti, Marta; De Munari, Silvia; Vertua, Elsa; Nassauto, Claudia; Albertini, Alberto; Wengler, Georg S; Parolini, Ornella

    2009-01-01

    Cells derived from the amniotic membranes of human term placenta have drawn much interest for their characteristics of multipotency and low immunogenicity, supporting a variety of possible clinical applications in the field of cell transplantation and regenerative medicine. We have previously shown that cells derived from the mesenchymal region of human amnion (AMTC) can strongly inhibit T-lymphocyte proliferation. In this study, we demonstrate that AMTC can block differentiation and maturation of monocytes into dendritic cells (DC), preventing the expression of the DC marker CD1a and reducing the expression of HLA-DR, CD80, and CD83. The monocyte maturation block resulted in impaired allostimulatory ability of these cells on allogeneic T cells. In attempting to define the mechanisms responsible for these findings, we have observed that the presence of AMTC in differentiating DC cultures results in the arrest of the cells to the G(0) phase and abolishes the production of inflammatory cytokines such as TNF-alpha, CXCL10, CXCL9, and CCL5. Finally, we also demonstrate that the monocytic cells present in the amniotic mesenchymal region fail to differentiate toward the DC lineage. Taken together, our data suggest that the mechanisms by which AMTC exert immumodulatory effects do not only relate directly to T cells, but also include inhibition of the generation and maturation of antigen-presenting cells. In this context, AMTC represent a very attractive source of multipotent allogeneic cells that promise to be remarkably valuable for cell transplantation approaches, not only due to their low immunogenicity, but also because of the added potential of modulating immune responses, which could be fundamental both for controlling graft rejection after transplantation and also for controlling diseases characterized by inflammatory processes.

  3. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy

    NASA Astrophysics Data System (ADS)

    Xu, Yingying; Wang, Liming; Bai, Ru; Zhang, Tianlu; Chen, Chunying

    2015-09-01

    Monocytes/macrophages are important constituents of the innate immune system. Monocyte-macrophage differentiation is not only crucial for innate immune responses, but is also related to some cardiovascular diseases. Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials because of their broad-spectrum antimicrobial properties. However, the effect of AgNPs on the functions of blood monocytes is scarcely reported. Here, we report the impedance effect of AgNPs on THP-1 monocyte differentiation, and that this effect was mediated by autophagy blockade and lysosomal impairment. Firstly, AgNPs inhibit phorbol 12-myristate 13-acetate (PMA)-induced monocyte differentiation by down-regulating both expression of surface marker CD11b and response to lipopolysaccharide (LPS) stimulation. Secondly, autophagy is activated during PMA-induced THP-1 monocyte differentiation, and the autophagy inhibitor chloroquine (CQ) can inhibit this process. Thirdly, AgNPs block the degradation of the autophagy substrate p62 and induce autophagosome accumulation, which demonstrates the blockade of autophagic flux. Fourthly, lysosomal impairments including alkalization and decrease of lysosomal membrane stability were observed in AgNP-treated THP-1 cells. In conclusion, we demonstrate that the impedance of monocyte-macrophage differentiation by AgNPs is mediated by autophagy blockade and lysosomal dysfunction. Our results suggest that crosstalk exists in different biological effects induced by AgNPs.

  4. Minocycline Inhibition of Monocyte Activation Correlates with Neuronal Protection in SIV NeuroAIDS

    PubMed Central

    Campbell, Jennifer H.; Burdo, Tricia H.; Autissier, Patrick; Bombardier, Jeffrey P.; Westmoreland, Susan V.; Soulas, Caroline; González, R. Gilberto; Ratai, Eva-Maria; Williams, Kenneth C.

    2011-01-01

    Background Minocycline is a tetracycline antibiotic that has been proposed as a potential conjunctive therapy for HIV-1 associated cognitive disorders. Precise mechanism(s) of minocycline's functions are not well defined. Methods Fourteen rhesus macaques were SIV infected and neuronal metabolites measured by proton magnetic resonance spectroscopy (1H MRS). Seven received minocycline (4 mg/kg) daily starting at day 28 post-infection (pi). Monocyte expansion and activation were assessed by flow cytometry, cell traffic to lymph nodes, CD16 regulation, viral replication, and cytokine production were studied. Results Minocycline treatment decreased plasma virus and pro-inflammatory CD14+CD16+ and CD14loCD16+ monocytes, and reduced their expression of CD11b, CD163, CD64, CCR2 and HLA-DR. There was reduced recruitment of monocyte/macrophages and productively infected cells in axillary lymph nodes. There was an inverse correlation between brain NAA/Cr (neuronal injury) and circulating CD14+CD16+ and CD14loCD16+ monocytes. Minocycline treatment in vitro reduced SIV replication CD16 expression on activated CD14+CD16+ monocytes, and IL-6 production by monocytes following LPS stimulation. Conclusion Neuroprotective effects of minocycline are due in part to reduction of activated monocytes, monocyte traffic. Mechanisms for these effects include CD16 regulation, reduced viral replication, and inhibited immune activation. PMID:21494695

  5. Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schechter, Melissa E.; Andrade, Bruno B.; He, Tianyu

    In HIV infection, persistent inflammation despite effective antiretroviral therapy is linked to increased risk of noninfectious chronic complications such as cardiovascular and thromboembolic disease. Thus, a better understanding of inflammatory and coagulation pathways in HIV infection is needed to optimize clinical care. Markers of monocyte activation and coagulation independently predict morbidity and mortality associated with non-AIDS events. We identified a specific subset of monocytes that express tissue factor (TF), persist after virological suppression, and trigger the coagulation cascade by activating factor X. This subset of monocytes expressing TF had a distinct gene signature with up-regulated innate immune markers and evidencemore » of robust production of multiple proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor–α (TNF-α), and IL-6, ex vivo and in vitro upon lipopolysaccharide stimulation. We validated our findings in a nonhuman primate model, showing that TF-expressing inflammatory monocytes were associated with simian immunodeficiency virus (SIV)–related coagulopathy in the progressive [pigtail macaques (PTMs)] but not in the nonpathogenic (African green monkeys) SIV infection model. Last, Ixolaris, an anticoagulant that inhibits the TF pathway, was tested and potently blocked functional TF activity in vitro in HIV and SIV infection without affecting monocyte responses to Toll-like receptor stimulation. Strikingly, in vivo treatment of SIV-infected PTMs with Ixolaris was associated with significant decreases in D-dimer and immune activation. These data suggest that TF-expressing monocytes are at the epicenter of inflammation and coagulation in chronic HIV and SIV infection and may represent a potential therapeutic target.« less

  6. Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy

    DOE PAGES

    Schechter, Melissa E.; Andrade, Bruno B.; He, Tianyu; ...

    2017-08-30

    In HIV infection, persistent inflammation despite effective antiretroviral therapy is linked to increased risk of noninfectious chronic complications such as cardiovascular and thromboembolic disease. Thus, a better understanding of inflammatory and coagulation pathways in HIV infection is needed to optimize clinical care. Markers of monocyte activation and coagulation independently predict morbidity and mortality associated with non-AIDS events. We identified a specific subset of monocytes that express tissue factor (TF), persist after virological suppression, and trigger the coagulation cascade by activating factor X. This subset of monocytes expressing TF had a distinct gene signature with up-regulated innate immune markers and evidencemore » of robust production of multiple proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor–α (TNF-α), and IL-6, ex vivo and in vitro upon lipopolysaccharide stimulation. We validated our findings in a nonhuman primate model, showing that TF-expressing inflammatory monocytes were associated with simian immunodeficiency virus (SIV)–related coagulopathy in the progressive [pigtail macaques (PTMs)] but not in the nonpathogenic (African green monkeys) SIV infection model. Last, Ixolaris, an anticoagulant that inhibits the TF pathway, was tested and potently blocked functional TF activity in vitro in HIV and SIV infection without affecting monocyte responses to Toll-like receptor stimulation. Strikingly, in vivo treatment of SIV-infected PTMs with Ixolaris was associated with significant decreases in D-dimer and immune activation. These data suggest that TF-expressing monocytes are at the epicenter of inflammation and coagulation in chronic HIV and SIV infection and may represent a potential therapeutic target.« less

  7. Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contributions to atherosclerosis.

    PubMed

    Cathcart, Martha K

    2004-01-01

    Monocyte extravasation into the vessel wall has been shown to be a critical step in the development of atherosclerosis. Upon activation, monocytes produce a burst of superoxide anion due to activation of the NADPH oxidase enzyme complex. Monocyte-derived superoxide anion contributes to oxidant stress in inflammatory sites, is required for monocyte-mediated LDL oxidation, and alters basic cell functions such as adhesion and proliferation. We hypothesize that monocyte-derived superoxide anion production contributes to atherosclerotic lesion formation. In this brief review, we summarize our current understanding of the signal transduction pathways regulating NADPH oxidase activation and related superoxide anion production in activated human monocytes. Novel pathways are identified that may serve as future targets for therapeutic intervention in this pathogenic process. The contributions of superoxide anion and NADPH oxidase to atherogenesis are discussed. Future experiments are needed to clarify the exact role of NADPH oxidase-derived superoxide anion in atherogenesis, particularly that derived from monocytes.

  8. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model.

    PubMed

    Boussommier-Calleja, A; Atiyas, Y; Haase, K; Headley, M; Lewis, C; Kamm, R D

    2018-03-05

    Metastasis is the leading cause of cancer-related deaths. Recent developments in cancer immunotherapy have shown exciting therapeutic promise for metastatic patients. While most therapies target T cells, other immune cells, such as monocytes, hold great promise for therapeutic intervention. In our study, we provide primary evidence of direct engagement between human monocytes and tumor cells in a 3D vascularized microfluidic model. We first characterize the novel application of our model to investigate and visualize at high resolution the evolution of monocytes as they migrate from the intravascular to the extravascular micro-environment. We also demonstrate their differentiation into macrophages in our all-human model. Our model replicates physiological differences between different monocyte subsets. In particular, we report that inflammatory, but not patrolling, monocytes rely on actomyosin based motility. Finally, we exploit this platform to study the effect of monocytes, at different stages of their life cycle, on cancer cell extravasation. Our data demonstrates that monocytes can directly reduce cancer cell extravasation in a non-contact dependent manner. In contrast, we see little effect of monocytes on cancer cell extravasation once monocytes transmigrate through the vasculature and are macrophage-like. Taken together, our study brings novel insight into the role of monocytes in cancer cell extravasation, which is an important step in the metastatic cascade. These findings establish our microfluidic platform as a powerful tool to investigate the characteristics and function of monocytes and monocyte-derived macrophages in normal and diseased states. We propose that monocyte-cancer cell interactions could be targeted to potentiate the anti-metastatic effect we observe in vitro, possibly expanding the milieu of immunotherapies available to tame metastasis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Modified natural porcine surfactant modulates tobacco smoke-induced stress response in human monocytes.

    PubMed

    Pinot, F; Bachelet, M; François, D; Polla, B S; Walti, H

    1999-01-01

    Tobacco smoke (TS) is a potent source of oxidants and oxidative stress is an important mechanism by which TS exerts its toxicity in the lung. We have shown that TS induces heat shock (HS)/stress protein (HSP) synthesis in human monocytes. Pulmonary surfactant (PS) whose major physiological function is to confer mechanical stability to alveoli, also modulates oxidative metabolism and other pro-inflammatory functions of monocytes-macrophages. In order to determine whether PS alters the stress response induced by TS, we incubated human peripheral blood monocytes overnight with modified natural porcine surfactant (Curosurf) (1 mg/ml) before exposure to TS. Curosurf decreased TS-induced, but not HS-induced, expression of the major cytosolic, inducible 72 kD HSP (Hsp70). Furthermore, TS-generated superoxide anions production was significantly decreased by Curosurf in an acellular system, suggesting a direct scavenging effect of PS. We also examined the effects of TS and PS on monocytes ultrastructure. Monocytes incubated with Curosurf presented smoother cell membranes than control monocytes, while TS-induced monocyte vacuolization was, at least in part, prevented by Curosurf. Taken together, our data suggest that PS plays a protective role against oxygen radical-mediated, TS-induced cellular stress responses.

  10. Prion protein induced signaling cascades in monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krebs, Bjarne; Dorner-Ciossek, Cornelia; Schmalzbauer, Ruediger

    2006-02-03

    Prion proteins play a central role in transmission and pathogenesis of transmissible spongiform encephalopathies. The cellular prion protein (PrP{sup C}), whose physiological function remains elusive, is anchored to the surface of a variety of cell types including neurons and cells of the lymphoreticular system. In this study, we investigated the response of a mouse monocyte/macrophage cell line to exposure with PrP{sup C} fusion proteins synthesized with a human Fc-tag. PrP{sup C} fusion proteins showed an attachment to the surface of monocyte/macrophages in nanomolar concentrations. This was accompanied by an increase of cellular tyrosine phosphorylation as a result of activated signalingmore » pathways. Detailed investigations exhibited activation of downstream pathways through a stimulation with PrP fusion proteins, which include phosphorylation of ERK{sub 1,2} and Akt kinase. Macrophages opsonize and present antigenic structures, contact lymphocytes, and deliver cytokines. The findings reported here may become the basis of understanding the molecular function of PrP{sup C} in monocytes and macrophages.« less

  11. Monoamine oxidase A (MAO-A): a signature marker of alternatively activated monocytes/macrophages

    PubMed Central

    Cathcart, Martha K.; Bhattacharjee, Ashish

    2015-01-01

    Monocytes/macrophages are versatile cells centrally involved in host defense and immunity. Th1 cytokines induce a classical activation program in monocytes/macrophages leading to a proinflammatory M1 macrophage phenotype while Th2 cytokines IL-4 and IL-13 promote monocyte differentiation into an alternatively activated, anti-inflammatory M2 macrophage phenotype. Although monoamine oxidase A (MAO-A) is primarily known for its action in the nervous system, several recent studies have identified MAO-A as a signature marker of alternative activation of monocytes/macrophages. In this brief review we explore the signaling pathways/molecules that regulate MAO-A expression in alternatively activated monocytes/macrophages. We further discuss the contribution of MAO-A to the resolution of inflammation and identify potential therapeutic targets for controlling inflammation. Altogether this review provides deeper insight into the role of MAO-A in alternative activation of monocytes/macrophages and their participation in the inflammatory response. PMID:26052543

  12. Monoamine oxidase A (MAO-A): a signature marker of alternatively activated monocytes/macrophages.

    PubMed

    Cathcart, Martha K; Bhattacharjee, Ashish

    Monocytes/macrophages are versatile cells centrally involved in host defense and immunity. Th1 cytokines induce a classical activation program in monocytes/macrophages leading to a proinflammatory M1 macrophage phenotype while Th2 cytokines IL-4 and IL-13 promote monocyte differentiation into an alternatively activated, anti-inflammatory M2 macrophage phenotype. Although monoamine oxidase A (MAO-A) is primarily known for its action in the nervous system, several recent studies have identified MAO-A as a signature marker of alternative activation of monocytes/macrophages. In this brief review we explore the signaling pathways/molecules that regulate MAO-A expression in alternatively activated monocytes/macrophages. We further discuss the contribution of MAO-A to the resolution of inflammation and identify potential therapeutic targets for controlling inflammation. Altogether this review provides deeper insight into the role of MAO-A in alternative activation of monocytes/macrophages and their participation in the inflammatory response.

  13. Sympathetic Release of Splenic Monocytes Promotes Recurring Anxiety Following Repeated Social Defeat.

    PubMed

    McKim, Daniel B; Patterson, Jenna M; Wohleb, Eric S; Jarrett, Brant L; Reader, Brenda F; Godbout, Jonathan P; Sheridan, John F

    2016-05-15

    Neuroinflammatory signaling may contribute to the pathophysiology of chronic anxiety disorders. Previous work showed that repeated social defeat (RSD) in mice promoted stress-sensitization that was characterized by the recurrence of anxiety following subthreshold stress 24 days after RSD. Furthermore, splenectomy following RSD prevented the recurrence of anxiety in stress-sensitized mice. We hypothesize that the spleen of RSD-exposed mice became a reservoir of primed monocytes that were released following neuroendocrine activation by subthreshold stress. Mice were subjected to subthreshold stress (i.e., single cycle of social defeat) 24 days after RSD, and immune and behavioral measures were taken. Subthreshold stress 24 days after RSD re-established anxiety-like behavior that was associated with egress of Ly6C(hi) monocytes from the spleen. Moreover, splenectomy before RSD blocked monocyte trafficking to the brain and prevented anxiety-like behavior following subthreshold stress. Splenectomy, however, had no effect on monocyte accumulation or anxiety when determined 14 hours after RSD. In addition, splenocytes cultured 24 days after RSD exhibited a primed inflammatory phenotype. Peripheral sympathetic inhibition before subthreshold stress blocked monocyte trafficking from the spleen to the brain and prevented the re-establishment of anxiety in RSD-sensitized mice. Last, β-adrenergic antagonism also prevented splenic monocyte egress after acute stress. The spleen served as a unique reservoir of primed monocytes that were readily released following sympathetic activation by subthreshold stress that promoted the re-establishment of anxiety. Collectively, the long-term storage of primed monocytes in the spleen may have a profound influence on recurring anxiety disorders. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Sympathetic Release of Splenic Monocytes Promotes Recurring Anxiety Following Repeated Social Defeat

    PubMed Central

    McKim, Daniel B.; Patterson, Jenna M.; Wohleb, Eric S.; Jarrett, Brant; Reader, Brenda; Godbout, Jonathan P.; Sheridan, John F.

    2015-01-01

    Background Neuroinflammatory signaling may contribute to the pathophysiology of chronic anxiety disorders. Previous work showed that repeated social defeat (RSD) in mice promoted stress-sensitization that was characterized by the recurrence of anxiety following sub-threshold stress 24 days after RSD. Furthermore, splenectomy following RSD prevented the recurrence of anxiety in stress-sensitized (SS) mice. We hypothesize that the spleen of RSD-exposed mice became a reservoir of primed monocytes that were released following neuroendocrine activation by sub-threshold stress. Methods Mice were subjected to sub-threshold stress (i.e., single cycle of social defeat) 24 days after RSD, and immune and behavioral measures were taken. Results Sub-threshold stress 24 days after RSD re-established anxiety-like behavior that was associated with egress of Ly6Chi monocytes from the spleen. Moreover, splenectomy prior to RSD blocked monocyte trafficking to the brain and prevented anxiety-like behavior following sub-threshold stress. Splenectomy, however, had no effect on monocyte accumulation or anxiety when determined 14 hours after RSD. In addition, splenocytes cultured 24 days after RSD exhibited a primed inflammatory phenotype. Peripheral sympathetic inhibition prior to sub-threshold stress blocked monocyte trafficking from the spleen to the brain and prevented the re-establishment of anxiety in RSD-sensitized mice. Last, β-adrenergic antagonism also prevented splenic monocyte egress after acute stress. Conclusion The spleen served as a unique reservoir of primed monocytes that were readily released following sympathetic activation by sub-threshold stress that promoted the re-establishment of anxiety. Collectively, the long-term storage of primed monocytes in the spleen may have a profound influence on recurring anxiety disorders. PMID:26281717

  15. Indole-3-carbinol and 3’, 3’-diindolylmethane modulate androgen effect up-regulation on C-C chemokine ligand 2 and monocyte attraction to prostate cancer cells

    USDA-ARS?s Scientific Manuscript database

    Inflammation has a role in prostate tumorigenesis. Recruitment of inflammatory monocytes to the tumor site is mediated by C-C chemokine ligand 2 (CCL2) through binding to its receptor CCR2. We hypothesized that androgen could modulate CCL2 expression in hormone-responsive prostate cancer cells, and ...

  16. Bone marrow-resident NK cells prime monocytes for regulatory function during infection

    PubMed Central

    Askenase, Michael H.; Han, Seong-Ji; Byrd, Allyson L.; da Fonseca, Denise Morais; Bouladoux, Nicolas; Wilhelm, Christoph; Konkel, Joanne E.; Hand, Timothy W.; Lacerda-Queiroz, Norinne; Su, Xin-Zhuan; Trinchieri, Giorgio; Grainger, John R.; Belkaid, Yasmine

    2015-01-01

    SUMMARY Tissue-infiltrating Ly6Chi monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DC) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals following tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function. PMID:26070484

  17. Epigallocatechin 3-gallate inhibits 7-ketocholesterol-induced monocyte-endothelial cell adhesion.

    PubMed

    Yamagata, Kazuo; Tanaka, Noriko; Suzuki, Koichi

    2013-07-01

    7-Ketocholesterol (7KC) induces monocytic adhesion to endothelial cells, and induces arteriosclerosis while high-density lipoprotein (HDL) inhibits monocytic adhesion to the endothelium. Epigallocatechin 3-gallate (EGCG) was found to have a protective effect against arteriosclerosis. Therefore, the purpose of this study was to examine the possible HDL-like mechanisms of EGCG in endothelial cells by investigating whether EGCG inhibits 7KC-induced monocyte-endothelial cell adhesion by activating HDL-dependent signal transduction pathways. 7KC and/or EGCG were added to human endothelial cells (ISO-HAS), and the adhesion of pro-monocytic U937 cells was examined. The expression of genes associated with HDL effects such as Ca(2+)/calmodulin-dependent kinase II (CaMKKII), liver kinase B (LKD1), PSD-95/Dlg/ZO-1 kinase 1 (PDZK1), phosphatidylinositol 3-kinase (PI3K), intercellular adhesion molecule-1 (ICAM-1), monocyte chemotactic protein-1 (MCP-1), and endothelial nitric oxide synthase (eNOS) was examined by RT-PCR, and ICAM-1 protein expression was evaluated by western blot (WB). Production of reactive oxygen species (ROS) was examined with H2DCFDA. 7KC significantly induced adhesion of U937 cells to human endothelial cells while significantly increasing gene expressions of ICAM-1 and MCP-1 and decreasing eNOS and CaMKKII gene expressions. EGCG inhibited 7KC-induced monocytic adhesion to endothelial cells, and induced expression of eNOS and several genes involved in the CaMKKII pathway. Stimulation of endothelial cells with EGCG produced intracellular ROS, whereas treatment with N-acetylcysteine (NAC) blocked EGCG-induced expression of eNOS and CaMKKII. These results suggest that inhibition of monocyte-endothelial cell adhesion by EGCG is associated with CaMKKII pathway activation by ROS. Inhibition of 7KC-induced monocyte-endothelial cell adhesion induced by EGCG may function similarly to HDL. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Identification of Therapeutic Targets of Inflammatory Monocyte Recruitment to Modulate the Allogeneic Injury to Donor Cornea.

    PubMed

    Lapp, Thabo; Zaher, Sarah S; Haas, Carolin T; Becker, David L; Thrasivoulou, Chris; Chain, Benjamin M; Larkin, Daniel F P; Noursadeghi, Mahdad

    2015-11-01

    We sought to test the hypothesis that monocytes contribute to the immunopathogenesis of corneal allograft rejection and identify therapeutic targets to inhibit monocyte recruitment. Monocytes and proinflammatory mediators within anterior chamber samples during corneal graft rejection were quantified by flow cytometry and multiplex protein assays. Lipopolysaccharide or IFN-γ stimulation of monocyte-derived macrophages (MDMs) was used to generate inflammatory conditioned media (CoM). Corneal endothelial viability was tested by nuclear counting, connexin 43, and propidium iodide staining. Chemokine and chemokine receptor expression in monocytes and MDMs was assessed in microarray transcriptomic data. The role of chemokine pathways in monocyte migration across microvascular endothelium was tested in vitro by chemokine depletion or chemokine receptor inhibitors. Inflammatory monocytes were significantly enriched in anterior chamber samples within 1 week of the onset of symptoms of corneal graft rejection. The MDM inflammatory CoM was cytopathic to transformed human corneal endothelia. This effect was also evident in endothelium of excised human cornea and increased in the presence of monocytes. Gene expression microarrays identified monocyte chemokine receptors and cognate chemokines in MDM inflammatory responses, which were also enriched in anterior chamber samples. Depletion of selected chemokines in MDM inflammatory CoM had no effect on monocyte transmigration across an endothelial blood-eye barrier, but selective chemokine receptor inhibition reduced monocyte recruitment significantly. We propose a role for inflammatory monocytes in endothelial cytotoxicity in corneal graft rejection. Therefore, targeting monocyte recruitment offers a putative novel strategy to reduce donor endothelial cell injury in survival of human corneal allografts.

  19. Membrane Type 1 Matrix Metalloproteinase Regulates Monocyte Migration and Collagen Destruction in Tuberculosis.

    PubMed

    Sathyamoorthy, Tarangini; Tezera, Liku B; Walker, Naomi F; Brilha, Sara; Saraiva, Luisa; Mauri, Francesco A; Wilkinson, Robert J; Friedland, Jon S; Elkington, Paul T

    2015-08-01

    Tuberculosis (TB) remains a global pandemic and drug resistance is rising. Multicellular granuloma formation is the pathological hallmark of Mycobacterium tuberculosis infection. The membrane type 1 matrix metalloproteinase (MT1-MMP or MMP-14) is a collagenase that is key in leukocyte migration and collagen destruction. In patients with TB, induced sputum MT1-MMP mRNA levels were increased 5.1-fold compared with matched controls and correlated positively with extent of lung infiltration on chest radiographs (r = 0.483; p < 0.05). M. tuberculosis infection of primary human monocytes increased MT1-MMP surface expression 31.7-fold and gene expression 24.5-fold. M. tuberculosis-infected monocytes degraded collagen matrix in an MT1-MMP-dependent manner, and MT1-MMP neutralization decreased collagen degradation by 73%. In human TB granulomas, MT1-MMP immunoreactivity was observed in macrophages throughout the granuloma. Monocyte-monocyte networks caused a 17.5-fold increase in MT1-MMP surface expression dependent on p38 MAPK and G protein-coupled receptor-dependent signaling. Monocytes migrating toward agarose beads impregnated with conditioned media from M. tuberculosis-infected monocytes expressed MT1-MMP. Neutralization of MT1-MMP activity decreased this M. tuberculosis network-dependent monocyte migration by 44%. Taken together, we demonstrate that MT1-MMP is central to two key elements of TB pathogenesis, causing collagen degradation and regulating monocyte migration. Copyright © 2015 The Authors.

  20. Fatty acids from VLDL lipolysis products induce lipid droplet accumulation in human monocytes

    PubMed Central

    den Hartigh, Laura J; Connolly-Rohrbach, Jaime E; Fore, Samantha; Huser, Thomas R; Rutledge, John C

    2010-01-01

    One mechanism by which monocytes become activated postprandially is by exposure to triglyceride (TG)-rich lipoproteins such as very low-density lipoproteins (VLDL). VLDL are hydrolyzed by lipoprotein lipase (LpL) at the blood-endothelial cell interface, releasing free fatty acids. In this study, we examined postprandial monocyte activation in more detail, and found that lipolysis products generated from postprandial VLDL induce the formation of lipid-filled droplets within cultured THP-1 monocytes, characterized by coherent anti-stokes Raman spectroscopy. Organelle-specific stains revealed an association of lipid droplets with the endoplasmic reticulum, confirmed by electron microscopy. Lipid droplet formation was reduced when LpL-released fatty acids were bound by bovine serum albumin, which also reduced cellular inflammation. Furthermore, saturated fatty acids induced more lipid droplet formation in monocytes compared to mono- and polyunsaturated fatty acids. Monocytes treated with postprandial VLDL lipolysis products contained lipid droplets with more intense saturated Raman spectroscopic signals than monocytes treated with fasting VLDL lipolysis products. In addition, we found that human monocytes isolated during the peak postprandial period contain more lipid droplets compared to those from the fasting state, signifying that their development is not limited to cultured cells but also occurs in vivo. In summary, circulating free fatty acids can mediate lipid droplet formation in monocytes and potentially be used as a biomarker to assess an individual’s risk of developing atherosclerotic cardiovascular disease. PMID:20208007

  1. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS.

    PubMed

    Butovsky, Oleg; Siddiqui, Shafiuddin; Gabriely, Galina; Lanser, Amanda J; Dake, Ben; Murugaiyan, Gopal; Doykan, Camille E; Wu, Pauline M; Gali, Reddy R; Iyer, Lakshmanan K; Lawson, Robert; Berry, James; Krichevsky, Anna M; Cudkowicz, Merit E; Weiner, Howard L

    2012-09-01

    Amyotrophic lateral sclerosis (ALS) is a progressive disease associated with neuronal cell death that is thought to involve aberrant immune responses. Here we investigated the role of innate immunity in a mouse model of ALS. We found that inflammatory monocytes were activated and that their progressive recruitment to the spinal cord, but not brain, correlated with neuronal loss. We also found a decrease in resident microglia in the spinal cord with disease progression. Prior to disease onset, splenic Ly6Chi monocytes expressed a polarized macrophage phenotype (M1 signature), which included increased levels of chemokine receptor CCR2. As disease onset neared, microglia expressed increased CCL2 and other chemotaxis-associated molecules, which led to the recruitment of monocytes to the CNS by spinal cord-derived microglia. Treatment with anti-Ly6C mAb modulated the Ly6Chi monocyte cytokine profile, reduced monocyte recruitment to the spinal cord, diminished neuronal loss, and extended survival. In humans with ALS, the analogous monocytes (CD14+CD16-) exhibited an ALS-specific microRNA inflammatory signature similar to that observed in the ALS mouse model, linking the animal model and the human disease. Thus, the profile of monocytes in ALS patients may serve as a biomarker for disease stage or progression. Our results suggest that recruitment of inflammatory monocytes plays an important role in disease progression and that modulation of these cells is a potential therapeutic approach.

  2. Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo

    NASA Technical Reports Server (NTRS)

    Olszak, I. T.; Poznansky, M. C.; Evans, R. H.; Olson, D.; Kos, C.; Pollak, M. R.; Brown, E. M.; Scadden, D. T.; O'Malley, B. W. (Principal Investigator)

    2000-01-01

    Recruitment of macrophages to sites of cell death is critical for induction of an immunologic response. Calcium concentrations in extracellular fluids vary markedly, and are particularly high at sites of injury or infection. We hypothesized that extracellular calcium participates in modulating the immune response, perhaps acting via the seven-transmembrane calcium-sensing receptor (CaR) on mature monocytes/macrophages. We observed a dose-dependent increase in monocyte chemotaxis in response to extracellular calcium or the selective allosteric CaR activator NPS R-467. In contrast, monocytes derived from mice deficient in CaR lacked the normal chemotactic response to a calcium gradient. Notably, CaR activation of monocytes bearing the receptor synergistically augmented the transmigration response of monocytes to the chemokine MCP-1 in association with increased cell-surface expression of its cognate receptor, CCR2. Conversely, stimulation of monocytes with MCP-1 or SDF-1alpha reciprocally increased CaR expression, suggesting a dual-enhancing interaction of Ca(2+) with chemokines in recruiting inflammatory cells. Subcutaneous administration in mice of Ca(2+), MCP-1, or (more potently) the combination of Ca(2+) and MCP-1, elicited an inflammatory infiltrate consisting of monocytes/macrophages. Thus extracellular calcium functions as an ionic chemokinetic agent capable of modulating the innate immune response in vivo and in vitro by direct and indirect actions on monocytic cells. Calcium deposition may be both consequence and cause of chronic inflammatory changes at sites of injury, infection, and atherosclerosis.

  3. CD14(hi)CD16+ monocytes phagocytose antibody-opsonised Plasmodium falciparum infected erythrocytes more efficiently than other monocyte subsets, and require CD16 and complement to do so.

    PubMed

    Zhou, Jingling; Feng, Gaoqian; Beeson, James; Hogarth, P Mark; Rogerson, Stephen J; Yan, Yan; Jaworowski, Anthony

    2015-07-07

    With more than 600,000 deaths from malaria, mainly of children under five years old and caused by infection with Plasmodium falciparum, comes an urgent need for an effective anti-malaria vaccine. Limited details on the mechanisms of protective immunity are a barrier to vaccine development. Antibodies play an important role in immunity to malaria and monocytes are key effectors in antibody-mediated protection by phagocytosing antibody-opsonised infected erythrocytes (IE). Eliciting antibodies that enhance phagocytosis of IE is therefore an important potential component of an effective vaccine, requiring robust assays to determine the ability of elicited antibodies to stimulate this in vivo. The mechanisms by which monocytes ingest IE and the nature of the monocytes which do so are unknown. Purified trophozoite-stage P. falciparum IE were stained with ethidium bromide, opsonised with anti-erythrocyte antibodies and incubated with fresh whole blood. Phagocytosis of IE and TNF production by individual monocyte subsets was measured by flow cytometry. Ingestion of IE was confirmed by imaging flow cytometry. CD14(hi)CD16+ monocytes phagocytosed antibody-opsonised IE and produced TNF more efficiently than CD14(hi)CD16- and CD14(lo)CD16+ monocytes. Blocking experiments showed that Fcγ receptor IIIa (CD16) but not Fcγ receptor IIa (CD32a) or Fcγ receptor I (CD64) was necessary for phagocytosis. CD14(hi)CD16+ monocytes ingested antibody-opsonised IE when peripheral blood mononuclear cells were reconstituted with autologous serum but not heat-inactivated autologous serum. Antibody-opsonised IE were rapidly opsonised with complement component C3 in serum (t1/2 = 2-3 minutes) and phagocytosis of antibody-opsonised IE was inhibited in a dose-dependent manner by an inhibitor of C3 activation, compstatin. Compared to other monocyte subsets, CD14(hi)CD16+ monocytes expressed the highest levels of complement receptor 4 (CD11c) and activated complement receptor 3 (CD11b) subunits

  4. Intravenous infusion of haptoglobin for the prevention of adverse clinical outcome in Sickle Cell Disease.

    PubMed

    Quimby, Kim R; Hambleton, Ian R; Landis, R Clive

    2015-10-01

    Sickle Cell Disease (SCD) is a genetic condition which manifests as altered hemoglobin (Hb) protein that can aggregate under hypoxic conditions. The resultant sickled erythrocytes experience premature hemolysis, releasing an estimated 10g of free Hb (fHb) into the intravascular space. FHb participates in redox reactions creating various reactive oxygen species which rapidly and irreversibly scavenge nitric oxide, thereby attenuating its vasodilatory, antithrombotic, and anti-inflammatory properties. FHb also induces endothelial expression of adhesion molecules, triggering leukocyte margination at the vessel wall. These mechanisms participate in diverse SCD-associated clinical events including nephropathy, pulmonary hypertension, chronic leg ulceration, and ischemic events. FHb also exerts a direct reno-toxic effect contributing to albuminuria which is an early, frequent manifestation of glomerular injury. Under normal conditions, fHb is effectively scavenged by the Hb-scavenging mechanism (HSM); this involves binding to haptoglobin (Hp), uptake via the Hb-scavenging receptor (CD163) on monocytes and metabolism by heme-oxygenase-1. This culminates in increased CD163 expression and release of anti-inflammatory by-products e.g. interleukin-10 (IL-10). In SCD, the Hb-binding capacity is overwhelmed by chronic hemolysis; our previous research shows serum Hp as the depleted component. This deficiency could result in the harmful consequences of circulating fHb going unbridled. The hypothesis we explore here is that Hp infusions, in excess of fHb concentration, will allow the HSM to remain functional, and thereby achieve improved clinical outcomes, tracking albuminuria as a sentinel. Albuminuria was selected because of its high prevalence in SCD and its relative ease of diagnosis and monitoring. The hypothesis may be evaluated in four phases: Phase 1 will determine the concentration of Hp needed to trigger the HSM as measured by induction of CD163 and IL-10 and the

  5. RANK Expression and Osteoclastogenesis in Human Monocytes in Peripheral Blood from Rheumatoid Arthritis Patients

    PubMed Central

    Kobashigawa, Tsuyoshi

    2016-01-01

    Rheumatoid arthritis (RA) appears as inflammation of synovial tissue and joint destruction. Receptor activator of NF-κB (RANK) is a member of the TNF receptor superfamily and a receptor for the RANK ligand (RANKL). In this study, we examined the expression of RANKhigh and CCR6 on CD14+ monocytes from patients with RA and healthy volunteers. Peripheral blood samples were obtained from both the RA patients and the healthy volunteers. Osteoclastogenesis from monocytes was induced by RANKL and M-CSF in vitro. To study the expression of RANKhigh and CCR6 on CD14+ monocytes, two-color flow cytometry was performed. Levels of expression of RANK on monocytes were significantly correlated with the level of osteoclastogenesis in the healthy volunteers. The expression of RANKhigh on CD14+ monocyte in RA patients without treatment was elevated and that in those receiving treatment was decreased. In addition, the high-level expression of RANK on CD14+ monocytes was correlated with the high-level expression of CCR6 in healthy volunteers. Monocytes expressing both RANK and CCR6 differentiate into osteoclasts. The expression of CD14+RANKhigh in untreated RA patients was elevated. RANK and CCR6 expressed on monocytes may be novel targets for the regulation of bone resorption in RA and osteoporosis. PMID:27822475

  6. EphA2 promotes cell adhesion and spreading of monocyte and monocyte/macrophage cell lines on integrin ligand-coated surfaces.

    PubMed

    Saeki, Noritaka; Nishino, Shingo; Shimizu, Tomohiro; Ogawa, Kazushige

    2015-01-01

    Eph signaling, which arises following stimulation by ephrins, is known to induce opposite cell behaviors such as promoting and inhibiting cell adhesion as well as promoting cell-cell adhesion and repulsion by altering the organization of the actin cytoskeleton and influencing the adhesion activities of integrins. However, crosstalk between Eph/ephrin with integrin signaling has not been fully elucidated in leukocytes, including monocytes and their related cells. Using a cell attachment stripe assay, we have shown that, following stimulation with ephrin-A1, kinase-independent EphA2 promoted cell spreading/elongation as well as adhesion to integrin ligand-coated surfaces in cultured U937 (monocyte) and J774.1 (monocyte/macrophage) cells as well as sublines of these cells expressing dominant negative EphA2 that lacks most of the intracellular region. Moreover, a pull-down assay showed that dominant negative EphA2 is recruited to the β2 integrin/ICAM1 and β2 integrin/VCAM1 molecular complexes in the subline cells following stimulation with ephrin-A1-Fc. Notably, this study is the first comprehensive analysis of the effects of EphA2 receptors on integrin-mediated cell adhesion in monocytic cells. Based on these findings we propose that EphA2 promotes cell adhesion by an unknown signaling pathway that largely depends on the extracellular region of EphA2 and the activation of outside-in integrin signaling.

  7. Inflammatory Monocytes Mediate Early and Organ-Specific Innate Defense During Systemic Candidiasis

    PubMed Central

    Ngo, Lisa Y.; Kasahara, Shinji; Kumasaka, Debra K.; Knoblaugh, Sue E.; Jhingran, Anupam; Hohl, Tobias M.

    2014-01-01

    Candida albicans is a commensal fungus that can cause systemic disease in patients with breaches in mucosal integrity, indwelling catheters, and defects in phagocyte function. Although circulating human and murine monocytes bind C. albicans and promote inflammation, it remains unclear whether C-C chemokine receptor 2 (CCR2)– and Ly6C-expressing inflammatory monocytes exert a protective or a deleterious function during systemic infection. During murine systemic candidiasis, interruption of CCR2-dependent inflammatory monocyte trafficking into infected kidneys impaired fungal clearance and decreased murine survival. Depletion of CCR2-expressing cells led to uncontrolled fungal growth in the kidneys and brain and demonstrated an essential antifungal role for inflammatory monocytes and their tissue-resident derivatives in the first 48 hours postinfection. Adoptive transfer of purified inflammatory monocytes in depleted hosts reversed the defect in fungal clearance to a substantial extent, indicating a compartmentally and temporally restricted protective function that can be transferred to enhance systemic innate antifungal immunity. PMID:23922372

  8. Histaminergic regulation of NK-cells: protection against monocyte-induced apoptosis.

    PubMed

    Hansson, M; Asea, A; Hermodsson, S; Hellstrand, K

    1996-08-01

    Human natural killer (NK) cells (with CD3-/56+ phenotype) acquired features characteristic of apoptosis after incubation with autologous monocytes, as revealed by apoptotic nuclear morphology and degradation of DNA into oligonucleosomal fragments. The monocyte-induced apoptosis in NK-cells was prevented by the biogenic amine histamine at concentrations exceeding 0.1 microM. The protective effect of histamine was blocked by the H2-receptor (H2R) antagonist ranitidine but not by AH202399 A, a chemical control to ranitidine devoid of H2R affinity. It is concluded that histaminergic mechanisms may serve to protect NK cells from damage inflicted by products of the oxidative metabolism of monocytes.

  9. Particulate matter air pollution exposure promotes recruitment of monocytes into atherosclerotic plaques.

    PubMed

    Yatera, Kazuhiro; Hsieh, Joanne; Hogg, James C; Tranfield, Erin; Suzuki, Hisashi; Shih, Chih-Horng; Behzad, Ali R; Vincent, Renaud; van Eeden, Stephan F

    2008-02-01

    Epidemiologic studies have shown an association between exposure to ambient particulate air pollution <10 microm in diameter (PM(10)) and increased cardiovascular morbidity and mortality. We previously showed that PM(10) exposure causes progression of atherosclerosis in coronary arteries. We postulate that the recruitment of monocytes from the circulation into atherosclerotic lesions is a key step in this PM(10)-induced acceleration of atherosclerosis. The study objective was to quantify the recruitment of circulating monocytes into vessel walls and the progression of atherosclerotic plaques induced by exposure to PM(10). Female Watanabe heritable hyperlipidemic rabbits, which naturally develop systemic atherosclerosis, were exposed to PM(10) (EHC-93) or vehicle by intratracheal instillation twice a week for 4 wk. Monocytes, labeled with 5-bromo-2'-deoxyuridine (BrdU) in donors, were transfused to recipient rabbits as whole blood, and the recruitment of BrdU-labeled cells into vessel walls and plaques in recipients was measured by quantitative histological methodology. Exposure to PM(10) caused progression of atherosclerotic lesions in thoracic and abdominal aorta. It also decreased circulating monocyte counts, decreased circulating monocytes expressing high levels of CD31 (platelet endothelial cell adhesion molecule-1) and CD49d (very late antigen-4 alpha-chain), and increased expression of CD54 (ICAM-1) and CD106 (VCAM-1) in plaques. Exposure to PM(10) increased the number of BrdU-labeled monocytes adherent to endothelium over plaques and increased the migration of BrdU-labeled monocytes into plaques and smooth muscle underneath plaques. We conclude that exposure to ambient air pollution particles promotes the recruitment of circulating monocytes into atherosclerotic plaques and speculate that this is a critically important step in the PM(10)-induced progression of atherosclerosis.

  10. Efficiency and Impact of Positive and Negative Magnetic Separation on Monocyte Derived Dendritic Cell Generation.

    PubMed

    Kowalewicz-Kulbat, Magdalena; Ograczyk, Elżbieta; Włodarczyk, Marcin; Krawczyk, Krzysztof; Fol, Marek

    2016-06-01

    The immunomagnetic separation technique is the basis of monocyte isolation and further generation of monocyte-derived dendritic cells. To compare the efficiency of monocyte positive and negative separation, concentration of beads, and their impact on generated dendritic cells. Monocytes were obtained using monoclonal antibody-coated magnetic beads followed the Ficoll-Paque gradient separation of mononuclear cell fraction from the peripheral blood of 6 healthy volunteers. CD14 expression was analyzed by flow cytometry. Both types of magnetic separation including recommended and reduced concentrations of beads did not affect the yield and the purity of monocytes and their surface CD14 expression. However, DCs originated from the "positively" separated monocytes had noticeable higher expression of CD80.

  11. Serum soluble CD163 levels in patients with influenza-associated encephalopathy.

    PubMed

    Hasegawa, Shunji; Matsushige, Takeshi; Inoue, Hirofumi; Takahara, Midori; Kajimoto, Madoka; Momonaka, Hiroshi; Ishida, Chiemi; Tanaka, Saya; Morishima, Tsuneo; Ichiyama, Takashi

    2013-08-01

    Influenza-associated encephalopathy (IE) is a serious complication during influenza viral infection. Common clinical symptoms of IE include seizures and progressive coma with high-grade fever. We previously reported that hypercytokinemia and monocyte/macrophage activation may play an important role in the pathogenesis of IE. CD163 is a scavenger receptor for hemoglobin-haptoglobin complexes and is expressed by monocytes/macrophages. Proteolytic cleavage of monocyte-bound CD163 by matrix metalloproteinases releases soluble CD163 (sCD163). However, there have been no reports regarding serum sCD163 levels in IE patients. We measured serum levels of sCD163 as a marker of monocyte/macrophage activation in IE patients with poor outcomes, those without neurological sequelae, influenza patients without IE, and control subjects. Serum sCD163 levels were significantly higher in IE patients with poor outcomes than in those without neurological sequelae. In particular, sCD163 levels in cases of death were significantly higher than those in other cases. Our results suggest that monocyte/macrophage activation is related to the pathogenesis of severe IE. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  12. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation.

    PubMed

    Lee, Joonsup; Wen, Beryl; Carter, Elizabeth A; Combes, Valery; Grau, Georges E R; Lay, Peter A

    2017-07-01

    Microvesicles (MVs) are involved in cell-cell interactions, including disease pathogenesis. Nondestructive Fourier-transform infrared (FTIR) spectra from MVs were assessed as a technique to provide new biochemical insights into a LPS-induced monocyte model of septic shock. FTIR spectroscopy provided a quick method to investigate relative differences in biomolecular content of different MV populations that was complementary to traditional semiquantitative omics approaches, with which it is difficult to provide information on relative changes between classes (proteins, lipids, nucleic acids, carbohydrates) or protein conformations. Time-dependent changes were detected in biomolecular contents of MVs and in the monocytes from which they were released. Differences in phosphatidylcholine and phosphatidylserine contents were observed in MVs released under stimulation, and higher relative concentrations of RNA and α-helical structured proteins were present in stimulated MVs compared with MVs from resting cells. FTIR spectra of stimulated monocytes displayed changes that were consistent with those observed in the corresponding MVs they released. LPS-stimulated monocytes had reduced concentrations of nucleic acids, α-helical structured proteins, and phosphatidylcholine compared with resting monocytes but had an increase in total lipids. FTIR spectra of MV biomolecular content will be important in shedding new light on the mechanisms of MVs and the different roles they play in physiology and disease pathogenesis.-Lee, J., Wen, B., Carter, E. A., Combes, V., Grau, G. E. R., Lay, P. A. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation. © FASEB.

  13. Monocyte recruitment to endothelial cells in response to oscillatory shear stress

    PubMed Central

    Hsiai, Tzung K.; Cho, Sung K.; Wong, Pak K.; Ing, Mike; Salazar, Adler; Sevanian, Alex; Navab, Mohamad; Demer, Linda L.; Ho, Chih-Ming

    2014-01-01

    Leukocyte recruitment to endothelial cells is a critical event in inflammatory responses. The spatial, temporal gradients of shear stress, topology, and outcome of cellular interactions that underlie these responses have so far been inferred from static imaging of tissue sections or studies of statically cultured cells. In this report, we developed micro-electromechanical systems (MEMS) sensors, comparable to a single endothelial cell (EC) in size, to link real-time shear stress with monocyte/EC binding kinetics in a complex flow environment, simulating the moving and unsteady separation point at the arterial bifurcation with high spatial and temporal resolution. In response to oscillatory shear stress (τ) at ± 2.6 dyn/cm2 at a time-averaged shear stress (τave) = 0 and 0.5 Hz, individual monocytes displayed unique to-and-fro trajectories undergoing rolling, binding, and dissociation with other monocyte, followed by solid adhesion on EC. Our study quantified individual monocyte/EC binding kinetics in terms of displacement and velocity profiles. Oscillatory flow induces up-regulation of adhesion molecules and cytokines to mediate monocyte/EC interactions over a dynamic range of shear stress ± 2.6 dyn/cm2 (P= 0.50, n= 10).—Hsiai, T. K., Cho, S. K., Wong, P. K., Ing, M., Salazar, A., Sevanian, A., Navab, M., Demer, L. L., Ho, C.-M. Monocyte recruitment to endothelial cells in response to oscillatory shear stress. FASEB J. 17, 1648–1657 (2003) PMID:12958171

  14. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo

    PubMed Central

    Iqbal, Asif J.; McNeill, Eileen; Kapellos, Theodore S.; Regan-Komito, Daniel; Norman, Sophie; Burd, Sarah; Smart, Nicola; Machemer, Daniel E. W.; Stylianou, Elena; McShane, Helen; Channon, Keith M.; Chawla, Ajay

    2014-01-01

    The recruitment of monocytes and their differentiation into macrophages at sites of inflammation are key events in determining the outcome of the inflammatory response and initiating the return to tissue homeostasis. To study monocyte trafficking and macrophage differentiation in vivo, we have generated a novel transgenic reporter mouse expressing a green fluorescent protein (GFP) under the control of the human CD68 promoter. CD68-GFP mice express high levels of GFP in both monocyte and embryo-derived tissue resident macrophages in adult animals. The human CD68 promoter drives GFP expression in all CD115+ monocytes of adult blood, spleen, and bone marrow; we took advantage of this to directly compare the trafficking of bone marrow–derived CD68-GFP monocytes to that of CX3CR1GFP monocytes in vivo using a sterile zymosan peritonitis model. Unlike CX3CR1GFP monocytes, which downregulate GFP expression on differentiation into macrophages in this model, CD68-GFP monocytes retain high-level GFP expression for 72 hours after differentiation into macrophages, allowing continued cell tracking during resolution of inflammation. In summary, this novel CD68-GFP transgenic reporter mouse line represents a powerful resource for analyzing monocyte mobilization and monocyte trafficking as well as studying the fate of recruited monocytes in models of acute and chronic inflammation. PMID:25030063

  15. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo.

    PubMed

    Iqbal, Asif J; McNeill, Eileen; Kapellos, Theodore S; Regan-Komito, Daniel; Norman, Sophie; Burd, Sarah; Smart, Nicola; Machemer, Daniel E W; Stylianou, Elena; McShane, Helen; Channon, Keith M; Chawla, Ajay; Greaves, David R

    2014-10-09

    The recruitment of monocytes and their differentiation into macrophages at sites of inflammation are key events in determining the outcome of the inflammatory response and initiating the return to tissue homeostasis. To study monocyte trafficking and macrophage differentiation in vivo, we have generated a novel transgenic reporter mouse expressing a green fluorescent protein (GFP) under the control of the human CD68 promoter. CD68-GFP mice express high levels of GFP in both monocyte and embryo-derived tissue resident macrophages in adult animals. The human CD68 promoter drives GFP expression in all CD115(+) monocytes of adult blood, spleen, and bone marrow; we took advantage of this to directly compare the trafficking of bone marrow-derived CD68-GFP monocytes to that of CX3CR1(GFP) monocytes in vivo using a sterile zymosan peritonitis model. Unlike CX3CR1(GFP) monocytes, which downregulate GFP expression on differentiation into macrophages in this model, CD68-GFP monocytes retain high-level GFP expression for 72 hours after differentiation into macrophages, allowing continued cell tracking during resolution of inflammation. In summary, this novel CD68-GFP transgenic reporter mouse line represents a powerful resource for analyzing monocyte mobilization and monocyte trafficking as well as studying the fate of recruited monocytes in models of acute and chronic inflammation. © 2014 by The American Society of Hematology.

  16. Differential effects of malignant mesothelioma cells on THP-1 monocytes and macrophages.

    PubMed

    Izzi, Valerio; Chiurchiù, Valerio; D'Aquilio, Fabiola; Palumbo, Camilla; Tresoldi, Ilaria; Modesti, Andrea; Baldini, Patrizia M

    2009-02-01

    Malignant mesothelioma (MM) is a highly fatal tumor arising from inner body membranes, whose extensive growth is facilitated by its week immunogenicity and by its ability to blunt the immune response which should arise from the huge mass of leukocytes typically infiltrating this tumor. It has been reported that the inflammatory infiltrate found in MM tissues is characterized by a high prevalence of macrophages. Thus, in this work we evaluated the ability of human MM cells to modulate the inflammatory phenotype of human THP-1 monocytes and macrophages, a widely used in vitro model of monocyte/macrophage differentiation. Furthermore, we tested the hypothesis that the exposure to MM cells could alter the differentiation of THP-1 monocytes favoring the development of alternatively activated, tumor-supporting macrophages. Our data prove for the first time that MM cells can polarize monocytes towards an altered inflammatory phenotype and macrophages towards an immunosuppressive phenotype. Moreover, we demonstrate that monocytes cocultivated with MM cells 'keep a memory' of their encounter with the tumor which influences their differentiation to macrophages. On the whole, we provide evidence that MM cells exert distinct, cell-specific effects on monocytes and macrophages. The thorough characterization of such effects may be of a crucial importance for the rational design of new immunotherapeutic protocols.

  17. Human Monocytes Engage an Alternative Inflammasome Pathway.

    PubMed

    Gaidt, Moritz M; Ebert, Thomas S; Chauhan, Dhruv; Schmidt, Tobias; Schmid-Burgk, Jonathan L; Rapino, Francesca; Robertson, Avril A B; Cooper, Matthew A; Graf, Thomas; Hornung, Veit

    2016-04-19

    Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an "alternative inflammasome" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography

    PubMed Central

    Chhour, Peter; Naha, Pratap C.; O’Neill, Sean M.; Litt, Harold I.; Reilly, Muredach P.; Ferrari, Victor A.; Cormode, David P.

    2016-01-01

    Monocytes are actively recruited from the circulation into developing atherosclerotic plaques. In the plaque, monocytes differentiate into macrophages and eventually form foam cells. Continued accumulation of foam cells can lead to plaque rupture and subsequent myocardial infarction. X-ray computed tomography (CT) is the best modality to image the coronary arteries non-invasively, therefore we have sought to track the accumulation of monocytes into atherosclerotic plaques using CT. Gold nanoparticles were synthesized and stabilized with a variety of ligands. Select formulations were incubated with an immortalized monocyte cell line in vitro and evaluated for cytotoxicity, effects on cytokine release, and cell uptake. These data identified a lead formulation, 11-MUDA capped gold nanoparticles, to test for labeling primary monocytes. The formulation did not the affect the viability or cytokine release of primary monocytes and was highly taken up by these cells. Gold labeled primary monocytes were injected into apolipoprotein E deficient mice kept on Western diet for 10 weeks. Imaging was done with a microCT scanner. A significant increase in attenuation was measured in the aorta of mice receiving the gold labeled cells as compared to control animals. Following the experiment, the biodistribution of gold was evaluated in major organs. Additionally, plaques were sectioned and examined with electron microscopy. The results showed that gold nanoparticles were present inside monocytes located within plaques. This study demonstrates the feasibility of using gold nanoparticles as effective cell labeling contrast agents for non-invasive imaging of monocyte accumulation within plaques with CT. PMID:26914700

  19. Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography.

    PubMed

    Chhour, Peter; Naha, Pratap C; O'Neill, Sean M; Litt, Harold I; Reilly, Muredach P; Ferrari, Victor A; Cormode, David P

    2016-05-01

    Monocytes are actively recruited from the circulation into developing atherosclerotic plaques. In the plaque, monocytes differentiate into macrophages and eventually form foam cells. Continued accumulation of foam cells can lead to plaque rupture and subsequent myocardial infarction. X-ray computed tomography (CT) is the best modality to image the coronary arteries non-invasively, therefore we have sought to track the accumulation of monocytes into atherosclerotic plaques using CT. Gold nanoparticles were synthesized and stabilized with a variety of ligands. Select formulations were incubated with an immortalized monocyte cell line in vitro and evaluated for cytotoxicity, effects on cytokine release, and cell uptake. These data identified a lead formulation, 11-MUDA capped gold nanoparticles, to test for labeling primary monocytes. The formulation did not the affect the viability or cytokine release of primary monocytes and was highly taken up by these cells. Gold labeled primary monocytes were injected into apolipoprotein E deficient mice kept on Western diet for 10 weeks. Imaging was done with a microCT scanner. A significant increase in attenuation was measured in the aorta of mice receiving the gold labeled cells as compared to control animals. Following the experiment, the biodistribution of gold was evaluated in major organs. Additionally, plaques were sectioned and examined with electron microscopy. The results showed that gold nanoparticles were present inside monocytes located within plaques. This study demonstrates the feasibility of using gold nanoparticles as effective cell labeling contrast agents for non-invasive imaging of monocyte accumulation within plaques with CT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. RANK Expression and Osteoclastogenesis in Human Monocytes in Peripheral Blood from Rheumatoid Arthritis Patients.

    PubMed

    Nanke, Yuki; Kobashigawa, Tsuyoshi; Yago, Toru; Kawamoto, Manabu; Yamanaka, Hisashi; Kotake, Shigeru

    2016-01-01

    Rheumatoid arthritis (RA) appears as inflammation of synovial tissue and joint destruction. Receptor activator of NF- κ B (RANK) is a member of the TNF receptor superfamily and a receptor for the RANK ligand (RANKL). In this study, we examined the expression of RANK high and CCR6 on CD14 + monocytes from patients with RA and healthy volunteers. Peripheral blood samples were obtained from both the RA patients and the healthy volunteers. Osteoclastogenesis from monocytes was induced by RANKL and M-CSF in vitro . To study the expression of RANK high and CCR6 on CD14 + monocytes, two-color flow cytometry was performed. Levels of expression of RANK on monocytes were significantly correlated with the level of osteoclastogenesis in the healthy volunteers. The expression of RANK high on CD14 + monocyte in RA patients without treatment was elevated and that in those receiving treatment was decreased. In addition, the high-level expression of RANK on CD14 + monocytes was correlated with the high-level expression of CCR6 in healthy volunteers. Monocytes expressing both RANK and CCR6 differentiate into osteoclasts. The expression of CD14 + RANK high in untreated RA patients was elevated. RANK and CCR6 expressed on monocytes may be novel targets for the regulation of bone resorption in RA and osteoporosis.

  1. Transport of cargo from periphery to brain by circulating monocytes.

    PubMed

    Cintron, Amarallys F; Dalal, Nirjari V; Dooyema, Jeromy; Betarbet, Ranjita; Walker, Lary C

    2015-10-05

    The misfolding and aggregation of the Aβ peptide - a fundamental event in the pathogenesis of Alzheimer׳s disease - can be instigated in the brains of experimental animals by the intracranial infusion of brain extracts that are rich in aggregated Aβ. Recent experiments have found that the peripheral (intraperitoneal) injection of Aβ seeds induces Aβ deposition in the brains of APP-transgenic mice, largely in the form of cerebral amyloid angiopathy. Macrophage-type cells normally are involved in pathogen neutralization and antigen presentation, but under some circumstances, circulating monocytes have been found to act as vectors for the transport of pathogenic agents such as viruses and prions. The present study assessed the ability of peripheral monocytes to transport Aβ aggregates from the peritoneal cavity to the brain. Our initial experiments showed that intravenously delivered macrophages that had previously ingested fluorescent nanobeads as tracers migrate primarily to peripheral organs such as spleen and liver, but that a small number also reach the brain parenchyma. We next injected CD45.1-expressing monocytes from donor mice intravenously into CD45.2-expressing host mice; after 24h, analysis by fluorescence-activated cell sorting (FACS) and histology confirmed that some CD45.1 monocytes enter the brain, particularly in the superficial cortex and around blood vessels. When the donor monocytes are first exposed to Aβ-rich brain extracts from human AD cases, a subset of intravenously delivered Aβ-containing cells migrate to the brain. These experiments indicate that, in mouse models, circulating monocytes are potential vectors by which exogenously delivered, aggregated Aβ travels from periphery to brain, and more generally support the hypothesis that macrophage-type cells can participate in the dissemination of proteopathic seeds. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Antiretroviral monocyte efficacy score linked to cognitive impairment in HIV.

    PubMed

    Shikuma, Cecilia M; Nakamoto, Beau; Shiramizu, Bruce; Liang, Chin-Yuan; DeGruttola, Victor; Bennett, Kara; Paul, Robert; Kallianpur, Kalpana; Chow, Dominic; Gavegnano, Christina; Hurwitz, Selwyn J; Schinazi, Raymond F; Valcour, Victor G

    2012-01-01

    Monocytes transmigrating to the brain play a central role in HIV neuropathology. We hypothesized that the continued existence of neurocognitive impairment (NCI) despite potent antiretroviral (ARV) therapy is mediated by the inability of such therapy to control this monocyte/macrophage reservoir. Cross-sectional and longitudinal analyses were conducted within a prospectively enrolled cohort. We devised a monocyte efficacy (ME) score based on the anticipated effectiveness of ARV medications against monocytes/macrophages using published macrophage in vitro drug efficacy data. We examined, within an HIV neurocognitive database, its association with composite neuropsychological test scores (NPZ8) and clinical cognitive diagnoses among subjects on stable ARV medications unchanged for >6 months prior to assessment. Among 139 subjects on ARV therapy, higher ME score correlated with better NPZ8 performance (r=0.23, P<0.01), whereas a score devised to quantify expected penetration effectiveness of ARVs into the brain (CPE score) did not (r=0.12, P=0.15). In an adjusted model (adjusted r(2)=0.12), ME score (β=0.003, P=0.02), CD4(+) T-cell nadir (β=0.001, P<0.01) and gender (β=-0.456, P=0.02) were associated with NPZ8, whereas CPE score was not (β=0.003, P=0.94). A higher ME score was associated with better clinical cognitive status (P<0.01). With a range of 12.5-433.0 units, a 100-unit increase in ME score resulted in a 10.6-fold decrease in the odds of a dementia diagnosis compared with normal cognition (P=0.01). ARV efficacy against monocytes/macrophages correlates with cognitive function in HIV-infected individuals on ARV therapy within this cohort. If validated, efficacy against monocytes/macrophages may provide a new target to improve HIV NCI.

  3. Increased monocytes and bands following a red blood cell transfusion.

    PubMed

    Ellefson, A M; Locke, R G; Zhao, Y; Mackley, A B; Paul, D A

    2016-01-01

    The objective of this study is to analyze the white blood cell changes that occur after a transfusion of red blood cells in order to identify a subclinical inflammatory response in neonates. Retrospective analysis of infants who received a red blood cell transfusion in an intensive care nursery. White blood cell results within 24 h pre- to 48 h post-transfusion were collected and analyzed. Statistical analysis included ANOVA, T-test, Mann-Whitney U test, Pearson's correlation and multivariable linear regression. Monocytes (P=0.02) and bands (P=0.035) were increased post-transfusion. There were no differences in monocytes (P=0.46) or bands (P=0.56) between groups who did or did not have blood cultures obtained. There was no difference in monocytes between groups who did or did not have sepsis (P=0.88). We identified an elevation in monocytes and bands in the 48 h following a transfusion in premature infants. Our findings support a possible pro-inflammatory response related to transfusion of red blood cells.

  4. Type of monocyte immunomagnetic separation affects the morphology of monocyte-derived dendritic cells, as investigated by scanning electron microscopy.

    PubMed

    Kowalewicz-Kulbat, M; Ograczyk, E; Krawczyk, K; Rudnicka, W; Fol, M

    2016-12-01

    Dendritic cells (DCs) are increasingly being used for multiple applications and are useful tools for many immunotherapeutic strategies. The understanding of the possible impact of the DCs-generation methods on the biological capacities of these cells is therefore essential. Although the immunomagnetic separation is regarded as a fast and accurate method yielding cells with the high purity and efficiency, still little is known about its impact on the properties of the generated DCs. The aim of this study was to compare the morphology of the monocyte derived dendritic cells (MoDCs), generated from monocytes selected with anti-CD14 mAbs (positive separation) and treated with anti-CD3, -CD7, -CD16, -CD19, -CD56, -CD123, glycophorin A (negative separation), using laser scanning microscopy. We found that the type of the immunomagnetic separation method used strongly influences the shape and cell dimension of the MoDCs. We observed that the height of both immature and LPS-matured DCs generated from monocytes isolated by negative separation was significantly higher compared to the cells obtained by positive separation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Human trophoblasts recruited T lymphocytes and monocytes into decidua by secretion of chemokine CXCL16 and interaction with CXCR6 in the first-trimester pregnancy.

    PubMed

    Huang, Yu; Zhu, Xiao-Yong; Du, Mei-Rong; Li, Da-Jin

    2008-02-15

    During human early pregnancy, fetus-derived trophoblasts come into direct contact with maternal immune cells at the maternofetal interface. At sites of placental attachment, invasive extravillous trophoblasts encounter decidual leukocytes (DLC) that accumulate within the decidua. Because we first found chemokine CXCL16 was highly expressed in and secreted by the first-trimester human trophoblasts previously, in this study we tested the hypothesis of whether the fetal trophoblasts can direct migration of maternal T lymphocyte and monocytes into decidua by secreting CXCL16. We analyzed the transcription and translation of CXCL16 in the isolated first-trimester human trophoblast, and examined the kinetic secretion of CXCL16 in the supernatant of the primary-cultured trophoblasts. We demonstrated that the sole receptor of CXCL16, CXCR6, is preferentially expressed in T lymphocytes, NKT cells, and monocytes, hardly expressed in two subsets of NK cells from either the peripheral blood or decidua. We further demonstrated the chemotactic activity of CXCL16 in the supernatant of the primary trophoblast on the peripheral mononuclear cells and DLC. Moreover, the CXCL16/CXCR6 interaction is involved in the migration of the peripheral T lymphocytes, gammadelta T cells, and monocytes, but not NKT cells. In addition, the trophoblast-conditioned medium could enrich PBMC subsets selectively to constitute a leukocyte population with similar composition to that of DLC, which suggests that the fetus-derived trophoblasts can attract T cells, gammadelta T cells, and monocytes by producing CXCL16 and interaction with CXCR6 on these cells, leading to forming a specialized immune milieu at the maternofetal interface.

  6. Induction of ceruloplasmin synthesis by IFN-gamma in human monocytic cells

    NASA Technical Reports Server (NTRS)

    Mazumder, B.; Mukhopadhyay, C. K.; Prok, A.; Cathcart, M. K.; Fox, P. L.

    1997-01-01

    Ceruloplasmin is a 132-kDa glycoprotein abundant in human plasma. It has multiple in vitro activities, including copper transport, lipid pro- and antioxidant activity, and oxidation of ferrous ion and aromatic amines; however, its physiologic role is uncertain. Although ceruloplasmin is synthesized primarily by the liver in adult humans, production by cells of monocytic origin has been reported. We here show that IFN-gamma is a potent inducer of ceruloplasmin synthesis by monocytic cells. Activation of human monoblastic leukemia U937 cells with IFN-gamma increased the production of ceruloplasmin by at least 20-fold. The identity of the protein was confirmed by plasmin fingerprinting. IFN-gamma also increased ceruloplasmin mRNA. Induction followed a 2- to 4-h lag and was partially blocked by cycloheximide, indicating a requirement for newly synthesized factors. Ceruloplasmin induction in monocytic cells was agonist specific, as IL-1, IL-4, IL-6, IFN-alpha, IFN-beta, TNF-alpha, and LPS were completely ineffective. The induction was also cell type specific, as IFN-gamma did not induce ceruloplasmin synthesis in endothelial or smooth muscle cells. In contrast, IFN-gamma was stimulatory in other monocytic cells, including THP-1 cells and human peripheral blood monocytes, and also in HepG2 cells. Ceruloplasmin secreted by IFN-gamma-stimulated U937 cells had ferroxidase activity and was, in fact, the only secreted protein with this activity. Monocytic cell-derived ceruloplasmin may contribute to defense responses via its ferroxidase activity, which may drive iron homeostasis in a direction unfavorable to invasive organisms.

  7. Epigenetic programming during monocyte to macrophage differentiation and trained innate immunity

    PubMed Central

    Saeed, Sadia; Quintin, Jessica; Kerstens, Hindrik H.D.; Rao, Nagesha A; Aghajanirefah, Ali; Matarese, Filomena; Cheng, Shih-Chin; Ratter, Jacqueline; Berentsen, Kim; van der Ent, Martijn A.; Sharifi, Nilofar; Janssen-Megens, Eva M.; Huurne, Menno Ter; Mandoli, Amit; van Schaik, Tom; Ng, Aylwin; Burden, Frances; Downes, Kate; Frontini, Mattia; Kumar, Vinod; Giamarellos-Bourboulis, Evangelos J; Ouwehand, Willem H; van der Meer, Jos W.M.; Joosten, Leo A.B.; Wijmenga, Cisca; Martens, Joost H.A.; Xavier, Ramnik J.; Logie, Colin; Netea, Mihai G.; Stunnenberg, Hendrik G.

    2014-01-01

    Structured Abstract Introduction Monocytes circulate in the bloodstream for up to 3–5 days. Concomitantly, immunological imprinting of either tolerance (immunosuppression) or trained immunity (innate immune memory) determines the functional fate of monocytes and monocyte-derived macrophages, as observed after infection or vaccination. Methods Purified circulating monocytes from healthy volunteers were differentiated under the homeostatic M-CSF concentrations present in human serum. During the first 24 hours, trained immunity was induced by β-glucan (BG) priming, while post-sepsis immunoparalysis was mimicked by exposure to LPS, generating endotoxin-induced tolerance. Epigenomic profiling of the histone marks H3K4me1, H3K4me3 and H3K27ac, DNase I accessibility and RNA sequencing were performed at both the start of the experiment (ex vivo monocytes) and at the end of the six days of in vitro culture (macrophages). Results Compared to monocytes (Mo), naïve macrophages (Mf) display a remodeled metabolic enzyme repertoire and attenuated innate inflammatory pathways; most likely necessary to generate functional tissue macrophages. Epigenetic profiling uncovered ~8000 dynamic regions associated with ~11000 DNase I hypersensitive sites. Changes in histone acetylation identified most dynamic events. Furthermore, these regions of differential histone marks displayed some degree of DNase I accessibility that was already present in monocytes. H3K4me1 mark increased in parallel with de novo H3K27ac deposition at distal regulatory regions; H3K4me1 mark remained even after the loss of H3K27ac, marking decommissioned regulatory elements. β-glucan priming specifically induced ~3000 distal regulatory elements, whereas LPS-tolerization uniquely induced H3K27ac at ~500 distal regulatory regions. At the transcriptional level, we identified co-regulated gene modules during monocyte to macrophage differentiation, as well as discordant modules between trained and tolerized cells

  8. The impact of ranitidine on monocyte responses in the context of solid tumors

    PubMed Central

    Vila-Leahey, Ava; Rogers, Dakota; Marshall, Jean S.

    2016-01-01

    Monocytes and myeloid derived suppressor cells (MDSC) have been implicated on the regulation of tumor growth. Histamine is also important for regulating MDSC responses. Oral administration of the H2 receptor antagonist ranitidine can inhibit breast tumor growth and metastasis. In the current study, we examined the impact of oral ranitidine treatment, at a clinically relevant dose, on multiple murine tumor models. The impact of ranitidine on monocyte responses and the role of CCR2 in ranitidine-induced tumor growth inhibition were also investigated. Oral ranitidine treatment did not reduce tumor growth in the B16-F10 melanoma, LLC1 lung cancer and EL4 thymoma models. However, it consistently reduced E0771 primary tumor growth and metastasis in the 4T1 model. Ranitidine had no impact on E0771 tumor growth in mice deficient in CCR2, where monocyte recruitment to tumors was limited. Analysis of splenic monocytes also revealed an elevated ratio of H2 versus H1 expression from tumor-bearing compared with naïve mice. More detailed examination of the role of ranitidine on monocyte development demonstrated a decrease in monocyte progenitor cells following ranitidine treatment. Taken together, these results reveal that H2 signaling may be a novel target to alter the monocyte population in breast tumor models, and that targeting H2 on monocytes via oral ranitidine treatment impacts effective tumor immunity. Ranitidine is widely used for control of gastrointestinal disorders. The potential role of ranitidine as an adjunct to immunotherapies for breast cancer and the potential impact of H2 antagonists on breast cancer outcomes should be considered. PMID:26863636

  9. The impact of ranitidine on monocyte responses in the context of solid tumors.

    PubMed

    Vila-Leahey, Ava; Rogers, Dakota; Marshall, Jean S

    2016-03-08

    Monocytes and myeloid derived suppressor cells (MDSC) have been implicated on the regulation of tumor growth. Histamine is also important for regulating MDSC responses. Oral administration of the H2 receptor antagonist ranitidine can inhibit breast tumor growth and metastasis. In the current study, we examined the impact of oral ranitidine treatment, at a clinically relevant dose, on multiple murine tumor models. The impact of ranitidine on monocyte responses and the role of CCR2 in ranitidine-induced tumor growth inhibition were also investigated. Oral ranitidine treatment did not reduce tumor growth in the B16-F10 melanoma, LLC1 lung cancer and EL4 thymoma models. However, it consistently reduced E0771 primary tumor growth and metastasis in the 4T1 model. Ranitidine had no impact on E0771 tumor growth in mice deficient in CCR2, where monocyte recruitment to tumors was limited. Analysis of splenic monocytes also revealed an elevated ratio of H2 versus H1 expression from tumor-bearing compared with naïve mice. More detailed examination of the role of ranitidine on monocyte development demonstrated a decrease in monocyte progenitor cells following ranitidine treatment. Taken together, these results reveal that H2 signaling may be a novel target to alter the monocyte population in breast tumor models, and that targeting H2 on monocytes via oral ranitidine treatment impacts effective tumor immunity. Ranitidine is widely used for control of gastrointestinal disorders. The potential role of ranitidine as an adjunct to immunotherapies for breast cancer and the potential impact of H2 antagonists on breast cancer outcomes should be considered.

  10. Interaction of THP-1 Monocytes with Conidia and Hyphae of Different Curvularia Strains

    PubMed Central

    Tóth, Eszter Judit; Boros, Éva; Hoffmann, Alexandra; Szebenyi, Csilla; Homa, Mónika; Nagy, Gábor; Vágvölgyi, Csaba; Nagy, István; Papp, Tamás

    2017-01-01

    Interaction of the human monocytic cell line, THP-1 with clinical isolates of three Curvularia species were examined. Members of this filamentous fungal genus can cause deep mycoses emerging in both immunocompromised and immunocompetent patients. It was found that monocytes reacted only to the hyphal form of Curvularia lunata. Cells attached to the germ tubes and hyphae and production of elevated levels of interleukin (IL)-8 and IL-10 and a low level of TNF-α were measured. At the same time, monocytes failed to produce IL-6. This monocytic response, especially with the induction of the anti-inflammatory IL-10, correlates well to the observation that C. lunata frequently cause chronic infections even in immunocompetent persons. Despite the attachment to the hyphae, monocytes could not reduce the viability of the fungus and the significant decrease in the relative transcript level of HLA-DRA assumes the lack of antigen presentation of the fungus by this cell type. C. spicifera and C. hawaiiensis failed to induce the gathering of the cells or the production of any analyzed cytokines. Monocytes did not recognize conidia of Curvularia species, even when melanin was lacking in their cell wall. PMID:29093719

  11. Interaction of THP-1 Monocytes with Conidia and Hyphae of Different Curvularia Strains.

    PubMed

    Tóth, Eszter Judit; Boros, Éva; Hoffmann, Alexandra; Szebenyi, Csilla; Homa, Mónika; Nagy, Gábor; Vágvölgyi, Csaba; Nagy, István; Papp, Tamás

    2017-01-01

    Interaction of the human monocytic cell line, THP-1 with clinical isolates of three Curvularia species were examined. Members of this filamentous fungal genus can cause deep mycoses emerging in both immunocompromised and immunocompetent patients. It was found that monocytes reacted only to the hyphal form of Curvularia lunata . Cells attached to the germ tubes and hyphae and production of elevated levels of interleukin (IL)-8 and IL-10 and a low level of TNF-α were measured. At the same time, monocytes failed to produce IL-6. This monocytic response, especially with the induction of the anti-inflammatory IL-10, correlates well to the observation that C. lunata frequently cause chronic infections even in immunocompetent persons. Despite the attachment to the hyphae, monocytes could not reduce the viability of the fungus and the significant decrease in the relative transcript level of HLA-DRA assumes the lack of antigen presentation of the fungus by this cell type. C. spicifera and C. hawaiiensis failed to induce the gathering of the cells or the production of any analyzed cytokines. Monocytes did not recognize conidia of Curvularia species, even when melanin was lacking in their cell wall.

  12. Endogenous pyrogen production by human blood monocytes stimulated by staphylococcal cell wall components.

    PubMed

    Oken, M M; Peterson, P K; Wilkinson, B J

    1981-01-01

    To determine the properties of Staphylococcus aureus contributing to its pyrogenicity, we compared, in human monocytes, endogenous pyrogen production stimulated by heat-killed S. aureus with that stimulated by purified S. aureus cell walls or by particulate peptidoglycan prepared from the same strain. Peptidoglycan, but not the purified cell wall preparation, was found comparable to S. aureus as an endogenous pyrogen stimulus. This finding was associated with a more effective monocyte phagocytosis of S. aureus and peptidoglycan as compared with that of purified cell walls. Lysostaphin digestion of peptidoglycan markedly reduced its pyrogenicity. To test whether the chemical composition of the ingested particles is important, latex particles were tested as possible stimuli for monocyte endogenous pyrogen release. Although 40 to 68% of monocytes ingested latex particles during the first hour, there was no evidence of endogenous pyrogen activity in the supernatant even when supernatants equivalent to 5.2 X 10(6) monocytes were tested. This study demonstrates that the pyrogenic moiety of the S. aureus cell wall resides in the peptidoglycan component. Phagocytosis is not in itself a pyrogenic stimulus, but rather serves as an effective mechanism to bring about contact between the chemical stimulus and the monocyte.

  13. Complement C3 participation in monocyte adhesion to different surfaces.

    PubMed Central

    McNally, A K; Anderson, J M

    1994-01-01

    As part of an ongoing investigation into the role of the monocyte/macrophage in biocompatibility, a major goal is to identify the adhesion mechanisms that initiate and promote the observed in vivo morphologic progression of monocyte-to-macrophage-to-foreign body giant cell on biomaterials. We have exploited differently modified polystyrenes, specific component-depleted sera, and monoclonal antibodies (mAbs) to leukocyte integrins to ask what adhesion mechanisms mediate human blood monocyte adhesion to different surfaces in vitro. Preliminary findings are that monocyte interactions with fluorinated, siliconized, nitrogenated, and oxygenated surfaces are reduced by 50-100% when complement component C3-depleted serum is used for adsorption; reductions vary with material surface properties. Adhesion is restored on all surfaces when C3-depleted serum is replenished with purified C3. Monocyte adhesion to serum-adsorbed surfaces is inhibited by mAbs to the leukocyte integrin beta subunit, CD18 (mAbs 60.3 and MHM23), and partially inhibited by a mAb to the alpha subunit, CD11b (mAb 60.1), suggesting adhesive interactions between adsorbed C3bi (the hemolytically inactive form of the C3b fragment) and the leukocyte integrin CD11b/CD18. However, adsorbed fibrinogen reduces the effectiveness of these mAbs, indicating that alternative adhesion mechanisms may operate depending on the propensities of critical adhesion-mediating components to be adsorbed onto different surfaces. Images PMID:7937848

  14. The generation of NGF-secreting primary rat monocytes: a comparison of different transfer methods.

    PubMed

    Hohsfield, Lindsay A; Geley, Stephan; Reindl, Markus; Humpel, Christian

    2013-05-31

    Nerve growth factor (NGF), a member of the neurotrophin family, is responsible for the maintenance and survival of cholinergic neurons in the basal forebrain. The degeneration of cholinergic neurons and reduced acetycholine levels are hallmarks of Alzheimer's disease (AD) as well as associated with learning and memory deficits. Thus far, NGF has proven the most potent neuroprotective molecule against cholinergic neurodegeneration. However, delivery of this factor into the brain remains difficult. Recent studies have begun to elucidate the potential use of monocytes as vehicles for therapeutic delivery into the brain. In this study, we employed different transfection and transduction methods to generate NGF-secreting primary rat monocytes. Specifically, we compared five methods for generating NGF-secreting monocytes: (1) cationic lipid-mediated transfection (Effectene and FuGene), (2) classical electroporation, (3) nucleofection, (4) protein delivery (Bioporter) and (5) lentiviral vectors. Here, we report that classical transfection methods (lipid-mediated transfection, electroporation, nucleofection) are inefficient tools for proper gene transfer into primary rat monocytes. We demonstrate that lentiviral infection and Bioporter can successfully transduce/load primary rat monocytes and produce effective NGF secretion. Furthermore, our results indicate that NGF is bioactive and that Bioporter-loaded monocytes do not appear to exhibit any functional disruptions (i.e. in their ability to differentiate and phagocytose beta-amyloid). Taken together, our results show that primary monocytes can be effectively loaded or transduced with NGF and provides information on the most effective method for generating NGF-secreting primary rat monocytes. This study also provides a basis for further development of primary monocytes as therapeutic delivery vehicles to the diseased AD brain. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Interleukin-32 induces the differentiation of monocytes into macrophage-like cells.

    PubMed

    Netea, Mihai G; Lewis, Eli C; Azam, Tania; Joosten, Leo A B; Jaekal, Jun; Bae, Su-Young; Dinarello, Charles A; Kim, Soo-Hyun

    2008-03-04

    After emigration from the bone marrow to the peripheral blood, monocytes enter tissues and differentiate into macrophages, the prototype scavenger of the immune system. By ingesting and killing microorganisms and removing cellular debris, macrophages also process antigens as a first step in mounting a specific immune response. IL-32 is a cytokine inducing proinflammatory cytokines and chemokines via p38-MAPK and NF-kappaB. In the present study, we demonstrate that IL-32 induces differentiation of human blood monocytes as well as THP-1 leukemic cells into macrophage-like cells with functional phagocytic activity for live bacteria. Muramyl dipepide (MDP), the ligand for the intracellular nuclear oligomerization domain (NOD) 2 receptor, has no effect on differentiation alone but augments the monocyte-to-macrophage differentiation by IL-32. Unexpectedly, IL-32 reversed GM-CSF/IL-4-induced dendritic cell differentiation to macrophage-like cells. Whereas the induction of TNFalpha, IL-1beta, and IL-6 by IL-32 is mediated by p38-MAPK, IL-32-induced monocyte-to-macrophage differentiation is mediated through nonapoptotic, caspase-3-dependent mechanisms. Thus, IL-32 not only contributes to host responses through the induction of proinflammatory cytokines but also directly affects specific immunity by differentiating monocytes into macrophage-like cells.

  16. Accumulation of unsaturated lipids in monocytes during early phase pyrogen tolerance.

    PubMed

    Szewczenko-Pawlikowski, M; Kozak, W

    2000-04-12

    This paper presents data that inspired a new explanation for the mechanism of early phase endotoxin tolerance. Rabbits injected intravenously with LPS from Salmonella abortus developed a two-phase fever (6 h) and monophasic hyperlipidemia of very low density lipoproteins (two consecutive days). If during these days rabbits were injected with the same dose of LPS at 24-h intervals, the second phase of fever disappeared, i.e. early phase pyrogenic tolerance was obtained. This was correlated with a decrease of lipoprotein hyperlipidemia (measured 1.5 h after LPS injection) and an accumulation of lipids rich in double bonds in monocytes (measured 3.5 h after LPS injection). Results showed that the degree of unsaturation of acyl chains (AC) in monocytes (AC/DB, DB=double bonds) is negatively correlated (r=-0.72) with fever response (fever index). The authors maintain that a gradual increase in monocyte membrane fluidity is an adaptation to repeated exposure of monocytes to lipid A and is responsible for the progressive desensitization of monocytes to endotoxin. It is suggested that disorders of this mechanism lead to an accumulation of abnormal quantities of saturated lipids and cholesterol within macrophages, which, as foam cells, are the starting point for atherosclerosis pathology.

  17. A curated compendium of monocyte transcriptome datasets of relevance to human monocyte immunobiology research

    PubMed Central

    Rinchai, Darawan; Boughorbel, Sabri; Presnell, Scott; Quinn, Charlie; Chaussabel, Damien

    2016-01-01

    Systems-scale profiling approaches have become widely used in translational research settings. The resulting accumulation of large-scale datasets in public repositories represents a critical opportunity to promote insight and foster knowledge discovery. However, resources that can serve as an interface between biomedical researchers and such vast and heterogeneous dataset collections are needed in order to fulfill this potential. Recently, we have developed an interactive data browsing and visualization web application, the Gene Expression Browser (GXB). This tool can be used to overlay deep molecular phenotyping data with rich contextual information about analytes, samples and studies along with ancillary clinical or immunological profiling data. In this note, we describe a curated compendium of 93 public datasets generated in the context of human monocyte immunological studies, representing a total of 4,516 transcriptome profiles. Datasets were uploaded to an instance of GXB along with study description and sample annotations. Study samples were arranged in different groups. Ranked gene lists were generated based on relevant group comparisons. This resource is publicly available online at http://monocyte.gxbsidra.org/dm3/landing.gsp. PMID:27158452

  18. Uremic Conditions Drive Human Monocytes to Pro-Atherogenic Differentiation via an Angiotensin-Dependent Mechanism

    PubMed Central

    Trojanowicz, Bogusz; Ulrich, Christof; Seibert, Eric; Fiedler, Roman; Girndt, Matthias

    2014-01-01

    Aims Elevated expression levels of monocytic-ACE have been found in haemodialysis patients. They are not only epidemiologically linked with increased mortality and cardiovascular disease, but may also directly participate in the initial steps of atherosclerosis. To further address this question we tested the role of monocytic-ACE in promotion of atherosclerotic events in vitro under conditions mimicking those of chronic renal failure. Methods and Results Treatment of human primary monocytes or THP-1 cells with uremic serum as well as PMA-induced differentiation led to significantly up-regulated expression of ACE, further increased by additional treatment with LPS. Functionally, these monocytes revealed significantly increased adhesion and transmigration through endothelial monolayers. Overexpression of ACE in transfected monocytes or THP-1 cells led to development of more differentiated, macrophage-like phenotype with up-regulated expression of Arg1, MCSF, MCP-1 and CCR2. Expression of pro-inflammatory cytokines TNFa and IL-6 were also noticeably up-regulated. ACE overexpression resulted in significantly increased adhesion and transmigration properties. Transcriptional screening of ACE-overexpressing monocytes revealed noticeably increased expression of Angiotensin II receptors and adhesion- as well as atherosclerosis-related ICAM-1 and VCAM1. Inhibition of monocyte ACE or AngII-receptor signalling led to decreased adhesion potential of ACE-overexpressing cells. Conclusions Taken together, these data demonstrate that uremia induced expression of monocytic-ACE mediates the development of highly pro-atherogenic cells via an AngII-dependent mechanism. PMID:25003524

  19. Exposure to chorioamnionitis alters the monocyte transcriptional response to the neonatal pathogen Staphylococcus epidermidis.

    PubMed

    de Jong, Emma; Hancock, David G; Wells, Christine; Richmond, Peter; Simmer, Karen; Burgner, David; Strunk, Tobias; Currie, Andrew J

    2018-03-13

    Preterm infants are uniquely susceptible to late-onset sepsis that is frequently caused by the skin commensal Staphylococcus epidermidis. Innate immune responses, particularly from monocytes, are a key protective mechanism. Impaired cytokine production by preterm infant monocytes is well described, but few studies have comprehensively assessed the corresponding monocyte transcriptional response. Innate immune responses in preterm infants may be modulated by inflammation such as prenatal exposure to histologic chorioamnionitis which complicates 40-70% of preterm pregnancies. Chorioamnionitis alters the risk of late-onset sepsis, but its effect on monocyte function is largely unknown. Here, we aimed to determine the impact of exposure to chorioamnionitis on the proportions and phenotype of cord blood monocytes using flow cytometry, as well as their transcriptional response to live S. epidermidis. RNA-seq was performed on purified cord blood monocytes from very preterm infants (<32 weeks gestation, with and without chorioamnionitis-exposure) and term infants (37-40 weeks), pre- and postchallenge with live S. epidermidis. Preterm monocytes from infants without chorioamnionitis-exposure did not exhibit an intrinsically deficient transcriptional response to S. epidermidis compared to term infants. In contrast, chorioamnionitis-exposure was associated with hypo-responsive transcriptional phenotype regarding a subset of genes involved in antigen presentation and adaptive immunity. Overall, our findings suggest that prenatal exposure to inflammation may alter the risk of sepsis in preterm infants partly by modulation of monocyte responses to pathogens. © 2018 Australasian Society for Immunology Inc.

  20. Inhibition of the Differentiation of Monocyte-Derived Dendritic Cells by Human Gingival Fibroblasts

    PubMed Central

    Séguier, Sylvie; Tartour, Eric; Guérin, Coralie; Couty, Ludovic; Lemitre, Mathilde; Lallement, Laetitia; Folliguet, Marysette; Naderi, Samah El; Terme, Magali; Badoual, Cécile; Lafont, Antoine; Coulomb, Bernard

    2013-01-01

    We investigated whether gingival fibroblasts (GFs) can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs) and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM) from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05) inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism. PMID:23936476

  1. Exposure of Monocytes to Lipoarabinomannan Promotes Their Differentiation into Functionally and Phenotypically Immature Macrophages

    PubMed Central

    Chávez-Galán, Leslie; Ocaña-Guzmán, Ranferi; Torre-Bouscoulet, Luis; García-de-Alba, Carolina; Sada-Ovalle, Isabel

    2015-01-01

    Lipoarabinomannan (LAM) is a lipid virulence factor secreted by Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis. LAM can be measured in the urine or serum of tuberculosis patients (TB-patients). Circulating monocytes are the precursor cells of alveolar macrophages and might be exposed to LAM in patients with active TB. We speculated that exposing monocytes to LAM could produce phenotypically and functionally immature macrophages. To test our hypothesis, human monocytes were stimulated with LAM (24–120 hours) and various readouts were measured. The study showed that when monocytes were exposed to LAM, the frequency of CD68+, CD33+, and CD86+ macrophages decreased, suggesting that monocyte differentiation into mature macrophages was affected. Regarding functionality markers, TLR2+ and TLR4+ macrophages also decreased, but the percentage of MMR+ expression did not change. LAM-exposed monocytes generated macrophages that were less efficient in producing proinflammatory cytokines such as TNF-α and IFN-γ; however, their phagocytic capacity was not modified. Taken together, these data indicate that LAM exposure influenced monocyte differentiation and produced poorly functional macrophages with a different phenotype. These results may help us understand how mycobacteria can limit the quality of the innate and adaptive immune responses. PMID:26347897

  2. Circulating inflammatory monocytes contribute to impaired influenza vaccine responses in HIV-infected participants.

    PubMed

    George, Varghese K; Pallikkuth, Suresh; Pahwa, Rajendra; de Armas, Lesley R; Rinaldi, Stefano; Pan, Li; Pahwa, Savita

    2018-06-19

    Antibody responses are often impaired in old age and in HIV-positive (HIV+) infection despite virologic control with antiretroviral therapy but innate immunologic determinants are not well understood. Monocytes and natural killer cells were examined for relationships to age, HIV infection and influenza vaccine responses. Virologically suppressed HIV+ (n = 139) and HIV-negative (HIV-) (n = 137) participants classified by age as young (18-39 years), middle-aged (40-59 years) and old (≥60 years) were evaluated preinfluenza and postinfluenza vaccination. Prevaccination frequencies of inflammatory monocytes were highest in old HIV+ and HIV-, with old HIV+ exhibiting higher frequency of integrin CD11b on inflammatory monocytes that was correlated with age, expression of C-C chemokine receptor-2 (CCR2) and plasma soluble tumor necrosis factor receptor-1 (sTNFR1), with inverse correlation with postvaccination influenza H1N1 antibody titers. Higher frequencies of CD11b inflammatory monocytes (CD11b, >48.4%) compared with low frequencies of CD11b inflammatory monocytes (<15.8%) was associated with higher prevaccination frequencies of total and inflammatory monocytes and higher CCR2 MFI, higher plasma sTNFR1 and CXCL-10 with higher lipopolysaccharide stimulated expression of TNFα and IL-6, concomitant with lower postvaccination influenza antibody titers. In HIV+ CD11b expressers, the depletion of inflammatory monocytes from peripheral blood mononuclear cells resulted in enhanced antigen-specific CD4 T-cell proliferation. Immature CD56 natural killer cells were lower in young HIV+ compared with young HIV- participants. Perturbations of innate immunity and inflammation signified by high CD11b on inflammatory monocytes are exacerbated with aging in HIV+ and negatively impact immune function involved in Ab response to influenza vaccination.

  3. Immune complex-induced human monocyte procoagulant activity. I. a rapid unidirectional lymphocyte-instructed pathway.

    PubMed

    Schwartz, B S; Edgington, T S

    1981-09-01

    It has previously been described that soluble antigen:antibody complexes in antigen excess can induce an increase in the procoagulant activity of human peripheral blood mononuclear cells. It has been proposed that this response may explain the presence of fibrin in immune complex-mediated tissue lesions. In the present study we define cellular participants and their roles in the procoagulant response to soluble immune complexes. Monocytes were shown by cell fractionation and by a direct cytologic assay to be the cell of origin of the procoagulant activity; and virtually all monocytes were able to participate in the response. Monocytes, however, required the presence of lymphocytes to respond. The procoagulant response required cell cooperation, and this collaborative interaction between lymphocytes and monocytes appeared to be unidirectional. Lymphocytes once triggered by immune complexes induced monocytes to synthesize the procoagulant product. Intact viable lymphocytes were required to present instructions to monocytes; no soluble mediator could be found to subserve this function. Indeed, all that appeared necessary to induce monocytes to produce procoagulant activity was an encounter with lymphocytes that had previously been in contact with soluble immune complexes. The optimum cellular ratio for this interaction was four lymphocytes per monocyte, about half the ratio in peripheral blood. The procoagulant response was rapid, reaching a maximum within 6 h after exposure to antigen:antibody complexes. The procoagulant activity was consistent with tissue factor because Factors VII and X and prothrombin were required for clotting of fibrinogen. WE propose that this pathway differs from a number of others involving cells of the immune system. Elucidation of the pathway may clarify the role of this lymphocyte-instructed monocyte response in the Shwartzman phenomenon and other thrombohemorrhagic events associated with immune cell function and the formation of immune

  4. Toxicity of nanotitanium dioxide (TiO2-NP) on human monocytes and their mitochondria.

    PubMed

    Ghanbary, Fatemeh; Seydi, Enaytollah; Naserzadeh, Parvaneh; Salimi, Ahmad

    2018-03-01

    The effect of nanotitanium dioxide (TiO 2 -NP) in human monocytes is still unknown. Therefore, an understanding of probable cytotoxicity of TiO 2 -NP on human monocytes and underlining the mechanisms involved is of significant interest. The aim of this study was to assess the cytotoxicity of TiO 2 -NP on human monocytes. Using biochemical and flow cytometry assessments, we demonstrated that addition of TiO 2 -NP at 10 μg/ml concentration to monocytes induced cytotoxicity following 12 h. The TiO 2 -NP-induced cytotoxicity on monocytes was associated with intracellular reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) collapse, lysosomal membrane injury, lipid peroxidation, and depletion of glutathione. According to our results, TiO 2 -NP triggers oxidative stress and organelles damages in monocytes which are important cells in defense against foreign agents. Finally, our findings suggest that use of antioxidants and mitochondrial/lysosomal protective agents could be of benefit for the people in the exposure with TiO 2 -NP.

  5. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes

    NASA Astrophysics Data System (ADS)

    Ledall, Jérémy; Fruchon, Séverine; Garzoni, Matteo; Pavan, Giovanni M.; Caminade, Anne-Marie; Turrin, Cédric-Olivier; Blanzat, Muriel; Poupot, Rémy

    2015-10-01

    Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti-inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes.Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti

  6. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    PubMed Central

    Gillette, Devyn D.; Curry, Heather M.; Cremer, Thomas; Ravneberg, David; Fatehchand, Kavin; Shah, Prexy A.; Wewers, Mark D.; Schlesinger, Larry S.; Butchar, Jonathan P.; Tridandapani, Susheela; Gavrilin, Mikhail A.

    2014-01-01

    Background: Human monocyte inflammatory responses differ between virulent and attenuated Francisella infection. Results: A mixed infection model showed that the virulent F. tularensis Schu S4 can attenuate inflammatory cytokine responses to the less virulent F. novicida in human monocytes. Conclusion: F. tularensis dampens inflammatory response by an active process. Significance: This suppression may contribute to enhanced pathogenicity of F. tularensis. Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity. PMID:24783062

  7. Activated Monocytes Enhance Platelet-Driven Contraction of Blood Clots via Tissue Factor Expression.

    PubMed

    Peshkova, Alina D; Le Minh, Giang; Tutwiler, Valerie; Andrianova, Izabella A; Weisel, John W; Litvinov, Rustem I

    2017-07-11

    Platelet-driven reduction in blood clot volume (clot contraction or retraction) has been implicated to play a role in hemostasis and thrombosis. Although these processes are often linked with inflammation, the role of inflammatory cells in contraction of blood clots and thrombi has not been investigated. The aim of this work was to study the influence of activated monocytes on clot contraction. The effects of monocytes were evaluated using a quantitative optical tracking methodology to follow volume changes in a blood clot formed in vitro. When a physiologically relevant number of isolated human monocytes pre-activated with phorbol-12-myristate-13-acetate (PMA) were added back into whole blood, the extent and rate of clot contraction were increased compared to addition of non-activated cells. Inhibition of tissue factor expression or its inactivation on the surface of PMA-treated monocytes reduced the extent and rate of clot contraction back to control levels with non-activated monocytes. On the contrary, addition of tissue factor enhanced clot contraction, mimicking the effects of tissue factor expressed on the activated monocytes. These data suggest that the inflammatory cells through their expression of tissue factor can directly affect hemostasis and thrombosis by modulating the size and density of intra- and extravascular clots and thrombi.

  8. Moderate restriction of macrophage-tropic human immunodeficiency virus type 1 by SAMHD1 in monocyte-derived macrophages.

    PubMed

    Taya, Kahoru; Nakayama, Emi E; Shioda, Tatsuo

    2014-01-01

    Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.

  9. Gas6 Promotes Inflammatory (CCR2hiCX3CR1lo) Monocyte Recruitment in Venous Thrombosis.

    PubMed

    Laurance, Sandrine; Bertin, François-René; Ebrahimian, Talin; Kassim, Yusra; Rys, Ryan N; Lehoux, Stéphanie; Lemarié, Catherine A; Blostein, Mark D

    2017-07-01

    Coagulation and inflammation are inter-related. Gas6 (growth arrest-specific 6) promotes venous thrombosis and participates to inflammation through endothelial-innate immune cell interactions. Innate immune cells can provide the initiating stimulus for venous thrombus development. We hypothesize that Gas6 promotes monocyte recruitment during venous thrombosis. Deep venous thrombosis was induced in wild-type and Gas6-deficient (-/-) mice using 5% FeCl 3 and flow reduction in the inferior vena cava. Total monocyte depletion was achieved by injection of clodronate before deep venous thrombosis. Inflammatory monocytes were depleted using an anti-C-C chemokine receptor type 2 (CCR2) antibody. Similarly, injection of an anti-chemokine ligand 2 (CCL2) antibody induced CCL2 depletion. Flow cytometry and immunofluorescence were used to characterize the monocytes recruited to the thrombus. In vivo, absence of Gas6 was associated with a reduction of monocyte recruitment in both deep venous thrombosis models. Global monocyte depletion by clodronate leads to smaller thrombi in wild-type mice. Compared with wild type, the thrombi from Gas6 -/- mice contain less inflammatory (CCR2 hi CX 3 CR1 lo ) monocytes, consistent with a Gas6-dependent recruitment of this monocyte subset. Correspondingly, selective depletion of CCR2 hi CX 3 CR1 lo monocytes reduced the formation of venous thrombi in wild-type mice demonstrating a predominant role of the inflammatory monocytes in thrombosis. In vitro, the expression of both CCR2 and CCL2 were Gas6 dependent in monocytes and endothelial cells, respectively, impacting monocyte migration. Moreover, Gas6-dependent CCL2 expression and monocyte migration were mediated via JNK (c-Jun N-terminal kinase). This study demonstrates that Gas6 specifically promotes the recruitment of inflammatory CCR2 hi CX 3 CR1 lo monocytes through the regulation of both CCR2 and CCL2 during deep venous thrombosis. © 2017 American Heart Association, Inc.

  10. Macrolide Antibiotics Improve Phagocytic Capacity and Reduce Inflammation In Sulfur Mustard-Exposed Monocytes

    DTIC Science & Technology

    2008-12-01

    phagocytotic function and on inflammatory cytokines/mediators production in vitro using SM-exposed monocyte THP - 1 cells. Using flow cytometry we found...in vitro using SM-exposed monocyte THP - 1 cells. 2. MATERIALS AND METHODS 2.1 Reagents Sulfur mustard (2,2’-dichlorodiethyl sulfide; 4 mM) was...monocyte THP - 1 cells were obtained from ATCC (Manassas, VA). Cells were grown as suspension in the optimized media as formulated by the manufacturer and

  11. Chemotherapy of colorectal liver metastases induces a rapid rise in intermediate blood monocytes which predicts treatment response

    PubMed Central

    Schauer, Dominic; Starlinger, Patrick; Alidzanovic, Lejla; Zajc, Philipp; Maier, Thomas; Feldman, Alexandra; Padickakudy, Robin; Buchberger, Elisabeth; Elleder, Vanessa; Spittler, Andreas; Stift, Judith; Pop, Lorand; Gruenberger, Birgit; Gruenberger, Thomas; Brostjan, Christine

    2016-01-01

    ABSTRACT We have previously reported that intermediate monocytes (CD14++/CD16+) were increased in colorectal cancer (CRC) patients, while the subset of pro-angiogenic TIE2-expressing monocytes (TEMs) was not significantly elevated. This study was designed to evaluate changes in frequency and function of intermediate monocytes and TEMs during chemotherapy and anti-angiogenic cancer treatment and their relation to treatment response. Monocyte populations were determined by flow cytometry in 60 metastasized CRC (mCRC) patients who received neoadjuvant chemotherapy with or without bevacizumab. Blood samples were taken before treatment, after two therapy cycles, at the end of neoadjuvant therapy and immediately before surgical resection of liver metastases. Neoadjuvant treatment resulted in a significant increase in circulating intermediate monocytes which was most pronounced after two cycles and positively predicted tumor response (AUC = 0.875, p = 0.005). With a cut-off value set to 1% intermediate monocytes of leukocytes, this parameter showed a predictive sensitivity and specificity of 75% and 88%. Anti-angiogenic therapy with bevacizumab had no impact on monocyte populations including TEMs. In 15 patients and six healthy controls, the gene expression profile and the migratory behavior of monocyte subsets was evaluated. The profile of intermediate monocytes suggested functions in antigen presentation, inflammatory cytokine production, chemotaxis and was remarkably stable during chemotherapy. Intermediate monocytes showed a preferential migratory response to tumor-derived signals in vitro and correlated with the level of CD14+/CD16+ monocytic infiltrates in the resected tumor tissue. In conclusion, the rapid rise of intermediate monocytes during chemotherapy may offer a simple marker for response prediction and a timely change in regimen. PMID:27471631

  12. Regulation of EMMPRIN (CD147) on monocyte subsets in patients with symptomatic coronary artery disease.

    PubMed

    Sturhan, Henrik; Ungern-Sternberg, Saskia N I v; Langer, Harald; Gawaz, Meinrad; Geisler, Tobias; May, Andreas E; Seizer, Peter

    2015-06-01

    The role of individual monocyte subsets in inflammatory cardiovascular diseases is insufficiently understood. Although the Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) regulates important processes for inflammation such as MMP-release, its expression and regulation on monocyte subsets has not been characterized. In this clinical study, blood was obtained from 80 patients with stable coronary artery disease (CAD), 49 with acute myocardial infarction (AMI) and 34 healthy controls. Monocytes were divided into 3 subsets: CD14(++)CD16(-) (low), CD14(++)CD16(+) (intermediate), CD14(+)CD16(++) (high) according to phenotypic markers analyzed by flow cytometry. Surface expression of EMMPRIN was evaluated and compared with CD36 and CD47 expression. In all patients, EMMPRIN expression was significantly different among monocyte subsets with the highest expression on "classical" CD14(++)CD16(-) monocytes. EMMPRIN was upregulated on all monocyte subsets in patients with AMI as compared to patients with stable CAD. Notably, neither CD47 nor CD36 revealed a significant difference in patients with AMI compared to patients with stable CAD. EMMPRIN could serve as a marker for classical monocytes, which is upregulated in patients with acute myocardial infarction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. On the prediction of monocyte deposition in abdominal aortic aneurysms using computational fluid dynamics.

    PubMed

    Hardman, David; Doyle, Barry J; Semple, Scott I K; Richards, Jennifer M J; Newby, David E; Easson, William J; Hoskins, Peter R

    2013-10-01

    In abdominal aortic aneurysm disease, the aortic wall is exposed to intense biological activity involving inflammation and matrix metalloproteinase-mediated degradation of the extracellular matrix. These processes are orchestrated by monocytes and rather than affecting the aorta uniformly, damage and weaken focal areas of the wall leaving it vulnerable to rupture. This study attempts to model numerically the deposition of monocytes using large eddy simulation, discrete phase modelling and near-wall particle residence time. The model was first applied to idealised aneurysms and then to three patient-specific lumen geometries using three-component inlet velocities derived from phase-contrast magnetic resonance imaging. The use of a novel, variable wall shear stress-limiter based on previous experimental data significantly improved the results. Simulations identified a critical diameter (1.8 times the inlet diameter) beyond which significant monocyte deposition is expected to occur. Monocyte adhesion occurred proximally in smaller abdominal aortic aneurysms and distally as the sac expands. The near-wall particle residence time observed in each of the patient-specific models was markedly different. Discrete hotspots of monocyte residence time were detected, suggesting that the monocyte infiltration responsible for the breakdown of the abdominal aortic aneurysm wall occurs heterogeneously. Peak monocyte residence time was found to increase with aneurysm sac size. Further work addressing certain limitations is needed in a larger cohort to determine clinical significance.

  14. Generation of novel bone forming cells (monoosteophils) from the cathelicidin-derived peptide LL-37 treated monocytes.

    PubMed

    Zhang, Zhifang; Shively, John E

    2010-11-15

    Bone generation and maintenance involve osteoblasts, osteoclasts, and osteocytes which originate from unique precursors and rely on key growth factors for differentiation. However, an incomplete understanding of bone forming cells during wound healing has led to an unfilled clinical need such as nonunion of bone fractures. Since circulating monocytes are often recruited to sites of injury and may differentiate into various cell types including osteoclasts, we investigated the possibility that circulating monocytes in the context of tissue injury may also contribute to bone repair. In particular, we hypothesized that LL-37 (produced from hCAP-18, cathelicidin), which recruits circulating monocytes during injury, may play a role in bone repair. Treatment of monocytes from blood with LL-37 for 6 days resulted in their differentiation to large adherent cells. Growth of LL-37-differentiated monocytes on osteologic discs reveals bone-like nodule formation by scanning electron microscopy (SEM). In vivo transplantation studies in NOD/SCID mice show that LL-37-differentiated monocytes form bone-like structures similar to endochondral bone formation. Importantly, LL-37-differentiated monocytes are distinct from conventional monocyte-derived osteoclasts, macrophages, and dendritic cells and do not express markers of the mesenchymal stem cells (MSC) lineage, distinguishing them from the conventional precursors of osteoblasts. Furthermore, LL-37 differentiated monocytes express intracellular proteins of both the osteoblast and osteoclast lineage including osteocalcin (OC), osteonectin (ON), bone sialoprotein II (BSP II), osteopontin (OP), RANK, RANKL, MMP-9, tartrate resistant acid phosphatase (TRAP), and cathepsin K (CK). Blood derived monocytes treated with LL-37 can be differentiated into a novel bone forming cell that functions both in vitro and in vivo. We propose the name monoosteophil to indicate their monocyte derived lineage and their bone forming phenotype. These

  15. Novel ex vivo culture method for human monocytes uses shear flow to prevent total loss of transendothelial diapedesis function.

    PubMed

    Tsubota, Yoshiaki; Frey, Jeremy M; Raines, Elaine W

    2014-01-01

    Monocyte recruitment to inflammatory sites and their transendothelial migration into tissues are critical to homeostasis and pathogenesis of chronic inflammatory diseases. However, even short-term suspension culture of primary human monocytes leads to phenotypic changes. In this study, we characterize the functional effects of ex vivo monocyte culture on the steps involved in monocyte transendothelial migration. Our data demonstrate that monocyte diapedesis is impaired by as little as 4 h culture, and the locomotion step is subsequently compromised. After 16 h in culture, monocyte diapedesis is irreversibly reduced by ∼90%. However, maintenance of monocytes under conditions mimicking physiological flow (5-7.5 dyn/cm²) is sufficient to reduce diapedesis impairment significantly. Thus, through the application of shear during ex vivo culture of monocytes, our study establishes a novel protocol, allowing functional analyses of monocytes not currently possible under static culture conditions. These data further suggest that monocyte-based therapeutic applications may be measurably improved by alteration of ex vivo conditions before their use in patients.

  16. MiR-155 enhances phagocytic activity of β-thalassemia/HbE monocytes via targeting of BACH1.

    PubMed

    Srinoun, Kanitta; Nopparatana, Chamnong; Wongchanchailert, Malai; Fucharoen, Suthat

    2017-11-01

    Abnormal red blood cell (RBC) clearance in β-thalassemia is triggered by activated monocytes. Recent reports indicate that miRNA (miR-) plays a role in monocyte activation. To study phagocytic function, we co-cultured monocytes of normal, non-splenectomized and splenectomized β-thalassemia/HbE individuals with RBCs obtained from normal, non-splenectomized and splenectomized β-thalassemia/HbE individuals. The phagocytic activity of β-thalassemia/HbE monocytes co-cultured with β-thalassemia/HbE RBCs was significantly higher than that of normal monocytes co-cultured with normal RBCs. Upregulation of monocyte miR-155 was observed in β-thalassemia/HbE patients. Increased miR-155 was associated with reductions in BTB and CNC Homology1 (BACH1) target gene expression and increased phagocytic activity of β-thalassemia/HbE monocytes. Taken together, these findings suggested that increased miR-155 expression in activated monocytes leads to enhanced phagocytic activity via BACH-1 regulation in β-thalassemia/HbE. This provides novel insights into the phagocytic clearance of abnormal RBCs in β-thalassemia/HbE.

  17. DPP8/9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis

    PubMed Central

    Okondo, Marian C.; Johnson, Darren C.; Sridharan, Ramya; Go, Eun Bin; Chui, Ashley J.; Wang, Mitchell S.; Poplawski, Sarah E.; Wu, Wengen; Liu, Yuxin; Lai, Jack H.; Sanford, David G.; Arciprete, Michael O.; Golub, Todd R.; Bachovchin, William W.; Bachovchin, Daniel A.

    2017-01-01

    Val-boroPro (talabostat, PT-100), a nonselective inhibitor of post-proline cleaving serine proteases, stimulates mammalian immune systems through an unknown mechanism of action. Despite this lack of mechanistic understanding, Val-boroPro has attracted significant interest as a potential anticancer agent, reaching Phase III trials in humans. Here we show that Val-boroPro stimulates the immune system by triggering a proinflammatory form of cell death in monocytes and macrophages known as pyroptosis. We demonstrate that the inhibition of two serine proteases, DPP8 and DPP9, activates the proprotein form of caspase-1 independent of the inflammasome adaptor ASC. Activated pro-caspase-1 does not efficiently process itself or IL-1β, but does cleave and activate gasdermin D to induce pyroptosis. Mice lacking caspase-1 do not show immune stimulation after treatment with Val-boroPro. Our data identifies the first small molecule that induces pyroptosis and reveals a new checkpoint that controls the activation of the innate immune system. PMID:27820798

  18. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span

    PubMed Central

    Morales-Nebreda, Luisa; Cuda, Carla M.; Walter, James M.; Chen, Ching-I; Anekalla, Kishore R.; Joshi, Nikita; Williams, Kinola J.N.; Abdala-Valencia, Hiam; Yacoub, Tyrone J.; Chi, Monica; Gates, Khalilah; Homan, Philip J.; Soberanes, Saul; Dominguez, Salina; Saber, Rana; Hinchcliff, Monique; Marshall, Stacy A.; Bharat, Ankit; Berdnikovs, Sergejs; Bhorade, Sangeeta M.; Balch, William E.; Chandel, Navdeep S.; Jain, Manu; Ridge, Karen M.; Bagheri, Neda; Shilatifard, Ali

    2017-01-01

    Little is known about the relative importance of monocyte and tissue-resident macrophages in the development of lung fibrosis. We show that specific genetic deletion of monocyte-derived alveolar macrophages after their recruitment to the lung ameliorated lung fibrosis, whereas tissue-resident alveolar macrophages did not contribute to fibrosis. Using transcriptomic profiling of flow-sorted cells, we found that monocyte to alveolar macrophage differentiation unfolds continuously over the course of fibrosis and its resolution. During the fibrotic phase, monocyte-derived alveolar macrophages differ significantly from tissue-resident alveolar macrophages in their expression of profibrotic genes. A population of monocyte-derived alveolar macrophages persisted in the lung for one year after the resolution of fibrosis, where they became increasingly similar to tissue-resident alveolar macrophages. Human homologues of profibrotic genes expressed by mouse monocyte-derived alveolar macrophages during fibrosis were up-regulated in human alveolar macrophages from fibrotic compared with normal lungs. Our findings suggest that selectively targeting alveolar macrophage differentiation within the lung may ameliorate fibrosis without the adverse consequences associated with global monocyte or tissue-resident alveolar macrophage depletion. PMID:28694385

  19. Increased adherence of sickled and phosphatidylserine-enriched human erythrocytes to cultured human peripheral blood monocytes.

    PubMed

    Schwartz, R S; Tanaka, Y; Fidler, I J; Chiu, D T; Lubin, B; Schroit, A J

    1985-06-01

    The precise mechanism by which sickle erythrocytes (RBC) are removed from the circulation is controversial, although it is possible that enhanced recognition of these cells by circulating mononuclear phagocytes could contribute to this process. We investigated this possibility by interacting sickle cells with cultured human peripheral blood monocytes. Our results show that both irreversibly sickled cells (ISC) and deoxygenated reversibly sickled cells (RSC) had a higher avidity for adherence to monocytes than did oxygenated sickle and normal RBC. ISC were the most adherent cell type. Adherence of RSC to monocytes was found to be reversible; reoxygenation of deoxygenated RSC resulted in a significant decrease in RSC--monocyte adherence. Concomitant with alterations in sickle RBC adherence were alterations in the organization and bilayer distribution of membrane phospholipids in these cells. Specifically, enhanced adherence was associated with increased exposure of RBC membrane outer leaflet phosphatidylserine (PS) and phosphatidylethanolamine, whereas lack of adherence was associated with normal patterns of membrane phospholipid distribution. To investigate the possibility of whether the exposure of PS in the outer membrane leaflet of these cells might be responsible for their recognition by monocytes, the membranes of normal RBC were enriched with the fluorescent PS analogue 1-acyl-2[(N-4-nitro-benzo-2-oxa-1,3-diazole)aminocaproyl]-phosphatidy lse rine (NBD-PS) via transfer of the exogenous lipid from a population of donor phospholipid vesicles (liposomes). RBC enriched with NBD-PS exhibited enhanced adherence to monocytes, whereas adherence of RBC enriched with similar amounts of NBD-phosphatidylcholine (NBD-PC) was not increased. Furthermore, preincubation of monocytes with PS liposomes resulted in a approximately 60% inhibition of ISC adherence to monocytes, whereas no inhibition occurred when monocytes were preincubated with PC liposomes. These findings

  20. Inhibition of neutrophil and monocyte recruitment by endogenous and exogenous lipocortin 1

    PubMed Central

    Getting, Stephen J; Flower, Roderick J; Perretti, Mauro

    1997-01-01

    The role played by endogenous lipocortin 1 in the anti-migratory action exerted by dexamethasone (Dex) on monocyte recruitment in an in vivo model of acute inflammation was investigated by use of several neutralizing polyclonal antibodies raised against lipocortin 1 or a lipocortin 1-derived N-terminus peptide (peptide Ac2-26). The efficacy of peptide Ac2-26 in inhibiting monocyte and polymorphonuclear leucocyte (PMN) recruitment was also tested.Intraperitoneal (i.p.) injection of zymosan A (1 mg) produced a time-dependent cell accumulation into mouse peritoneal cavities which followed a typical profile of acute inflammation: PMN influx was maximal at 4 h post-zymosan (between 15 and 20×106 cells per mouse), and this was followed by an accumulation of monocytes which peaked at the 24 h time-point (between 10 and 15×106 cells per mouse).Dex administration to mice reduced zymosan-induced 4 h PMN infiltration and 24 h monocyte accumulation with similar efficacy: approximately 50% of inhibition of recruitment of both cell types was achieved at the dose of 30 μg per mouse (∼1 mg kg−1, subcutaneously (s.c.)). Maximal inhibitions of 64% and 67% on PMN and monocyte recruitment, respectively, were measured after a dose of 100 μg per mouse (∼3 mg kg−1, s.c.).Dex (30 μg s.c.) inhibited monocyte (53%) and PMN (69%) accumulation in response to zymosan application in mice which had been treated with a non-immune sheep serum (50 μl s.c.). In contrast, the steroid was no longer active in reducing cell accumulation in mice which had been passively immunized against full length human recombinant lipocortin 1 (serum LCS3), or against lipocortin 1 N-terminus peptide.Treatment of mice with vinblastine (1 mg kg−1, intravenously (i.v.)) produced a remarkable leucopenia as assessed 24 h after administration. This was accompanied by a 60% reduction in 4 h-PMN influx, and by a 27% reduction in 24 h-monocyte accumulation, measured after zymosan

  1. Beyond initial attraction: physical attractiveness in newlywed marriage.

    PubMed

    McNulty, James K; Neff, Lisa A; Karney, Benjamin R

    2008-02-01

    Physical appearance plays a crucial role in shaping new relationships, but does it continue to affect established relationships, such as marriage? In the current study, the authors examined how observer ratings of each spouse's facial attractiveness and the difference between those ratings were associated with (a) observations of social support behavior and (b) reports of marital satisfaction. In contrast to the robust and almost universally positive effects of levels of attractiveness on new relationships, the only association between levels of attractiveness and the outcomes of these marriages was that attractive husbands were less satisfied. Further, in contrast to the importance of matched attractiveness to new relationships, similarity in attractiveness was unrelated to spouses' satisfaction and behavior. Instead, the relative difference between partners' levels of attractiveness appeared to be most important in predicting marital behavior, such that both spouses behaved more positively in relationships in which wives were more attractive than their husbands, but they behaved more negatively in relationships in which husbands were more attractive than their wives. These results highlight the importance of dyadic examinations of the effects of spouses' qualities on their marriages.

  2. Epigenetic alterations are associated with monocyte immune dysfunctions in HIV-1 infection.

    PubMed

    Espíndola, Milena S; Soares, Luana S; Galvão-Lima, Leonardo J; Zambuzi, Fabiana A; Cacemiro, Maira C; Brauer, Verônica S; Marzocchi-Machado, Cleni M; de Souza Gomes, Matheus; Amaral, Laurence R; Martins-Filho, Olindo A; Bollela, Valdes R; Frantz, Fabiani G

    2018-04-03

    Monocytes are key cells in the immune dysregulation observed during human immunodeficiency virus (HIV) infection. The events that take place specifically in monocytes may contribute to the systemic immune dysfunction characterized by excessive immune activation in infected individuals, which directly correlates with pathogenesis and progression of the disease. Here, we investigated the immune dysfunction in monocytes from untreated and treated HIV + patients and associated these findings with epigenetic changes. Monocytes from HIV patients showed dysfunctional ability of phagocytosis and killing, and exhibited dysregulated cytokines and reactive oxygen species production after M. tuberculosis challenge in vitro. In addition, we showed that the expression of enzymes responsible for epigenetic changes was altered during HIV infection and was more prominent in patients that had high levels of soluble CD163 (sCD163), a newly identified plasmatic HIV progression biomarker. Among the enzymes, histone acetyltransferase 1 (HAT1) was the best epigenetic biomarker correlated with HIV - sCD163 high patients. In conclusion, we confirmed that HIV impairs effector functions of monocytes and these alterations are associated with epigenetic changes that once identified could be used as targets in therapies aiming the reduction of the systemic activation state found in HIV patients.

  3. Cinnamic Acid Is Partially Involved in Propolis Immunomodulatory Action on Human Monocytes

    PubMed Central

    Conti, Bruno José; Búfalo, Michelle Cristiane; Golim, Marjorie de Assis; Sforcin, José Maurício

    2013-01-01

    Propolis is a beehive product used in traditional medicine due to its biological properties. It shows a complex chemical composition including phenolics, such as cinnamic acid (Ci). The mechanisms of action of propolis have been the subject of research recently; however, the involvement of Ci on propolis activity was not investigated on immune cells. Ci effects were evaluated on human monocytes, assessing the expression of Toll-like receptors (TLRs), HLA-DR, and CD80. Cytokine production (TNF-α and IL-10) and the fungicidal activity of monocytes were evaluated as well. Data showed that Ci downregulated TLR-2, HLA-DR, and CD80 and upregulated TLR-4 expression by human monocytes. High concentrations of Ci inhibited both TNF-α and IL-10 production, whereas the same concentrations induced a higher fungicidal activity against Candida albicans. TNF-α and IL-10 production was decreased by blocking TLR-4, while the fungicidal activity of monocytes was not affected by blocking TLRs. These results suggest that Ci modulated antigen receptors, cytokine production, and the fungicidal activity of human monocytes depending on concentration, and TLR-4 may be involved in its mechanism of action. Ci seemed to be partially involved in propolis activities. PMID:23762102

  4. Monocyte NOTCH2 expression predicts IFN-β immunogenicity in multiple sclerosis patients.

    PubMed

    Adriani, Marsilio; Nytrova, Petra; Mbogning, Cyprien; Hässler, Signe; Medek, Karel; Jensen, Poul Erik H; Creeke, Paul; Warnke, Clemens; Ingenhoven, Kathleen; Hemmer, Bernhard; Sievers, Claudia; Lindberg Gasser, Raija Lp; Fissolo, Nicolas; Deisenhammer, Florian; Bocskei, Zsolt; Mikol, Vincent; Fogdell-Hahn, Anna; Kubala Havrdova, Eva; Broët, Philippe; Dönnes, Pierre; Mauri, Claudia; Jury, Elizabeth C

    2018-06-07

    Multiple sclerosis (MS) is an autoimmune disease characterized by CNS inflammation leading to demyelination and axonal damage. IFN-β is an established treatment for MS; however, up to 30% of IFN-β-treated MS patients develop neutralizing antidrug antibodies (nADA), leading to reduced drug bioactivity and efficacy. Mechanisms driving antidrug immunogenicity remain uncertain, and reliable biomarkers to predict immunogenicity development are lacking. Using high-throughput flow cytometry, NOTCH2 expression on CD14+ monocytes and increased frequency of proinflammatory monocyte subsets were identified as baseline predictors of nADA development in MS patients treated with IFN-β. The association of this monocyte profile with nADA development was validated in 2 independent cross-sectional MS patient cohorts and a prospective cohort followed before and after IFN-β administration. Reduced monocyte NOTCH2 expression in nADA+ MS patients was associated with NOTCH2 activation measured by increased expression of Notch-responsive genes, polarization of monocytes toward a nonclassical phenotype, and increased proinflammatory IL-6 production. NOTCH2 activation was T cell dependent and was only triggered in the presence of serum from nADA+ patients. Thus, nADA development was driven by a proinflammatory environment that triggered activation of the NOTCH2 signaling pathway prior to first IFN-β administration.

  5. Phenotypic and functional comparison of two distinct subsets of programmable cell of monocytic origin (PCMOs)-derived dendritic cells with conventional monocyte-derived dendritic cells

    PubMed Central

    Beikzadeh, Babak; Delirezh, Nowruz

    2016-01-01

    Dendritic cells (DCs) are professional antigen-presenting cells with the ability to induce primary T-cell responses. They are commonly produced by culturing monocytes in the presence of IL-4 and GM-CSF (cells produced in this manner are called conventional DCs). Here we report the generation of two functionally distinct subsets of DCs derived from programmable cells of monocytic origin (PCMOs) in the presence of IL-3 or tumor necrosis factor alpha (TNF-α). Monocytes were treated with macrophage colony-stimulating factor (M-CSF) and IL-3 for 6 days and then incubated with IL-4 and IL-3 (for IL-3 DCs) or with IL-4, GM-CSF and TNF-α (for TNF-α DCs) for 7 days. Monocytes were then loaded with tumor lysate (used as antigen), and poly (I∶C) was added. The maturation factors TNF-α and monocyte conditioned medium (MCM) were added on days 4 and 5, respectively. The phenotypes of the DCs generated were characterized by flow cytometry, and the cells' phagocytic activities were measured using FITC-conjugated latex bead uptake. T-cell proliferation and cytokine release were assayed using MTT and commercially available ELISA kits, respectively. We found that either IL-3DCs or TNF-α DCs induce T-cell proliferation and cytokine secretion; the cytokine release pattern showed reduced IL-12/IL-10 and IFN-γ/IL-4 ratios in both types of DCs and in DC-primed T-cell supernatant, respectively, which confirmed that the primed T cells were polarized toward aTh2-type immune response. We concluded that PCMOs are a new cell source that can develop into two functionally distinct DCs that both induce a Th2-type response in vitro. This modality can be used as a DC-based immunotherapy for autoimmune diseases. PMID:25661728

  6. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes.

    PubMed

    Ledall, Jérémy; Fruchon, Séverine; Garzoni, Matteo; Pavan, Giovanni M; Caminade, Anne-Marie; Turrin, Cédric-Olivier; Blanzat, Muriel; Poupot, Rémy

    2015-11-14

    Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti-inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes.

  7. CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor.

    PubMed

    Kasinrerk, W; Baumruker, T; Majdic, O; Knapp, W; Stockinger, H

    1993-01-15

    In this paper we demonstrate that granulocyte-macrophage CSF (GM-CSF) specifically induces the expression of CD1 molecules, CD1a, CD1b and CD1c, upon human monocytes. CD1 molecules appeared upon monocytes on day 1 of stimulation with rGM-CSF, and expression was up-regulated until day 3. Monocytes cultured in the presence of LPS, FMLP, PMA, recombinant granulocyte-CSF, rIFN-gamma, rTNF-alpha, rIL-1 alpha, rIL-1 beta, and rIL-6 remained negative. The induction of CD1 molecules by rGM-CSF was restricted to monocytes, since no such effect was observed upon peripheral blood granulocytes, PBL, and the myeloid cell lines Monomac1, Monomac6, MV4/11, HL60, U937, THP1, KG1, and KG1A. CD1a mRNA was detectable in rGM-CSF-induced monocytes but not in those freshly isolated. SDS-PAGE and immunoblotting analyses of CD1a mAb VIT6 immunoprecipitate from lysate of rGM-CSF-activated monocytes revealed an appropriate CD1a polypeptide band of 49 kDa associated with beta 2-microglobulin. Expression of CD1 molecules on monocytes complements the distribution of these structures on accessory cells, and their specific induction by GM-CSF strengthens the suggestion that CD1 is a family of crucial structures required for interaction between accessory cells and T cells.

  8. Granulocyte, monocyte and blast immunophenotype abnormalities in acute myeloid leukemia with myelodysplasia-related changes.

    PubMed

    Ayar, Sonali P; Ravula, Sreelakshmi; Polski, Jacek M

    2014-01-01

    Little literature exists regarding granulocyte and monocyte immunophenotype abnormalities in Acute Myeloid Leukemia (AML). We hypothesized that granulocyte and monocyte immunophenotype abnormalities are common in AML, and especially in AML with myelodysplasia-related changes (AMLMRC). Bone marrow or peripheral blood specimens from 48 cases of AML and 22 cases of control specimens were analyzed by flow cytometric immunophenotyping. Granulocyte, monocyte, and blast immunophenotype abnormalities were compared between cases of AML versus controls and AMLMRC versus AML without myelodysplasia. The results revealed that granulocyte, monocyte, and blast abnormalities were more common in AMLMRC than in AML without myelodysplasia or control cases. The difference reached statistical significance for abnormalities of granulocytes and abnormalities in all cells of interest. From the numerous individual abnormalities, only CD25 expression in blasts was significantly more prevalent in AMLMRC in this study. We conclude that detection of granulocyte, monocyte, and blast immunophenotype abnormalities can contribute to the diagnosis of AMLMRC.

  9. Expression of very low density lipoprotein receptor mRNA in circulating human monocytes: its up-regulation by hypoxia.

    PubMed

    Nakazato, K; Ishibashi, T; Nagata, K; Seino, Y; Wada, Y; Sakamoto, T; Matsuoka, R; Teramoto, T; Sekimata, M; Homma, Y; Maruyama, Y

    2001-04-01

    Although very low density lipoprotein (VLDL) receptor expression by macrophages has been shown in the vascular wall, it is not clear whether or not circulating monocytes express the VLDL receptor. We investigated the expression of VLDL receptor mRNA in human peripheral blood monocytes and monocyte-derived macrophages by reverse transcriptase polymerase chain reaction (RT-PCR) and nucleotide sequencing after subcloning of PCR product. VLDL receptor mRNA was detected both in peripheral blood monocytes and monocyte-derived macrophages. Expression of VLDL receptor mRNA was upregulated by hypoxia in monocytes, whereas treatment with oxidized LDL, interleukin-1beta or monocyte chemoattractant protein-1 did not affect the levels of VLDL receptor mRNA in monocytes and macrophages. The present study shows a novel response of VLDL receptor mRNA to hypoxia, suggesting a role for VLDL receptor in the metabolism of lipoproteins in the vascular wall and the development of atherosclerosis.

  10. Monocyte esterase deficiency in malignant neoplasia.

    PubMed Central

    Markey, G M; McCormick, J A; Morris, T C; Alexander, H D; Nolan, L; Morgan, L M; Reynolds, M E; Edgar, S; Bell, A L; McCaigue, M D

    1990-01-01

    A survey of the incidence of monocyte esterase deficiency in 4000 inpatients (including 808 with malignant neoplastic disease) and 474 normal controls was performed using an automated esterase method. A highly significant excess of patients with malignant disease and the deficiency was evident when compared with normal controls or all other patients. Within the group of patients with malignant disease the demonstrable excess occurred in B chronic lymphocytic leukaemia, non-Hodgkin's and Hodgkin's lymphoma, and carcinoma of the gastrointestinal tract. There was also a significant excess of patients with the deficiency attending the renal unit, both among patients who had had renal transplants and those who had not. A familial incidence of monocyte esterase deficiency was found in 19 (35%) of first degree relatives of those patients in whom family studies were done. It is suggested that the reason for the increased prevalence of the anomaly in these disorders might be that the diminution of esterase activity has a role in their development. PMID:2341564

  11. Monocytes from HIV+ individuals show impaired cholesterol efflux and increased foam cell formation after transendothelial migration

    PubMed Central

    MAISA, Anna; HEARPS, Anna C.; ANGELOVICH, Thomas A.; PEREIRA, Candida F.; ZHOU, Jingling; SHI, Margaret D.Y.; PALMER, Clovis S.; MULLER, William A.; CROWE, Suzanne M.; JAWOROWSKI, Anthony

    2016-01-01

    Design HIV+ individuals have an increased risk of atherosclerosis and cardiovascular disease which is independent of antiretroviral therapy and traditional risk factors. Monocytes play a central role in the development of atherosclerosis, and HIV-related chronic inflammation and monocyte activation may contribute to increased atherosclerosis, but the mechanisms are unknown. Methods Using an in vitro model of atherosclerotic plaque formation, we measured the transendothelial migration of purified monocytes from age-matched HIV+ and uninfected donors and examined their differentiation into foam cells. Cholesterol efflux and the expression of cholesterol metabolism genes were also assessed. Results Monocytes from HIV+ individuals showed increased foam cell formation compared to controls (18.9% vs 0% respectively, p=0.004) and serum from virologically suppressed HIV+ individuals potentiated foam cell formation by monocytes from both uninfected and HIV+ donors. Plasma TNF levels were increased in HIV+ vs control donors (5.9 vs 3.5 pg/ml, p=0.02) and foam cell formation was inhibited by blocking antibodies to TNF receptors, suggesting a direct effect on monocyte differentiation to foam cells. Monocytes from virologically suppressed HIV+ donors showed impaired cholesterol efflux and decreased expression of key genes regulating cholesterol metabolism, including the cholesterol transporter ABCA1 (p=0.02). Conclusions Monocytes from HIV+ individuals show impaired cholesterol efflux and are primed for foam cell formation following trans-endothelial migration. Factors present in HIV+ serum, including elevated TNF levels, further enhance foam cell formation. The pro-atherogenic phenotype of monocytes persists in virologically suppressed HIV+ individuals and may contribute mechanistically to increased atherosclerosis in this population. PMID:26244384

  12. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mytych, Jennifer, E-mail: jennifermytych@gmail.com; Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa; Wos, Izabela

    Monocytes ensure proper functioning and maintenance of epithelial cells, while good condition of monocytes is a key factor of these interactions. Although, it was shown that in some circumstances, a population of altered monocytes may appear, there is no data regarding their effect on epithelial cells. In this study, using direct co-culture model with LPS-activated and Dox-induced senescent THP-1 monocytes, we reported for the first time ROS-induced DNA damage, reduced metabolic activity, proliferation inhibition and cell cycle arrest followed by p16-, p21- and p27-mediated DNA damage response pathways activation, premature senescence and apoptosis induction in HeLa cells. Also, we showmore » that klotho protein possessing anti-aging and anti-inflammatory characteristics reduced cytotoxic and genotoxic events by inhibition of insulin/IGF-IR and downregulation of TRF1 and TRF2 proteins. Therefore, klotho protein could be considered as a protective factor against changes caused by altered monocytes in epithelial cells. - Highlights: • Activated and senescent THP-1 monocytes induced cyto- and genotoxicity in HeLa cells. • Altered monocytes provoked oxidative and nitrosative stress-induced DNA damage. • DNA damage activated DDR pathways and lead to premature senescence and apoptosis. • Klotho reduced ROS/RNS-mediated toxicity through insulin/IGF-IR pathway inhibition. • Klotho protects HeLa cells from cyto- and genotoxicity induced by altered monocytes.« less

  13. Plasma from preeclamptic women activates endothelial cells via monocyte activation in vitro.

    PubMed

    Faas, Marijke M; van Pampus, Maria G; Anninga, Zwanine A; Salomons, Jet; Westra, Inge M; Donker, Rogier B; Aarnoudse, Jan G; de Vos, Paul

    2010-12-01

    In this study we tested whether plasma from preeclamptic women contains factors that can activate endothelial cells in the presence of monocytes in vitro. Plasma from preeclamptic women (n=6), healthy pregnant women (n=6) and nonpregnant women (n=6) was incubated with mono-cultures and co-cultures of human umbilical vein endothelial cells (HUVEC) and monomac-6 monocytes. Reactive oxygen species (ROS) production and ICAM-1 expression were measured using flow cytometry. Whether scavenging of ROS by superoxide dismutase and catalase inhibited HUVEC ICAM-1 expression was also investigated. We found that in HUVEC co-cultured with monomac-6 cells but not in HUVEC cultured alone, ICAM-1 was upregulated after incubation with plasma from preeclamptic women but not plasma from non-pregnant women. Also in co-cultures, monomac-6 ICAM-1 was upregulated by plasma from preeclamptic women, while in both mono- and co-cultures monomac-6 ROS production was upregulated by plasma from pregnant and preeclamptic women, compared with plasma from non-pregnant women. Scavenging of ROS by superoxide dismutase and catalase resulted in a further upregulation of HUVEC ICAM-1 after incubation with plasma from preeclamptic women, compared with incubation without superoxide dismutase and catalase. These results show that endothelial cells in vitro are activated by plasma of preeclamptic women only if they are co-cultured with monocytes. This upregulation appeared not to be due to extracellular ROS production by monocytes or HUVEC, pointing to involvement of other mechanisms. Our data suggest that plasma of preeclamptic women activates monocytes, and that these monocytes subsequently activate endothelial cells. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Differential Activation of Human Monocytes and Lymphocytes by Distinct Strains of Trypanosoma cruzi.

    PubMed

    Magalhães, Luísa M D; Viana, Agostinho; Chiari, Egler; Galvão, Lúcia M C; Gollob, Kenneth J; Dutra, Walderez O

    2015-01-01

    Trypanosoma cruzi strains are currently classified into six discrete typing units (DTUs) named TcI to VI. It is known that these DTUs have different geographical distribution, as well as biological features. TcI and TcII are major DTUs found in patients from northern and southern Latin America, respectively. Our hypothesis is that upon infection of human peripheral blood cells, Y strain (Tc II) and Col cl1.7 (Tc I), cause distinct immunological changes, which might influence the clinical course of Chagas disease. We evaluated the infectivity of CFSE-stained trypomastigotes of Col cl1.7 and Y strain in human monocytes for 15 and 72 hours, and determined the immunological profile of lymphocytes and monocytes exposed to the different isolates using multiparameter flow cytometry. Our results showed a similar percentage and intensity of monocyte infection by Y and Col cl1.7. We also observed an increased expression of CD80 and CD86 by monocytes infected with Col cl1.7, but not Y strain. IL-10 was significantly higher in monocytes infected with Col cl1.7, as compared to Y strain. Moreover, infection with Col cl1.7, but not Y strain, led to an increased expression of IL-17 by CD8+ T cells. On the other hand, we observed a positive correlation between the expression of TNF-alpha and granzyme A only after infection with Y strain. Our study shows that while Col cl1.7 induces higher monocyte activation and, at the same time, production of IL-10, infection with Y strain leads to a lower monocyte activation but higher inflammatory profile. These results show that TcI and TcII have a distinct immunological impact on human cells during early infection, which might influence disease progression.

  15. Niacin results in reduced monocyte adhesion in patients with type 2 diabetes mellitus.

    PubMed

    Tavintharan, S; Woon, K; Pek, L T; Jauhar, N; Dong, X; Lim, S C; Sum, C F

    2011-03-01

    Patients with type 2 diabetes have increased expression of cell adhesion molecules (CAMs). CAMs and monocyte adhesion mediate essential processes in atherogenesis. It remains unclear if monocytes from patients on niacin have reduced adhesion function. We studied the variation of monocyte adhesion in patients with type 2 diabetes and low HDL-cholesterol, taking either extended release niacin (Niaspan®, Abbott Laboratories) or controls not on niacin. Biochemical parameters including adiponectin, CAMs and fresh monocytes from whole blood for adhesion assays, were studied at baseline and 12-weeks. Niacin 1500 mg daily raised HDL-cholesterol from 0.8 mmol/l (95% CI: 0.7-0.9) to 0.9 mmol/l (95% CI: 0.8-1.1), p=0.10, and significantly reduced PECAM-1 by 24.9% (95% CI: 10.9-39.0; p<0.05), increased adiponectin by 30.5% (95% CI: 14.1-47.0; p<0.05), with monocyte adhesion reduced by 9.2% (95%CI: 0.7-17.7; p<0.05) in endothelial cells treated in basal conditions, and 7.8% (95% CI: 3.1-12.5; p<0.05) after TNF-α stimulation. Monocytes isolated from patients on niacin had reduced adhesion to endothelial cells. Our findings suggest niacin has broad range of effects apart from lipid-modification, and these could be important in cardiovascular risk reduction. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. CXC chemokine ligand 4 (CXCL4) down-regulates CC chemokine receptor expression on human monocytes.

    PubMed

    Schwartzkopff, Franziska; Petersen, Frank; Grimm, Tobias Alexander; Brandt, Ernst

    2012-02-01

    During acute inflammation, monocytes are essential in abolishing invading micro-organisms and encouraging wound healing. Recruitment by CC chemokines is an important step in targeting monocytes to the inflamed tissue. However, cell surface expression of the corresponding chemokine receptors is subject to regulation by various endogenous stimuli which so far have not been comprehensively identified. We report that the platelet-derived CXC chemokine ligand 4 (CXCL4), a known activator of human monocytes, induces down-regulation of CC chemokine receptors (CCR) 1, -2, and -5, resulting in drastic impairment of monocyte chemotactic migration towards cognate CC chemokine ligands (CCL) for these receptors. Interestingly, CXCL4-mediated down-regulation of CCR1, CCR2 and CCR5 was strongly dependent on the chemokine's ability to stimulate autocrine/paracrine release of TNF-α. In turn, TNF-α induced the secretion CCL3 and CCL4, two chemokines selective for CCR1 and CCR5, while the secretion of CCR2-ligand CCL2 was TNF-α-independent. Culture supernatants of CXCL4-stimulated monocytes as well as chemokine-enriched preparations thereof reproduced CXCL4-induced CCR down-regulation. In conclusion, CXCL4 may act as a selective regulator of monocyte migration by stimulating the release of autocrine, receptor-desensitizing chemokine ligands. Our results stress a co-ordinating role for CXCL4 in the cross-talk between platelets and monocytes during early inflammation.

  17. Zoledronic acid causes γδ T cells to target monocytes and down-modulate inflammatory homing

    PubMed Central

    Fowler, Daniel W; Copier, John; Dalgleish, Angus G; Bodman-Smith, Mark D

    2014-01-01

    Zoledronic acid (ZA) is a potential immunotherapy for cancer because it can induce potent γδ T-cell-mediated anti-tumour responses. Clinical trials are testing the efficacy of intravenous ZA in cancer patients; however, the effects of systemic ZA on the activation and migration of peripheral γδ T cells remain poorly understood. We found that γδ T cells within ZA-treated peripheral blood mononuclear cells were degranulating, as shown by up-regulated expression of CD107a/b. Degranulation was monocyte dependent because CD107a/b expression was markedly reduced in the absence of CD14+ cells. Consistent with monocyte-induced degranulation, we observed γδ T-cell-dependent induction of monocyte apoptosis, as shown by phosphatidylserine expression on monocytes and decreased percentages of monocytes in culture. Despite the prevailing paradigm that ZA promotes tumour homing in γδ T cells, we observed down-modulation of their tumour homing capacity, as shown by decreased expression of the inflammatory chemokine receptors CCR5 and CXCR3, and reduced migration towards the inflammatory chemokine CCL5. Taken together our data suggest that ZA causes γδ T cells to target monocytes and down-modulate the migratory programme required for inflammatory homing. This study provides novel insight into how γδ T cells interact with monocytes and the possible implications of systemic use of ZA in cancer. PMID:24912747

  18. Epstein-Barr virus lytic infection promotes activation of Toll-like receptor 8 innate immune response in systemic sclerosis monocytes.

    PubMed

    Farina, Antonella; Peruzzi, Giovanna; Lacconi, Valentina; Lenna, Stefania; Quarta, Silvia; Rosato, Edoardo; Vestri, Anna Rita; York, Michael; Dreyfus, David H; Faggioni, Alberto; Morrone, Stefania; Trojanowska, Maria; Farina, G Alessandra

    2017-02-28

    Monocytes/macrophages are activated in several autoimmune diseases, including systemic sclerosis (scleroderma; SSc), with increased expression of interferon (IFN)-regulatory genes and inflammatory cytokines, suggesting dysregulation of the innate immune response in autoimmunity. In this study, we investigated whether the lytic form of Epstein-Barr virus (EBV) infection (infectious EBV) is present in scleroderma monocytes and contributes to their activation in SSc. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) depleted of the CD19+ cell fraction, using CD14/CD16 negative-depletion. Circulating monocytes from SSc and healthy donors (HDs) were infected with EBV. Gene expression of innate immune mediators were evaluated in EBV-infected monocytes from SSc and HDs. Involvement of Toll-like receptor (TLR)8 in viral-mediated TLR8 response was investigated by comparing the TLR8 expression induced by infectious EBV to the expression stimulated by CL075/TLR8/agonist-ligand in the presence of TLR8 inhibitor in THP-1 cells. Infectious EBV strongly induced TLR8 expression in infected SSc and HD monocytes in vitro. Markers of activated monocytes, such as IFN-regulated genes and chemokines, were upregulated in SSc- and HD-EBV-infected monocytes. Inhibiting TLR8 expression reduced virally induced TLR8 in THP-1 infected cells, demonstrating that innate immune activation by infectious EBV is partially dependent on TLR8. Viral mRNA and proteins were detected in freshly isolated SSc monocytes. Microarray analysis substantiated the evidence of an increased IFN signature and altered level of TLR8 expression in SSc monocytes carrying infectious EBV compared to HD monocytes. This study provides the first evidence of infectious EBV in monocytes from patients with SSc and links EBV to the activation of TLR8 and IFN innate immune response in freshly isolated SSc monocytes. This study provides the first evidence of EBV replication activating the TLR8 molecular pathway

  19. Gremlin-1 inhibits macrophage migration inhibitory factor-dependent monocyte function and survival.

    PubMed

    Müller, Iris I; Chatterjee, Madhumita; Schneider, Martina; Borst, Oliver; Seizer, Peter; Schönberger, Tanja; Vogel, Sebastian; Müller, Karin A L; Geisler, Tobias; Lang, Florian; Langer, Harald; Gawaz, Meinrad

    2014-10-20

    Monocyte migration and their differentiation into macrophages critically regulate vascular inflammation and atherogenesis and are governed by macrophage migration inhibitory factor (MIF). Gremlin-1 binds to MIF. Current experimental evidences present Gremlin-1 as a potential physiological agent that might counter-regulate the inflammatory attributes of MIF. We found that Gremlin-1 inhibited MIF-dependent monocyte migration and adhesion to activated endothelial cells in flow chamber perfusion assay in vitro and to the injured carotid artery of WT and ApoE-/- mice in vivo as deciphered by intravital microscopy. Intravenous administration of Gremlin-1, but not of control protein, significantly reduced leukocyte recruitment towards the inflamed carotid artery of ApoE-/- mice. Besides, leukocytes from MIF-/- when administered into ApoE-/- mice showed lesser adhesion as compared to wild type. In the presence of Gremlin-1 however, adhesion of wild type, but not of MIF-/- leukocytes, to the carotid artery was significantly inhibited as compared to control. Gremlin-1 also inhibited the MIF-induced differentiation of monocytes into macrophages. Gremlin-1 substantially inhibited the anti-apoptotic impact of MIF on monocytes against BH3 mimetic ABT-737-induced apoptosis as verified by Annexin V-binding, caspase 3 activity, and mitochondrial depolarization. Therefore Gremlin-1 can modulate MIF dependent monocyte adhesion, migration, differentiation and survival. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Facial attractiveness.

    PubMed

    Little, Anthony C

    2014-11-01

    Facial attractiveness has important social consequences. Despite a widespread belief that beauty cannot be defined, in fact, there is considerable agreement across individuals and cultures on what is found attractive. By considering that attraction and mate choice are critical components of evolutionary selection, we can better understand the importance of beauty. There are many traits that are linked to facial attractiveness in humans and each may in some way impart benefits to individuals who act on their preferences. If a trait is reliably associated with some benefit to the perceiver, then we would expect individuals in a population to find that trait attractive. Such an approach has highlighted face traits such as age, health, symmetry, and averageness, which are proposed to be associated with benefits and so associated with facial attractiveness. This view may postulate that some traits will be universally attractive; however, this does not preclude variation. Indeed, it would be surprising if there existed a template of a perfect face that was not affected by experience, environment, context, or the specific needs of an individual. Research on facial attractiveness has documented how various face traits are associated with attractiveness and various factors that impact on an individual's judgments of facial attractiveness. Overall, facial attractiveness is complex, both in the number of traits that determine attraction and in the large number of factors that can alter attraction to particular faces. A fuller understanding of facial beauty will come with an understanding of how these various factors interact with each other. WIREs Cogn Sci 2014, 5:621-634. doi: 10.1002/wcs.1316 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. © 2014 John Wiley & Sons, Ltd.

  1. Natural cocoa consumption: Potential to reduce atherogenic factors?

    PubMed

    McFarlin, Brian K; Venable, Adam S; Henning, Andrea L; Prado, Eric A; Best Sampson, Jill N; Vingren, Jakob L; Hill, David W

    2015-06-01

    Short-term consumption of flavanol-rich cocoa has been demonstrated to improve various facets of vascular health. The purpose of the present study was to determine the effect of 4 weeks of natural cocoa consumption on selected cardiovascular disease (CVD) biomarkers in young (19-35 years) women of differing body mass indices (BMI; normal, overweight or obese). Subjects (n = 24) consumed a natural cocoa-containing product (12.7 g natural cocoa, 148 kcal/serving) or an isocaloric cocoa-free placebo daily for 4 weeks in a random, double-blind manner with a 2-week washout period between treatment arms. Fasted (>8-h) blood samples were collected before and after each 4-week period. Serum was analyzed to determine lipid profile (chemistry analyzer) and CVD biomarkers (26 biomarkers). EDTA-treated blood was used to assess monocytes (CD14, CD16, v11b and CD62L), while citrate-treated blood was used to measure changes in endothelial microparticles (EMPs; CD42a-/45-/144+) by flow cytometry. Natural cocoa consumption resulted in a significant decrease in haptoglobin (P = .034), EMP concentration (P = .017) and monocyte CD62L (P = .047) in obese compared to overweight and normal-weight subjects. Natural cocoa consumption regardless of BMI group was associated with an 18% increase in high-density lipoprotein (P = .020) and a 60% decrease in EMPs (P = .047). Also, obese subjects experienced a 21% decrease in haptoglobin (P = .034) and a 24% decrease in monocyte CD62L expression in (P = .047) following 4 weeks of natural cocoa consumption. Collectively, these findings indicate that acute natural cocoa consumption was associated with decreased obesity-related disease risk. More research is needed to assess the stability of the observed short-term changes. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. CD16-positive circulating monocytes and fibrotic manifestations of systemic sclerosis.

    PubMed

    Lescoat, Alain; Lecureur, Valérie; Roussel, Mikael; Sunnaram, Béatrice Ly; Ballerie, Alice; Coiffier, Guillaume; Jouneau, Stéphane; Fardel, Olivier; Fest, Thierry; Jégo, Patrick

    2017-07-01

    The objective of this study is to assess the association of clinical manifestations of systemic sclerosis (SSc) with the absolute count of circulating blood monocyte subpopulations according to their membrane expression of CD16. Forty-eight consecutive patients fulfilling the 2013 ACR/EULAR classification criteria for SSc were included in this cross-sectional study. CD16+ monocyte absolute count was defined by flow cytometry and confronted to the clinical characteristics of SSc patients. Twenty-three healthy donors (HD) were randomly selected for comparison. SSc patients had an increased number of total circulating blood monocytes compared to HD (p < 0.001). The CD16- subpopulation absolute count was increased in SSc patients compared to HD (p < 0.001) but was similar in limited SSc (lSSc) and diffuse SSc (dSSc). On the contrary, the CD16+ population absolute count was increased in dSSc compared to both HD and lSSc patients (dSSc 0.071 Giga/L (±0.034) vs HD 0.039 Giga/L (±0.030), p < 0.01, and dSSc 0.071 Giga/L (±0.034) vs lSSc 0.048 Giga/L (±0.024), p < 0.05). The CD16+ monocyte subpopulation absolute count was significantly correlated with the severity of skin fibrosis evaluated by the modified Rodnan skin score (p < 0.001). The CD16+ monocyte subpopulation was also associated with pulmonary fibrosis (p < 0.05), with the severity of the restrictive ventilatory defect evaluated by total lung capacity (p < 0.05) and with the pulmonary function impairment reflected by diffusing capacity of the lungs for carbon monoxyde measures (p < 0.01). These results suggest that CD16+ monocytes are associated with the main fibrotic manifestations of SSc and their role in the pathogenesis of fibrosis in this autoimmune disorder should therefore be further considered.

  3. Kaempferol impedes IL-32-induced monocyte-macrophage differentiation.

    PubMed

    Nam, Sun-Young; Jeong, Hyun-Ja; Kim, Hyung-Min

    2017-08-25

    Kaempferol possesses a wide range of therapeutic properties, including antioxidant, anti-inflammatory, and anticancer properties. The present study sought to evaluate the effects and possible pharmacological mechanisms of kaempferol on interleukin (IL)-32-induced monocyte-macrophage differentiation. In this study, we performed flow cytometry assay, immunocytochemical staining, quantitative real-time PCR, enzyme-linked immuno sorbent assay, caspase-1 assay, and Western blotting to observe the effects and underlying mechanisms of kaempferol using the human monocyte cell line THP-1. The flow cytometry, immunocytochemical staining, and real-time PCR results show that kaempferol attenuated IL-32-induced monocyte differentiation to product macrophage-like cells. Kaempferol decreased the production and mRNA expression of pro-inflammatory cytokines, in this case thymic stromal lymphopoietin (TSLP), IL-1β, tumor necrosis factor (TNF)-α, and IL-8. Furthermore, kaempferol inhibited the IL-32-induced activation of p38 and nuclear factor-κB in a dose-dependent manner in THP-1 cells. Kaempferol also ameliorated the lipopolysaccharide-induced production of the inflammatory mediators TSLP, IL-1β, TNF-α, IL-8, and nitric oxide of macrophage-like cells differentiated by IL-32. In brief, our findings may provide new mechanistic insights into the anti-inflammatory effects of kaempferol. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A Combination of Ex vivo Diffusion MRI and Multiphoton to Study Microglia/Monocytes Alterations after Spinal Cord Injury

    PubMed Central

    Noristani, Harun N.; Boukhaddaoui, Hassan; Saint-Martin, Guillaume; Auzer, Pauline; Sidiboulenouar, Rahima; Lonjon, Nicolas; Alibert, Eric; Tricaud, Nicolas; Goze-Bac, Christophe; Coillot, Christophe; Perrin, Florence E.

    2017-01-01

    Central nervous system (CNS) injury has been observed to lead to microglia activation and monocytes infiltration at the lesion site. Ex vivo diffusion magnetic resonance imaging (diffusion MRI or DWI) allows detailed examination of CNS tissues, and recent advances in clearing procedures allow detailed imaging of fluorescent-labeled cells at high resolution. No study has yet combined ex vivo diffusion MRI and clearing procedures to establish a possible link between microglia/monocytes response and diffusion coefficient in the context of spinal cord injury (SCI). We carried out ex vivo MRI of the spinal cord at different time-points after spinal cord transection followed by tetrahydrofuran based clearing and examined the density and morphology of microglia/monocytes using two-photon microscopy. Quantitative analysis revealed an early marked increase in microglial/monocytes density that is associated with an increase in the extension of the lesion measured using diffusion MRI. Morphological examination of microglia/monocytes somata at the lesion site revealed a significant increase in their surface area and volume as early as 72 hours post-injury. Time-course analysis showed differential microglial/monocytes response rostral and caudal to the lesion site. Microglia/monocytes showed a decrease in reactivity over time caudal to the lesion site, but an increase was observed rostrally. Direct comparison of microglia/monocytes morphology, obtained through multiphoton, and the longitudinal apparent diffusion coefficient (ADC), measured with diffusion MRI, highlighted that axonal integrity does not correlate with the density of microglia/monocytes or their somata morphology. We emphasize that differential microglial/monocytes reactivity rostral and caudal to the lesion site may thus coincide, at least partially, with reported temporal differences in debris clearance. Our study demonstrates that the combination of ex vivo diffusion MRI and two-photon microscopy may be used to

  5. Dexamethasone enhances agonist induction of tissue factor in monocytes but not in endothelial cells.

    PubMed

    Bottles, K D; Morrissey, J H

    1993-06-01

    Stimulation of monocytic cells by inflammatory agents such as bacterial lipopolysaccharide or tumour necrosis factor-alpha leads to the rapid and transient expression of tissue factor, the major cellular initiator of the extrinsic coagulation cascade in both haemostasis and tissue inflammation. In this study we investigated whether the synthetic anti-inflammatory glucocorticoid, dexamethasone, would inhibit agonist induction of tissue factor expression in both monocytes and endothelial cells. Surprisingly, dexamethasone significantly enhanced the induction of tissue factor expression by peripheral blood mononuclear cells and an established monocytic cell line, THP-1, in response to lipopolysaccharide or tumour necrosis factor-alpha. However, unlike monocytic cells, dexamethasone did not enhance agonist induction of tissue factor in endothelial cells. Synergistic enhancement of tissue factor expression by dexamethasone was also reflected in tissue factor mRNA levels in THP-1 cells, but was not the result of improved TF mRNA stability. Synergism between bacterial lipopolysaccharide and glucocorticoid in the induction of monocyte effector function is extremely unusual and may help to explain the variable outcome of glucocorticoid treatment of septic shock.

  6. Differential monocyte responses to TLR ligands in children with autism spectrum disorders

    PubMed Central

    Enstrom, Amanda M; Onore, Charity E; Van de Water, Judy A; Ashwood, Paul

    2010-01-01

    Autism spectrum disorders (ASD) are characterized by impairment in social interactions, communication deficits, and restricted repetitive interests and behaviors. Recent evidence has suggested that impairments of innate immunity may play an important role in ASD. To test this hypothesis, we isolated peripheral blood monocytes from 17 children with ASD and 16 age-matched typically developing (TD) controls and stimulated these cell cultures in vitro with distinct toll-like receptors (TLR) ligands: TLR2 (lipoteichoic acid; LTA), TLR3 (poly I:C), TLR4 (lipopolysaccharide; LPS), TLR5 (flagellin) and TLR9 (CpG-B). Supernatants were harvested from the cell cultures and pro-inflammatory cytokine responses for IL-1β, IL-6, IL-8, TNFα, MCP-1, and GM-CSF were determined by multiplex Luminex analysis. After in vitro challenge with TLR ligands, differential cytokine responses were observed in monocyte cultures from children with ASD compared with TD control children. In particular, there was a marked increase in pro-inflammatory IL-1β, IL-6 and TNFα responses following TLR2, and IL-1β response following TLR4 stimulation in monocyte cultures from children with ASD (p<0.04). Conversely, following TLR9 stimulation there was a decrease in IL-1β, IL-6, GM-CSF and TNFα responses in monocyte cell cultures from children with ASD compared with controls (p<0.05). These data indicate that, monocyte cultures from children with ASD are more responsive to signaling via select TLRs. As monocytes are key regulators of the immune response, dysfunction in the response of these cells could result in long-term immune alterations in children with ASD that may lead to the development of adverse neuroimmune interactions and could play a role in the pathophysiology observed in ASD. PMID:19666104

  7. Differential monocyte responses to TLR ligands in children with autism spectrum disorders.

    PubMed

    Enstrom, Amanda M; Onore, Charity E; Van de Water, Judy A; Ashwood, Paul

    2010-01-01

    Autism spectrum disorders (ASD) are characterized by impairment in social interactions, communication deficits, and restricted repetitive interests and behaviors. Recent evidence has suggested that impairments of innate immunity may play an important role in ASD. To test this hypothesis, we isolated peripheral blood monocytes from 17 children with ASD and 16 age-matched typically developing (TD) controls and stimulated these cell cultures in vitro with distinct toll-like receptors (TLR) ligands: TLR 2 (lipoteichoic acid; LTA), TLR 3 (poly I:C), TLR 4 (lipopolysaccharide; LPS), TLR 5 (flagellin), and TLR 9 (CpG-B). Supernatants were harvested from the cell cultures and pro-inflammatory cytokine responses for IL-1beta, IL-6, IL-8, TNFalpha, MCP-1, and GM-CSF were determined by multiplex Luminex analysis. After in vitro challenge with TLR ligands, differential cytokine responses were observed in monocyte cultures from children with ASD compared with TD control children. In particular, there was a marked increase in pro-inflammatory IL-1beta, IL-6, and TNFalpha responses following TLR 2, and IL-1beta response following TLR 4 stimulation in monocyte cultures from children with ASD (p<0.04). Conversely, following TLR 9 stimulation there was a decrease in IL-1beta, IL-6, GM-CSF, and TNFalpha responses in monocyte cell cultures from children with ASD compared with controls (p<0.05). These data indicate that, monocyte cultures from children with ASD are more responsive to signaling via select TLRs. As monocytes are key regulators of the immune response, dysfunction in the response of these cells could result in long-term immune alterations in children with ASD that may lead to the development of adverse neuroimmune interactions and could play a role in the pathophysiology observed in ASD.

  8. Stress, Inflammation and Pain: A Potential Role for Monocytes in Fibromyalgia-related Symptom Severity.

    PubMed

    Taylor, Ann Gill; Fischer-White, Tamara G; Anderson, Joel G; Adelstein, Katharine E; Murugesan, Maheswari; Lewis, Janet E; Scott, Michael M; Gaykema, Ronald P A; Goehler, Lisa E

    2016-12-01

    The possibility that immunological changes might contribute to symptom severity in fibromyalgia (FM) prompted this proof-of-concept study to determine whether differences in monocyte subpopulations might be present in persons with FM compared with healthy controls. Relationships were assessed by comparing specific symptoms in those with FM (n = 20) and patterns of monocyte subpopulations with healthy age-matched and gender-matched controls (n = 20). Within the same time frame, all participants provided a blood sample and completed measures related to pain, fatigue, sleep disturbances, perceived stress, positive and negative affect and depressed mood (and the Fibromyalgia Impact Questionnaire for those with FM). Monocyte subpopulations were assessed using flow cytometry. No differences were observed in total percentages of circulating monocytes between the groups; however, pain was inversely correlated with percentages of circulating classical (r = -0.568, p = 0.011) and intermediate (r = -0.511, p = 0.025) monocytes in the FM group. Stress and pain were highly correlated (r = 0.608, p = 0.004) in the FM group. The emerging pattern of changes in the percentages of circulating monocyte subpopulations concomitant with higher ratings of perceived pain and the correlation between stress and pain found in the FM group warrant further investigation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Monocyte Phenotype and IFN-γ-Inducible Cytokine Responses Are Associated with Cryptococcal Immune Reconstitution Inflammatory Syndrome

    PubMed Central

    Meya, David B.; Okurut, Samuel; Zziwa, Godfrey; Cose, Stephen; Bohjanen, Paul R.; Mayanja-Kizza, Harriet; Joloba, Moses; Boulware, David R.; Yukari Manabe, Carol; Wahl, Sharon; Janoff, Edward N.

    2017-01-01

    A third of adults with AIDS and cryptococcal meningitis (CM) develop immune reconstitution inflammatory syndrome (IRIS) after initiating antiretroviral therapy (ART), which is thought to result from exaggerated inflammatory antigen-specific T cell responses. The contribution of monocytes to the immunopathogenesis of cryptococcal IRIS remains unclear. We compared monocyte subset frequencies and immune responses in HIV-infected Ugandans at time of CM diagnosis (IRIS-Baseline) for those who later developed CM-IRIS, controls who did not develop CM-IRIS (Control-Baseline) at CM-IRIS (IRIS-Event), and for controls at a time point matched for ART duration (Control-Event) to understand the association of monocyte distribution and immune responses with cryptococcal IRIS. At baseline, stimulation with IFN-γ ex vivo induced a higher frequency of TNF-α- and IL-6-producing monocytes among those who later developed IRIS. Among participants who developed IRIS, ex vivo IFN-γ stimulation induced higher frequencies of activated monocytes, IL-6+, TNF-α+ classical, and IL-6+ intermediate monocytes compared with controls. In conclusion, we have demonstrated that monocyte subset phenotype and cytokine responses prior to ART are associated with and may be predictive of CM-IRIS. Larger studies to further delineate innate immunological responses and the efficacy of immunomodulatory therapies during cryptococcal IRIS are warranted. PMID:29371546

  10. Whole blood flow cytometric analysis of Ureaplasma-stimulated monocytes from pregnant women.

    PubMed

    Friedland, Yael D; Lee-Pullen, Tracey F; Nathan, Elizabeth; Watts, Rory; Keelan, Jeffrey A; Payne, Matthew S; Ireland, Demelza J

    2015-06-01

    We hypothesised that circulating monocytes of women with vaginal colonisation with Ureaplasma spp., genital microorganisms known to cause inflammation-driven preterm birth, would elicit a tolerised cytokine response to subsequent in vitro Ureaplasma parvum serovar 3 (UpSV3) stimulation. Using multi-parameter flow cytometry, we found no differences with regard to maternal colonisation status in the frequency of TNF-α-, IL-6-, IL-8- and IL-1β-expressing monocytes in response to subsequent UpSV3 stimulation (P > 0.10 for all cytokines). We conclude that vaginal Ureaplasma spp. colonisation does not specifically tolerise monocytes of pregnant women towards decreased responses to subsequent stimulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Role of monocyte-lineage cells in prostate cancer cell invasion and tissue factor expression.

    PubMed

    Lindholm, Paul F; Lu, Yi; Adley, Brian P; Vladislav, Tudor; Jovanovic, Borko; Sivapurapu, Neela; Yang, Ximing J; Kajdacsy-Balla, André

    2010-11-01

    Tissue factor (TF) is a cell surface glycoprotein intricately related to blood coagulation and inflammation. This study was performed to investigate the role of monocyte-lineage cells in prostate cancer cell TF expression and cell invasion. Prostate cancer cell invasion was tested with and without added peripheral blood monocytes or human monocyte-lineage cell lines. TF neutralizing antibodies were used to determine the TF requirement for prostate cancer cell invasion activity. Immunohistochemistry was performed to identify prostate tissue CD68 positive monocyte-derived cells and prostate epithelial TF expression. Co-culture of PC-3, DU145, and LNCaP cells with isolated human monocytes significantly stimulated prostate cancer cell invasion activity. TF expression was greater in highly invasive prostate cancer cells and was induced in PC-3, DU145, and LNCaP cells by co-culture with U-937 cells, but not with THP-1 cells. TF neutralizing antibodies inhibited PC-3 cell invasion in co-cultures with monocyte-lineage U-937 or THP-1 cells. Prostate cancer tissues contained more CD68 positive cells in the stroma and epithelium (145 ± 53/mm(2)) than benign prostate (108 ± 31/mm(2)). Samples from advanced stage prostate cancer tended to contain more CD68 positive cells when compared with lower stage lesions. Prostatic adenocarcinoma demonstrated significantly increased TF expression compared with benign prostatic epithelium. This study shows that co-culture with monocyte-lineage cells induced prostate cancer cell invasion activity. PC-3 invasion and TF expression was induced in co-culture with U-937 cells and partially inhibited with TF neutralizing antibodies.

  12. Vimentin is a target of PKCβ phosphorylation in MCP-1-activated primary human monocytes

    PubMed Central

    Thiagarajan, Praveena S.; Akbasli, Ayse C.; Kinter, Michael T.; Willard, Belinda; Cathcart, Martha K.

    2013-01-01

    Objective and design We designed a study to detect downstream phosphorylation targets of PKCβ in MCP-1-induced human monocytes. Methods 2-dimensional gel electrophoresis was performed for monocytes treated with MCP-1 in the presence or absence of PKCβ antisense oligodeoxyribonucleotides (AS-ODN) or a PKCβ inhibitor peptide, followed by phospho- and total protein staining. Proteins that stained less intensely with the phospho-stain, when normalized to the total protein stain, in the presence of PKCβ AS-ODN or the PKC β inhibitor peptide were sequenced. Results Of the proteins identified, vimentin was consistently identified using both experimental approaches. Upon 32P-labeling and vimentin immunoprecipitation, increased phosphorylation of vimentin was observed in MCP-1 treated monocytes as compared to the untreated monocytes. Both PKCβ AS-ODN and the PKCβ inhibitor reduced MCP-1-induced vimentin phosphorylation. IP of monocytes with anti-vimentin antibody and immunoblotting with a PKCβ antibody revealed that increased PKCβ becomes associated with vimentin upon MCP-1 activation. Upon MCP-1 treatment, monocytes were shown to secrete vimentin and secretion depended on PKCβ expression and activity. Conclusions We conclude that vimentin, a major intermediate filament protein, is a phosphorylation target of PKCβ in MCP-1-treated monocytes and that PKCβ phosphorylation is essential for vimentin secretion. Our recently published studies have implicated vimentin as a potent stimulator of the innate immune receptor Dectin-1 [1]. Taken together our findings suggest that inhibition of PKCβ regulates vimentin secretion and thereby, its interaction with Dectin-1 and downstream stimulation of superoxide anion production. Thus PKCβ phosphorylation of vimentin likely plays an important role in propagating inflammatory responses. PMID:23974215

  13. Vimentin is a target of PKCβ phosphorylation in MCP-1-activated primary human monocytes.

    PubMed

    Thiagarajan, Praveena S; Akbasli, Ayse C; Kinter, Michael T; Willard, Belinda; Cathcart, Martha K

    2013-11-01

    We designed a study to detect downstream phosphorylation targets of PKCβ in MCP-1-induced human monocytes. Two-dimensional gel electrophoresis was performed for monocytes treated with MCP-1 in the presence or absence of PKCβ antisense oligodeoxyribonucleotides (AS-ODN) or a PKCβ inhibitor peptide, followed by phospho- and total protein staining. Proteins that stained less intensely with the phospho-stain, when normalized to the total protein stain, in the presence of PKCβ AS-ODN or the PKCβ inhibitor peptide, were sequenced. Of the proteins identified, vimentin was consistently identified using both experimental approaches. Upon (32)P-labeling and vimentin immunoprecipitation, increased phosphorylation of vimentin was observed in MCP-1 treated monocytes as compared to the untreated monocytes. Both PKCβ AS-ODN and the PKCβ inhibitor reduced MCP-1-induced vimentin phosphorylation. The IP of monocytes with anti-vimentin antibody and immunoblotting with a PKCβ antibody revealed that increased PKCβ becomes associated with vimentin upon MCP-1 activation. Upon MCP-1 treatment, monocytes were shown to secrete vimentin and secretion depended on PKCβ expression and activity. We conclude that vimentin, a major intermediate filament protein, is a phosphorylation target of PKCβ in MCP-1-treated monocytes and that PKCβ phosphorylation is essential for vimentin secretion. Our recently published studies have implicated vimentin as a potent stimulator of the innate immune receptor Dectin-1 as reported by Thiagarajan et al. (Cardiovasc Res 99:494-504, 2013). Taken together our findings suggest that inhibition of PKCβ regulates vimentin secretion and, thereby, its interaction with Dectin-1 and downstream stimulation of superoxide anion production. Thus, PKCβ phosphorylation of vimentin likely plays an important role in propagating inflammatory responses.

  14. Integrin αMβ2 is differently expressed by subsets of human osteoclast precursors and mediates adhesion of classical monocytes to bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprangers, Sara, E-mail: s.l.sprangers@acta.nl; Schoenmaker, Ton, E-mail: t.schoenmaker@acta.nl; Department of Periodontology, Academic Centre for Dentistry Amsterdam

    Bone-degrading osteoclasts are formed through fusion of their monocytic precursors. In the population of human peripheral blood monocytes, three distinct subsets have been identified: classical, intermediate and non-classical monocytes. We have previously shown that when the monocyte subsets are cultured on bone, significantly more osteoclasts are formed from classical monocytes than from intermediate or non-classical monocytes. Considering that this difference does not exist when monocyte subsets are cultured on plastic, we hypothesized that classical monocytes adhere better to the bone surface compared to intermediate and non-classical monocytes. To investigate this, the different monocyte subsets were isolated from human peripheral bloodmore » and cultured on slices of human bone in the presence of the cytokine M-CSF. We found that classical monocytes adhere better to bone due to a higher expression of the integrin αMβ2 and that their ability to attach to bone is significantly decreased when the integrin is blocked. This suggests that integrin αMβ2 mediates attachment of osteoclast precursors to bone and thereby enables the formation of osteoclasts.« less

  15. Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis

    PubMed Central

    Feng, Xi; Chen, Zhihong; Heinzmann, David; Rasmussen, Rikke Darling; Alvarez-Garcia, Virginia; Kim, Yeonghwan; Wang, Bingcheng; Tamagno, Ilaria; Zhou, Hao; Li, Xiaoxia; Kettenmann, Helmut; Ransohoff, Richard M.; Hambardzumyan, Dolores

    2015-01-01

    The most abundant populations of non-neoplastic cells in the glioblastoma (GBM) microenvironment are resident microglia, macrophages and infiltrating monocytes from the blood circulation. The mechanisms by which monocytes infiltrate into GBM, their fate following infiltration, and their role in GBM growth are not known. Here we tested the hypothesis that loss of the fractalkine receptor CX3CR1 in microglia and monocytes would affect gliomagenesis. Deletion of Cx3cr1 from the microenvironment resulted in increased tumor incidence and shorter survival times in glioma-bearing mice. Loss of Cx3cr1 did not affect accumulation of microglia/macrophages in peri-tumoral areas, but instead indirectly promoted the trafficking of CD11b+CD45hiCX3CR1lowLy-6ChiLy-6G−F4/80−/low circulating inflammatory monocytes into the CNS, resulting in their increased accumulation in the perivascular area. Cx3cr1-deficient microglia/macrophages and monocytes demonstrated upregulation of IL1β expression that was inversely proportional to Cx3cr1 gene dosage. The Proneural subgroup of the TCGA GBM patient dataset with high IL1β expression showed shorter survival compared to patients with low IL1β. IL1β promoted tumor growth and increased the cancer stem cell phenotype in murine and human Proneural glioma stem cells (GSCs). IL1β activated the p38 MAPK signaling pathway and expression of monocyte chemoattractant protein (MCP-1/CCL2) by tumor cells. Loss of Cx3cr1 in microglia in a monocyte-free environment had no impact on tumor growth and did not alter microglial migration. These data suggest that enhancing signaling to CX3CR1 or inhibiting IL1β signaling in intra-tumoral macrophages can be considered as potential strategies to decrease the tumor-promoting effects of monocytes in Proneural GBM. PMID:25987130

  16. The chemiluminescent response of human monocytes to red cells sensitized with monoclonal anti-Rh(D) antibodies.

    PubMed

    Hadley, A G; Kumpel, B M; Merry, A H

    1988-01-01

    Luminol-enhanced chemiluminescence (CL) was used to assess the metabolic response of human monocytes to red cells sensitized with known amounts of anti-Rh(D). Monoclonal antibodies were used to facilitate a comparison between the functional activities of IgG1 and IgG3 subclasses. The detection of CL provided a simple, rapid and semi-quantitative means of measuring monocyte response to sensitized red cells (IgG-RBC). Monocyte response to IgG3-RBC was quantitatively greater, more rapid and less susceptible to inhibition by fluid phase IgG than monocyte response to IgG1-RBC. The minimum levels of sensitization required to elicit CL from monocytes were approximately 2500 IgG3 molecules per red cell, or approximately 5000 IgG1 molecules per cell.

  17. Monocytes inhibit NK activity via TGF-β in patients with obstructive sleep apnoea.

    PubMed

    Hernández-Jiménez, Enrique; Cubillos-Zapata, Carolina; Toledano, Victor; Pérez de Diego, Rebeca; Fernández-Navarro, Isabel; Casitas, Raquel; Carpio, Carlos; Casas-Martín, Jose; Valentín, Jaime; Varela-Serrano, Anibal; Avendaño-Ortiz, Jose; Alvarez, Enrique; Aguirre, Luis A; Pérez-Martínez, Antonio; De Miguel, Maria P; Belda-Iniesta, Cristobal; García-Río, Francisco; López-Collazo, Eduardo

    2017-06-01

    Obstructive sleep apnoea (OSA) is associated with cancer incidence and mortality. The contribution of the immune system appears to be crucial; however, the potential role of monocytes and natural killer (NK) cells remains unclear.Quantitative reverse transcriptase PCR, flow cytometry and in vitro assays were used to analyse the phenotype and immune response activity in 92 patients with OSA (60 recently diagnosed untreated patients and 32 patients after 6 months of treatment with continuous positive airway pressure (CPAP)) and 29 healthy volunteers (HV).We determined that monocytes in patients with OSA exhibit an immunosuppressive phenotype, including surface expression of glycoprotein-A repetitions predominant protein (GARP) and transforming growth factor-β (TGF-β), in contrast to those from the HV and CPAP groups. High levels of TGF-β were detected in OSA sera. TGF-β release by GARP + monocytes impaired NK cytotoxicity and maturation. This altered phenotype correlated with the hypoxic severity clinical score (CT90). Reoxygenation eventually restored the altered phenotypes and cytotoxicity.This study demonstrates that GARP + monocytes from untreated patients with OSA have an NK-suppressing role through their release of TGF-β. Our findings show that monocyte plasticity immunomodulates NK activity in this pathology, suggesting a potential role in cancer incidence. Copyright ©ERS 2017.

  18. Analysis of PD-1 expression in the monocyte subsets from non-septic and septic preterm neonates

    PubMed Central

    Lenart, Marzena; Rutkowska-Zapała, Magdalena; Stec, Małgorzata; Durlak, Wojciech; Grudzień, Andrzej; Krzeczkowska, Agnieszka; Mól, Nina; Pilch, Marta; Siedlar, Maciej; Kwinta, Przemko

    2017-01-01

    Programmed death-1 (PD-1) receptor system represents a part of recently reported immunoregulatory pathway. PD-1 is an immune checkpoint molecule, which plays an important role in downregulating the immune system proinflammatory activity. Until recently, PD-1 expression was not established on immune cells of the preterm infants. The study objectives were to confirm expression of the PD-1 receptors on the monocytes isolated from very low birth weight newborns (VLBW), and to analyze their expression during the first week of life and late-onset sepsis. Peripheral blood mononuclear cells were isolated from 76 VLBW patients without early-onset sepsis on their 5th day of life (DOL). PD-1 expression was determined on the monocyte subsets (classical, intermediate, non-classical) by flow cytometry. In case of late-onset sepsis (LOS), the same analysis was performed. Our results demonstrated that on the 5th DOL, PD-1 receptors were present in all the monocyte subsets. Children, whose mothers had received antenatal steroids, presented higher absolute numbers of non-classical monocytes with PD-1 expression. Infants born extremely preterm who later developed LOS, initially showed a lower percentage of PD-1 receptor-positive intermediate monocytes in comparison to neonates born very preterm. During LOS, we observed a rise in the percentage of classical monocytes with PD-1 expression. In case of septic shock or fatal outcome, there was a higher percentage and absolute count of intermediate monocytes with PD-1 expression in comparison to children without these complications. In conclusion, monocytes from VLBW children express PD-1 receptors. Antenatal steroid administration seems to induce PD-1 receptor expression in the non-classical monocytes. PD-1 might play a role in immunosuppressive phase of sepsis in the prematurely born children with septic shock and fatal outcome. PMID:29049359

  19. Factor H Binds to Extracellular DNA Traps Released from Human Blood Monocytes in Response to Candida albicans

    PubMed Central

    Halder, Luke D.; Abdelfatah, Mahmoud A.; Jo, Emeraldo A. H.; Jacobsen, Ilse D.; Westermann, Martin; Beyersdorf, Niklas; Lorkowski, Stefan; Zipfel, Peter F.; Skerka, Christine

    2017-01-01

    Upon systemic infection with human pathogenic yeast Candida albicans (C. albicans), human monocytes and polymorph nuclear neutrophilic granulocytes are the first immune cells to respond and come into contact with C. albicans. Monocytes exert immediate candidacidal activity and inhibit germination, mediate phagocytosis, and kill fungal cells. Here, we show that human monocytes spontaneously respond to C. albicans cells via phagocytosis, decondensation of nuclear DNA, and release of this decondensed DNA in the form of extracellular traps (called monocytic extracellular traps: MoETs). Both subtypes of monocytes (CD14++CD16−/CD14+CD16+) formed MoETs within the first hours upon contact with C. albicans. MoETs were characterized by the presence of citrullinated histone, myeloperoxidase, lactoferrin, and elastase. MoETs were also formed in response to Staphylococcus aureus and Escherichia coli, indicating a general reaction of monocytes to infectious microbes. MoET induction differs from extracellular trap formation in macrophages as MoETs are not triggered by simvastatin, an inhibitor of cholesterol synthesis and inducer of extracellular traps in macrophages. Extracellular traps from both monocytes and neutrophils activate complement and C3b is deposited. However, factor H (FH) binds via C3b to the extracellular DNA, mediates cofactor activity, and inhibits the induction of the inflammatory cytokine interleukin-1 beta in monocytes. Altogether, the results show that human monocytes release extracellular DNA traps in response to C. albicans and that these traps finally bind FH via C3b to presumably support clearance without further inflammation. PMID:28133459

  20. Impact of brief exercise on circulating monocyte gene and microRNA expression: implications for atherosclerotic vascular disease

    PubMed Central

    Radom-Aizik, Shlomit; Zaldivar, Frank P.; Haddad, Fadia; Cooper, Dan M.

    2014-01-01

    Physical activity can prevent and/or attenuate atherosclerosis, a disease clearly linked to inflammation. Paradoxically, even brief exercise induces a stress response and increases inflammatory cells like monocytes in the circulation. We hypothesized that exercise would regulate the expression of genes, gene pathways, and microRNAs in monocytes in a way that could limit pro-inflammatory function and drive monocytes to prevent, rather than contribute to, atherosclerosis. Twelve healthy men (22-30 yr old) performed ten 2-min bouts of cycle ergometer exercise at a constant work equivalent to an average of 82% of maximum O2 consumption interspersed with 1-min rest. Blood was drawn before and immediately after the exercise. Monocytes were isolated from peripheral blood mononuclear cells. Flow cytometry was used to identify monocyte subtypes. We used Affymetrix U133+2.0 arrays for gene expression and Agilent Human miRNA V2 Microarray for miRNAs. A stringent statistical approach (FDR < 0.05) was used to determine that exercise significantly altered the expression of 894 annotated genes and 19 miRNAs. We found distinct gene alterations that were likely to direct monocytes in an anti-inflammatory, anti-atherogenic pathway, including the downregulation of monocyte TNF, TLR4, and CD36 genes and the upregulation of EREG and CXCR4. Exercise significantly altered a number of microRNAs that likely influence monocytes involvement in vascular health. Exercise leads to a novel genomic profile of circulating monocytes, which appears to promote cardiovascular health despite the overall stress response. PMID:24423463

  1. Clinical characteristics of inflammation-associated depression: Monocyte gene expression is age-related in major depressive disorder.

    PubMed

    Grosse, Laura; Carvalho, Livia A; Wijkhuijs, Annemarie J M; Bellingrath, Silja; Ruland, Tillmann; Ambrée, Oliver; Alferink, Judith; Ehring, Thomas; Drexhage, Hemmo A; Arolt, Volker

    2015-02-01

    Increased inflammatory activation might only be present in a subgroup of depressed individuals in which immune processes are especially relevant to disease development. We aimed to analyze demographic, depression, and trauma characteristics of major depressive disorder (MDD) patients with regard to inflammatory monocyte gene expression. Fifty-six naturalistically treated MDD patients (32 ± 12 years) and 57 healthy controls (HC; 31 ± 11 years) were analyzed by the Inventory of Depressive Symptomatology (IDS) and by the Childhood Trauma Questionnaire (CTQ). We determined the expression of 38 inflammatory and immune activation genes including the glucocorticoid receptor (GR)α and GRβ genes in purified CD14(+) monocytes using quantitative-polymerase chain reaction (RT-qPCR). Monocyte gene expression was age-dependent, particularly in MDD patients. Increased monocyte gene expression and decreased GRα/β ratio were only present in MDD patients aged ⩾ 28 years. Post hoc analyses of monocyte immune activation in patients <28 years showed two subgroups: a subgroup with a severe course of depression (recurrent type, onset <15 years) - additionally characterized by panic/arousal symptoms and childhood trauma - that had a monocyte gene expression similar to HC, and a second subgroup with a milder course of the disorder (73% first episode depression, onset ⩾15 years) - additionally characterized by the absence of panic symptoms - that exhibited a strongly reduced inflammatory monocyte activation compared to HC. In conclusion, monocyte immune activation was not uniformly raised in MDD patients but was increased only in patients of 28 years and older. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype.

    PubMed

    Frangogiannis, Nikolaos G; Mendoza, Leonardo H; Ren, Guofeng; Akrivakis, Spyridon; Jackson, Peggy L; Michael, Lloyd H; Smith, C Wayne; Entman, Mark L

    2003-08-01

    Myocardial infarction is associated with the rapid induction of mononuclear cell chemoattractants that promote monocyte infiltration into the injured area. Monocyte-to-macrophage differentiation and macrophage proliferation allow a long survival of monocytic cells, critical for effective healing of the infarct. In a canine infarction-reperfusion model, newly recruited myeloid leukocytes were markedly augmented during early reperfusion (5-72 h). By 7 days, the number of newly recruited myeloid cells was reduced, and the majority of the inflammatory cells remaining in the infarct were mature macrophages. Macrophage colony-stimulating factor (MCSF) is known to facilitate monocyte survival, monocyte-to-macrophage conversion, and macrophage proliferation. We demonstrated marked induction of MCSF mRNA in ischemic segments persisting for at least 5 days after reperfusion. MCSF expression was predominantly localized to mature macrophages infiltrating the infarcted myocardium; the expression of the MCSF receptor, c-Fms, a protein with tyrosine kinase activity, was found in these macrophages but was also observed in a subset of microvessels within the infarct. Many infarct macrophages expressed proliferating cell nuclear antigen, a marker of proliferative activity. In vitro MCSF induced monocyte chemoattractant protein-1 synthesis in canine venous endothelial cells. MCSF-induced endothelial monocyte chemoattractant protein-1 upregulation was inhibited by herbimycin A, a tyrosine kinase inhibitor, and by LY-294002, a phosphatidylinositol 3'-kinase inhibitor. We suggest that upregulation of MCSF in the infarcted myocardium may have an active role in healing not only through its effects on cells of monocyte/macrophage lineage, but also by regulating endothelial cell chemokine expression.

  3. Altered Peripheral Blood Monocyte Phenotype and Function in Chronic Liver Disease: Implications for Hepatic Recruitment and Systemic Inflammation.

    PubMed

    Gadd, Victoria L; Patel, Preya J; Jose, Sara; Horsfall, Leigh; Powell, Elizabeth E; Irvine, Katharine M

    2016-01-01

    Liver and systemic inflammatory factors influence monocyte phenotype and function, which has implications for hepatic recruitment and subsequent inflammatory and fibrogenic responses, as well as host defence. Peripheral blood monocyte surface marker (CD14, CD16, CD163, CSF1R, CCR2, CCR4, CCR5, CXCR3, CXCR4, CX3CR1, HLA-DR, CD62L, SIGLEC-1) expression and capacity for phagocytosis, oxidative burst and LPS-stimulated TNF production were assessed in patients with hepatitis C (HCV) (n = 39) or non-alcoholic fatty liver disease (NAFLD) (n = 34) (classified as non-advanced disease, compensated cirrhosis and decompensated cirrhosis) and healthy controls (n = 11) by flow cytometry. The selected markers exhibited similar monocyte-subset-specific expression patterns between patients and controls. Monocyte phenotypic signatures differed between NAFLD and HCV patients, with an increased proportion of CD16+ non-classical monocytes in NAFLD, but increased expression of CXCR3 and CXCR4 in HCV. In both cohorts, monocyte CCR2 expression was reduced and CCR4 elevated over controls. CD62L expression was specifically elevated in patients with decompensated cirrhosis and positively correlated with the model-for-end-stage-liver-disease score. Functionally, monocytes from patients with decompensated cirrhosis had equal phagocytic capacity, but displayed features of dysfunction, characterised by lower HLA-DR expression and blunted oxidative responses. Lower monocyte TNF production in response to LPS stimulation correlated with time to death in 7 (46%) of the decompensated patients who died within 8 months of recruitment. Chronic HCV and NAFLD differentially affect circulating monocyte phenotype, suggesting specific injury-induced signals may contribute to hepatic monocyte recruitment and systemic activation state. Monocyte function, however, was similarly impaired in patients with both HCV and NAFLD, particularly in advanced disease, which likely contributes to the increased

  4. Dexamethasone attenuates oxidation of extracellular matrix proteins by human monocytes.

    PubMed

    Ahmed, Shahid; Adamidis, Ananea; Jan, Louis C; Gibbons, Nora; Mattana, Joseph

    2003-10-01

    In response to infection or in immune complex-mediated diseases, inflammatory cells may oxidatively damage extracellular matrix (ECM) proteins. In this study we evaluated whether human monocytes could oxidize ECM and whether this could be modulated by exposure to LPS, IgG complexes, and dexamethasone (DEX). Wells in tissue culture plates were coated with the ECM preparation Matrigel. Porous inserts with or without the human monocyte cell line THP-1 were placed into ECM-containing wells and cells were exposed to control conditions or to LPS (10 ng/ml), IgG complexes (200 and 500 microg/ml), or DEX (10(-7) and 10(-6) M). ECM was then subjected to Western blot analysis using an antibody to oxidized protein. In addition, Western blot analysis was carried out on DEX-treated cells to evaluate expression of the NADPH oxidase components p67-phox and gp91-phox. THP-1 cells enhanced ECM oxidation and this effect was augmented by LPS and by IgG aggregates. Preincubation of cells with DEX attenuated ECM oxidation and was also associated with decreased expression of p67-phox and gp91-phox. These findings suggest that human monocytes can oxidize ECM proteins and that this may be modulated by IgG complexes and LPS. Dexamethasone appears to attenuate ECM oxidation and a better understanding of this mechanism might allow for interventions to minimize oxidative damage to ECM proteins by monocytes in infectious and inflammatory states.

  5. The modulatory effects of caffeic acid on human monocytes and its involvement in propolis action.

    PubMed

    Búfalo, Michelle Cristiane; Sforcin, José Maurício

    2015-05-01

    Researchers have been interested in investigating the mechanisms of action of propolis and the compounds involved in its biological activity; however, the effect of its isolated constituents on human immune cells still deserves investigation. Thus, this study aimed to verify the action of caffeic acid on human monocytes in an attempt to verify its effects on the innate immunity, and to analyse its participation in propolis activity. Monocytes viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method after incubation with caffeic acid. Cell markers expression by monocytes (Toll-like receptors (TLR)-2, TLR-4, human leukocyte antigen (HLA)-DR and CD80) was analysed by flow cytometry. TNF-α and IL-10 production was determined by enzyme-linked immunosorbent assay and the activity of monocytes against Candida albicans was investigated after incubation with different concentrations of caffeic acid. Caffeic acid downregulated TLR-2 and HLA-DR expression and inhibited cytokine production whereas it upregulated the fungicidal activity of monocytes, without affecting cell viability. Caffeic acid exerted an immunomodulatory action in human monocytes in the evaluated parameters depending on concentration, with no cytotoxic effects. Moreover, it was partially involved in propolis action. © 2015 Royal Pharmaceutical Society.

  6. Modulation of dendritic cell and monocyte subsets in tuberculosis-diabetes co-morbidity upon standard tuberculosis treatment

    PubMed Central

    Kumar, Nathella Pavan; Moideen, Kadar; Sivakumar, Shanmugam; Menon, Pradeep A; Viswanathan, Vijay; Kornfeld, Hardy; Babu, Subash

    2016-01-01

    Type 2 diabetes mellitus (DM) is a major risk factor for the development of active pulmonary tuberculosis (PTB), with development of DM pandemic in countries where tuberculosis (TB) is also endemic. However, the effect of anti-TB treatment on the changes in dentritic cell (DC) and monocyte subset phenotype in TB-DM co-morbidity is not well understood. In this study, we characterized the frequency of DC and monocyte subsets in individuals with PTB with (PTB-DM) or without coincident diabetes mellitus (PTB-NDM) before, during and after completion of anti-TB treatment. PTB-DM is characterized by diminished frequencies of plasmacytoid and myeloid DCs and classical and intermediate monocytes at baseline and 2 months of anti-TB treatment but not following 6 months of treatment completion in comparison to PTB-NDM. DC and monocyte subsets exhibit significant but borderline correlation with fasting blood glucose and glycated hemoglobin levels. Finally, while minor changes in the DC and monocyte compartment were observed at 2 months of treatment, significantly increased frequencies of plasmacytoid and myeloid DCs and classical and intermediate monocytes were observed at the successful completion of anti-TB treatment. Our data show that coincident diabetes alters the frequencies of innate subset distribution of DC and monocytes in TB-DM co-morbidity and suggests that most of these changes are reversible following anti-TB therapy. PMID:27865391

  7. Expression profiling feline peripheral blood monocytes identifies a transcriptional signature associated with type two diabetes mellitus.

    PubMed

    O'Leary, Caroline A; Sedhom, Mamdouh; Reeve-Johnson, Mia; Mallyon, John; Irvine, Katharine M

    2017-04-01

    Diabetes mellitus is a common disease of cats and is similar to type 2 diabetes (T2D) in humans, especially with respect to the role of obesity-induced insulin resistance, glucose toxicity, decreased number of pancreatic β-cells and pancreatic amyloid deposition. Cats have thus been proposed as a valuable translational model of T2D. In humans, inflammation associated with adipose tissue is believed to be central to T2D development, and peripheral blood monocytes (PBM) are important in the inflammatory cascade which leads to insulin resistance and β-cell failure. PBM may thus provide a useful window to study the pathogenesis of diabetes mellitus in cats, however feline monocytes are poorly characterised. In this study, we used the Affymetrix Feline 1.0ST array to profile peripheral blood monocytes from 3 domestic cats with T2D and 3 cats with normal glucose tolerance. Feline monocytes were enriched for genes expressed in human monocytes, and, despite heterogeneous gene expression, we identified a T2D-associated expression signature associated with cell cycle perturbations, DNA repair and the unfolded protein response, oxidative phosphorylation and inflammatory responses. Our data provide novel insights into the feline monocyte transcriptome, and support the hypothesis that inflammatory monocytes contribute to T2D pathogenesis in cats as well as in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. CD40 ligation and phagocytosis differently affect the differentiation of monocytes into dendritic cells.

    PubMed

    Rosenzwajg, Michelle; Jourquin, Frédéric; Tailleux, Ludovic; Gluckman, Jean Claude

    2002-12-01

    That monocytes can differentiate into macrophages or dendritic cells (DCs) makes them an essential link between innate and adaptive immunity. However, little is known about how interactions with pathogens or T cells influence monocyte engagement toward DCs. We approached this point in cultures where granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-4 induced monocytes to differentiate into immature DCs. Activating monocytes with soluble CD40 ligand (CD40L) led to accelerated differentiation toward mature CD83(+) DCs with up-regulated human leukocyte antigen-DR, costimulatory molecules and CD116 (GM-CSF receptor), and down-regulation of molecules involved in antigen capture. Monocytes primed by phagocytosis of antibody-opsonized, killed Escherichia coli differentiated into DCs with an immature phenotype, whereas Zymosan priming yielded active DCs with an intermediate phenotype. Accordingly, DCs obtained from cultures with CD40L or after Zymosan priming had a decreased capacity to endocytose dextran, but only DCs cultured with CD40L had increased capacity to stimulate allogeneic T cells. DCs obtained after E. coli or Zymosan priming of monocytes produced high levels of proinflammatory tumor necrosis factor alpha and IL-6 as well as of regulatory IL-10, but they produced IL-12p70 only after secondary CD40 ligation. Thus, CD40 ligation on monocytes accelerates the maturation of DCs in the presence of GM-CSF/IL-4, whereas phagocytosis of different microorganisms does not alter and even facilitates their potential to differentiate into immature or active DCs, the maturation of which can be completed upon CD40 ligation. In vivo, such differences may correspond to DCs with different trafficking and T helper cell-stimulating capacities that could differently affect induction of adaptive immune responses to infections.

  9. Studies on the mechanism of endogenous pyrogen production. III. Human blood monocytes.

    PubMed

    Bodel, P

    1974-10-01

    The characteristics of pyrogen production and release by human blood monocytes were investigated. A dose-response assay of monocyte pyrogen in rabbits indicated a linear relationship of temperature elevation to dose of pyrogen at lower doses. Monocytes did not contain pyrogen when first obtained, nor did they release it spontaneously even after 5 days of incubation in vitro. Pyrogen production was apparent 4 h after stimulation by endotoxin or phagocytosis, and continued for 24 h or more. Puromycin, an inhibitor of protein synthesis, prevented both initiation and continuation of pyrogen production and release. Pyrogen-containing supernates retained most pyrogenic activity during overnight incubation even in the presence of activated cells. Lymphocytes appeared to play no role in either initiation or continuation of pyrogen production in these studies.

  10. Dexamethasone inhibits activation of monocytes/macrophages in a milieu rich in 27-oxygenated cholesterol.

    PubMed

    Kim, Bo-Young; Son, Yonghae; Lee, Jeonga; Choi, Jeongyoon; Kim, Chi Dae; Bae, Sun Sik; Eo, Seong-Kug; Kim, Koanhoi

    2017-01-01

    Molecular mechanisms underlying the decreased number of macrophages and T cells in the arteries of cholesterol-fed-rabbits following dexamethasone administration are unknown. We investigated the possibility that dexamethasone could affect activation of monocytic cells induced by oxygenated derivatives of cholesterol (oxysterols) using THP-1 monocyte/macrophage cells. 27-Hydroxycholesterol (27OHChol), an oxysterol elevated with hypercholesterolemia, enhanced production of CCL2, known as MCP1, chemokine from monocytes/macrophages and migration of the monocytic cells, but the CCL2 production and the cell migration were reduced by treatment with dexamethasone. Dexamethasone inhibited superproduction of CCL2 induced by 27OHChol plus LPS and attenuated transcription of matrix metalloproteinase 9 as well as secretion of its active gene product induced by 27OHChol. The drug downregulated cellular and surface levels of CD14 and blocked release of soluble CD14 without altering transcription of the gene. Dexamethasone also inhibited expression and phosphorylation of the NF-κB p65 subunit enhanced by 27OHChol. Collectively, these results indicate that dexamethasone inhibits activation of monocytes/macrophages in response to 27OHChol, thereby leading to decreased migration of inflammatory cells in milieu rich in oxygenated derivatives of cholesterol.

  11. Dexamethasone inhibits activation of monocytes/macrophages in a milieu rich in 27-oxygenated cholesterol

    PubMed Central

    Kim, Bo-Young; Son, Yonghae; Lee, Jeonga; Choi, Jeongyoon; Kim, Chi Dae; Bae, Sun Sik; Eo, Seong-Kug

    2017-01-01

    Molecular mechanisms underlying the decreased number of macrophages and T cells in the arteries of cholesterol-fed-rabbits following dexamethasone administration are unknown. We investigated the possibility that dexamethasone could affect activation of monocytic cells induced by oxygenated derivatives of cholesterol (oxysterols) using THP-1 monocyte/macrophage cells. 27-Hydroxycholesterol (27OHChol), an oxysterol elevated with hypercholesterolemia, enhanced production of CCL2, known as MCP1, chemokine from monocytes/macrophages and migration of the monocytic cells, but the CCL2 production and the cell migration were reduced by treatment with dexamethasone. Dexamethasone inhibited superproduction of CCL2 induced by 27OHChol plus LPS and attenuated transcription of matrix metalloproteinase 9 as well as secretion of its active gene product induced by 27OHChol. The drug downregulated cellular and surface levels of CD14 and blocked release of soluble CD14 without altering transcription of the gene. Dexamethasone also inhibited expression and phosphorylation of the NF-κB p65 subunit enhanced by 27OHChol. Collectively, these results indicate that dexamethasone inhibits activation of monocytes/macrophages in response to 27OHChol, thereby leading to decreased migration of inflammatory cells in milieu rich in oxygenated derivatives of cholesterol. PMID:29236764

  12. Dopamine Increases CD14+CD16+ Monocyte Migration and Adhesion in the Context of Substance Abuse and HIV Neuropathogenesis

    PubMed Central

    Coley, Jacqueline S.; Calderon, Tina M.; Gaskill, Peter J.; Eugenin, Eliseo A.; Berman, Joan W.

    2015-01-01

    Drug abuse is a major comorbidity of HIV infection and cognitive disorders are often more severe in the drug abusing HIV infected population. CD14+CD16+ monocytes, a mature subpopulation of peripheral blood monocytes, are key mediators of HIV neuropathogenesis. Infected CD14+CD16+ monocyte transmigration across the blood brain barrier mediates HIV entry into the brain and establishes a viral reservoir within the CNS. Despite successful antiretroviral therapy, continued influx of CD14+CD16+ monocytes, both infected and uninfected, contributes to chronic neuroinflammation and the development of HIV associated neurocognitive disorders (HAND). Drug abuse increases extracellular dopamine in the CNS. Once in the brain, CD14+CD16+ monocytes can be exposed to extracellular dopamine due to drug abuse. The direct effects of dopamine on CD14+CD16+ monocytes and their contribution to HIV neuropathogenesis are not known. In this study, we showed that CD14+CD16+ monocytes express mRNA for all five dopamine receptors by qRT-PCR and D1R, D5R and D4R surface protein by flow cytometry. Dopamine and the D1-like dopamine receptor agonist, SKF38393, increased CD14+CD16+ monocyte migration that was characterized as chemokinesis. To determine whether dopamine affected cell motility and adhesion, live cell imaging was used to monitor the accumulation of CD14+CD16+ monocytes on the surface of a tissue culture dish. Dopamine increased the number and the rate at which CD14+CD16+ monocytes in suspension settled to the dish surface. In a spreading assay, dopamine increased the area of CD14+CD16+ monocytes during the early stages of cell adhesion. In addition, adhesion assays showed that the overall total number of adherent CD14+CD16+ monocytes increased in the presence of dopamine. These data suggest that elevated extracellular dopamine in the CNS of HIV infected drug abusers contributes to HIV neuropathogenesis by increasing the accumulation of CD14+CD16+ monocytes in dopamine rich brain

  13. Anti-lipoteichoic acid antibodies enhance release of cytokines by monocytes sensitized with lipoteichoic acid.

    PubMed Central

    Mancuso, G; Tomasello, F; Ofek, I; Teti, G

    1994-01-01

    Lipoteichoic acid (LTA) from gram-positive bacteria can stimulate monocytes to produce cytokines. To ascertain whether aggregation of LTA receptors can contribute to this effect, human monocytes were sensitized with LTA from Streptococcus pyogenes, washed, and treated with anti-LTA antibodies. The addition of anti-LTA antibodies or F(ab')2 fragments markedly enhanced the aggregation of LTA receptors, as evidenced by indirect immunofluorescence and the release of tumor necrosis factor alpha and interleukin-1 beta. These findings suggest that aggregation of LTA receptors of monocytes is required for triggering marked cytokine responses. PMID:8132355

  14. Ex vivo foam cell formation is enhanced in monocytes from older individuals by both extrinsic and intrinsic mechanisms.

    PubMed

    Angelovich, Thomas A; Shi, Margaret D Y; Zhou, Jingling; Maisa, Anna; Hearps, Anna C; Jaworowski, Anthony

    2016-07-01

    Aging is the strongest predictor of cardiovascular diseases such as atherosclerosis, which are the leading causes of morbidity and mortality in elderly men. Monocytes play an important role in atherosclerosis by differentiating into foam cells (lipid-laden macrophages) and producing atherogenic proinflammatory cytokines. Monocytes from the elderly have an inflammatory phenotype that may promote atherosclerotic plaque development; here we examined whether they are more atherogenic than those from younger individuals. Using an in vitro model of monocyte transmigration and foam cell formation, monocytes from older men (median age [range]: 75 [58-85] years, n=20) formed foam cells more readily than those of younger men (32 [23-46] years, n=20) (P<0.003) following transmigration across a TNF-activated endothelial monolayer. Compared to young men, monocytes from the elderly had impaired cholesterol efflux and lower expression of regulators of cholesterol transport and metabolism. Foam cell formation was enhanced by soluble factors in serum from older men, but did not correlate with plasma lipid levels. Of the three subsets, intermediate monocytes formed the most foam cells. Therefore, both cellular changes to monocytes and soluble plasma factors in older men primes monocytes for foam cell formation following transendothelial migration, which may contribute to enhanced atherosclerosis in this population. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation.

    PubMed

    Anselmo, Aaron C; Gilbert, Jonathan B; Kumar, Sunny; Gupta, Vivek; Cohen, Robert E; Rubner, Michael F; Mitragotri, Samir

    2015-02-10

    Targeted delivery of drugs and imaging agents to inflamed tissues, as in the cases of cancer, Alzheimer's disease, Parkinson's disease, and arthritis, represents one of the major challenges in drug delivery. Monocytes possess a unique ability to target and penetrate into sites of inflammation. Here, we describe a broad approach to take advantage of the natural ability of monocytes to target and deliver flat polymeric particles ("Cellular Backpacks") to inflamed tissues. Cellular backpacks attach strongly to the surface of monocytes but do not undergo phagocytosis due to backpack's size, disk-like shape and flexibility. Following attachment of backpacks, monocytes retain important cellular functions including transmigration through an endothelial monolayer and differentiation into macrophages. In two separate in vivo inflammation models, backpack-laden monocytes exhibit increased targeting to inflamed tissues. Cellular backpacks, and their abilities to attach to monocytes without impairing monocyte functions and 'hitchhike' to a variety of inflamed tissues, offer a new platform for both cell-mediated therapies and broad targeting of inflamed tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The effects of exogenous fatty acids and niacin on human monocyte-macrophage plasticity.

    PubMed

    Montserrat-de la Paz, Sergio; Rodriguez, Dolores; Cardelo, Magdalena P; Naranjo, Maria C; Bermudez, Beatriz; Abia, Rocio; Muriana, Francisco J G; Lopez, Sergio

    2017-08-01

    Macrophage plasticity allows adapting to different environments, having a dual activity in inflammatory-related diseases. Our hypothesis is that the type of dietary fatty acids into human postprandial triglyceride-rich lipoproteins (TRLs), alone or in combination with niacin (vitamin B3), could modulate the plasticity of monocytes-macrophages. We isolated TRLs at the postprandial peak from blood samples of healthy volunteers after the ingestion of a meal rich in saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) or MUFAs plus omega-3 long-chain polyunsaturated fatty acids (LCPUFAs). Autologous monocytes isolated at fasting were first induced to differentiate into naïve macrophages. We observed that postprandial TRL-MUFAs, particularly in combination with niacin, enhance competence to monocytes to differentiate and polarise into M2 macrophages. Postprandial TRL-SFAs made polarised macrophages prone to an M1 phenotype. In contrast to dietary SFAs, dietary MUFAs in the meals plus immediate-release niacin primed circulating monocytes for a reduced postprandial pro-inflammatory profile. Our study underlines a role of postprandial TRLs as a metabolic entity in regulating the plasticity of the monocyte-macrophage lineage and also brings an understanding of the mechanisms by which dietary fatty acids are environmental factors fostering the innate immune responsiveness in humans. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Monocyte Proteomics Reveals Involvement of Phosphorylated HSP27 in the Pathogenesis of Osteoporosis.

    PubMed

    Daswani, Bhavna; Gupta, Manoj Kumar; Gavali, Shubhangi; Desai, Meena; Sathe, Gajanan J; Patil, Anushree; Parte, Priyanka; Sirdeshmukh, Ravi; Khatkhatay, M Ikram

    2015-01-01

    Peripheral monocytes, precursors of osteoclasts, have emerged as important candidates for identifying proteins relevant to osteoporosis, a condition characterized by low Bone Mineral Density (BMD) and increased susceptibility for fractures. We employed 4-plex iTRAQ (isobaric tags for relative and absolute quantification) coupled with LC-MS/MS (liquid chromatography coupled with tandem mass spectrometry) to identify differentially expressed monocyte proteins from premenopausal and postmenopausal women with low versus high BMD. Of 1801 proteins identified, 45 were differentially abundant in low versus high BMD, with heat shock protein 27 (HSP27) distinctly upregulated in low BMD condition in both premenopausal and postmenopausal categories. Validation in individual samples (n = 80) using intracellular ELISA confirmed that total HSP27 (tHSP27) as well as phosphorylated HSP27 (pHSP27) was elevated in low BMD condition in both categories (P < 0.05). Further, using transwell assays, pHSP27, when placed in the upper chamber, could increase monocyte migration (P < 0.0001) and this was additive in combination with RANKL (receptor activator of NFkB ligand) placed in the lower chamber (P = 0.05). Effect of pHSP27 in monocyte migration towards bone milieu can result in increased osteoclast formation and thus contribute to pathogenesis of osteoporosis. Overall, this study reveals for the first time a novel link between monocyte HSP27 and BMD.

  18. Interleukin-6 production by human monocytes stimulated with Cryptococcus neoformans components.

    PubMed Central

    Delfino, D; Cianci, L; Lupis, E; Celeste, A; Petrelli, M L; Curró, F; Cusumano, V; Teti, G

    1997-01-01

    In order to ascertain if Cryptococcus neoformans components can induce interleukin-6 (IL-6) production, we stimulated human whole blood with purified capsular products. Their potencies in stimulating IL-6 release were mannoproteins > galactoxylomannan = glucuronoxylomannan > alpha(1-3)glucan. IL-6 production was tumor necrosis factor alpha independent and required the presence of monocytes and plasma. Since IL-6 can stimulate replication of the human immunodeficiency virus in monocytic cells, these findings may be clinically relevant. PMID:9169790

  19. Technical advance: liposomal alendronate depletes monocytes and macrophages in the nonhuman primate model of human disease.

    PubMed

    Burwitz, Benjamin J; Reed, Jason S; Hammond, Katherine B; Ohme, Merete A; Planer, Shannon L; Legasse, Alfred W; Ericsen, Adam J; Richter, Yoram; Golomb, Gershon; Sacha, Jonah B

    2014-09-01

    Nonhuman primates are critical animal models for the study of human disorders and disease and offer a platform to assess the role of immune cells in pathogenesis via depletion of specific cellular subsets. However, this model is currently hindered by the lack of reagents that safely and specifically ablate myeloid cells of the monocyte/macrophage Lin. Given the central importance of macrophages in homeostasis and host immunity, development of a macrophage-depletion technique in nonhuman primates would open new avenues of research. Here, using LA at i.v. doses as low as 0.1 mg/kg, we show a >50% transient depletion of circulating monocytes and tissue-resident macrophages in RMs by an 11-color flow cytometric analysis. Diminution of monocytes was followed rapidly by emigration of monocytes from the bone marrow, leading to a rebound of monocytes to baseline levels. Importantly, LA was well-tolerated, as no adverse effects or changes in gross organ function were observed during depletion. These results advance the ex vivo study of myeloid cells by flow cytometry and pave the way for in vivo studies of monocyte/macrophage biology in nonhuman primate models of human disease. © 2014 Society for Leukocyte Biology.

  20. Technical Advance: Liposomal alendronate depletes monocytes and macrophages in the nonhuman primate model of human disease

    PubMed Central

    Burwitz, Benjamin J.; Reed, Jason S.; Hammond, Katherine B.; Ohme, Merete A.; Planer, Shannon L.; Legasse, Alfred W.; Ericsen, Adam J.; Richter, Yoram; Golomb, Gershon; Sacha, Jonah B.

    2014-01-01

    Nonhuman primates are critical animal models for the study of human disorders and disease and offer a platform to assess the role of immune cells in pathogenesis via depletion of specific cellular subsets. However, this model is currently hindered by the lack of reagents that safely and specifically ablate myeloid cells of the monocyte/macrophage Lin. Given the central importance of macrophages in homeostasis and host immunity, development of a macrophage-depletion technique in nonhuman primates would open new avenues of research. Here, using LA at i.v. doses as low as 0.1 mg/kg, we show a >50% transient depletion of circulating monocytes and tissue-resident macrophages in RMs by an 11-color flow cytometric analysis. Diminution of monocytes was followed rapidly by emigration of monocytes from the bone marrow, leading to a rebound of monocytes to baseline levels. Importantly, LA was well-tolerated, as no adverse effects or changes in gross organ function were observed during depletion. These results advance the ex vivo study of myeloid cells by flow cytometry and pave the way for in vivo studies of monocyte/macrophage biology in nonhuman primate models of human disease. PMID:24823811

  1. Chronic Low-Grade Inflammation in Childhood Obesity Is Associated with Decreased IL-10 Expression by Monocyte Subsets.

    PubMed

    Mattos, Rafael T; Medeiros, Nayara I; Menezes, Carlos A; Fares, Rafaelle C G; Franco, Eliza P; Dutra, Walderez O; Rios-Santos, Fabrício; Correa-Oliveira, Rodrigo; Gomes, Juliana A S

    2016-01-01

    Chronic low-grade inflammation is related to the development of comorbidities and poor prognosis in obesity. Monocytes are main sources of cytokines and play a pivotal role in inflammation. We evaluated monocyte frequency, phenotype and cytokine profile of monocyte subsets, to determine their association with the pathogenesis of childhood obesity. Children with obesity were evaluated for biochemical and anthropometric parameters. Monocyte subsets were characterized by flow cytometry, considering cytokine production and activation/recognition molecules. Correlation analysis between clinical parameters and immunological data delineated the monocytes contribution for low-grade inflammation. We observed a higher frequency of non-classical monocytes in the childhood obesity group (CO) than normal-weight group (NW). All subsets displayed higher TLR4 expression in CO, but their recognition and antigen presentation functions seem to be diminished due to lower expression of CD40, CD80/86 and HLA-DR. All subsets showed a lower expression of IL-10 in CO and correlation analyses showed changes in IL-10 expression profile. The lower expression of IL-10 may be decisive for the maintenance of the low-grade inflammation status in CO, especially for alterations in non-classical monocytes profile. These cells may contribute to supporting inflammation and loss of regulation in the immune response of children with obesity.

  2. Chronic Low-Grade Inflammation in Childhood Obesity Is Associated with Decreased IL-10 Expression by Monocyte Subsets

    PubMed Central

    Mattos, Rafael T.; Medeiros, Nayara I.; Menezes, Carlos A.; Fares, Rafaelle C. G.; Franco, Eliza P.; Dutra, Walderez O.; Rios-Santos, Fabrício; Correa-Oliveira, Rodrigo; Gomes, Juliana A. S.

    2016-01-01

    Chronic low-grade inflammation is related to the development of comorbidities and poor prognosis in obesity. Monocytes are main sources of cytokines and play a pivotal role in inflammation. We evaluated monocyte frequency, phenotype and cytokine profile of monocyte subsets, to determine their association with the pathogenesis of childhood obesity. Children with obesity were evaluated for biochemical and anthropometric parameters. Monocyte subsets were characterized by flow cytometry, considering cytokine production and activation/recognition molecules. Correlation analysis between clinical parameters and immunological data delineated the monocytes contribution for low-grade inflammation. We observed a higher frequency of non-classical monocytes in the childhood obesity group (CO) than normal-weight group (NW). All subsets displayed higher TLR4 expression in CO, but their recognition and antigen presentation functions seem to be diminished due to lower expression of CD40, CD80/86 and HLA-DR. All subsets showed a lower expression of IL-10 in CO and correlation analyses showed changes in IL-10 expression profile. The lower expression of IL-10 may be decisive for the maintenance of the low-grade inflammation status in CO, especially for alterations in non-classical monocytes profile. These cells may contribute to supporting inflammation and loss of regulation in the immune response of children with obesity. PMID:27977792

  3. Ly6CHi Blood Monocyte/Macrophage Drive Chronic Inflammation and Impair Wound Healing in Diabetes Mellitus.

    PubMed

    Kimball, Andrew; Schaller, Matthew; Joshi, Amrita; Davis, Frank M; denDekker, Aaron; Boniakowski, Anna; Bermick, Jennifer; Obi, Andrea; Moore, Bethany; Henke, Peter K; Kunkel, Steve L; Gallagher, Katherine A

    2018-05-01

    Wound monocyte-derived macrophage plasticity controls the initiation and resolution of inflammation that is critical for proper healing, however, in diabetes mellitus, the resolution of inflammation fails to occur. In diabetic wounds, the kinetics of blood monocyte recruitment and the mechanisms that control in vivo monocyte/macrophage differentiation remain unknown. Here, we characterized the kinetics and function of Ly6C Hi [Lin - (CD3 - CD19 - NK1.1 - Ter-119 - ) Ly6G - CD11b + ] and Ly6C Lo [Lin - (CD3 - CD19 - NK1.1 - Ter-119 - ) Ly6G - CD11b + ] monocyte/macrophage subsets in normal and diabetic wounds. Using flow-sorted tdTomato -labeled Ly6C Hi monocyte/macrophages, we show Ly6C Hi cells transition to a Ly6C Lo phenotype in normal wounds, whereas in diabetic wounds, there is a late, second influx of Ly6C Hi cells that fail transition to Ly6C Lo . The second wave of Ly6C Hi cells in diabetic wounds corresponded to a spike in MCP-1 (monocyte chemoattractant protein-1) and selective administration of anti-MCP-1 reversed the second Ly6C Hi influx and improved wound healing. To examine the in vivo phenotype of wound monocyte/macrophages, RNA-seq-based transcriptome profiling was performed on flow-sorted Ly6C Hi [Lin - Ly6G - CD11b + ] and Ly6C Lo [Lin - Ly6G - CD11b + ] cells from normal and diabetic wounds. Gene transcriptome profiling of diabetic wound Ly6C Hi cells demonstrated differences in proinflammatory and profibrotic genes compared with controls. Collectively, these data identify kinetic and functional differences in diabetic wound monocyte/macrophages and demonstrate that selective targeting of CD11b + Ly6C Hi monocyte/macrophages is a viable therapeutic strategy for inflammation in diabetic wounds. © 2018 American Heart Association, Inc.

  4. Olive (Olea europaea) Leaf Extract Induces Apoptosis and Monocyte/Macrophage Differentiation in Human Chronic Myelogenous Leukemia K562 Cells: Insight into the Underlying Mechanism

    PubMed Central

    Han, Junkyu; Jlaiel, Lobna; Sayadi, Sami; Isoda, Hiroko

    2014-01-01

    Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells. PMID:24803988

  5. Olive (Olea europaea) leaf extract induces apoptosis and monocyte/macrophage differentiation in human chronic myelogenous leukemia K562 cells: insight into the underlying mechanism.

    PubMed

    Samet, Imen; Han, Junkyu; Jlaiel, Lobna; Sayadi, Sami; Isoda, Hiroko

    2014-01-01

    Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells.

  6. Oxalate induces mitochondrial dysfunction and disrupts redox homeostasis in a human monocyte derived cell line.

    PubMed

    Patel, Mikita; Yarlagadda, Vidhush; Adedoyin, Oreoluwa; Saini, Vikram; Assimos, Dean G; Holmes, Ross P; Mitchell, Tanecia

    2018-05-01

    Monocytes/macrophages are thought to be recruited to the renal interstitium during calcium oxalate (CaOx) kidney stone disease for crystal clearance. Mitochondria play an important role in monocyte function during the immune response. We recently determined that monocytes in patients with CaOx kidney stones have decreased mitochondrial function compared to healthy subjects. The objective of this study was to determine whether oxalate, a major constituent found in CaOx kidney stones, alters cell viability, mitochondrial function, and redox homeostasis in THP-1 cells, a human derived monocyte cell line. THP-1 cells were treated with varying concentrations of CaOx crystals (insoluble form) or sodium oxalate (NaOx; soluble form) for 24h. In addition, the effect of calcium phosphate (CaP) and cystine crystals was tested. CaOx crystals decreased cell viability and induced mitochondrial dysfunction and redox imbalance in THP-1 cells compared to control cells. However, NaOx only caused mitochondrial damage and redox imbalance in THP-1 cells. In contrast, both CaP and cystine crystals did not affect THP-1 cells. Separate experiments showed that elevated oxalate also induced mitochondrial dysfunction in primary monocytes from healthy subjects. These findings suggest that oxalate may play an important role in monocyte mitochondrial dysfunction in CaOx kidney stone disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Vitamin E-coated dialyzer membranes downregulate expression of monocyte adhesion and co-stimulatory molecules.

    PubMed

    Betjes, Michiel G H; Hoekstra, Franciska M E; Klepper, M; Postma, Saskia M; Vaessen, Leonard M B

    2004-01-01

    In patients on chronic hemodialysis leukocyte activation has been related to the impaired function of the immune system. In this study we investigated if the vitamin E-coated dialyzer membrane could reduce monocyte activation thereby improving cellular immunity. This hypothesis was tested in a prospective crossover trial in which 14 stable hemodialysis patients were switched from the baseline hemophane dialyzer to a vitamin E-coated and thereafter a polysulphone dialyzer membrane or vice versa. Monocyte MHC class I, CD54 and ICAM-1 expression was significantly downregulated when a vitamin E-coated or polysulphone dialyzer was used. The use of a vitamin E membrane specifically decreased monocyte CD40 and CD86 expression. Lectin induced T cell proliferation increased with the use of the vitamin E-coated membrane as compared to polysulphone and hemophane dialyzers. Vitamin E-coated dialyzers induced a less-activated phenotype of monocytes and may improve cellular immunity.

  8. Leishmania infection modulates beta-1 integrin activation and alters the kinetics of monocyte spreading over fibronectin.

    PubMed

    Figueira, Cláudio Pereira; Carvalhal, Djalma Gomes Ferrão; Almeida, Rafaela Andrade; Hermida, Micely d' El-Rei; Touchard, Dominique; Robert, Phillipe; Pierres, Anne; Bongrand, Pierre; dos-Santos, Washington L C

    2015-08-07

    Contact with Leishmania leads to a decreases in mononuclear phagocyte adherence to connective tissue. In this work, we studied the early stages of bond formation between VLA4 and fibronectin, measured the kinetics of membrane alignment and the monocyte cytoplasm spreading area over a fibronectin-coated surface, and studied the expression of high affinity integrin epitope in uninfected and Leishmania-infected human monocytes. Our results show that the initial VLA4-mediated interaction of Leishmania-infected monocyte with a fibronectin-coated surface is preserved, however, the later stage, leukocyte spreading over the substrate is abrogated in Leishmania-infected cells. The median of spreading area was 72 [55-89] μm(2) for uninfected and 41 [34-51] μm(2) for Leishmania-infected monocyte. This cytoplasm spread was inhibited using an anti-VLA4 blocking antibody. After the initial contact with the fibronectrin-coated surface, uninfected monocyte quickly spread the cytoplasm at a 15 μm(2) s(-1) ratio whilst Leishmania-infected monocytes only made small contacts at a 5.5 μm(2) s(-1) ratio. The expression of high affinity epitope by VLA4 (from 39 ± 21% to 14 ± 3%); and LFA1 (from 37 ± 32% to 18 ± 16%) molecules was reduced in Leishmania-infected monocytes. These changes in phagocyte function may be important for parasite dissemination and distribution of lesions in leishmaniasis.

  9. Sequential concentrations of placental growth factor and haptoglobin, and their relation to oestrone sulphate and progesterone in pregnant Spanish Purebred mare.

    PubMed

    Satué, K; Marcilla, M; Medica, P; Ferlazzo, A; Fazio, E

    2018-04-27

    The objectives of this study were to establish reference values for serum concentrations of placental growth factor (PlGF) and haptoglobin (Hp), and to analyze whether the levels of oestrone sulphate (E 1 S) and progesterone (P 4 ) are physiologically involved in the dynamic modifications of the above parameters in pregnant mares. A total of 30 healthy Spanish Purebred mares ranging in age 9.33 ± 3.31 years were studied during the 11 months of gestation. Serum concentrations of PlGF were detected by EIA, Hp using commercial Phase Haptoglobin assay and E 1 S and P 4 levels through RIA. The serum concentrations of PlGF ranged between 31.70 and 223.60 ng/mL, with a mean value of 57.64 ± 18.05 ng/mL. Serum PlGF levels increased significantly during the 1st and 2nd months, reaching the maximum value in the 3rd month and the minimum value in the 10th month. Hp concentrations increased progressively and significantly from the 5th until the 10th month of gestation (P < 0.05), decreasing in the 11th month of pregnancy. E 1 S increased significantly from the 3rd until the 7th month, decreasing progressively towards the end of gestation. P 4 increased significantly in the 3rd and 4th month and decreased significantly in the 6th and 7th (P < 0.05), with variable oscillations during last months of pregnancy. PlGF and Hp were significantly and negatively correlated (r = -0.27; P < 0.05). In the healthy mare, PlGF and Hp act asynchronously and independent of steroid E 1 S and P 4. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Frontline Science: Proliferation of Ly6C+ monocytes during urinary tract infections is regulated by IL-6 trans-signaling.

    PubMed

    Dixit, Akanksha; Bottek, Jenny; Beerlage, Anna-Lena; Schuettpelz, Jana; Thiebes, Stephanie; Brenzel, Alexandra; Garbers, Christoph; Rose-John, Stefan; Mittrücker, Hans-Willi; Squire, Anthony; Engel, Daniel R

    2018-01-01

    Ly6C + monocytes are important components of the innate immune defense against infections. These cells have been shown to proliferate in the bone marrow of mice with systemic infections. However, the proliferative capacity of Ly6C + monocytes in infected peripheral tissues as well as the associated regulatory mechanisms remain unclear. In this study, we analyzed the proliferative capacity of Ly6C + monocytes in the urinary bladder after infection with uropathogenic E. coli, one of the most prevalent pathogen worldwide, and in LPS-induced peritonitis. We show that Ly6C + monocytes proliferated in the bladder after infection with uropathogenic E. coli and in the peritoneum after intraperitoneal injection of LPS. We identified IL-6, a molecule that is highly expressed in infections, as a crucial regulator of Ly6C + monocyte proliferation. Inhibition of IL-6 via administration of antibodies against IL-6 or gp130 impeded Ly6C + monocyte proliferation. Furthermore, repression of IL-6 trans-signaling via administration of soluble gp130 markedly reduced the proliferation of Ly6C + monocytes. Overall, this study describes the proliferation of Ly6C + monocytes using models of urinary tract infection and LPS-induced peritonitis. IL-6 trans-signaling was identified as the regulator of Ly6C + monocyte proliferation. ©2017 Society for Leukocyte Biology.

  11. The Human Cytomegalovirus Lytic Cycle Is Induced by 1,25-Dihydroxyvitamin D3 in Peripheral Blood Monocytes and in the THP-1 Monocytic Cell Line

    PubMed Central

    Wu, Shu-En; Miller, William E.

    2015-01-01

    Human cytomegalovirus (HCMV) resides in a latent form in hematopoietic progenitors and undifferentiated cells within the myeloid lineage. Maturation and differentiation along the myeloid lineage triggers lytic replication. Here, we used peripheral blood monocytes and the monocytic cell line THP-1 to investigate the effects of 1,25-dihydroxyvitamin D3 on HCMV replication. Interestingly, 1,25-dihydroxyvitamin D3 induces lytic replication marked by upregulation of HCMV gene expression and production of infectious virus. Moreover, we demonstrate that the effects of 1,25-dihydroxyvitamin D3 correlate with maturation/differentiation of the monocytes and not by directly stimulating the MIEP. These results are somewhat surprising as 1,25-dihydroxyvitamin D3 typically boosts immunity to bacteria and viruses rather than driving the infectious life cycle as it does for HCMV. Defining the signaling pathways kindled by 1,25-dihydroxyvitamin D3 will lead to a better understanding of the underlying molecular mechanisms that determine the fate of HCMV once it infects cells in the myeloid lineage. PMID:25965798

  12. Enhancement of proinflammatory and procoagulant responses to silica particles by monocyte-endothelial cell interactions

    PubMed Central

    2012-01-01

    Background Inorganic particles, such as drug carriers or contrast agents, are often introduced into the vascular system. Many key components of the in vivo vascular environment include monocyte-endothelial cell interactions, which are important in the initiation of cardiovascular disease. To better understand the effect of particles on vascular function, the present study explored the direct biological effects of particles on human umbilical vein endothelial cells (HUVECs) and monocytes (THP-1 cells). In addition, the integrated effects and possible mechanism of particle-mediated monocyte-endothelial cell interactions were investigated using a coculture model of HUVECs and THP-1 cells. Fe3O4 and SiO2 particles were chosen as the test materials in the present study. Results The cell viability data from an MTS assay showed that exposure to Fe3O4 or SiO2 particles at concentrations of 200 μg/mL and above significantly decreased the cell viability of HUVECs, but no significant loss in viability was observed in the THP-1 cells. TEM images indicated that with the accumulation of SiO2 particles in the cells, the size, structure and morphology of the lysosomes significantly changed in HUVECs, whereas the lysosomes of THP-1 cells were not altered. Our results showed that reactive oxygen species (ROS) generation; the production of interleukin (IL)-6, IL-8, monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor (TNF)-α and IL-1β; and the expression of CD106, CD62E and tissue factor in HUVECs and monocytes were significantly enhanced to a greater degree in the SiO2-particle-activated cocultures compared with the individual cell types alone. In contrast, exposure to Fe3O4 particles had no impact on the activation of monocytes or endothelial cells in monoculture or coculture. Moreover, using treatment with the supernatants of SiO2-particle-stimulated monocytes or HUVECs, we found that the enhancement of proinflammatory response by SiO2 particles was not mediated by

  13. Monocytic cell junction proteins serve important roles in atherosclerosis via the endoglin pathway

    PubMed Central

    Chen, Lina; Chen, Zhongliang; Ge, Menghua; Tang, Oushan; Cheng, Yinhong; Zhou, Haoliang; Shen, Yu; Qin, Fengming

    2017-01-01

    The formation of atherosclerosis is recognized to be caused by multiple factors including pathogenesis in monocytes during inflammation. The current study provided evidence that monocytic junctions were significantly altered in patients with atherosclerosis, which suggested an association between cell junctions and atherosclerosis. Claudin-1, occludin-1 and ZO-1 were significantly enhanced in atherosclerosis, indicating that the tight junction pathway was activated during the pathogenesis of atherosclerosis. In addition, the gene expression of 5 connexin members involved in the gap junction pathway were quantified, indicating that connexin 43 and 46 were significantly up-regulated in atherosclerosis. Furthermore, inflammatory factors including endoglin and SMAD were observed, suggesting that immune regulative factors were down-regulated in this pathway. Silicon-based analysis additionally identified that connexins and tight junctions were altered in association with monocytic inflammation regulations, endoglin pathway. The results imply that reduced expression of the immune regulation pathway in monocytes is correlated with the generation of gap junctions and tight junctions which serve important roles in atherosclerosis. PMID:28901429

  14. SARS-CoV regulates immune function-related gene expression in human monocytic cells.

    PubMed

    Hu, Wanchung; Yen, Yu-Ting; Singh, Sher; Kao, Chuan-Liang; Wu-Hsieh, Betty A

    2012-08-01

    Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS.

  15. SARS-CoV Regulates Immune Function-Related Gene Expression in Human Monocytic Cells

    PubMed Central

    Hu, Wanchung; Yen, Yu-Ting; Singh, Sher; Kao, Chuan-Liang

    2012-01-01

    Abstract Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS. PMID:22876772

  16. Presence of estrogen receptors in human myeloid monocytic cells (THP-1 cell line).

    PubMed

    Cutolo, M; Villaggio, B; Bisso, A; Sulli, A; Coviello, D; Dayer, J M

    2001-01-01

    To test THP-1 cells for the presence of estrogen receptors (ER) since studies have demonstrated in vivo and in vitro, the influence of estrogens on cells involved in immune response (i.e. macrophages), and since it has been demonstrated that human myeloid monocytic THP-1 cells acquire phenotypic and functional macrophage-like features after incubation with several cytokines or pharmacological agents. Stimulation of THP-1 cells with phorbol myristate acetate (PMA) to prompt their differentiation into macrophage-like cells and evaluation of the possible induction of ER. The expression of ER was analyzed by immunocytochemical assay, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. After stimulation by PMA, the human myeloid monocytic THP-1 cells showed the presence of ER, together with markers of monocytic cell differentiation such as CD68, CD54 and HLA-DR. Estrogen effects may be exerted directly through ER on monocytes/macrophages. PMA-treated THP-1 cells may constitute a useful in vitro model to determine the effects of estrogens on macrophage-like cells and their implications in the inflammatory and immune processes.

  17. Dysferlin quantification in monocytes for rapid screening for dysferlinopathies.

    PubMed

    Sánchez-Chapul, Laura; Ángel-Muñoz, Miguel Del; Ruano-Calderón, Luis; Luna-Angulo, Alexandra; Coral-Vázquez, Ramón; Hernández-Hernández, Óscar; Magaña, Jonathan J; León-Hernández, Saúl R; Escobar-Cedillo, Rosa E; Vargas, Steven

    2016-12-01

    In this study, we determined normal levels of dysferlin expression in CD14 + monocytes by flow cytometry (FC) as a screening tool for dysferlinopathies. Monocytes from 183 healthy individuals and 29 patients were immunolabeled, run on an FACScalibur flow cytometer, and analyzed by FlowJo software. The relative quantity of dysferlin was expressed as mean fluorescence intensity (MFI). Performance of this diagnostic test was assessed by calculating likelihood ratios at different MFI cut-off points, which allowed definition of 4 disease classification groups in a simplified algorithm. The MFI value may differentiate patients with dysferlinopathy from healthy individuals; it may be a useful marker for screening purposes. Muscle Nerve 54: 1064-1071, 2016. © 2016 Wiley Periodicals, Inc.

  18. Dissociating Averageness and Attractiveness: Attractive Faces Are Not Always Average

    ERIC Educational Resources Information Center

    DeBruine, Lisa M.; Jones, Benedict C.; Unger, Layla; Little, Anthony C.; Feinberg, David R.

    2007-01-01

    Although the averageness hypothesis of facial attractiveness proposes that the attractiveness of faces is mostly a consequence of their averageness, 1 study has shown that caricaturing highly attractive faces makes them mathematically less average but more attractive. Here the authors systematically test the averageness hypothesis in 5 experiments…

  19. Differential migratory properties of monocytes isolated from human subjects naïve and non-naïve to Cannabis

    PubMed Central

    Silvestroni, Aurelio; Möller, Thomas; Stella, Nephi

    2015-01-01

    This study evaluates the migratory potential of monocytes isolated from two groups of human subjects: naïve and non-naïve to Cannabis. Phytocannabinoids (pCB), the bioactive agents produced by the plant Cannabis, regulate the phenotype and function of immune cells by interacting with CB1 and CB2 receptors. It has been shown that agents influencing the phenotype of circulating monocytes influence the phenotype of macrophages and the outcome of immune responses. To date, nothing is known about the acute and long-term effects of pCB on human circulating monocytes. Healthy subjects were recruited for a single blood draw. Monocytes were isolated, fluorescently labeled and their migration quantified using a validated assay that employs near infrared fluorescence and modified Boyden chambers. CB1 and CB2 receptor mRNA expression was quantified by qPCR. Monocytes from all subjects (n = 10) responded to chemokine (c–c motif) ligand 2 (CCL2) and human serum stimuli. Acute application of pCB significantly inhibited both the basal and CCL2-stimulated migration of monocytes, but only in subjects non-naïve to Cannabis. qPCR analysis indicates that monocytes from subjects non-naïve to Cannabis express significantly more CB1 mRNA. The phenotype of monocytes isolated from subjects non-naïve to Cannabis is significantly different from monocytes isolated from subjects naïve to Cannabis. Only monocytes from subjects non-naïve to Cannabis respond to acute exposure to pCB by reducing their overall migratory capacity. Our study suggests that chronic exposure to Cannabis affects the phenotype of circulating monocytes and accordingly could influence outcome of inflammatory responses occurring in injured tissues. PMID:22492174

  20. Differential migratory properties of monocytes isolated from human subjects naïve and non-naïve to Cannabis.

    PubMed

    Sexton, Michelle; Silvestroni, Aurelio; Möller, Thomas; Stella, Nephi

    2013-06-01

    This study evaluates the migratory potential of monocytes isolated from two groups of human subjects: naïve and non-naïve to Cannabis. Phytocannabinoids (pCB), the bioactive agents produced by the plant Cannabis, regulate the phenotype and function of immune cells by interacting with CB1 and CB2 receptors. It has been shown that agents influencing the phenotype of circulating monocytes influence the phenotype of macrophages and the outcome of immune responses. To date, nothing is known about the acute and long-term effects of pCB on human circulating monocytes. Healthy subjects were recruited for a single blood draw. Monocytes were isolated, fluorescently labeled and their migration quantified using a validated assay that employs near infrared fluorescence and modified Boyden chambers. CB1 and CB2 receptor mRNA expression was quantified by qPCR. Monocytes from all subjects (n = 10) responded to chemokine (c-c motif) ligand 2 (CCL2) and human serum stimuli. Acute application of pCB significantly inhibited both the basal and CCL2-stimulated migration of monocytes, but only in subjects non-naïve to Cannabis. qPCR analysis indicates that monocytes from subjects non-naïve to Cannabis express significantly more CB1 mRNA. The phenotype of monocytes isolated from subjects non-naïve to Cannabis is significantly different from monocytes isolated from subjects naïve to Cannabis. Only monocytes from subjects non-naïve to Cannabis respond to acute exposure to pCB by reducing their overall migratory capacity. Our study suggests that chronic exposure to Cannabis affects the phenotype of circulating monocytes and accordingly could influence outcome of inflammatory responses occurring in injured tissues.

  1. Monocyte alterations in rheumatoid arthritis are dominated by preterm release from bone marrow and prominent triggering in the joint.

    PubMed

    Smiljanovic, Biljana; Radzikowska, Anna; Kuca-Warnawin, Ewa; Kurowska, Weronika; Grün, Joachim R; Stuhlmüller, Bruno; Bonin, Marc; Schulte-Wrede, Ursula; Sörensen, Till; Kyogoku, Chieko; Bruns, Anne; Hermann, Sandra; Ohrndorf, Sarah; Aupperle, Karlfried; Backhaus, Marina; Burmester, Gerd R; Radbruch, Andreas; Grützkau, Andreas; Maslinski, Wlodzimierz; Häupl, Thomas

    2018-02-01

    Rheumatoid arthritis (RA) accompanies infiltration and activation of monocytes in inflamed joints. We investigated dominant alterations of RA monocytes in bone marrow (BM), blood and inflamed joints. CD14 + cells from BM and peripheral blood (PB) of patients with RA and osteoarthritis (OA) were profiled with GeneChip microarrays. Detailed functional analysis was performed with reference transcriptomes of BM precursors, monocyte blood subsets, monocyte activation and mobilisation. Cytometric profiling determined monocyte subsets of CD14 ++ CD16 - , CD14 ++ CD16 + and CD14 + CD16 + cells in BM, PB and synovial fluid (SF) and ELISAs quantified the release of activation markers into SF and serum. Investigation of genes differentially expressed between RA and OA monocytes with reference transcriptomes revealed gene patterns of early myeloid precursors in RA-BM and late myeloid precursors along with reduced terminal differentiation to CD14 + CD16 + monocytes in RA-PB. Patterns associated with tumor necrosis factor/lipopolysaccharide (TNF/LPS) stimulation were weak and more pronounced in RA-PB than RA-BM. Cytometric phenotyping of cells in BM, blood and SF disclosed differences related to monocyte subsets and confirmed the reduced frequency of terminally differentiated CD14 + CD16 + monocytes in RA-PB. Monocyte activation in SF was characterised by the predominance of CD14 ++ CD16 ++ CD163 + HLA-DR + cells and elevated concentrations of sCD14, sCD163 and S100P. Patterns of less mature and less differentiated RA-BM and RA-PB monocytes suggest increased turnover with accelerated monocytopoiesis, BM egress and migration into inflamed joints. Predominant activation in the joint indicates the action of local and primary stimuli, which may also promote adaptive immune triggering through monocytes, potentially leading to new diagnostic and therapeutic strategies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights

  2. Molecular Mechanisms That Underlie the Dynamic Adaptation of Innate Monocyte Memory to Varying Stimulant Strength of TLR Ligands.

    PubMed

    Yuan, Ruoxi; Geng, Shuo; Li, Liwu

    2016-01-01

    In adaptation to rising stimulant strength, innate monocytes can be dynamically programed to preferentially express either pro- or anti-inflammatory mediators. Such dynamic innate adaptation or programing may bear profound relevance in host health and disease. However, molecular mechanisms that govern innate adaptation to varying strength of stimulants are not well understood. Using lipopolysaccharide (LPS), the model stimulant of toll-like-receptor 4 (TLR4), we reported that the expressions of pro-inflammatory mediators are preferentially sustained in monocytes adapted by lower doses of LPS, and suppressed/tolerized in monocytes adapted by higher doses of LPS. Mechanistically, monocytes adapted by super-low dose LPS exhibited higher levels of transcription factor, interferon regulatory factor 5 (IRF5), and reduced levels of transcriptional modulator B lymphocyte-induced maturation protein-1 (Blimp-1). Intriguingly, the inflammatory monocyte adaptation by super-low dose LPS is dependent upon TRAM/TRIF but not MyD88. Similar to LPS, we also observed biphasic inflammatory adaptation and tolerance in monocytes challenged with varying dosages of TLR7 agonist. In sharp contrast, rising doses of TLR3 agonist preferentially caused inflammatory adaptation without inducing tolerance. At the molecular level, the differential regulation of IRF5 and Blimp-1 coincides with unique monocyte adaptation dynamics by TLR4/7 and TLR3 agonists. Our study provides novel clue toward the understanding of monocyte adaptation and memory toward distinct TLR ligands.

  3. Elevated concentrations of nonesterified fatty acids increase monocyte expression of CD11b and adhesion to endothelial cells.

    PubMed

    Zhang, Wei-Yang; Schwartz, Eric; Wang, Yingjie; Attrep, Jeanne; Li, Zhi; Reaven, Peter

    2006-03-01

    Monocyte proinflammatory activity has been demonstrated in obesity, insulin resistance, and type 2 diabetes, metabolic conditions that are frequently associated with elevated levels of nonesterified fatty acids (NEFA). We therefore tested the hypothesis that NEFA may induce monocyte inflammation. Monocytes exposed to NEFA for 2 days demonstrated a dose-related increase in intracellular reactive oxygen species (ROS) formation and adhesion to endothelial cells. All of these effects were inhibited by the coaddition of antioxidants such as glutathione or butylated hydroxytoluene, by inhibition of ROS generation by NADPH oxidase inhibitors, and by inhibition of protein kinase C, a recognized stimulator of NAPDH oxidase. Monocytes exposed to NEFA also demonstrated a significant increase in CD11b message expression. Stimulation of monocyte adhesion to endothelial cells by NEFA was inhibited by addition of neutralizing antibodies to either CD11b or CD18. Finally, surface expression of CD11b increased significantly on monocytes as measured by flow cytometry, after their incubation with NEFA. These studies indicate that elevated concentrations of NEFA may enhance integrin facilitated monocyte adhesion to endothelial cells and these effects appear mediated, in part, through activation of NADPH oxidase and oxidative stress.

  4. Plasminogen activator inhibitor-2 in patients with monocytic leukemia.

    PubMed

    Scherrer, A; Kruithof, E K; Grob, J P

    1991-06-01

    Plasma and tumor cells from 103 patients with leukemia or lymphoma at initial presentation were investigated for the presence of plasminogen activator inhibitor-2 (PAI-2) antigen, a potent inhibitor of urokinase. PAI-2 was detected in plasma and leukemic cells of the 21 patients with leukemia having a monocytic component [acute myelomonocytic (M4), acute monoblastic (M5), and chronic myelomonocytic leukemias], and in the three patients with acute undifferentiated myeloblastic leukemia (M0). In contrast, this serine protease inhibitor was undetectable in 79 patients with other subtypes of acute myeloid leukemia or other hematological malignancies. Serial serum PAI-2 determinations in 16 patients with acute leukemia at presentation, during therapy, remission, and relapse revealed that in the five patients with M4-M5, elevated PAI-2 levels rapidly normalized under therapy and during remission, but increased again in the patients with a relapse associated with an M4-M5 phenotype. Thus, PAI-2 seems to be a marker highly specific for the active stages of monocytic leukemia, i.e. presentation and relapse. The presence of PAI-2 in the plasma and cells of patients with M0 may give a clue to a monocytic origin of these cells.

  5. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    PubMed Central

    Messlinger, Helena; Sebald, Heidi; Heger, Lukas; Dudziak, Diana; Bogdan, Christian; Schleicher, Ulrike

    2018-01-01

    Activated natural killer (NK) cells release interferon (IFN)-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani). When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis) were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL)-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs) of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells reduced the

  6. Map3k8 Modulates Monocyte State and Atherogenesis in ApoE-/- Mice.

    PubMed

    Sanz-Garcia, Carlos; Sánchez, Ángela; Contreras-Jurado, Constanza; Cales, Carmela; Barranquero, Cristina; Muñoz, Marta; Merino, Ramón; Escudero, Paula; Sanz, Maria-Jesús; Osada, Jesús; Aranda, Ana; Alemany, Susana

    2017-02-01

    Map3k8 (Cot/Tpl2) activates the MKK1/2-ERK1/2, MAPK pathway downstream from interleukin-1R, tumor necrosis factor-αR, NOD-2R (nucleotide-binding oligomerization domain-like 2R), adiponectinR, and Toll-like receptors. Map3k8 plays a key role in innate and adaptive immunity and influences inflammatory processes by modulating the functions of different cell types. However, its role in atherogenesis remains unknown. In this study, we analyzed the role of this kinase in this pathology. We show here that Map3k8 deficiency results in smaller numbers of Ly6C high CD11c low and Ly6C low CD11c high monocytes in ApoE - /- mice fed a high-fat diet (HFD). Map3k8 -/- ApoE -/- monocytes displayed high rates of apoptosis and reduced amounts of Nr4a1, a transcription factor known to modulate apoptosis in Ly6C low CD11c high monocytes. Map3k8 -/- ApoE -/- splenocytes and macrophages showed irregular patterns of cytokine and chemokine expression. Map3k8 deficiency altered cell adhesion and migration in vivo and decreased CCR2 expression, a determinant chemokine receptor for monocyte mobilization, on circulating Ly6C high CD11c low monocytes. Map3k8 -/- ApoE -/- mice fed an HFD showed decreased cellular infiltration in the atherosclerotic plaque, with low lipid content. Lesions had similar size after Map3k8 +/+ ApoE -/- bone marrow transplant into Map3k8 -/- ApoE -/- and Map3k8 +/+ ApoE -/- mice fed an HFD, whereas smaller plaques were observed after the transplantation of bone marrow lacking both ApoE and Map3k8. Map3k8 decreases apoptosis of monocytes and enhances CCR2 expression on Ly6C high CD11c low monocytes of ApoE -/- mice fed an HFD. These findings explain the smaller aortic lesions in ApoE -/- mice with Map3k8 -/- ApoE -/- bone marrow cells fed an HFD, supporting further studies of Map3k8 as an antiatherosclerotic target. © 2016 American Heart Association, Inc.

  7. CXCL4-induced macrophages in human atherosclerosis.

    PubMed

    Domschke, Gabriele; Gleissner, Christian A

    2017-09-09

    Atherosclerosis is considered an inflammatory disease of the arterial wall. Monocytes and monocyte-derived cells (most often termed macrophages) play an essential role in the formation of atherosclerotic lesions, as they take up lipids leading to subsequent foam cell formation accompanied by release of pro-inflammatory cytokines. Similarly, platelets have been discovered to represent an important cell type mediating inflammatory and immune processes in atherogenesis, mainly by secreting chemokines, which are stored in the platelets' alpha granules, upon platelet activation. Therefore, the interaction between monocyte-derived cells and platelets is of exceptional importance. In this review, we specifically focus on the chemokine (platelet factor-4, PF4) and its effects on monocytes and monocyte-derived cells. By formation of heterodimers dimers and -oligomers with CCL5, CXCL4 induces binding of monocytes cells to endothelial cell and thereby promotes diapedesis of monocytes into the subendothelial space. CXCL4 also affects the differentiation of monocytes as it induces a specific macrophage phenotype, which we suggested to term "M4". For example, CXCL4-induced macrophages irreversibly lose the hemoglobin-haptoglobin scavenger receptor CD163. The combination of CD68, S100A8, and MMP7 turned out to reliably identify M4 macrophages both in vitro and in vivo within atherosclerotic lesions. In human atherosclerotic plaques, M4 macrophages are predominantly present in the adventitia and the intima and their prevalence is associated with plaque instability suggesting that they are a marker of pro-inflammatory activity. Overall, CXCL4-induced M4 macrophages may represent a target for diagnostic and therapeutic interventions in human atherosclerotic disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The chemokine receptor CX3CR1 coordinates monocyte recruitment and endothelial regeneration after arterial injury.

    PubMed

    Getzin, Tobias; Krishnasamy, Kashyap; Gamrekelashvili, Jaba; Kapanadze, Tamar; Limbourg, Anne; Häger, Christine; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Limbourg, Florian P

    2018-02-01

    Regeneration of arterial endothelium after injury is critical for the maintenance of normal blood flow, cell trafficking, and vascular function. Using mouse models of carotid injury, we show that the transition from a static to a dynamic phase of endothelial regeneration is marked by a strong increase in endothelial proliferation, which is accompanied by induction of the chemokine CX 3 CL1 in endothelial cells near the wound edge, leading to progressive recruitment of Ly6C lo monocytes expressing high levels of the cognate CX 3 CR1 chemokine receptor. In Cx3cr1 -deficient mice recruitment of Ly6C lo monocytes, endothelial proliferation and regeneration of the endothelial monolayer after carotid injury are impaired, which is rescued by acute transfer of normal Ly6C lo monocytes. Furthermore, human non-classical monocytes induce proliferation of endothelial cells in co-culture experiments in a VEGFA-dependent manner, and monocyte transfer following carotid injury promotes endothelial wound closure in a hybrid mouse model in vivo Thus, CX 3 CR1 coordinates recruitment of specific monocyte subsets to sites of endothelial regeneration, which promote endothelial proliferation and arterial regeneration. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Preterm Infants Have Deficient Monocyte and Lymphocyte Cytokine Responses to Group B Streptococcus▿

    PubMed Central

    Currie, Andrew J.; Curtis, Samantha; Strunk, Tobias; Riley, Karen; Liyanage, Khemanganee; Prescott, Susan; Doherty, Dorota; Simmer, Karen; Richmond, Peter; Burgner, David

    2011-01-01

    Group B streptococcus (GBS) is an important cause of early- and late-onset sepsis in the newborn. Preterm infants have markedly increased susceptibility and worse outcomes, but their immunological responses to GBS are poorly defined. We compared mononuclear cell and whole-blood cytokine responses to heat-killed GBS (HKGBS) of preterm infants (gestational age [GA], 26 to 33 weeks), term infants, and healthy adults. We investigated the kinetics and cell source of induced cytokines and quantified HKGBS phagocytosis. HKGBS-induced tumor necrosis factor (TNF) and interleukin 6 (IL-6) secretion was significantly impaired in preterm infants compared to that in term infants and adults. These cytokines were predominantly monocytic in origin, and production was intrinsically linked to HKGBS phagocytosis. Very preterm infants (GA, <30 weeks) had fewer cytokine-producing monocytes, but nonopsonic phagocytosis ability was comparable to that for term infants and adults. Exogenous complement supplementation increased phagocytosis in all groups, as well as the proportion of preterm monocytes producing IL-6, but for very preterm infants, responses were still deficient. Similar defective preterm monocyte responses were observed in fresh whole cord blood stimulated with live GBS. Lymphocyte-associated cytokines were significantly deficient for both preterm and term infants compared to levels for adults. These findings indicate that a subset of preterm monocytes do not respond to GBS, a defect compounded by generalized weaker lymphocyte responses in newborns. Together these deficient responses may increase the susceptibility of preterm infants to GBS infection. PMID:21300777

  10. Characterization of MHC-II antigen presentation by B cells and monocytes from older individuals

    PubMed Central

    HL, Clark; R, Banks; L, Jones; TR, Hornick; PA, Higgins; CJ, Burant; DH, Canaday

    2012-01-01

    In this study we examine the effects of aging on antigen presentation of B cells and monocytes. We compared the antigen presentation function of peripheral blood B cells from young and old subjects using a system that specifically measures the B cell receptor (BCR)-mediated MHC-II antigen presentation. Monocytes were studied as well. Overall the mean magnitude of antigen presentation of soluble antigen and peptide was not different in older and younger subjects for both B cells and monocytes. Older subjects, however, showed increased heterogeneity of BCR-mediated antigen presentation by their B cells. The magnitude and variability of peptide presentation, which does not require uptake and processing, was the same between groups. Presentation by monocytes had similar variability between the older and younger subjects. These data suggest that poor B cell antigen processing, which results in diminished presentation in some older individuals may contribute to poor vaccine responses. PMID:22797466

  11. The role of complement C3 and fibrinogen in monocyte adhesion to PEO like plasma deposited tetraglyme

    PubMed Central

    Szott, Luisa M.; Horbett, Thomas A.

    2010-01-01

    The role of complement C3 in mediating adhesion of monocytes to plasma deposited tetraglyme surfaces was studied. Although fibrinogen (Fg) is usually considered the main factor in mediating phagocyte attachment, plasma deposited PEO-like tetraethylene glycol dimethyl ether (tetraglyme) coatings that have ultra-low Fg adsorption (< 10 ng/cm2) from low concentration solutions and low monocyte adhesion in vitro still show high phagocyte adhesion after short implantations and later become encapsulated when tested in vivo. To test whether higher Fg adsorption under in vivo conditions could explain the higher in vivo reactivity, we again measured the resistance of tetraglyme films to Fg adsorption. We found a surprising and previously unreported increased amount of adsorbed Fg on tetraglyme surfaces from higher concentration protein solutions. However, monocyte adhesion to tetraglyme did not markedly increase despite the increased Fg adsorption. We thus suspected proteins other than Fg must be responsible for the increased in vivo reactivity. We found that on tetraglyme pre-adsorbed with C3-depleted serum, monocyte adhesion was greatly reduced as compared to samples adsorbed with normal serum. Addition of exogenous pure C3 to the serum used to pre-adsorb the surfaces restored monocyte adhesion to tetraglyme coatings. While Fg clearly plays an important role in mediating monocyte adhesion to tetraglyme surfaces, the results show an additional role for adsorbed C3 in monocyte adhesion. PMID:20939050

  12. A group's physical attractiveness is greater than the average attractiveness of its members: the group attractiveness effect.

    PubMed

    van Osch, Yvette; Blanken, Irene; Meijs, Maartje H J; van Wolferen, Job

    2015-04-01

    We tested whether the perceived physical attractiveness of a group is greater than the average attractiveness of its members. In nine studies, we find evidence for the so-called group attractiveness effect (GA-effect), using female, male, and mixed-gender groups, indicating that group impressions of physical attractiveness are more positive than the average ratings of the group members. A meta-analysis on 33 comparisons reveals that the effect is medium to large (Cohen's d = 0.60) and moderated by group size. We explored two explanations for the GA-effect: (a) selective attention to attractive group members, and (b) the Gestalt principle of similarity. The results of our studies are in favor of the selective attention account: People selectively attend to the most attractive members of a group and their attractiveness has a greater influence on the evaluation of the group. © 2015 by the Society for Personality and Social Psychology, Inc.

  13. Unconscious processing of facial attractiveness: invisible attractive faces orient visual attention.

    PubMed

    Hung, Shao-Min; Nieh, Chih-Hsuan; Hsieh, Po-Jang

    2016-11-16

    Past research has proven human's extraordinary ability to extract information from a face in the blink of an eye, including its emotion, gaze direction, and attractiveness. However, it remains elusive whether facial attractiveness can be processed and influences our behaviors in the complete absence of conscious awareness. Here we demonstrate unconscious processing of facial attractiveness with three distinct approaches. In Experiment 1, the time taken for faces to break interocular suppression was measured. The results showed that attractive faces enjoyed the privilege of breaking suppression and reaching consciousness earlier. In Experiment 2, we further showed that attractive faces had lower visibility thresholds, again suggesting that facial attractiveness could be processed more easily to reach consciousness. Crucially, in Experiment 3, a significant decrease of accuracy on an orientation discrimination task subsequent to an invisible attractive face showed that attractive faces, albeit suppressed and invisible, still exerted an effect by orienting attention. Taken together, for the first time, we show that facial attractiveness can be processed in the complete absence of consciousness, and an unconscious attractive face is still capable of directing our attention.

  14. Immunomodulatory action of Copaifera spp oleoresins on cytokine production by human monocytes.

    PubMed

    Santiago, Karina Basso; Conti, Bruno José; Murbach Teles Andrade, Bruna Fernanda; Mangabeira da Silva, Jonas Joaquim; Rogez, Hervé Louis Ghislain; Crevelin, Eduardo José; Beraldo de Moraes, Luiz Alberto; Veneziani, Rodrigo; Ambrósio, Sérgio Ricardo; Bastos, Jairo Kenupp; Sforcin, José Maurício

    2015-03-01

    Copaifera spp oleoresins have been used in folk medicine for centuries; nevertheless, its immunomodulatory action has not been investigated. Thus, the goal of this study was to characterize different oleoresins and to verify their action on human monocytes regarding pro- and anti-inflammatory cytokine production (TNF-α and IL-10, respectively). The chemical composition of Brazilian Copaifera reticulata, Copaifera duckey and Copaifera multijuga oleoresins was analyzed by HPLC-MS. Cell viability was assessed by MTT method after incubation of cells with Copaifera spp. Noncytotoxic concentrations of oleoresins were incubated with human monocytes from healthy donors, and cytokine production was determined by ELISA. HPLC-MS analysis for terpenes allowed the identification of six diterpene acids and one sesquiterpene acid. Oleoresins exerted no cytotoxic effects on human monocytes. All oleoresins had a similar profile: LPS-induced TNF-α production was maintained by oleoresins, while a significant inhibitory action on IL-10 production was seen. Copaifera oleoresins seemed to exert an activator profile on human monocytes without affecting cell viability. Such effect may be due to the presence of either diterpene or sesquiterpene acids; however, further studies are necessary to determine the involvement of such compounds in Copaifera immunomodulatory effects. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Gypenoside XLIX, a naturally occurring gynosaponin, PPAR-alpha dependently inhibits LPS-induced tissue factor expression and activity in human THP-1 monocytic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Tom Hsun-Wei; Van Hoan Tran; Roufogalis, Basil D.

    2007-01-01

    Tissue factor (TF) is involved not only in the progression of atherosclerosis and other cardiovascular diseases, but is also associated with tumor growth, metastasis, and angiogenesis and hence may be an attractive target for directed cancer therapeutics. Gynostemma pentaphyllum (GP) is widely used in the treatment of various cardiovascular diseases including atherosclerosis, as well as cancers. Gypenoside (Gyp) XLIX, a dammarane-type glycoside, is one of the prominent components in GP. We have recently reported Gyp XLIX to be a potent peroxisome proliferator-activated receptor (PPAR)-alpha activator. Here we demonstrate that Gyp XLIX (0-300 {mu}M) concentration dependently inhibited TF promoter activity aftermore » induction by the inflammatory stimulus lipopolysaccharide (LPS) in human monocytic THP-1 cells transfected with promoter reporter constructs pTF-LUC. Furthermore, Gyp XLIX inhibited LPS-induced TF mRNA and protein overexpression in THP-1 monocyte cells. Its inhibition of LPS-induced TF hyperactivity was further confirmed by chromogenic enzyme activity assay. The activities of Gyp XLIX reported in this study were similar to those of Wy-14643, a potent synthetic PPAR-alpha activator. Furthermore, the Gyp XLIX-induced inhibitory effect on TF luciferase activity was completely abolished in the presence of the PPAR-alpha selective antagonist MK-886. The present findings suggest that Gyp XLIX inhibits LPS-induced TF overexpression and enhancement of its activity in human THP-1 monocytic cells via PPAR-alpha-dependent pathways. The data provide new insights into the basis of the use of the traditional Chinese herbal medicine G. pentaphyllum for the treatment of cardiovascular and inflammatory diseases, as well as cancers.« less

  16. Leishmania infection modulates beta-1 integrin activation and alters the kinetics of monocyte spreading over fibronectin

    PubMed Central

    Figueira, Cláudio Pereira; Carvalhal, Djalma Gomes Ferrão; Almeida, Rafaela Andrade; Hermida, Micely d’ El-Rei; Touchard, Dominique; Robert, Phillipe; Pierres, Anne; Bongrand, Pierre; dos-Santos, Washington LC

    2015-01-01

    Contact with Leishmania leads to a decreases in mononuclear phagocyte adherence to connective tissue. In this work, we studied the early stages of bond formation between VLA4 and fibronectin, measured the kinetics of membrane alignment and the monocyte cytoplasm spreading area over a fibronectin-coated surface, and studied the expression of high affinity integrin epitope in uninfected and Leishmania-infected human monocytes. Our results show that the initial VLA4-mediated interaction of Leishmania-infected monocyte with a fibronectin-coated surface is preserved, however, the later stage, leukocyte spreading over the substrate is abrogated in Leishmania-infected cells. The median of spreading area was 72 [55–89] μm2 for uninfected and 41 [34–51] μm2 for Leishmania-infected monocyte. This cytoplasm spread was inhibited using an anti-VLA4 blocking antibody. After the initial contact with the fibronectrin-coated surface, uninfected monocyte quickly spread the cytoplasm at a 15 μm2 s−1 ratio whilst Leishmania-infected monocytes only made small contacts at a 5.5 μm2 s−1 ratio. The expression of high affinity epitope by VLA4 (from 39 ± 21% to 14 ± 3%); and LFA1 (from 37 ± 32% to 18 ± 16%) molecules was reduced in Leishmania-infected monocytes. These changes in phagocyte function may be important for parasite dissemination and distribution of lesions in leishmaniasis. PMID:26249106

  17. RP105 deficiency attenuates early atherosclerosis via decreased monocyte influx in a CCR2 dependent manner.

    PubMed

    Wezel, Anouk; van der Velden, Daniël; Maassen, Johanna M; Lagraauw, H Maxime; de Vries, Margreet R; Karper, Jacco C; Kuiper, Johan; Bot, Ilze; Quax, Paul H A

    2015-01-01

    Toll like receptor 4 (TLR4) plays a key role in inflammation and previously it was established that TLR4 deficiency attenuates atherosclerosis. RadioProtective 105 (RP105) is a structural homolog of TLR4 and an important regulator of TLR4 signaling, suggesting that RP105 may also be an important effector in atherosclerosis. We thus aimed to determine the role of RP105 in atherosclerotic lesion development using RP105 deficient mice on an atherosclerotic background. Atherosclerosis was induced in Western-type diet fed low density lipoprotein receptor deficient (LDLr(-/-)) and LDLr/RP105 double knockout (LDLr(-/-)/RP105(-/-)) mice by means of perivascular carotid artery collar placement. Lesion size was significantly reduced by 58% in LDLr(-/-)/RP105(-/-) mice, and moreover, plaque macrophage content was markedly reduced by 40%. In a model of acute peritonitis, monocyte influx was almost 3-fold reduced in LDLr(-/-)/RP105(-/-) mice (P = 0.001), while neutrophil influx remained unaltered, suggestive of an altered migratory capacity of monocytes upon deletion of RP105. Interestingly, in vitro stimulation of monocytes with LPS induced a downregulation of CCR2, a chemokine receptor crucially involved in monocyte influx to atherosclerotic lesions, which was more pronounced in LDLr(-/-)/RP105(-/-) monocytes as compared to LDLr(-/-) monocytes. We here show that RP105 deficiency results in reduced early atherosclerotic plaque development with a marked decrease in lesional macrophage content, which may be due to disturbed migration of RP105 deficient monocytes resulting from CCR2 downregulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Proangiogenic hematopoietic cells of monocytic origin: roles in vascular regeneration and pathogenic processes of systemic sclerosis.

    PubMed

    Yamaguchi, Yukie; Kuwana, Masataka

    2013-02-01

    New blood vessel formation is critical, not only for organ development and tissue regeneration, but also for various pathologic processes, such as tumor development and vasculopathy. The maintenance of the postnatal vascular system requires constant remodeling, which occurs through angiogenesis, vasculogenesis, and arteriogenesis. Vasculogenesis is mediated by the de novo differentiation of mature endothelial cells from endothelial progenitor cells (EPCs). Early studies provided evidence that bone marrow-derived CD14⁺ monocytes can serve as a subset of EPCs because of their expression of endothelial markers and ability to promote neovascularization in vitro and in vivo. However, the current consensus is that monocytic cells do not give rise to endothelial cells in vivo, but function as support cells, by promoting vascular formation and repair through their immediate recruitment to the site of vascular injury, secretion of proangiogenic factors, and differentiation into mural cells. These monocytes that function in a supporting role in vascular repair are now termed monocytic pro-angiogenic hematopoietic cells (PHCs). Systemic sclerosis (SSc) is a multisystem connective tissue disease characterized by excessive fibrosis and microvasculopathy, along with poor vascular formation and repair. We recently showed that in patients with SSc, circulating monocytic PHCs increase dramatically and have enhanced angiogenic potency. These effects may be induced in response to defective vascular repair machinery. Since CD14⁺ monocytes can also differentiate into fibroblast-like cells that produce extracellular matrix proteins, here we propose a new hypothesis that aberrant monocytic PHCs, once mobilized into circulation, may also contribute to the fibrotic process of SSc.

  19. The effect of insulin resistance and exercise on the percentage of CD16(+) monocyte subset in obese individuals.

    PubMed

    de Matos, Mariana A; Duarte, Tamiris C; Ottone, Vinícius de O; Sampaio, Pâmela F da M; Costa, Karine B; de Oliveira, Marcos F Andrade; Moseley, Pope L; Schneider, Suzanne M; Coimbra, Cândido C; Brito-Melo, Gustavo E A; Magalhães, Flávio de C; Amorim, Fabiano T; Rocha-Vieira, Etel

    2016-06-01

    Obesity is a low-grade chronic inflammation condition, and macrophages, and possibly monocytes, are involved in the pathological outcomes of obesity. Physical exercise is a low-cost strategy to prevent and treat obesity, probably because of its anti-inflammatory action. We evaluated the percentage of CD16(-) and CD16(+) monocyte subsets in obese insulin-resistant individuals and the effect of an exercise bout on the percentage of these cells. Twenty-seven volunteers were divided into three experimental groups: lean insulin sensitive, obese insulin sensitive and obese insulin resistant. Venous blood samples collected before and 1 h after an aerobic exercise session on a cycle ergometer were used for determination of monocyte subsets by flow cytometry. Insulin-resistant obese individuals have a higher percentage of CD16(+) monocytes (14.8 ± 2.4%) than the lean group (10.0 ± 1.3%). A positive correlation of the percentage of CD16(+) monocytes with body mass index and fasting plasma insulin levels was found. One bout of moderate exercise reduced the percentage of CD16(+) monocytes by 10% in all the groups evaluated. Also, the absolute monocyte count, as well as all other leukocyte populations, in lean and obese individuals, increased after exercise. This fact may partially account for the observed reduction in the percentage of CD16(+) cells in response to exercise. Insulin-resistant, but not insulin-sensitive obese individuals, have an increased percentage of CD16(+) monocytes that can be slightly modulated by a single bout of moderate aerobic exercise. These findings may be clinically relevant to the population studied, considering the involvement of CD16(+) monocytes in the pathophysiology of obesity. Copyright © 2016 John Wiley & Sons, Ltd. Obesity is now considered to be an inflammatory condition associated with many pathological consequences, including insulin resistance. It is proposed that insulin resistance contributes to the aggravation of the

  20. Critical Role for Monocytes/Macrophages in Rapid Progression to AIDS in Pediatric Simian Immunodeficiency Virus-Infected Rhesus Macaques

    PubMed Central

    Sugimoto, Chie; Merino, Kristen M.; Hasegawa, Atsuhiko; Wang, Xiaolei; Alvarez, Xavier A.; Wakao, Hiroshi; Kim, Woong-Ki; Veazey, Ronald S.; Didier, Elizabeth S.

    2017-01-01

    ABSTRACT Infant humans and rhesus macaques infected with the human or simian immunodeficiency virus (HIV or SIV), respectively, express higher viral loads and progress more rapidly to AIDS than infected adults. Activated memory CD4+ T cells in intestinal tissues are major primary target cells for SIV/HIV infection, and massive depletion of these cells is considered a major cause of immunodeficiency. Monocytes and macrophages are important cells of innate immunity and also are targets of HIV/SIV infection. We reported previously that a high peripheral blood monocyte turnover rate was predictive for the onset of disease progression to AIDS in SIV-infected adult macaques. The purpose of this study was to determine if earlier or higher infection of monocytes/macrophages contributes to the more rapid progression to AIDS in infants. We observed that uninfected infant rhesus macaques exhibited higher physiologic baseline monocyte turnover than adults. Early after SIV infection, the monocyte turnover further increased, and it remained high during progression to AIDS. A high percentage of terminal deoxynucleotidyltransferase dUTP nick end label (TUNEL)-positive macrophages in the lymph nodes (LNs) and intestine corresponded with an increasing number of macrophages derived from circulating monocytes (bromodeoxyuridine positive [BrdU+] CD163+), suggesting that the increased blood monocyte turnover was required to rapidly replenish destroyed tissue macrophages. Immunofluorescence analysis further demonstrated that macrophages were a significant portion of the virus-producing cells found in LNs, intestinal tissues, and lungs. The higher baseline monocyte turnover in infant macaques and subsequent macrophage damage by SIV infection may help explain the basis of more rapid disease progression to AIDS in infants. IMPORTANCE HIV infection progresses much more rapidly in pediatric cases than in adults; however, the mechanism for this difference is unclear. Using the rhesus macaque

  1. Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders

    PubMed Central

    Smith, Ann; McCulloh, Russell J.

    2015-01-01

    The goal here is to describe our current understanding of heme metabolism and the deleterious effects of “free” heme on immunological processes, endothelial function, systemic inflammation, and various end-organ tissues (e.g., kidney, lung, liver, etc.), with particular attention paid to the role of hemopexin (HPX). Because heme toxicity is the impetus for much of the pathology in sepsis, sickle cell disease (SCD), and other hemolytic conditions, the biological importance and clinical relevance of HPX, the predominant heme binding protein, is reinforced. A perspective on the function of HPX and haptoglobin (Hp) is presented, updating how these two proteins and their respective receptors act simultaneously to protect the body in clinical conditions that entail hemolysis and/or systemic intravascular (IVH) inflammation. Evidence from longitudinal studies in patients supports that HPX plays a Hp-independent role in genetic and non-genetic hemolytic diseases without the need for global Hp depletion. Evidence also supports that HPX has an important role in the prognosis of complex illnesses characterized predominantly by the presence of hemolysis, such as SCD, sepsis, hemolytic-uremic syndrome, and conditions involving IVH and extravascular hemolysis (EVH), such as that generated by extracorporeal circulation during cardiopulmonary bypass (CPB) and from blood transfusions. We propose that quantitating the amounts of plasma heme, HPX, Hb-Hp, heme-HPX, and heme-albumin levels in various disease states may aid in the diagnosis and treatment of the above-mentioned conditions, which is crucial to developing targeted plasma protein supplementation (i.e., “replenishment”) therapies for patients with heme toxicity due to HPX depletion. PMID:26175690

  2. Pro-inflammatory capacity of classically activated monocytes relates positively to muscle mass and strength.

    PubMed

    Beenakker, Karel G M; Westendorp, Rudi G J; de Craen, Anton J M; Slagboom, Pieternella E; van Heemst, Diana; Maier, Andrea B

    2013-08-01

    In mice, monocytes that exhibit a pro-inflammatory profile enter muscle tissue after muscle injury and are crucial for clearance of necrotic tissue and stimulation of muscle progenitor cell proliferation and differentiation. The aim of this study was to test if pro-inflammatory capacity of classically activated (M1) monocytes relates to muscle mass and strength in humans. This study included 191 male and 195 female subjects (mean age 64.2 years (SD 6.4) and 61.9 ± 6.4, respectively) of the Leiden Longevity Study. Pro-inflammatory capacity of M1 monocytes was assessed by ex vivo stimulation of whole blood with Toll-like receptor (TLR) 4 agonist lipopolysaccharide (LPS) and TLR-2/1 agonist tripalmitoyl-S-glycerylcysteine (Pam₃Cys-SK₄), both M1 phenotype activators. Cytokines that stimulate M1 monocyte response (IFN-γ and GM-CSF) as well as cytokines that are secreted by M1 monocytes (IL-6, TNF-α, IL-12, and IL-1β) were measured. Analyses were adjusted for age, height, and body fat mass. Upon stimulation with LPS, the cytokine production capacity of INF-γ, GM-CSF, and TNF-α was significantly positively associated with lean body mass, appendicular lean mass and handgrip strength in men, but not in women. Upon stimulation with Pam₃Cys-SK₄, IL-6; TNF-α; and Il-1β were significantly positively associated with lean body mass and appendicular lean in women, but not in men. Taken together, this study shows that higher pro-inflammatory capacity of M1 monocytes upon stimulation is associated with muscle characteristics and sex dependent. © 2013 John Wiley & Sons Ltd and the Anatomical Society.

  3. CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis

    PubMed Central

    Gouwy, Mieke; Ruytinx, Pieter; Radice, Egle; Claudi, Federico; Van Raemdonck, Katrien; Bonecchi, Raffaella; Locati, Massimo; Struyf, Sofie

    2016-01-01

    Upon inflammation, circulating monocytes leave the bloodstream and migrate into the tissues, where they differentiate after exposure to various growth factors, cytokines or infectious agents. The best defined macrophage polarization types are M1 and M2. However, the platelet-derived CXC chemokine CXCL4 induces the polarization of macrophages into a unique phenotype. In this study, we compared the effect of CXCL4 and its variant CXCL4L1 on the differentiation of monocytes into macrophages and into immature monocyte-derived dendritic cells (iMDDC). Differently to M-CSF and CXCL4, CXCL4L1 is not a survival factor for monocytes. Moreover, the expression of the chemokine receptors CCR2, CCR5 and CXCR3 was significantly higher on CXCL4L1-treated monocytes compared to M-CSF- and CXCL4-stimulated monocytes. IL-1 receptor antagonist (IL-1RN) expression was upregulated by CXCL4 and downregulated by CXCL4L1, respectively, whereas both chemokines reduced the expression of the mannose receptor (MRC). Furthermore, through activation of CXCR3, CXCL4L1-stimulated monocytes released significantly higher amounts of CCL2 and CXCL8 compared to CXCL4-treated monocytes, indicating more pronounced inflammatory traits for CXCL4L1. In contrast, in CXCL4L1-treated monocytes, the production of CCL22 was lower. Compared to iMDDC generated in the presence of CXCL4L1, CXCL4-treated iMDDC showed an enhanced phagocytic capacity and downregulation of expression of certain surface markers (e.g. CD1a) and specific enzymes (e.g. MMP-9 and MMP-12). CXCL4 and CXCL4L1 did not affect the chemokine receptor expression on iMDDC and cytokine production (CCL2, CCL18, CCL22, CXCL8, IL-10) by CXCL4- or CXCL4L1-differentiated iMDDC was similar. We can conclude that both CXCL4 and CXCL4L1 exert a direct effect on monocytes and iMDDC. However, the resulting phenotypes are different, which suggests a unique role for the two CXCL4 variants in physiology and/or pathology. PMID:27828999

  4. CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis.

    PubMed

    Gouwy, Mieke; Ruytinx, Pieter; Radice, Egle; Claudi, Federico; Van Raemdonck, Katrien; Bonecchi, Raffaella; Locati, Massimo; Struyf, Sofie

    2016-01-01

    Upon inflammation, circulating monocytes leave the bloodstream and migrate into the tissues, where they differentiate after exposure to various growth factors, cytokines or infectious agents. The best defined macrophage polarization types are M1 and M2. However, the platelet-derived CXC chemokine CXCL4 induces the polarization of macrophages into a unique phenotype. In this study, we compared the effect of CXCL4 and its variant CXCL4L1 on the differentiation of monocytes into macrophages and into immature monocyte-derived dendritic cells (iMDDC). Differently to M-CSF and CXCL4, CXCL4L1 is not a survival factor for monocytes. Moreover, the expression of the chemokine receptors CCR2, CCR5 and CXCR3 was significantly higher on CXCL4L1-treated monocytes compared to M-CSF- and CXCL4-stimulated monocytes. IL-1 receptor antagonist (IL-1RN) expression was upregulated by CXCL4 and downregulated by CXCL4L1, respectively, whereas both chemokines reduced the expression of the mannose receptor (MRC). Furthermore, through activation of CXCR3, CXCL4L1-stimulated monocytes released significantly higher amounts of CCL2 and CXCL8 compared to CXCL4-treated monocytes, indicating more pronounced inflammatory traits for CXCL4L1. In contrast, in CXCL4L1-treated monocytes, the production of CCL22 was lower. Compared to iMDDC generated in the presence of CXCL4L1, CXCL4-treated iMDDC showed an enhanced phagocytic capacity and downregulation of expression of certain surface markers (e.g. CD1a) and specific enzymes (e.g. MMP-9 and MMP-12). CXCL4 and CXCL4L1 did not affect the chemokine receptor expression on iMDDC and cytokine production (CCL2, CCL18, CCL22, CXCL8, IL-10) by CXCL4- or CXCL4L1-differentiated iMDDC was similar. We can conclude that both CXCL4 and CXCL4L1 exert a direct effect on monocytes and iMDDC. However, the resulting phenotypes are different, which suggests a unique role for the two CXCL4 variants in physiology and/or pathology.

  5. Highly Purified Eicosapentaenoic Acid Increases Interleukin-10 Levels of Peripheral Blood Monocytes in Obese Patients With Dyslipidemia

    PubMed Central

    Satoh-Asahara, Noriko; Shimatsu, Akira; Sasaki, Yousuke; Nakaoka, Hidenori; Himeno, Akihiro; Tochiya, Mayu; Kono, Shigeo; Takaya, Tomohide; Ono, Koh; Wada, Hiromichi; Suganami, Takayoshi; Hasegawa, Koji; Ogawa, Yoshihiro

    2012-01-01

    OBJECTIVE It has recently been highlighted that proinflammatory (M1) macrophages predominate over anti-inflammatory (M2) macrophages in obesity, thereby contributing to obesity-induced adipose inflammation and insulin resistance. A recent clinical trial revealed that highly purified eicosapentaenoic acid (EPA) reduces the incidence of major coronary events. In this study, we examined the effect of EPA on M1/M2-like phenotypes of peripheral blood monocytes in obese dyslipidemic patients. RESEARCH DESIGN AND METHODS Peripheral blood monocytes were prepared from 26 obese patients without and 90 obese patients with dyslipidemia. Of the latter 90 obese patients with dyslipidemia, 82 patients were treated with or without EPA treatment (1.8 g daily) for 3 months. RESULTS Monocytes in obese patients with dyslipidemia showed a significantly lower expression of interleukin-10 (IL-10), an M2 marker, than those without dyslipidemia. EPA significantly increased serum IL-10 and EPA levels, the EPA/arachidonic acid (AA) ratio, and monocyte IL-10 expression and decreased the pulse wave velocity (PWV), an index of arterial stiffness, compared with the control group. After EPA treatment, the serum EPA/AA ratio was significantly correlated with monocyte IL-10 expression. Only increases in monocyte IL-10 expression and serum adiponectin were independent determinants of a decreased PWV by EPA. Furthermore, EPA significantly increased the expression and secretion of IL-10 in human monocytic THP-1 cells through a peroxisome proliferator–activated receptor (PPAR)γ-dependent pathway. CONCLUSIONS This study is the first to show that EPA increases the monocyte IL-10 expression in parallel with decrease of arterial stiffness, which may contribute to the antiatherogenic effect of EPA in obese dyslipidemic patients. PMID:22912426

  6. Haptoglobin Phenotype Among Arab Patients With Mental Disorders.

    PubMed

    Armaly, Zaher; Farhat, Kamal; Kinaneh, Safa; Farah, Joseph

    2018-03-01

    Depression, schizophrenia and panic disorder are common mental disorders in the community and hospitalized patients. These mental disorders negatively affect life quality and even expectancy of life. Haptoglobin (Hp) phenotype (Hp 1-1, 1-2, or 2-2) is associated with risk for cardiovascular diseases, but its association with psychiatric disorders, a growing concern in the modern society, has not been studied thoroughly. The aim of the study was to examine whether Hp phenotype is associated with common mental disorders such as depression, schizophrenia, and panic disorder. The study included 92 Arab patients with mental disorders, and among them 44 suffered from schizophrenia (mean age 39 ± 1.5 years), 17 from depression (mean age 44.5 ± 3.1 years), 31 from panic disorder (mean age of 44.9 ± 2.7 years), and 206 healthy Arab control subjects with a mean age of 42.6 ± 0.9 years. Beck's depression inventory assessment and Hamilton depression scale were administered for depression and panic disorder diagnosis. Schizophrenia was evaluated with positive and negative affect schedule (Panas) test. All mental disorders were evaluated by clinical review. Blood analysis for Hp phenotype was performed. Diagnosis was made using the Diagnostic and Statistical Manual of Mental Disorders axis to correlate depression with Hp phenotype. In mentally healthy controls, 10.7% were Hp 1-1, 38.8% Hp 2-1, and 50.5% Hp 2-2. In patients with the studied psychiatric disorders, Hp phenotype was comparable to healthy subjects; 8.7% were Hp 1-1, 50% Hp 2-1, and 41.3% Hp 2-2. When Hp phenotyping was analyzed in the psychiatric subgroups, Hp 2-1 was more common among depressed and schizophrenic patients, as compared with healthy subjects (58.8% and 52.3% vs. 38.8%). In patients who suffer from panic disorder, Hp phenotype distribution was 6.5% Hp 1-1, 41.9% Hp 2-1, and 51.6% Hp 2-2, suggesting a lower prevalence among Hp 1-1 phenotype. Arab patients who carry Hp 2-1 phenotype may be at risk to

  7. Unconscious processing of facial attractiveness: invisible attractive faces orient visual attention

    PubMed Central

    Hung, Shao-Min; Nieh, Chih-Hsuan; Hsieh, Po-Jang

    2016-01-01

    Past research has proven human’s extraordinary ability to extract information from a face in the blink of an eye, including its emotion, gaze direction, and attractiveness. However, it remains elusive whether facial attractiveness can be processed and influences our behaviors in the complete absence of conscious awareness. Here we demonstrate unconscious processing of facial attractiveness with three distinct approaches. In Experiment 1, the time taken for faces to break interocular suppression was measured. The results showed that attractive faces enjoyed the privilege of breaking suppression and reaching consciousness earlier. In Experiment 2, we further showed that attractive faces had lower visibility thresholds, again suggesting that facial attractiveness could be processed more easily to reach consciousness. Crucially, in Experiment 3, a significant decrease of accuracy on an orientation discrimination task subsequent to an invisible attractive face showed that attractive faces, albeit suppressed and invisible, still exerted an effect by orienting attention. Taken together, for the first time, we show that facial attractiveness can be processed in the complete absence of consciousness, and an unconscious attractive face is still capable of directing our attention. PMID:27848992

  8. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide.

    PubMed

    Tourkina, Elena; Bonner, Michael; Oates, James; Hofbauer, Ann; Richard, Mathieu; Znoyko, Sergei; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley

    2011-07-01

    Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the

  9. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide

    PubMed Central

    2011-01-01

    Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the

  10. The production of granulocyte-monocyte colony-stimulating activity by isolated human T lymphocyte subpopulations.

    PubMed

    Hesketh, P J; Sullivan, R; Valeri, C R; McCarroll, L A

    1984-05-01

    Isolated human T lymphocyte subpopulations were obtained by fluorescence-activated cell sorting using the murine monoclonal antibodies, OKT4 and OKT8. The capabilities of the isolated lymphocytes to produce granulocyte-monocyte colony-stimulating activity (CSA) in response to mitogen challenge were assessed by in vitro assays employing light density nonadherent bone marrow cells. Essentially, no CSA production was noted by any isolated T lymphocyte population [OKT4 positive (+) or OKT8 positive (+)] cultured alone or following the addition of 10(4) autologous monocytes/ml. When phytohemagglutinin (PHA) alone was added, OKT4+ lymphocytes elaborated small amounts of CSA. With the addition of concanavalin A (Con-A) alone, both OKT4+ and OKT8+ cells were able to produce modest amounts of CSA. Significantly enhanced CSA production was observed when either OKT4+ or OKT8+ lymphocytes were coincubated with autologous monocytes in the presence of mitogen. We conclude that highly purified T lymphocyte subpopulations, free of monocytes as assessed by nonspecific esterase staining, can elaborate small amounts of CSA in response to PHA or Con-A challenge. A synergistic augmentation of CSA production was noted with coincubation of sorted lymphocytes and autologous monocytes in the presence of mitogen. Finally, our results suggest that the ability of T lymphocytes to make CSA is not exclusively limited to either the OKT4+ or OKT8+ defined subsets.

  11. ALV-J infection induces chicken monocyte death accompanied with the production of IL-1β and IL-18.

    PubMed

    Dai, Manman; Feng, Min; Xie, Tingting; Li, Yuanfang; Ruan, Zhuohao; Shi, Meiqing; Liao, Ming; Zhang, Xiquan

    2017-11-21

    Immunosuppression induced by avian leukosis virus subgroup J (ALV-J) causes serious reproduction problems and secondary infections in chickens. Given that monocytes are important precursors of immune cells including macrophages and dendritic cells, we investigated the fate of chicken monocytes after ALV-J infection. Our results indicated that most monocytes infected with ALV-J including field or laboratory strains could not successfully differentiate into macrophages due to cells death. And cells death was dependent upon viral titer and accompanied with increased IL-1β and IL-18 mRNA levels. In addition, ALV-J infection up-regulated caspase-1 and caspase-3 activity in monocytes. Collectively, we found that ALV-J could cause cell death in chicken monocytes, especially pyroptosis, which may be a significant reason for ALV-J induced immunosuppression.

  12. ALV-J infection induces chicken monocyte death accompanied with the production of IL-1β and IL-18

    PubMed Central

    Dai, Manman; Feng, Min; Xie, Tingting; Li, Yuanfang; Ruan, Zhuohao; Shi, Meiqing; Liao, Ming; Zhang, Xiquan

    2017-01-01

    Immunosuppression induced by avian leukosis virus subgroup J (ALV-J) causes serious reproduction problems and secondary infections in chickens. Given that monocytes are important precursors of immune cells including macrophages and dendritic cells, we investigated the fate of chicken monocytes after ALV-J infection. Our results indicated that most monocytes infected with ALV-J including field or laboratory strains could not successfully differentiate into macrophages due to cells death. And cells death was dependent upon viral titer and accompanied with increased IL-1β and IL-18 mRNA levels. In addition, ALV-J infection up-regulated caspase-1 and caspase-3 activity in monocytes. Collectively, we found that ALV-J could cause cell death in chicken monocytes, especially pyroptosis, which may be a significant reason for ALV-J induced immunosuppression. PMID:29245947

  13. HIV-1 gp120 envelope glycoprotein determinants for cytokine burst in human monocytes

    PubMed Central

    Coutu, Mathieu; Prévost, Jérémie; Brassard, Nathalie; Peres, Adam; Stegen, Camille; Madrenas, Joaquín; Kaufmann, Daniel E.; Finzi, Andrés

    2017-01-01

    The first step of HIV infection involves the interaction of the gp120 envelope glycoprotein to its receptor CD4, mainly expressed on CD4+ T cells. Besides its role on HIV-1 entry, the gp120 has been shown to be involved in the production of IL-1, IL-6, CCL20 and other innate response cytokines by bystander, uninfected CD4+ T cells and monocytes. However, the gp120 determinants involved in these functions are not completely understood. Whether signalling leading to cytokine production is due to CD4 or other receptors is still unclear. Enhanced chemokine receptor binding and subsequent clustering receptors may lead to cytokine production. By using a comprehensive panel of gp120 mutants, here we show that CD4 binding is mandatory for cytokine outburst in monocytes. Our data suggest that targeting monocytes in HIV-infected patients might decrease systemic inflammation and the potential tissue injury associated with the production of inflammatory cytokines. Understanding how gp120 mediates a cytokine burst in monocytes might help develop new approaches to improve the chronic inflammation that persists in these patients despite effective suppression of viremia by antiretroviral therapy. PMID:28346521

  14. Sulforaphane mitigates cadmium-induced toxicity pattern in human peripheral blood lymphocytes and monocytes.

    PubMed

    Alkharashi, Nouf Abdulkareem Omer; Periasamy, Vaiyapuri Subbarayan; Athinarayanan, Jegan; Alshatwi, Ali A

    2017-10-01

    Cadmium (Cd) is a highly toxic and widely distributed heavy metal that induces various diseases in humans through environmental exposure. Therefore, alleviation of Cd-induced toxicity in living organisms is necessary. In this study, we investigated the protective role of sulforaphane on Cd-induced toxicity in human peripheral blood lymphocytes and monocytes. Sulforaphane did not show any major reduction in the viability of lymphocytes and monocytes. However, Cd treatment at a concentration of 50μM induced around 69% cell death. Treatment of IC 10 -Cd and 100μM sulforaphane combination for 24 and 48h increased viability by 2 and 9% in cells subjected to Cd toxicity, respectively. In addition, IC 25 of Cd and 100μM sulforaphane combination recovered 17-20% of cell viability. Cd induced apoptotic and necrotic cell death. Sulforaphane treatment reduced Cd-induced cell death in lymphocytes and monocytes. Our results clearly indicate that when the cells were treated with Cd+sulforaphane combination, sulforaphane decreased the Cd-induced cytotoxic effect in lymphocytes and monocytes. In addition, sulforaphane concentration plays a major role in the alleviation of Cd-induced toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Chemical dampening of Ly6C(hi) monocytes in the periphery produces anti-depressant effects in mice.

    PubMed

    Zheng, Xiao; Ma, Sijing; Kang, An; Wu, Mengqiu; Wang, Lin; Wang, Qiong; Wang, Guangji; Hao, Haiping

    2016-01-19

    The involvement of systemic immunity in depression pathogenesis promises a periphery-targeting paradigm in novel anti-depressant discovery. However, relatively little is known about druggable targets in the periphery for mental and behavioral control. Here we report that targeting Ly6C(hi) monocytes in blood can serve as a strategy for anti-depressant purpose. A natural compound, ginsenoside Rg1 (Rg1), was firstly validated as a periphery-restricted chemical probe. Rg1 selectively suppressed Ly6C(hi) monocytes recruitment to the inflamed mice brain. The proinflammatory potential of Ly6C(hi) monocytes to activate astrocytes was abrogated by Rg1, which led to a blunted feedback release of CCL2 to recruit the peripheral monocytes. In vitro study demonstrated that Rg1 pretreatment on activated THP-1 monocytes retarded their ability to trigger CCL2 secretion from co-cultured U251 MG astrocytes. CCL2-triggered p38/MAPK and PI3K/Akt activation were involved in the action of Rg1. Importantly, in mice models, we found that dampening Ly6C(hi) monocytes at the periphery ameliorated depression-like behavior induced by neuroinflammation or chronic social defeat stress. Together, our work unravels that blood Ly6C(hi) monocytes may serve as the target to enable remote intervention on the depressed brain, and identifies Rg1 as a lead compound for designing drugs targeting peripheral CCL2 signals.

  16. CCR2-dependent Gr1high monocytes promote kidney injury in shiga toxin-induced hemolytic uremic syndrome in mice.

    PubMed

    Pohl, Judith-Mira; Volke, Julia K; Thiebes, Stephanie; Brenzel, Alexandra; Fuchs, Kerstin; Beziere, Nicolas; Ehrlichmann, Walter; Pichler, Bernd J; Squire, Anthony; Gueler, Faikah; Engel, Daniel R

    2018-06-01

    The hemolytic uremic syndrome (HUS) is a life-threatening disease of the kidney that is induced by shiga toxin-producing E.coli. Major changes in the monocytic compartment and in CCR2-binding chemokines have been observed. However, the specific contribution of CCR2-dependent Gr1 high monocytes is unknown. To investigate the impact of these monocytes during HUS, we injected a combination of LPS and shiga toxin into mice. We observed an impaired kidney function and elevated levels of the CCR2-binding chemokine CCL2 after shiga toxin/LPS- injection, thus suggesting Gr1 high monocyte infiltration into the kidney. Indeed, the number of Gr1 high monocytes was strongly increased one day after HUS induction. Moreover, these cells expressed high levels of CD11b suggesting activation after tissue entry. Non-invasive PET-MR imaging revealed kidney injury mainly in the kidney cortex and this damage coincided with the detection of Gr1 high monocytes. Lack of Gr1 high monocytes in Ccr2-deficient animals reduced neutrophil gelatinase-associated lipocalin and blood urea nitrogen levels. Moreover, the survival of Ccr2-deficient animals was significantly improved. Conclusively, this study demonstrates that CCR2-dependent Gr1 high monocytes contribute to the kidney injury during HUS and targeting these cells is beneficial during this disease. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Monocyte migration explains the changes in macrophage arachidonate metabolism during the immune response.

    PubMed Central

    Tripp, C S; Unanue, E R; Needleman, P

    1986-01-01

    The profile of arachidonic acid metabolites in resident peritoneal macrophages is distinctly different from the profile of macrophages isolated after an acute bacterial infection. The latter produce decreased prostaglandins E2 and I2 and leukotriene C4 while conserving the synthesis of thromboxane A2. We show here that the initial changes in peritoneal macrophage arachidonate metabolism during the immune response appear to be the result of the large influx of blood monocytes, which have a characteristic metabolism distinct from resident macrophages. We demonstrate that the initial decrease in peritoneal macrophage arachidonate metabolism and the increase in macrophage numbers occur simultaneously after infection with Listeria monocytogenes. Also the macrophage arachidonate metabolism seen at the height of the peritoneal cellular influx is the same as that of purified blood monocytes. Both Listeria peritoneal macrophages and blood monocytes produce equal or greater quantities of thromboxane A2 relative to prostaglandins I2 and E2 or leukotriene C4 whereas resident cells produce 1/10 to 1/25 as much thromboxane A2 compared to the other products. Furthermore, the changes in peritoneal macrophage arachidonate metabolism in response to Listeria infection do not occur if the influx of blood monocytes is stopped by irradiating the mice prior to infection implying that the cellular influx is necessary to see the changes in arachidonate metabolism. Finally, activation of peritoneal macrophages, measured as an increase in Ia expression, occurs 36 hr after the influx of monocytes from the blood and the resultant shift in arachidonate metabolism during Listeria infection. PMID:3099288

  18. Ephrin-A1/EphA4-mediated adhesion of monocytes to endothelial cells.

    PubMed

    Jellinghaus, Stefanie; Poitz, David M; Ende, Georg; Augstein, Antje; Weinert, Sönke; Stütz, Beryl; Braun-Dullaeus, Rüdiger C; Pasquale, Elena B; Strasser, Ruth H

    2013-10-01

    The Eph receptors represent the largest family of receptor tyrosine kinases. Both Eph receptors and their ephrin ligands are cell-surface proteins, and they typically mediate cell-to-cell communication by interacting at sites of intercellular contact. The major aim of the present study was to investigate the involvement of EphA4-ephrin-A1 interaction in monocyte adhesion to endothelial cells, as this process is a crucial step during the initiation and progression of the atherosclerotic plaque. Immunohistochemical analysis of human atherosclerotic plaques revealed expression of EphA4 receptor and ephrin-A1 ligand in major cell types within the plaque. Short-time stimulation of endothelial cells with the soluble ligand ephrin-A1 leads to a fourfold increase in adhesion of human monocytes to endothelial cells. In addition, ephrin-A1 further increases monocyte adhesion to already inflamed endothelial cells. EphrinA1 mediates its effect on monocyte adhesion via the activated receptor EphA4. This ephrinA1/EphA4 induced process involves the activation of the Rho signaling pathway and does not require active transcription. Rho activation downstream of EphA4 leads to increased polymerization of actin filaments in endothelial cells. This process was shown to be crucial for the proadhesive effect of ephrin-A1. The results of the present study show that ephrin-A1-induced EphA4 forward signaling promotes monocyte adhesion to endothelial cells via activation of RhoA and subsequent stress-fiber formation by a non-transcriptional mechanism. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Altered redox state of monocytes from cryopyrin-associated periodic syndromes causes accelerated IL-1β secretion

    PubMed Central

    Tassi, Sara; Carta, Sonia; Delfino, Laura; Caorsi, Roberta; Martini, Alberto; Gattorno, Marco; Rubartelli, Anna

    2010-01-01

    In healthy monocytes, Toll-like receptor (TLR) engagement induces production of reactive oxygen species (ROS), followed by an antioxidant response involved in IL-1β processing and secretion. Markers of the antioxidant response include intracellular thioredoxin and extracellular release of reduced cysteine. Cryopyrin-associated periodic syndromes (CAPS) are autoinflammatory diseases in which Nod-like receptor family pyrin domain–containing 3 (NLRP3) gene mutations lead to increased IL-1β secretion. We show in a large cohort of patients that IL-1β secretion by CAPS monocytes is much faster than that by healthy monocytes. This accelerated kinetics is caused by alterations in the basal redox state, as well as in the redox response to TLR triggering displayed by CAPS monocytes. Indeed, unstimulated CAPS monocytes are under a mild oxidative stress, with elevated levels of both ROS and antioxidants. The redox response to LPS is quickened, with early generation of the reducing conditions favoring IL-1β processing and secretion, and then rapidly exhausted. Therefore, secretion of IL-1β is accelerated, but reaches a plateau much earlier than in healthy controls. Pharmacologic inhibition of the redox response hinders IL-1β release, confirming the functional link between redox impairment and altered kinetics of secretion. Monocytes from patients with juvenile idiopathic arthritis display normal kinetics of redox response and IL-1β secretion, excluding a role of chronic inflammation in the alterations observed in CAPS. We conclude that preexisting redox alterations distinct from CAPS monocytes anticipate the pathogen-associated molecular pattern molecule–induced generation of the reducing environment favorable to inflammasome activation and IL-1β secretion. PMID:20445104

  20. Altered redox state of monocytes from cryopyrin-associated periodic syndromes causes accelerated IL-1beta secretion.

    PubMed

    Tassi, Sara; Carta, Sonia; Delfino, Laura; Caorsi, Roberta; Martini, Alberto; Gattorno, Marco; Rubartelli, Anna

    2010-05-25

    In healthy monocytes, Toll-like receptor (TLR) engagement induces production of reactive oxygen species (ROS), followed by an antioxidant response involved in IL-1beta processing and secretion. Markers of the antioxidant response include intracellular thioredoxin and extracellular release of reduced cysteine. Cryopyrin-associated periodic syndromes (CAPS) are autoinflammatory diseases in which Nod-like receptor family pyrin domain-containing 3 (NLRP3) gene mutations lead to increased IL-1beta secretion. We show in a large cohort of patients that IL-1beta secretion by CAPS monocytes is much faster than that by healthy monocytes. This accelerated kinetics is caused by alterations in the basal redox state, as well as in the redox response to TLR triggering displayed by CAPS monocytes. Indeed, unstimulated CAPS monocytes are under a mild oxidative stress, with elevated levels of both ROS and antioxidants. The redox response to LPS is quickened, with early generation of the reducing conditions favoring IL-1beta processing and secretion, and then rapidly exhausted. Therefore, secretion of IL-1beta is accelerated, but reaches a plateau much earlier than in healthy controls. Pharmacologic inhibition of the redox response hinders IL-1beta release, confirming the functional link between redox impairment and altered kinetics of secretion. Monocytes from patients with juvenile idiopathic arthritis display normal kinetics of redox response and IL-1beta secretion, excluding a role of chronic inflammation in the alterations observed in CAPS. We conclude that preexisting redox alterations distinct from CAPS monocytes anticipate the pathogen-associated molecular pattern molecule-induced generation of the reducing environment favorable to inflammasome activation and IL-1beta secretion.

  1. Effects of peritoneal fluid from endometriosis patients on the release of monocyte-specific chemokines by leukocytes.

    PubMed

    Na, Yong-Jin; Lee, Dong-Hyung; Kim, Seung-Chul; Joo, Jong-Kil; Wang, Ji-Won; Jin, Jun-O; Kwak, Jong-Young; Lee, Kyu-Sup

    2011-06-01

    Chemokines have been implicated in the pathological process of endometriosis. We compared the effects of peritoneal fluid obtained from patients with endometriosis (ePF) and controls without endometriosis (cPF) on the release of monocyte-specific CC chemokines such as monocyte chemotactic protein-1 (MCP-1), regulated upon activation normal T cell expressed and secreted (RANTES), and macrophage inflammatory protein-1α (MIP-1α) by neutrophils, monocytes, and T cells. Moreover, we evaluated the correlation between the levels of chemokines in ePF and their release by these cells. Cells were obtained from healthy young volunteers and cultured with ePF (n = 12) or cPF (n = 8). The chemokine levels in the ePF and the supernatants of cultured cells with ePF were then measured by ELISA. There was a positive correlation between the levels of MCP-1 and MIP-1α in ePF. The addition of ePF to the cell cultures failed to increase the release of MCP-1, RANTES, and MIP-1α when compared to cPF, but the levels of RANTES in ePF were positively correlated with the release of RANTES by ePF-treated monocytes and T cells. Moreover, there was a positive correlation between the levels of RANTES and MIP-1α released by neutrophils and between the levels of MCP-1 and MIP-1α released by T cells. Finally, the levels of RANTES released by monocyte-derived macrophages and monocytes cultured with ePF were positively correlated. These findings suggest that monocytes, neutrophils, and T cells release differential levels of MCP-1, RANTES, and MIP-1α in response to stimulation with ePF.

  2. Opioids and Opioid Maintenance Therapies: Their Impact on Monocyte-Mediated HIV Neuropathogenesis

    PubMed Central

    Jaureguiberry-Bravo, Matias; Wilson, Rebecca; Carvallo, Loreto; Berman, Joan W.

    2017-01-01

    Background HIV-1 enters the CNS within two weeks after peripheral infection and results in chronic neuroinflammation that leads to HIV associated neurocognitive disorders (HAND) in more than 50% of infected people. HIV enters the CNS by transmigration of infected monocytes across the blood brain barrier. Intravenous drug abuse is a major risk factor for HIV-1 infection, and opioids have been shown to alter the progression and severity of HAND. Methadone and buprenorphine are opioid derivates that are used as opioid maintenance therapies. They are commonly used to treat opioid dependency in HIV infected substance abusers, but their effects on monocyte migration relevant to the development of cognitive impairment are not well characterized. Conclusion Here, we will discuss the effects of opioids and opioid maintenance therapies on the inflammatory functions of monocytes and macrophages that are related to the development of neuroinflammation in the context of HIV infection. PMID:27009099

  3. Statins suppress apolipoprotein CIII-induced vascular endothelial cell activation and monocyte adhesion.

    PubMed

    Zheng, Chunyu; Azcutia, Veronica; Aikawa, Elena; Figueiredo, Jose-Luiz; Croce, Kevin; Sonoki, Hiroyuki; Sacks, Frank M; Luscinskas, Francis W; Aikawa, Masanori

    2013-02-01

    Activation of vascular endothelial cells (ECs) contributes importantly to inflammation and atherogenesis. We previously reported that apolipoprotein CIII (apoCIII), found abundantly on circulating triglyceride-rich lipoproteins, enhances adhesion of human monocytes to ECs in vitro. Statins may exert lipid-independent anti-inflammatory effects. The present study examined whether statins suppress apoCIII-induced EC activation in vitro and in vivo. Physiologically relevant concentrations of purified human apoCIII enhanced attachment of the monocyte-like cell line THP-1 to human saphenous vein ECs (HSVECs) or human coronary artery ECs (HCAECs) under both static and laminar shear stress conditions. This process mainly depends on vascular cell adhesion molecule-1 (VCAM-1), as a blocking VCAM-1 antibody abolished apoCIII-induced monocyte adhesion. ApoCIII significantly increased VCAM-1 expression in HSVECs and HCAECs. Pre-treatment with statins suppressed apoCIII-induced VCAM-1 expression and monocyte adhesion, with two lipophilic statins (pitavastatin and atorvastatin) exhibiting inhibitory effects at lower concentration than those of hydrophilic pravastatin. Nuclear factor κB (NF-κB) mediated apoCIII-induced VCAM-1 expression, as demonstrated via loss-of-function experiments, and pitavastatin treatment suppressed NF-κB activation. Furthermore, in the aorta of hypercholesterolaemic Ldlr(-/-) mice, pitavastatin administration in vivo suppressed VCAM-1 mRNA and protein, induced by apoCIII bolus injection. Similarly, in a subcutaneous dorsal air pouch mouse model of leucocyte recruitment, apoCIII injection induced F4/80+ monocyte and macrophage accumulation, whereas pitavastatin administration reduced this effect. These findings further establish the direct role of apoCIII in atherogenesis and suggest that anti-inflammatory effects of statins could improve vascular disease in the population with elevated plasma apoCIII.

  4. Inflammatory Monocyte Recruitment Is Regulated by Interleukin-23 during Systemic Bacterial Infection

    PubMed Central

    Indramohan, Mohanalaxmi; Sieve, Amy N.; Break, Timothy J.

    2012-01-01

    Listeria monocytogenes is a Gram-positive intracellular pathogen that causes meningitis and septicemia in immunocompromised individuals and spontaneous abortion in pregnant women. The innate immune response against L. monocytogenes is primarily mediated by neutrophils and monocytes. Interleukin-23 (IL-23) is an important proinflammatory cytokine well known for its role in neutrophil recruitment in various infectious and autoimmune diseases. We have previously shown that IL-23 is required for host resistance against L. monocytogenes and for neutrophil recruitment to the liver, but not the spleen, during infection. Despite efficient neutrophil recruitment to the spleen, IL-23p19 knockout (KO) mice have an increased bacterial burden in this organ, suggesting that IL-23 may regulate the recruitment/function of another cell type to the spleen. In this study, we show that specific depletion of neutrophils abrogated the differences in bacterial burdens in the livers but not the spleens of C57BL/6 (B6) and IL-23p19 KO mice. Interestingly, L. monocytogenes-infected IL-23p19 KO mice had fewer monocytes in the spleen than B6 mice, as well as a reduction in the monocyte-recruiting chemokines CCL2 and CCL7. Additionally, the overall concentrations of tumor necrosis factor alpha (TNF-α) and nitric oxide (NO•), as well as the percentages and total numbers of monocytes producing TNF-α and NO•, were reduced in IL-23p19 KO mice compared to levels in B6 mice, leading to increased bacterial burdens in the spleens of L. monocytogenes-infected IL-23p19 KO mice. Collectively, our data establish that IL-23 is required for the optimal recruitment of TNF-α- and NO•-producing inflammatory monocytes, thus revealing a novel mechanism by which this proinflammatory cytokine provides protection against bacterial infection. PMID:22966045

  5. Differential procoagulant activity of microparticles derived from monocytes, granulocytes, platelets and endothelial cells: impact of active tissue factor.

    PubMed

    Shustova, Olga N; Antonova, Olga A; Golubeva, Nina V; Khaspekova, Svetlana G; Yakushkin, Vladimir V; Aksuk, Svetlana A; Alchinova, Irina B; Karganov, Mikhail Y; Mazurov, Alexey V

    2017-07-01

    : Microparticles released by activated/apoptotic cells exhibit coagulation activity as they express phosphatidylserine and some of them - tissue factor. We compared procoagulant properties of microparticles from monocytes, granulocytes, platelets and endothelial cells and assessed the impact of tissue factor in observed differences. Microparticles were sedimented (20 000g, 30 min) from the supernatants of activated monocytes, monocytic THP-1 cells, granulocytes, platelets and endothelial cells. Coagulation activity of microparticles was examined using plasma recalcification assay. The size of microparticles was evaluated by dynamic light scattering. Tissue factor activity was measured by its ability to activate factor X. All microparticles significantly accelerated plasma coagulation with the shortest lag times for microparticles derived from monocytes, intermediate - for microparticles from THP-1 cells and endothelial cells, and the longest - for microparticles from granulocytes and platelets. Average diameters of microparticles ranged within 400-600 nm. The largest microparticles were produced by endothelial cells and granulocytes, smaller - by monocytes, and the smallest - by THP-1 cells and platelets. The highest tissue factor activity was detected in microparticles from monocytes, lower activity - in microparticles from endothelial cells and THP-1 cells, and no activity - in microparticles from platelets and granulocytes. Anti-tissue factor antibodies extended coagulation lag times for microparticles from monocytes, endothelial cells and THP-1 cells and equalized them with those for microparticles from platelets and granulocytes. Higher coagulation activity of microparticles from monocytes, THP-1 cells and endothelial cells in comparison with microparticles from platelets and granulocytes is determined mainly by the presence of active tissue factor.

  6. Glia Maturation Factor-γ Regulates Monocyte Migration through Modulation of β1-Integrin*

    PubMed Central

    Aerbajinai, Wulin; Liu, Lunhua; Zhu, Jianqiong; Kumkhaek, Chutima; Chin, Kyung; Rodgers, Griffin P.

    2016-01-01

    Monocyte migration requires the dynamic redistribution of integrins through a regulated endo-exocytosis cycle, but the complex molecular mechanisms underlying this process have not been fully elucidated. Glia maturation factor-γ (GMFG), a novel regulator of the Arp2/3 complex, has been shown to regulate directional migration of neutrophils and T-lymphocytes. In this study, we explored the important role of GMFG in monocyte chemotaxis, adhesion, and β1-integrin turnover. We found that knockdown of GMFG in monocytes resulted in impaired chemotactic migration toward formyl-Met-Leu-Phe (fMLP) and stromal cell-derived factor 1α (SDF-1α) as well as decreased α5β1-integrin-mediated chemoattractant-stimulated adhesion. These GMFG knockdown impaired effects could be reversed by cotransfection of GFP-tagged full-length GMFG. GMFG knockdown cells reduced the cell surface and total protein levels of α5β1-integrin and increased its degradation. Importantly, we demonstrate that GMFG mediates the ubiquitination of β1-integrin through knockdown or overexpression of GMFG. Moreover, GMFG knockdown retarded the efficient recycling of β1-integrin back to the plasma membrane following normal endocytosis of α5β1-integrin, suggesting that the involvement of GMFG in maintaining α5β1-integrin stability may occur in part by preventing ubiquitin-mediated degradation and promoting β1-integrin recycling. Furthermore, we observed that GMFG interacted with syntaxin 4 (STX4) and syntaxin-binding protein 4 (STXBP4); however, only knockdown of STXBP4, but not STX4, reduced monocyte migration and decreased β1-integrin cell surface expression. Knockdown of STXBP4 also substantially inhibited β1-integrin recycling in human monocytes. These results indicate that the effects of GMFG on monocyte migration and adhesion probably occur through preventing ubiquitin-mediated proteasome degradation of α5β1-integrin and facilitating effective β1-integrin recycling back to the plasma membrane

  7. Mesenchymal Stromal Cells Modulate Monocytes Trafficking in Coxsackievirus B3‐Induced Myocarditis

    PubMed Central

    Miteva, Kapka; Pappritz, Kathleen; El‐Shafeey, Muhammad; Dong, Fengquan; Ringe, Jochen; Tschöpe, Carsten

    2017-01-01

    Abstract Mesenchymal stromal cell (MSC) application in Coxsackievirus B3 (CVB3)‐induced myocarditis reduces myocardial inflammation and fibrosis, exerts prominent extra‐cardiac immunomodulation, and improves heart function. Although the abovementioned findings demonstrate the benefit of MSC application, the mechanism of the MSC immunomodulatory effects leading to a final cardioprotective outcome in viral myocarditis remains poorly understood. Monocytes are known to be a trigger of myocardial tissue inflammation. The present study aims at investigating the direct effect of MSC on the mobilization and trafficking of monocytes to the heart in CVB3‐induced myocarditis. One day post CVB3 infection, C57BL/6 mice were intravenously injected with 1 x 106 MSC and sacrificed 6 days later for molecular biology and flow cytometry analysis. MSC application reduced the severity of myocarditis, and heart and blood pro‐inflammatory Ly6Chigh and Ly6Cmiddle monocytes, while those were retained in the spleen. Anti‐inflammatory Ly6Clow monocytes increased in the blood, heart, and spleen of MSC‐treated CVB3 mice. CVB3 infection induced splenic myelopoiesis, while MSC application slightly diminished the spleen myelopoietic activity in CVB3 mice. Left ventricular (LV) mRNA expression of the chemokines monocyte chemotactic protein‐1 (MCP)−1, MCP‐3, CCL5, the adhesion molecules intercellular adhesion molecule‐1, vascular cell adhesion molecule‐1, the pro‐inflammatory cytokines interleukin‐6, interleukin‐12, tumor necrosis factor‐α, the pro‐fibrotic transforming growth factorβ1, and circulating MCP‐1 and MCP‐3 levels decreased in CVB3 MSC mice, while LV stromal cell‐derived factor‐1α RNA expression and systemic levels of fractalkine were increased in CVB3 MSC mice. MSC application in CVB3‐induced myocarditis modulates monocytes trafficking to the heart and could be a promising strategy for the resolution of cardiac inflammation and prevention of

  8. A high-fat meal promotes lipid-load and apolipoprotein B-48 receptor transcriptional activity in circulating monocytes.

    PubMed

    Varela, Lourdes M; Ortega, Almudena; Bermudez, Beatriz; Lopez, Sergio; Pacheco, Yolanda M; Villar, Jose; Abia, Rocio; Muriana, Francisco J G

    2011-05-01

    The postprandial metabolism of dietary fats results in the production of apolipoprotein B-48 (apoB48)-containing triglyceride-rich lipoproteins (TRLs), which cause rapid receptor-mediated macrophage lipid engorgement via the apoB48 cell surface receptor (apoB48R). Monocytes circulate together with apoB48-containing TRLs in the postprandial bloodstream and may start accumulating lipids even before their migration to tissues and differentiation to macrophages. We sought to determine whether circulating monocytes are equipped with apoB48R and whether, in the postprandial state, circulating monocytes accumulate lipids and modulate apoB48R transcriptional activity after intake of a high-fat meal. In a crossover design, we studied the effect of a high-fat meal on fasting and postprandial concentrations of triglycerides, free fatty acids, cholesterol, and insulin in 12 healthy men. TRLs and monocytes were freshly isolated at fasting, hourly until the postprandial peak, and at the late postprandial phase. TRLs were subjected to triglycerides, apoB48, and apolipoprotein B-100 analyses; and lipid accumulation and apoB48R mRNA expression levels were measured in monocytes. Monocytes showed a time-dependent lipid accumulation in response to the high-fat meal, which was paralleled by an increase in apoB48R mRNA expression levels. These effects were coincident only with an increase in apoB48-containing TRLs in the postprandial phase and were also observed ex vivo in freshly isolated monocytes incubated with apoB48-containing TRLs. In a setting of abundant plasma apoB48-containing TRLs, these findings highlight the role of dietary fat in inducing lipid accumulation and apoB48R gene transcription in circulating monocytes.

  9. Atypical Activin A and IL-10 Production Impairs Human CD16+ Monocyte Differentiation into Anti-Inflammatory Macrophages.

    PubMed

    González-Domínguez, Érika; Domínguez-Soto, Ángeles; Nieto, Concha; Flores-Sevilla, José Luis; Pacheco-Blanco, Mariana; Campos-Peña, Victoria; Meraz-Ríos, Marco A; Vega, Miguel A; Corbí, Ángel L; Sánchez-Torres, Carmen

    2016-02-01

    Human CD14(++)CD16(-) and CD14(+/lo)CD16(+) monocyte subsets comprise 85 and 15% of blood monocytes, respectively, and are thought to represent distinct stages in the monocyte differentiation pathway. However, the differentiation fates of both monocyte subsets along the macrophage (Mϕ) lineage have not yet been elucidated. We have now evaluated the potential of CD14(++) CD16(-) and CD16(+) monocytes to differentiate and to be primed toward pro- or anti-inflammatory Mϕs upon culture with GM-CSF or M-CSF, respectively (subsequently referred to as GM14, M14, GM16, or M16). Whereas GM16 and GM14 were phenotypic and functionally analogous, M16 displayed a more proinflammatory profile than did M14. Transcriptomic analyses evidenced that genes associated with M-CSF-driven Mϕ differentiation (including FOLR2, IL10, IGF1, and SERPINB2) are underrepresented in M16 with respect to M14. The preferential proinflammatory skewing of M16 relative to M14 was found to be mediated by the secretion of activin A and the low levels of IL-10 produced by M16. In fact, activin A receptor blockade during the M-CSF-driven differentiation of CD16(+) monocytes, or addition of IL-10-containing M14-conditioned medium, significantly enhanced their expression of anti-inflammatory-associated molecules while impairing their acquisition of proinflammatory-related markers. Thus, we propose that M-CSF drives CD14(++)CD16- monocyte differentiation into bona fide anti-inflammatory Mϕs in a self-autonomous manner, whereas M-CSF-treated CD16(+) monocytes generate Mϕs with a skewed proinflammatory profile by virtue of their high activin A expression unless additional anti-inflammatory stimuli such as IL-10 are provided. Copyright © 2016 by The American Association of Immunologists, Inc.

  10. Peritoneal fluid from endometriosis patients switches differentiation of monocytes from dendritic cells to macrophages.

    PubMed

    Na, Yong-Jin; Jin, Jun-O; Lee, Mi-Sook; Song, Min-Gyu; Lee, Kyu-Sup; Kwak, Jong-Young

    2008-01-01

    Immunological abnormalities of cell-mediated and humoral immunity might be associated with the pathogenesis of endometriosis. This study has examined the effects of peritoneal fluid obtained from patients with endometriosis (ePF) on the phenotypic characteristics of macrophages and dendritic cells (DCs) derived from monocytes. Monocytes were obtained from healthy young volunteers and cultured with ePF (n=12) or a control PF (cPF) (n=5) in the presence or absence of macrophage-colony stimulating factor (M-CSF) or IL-4 plus granulocyte macrophage-colony stimulating factor (GM-CSF). The ePF was demonstrated to increase expression levels of CD14 and CD64 on isolated monocytes in the presence or absence of M-CSF. Compared with cPF, addition of 10% ePF to GM-CSF plus IL-4-treated monocytes significantly down-regulated CD1a expression and up-regulated CD64 expression, but did not enhance expression levels of class II MHC. ePF had no effect, however, on tumor necrosis factor-alpha-induced maturation of DC. Levels of IL-6, IL-10 and M-CSF production were higher in ePF-treated than cPF-treated monocytes for both cell culture conditions with GM-CSF plus IL-4 and M-CSF. A neutralizing IL-6 antibody, but not an IL-10 antibody, abrogated the ePF-induced down-regulation of CD1a, up-regulation of CD64 and secretion of M-CSF. These results suggest that ePF favorably induces monocyte differentiation toward macrophages rather than DCs, and that this effect is mediated by IL-6. A reciprocal mode of cell differentiation between macrophages and DCs in response to ePF may be related to the pathogenesis of endometriosis.

  11. Real-time imaging of Toxoplasma-infected human monocytes under fluidic shear stress reveals rapid translocation of intracellular parasites across endothelial barriers

    PubMed Central

    Ueno, Norikiyo; Harker, Katherine S.; Clarke, Elizabeth V.; McWhorter, Frances Y.; Liu, Wendy F.; Tenner, Andrea J.; Lodoen, Melissa B.

    2014-01-01

    Summary Peripheral blood monocytes are actively infected by Toxoplasma gondii and can function as “Trojan horses” for parasite spread in the bloodstream. Using dynamic live-cell imaging, we visualized the transendothelial migration (TEM) of T. gondii-infected primary human monocytes during the initial minutes following contact with human endothelium. On average, infected and uninfected monocytes required only 9.8 and 4.1 minutes, respectively, to complete TEM. Infection increased monocyte crawling distances and velocities on endothelium, but overall TEM frequencies were comparable between infected and uninfected cells. In the vasculature, monocytes adhere to endothelium under the conditions of shear stress found in rapidly flowing blood. Remarkably, the addition of fluidic shear stress increased the TEM frequency of infected monocytes 4.5-fold compared to static conditions (to 45.2% from 10.3%). Infection led to a modest increase in expression of the high affinity conformation of the monocyte integrin Mac-1, and Mac-1 accumulated near endothelial junctions during TEM. Blocking Mac-1 inhibited the crawling and TEM of infected monocytes to a greater degree than uninfected monocytes, and blocking the Mac-1 ligand, ICAM-1, dramatically reduced crawling and TEM for both populations. These findings contribute to a greater understanding of parasite dissemination from the vasculature into tissues. PMID:24245749

  12. Monocyte-derived extracellular Nampt-dependent biosynthesis of NAD+ protects the heart against pressure overload

    PubMed Central

    Yano, Masamichi; Akazawa, Hiroshi; Oka, Toru; Yabumoto, Chizuru; Kudo-Sakamoto, Yoko; Kamo, Takehiro; Shimizu, Yu; Yagi, Hiroki; Naito, Atsuhiko T.; Lee, Jong-Kook; Suzuki, Jun-ichi; Sakata, Yasushi; Komuro, Issei

    2015-01-01

    Nicotinamide phosphoribosyltransferase (Nampt) catalyzes the rate-limiting step in the salvage pathway for nicotinamide adenine dinucleotide (NAD+) biosynthesis, and thereby regulates the deacetylase activity of sirtuins. Here we show accommodative regulation of myocardial NAD+ by monocyte-derived extracellular Nampt (eNampt), which is essential for hemodynamic compensation to pressure overload. Although intracellular Nampt (iNampt) expression was decreased in pressure-overloaded hearts, myocardial NAD+ concentration and Sirt1 activity were preserved. In contrast, iNampt was up-regulated in spleen and monocytes, and circulating eNampt protein and nicotinamide mononucleotide (NMN), a key precursor of NAD+, were significantly increased. Pharmacological inhibition of Nampt by FK866 or depletion of monocytes/macrophages by clodronate liposomes disrupted the homeostatic mechanism of myocardial NAD+ levels and NAD+-dependent Sirt1 activity, leading to susceptibility to cardiomyocyte apoptosis and cardiac decompensation in pressure-overloaded mice. These biochemical and hemodynamic defects were prevented by systemic administration of NMN. Our studies uncover a crucial role of monocyte-derived eNampt in myocardial adaptation to pressure overload, and highlight a potential intervention controlling myocardial NAD+ against heart failure. PMID:26522369

  13. Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion.

    PubMed

    Ma, GuoHua; Pan, Bing; Chen, Yue; Guo, CaiXia; Zhao, MingMing; Zheng, LeMin; Chen, BuXing

    2017-04-30

    Several studies have reported a strong association between high plasma level of trimethylamine N-oxide (TMAO) and atherosclerosis development. However, the exact mechanism underlying this correlation is unknown. In the present study, we try to explore the impact of TMAO on endothelial dysfunction. After TMAO treatment, human umbilical vein endothelial cells (HUVECs) showed significant impairment in cellular proliferation and HUVECs-extracellular matrix (ECM) adhesion compared with control. Likewise, TMAO markedly suppressed HUVECs migration in transwell migration assay and wound healing assay. In addition, we found TMAO up-regulated vascular cell adhesion molecule-1 (VCAM-1) expression, promoted monocyte adherence, activated protein kinase C (PKC) and p-NF-κB. Interestingly, TMAO-stimulated VCAM-1 expression and monocyte adherence were diminished by PKC inhibitor. These results demonstrate that TMAO promotes early pathological process of atherosclerosis by accelerating endothelial dysfunction, including decreasing endothelial self-repair and increasing monocyte adhesion. Furthermore, TMAO-induced monocyte adhesion is partly attributable to activation of PKC/NF-κB/VCAM-1. © 2017 The Author(s).

  14. Critical Role for Monocytes/Macrophages in Rapid Progression to AIDS in Pediatric Simian Immunodeficiency Virus-Infected Rhesus Macaques.

    PubMed

    Sugimoto, Chie; Merino, Kristen M; Hasegawa, Atsuhiko; Wang, Xiaolei; Alvarez, Xavier A; Wakao, Hiroshi; Mori, Kazuyasu; Kim, Woong-Ki; Veazey, Ronald S; Didier, Elizabeth S; Kuroda, Marcelo J

    2017-09-01

    Infant humans and rhesus macaques infected with the human or simian immunodeficiency virus (HIV or SIV), respectively, express higher viral loads and progress more rapidly to AIDS than infected adults. Activated memory CD4 + T cells in intestinal tissues are major primary target cells for SIV/HIV infection, and massive depletion of these cells is considered a major cause of immunodeficiency. Monocytes and macrophages are important cells of innate immunity and also are targets of HIV/SIV infection. We reported previously that a high peripheral blood monocyte turnover rate was predictive for the onset of disease progression to AIDS in SIV-infected adult macaques. The purpose of this study was to determine if earlier or higher infection of monocytes/macrophages contributes to the more rapid progression to AIDS in infants. We observed that uninfected infant rhesus macaques exhibited higher physiologic baseline monocyte turnover than adults. Early after SIV infection, the monocyte turnover further increased, and it remained high during progression to AIDS. A high percentage of terminal deoxynucleotidyltransferase dUTP nick end label (TUNEL)-positive macrophages in the lymph nodes (LNs) and intestine corresponded with an increasing number of macrophages derived from circulating monocytes (bromodeoxyuridine positive [BrdU + ] CD163 + ), suggesting that the increased blood monocyte turnover was required to rapidly replenish destroyed tissue macrophages. Immunofluorescence analysis further demonstrated that macrophages were a significant portion of the virus-producing cells found in LNs, intestinal tissues, and lungs. The higher baseline monocyte turnover in infant macaques and subsequent macrophage damage by SIV infection may help explain the basis of more rapid disease progression to AIDS in infants. IMPORTANCE HIV infection progresses much more rapidly in pediatric cases than in adults; however, the mechanism for this difference is unclear. Using the rhesus macaque model

  15. Fatal Monocytic Ehrlichiosis in Woman, Mexico, 2013

    PubMed Central

    Sosa-Gutierrez, Carolina G.; Solorzano-Santos, Fortino; Walker, David H.; Torres, Javier; Serrano, Carlos A.

    2016-01-01

    Human monocytic ehrlichiosis is a febrile illness caused by Ehrlichia chaffeensis, an intracellular bacterium transmitted by ticks. In Mexico, a case of E. chaffeensis infection in an immunocompetent 31-year-old woman without recognized tick bite was fatal. This diagnosis should be considered for patients with fever, leukopenia, thrombocytopenia, and elevated liver enzyme levels. PMID:27088220

  16. Serum amyloid A induction of cytokines in monocytes/macrophages and lymphocytes.

    PubMed

    Song, Changjie; Hsu, Kenneth; Yamen, Eric; Yan, Weixing; Fock, Jianyi; Witting, Paul K; Geczy, Carolyn L; Freedman, S Ben

    2009-12-01

    Serum amyloid A (SAA) is a biomarker of inflammation. Elevated blood levels in cardiovascular disease and local deposition in atheroma implies a role of SAA as a mediator rather than just a marker of inflammation. This study explored SAA-induced cytokine production and secretion by mononuclear cells. RT-PCR showed that SAA time-dependently induced cytokine mRNAs in peripheral blood mononuclear cells (PBMC) and THP-1 monocytoid cells, and dramatically increased IL-1beta, MCP-1, IL-6, IL-8, IL-10, GM-CSF, TNF, and MIP-1alpha secretion by PBMC to levels 28 to 25,000 fold above baseline, as measured with Bio-Plex kits; monocytes were the principle source. SAA induction of cytokines in monocyte-derived macrophages (MDM) was significantly higher than from monocytes from the same donors. SAA time-dependently induced transient and significant upregulation of NF-kappaB1 mRNA; inhibitor studies indicate that activation of NF-kappaB through the ERK1/2, p38 and JNK MAPKs and the PI3K pathway was involved. PBMC from 10 patients with coronary artery disease (CAD) spontaneously secreted higher levels of IL-6 and MIP-1alpha after 24h incubation than PBMC from normal controls, whereas SAA-induced levels of all cytokines were similar to controls. Aortic and coronary sinus sampling in 23 CAD patients indicated significant SAA release into the coronary circulation, not evident in 11 controls. SAA can increase monocyte and macrophage cytokine production, possibly at sites of atherosclerosis, thereby contributing to the pro-inflammatory state in coronary artery disease.

  17. Haptoglobin and serum amyloid A in bulk tank milk in relation to raw milk quality.

    PubMed

    Akerstedt, Maria; Waller, Karin Persson; Sternesjö, Ase

    2009-11-01

    The aim of the present study was to evaluate relationships between the presence of the two major bovine acute phase proteins haptoglobin (Hp) and serum amyloid A (SAA) and raw milk quality parameters in bulk tank milk samples. Hp and SAA have been suggested as specific markers of mastitis but recently also as markers for raw milk quality. Since mastitis has detrimental effects on milk quality, it is important to investigate whether the presence of Hp or SAA indicates such changes in the composition and properties of the milk. Bulk tank milk samples (n=91) were analysed for Hp, SAA, total protein, casein, whey protein, proteolysis, fat, lactose, somatic cell count and coagulating properties. Samples with detectable levels of Hp had lower casein content, casein number and lactose content, but higher proteolysis than samples without Hp. Samples with detectable levels of SAA had lower casein number and lactose content, but higher whey protein content than samples without SAA. The presence of acute phase proteins in bulk tank milk is suggested as an indicator for unfavourable changes in the milk composition, e.g. protein quality, due to udder health disturbances, with economical implications for the dairy industry.

  18. Predictors of Subclinical Inflammatory Obesity: Plasma Levels of Leptin, Very Low-Density Lipoprotein Cholesterol and CD14 Expression of CD16+ Monocytes

    PubMed Central

    Leite, Fernanda; Leite, Ângela; Santos, Ana; Lima, Margarida; Barbosa, Joselina; Cosentino, Marco; Ribeiro, Laura

    2017-01-01

    Objective Predictors of subclinical inflammatory obesity (SIO) can be important tools for early therapeutic interventions in obesity-related comorbidities. Waist circumference (WC) and BMI have different SIO sensitivity. We aimed to i) identify SIO predictors and ii) investigate whether CD16+ monocytes are associated with BMI- (generally) or WC-defined (centrally) obesity. Methods Anthropometric and metabolic/endocrine (namely catecholamines, adrenaline and noradrenaline) parameters were evaluated, and CD16+ monocytes were studied by flow cytometry in the peripheral blood from 63 blood donors, and compared and correlated to each other. Multiple linear regression analysis was performed to identify variables that best predict SIO. Results CD16+ monocyte counts were similar in BMI and WC groups. CD16+ monocytes from centrally obese (CO) showed a more inflammatory pattern, as compared to non-CO subjects. WC was sensitive to lipidemia and, in CO subjects, lipidemia was associated with a more inflammatory phenotype of CD16+ monocytes. These differences were not noticed between BMI groups. Adrenaline was correlated with CD16+ monocyte expansion with a lower inflammatory pattern. Leptin, very low-density lipoprotein cholesterol (VLDL-C), and CD14 expression of CD16+ monocytes were found to be CO predictors. Conclusions WC-, but not BMI-defined obesity, was associated with a more inflammatory pattern of CD16+ monocytes, without monocyte expansion, suggesting that a monocyte maturation process rather than an independent arise of CD16+ monocytes occurs in CO. Thus, in a population with low cardiovascular risk, leptin, VLDL-C, and CD14 expression of CD16+ monocytes predict CO, constituting a putative tool for screening of SIO. PMID:28738359

  19. UVB radiation and human monocyte accessory function: Differential effects on pre-mitotic events in T-cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krutmann, J.K.; Kammer, G.M.; Toossi, Z.

    Purified T lymphocytes fail to proliferate in response to antigenic and mitogenic stimuli when cultured in the presence of accessory cells that have been exposed in vitro to sublethal doses of UVB radiation. Because proliferation represents a final stage in the T-cell activation process, the present study was conducted to determine whether T cells were able to progress through any of the pre-mitotic stages when UVB-irradiated monocytes were used as model accessory cells. In these experiments, monoclonal anti-CD3 antibodies were employed as the mitogenic stimulus. Culture of T cells with UVB-irradiated monocytes did allow the T cells to undergo anmore » increase in intracellular free calcium, which is one of the first steps in the activation sequence. The T cells expressed interleukin-2 receptors, although at a reduced level. However, T cells failed to produce interleukin-2 above background levels when they were placed in culture with monocytes exposed to UVB doses as low as 50 J/m2. Incubation of T cells with UVB-irradiated monocytes did not affect the subsequent capacity of T cells to proliferate, since they developed a normal proliferative response in secondary culture when restimulated with anti-CD3 antibodies and unirradiated monocytes. These studies indicate that T lymphocytes become partially activated when cultured with UVB-irradiated monocytes and mitogenic anti-CD3 monoclonal antibodies. In addition, they suggest that interleukin-2 production is the T-cell activation step most sensitive to inhibition when UVB-irradiated monocytes are employed as accessory cells.« less

  20. Increased Migration of Monocytes in Essential Hypertension Is Associated with Increased Transient Receptor Potential Channel Canonical Type 3 Channels

    PubMed Central

    Chen, Jing; Zhong, Jian; Yu, Hao; Xu, Xingsen; He, Hongbo; Yan, Zhencheng; Scholze, Alexandra; Liu, Daoyan; Zhu, Zhiming; Tepel, Martin

    2012-01-01

    Increased transient receptor potential canonical type 3 (TRPC3) channels have been observed in patients with essential hypertension. In the present study we tested the hypothesis that increased monocyte migration is associated with increased TRPC3 expression. Monocyte migration assay was performed in a microchemotaxis chamber using chemoattractants formylated peptide Met-Leu-Phe (fMLP) and tumor necrosis factor-α (TNF-α). Proteins were identified by immunoblotting and quantitative in-cell Western assay. The effects of TRP channel-inhibitor 2–aminoethoxydiphenylborane (2-APB) and small interfering RNA knockdown of TRPC3 were investigated. We observed an increased fMLP-induced migration of monocytes from hypertensive patients compared with normotensive control subjects (246±14% vs 151±10%). The TNF-α-induced migration of monocytes in patients with essential hypertension was also significantly increased compared to normotensive control subjects (221±20% vs 138±18%). In the presence of 2-APB or after siRNA knockdown of TRPC3 the fMLP-induced monocyte migration was significantly blocked. The fMLP-induced changes of cytosolic calcium were significantly increased in monocytes from hypertensive patients compared to normotensive control subjects. The fMLP-induced monocyte migration was significantly reduced in the presence of inhibitors of tyrosine kinase and phosphoinositide 3-kinase. We conclude that increased monocyte migration in patients with essential hypertension is associated with increased TRPC3 channels. PMID:22438881

  1. miR-223 is upregulated in monocytes from patients with tuberculosis and regulates function of monocyte-derived macrophages.

    PubMed

    Liu, Yanhua; Wang, Ruo; Jiang, Jing; Yang, Bingfen; Cao, Zhihong; Cheng, Xiaoxing

    2015-10-01

    Tuberculosis (TB) is a serious infectious disease that most commonly affects the lungs. Macrophages are among the first line defenders against establishment of Mycobacterium tuberculosis infection in the lungs. In this study, we found that activation and cytokine production in monocyte-derived macrophages (MDM) from patients with active TB was impaired. miR-223 expression was significantly elevated in monocytes and MDM from patients with TB compared with healthy controls. To determine the functional role of miR-223 in macrophages, stable miR-223-expressing and miR-223 antisense-expressing U937 cells were established. Compared with empty vector controls, expression of IL-1β, IL-6, TNF-α and IL-12p40 genes was significantly higher in miR-223 antisense-expressing U937 cells, but lower in miR-223-expressing U937 cells. miR-223 can negatively regulate activation of NF-κB by inhibition of p65 phosphorylation and nuclear translocation. It is concluded that miR-223 can regulate macrophage function by inhibition of cytokine production and NF-κB activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Specific Depletion of Ly6Chi Inflammatory Monocytes Prevents Immunopathology in Experimental Cerebral Malaria

    PubMed Central

    Kuepper, Janina M.; Biswas, Aindrila; Djie-Maletz, Andrea; Limmer, Andreas; van Rooijen, Nico; Mack, Matthias; Hoerauf, Achim; Dunay, Ildiko Rita

    2015-01-01

    Plasmodium berghei ANKA (PbA) infection of C57BL/6 mice leads to experimental cerebral malaria (ECM) that is commonly associated with serious T cell mediated damage. In other parasitic infection models, inflammatory monocytes have been shown to regulate Th1 responses but their role in ECM remains poorly defined, whereas neutrophils are reported to contribute to ECM immune pathology. Making use of the recent development of specific monoclonal antibodies (mAb), we depleted in vivo Ly6Chi inflammatory monocytes (by anti-CCR2), Ly6G+ neutrophils (by anti-Ly6G) or both cell types (by anti-Gr1) during infection with Ovalbumin-transgenic PbA parasites (PbTg). Notably, the application of anti-Gr1 or anti-CCR2 but not anti-Ly6G antibodies into PbTg-infected mice prevented ECM development. In addition, depletion of Ly6Chi inflammatory monocytes but not neutrophils led to decreased IFNγ levels and IFNγ+CD8+ T effector cells in the brain. Importantly, anti-CCR2 mAb injection did not prevent the generation of PbTg-specific T cell responses in the periphery, whereas anti-Gr1 mAb injection strongly diminished T cell frequencies and CTL responses. In conclusion, the specific depletion of Ly6Chi inflammatory monocytes attenuated brain inflammation and immune cell recruitment to the CNS, which prevented ECM following Plasmodium infection, pointing out a substantial role of Ly6C+ monocytes in ECM inflammatory processes. PMID:25884830

  3. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.

    PubMed

    Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J

    2018-02-21

    Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.

  4. Triglyceride-rich lipoprotein regulates APOB48 receptor gene expression in human THP-1 monocytes and macrophages.

    PubMed

    Bermudez, Beatriz; Lopez, Sergio; Varela, Lourdes M; Ortega, Almudena; Pacheco, Yolanda M; Moreda, Wenceslao; Moreno-Luna, Rafael; Abia, Rocio; Muriana, Francisco J G

    2012-02-01

    The postprandial metabolism of dietary fats implies that the production of TG-rich lipoproteins (TRL) contributes to the progression of plaque development. TRL and their remnants cause rapid receptor-mediated monocyte/macrophage lipid engorgement via the cell surface apoB48 receptor (apoB48R). However, the mechanistic basis for apoB48 receptor (APOB48R) regulation by postprandial TRL in monocytes and macrophages is not well established. In this study, we investigated the effects of postprandial TRL from healthy volunteers on the expression of APOB48R mRNA and lipid uptake in human THP-1 monocytes and THP-1-derived macrophages. The expression of APOB48R mRNA was upregulated in THP-1 monocytes, but downregulated in THP-1-derived macrophages when treated with postprandial TRL (P < 0.05), in a dose- and time-dependent manner. TG and free cholesterol were dramatically increased in THP-1-derived macrophages (140 and 50%, respectively; P < 0.05) and in THP-1 monocytes (160 and 95%, respectively; P < 0.05). This lipid accumulation was severely decreased (~50%; P < 0.05) in THP-1-derived macrophages by small interfering RNA (siRNA) targeting of APOB48R. Using PPAR and retinoid X receptor (RXR) agonists, antagonists, and siRNA, our data indicate that PPARα, PPARγ, and RXRα are involved in postprandial TRL-induced APOB48R transcriptional regulation. Co-incubation with acyl-CoA synthetase or acyl-CoA:cholesterol acyltransferase inhibitors potentiated the effects of postprandial TRL on the expression of APOB48R mRNA in THP-1 monocytes and THP-1-derived macrophages. Our findings collectively suggest that APOB48R represents a molecular target of postprandial TRL via PPAR-dependent pathways in human THP-1 monocytes and macrophages and advance a potentially important link between postprandial metabolism of dietary fats and atherogenesis.

  5. Monocyte-endothelial adhesion in chronic rheumatoid arthritis. In situ detection of selectin and integrin-dependent interactions.

    PubMed Central

    Grober, J S; Bowen, B L; Ebling, H; Athey, B; Thompson, C B; Fox, D A; Stoolman, L M

    1993-01-01

    Blood monocytes are the principal reservoir for tissue macrophages in rheumatoid synovitis. Receptor-mediated adhesive interactions between circulating cells and the synovial venules initiate recruitment. These interactions have been studied primarily in cultured endothelial cells. Thus the functional activities of specific adhesion receptors, such as the endothelial selectins and the leukocytic integrins, have not been evaluated directly in diseased tissues. We therefore examined monocyte-microvascular interactions in rheumatoid synovitis by modifying the Stamper-Woodruff frozen section binding assay initially developed to study lymphocyte homing. Specific binding of monocytes to venules lined by low or high endothelium occurred at concentrations as low as 5 x 10(5) cells/ml. mAbs specific for P-selectin (CD62, GMP-140/PADGEM) blocked adhesion by > 90% in all synovitis specimens examined. In contrast, P-selectin-mediated adhesion to the microvasculature was either lower or absent in frozen sections of normal foreskin and placenta. mAbs specific for E-selectin (ELAM-1) blocked 20-50% of monocyte attachment in several RA synovial specimens but had no effect in others. mAbs specific for LFA-1, Mo1/Mac 1, the integrin beta 2-chain, and L-selectin individually inhibited 30-40% of adhesion. An mAb specific for the integrin beta 1-chain inhibited the attachment of elutriated monocytes up to 20%. We conclude that P-selectin associated with the synovial microvasculature initiates shear-resistant adhesion of monocytes in the Stamper-Woodruff assay and stabilizes bonds formed by other selectins and the integrins. Thus the frozen section binding assay permits direct evaluation of leukocyte-microvascular adhesive interactions in inflamed tissues and suggests a prominent role for P-selectin in monocyte recruitment in vivo. Images PMID:7685772

  6. Ureaplasma isolates stimulate pro-inflammatory CC chemokines and matrix metalloproteinase-9 in neonatal and adult monocytes

    PubMed Central

    Silwedel, Christine; Fehrholz, Markus; Henrich, Birgit; Waaga-Gasser, Ana Maria; Claus, Heike; Speer, Christian P.

    2018-01-01

    Being generally regarded as commensal bacteria, the pro-inflammatory capacity of Ureaplasma species has long been debated. Recently, we confirmed Ureaplasma–driven pro-inflammatory cytokine responses and a disturbance of cytokine equilibrium in primary human monocytes in vitro. The present study addressed the expression of CC chemokines and matrix metalloproteinase-9 (MMP-9) in purified term neonatal and adult monocytes stimulated with serovar 8 of Ureaplasma urealyticum (Uu) and serovar 3 of U. parvum (Up). Using qRT-PCR and multi-analyte immunoassay, we assessed mRNA and protein expression of the monocyte chemotactic proteins 1 and 3 (MCP-1/3), the macrophage inflammatory proteins 1α and 1β (MIP-1α/β) as well as MMP-9. For the most part, both isolates stimulated mRNA expression of all given chemokines and MMP-9 in cord blood and adult monocytes (p<0.05 and p<0.01). These results were paralleled by Uu and Up-induced secretion of MCP-1 protein in both cells (neonatal: p<0.01, adult: p<0.05 and p<0.01). Release of MCP-3, MIP-1α, MIP-1β and MMP-9 was enhanced upon exposure to Up (neonatal: p<0.05, p<0.01 and p<0.001, respectively; adult: p<0.05). Co-stimulation of LPS-primed monocytes with Up increased LPS-induced MCP-1 release in neonatal cells (p<0.05) and aggravated LPS-induced MMP-9 mRNA in both cell subsets (neonatal: p<0.05, adult: p<0.01). Our results document considerable expression of pro-inflammatory CC chemokines and MMP-9 in human monocytes in response to Ureaplasma isolates in vitro, adding to our previous data. Findings from co-stimulated cells indicate that Ureaplasma may modulate monocyte immune responses to a second stimulus. PMID:29558521

  7. The anti-inflammatory vasostatin-2 attenuates atherosclerosis in ApoE-/- mice and inhibits monocyte/macrophage recruitment.

    PubMed

    Xiong, Weixin; Wang, Xiaoqun; Dai, Daopeng; Zhang, Bao; Lu, Lin; Tao, Rong

    2017-01-26

    We showed previously that reduced level of vasostatin-2 (VS-2) correlates to the presence and severity of coronary artery disease. In this study, we aimed to figure out the role of chromogranin A (CGA) derived VS-2 in the development of atherosclerosis and monocyte/macrophage recruitment. Apolipoprotein E-deficient (ApoE -/- ) mice fed a high-fat diet exhibited attenuated lesion size by 65 % and 41 % in En face and aortic root Oil red O staining, MOMA-2 positive area by 64 %, respectively, in VS-2 treatment group compared with PBS group. Proinflammatory cytokines tumour necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) were all remarkably reduced in aortic tissues after VS-2 treatment. Mechanistically, in adhesion assay using intravital microscopy in vivo, VS-2 suppressed the number of leukocytes adhering to the wall of apoE -/- mice mesenteric arteries. In chemotactic assay, flow cytometry analysis of peritoneal lavage exudate from C57BL/6 mice showed VS-2 significantly decreased the recruiment number of inflammatory monocytes/macrophages in a thioglycollate-induced peritonitis model. Furthermore, fewer fluorescent latex beads labelled Ly-6C hi monocytes accumulated in aortic sinus lesions of apoE -/- mice after VS-2 treatment. In addition, according to the microarray of human monocyte/macrophage, we found VS-2 stimulation caused a dose-dependent decrease of Rac1 expression and inactivation of Pak1 in mice primary monocytes as well as THP-1 cells and inhibited MCP-1/CCL-5 induced transmigration in vitro. In conclusion, the Chromogranin A-derived VS-2 attenuates atherosclerosis in apoE -/- mice and, in addition to its anti-inflammatory property, also acts as an inhibitor in monocyte/macrophage recruitment.

  8. Lessons Learned about Neurodegeneration from Microglia and Monocyte Depletion Studies

    PubMed Central

    Lund, Harald; Pieber, Melanie; Harris, Robert A.

    2017-01-01

    While bone marrow-derived Ly6Chi monocytes can infiltrate the central nervous system (CNS) they are developmentally and functionally distinct from resident microglia. Our understanding of the relative importance of these two populations in the distinct processes of pathogenesis and resolution of inflammation during neurodegenerative disorders was limited by a lack of tools to specifically manipulate each cell type. During recent years, the development of experimental cell-specific depletion models has enabled this issue to be addressed. Herein we compare and contrast the different depletion approaches that have been used, focusing on the respective functionalities of microglia and monocyte-derived macrophages in a range of neurodegenerative disease states, and discuss their prospects for immunotherapy. PMID:28804456

  9. Signal Regulatory Protein α Negatively Regulates β2 Integrin-Mediated Monocyte Adhesion, Transendothelial Migration and Phagocytosis

    PubMed Central

    Liu, Dan-Qing; Li, Li-Min; Guo, Ya-Lan; Bai, Rui; Wang, Chen; Bian, Zhen; Zhang, Chen-Yu; Zen, Ke

    2008-01-01

    Background Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis. Methodology/Principal Findings THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression. Conclusions/Significance SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis. PMID:18820737

  10. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis

    PubMed Central

    Awojoodu, Anthony O.; Ogle, Molly E.; Sefcik, Lauren S.; Bowers, Daniel T.; Martin, Kyle; Brayman, Kenneth L.; Lynch, Kevin R.; Peirce-Cottler, Shayn M.; Botchwey, Edward

    2013-01-01

    Endothelial cells play significant roles in conditioning tissues after injury by the production and secretion of angiocrine factors. At least two distinct subsets of monocytes, CD45+CD11b+Gr1+Ly6C+ inflammatory and CD45+CD11b+Gr1−Ly6C− anti-inflammatory monocytes, respond differentially to these angiocrine factors and promote pathogen/debris clearance and arteriogenesis/tissue regeneration, respectively. We demonstrate here that local sphingosine 1-phosphate receptor 3 (S1P3) agonism recruits anti-inflammatory monocytes to remodeling vessels. Poly(lactic-co-glycolic acid) thin films were used to deliver FTY720, an S1P1/3 agonist, to inflamed and ischemic tissues, which resulted in a reduction in proinflammatory cytokine secretion and an increase in regenerative cytokine secretion. The altered balance of cytokine secretion results in preferential recruitment of anti-inflammatory monocytes from circulation. The chemotaxis of these cells, which express more S1P3 than inflammatory monocytes, toward SDF-1α was also enhanced with FTY720 treatment, but not in S1P3 knockout cells. FTY720 delivery enhanced arteriolar diameter expansion and increased length density of the local vasculature. This work establishes a role for S1P receptor signaling in the local conditioning of tissues by angiocrine factors that preferentially recruit regenerative monocytes that can enhance healing outcomes, tissue regeneration, and biomaterial implant functionality. PMID:23918395

  11. Immunoregulatory Profile of Monocytes from Cutaneous Leishmaniasis Patients and Association with Lesion Size

    PubMed Central

    Vieira, Érica L. M.; Keesen, Tatjana S. L.; Machado, Paulo R.; Guimarães, Luiz H.; Carvalho, Edgar M.; Dutra, Walderez O.; Gollob, Kenneth J.

    2013-01-01

    Leishmaniasis is an important tropical disease composed of several clinical forms that adversely affect millions of people globally. Critical cells involved in the host-Leishmania interaction are monocytes and macrophages, which act to protect against infections due to their ability to both control intracellular infections and regulate the subsequent adaptive immune response. Both soluble factors and cell surface receptors are key in directing the immune response following interaction with pathogens such as Leishmania. Toll like receptors (TLRs) have an essential role in immune responses against infections, but little is known about their role in human infection with Leishmania braziliensis. In this work, we evaluated peripheral blood CD14+ monocytes for expression of immunoregulatory cytokines, co-stimulatory molecules and TLR9 from cutaneous leishmaniasis patients infected with L. braziliensis and non-infected individuals. Our results showed that patients present decreased expression of co-stimulatory molecules, such as CD80 and CD86 following culture with media alone or after stimulus with soluble Leishmania antigen. Interestingly, TLR9 expression was higher after culture with SLA suggesting a role for this molecule in immunoregulation of active disease. Lastly, higher frequencies of TLR9+ monocytes were correlated with greater lesion size. These findings demonstrate a peripheral monocytes profile compatible with important immunoregulatory potential. PMID:23050581

  12. Imbalance of Circulating Monocyte Subsets and PD-1 Dysregulation in Q Fever Endocarditis: The Role of IL-10 in PD-1 Modulation

    PubMed Central

    Ka, Mignane B.; Gondois-Rey, Françoise; Capo, Christian; Textoris, Julien; Million, Mathieu; Raoult, Didier; Olive, Daniel; Mege, Jean-Louis

    2014-01-01

    Q fever endocarditis, a severe complication of Q fever, is associated with a defective immune response, the mechanisms of which are poorly understood. We hypothesized that Q fever immune deficiency is related to altered distribution and activation of circulating monocyte subsets. Monocyte subsets were analyzed by flow cytometry in peripheral blood mononuclear cells from patients with Q fever endocarditis and controls. The proportion of classical monocytes (CD14+CD16− monocytes) was similar in patients and controls. In contrast, the patients with Q fever endocarditis exhibited a decrease in the non-classical and intermediate subsets of monocytes (CD16+ monocytes). The altered distribution of monocyte subsets in Q fever endocarditis was associated with changes in their activation profile. Indeed, the expression of HLA-DR, a canonical activation molecule, and PD-1, a co-inhibitory molecule, was increased in intermediate monocytes. This profile was not restricted to CD16+ monocytes because CD4+ T cells also overexpressed PD-1. The mechanism leading to the overexpression of PD-1 did not require the LPS from C. burnetii but involved interleukin-10, an immunosuppressive cytokine. Indeed, the incubation of control monocytes with interleukin-10 led to a higher expression of PD-1 and neutralizing interleukin-10 prevented C. burnetii-stimulated PD-1 expression. Taken together, these results show that the immune suppression of Q fever endocarditis involves a cross-talk between monocytes and CD4+ T cells expressing PD-1. The expression of PD-1 may be useful to assess chronic immune alterations in Q fever endocarditis. PMID:25211350

  13. Microparticles Engineered to Highly Express Peroxisome Proliferator-Activated Receptor-γ Decreased Inflammatory Mediator Production and Increased Adhesion of Recipient Monocytes

    PubMed Central

    Sahler, Julie; Woeller, Collynn F.; Phipps, Richard P.

    2014-01-01

    Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ). In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles also changed monocyte

  14. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    PubMed

    Sahler, Julie; Woeller, Collynn F; Phipps, Richard P

    2014-01-01

    Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ). In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles also changed monocyte

  15. The Putative Son's Attractiveness Alters the Perceived Attractiveness of the Putative Father.

    PubMed

    Prokop, Pavol

    2015-08-01

    A body of literature has investigated female mate choice in the pre-mating context (pre-mating sexual selection). Humans, however, are long-living mammals forming pair-bonds which sequentially produce offspring. Post-mating evaluations of a partner's attractiveness may thus significantly influence the reproductive success of men and women. I tested herein the theory that the attractiveness of putative sons provides extra information about the genetic quality of fathers, thereby influencing fathers' attractiveness across three studies. As predicted, facially attractive boys were more frequently attributed to attractive putative fathers and vice versa (Study 1). Furthermore, priming with an attractive putative son increased the attractiveness of the putative father with the reverse being true for unattractive putative sons. When putative fathers were presented as stepfathers, the effect of the boy's attractiveness on the stepfather's attractiveness was lower and less consistent (Study 2). This suggests that the presence of an attractive boy has the strongest effect on the perceived attractiveness of putative fathers rather than on non-fathers. The generalized effect of priming with beautiful non-human objects also exists, but its effect is much weaker compared with the effects of putative biological sons (Study 3). Overall, this study highlighted the importance of post-mating sexual selection in humans and suggests that the heritable attractive traits of men are also evaluated by females after mating and/or may be used by females in mate poaching.

  16. Comparative analysis of signature genes in PRRSV-infected porcine monocyte-derived cells at differential activation statuses

    USDA-ARS?s Scientific Manuscript database

    Activation statuses of monocytic cells are critically important for antiviral immunity. Devastating viruses like porcine reproductive and respiratory syndrome virus (PRRSV) are capable of directly infecting these cells, subverting host immunity. Monocyte-derived DCs (mDCs) are major target cells in ...

  17. IL-10-dependent down-regulation of MHC class II expression level on monocytes by peritoneal fluid from endometriosis patients.

    PubMed

    Lee, Kyu-Sup; Baek, Dae-Won; Kim, Ki-Hyung; Shin, Byoung-Sub; Lee, Dong-Hyung; Kim, Ja-Woong; Hong, Young-Seoub; Bae, Yoe-Sik; Kwak, Jong-Young

    2005-11-01

    Endometriosis is a gynecologic disorder characterized by the ectopic growth of misplaced endometrial cells. Moreover, immunological abnormalities of cell-mediated and humoral immunity may be associated with the pathogenesis of endometriosis. The effects of peritoneal fluid (PF) from endometriosis patients on the expression levels of MHC class II and costimulatory molecules on the cell surfaces of monocytes were investigated. Compared to the PF of controls, the addition of 10% PF (n=10) from patients with endometriosis to culture medium significantly reduced the percentage of MHC class II-positive cells in cultures of a THP-1, monocytic cell line at 48 h. The effect of endometriosis patient PF (EPF) was dose-dependent, and similar effect was observed in peripheral blood monocytes. An inverse correlation was found between MHC class II expression level and IL-10 concentration in EPF (r=-0.518; p=0.019) and in the supernatant of peripheral blood monocyte cultured in EPF (r=-0.459; p=0.042) (n=20). The expression levels of costimulatory molecules (CD80 and CD86), but not of CD54 and B7-H1, were down-regulated by EPF. The mRNA level of HLA-DR was unaffected by EPF but protein level was reduced by EPF. Neutralizing IL-10 antibody abrogated MHC class II down-regulation on monocytes, which had been induced by EPF. However, in a functional assay, monocytes treated with EPF failed to stimulate T cell in mixed leukocyte reaction, although T cell proliferation was increased with EPF-treated monocytes and Staphylococcus enterotoxin B. These results suggest that MHC class II expression level on monocytes is down-regulated by EPF, but the cell stimulatory ability of monocytes does not coincide with MHC class II expression level.

  18. The CD14+CD16+ Inflammatory Monocyte Subset Displays Increased Mitochondrial Activity and Effector Function During Acute Plasmodium vivax Malaria

    PubMed Central

    Antonelli, Lis R. V.; Leoratti, Fabiana M. S.; Costa, Pedro A. C.; Rocha, Bruno C.; Diniz, Suelen Q.; Tada, Mauro S.; Pereira, Dhelio B.; Teixeira-Carvalho, Andrea; Golenbock, Douglas T.; Gonçalves, Ricardo; Gazzinelli, Ricardo T.

    2014-01-01

    Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax–infected patients display significant increase in circulating monocytes, which were defined as CD14+CD16− (classical), CD14+CD16+ (inflammatory), and CD14loCD16+ (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16+ cells, in particular the CD14+CD16+ monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14+ were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14+CD16+ monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14+CD16+ cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection. PMID:25233271

  19. Face inversion increases attractiveness.

    PubMed

    Leder, Helmut; Goller, Juergen; Forster, Michael; Schlageter, Lena; Paul, Matthew A

    2017-07-01

    Assessing facial attractiveness is a ubiquitous, inherent, and hard-wired phenomenon in everyday interactions. As such, it has highly adapted to the default way that faces are typically processed: viewing faces in upright orientation. By inverting faces, we can disrupt this default mode, and study how facial attractiveness is assessed. Faces, rotated at 90 (tilting to either side) and 180°, were rated on attractiveness and distinctiveness scales. For both orientations, we found that faces were rated more attractive and less distinctive than upright faces. Importantly, these effects were more pronounced for faces rated low in upright orientation, and smaller for highly attractive faces. In other words, the less attractive a face was, the more it gained in attractiveness by inversion or rotation. Based on these findings, we argue that facial attractiveness assessments might not rely on the presence of attractive facial characteristics, but on the absence of distinctive, unattractive characteristics. These unattractive characteristics are potentially weighed against an individual, attractive prototype in assessing facial attractiveness. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. 6-mercaptopurine inhibits atherosclerosis in apolipoprotein e*3-leiden transgenic mice through atheroprotective actions on monocytes and macrophages.

    PubMed

    Pols, Thijs W H; Bonta, Peter I; Pires, Nuno M M; Otermin, Iker; Vos, Mariska; de Vries, Margreet R; van Eijk, Marco; Roelofsen, Jeroen; Havekes, Louis M; Quax, Paul H A; van Kuilenburg, André B P; de Waard, Vivian; Pannekoek, Hans; de Vries, Carlie J M

    2010-08-01

    6-Mercaptopurine (6-MP), the active metabolite of the immunosuppressive prodrug azathioprine, is commonly used in autoimmune diseases and transplant recipients, who are at high risk for cardiovascular disease. Here, we aimed to gain knowledge on the action of 6-MP in atherosclerosis, with a focus on monocytes and macrophages. We demonstrate that 6-MP induces apoptosis of THP-1 monocytes, involving decreased expression of the intrinsic antiapoptotic factors B-cell CLL/Lymphoma-2 (Bcl-2) and Bcl2-like 1 (Bcl-x(L)). In addition, we show that 6-MP decreases expression of the monocyte adhesion molecules platelet endothelial adhesion molecule-1 (PECAM-1) and very late antigen-4 (VLA-4) and inhibits monocyte adhesion. Screening of a panel of cytokines relevant to atherosclerosis revealed that 6-MP robustly inhibits monocyte chemoattractant chemokine-1 (MCP-1) expression in macrophages stimulated with lipopolysaccharide (LPS). Finally, local delivery of 6-MP to the vessel wall, using a drug-eluting cuff, attenuates atherosclerosis in hypercholesterolemic apolipoprotein E*3-Leiden transgenic mice (P<0.05). In line with our in vitro data, this inhibition of atherosclerosis by 6-MP was accompanied with decreased lesion monocyte chemoattractant chemokine-1 levels, enhanced vascular apoptosis, and reduced macrophage content. We report novel, previously unrecognized atheroprotective actions of 6-MP in cultured monocytes/macrophages and in a mouse model of atherosclerosis, providing further insight into the effect of the immunosuppressive drug azathioprine in atherosclerosis.

  1. Differential IL-1β secretion by monocyte subsets is regulated by Hsp27 through modulating mRNA stability.

    PubMed

    Hadadi, Eva; Zhang, Biyan; Baidžajevas, Kajus; Yusof, Nurhashikin; Puan, Kia Joo; Ong, Siew Min; Yeap, Wei Hseun; Rotzschke, Olaf; Kiss-Toth, Endre; Wilson, Heather; Wong, Siew Cheng

    2016-12-15

    Monocytes play a central role in regulating inflammation in response to infection or injury, and during auto-inflammatory diseases. Human blood contains classical, intermediate and non-classical monocyte subsets that each express characteristic patterns of cell surface CD16 and CD14; each subset also has specific functional properties, but the mechanisms underlying many of their distinctive features are undefined. Of particular interest is how monocyte subsets regulate secretion of the apical pro-inflammatory cytokine IL-1β, which is central to the initiation of immune responses but is also implicated in the pathology of various auto-immune/auto-inflammatory conditions. Here we show that primary human non-classical monocytes, exposed to LPS or LPS + BzATP (3'-O-(4-benzoyl)benzyl-ATP, a P2X7R agonist), produce approx. 80% less IL-1β than intermediate or classical monocytes. Despite their low CD14 expression, LPS-sensing, caspase-1 activation and P2X7R activity were comparable in non-classical monocytes to other subsets: their diminished ability to produce IL-1β instead arose from 50% increased IL-1β mRNA decay rates, mediated by Hsp27. These findings identify the Hsp27 pathway as a novel therapeutic target for the management of conditions featuring dysregulated IL-1β production, and represent an advancement in understanding of both physiological inflammatory responses and the pathogenesis of inflammatory diseases involving monocyte-derived IL-1β.

  2. Periodontal therapy alters gene expression of peripheral blood monocytes

    PubMed Central

    Papapanou, Panos N.; Sedaghatfar, Michael H.; Demmer, Ryan T.; Wolf, Dana L.; Yang, Jun; Roth, Georg A.; Celenti, Romanita; Belusko, Paul B.; Lalla, Evanthia; Pavlidis, Paul

    2009-01-01

    Aims We investigated the effects of periodontal therapy on gene expression of peripheral blood monocytes. Methods Fifteen patients with periodontitis gave blood samples at four time points: 1 week before periodontal treatment (#1), at treatment initiation (baseline, #2), 6-week (#3) and 10-week post-baseline (#4). At baseline and 10 weeks, periodontal status was recorded and subgingival plaque samples were obtained. Periodontal therapy (periodontal surgery and extractions without adjunctive antibiotics) was completed within 6 weeks. At each time point, serum concentrations of 19 biomarkers were determined. Peripheral blood monocytes were purified, RNA was extracted, reverse-transcribed, labelled and hybridized with AffymetrixU133Plus2.0 chips. Expression profiles were analysed using linear random-effects models. Further analysis of gene ontology terms summarized the expression patterns into biologically relevant categories. Differential expression of selected genes was confirmed by real-time reverse transcriptase-polymerase chain reaction in a subset of patients. Results Treatment resulted in a substantial improvement in clinical periodontal status and reduction in the levels of several periodontal pathogens. Expression profiling over time revealed more than 11,000 probe sets differentially expressed at a false discovery rate of <0.05. Approximately 1/3 of the patients showed substantial changes in expression in genes relevant to innate immunity, apoptosis and cell signalling. Conclusions The data suggest that periodontal therapy may alter monocytic gene expression in a manner consistent with a systemic anti-inflammatory effect. PMID:17716309

  3. Asian Zika virus strains target CD14+ blood monocytes and induce M2-skewed immunosuppression during pregnancy

    PubMed Central

    Foo, Suan-Sin; Chen, Weiqiang; Chan, Yen; Bowman, James W.; Chang, Lin-Chun; Choi, Younho; Yoo, Ji Seung; Ge, Jianning; Cheng, Genhong; Bonnin, Alexandre; Nielsen-Saines, Karin; Brasil, Patrícia; Jung, Jae U.

    2017-01-01

    Blood CD14+ monocytes are the frontline immunomodulators categorized into classical, intermediate or non-classical subsets, subsequently differentiating into M1 pro- or M2 anti-inflammatory macrophages upon stimulation. While Zika virus (ZIKV) rapidly establishes viremia, the target cells and immune responses, particularly during pregnancy, remain elusive. Furthermore, it is unknown whether African- and Asian-lineage ZIKV have different phenotypic impacts on host immune responses. Using human blood infection, we identified CD14+ monocytes as the primary target for African- or Asian-lineage ZIKV infection. When immunoprofiles of human blood infected with ZIKV were compared, a classical/intermediate monocyte-mediated M1-skewed inflammation by African-lineage ZIKV infection was observed, in contrast to a non-classical monocyte-mediated M2-skewed immunosuppression by Asian-lineage ZIKV infection. Importantly, infection of pregnant women’s blood revealed enhanced susceptibility to ZIKV infection. Specifically, Asian-lineage ZIKV infection of pregnant women’s blood led to an exacerbated M2-skewed immunosuppression of non-classical monocytes in conjunction with global suppression of type I interferon-signaling pathway and an aberrant expression of host genes associated with pregnancy complications. 30 ZIKV+ sera from symptomatic pregnant patients also showed elevated levels of M2-skewed immunosuppressive cytokines and pregnancy complication-associated fibronectin-1. This study demonstrates the differential immunomodulatory responses of blood monocytes, particularly during pregnancy, upon infection with different lineages of ZIKV. PMID:28827581

  4. Efficacy and safety of granulocyte and monocyte adsorption apheresis for ulcerative colitis: a meta-analysis.

    PubMed

    Yoshino, Takuya; Nakase, Hiroshi; Minami, Naoki; Yamada, Satoshi; Matsuura, Minoru; Yazumi, Shujiro; Chiba, Tsutomu

    2014-03-01

    Safe and effective treatments are required for patients with ulcerative colitis. It was suggested that granulocyte and monocyte adsorption apheresis might play an important role for ulcerative colitis. Therefore, a meta-analysis was performed. Medline and the Cochrane controlled trials register were used to identify randomized controlled trials comparing granulocyte and monocyte adsorption apheresis with corticosteroids, and comparing intensive with conventional apheresis in patients with ulcerative colitis. Nine randomized trials were eligible for inclusion criteria. According to pooled data, granulocyte and monocyte adsorption apheresis is effective for inducing clinical remission in patients with ulcerative colitis compared with corticosteroids (odds ratio, 2.23; 95% confidence interval: 1.38-3.60). However, the efficacy of granulocyte and monocyte adsorption apheresis was not dependent on the number of apheresis sessions. The intensive apheresis (≥2 sessions per week) is more effective for inducing clinical remission than weekly apheresis (odds ratio, 2.10; 95% confidence interval: 1.12-3.93). The rate of adverse events by apheresis was significantly lower than that by corticosteroids (odds ratio, 0.24; 95% confidence interval: 0.15-0.37). Our meta-analysis reveals that intensive granulocyte and monocyte adsorption apheresis is a safe and effective treatment with higher rates of clinical remission and response for ulcerative colitis compared with corticosteroids. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  5. A synergistic role for IL-1beta and TNFalpha in monocyte-derived IFNgamma inducing activity.

    PubMed

    Raices, Raquel M; Kannan, Yashaswini; Sarkar, Anasuya; Bellamkonda-Athmaram, Vedavathi; Wewers, Mark D

    2008-11-01

    Although much is known about classic IFNgamma inducers, little is known about the IFNgamma inducing capability of inflammasome-activated monocytes. In this study, supernatants from LPS/ATP-stimulated human monocytes were analyzed for their ability to induce IFNgamma production by KG-1 cells. Unexpectedly, monocyte-derived IFN inducing activity was detected, but it was completely inhibited by IL-1beta, not IL-18 blockade. Moreover, size-fractionation of the monocyte conditioned media dramatically reduced the IFNgamma inducing activity of IL-1beta, suggesting that IL-1beta requires a cofactor to induce IFNgamma production in KG-1 cells. Because TNFalpha is known to synergize with IL-1beta for various gene products, it was studied as the putative IL-1beta synergizing factor. Although recombinant TNFalpha (rTNFalpha) alone had no IFNgamma inducing activity, neutralization of TNFalpha in the monocyte conditioned media inhibited the IFNgamma inducing activity. Furthermore, rTNFalpha restored the IFNgamma inducing activity of the size-fractionated IL-1beta. Finally, rTNFalpha synergized with rIL-1beta, as well as with rIL-1alpha and rIL-18, for KG-1 IFNgamma release. These studies demonstrate a synergistic role between TNFalpha and IL-1 family members in the induction of IFNgamma production and give caution to interpretations of KG-1 functional assays designed to detect functional IL-18.

  6. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases*

    PubMed Central

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J.; Nie, Guangjun

    2016-01-01

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. PMID:26895960

  7. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages.

    PubMed

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  8. Role of CD40 and ADAMTS13 in von Willebrand factor-mediated endothelial cell-platelet-monocyte interaction.

    PubMed

    Popa, Miruna; Tahir, Sibgha; Elrod, Julia; Kim, Su Hwan; Leuschner, Florian; Kessler, Thorsten; Bugert, Peter; Pohl, Ulrich; Wagner, Andreas H; Hecker, Markus

    2018-06-12

    Monocyte extravasation into the vessel wall is a key step in atherogenesis. It is still elusive how monocytes transmigrate through the endothelial cell (EC) monolayer at atherosclerosis predilection sites. Platelets tethered to ultra-large von Willebrand factor (ULVWF) multimers deposited on the luminal EC surface following CD40 ligand (CD154) stimulation may facilitate monocyte diapedesis. Human ECs grown in a parallel plate flow chamber for live-cell imaging or Transwell permeable supports for transmigration assay were exposed to fluid or orbital shear stress and CD154. Human isolated platelets and/or monocytes were superfused over or added on top of the EC monolayer. Plasma levels and activity of the ULVWF multimer-cleaving protease ADAMTS13 were compared between coronary artery disease (CAD) patients and controls and were verified by the bioassay. Two-photon intravital microscopy was performed to monitor CD154-dependent leukocyte recruitment in the cremaster microcirculation of ADAMTS13-deficient versus wild-type mice. CD154-induced ULVWF multimer-platelet string formation on the EC surface trapped monocytes and facilitated transmigration through the EC monolayer despite high shear stress. Two-photon intravital microscopy revealed CD154-induced ULVWF multimer-platelet string formation preferentially in venules, due to strong EC expression of CD40, causing prominent downstream leukocyte extravasation. Plasma ADAMTS13 abundance and activity were significantly reduced in CAD patients and strongly facilitated both ULVWF multimer-platelet string formation and monocyte trapping in vitro. Moderate ADAMTS13 deficiency in CAD patients augments CD154-mediated deposition of platelet-decorated ULVWF multimers on the luminal EC surface, reinforcing the trapping of circulating monocytes at atherosclerosis predilection sites and promoting their diapedesis.

  9. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis.

    PubMed

    Okondo, Marian C; Johnson, Darren C; Sridharan, Ramya; Go, Eun Bin; Chui, Ashley J; Wang, Mitchell S; Poplawski, Sarah E; Wu, Wengen; Liu, Yuxin; Lai, Jack H; Sanford, David G; Arciprete, Michael O; Golub, Todd R; Bachovchin, William W; Bachovchin, Daniel A

    2017-01-01

    Val-boroPro (Talabostat, PT-100), a nonselective inhibitor of post-proline cleaving serine proteases, stimulates mammalian immune systems through an unknown mechanism of action. Despite this lack of mechanistic understanding, Val-boroPro has attracted substantial interest as a potential anticancer agent, reaching phase 3 trials in humans. Here we show that Val-boroPro stimulates the immune system by triggering a proinflammatory form of cell death in monocytes and macrophages known as pyroptosis. We demonstrate that the inhibition of two serine proteases, DPP8 and DPP9, activates the pro-protein form of caspase-1 independent of the inflammasome adaptor ASC. Activated pro-caspase-1 does not efficiently process itself or IL-1β but does cleave and activate gasdermin D to induce pyroptosis. Mice lacking caspase-1 do not show immune stimulation after treatment with Val-boroPro. Our data identify what is to our knowledge the first small molecule that induces pyroptosis and reveals a new checkpoint that controls the activation of the innate immune system.

  10. Activation of Wnt/β-Catenin Pathway in Monocytes Derived from Chronic Kidney Disease Patients

    PubMed Central

    Al-Chaqmaqchi, Heevy Abdulkareem Musa; Moshfegh, Ali; Dadfar, Elham; Paulsson, Josefin; Hassan, Moustapha; Jacobson, Stefan H.; Lundahl, Joachim

    2013-01-01

    Patients with chronic kidney disease (CKD) have significantly increased morbidity and mortality resulting from infections and cardiovascular diseases. Since monocytes play an essential role in host immunity, this study was directed to explore the gene expression profile in order to identify differences in activated pathways in monocytes relevant to the pathophysiology of atherosclerosis and increased susceptibility to infections. Monocytes from CKD patients (stages 4 and 5, estimated GFR <20 ml/min/1.73 m2) and healthy donors were collected from peripheral blood. Microarray gene expression profile was performed and data were interpreted by GeneSpring software and by PANTHER tool. Western blot was done to validate the pathway members. The results demonstrated that 600 and 272 genes were differentially up- and down regulated respectively in the patient group. Pathways involved in the inflammatory response were highly expressed and the Wnt/β-catenin signaling pathway was the most significant pathway expressed in the patient group. Since this pathway has been attributed to a variety of inflammatory manifestations, the current findings may contribute to dysfunctional monocytes in CKD patients. Strategies to interfere with this pathway may improve host immunity and prevent cardiovascular complications in CKD patients. PMID:23935909

  11. Spatiotemporal expression dynamics of selectins govern the sequential extravasation of neutrophils and monocytes in the acute inflammatory response.

    PubMed

    Zuchtriegel, Gabriele; Uhl, Bernd; Hessenauer, Maximilian E T; Kurz, Angela R M; Rehberg, Markus; Lauber, Kirsten; Krombach, Fritz; Reichel, Christoph A

    2015-04-01

    Leukocyte recruitment to the site of inflammation is a key event in a variety of cardiovascular pathologies. Infiltrating neutrophils constitute the first line of defense that precedes a second wave of emigrating monocytes reinforcing the inflammatory reaction. The mechanisms initiating this sequential process remained largely obscure. Using advanced in vivo microscopy and in vitro/ex vivo techniques, we identified individual spatiotemporal expression patterns of selectins and their principal interaction partners on neutrophils, resident/inflammatory monocytes, and endothelial cells. Coordinating the intraluminal trafficking of neutrophils and inflammatory monocytes to common sites of extravasation, selectins assign different sites to these immune cells for their initial interactions with the microvascular endothelium. Whereas constitutively expressed leukocyte L-selectin/CD62L and endothelial P-selectin/CD62P together with CD44 and P-selectin glycoprotein ligand-1/CD162 initiate the emigration of neutrophils, de novo synthesis of endothelial E-selectin/CD62E launches the delayed secondary recruitment of inflammatory monocytes. In this context, P-selectin/CD62P and L-selectin/CD62L together with P-selectin glycoprotein ligand-1/CD162 and CD44 were found to regulate the flux of rolling neutrophils and inflammatory monocytes, whereas E-selectin/CD62E selectively adjusts the rolling velocity of inflammatory monocytes. Moreover, selectins and their interaction partners P-selectin glycoprotein ligand-1/CD162 and CD44 differentially control the intraluminal crawling behavior of neutrophils and inflammatory monocytes collectively enabling the sequential extravasation of these immune cells to inflamed tissue. Our findings provide novel insights into the mechanisms initiating the sequential infiltration of the perivascular tissue by neutrophils and monocytes in the acute inflammatory response and might thereby contribute to the development of targeted therapeutic strategies

  12. Attractive but guilty: deliberation and the physical attractiveness bias.

    PubMed

    Patry, Marc W

    2008-06-01

    The current study examined the effect of jury deliberation on the tendency for mock jurors to find attractive defendants guilty less often. It was expected that there would be an interaction between group deliberation (yes or no) and defendant's appearance (plain-looking or attractive). It was hypothesized that mock jurors who did not deliberate would be more likely to find a plain-looking defendant guilty and that deliberation would mitigate this effect. The study was a 2 x 2 between-subjects factorial design. Participants were assigned randomly to one of four conditions: attractive defendant/deliberation, attractive defendant/no deliberation, plain-looking defendant/deliberation, and plain-looking defendant/no deliberation. A total of 172 undergraduates from a small, rural college in Vermont contributed to this study: mock jurors were 70 men and 52 women, ages ranged from 18 to 52 years (M=20.5, SD=4.9). The hypothesis was supported. Mock jurors who did not deliberate were more likely to find the plain-looking defendant guilty, whereas mock jurors who deliberated were more likely to find the attractive defendant guilty.

  13. Robust and Highly-Efficient Differentiation of Functional Monocytic Cells from Human Pluripotent Stem Cells under Serum- and Feeder Cell-Free Conditions

    PubMed Central

    Yanagimachi, Masakatsu D.; Niwa, Akira; Tanaka, Takayuki; Honda-Ozaki, Fumiko; Nishimoto, Seiko; Murata, Yuuki; Yasumi, Takahiro; Ito, Jun; Tomida, Shota; Oshima, Koichi; Asaka, Isao; Goto, Hiroaki; Heike, Toshio; Nakahata, Tatsutoshi; Saito, Megumu K.

    2013-01-01

    Monocytic lineage cells (monocytes, macrophages and dendritic cells) play important roles in immune responses and are involved in various pathological conditions. The development of monocytic cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is of particular interest because it provides an unlimited cell source for clinical application and basic research on disease pathology. Although the methods for monocytic cell differentiation from ESCs/iPSCs using embryonic body or feeder co-culture systems have already been established, these methods depend on the use of xenogeneic materials and, therefore, have a relatively poor-reproducibility. Here, we established a robust and highly-efficient method to differentiate functional monocytic cells from ESCs/iPSCs under serum- and feeder cell-free conditions. This method produced 1.3×106±0.3×106 floating monocytes from approximately 30 clusters of ESCs/iPSCs 5–6 times per course of differentiation. Such monocytes could be differentiated into functional macrophages and dendritic cells. This method should be useful for regenerative medicine, disease-specific iPSC studies and drug discovery. PMID:23573196

  14. ADMA induces monocyte adhesion via activation of chemokine receptors in cultured THP-1 cells.

    PubMed

    Chen, Meifang; Li, Yuanjian; Yang, Tianlun; Wang, Yongjin; Bai, Yongping; Xie, Xiumei

    2008-08-01

    Asymmetric dimethylarginine (ADMA), an endogenous NOS inhibitor, is also an important inflammatory factor contributing to the development of atherosclerosis (AS). The present study was to test the effect of ADMA on angiotensin (Ang) II-induced monocytic adhesion. Human monocytoid cells (THP-1) or isolated peripheral blood monocyte cells (PBMCs) were incubated with Ang II (10(-6)M) or exogenous ADMA (30 microM) for 4 or 24h in the absence or presence of losartan or antioxidant PDTC. In cultured THP-1 cells, Ang II (10(-6)M) for 24h elevated the level of ADMA in the medium, upregulated the protein expression of protein arginine methyltransferase (PRMT) and decreased the activity of dimethylarginine dimethylaminohydrolase (DDAH). Both of Ang II and ADMA increased monocytic adhesion to human umbilical vein endothelial cells (HUVECs), elevated the levels of monocyte chemoattractant protein (MCP)-1, interleukin (IL)-8 and tumor necrosis factor (TNF)-alpha and upregulated CCR(2) and CXCR(2) mRNA expression, concomitantly with increase in reactive oxygen species (ROS) generation and activation of nuclear factor (NF)-kappaB. Pretreatment with losartan (10 microM) or PDTC (10 microM) abolished the effects mediated by Ang II or ADMA. In isolated PBMCs from healthy individuals, ADMA upregulated the expression of CXCR(2) mRNA, which was attenuated by losartan (10 microM), however, ADMA had no effect on surface protein expression of CCR(2). The present results suggest that ADMA may be involved in monocytic adhesion induced by Ang II via activation of chemokine receptors by ROS/NF-kappaB pathway.

  15. Quantitative Glycoproteomic Analysis Identifies Platelet-Induced Increase of Monocyte Adhesion via the Up-Regulation of Very Late Antigen 5.

    PubMed

    Huang, Jiqing; Kast, Juergen

    2015-08-07

    Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.

  16. Production of inflammatory cytokines by peripheral blood monocytes in chronic alcoholism: relationship with ethanol intake and liver disease.

    PubMed

    Laso, Francisco Javier; Vaquero, José Miguel; Almeida, Julia; Marcos, Miguel; Orfao, Alberto

    2007-09-01

    Controversial results have been reported about the effects of alcoholism on the functionality of monocytes. In the present study we analyze the effects of chronic alcoholism on the intracellular production of inflammatory cytokines by peripheral blood (PB) monocytes. Spontaneous and in vitro-stimulated production of interleukin (IL) 1alpha (TNFalpha) by PB monocytes was analyzed at the single level by flow cytometry in chronic alcoholics without liver disease and active ethanol (EtOH) intake (AWLD group), as well as in patients with alcohol liver cirrhosis (ALC group), who were either actively drinking (ALCET group) or with alcohol withdrawal (ALCAW group). A significantly increased spontaneous production of IL1beta, IL6, IL12, and TNFalpha was observed on PB monocytes among AWLD individuals. Conversely, circulating monocytes form ALCET patients showed an abnormally low spontaneous and stimulated production of inflammatory cytokines. No significant changes were observed in ALCAW group as regards production of IL1beta, IL6, IL12, and TNFalpha. Our results show an altered pattern of production of inflammatory cytokines in PB monocytes from chronic alcoholic patients, the exact abnormalities observed depending on both the status of EtOH intake and the existence of alcoholic liver disease. Copyright 2007 Clinical Cytometry Society.

  17. TLR8-driven IL-12-dependent reciprocal and synergistic activation of NK cells and monocytes by immunostimulatory RNA.

    PubMed

    Berger, Michael; Ablasser, Andrea; Kim, Sarah; Bekeredjian-Ding, Isabelle; Giese, Thomas; Endres, Stefan; Hornung, Veit; Hartmann, Gunther

    2009-04-01

    Immunostimulatory RNA (isRNA) depending on sequence and structure can function as a ligand for Toll-like receptor (TLR) 7 and TLR8. Here we show that isRNA induces high levels of bioactive interleukin-12 in purified human monocytes, whereas purified natural killer (NK) cells did not respond. However, in a coculture of monocytes and NK cells, isRNA dramatically increased NK cell function. Activation of monocytes and NK cells was bidirectional, as monocytes in the presence of NK cells produced higher levels of bioactive interleukin-12. As a result of the monocyte-NK cell interaction in peripheral blood mononuclear cells isRNA induced high levels of interferon (IFN)-gamma in NK cells and strong NK cell-mediated cytotoxic activity. Induction of simultaneous IFN-gamma production and lytic activity by isRNA in NK cells was higher as compared with other established nucleic acid or small molecule TLR ligands. Our studies demonstrate that monocytes play a pivotal role in the orchestration of a strong NK cell response. With early NK cell-dependent IFN-gamma production being critical for the development of antigen-specific cytotoxic T lymphocyte responses, newly developed isRNA-based TLR8 ligands join the list of promising oligonucleotides for immunotherapy of viral infection and cancer.

  18. Ambient ultrafine particles activate human monocytes: Effect of dose, differentiation state and age of donors.

    PubMed

    Bliss, Bishop; Tran, Kevin Ivan; Sioutas, Constantinos; Campbell, Arezoo

    2018-02-01

    Exposure to ambient particulate matter (PM) has been linked to adverse pulmonary and cardiovascular health effects. Activation of both inflammatory and oxidative stress pathways has been observed and may be a probable cause of these outcomes. We tested the hypothesis that in human monocytes, PM-induced oxidative and inflammatory responses are interrelated. A human monocytic cell line (THP-1) was used to determine if dose and differentiation state plays a role in the cellular response after a 24hr exposure to particles. Primary human monocytes derived from eight female, non-smoker donors (aged: 21, 24, 27, 28, 48, 49, 54 & 60yo) were used to determine if the age of donors modulates the response. Cells were treated with aqueous suspensions of ambient ultrafine particles (UFP, defined as smaller than 0.2µm in size) or a media control for 24hr. After exposure, reactive oxygen species (ROS) formation was increased irrespective of dose or differentiation state of THP-1 cells. In the primary human monocytes, ROS formation was not significantly changed. The release of the proinflammatory cytokine, tumor necrosis factor alpha (TNF-α), was dose-dependent and greatest in differentiated compared to undifferentiated THP-1 cells exposed to UFP. In the Primary human monocytes, TNF-α secretion was increased irrespective of the age of the donor. Our results suggest that after a 24hr exposure to particles, general reactive oxygen species formation was nonspecific and uncorrelated to cytokine secretion which was consistently enhanced. Cytokines play an important role in orchestrating many immune responses and thus the ability of ambient particles to enhance robust secretion of a proinflammatory cytokine from primary human monocytes, and how this may influence the response to pathogens and alter disease states, needs to be further evaluated. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of normoxic and hypoxic exercise regimens on monocyte-mediated thrombin generation in sedentary men.

    PubMed

    Wang, Jong-Shyan; Chang, Ya-Lun; Chen, Yi-Ching; Tsai, Hsing-Hua; Fu, Tieh-Cheng

    2015-08-01

    Exercise and hypoxia paradoxically modulate vascular thrombotic risks. The shedding of procoagulant-rich microparticles from monocytes may accelerate the pathogenesis of atherothrombosis. The present study explores the manner in which normoxic and hypoxic exercise regimens affect procoagulant monocyte-derived microparticle (MDMP) formation and monocyte-promoted thrombin generation (TG). Forty sedentary healthy males were randomized to perform either normoxic (NET; 21% O2, n=20) or hypoxic (HET; 15% O2, n=20) exercise training (60% VO(2max)) for 30 min/day, 5 days/week for 5 weeks. At rest and immediately after HET (100 W under 12% O2 for 30 min), the MDMP characteristics and dynamic TG were measured by flow cytometry and thrombinography respectively. The results demonstrated that acute 12% O2 exercise (i) increased the release of coagulant factor V (FV)/FVIII-rich, phosphatidylserine (PS)-exposed and tissue factor (TF)-expressed microparticles from monocytes, (ii) enhanced the peak height and rate of TG in monocyte-rich plasma (MRP) and (iii) elevated concentrations of norepinephrine/epinephrine, myeloperoxidase (MPO) and interleukin-6 (IL-6) in plasma. Following the 5-week intervention, HET exhibited higher enhancements of peak work-rate and cardiopulmonary fitness than NET did. Moreover, both NET and HET decreased the FV/FVIII-rich, PS-exposed and TF-expressed MDMP counts and the peak height and rate of TG in MRP following the HET. However, HET elicited more suppression for the HE (hypoxic exercise)-enhanced procoagulant MDMP formation and dynamic TG in MPR and catecholamine/peroxide/pro-inflammatory cytokine levels in plasma than NET. Hence, we conclude that HET is superior to NET for enhancing aerobic capacity. Furthermore, HET effectively suppresses procoagulant MDMP formation and monocyte-mediated TG under severe hypoxic stress, compared with NET.

  20. Monocyte-Derived Macrophages Contribute to Spontaneous Long-Term Functional Recovery after Stroke in Mice.

    PubMed

    Wattananit, Somsak; Tornero, Daniel; Graubardt, Nadine; Memanishvili, Tamar; Monni, Emanuela; Tatarishvili, Jemal; Miskinyte, Giedre; Ge, Ruimin; Ahlenius, Henrik; Lindvall, Olle; Schwartz, Michal; Kokaia, Zaal

    2016-04-13

    Stroke is a leading cause of disability and currently lacks effective therapy enabling long-term functional recovery. Ischemic brain injury causes local inflammation, which involves both activated resident microglia and infiltrating immune cells, including monocytes. Monocyte-derived macrophages (MDMs) exhibit a high degree of functional plasticity. Here, we determined the role of MDMs in long-term spontaneous functional recovery after middle cerebral artery occlusion in mice. Analyses by flow cytometry and immunocytochemistry revealed that monocytes home to the stroke-injured hemisphere., and that infiltration peaks 3 d after stroke. At day 7, half of the infiltrating MDMs exhibited a bias toward a proinflammatory phenotype and the other half toward an anti-inflammatory phenotype, but during the subsequent 2 weeks, MDMs with an anti-inflammatory phenotype dominated. Blocking monocyte recruitment using the anti-CCR2 antibody MC-21 during the first week after stroke abolished long-term behavioral recovery, as determined in corridor and staircase tests, and drastically decreased tissue expression of anti-inflammatory genes, including TGFβ, CD163, and Ym1. Our results show that spontaneously recruited monocytes to the injured brain early after the insult contribute to long-term functional recovery after stroke. For decades, any involvement of circulating immune cells in CNS repair was completely denied. Only over the past few years has involvement of monocyte-derived macrophages (MDMs) in CNS repair received appreciation. We show here, for the first time, that MDMs recruited to the injured brain early after ischemic stroke contribute to long-term spontaneous functional recovery through inflammation-resolving activity. Our data raise the possibility that inadequate recruitment of MDMs to the brain after stroke underlies the incomplete functional recovery seen in patients and that boosting homing of MDMs with an anti-inflammatory bias to the injured brain tissue may be

  1. Blood monocyte alteration caused by a hematozoan infection in the lizard Ameiva ameiva (Reptilia: Teiidae).

    PubMed

    Silva, Edilene O; Diniz, José P; Alberio, Sanny; Lainson, Ralph; de Souza, Wanderley; DaMatta, Renato A

    2004-08-01

    Although hematozoa have been described from many different host species, little is known about the infection and its relationship to the physiology of the host. We studied a hematozoan, regarded as a species of Lainsonia Landau, 1973 (Lankestereliidae), which infects the monocytes of the lizard Ameiva ameiva. The infected animals show a huge monocytosis and morphological changes in the monocytes. Ultrastructurally, the parasite has an apical complex, dense bodies, electron lucent structures, plasma membrane projections and folding which may be involved with nutrition. The parasite occupies a parasitophorous vacuole (PV) exhibiting high electron density at its membrane. Mitochondria and the Golgi complex of the monocytes were concentrated around the PV, and the cytoplasm was totally occupied by a vimentin type of intermediate filament radiating from (or to) the cytosolic surface of the PV. Vimentin was identified by diameter measurement, immunofluorescence and immunoelectron microscopy. These observations indicate that this infection alters the physiological state of the host and suggest that this parasite has the ability to modify monocyte vimentin assembly.

  2. Neutrophils and monocytes transport tumor cell antigens from the peritoneal cavity to secondary lymphoid tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terasawa, Masao; Nagata, Kisaburo; Kobayashi, Yoshiro

    2008-12-12

    Antigen-transporting cells take up pathogens, and then migrate from sites of inflammation to secondary lymphoid tissues to induce an immune response. Among antigen-transporting cells, dendritic cells (DCs) are believed to be the most potent and professional antigen-presenting cells that can stimulate naive T cells. However, the cells that transport antigens, tumor cell antigens in particular, have not been clearly identified. In this study we have analyzed what types of cells transport tumor cell antigens to secondary lymphoid tissues. We show that neutrophils, monocytes and macrophages but not DCs engulf X-irradiated P388 leukemic cells after their injection into the peritoneal cavity,more » and that neutrophils and monocytes but not macrophages migrate to the parathymic lymph nodes (pLN), the blood, and then the spleen. The monocytes in the pLN comprise Gr-1{sup -} and Gr-1{sup +} ones, and some of these cells express CD11c. Overall, this study demonstrates that neutrophils and monocytes transport tumor cell antigens from the peritoneal cavity to secondary lymphoid tissues.« less

  3. Interactions Between HIV-Infected Monocytes and the Extracellular Matrix: HIV-Infected Monocytes Secrete Neutral Metalloproteases That Degrade Basement Membrane Protein Matrices,

    DTIC Science & Technology

    1992-08-01

    p2 4 antigen (Ag) by flow "cytometry. All cells were recovered from Matrigel (Col- 20• laborative Biomedical Products) after treatment with a bac...of HIV-infected mono- tropic virus originally isolated and passaged in monocytes, at a multiplicity of infection of 0.05 infectious virus/target cell

  4. Associations of prepartum plasma cortisol, haptoglobin, fecal cortisol metabolites, and nonesterified fatty acids with postpartum health status in Holstein dairy cows.

    PubMed

    Huzzey, J M; Nydam, D V; Grant, R J; Overton, T R

    2011-12-01

    The association between negative energy balance and health has led to the testing of blood analytes such as nonesterified fatty acids (NEFA) to identify opportunities for improving the management of transition dairy cows. The objective of this study was to evaluate whether prepartum analytes associated with stress (cortisol) or inflammation (haptoglobin) could also identify dairy cattle at increased risk for health complications after calving. Prepartum blood and fecal samples were collected once weekly from 412 Holstein dairy cows on 2 commercial dairy farms (at wk -3, -2, and -1 relative to calving) and analyzed for concentrations of NEFA, haptoglobin (Hp), and cortisol in plasma and cortisol metabolites in feces. Retained placenta (RP), displaced abomasum (DA), subclinical ketosis (SCK), high Hp concentration (HiHp), and death were recorded up to 30 d in milk (DIM), and animals were subsequently categorized into 3 health categories: (1) no disorder of interest (NDI); (2) one disorder (RP, DA, SCK, or HiHp); or (3) more than one disorder (RP, DA, SCK, HiHp) or death. With the exception of prepartum NEFA, no associations were detected between prepartum concentrations of our analytes of interest and the occurrence of one disorder (RP, DA, SCK, or HiHP) by 30 DIM. Haptoglobin concentration tended to be greater during wk -2 and -1 in cows that developed more than one disorder or that died by 30 DIM; however, when calving assistance was included as a covariate in the analysis prepartum, Hp was no longer a significant risk factor for this postpartum health outcome. Primiparous cows with plasma cortisol concentrations >22.2 nmol/L during wk -2 had reduced odds [odds ratio (OR) 0.41; 95% confidence interval (CI) 0.17-0.98] of developing more than one disorder or death by 30 DIM, whereas multiparous cows with plasma cortisol >34.1 nmol/L during wk -2 tended to have greater odds (OR 2.53; 95% CI 0.87-7.37) of developing more than one disorder or death by 30 DIM. Individual

  5. Microarray analysis of Mycobacterium tuberculosis-infected monocytes reveals IL26 as a new candidate gene for tuberculosis susceptibility.

    PubMed

    Guerra-Laso, José M; Raposo-García, Sara; García-García, Silvia; Diez-Tascón, Cristina; Rivero-Lezcano, Octavio M

    2015-02-01

    Differences in the activity of monocytes/macrophages, important target cells of Mycobacterium tuberculosis, might influence tuberculosis progression. With the purpose of identifying candidate genes for tuberculosis susceptibility we infected monocytes from both healthy elderly individuals (a tuberculosis susceptibility group) and elderly tuberculosis patients with M. tuberculosis, and performed a microarray experiment. We detected 78 differentially expressed transcripts and confirmed these results by quantitative PCR of selected genes. We found that monocytes from tuberculosis patients showed similar expression patterns for these genes, regardless of whether they were obtained from younger or older patients. Only one of the detected genes corresponded to a cytokine: IL26, a member of the interleukin-10 (IL-10) cytokine family which we found to be down-regulated in infected monocytes from tuberculosis patients. Non-infected monocytes secreted IL-26 constitutively but they reacted strongly to M. tuberculosis infection by decreasing IL-26 production. Furthermore, IL-26 serum concentrations appeared to be lower in the tuberculosis patients. When whole blood was infected, IL-26 inhibited the observed pathogen-killing capability. Although lymphocytes expressed IL26R, the receptor mRNA was not detected in either monocytes or neutrophils, suggesting that the inhibition of anti-mycobacterial activity may be mediated by lymphocytes. Additionally, IL-2 concentrations in infected blood were lower in the presence of IL-26. The negative influence of IL-26 on the anti-mycobacterial activity and its constitutive presence in both serum and monocyte supernatants prompt us to propose IL26 as a candidate gene for tuberculosis susceptibility. © 2014 John Wiley & Sons Ltd.

  6. Interaction between Salmonella typhimurium and phagocytic cells in pigs. Phagocytosis, oxidative burst and killing in polymorphonuclear leukocytes and monocytes.

    PubMed

    Riber, U; Lind, P

    1999-02-22

    Interactions between Salmonella typhimurium and peripheral blood leucocytes from healthy, Salmonella-free pigs were investigated in vitro. Both granulocytes and monocytes phagocytized FITC-labelled heat-killed Salmonella bacteria as shown by flow cytometry. Phagocytosis in whole blood and isolated leucocytes was measured as acquired fluorescence in the leukocytes and was both time and dose related. Living, serum-opsonized Salmonella bacteria induced a dose-dependent oxidative burst in PMNs and monocytes as measured by luminol-enhanced chemiluminescence (LC). When opsonized in normal serum the Salmonella bacteria, in the range of 2-5 x 10(7) cfu, induced a LC response in monocytes comparable to the level of responses induced by phorbol myristate acetate (PMA) and opsonized zymosan, and the Salmonella-induced response was only marginally reduced by superoxide dismutase (SOD). Intracellular killing of Salmonella by monocytes was assessed from plate colony counts of lysed monocytes and showed that Salmonella typhimurium was able to survive and proliferate in adherent monocytes in vitro despite a reduction in intracellular cfu during the first hour's incubation in cells from some pigs. Experiments with the exhaustion of oxidative burst in non-adherent monocytes were performed by prestimulation with PMA, heat-killed Salmonella or buffer. Prestimulation with PMA led to a strong reduction in oxidative burst induced by living opsonized Salmonella bacteria, whereas prestimulation with heat-killed bacteria gave rise to an enhanced response. In these experiments intracellular killing of the added living Salmonella gave variable results, in that monocytes from two out of three pigs showed no essential change in intracellular bactericidal activity, but with cells from one pig a less pronounced bactericidal activity was found after prestimulation with PMA.

  7. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases.

    PubMed

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J; Nie, Guangjun

    2016-04-15

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Ursolic acid protects monocytes against metabolic stress-induced priming and dysfunction by preventing the induction of Nox4☆

    PubMed Central

    Ullevig, Sarah L.; Kim, Hong Seok; Nguyen, Huynh Nga; Hambright, William S.; Robles, Andrew J.; Tavakoli, Sina; Asmis, Reto

    2014-01-01

    Aims Dietary supplementation with ursolic acid (UA) prevents monocyte dysfunction in diabetic mice and protects mice against atherosclerosis and loss of renal function. The goal of this study was to determine the molecular mechanism by which UA prevents monocyte dysfunction induced by metabolic stress. Methods and results Metabolic stress sensitizes or “primes” human THP-1 monocytes and murine peritoneal macrophages to the chemoattractant MCP-1, converting these cells into a hyper-chemotactic phenotype. UA protected THP-1 monocytes and peritoneal macrophages against metabolic priming and prevented their hyper-reactivity to MCP-1. UA blocked the metabolic stress-induced increase in global protein-S-glutathionylation, a measure of cellular thiol oxidative stress, and normalized actin-S-glutathionylation. UA also restored MAPK phosphatase-1 (MKP1) protein expression and phosphatase activity, decreased by metabolic priming, and normalized p38 MAPK activation. Neither metabolic stress nor UA supplementation altered mRNA or protein levels of glutaredoxin-1, the principal enzyme responsible for the reduction of mixed disulfides between glutathione and protein thiols in these cells. However, the induction of Nox4 by metabolic stress, required for metabolic priming, was inhibited by UA in both THP-1 monocytes and peritoneal macrophages. Conclusion UA protects THP-1 monocytes against dysfunction by suppressing metabolic stress-induced Nox4 expression, thereby preventing the Nox4-dependent dysregulation of redox-sensitive processes, including actin turnover and MAPK-signaling, two key processes that control monocyte migration and adhesion. This study provides a novel mechanism for the anti-inflammatory and athero- and renoprotective properties of UA and suggests that dysfunctional blood monocytes may be primary targets of UA and related compounds. PMID:24494201

  9. Functional Relevance of Protein Glycosylation to the Pro-Inflammatory Effects of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) on Monocytes/Macrophages

    PubMed Central

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Background and Objective Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. Methods The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. Results 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Conclusions Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages. PMID:25658763

  10. The phenotype and function of preterm infant monocytes: implications for susceptibility to infection.

    PubMed

    de Jong, Emma; Strunk, Tobias; Burgner, David; Lavoie, Pascal M; Currie, Andrew

    2017-09-01

    The extreme vulnerability of preterm infants to invasive microbial infections has been attributed to "immature" innate immune defenses. Monocytes are important innate immune sentinel cells critical in the defense against infection in blood. They achieve this via diverse mechanisms that include pathogen recognition receptor- and inflammasome-mediated detection of microbes, migration into infected tissues, and differentiation into Mϕs and dendritic cells, initiation of the inflammatory cascade by free radicals and cytokine/chemokine production, pathogen clearance by phagocytosis and intracellular killing, and the removal of apoptotic cells. Relatively little is known about these cells in preterm infants, especially about how their phenotype adapts to changes in the microbial environment during the immediate postnatal period. Overall, preterm monocytes exhibit attenuated proinflammatory cytokine responses following stimulation by whole bacterial or specific microbial components in vitro. These attenuated cytokine responses cannot be explained by a lack of intracellular signaling events downstream of pattern recognition receptors. This hyporesponsiveness also contrasts with mature, term-like phagocytosis capabilities detectable even in the most premature infant. Finally, human data on the effects of fetal chorioamnionitis on monocyte biology are incomplete and inconsistent. In this review, we present an integrated view of human studies focused on monocyte functions in preterm infants. We discuss how a developmental immaturity of these cells may contribute to preterm infants' susceptibility to infections. © Society for Leukocyte Biology.

  11. Bone marrow-derived monocyte infusion improves hepatic fibrosis by decreasing osteopontin, TGF-β1, IL-13 and oxidative stress.

    PubMed

    de Souza, Veruska Cintia Alexandrino; Pereira, Thiago Almeida; Teixeira, Valéria Wanderley; Carvalho, Helotonio; de Castro, Maria Carolina Accioly Brelaz; D'assunção, Carolline Guimarães; de Barros, Andréia Ferreira; Carvalho, Camila Lima; de Lorena, Virgínia Maria Barros; Costa, Vláudia Maria Assis; Teixeira, Álvaro Aguiar Coelho; Figueiredo, Regina Celia Bressan Queiroz; de Oliveira, Sheilla Andrade

    2017-07-28

    To evaluate the therapeutic effects of bone marrow-derived CD11b + CD14 + monocytes in a murine model of chronic liver damage. Chronic liver damage was induced in C57BL/6 mice by administration of carbon tetrachloride and ethanol for 6 mo. Bone marrow-derived monocytes isolated by immunomagnetic separation were used for therapy. The cell transplantation effects were evaluated by morphometry, biochemical assessment, immunohistochemistry and enzyme-linked immunosorbent assay. CD11b + CD14 + monocyte therapy significantly reduced liver fibrosis and increased hepatic glutathione levels. Levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-6 and IL-1β, in addition to pro-fibrotic factors, such as IL-13, transforming growth factor-β1 and tissue inhibitor of metalloproteinase-1 also decreased, while IL-10 and matrix metalloproteinase-9 increased in the monocyte-treated group. CD11b + CD14 + monocyte transplantation caused significant changes in the hepatic expression of α-smooth muscle actin and osteopontin. Monocyte therapy is capable of bringing about improvement of liver fibrosis by reducing oxidative stress and inflammation, as well as increasing anti-fibrogenic factors.

  12. Potent Antitumor Effects of Combination Therapy With IFNs and Monocytes in Mouse Models of Established Human Ovarian and Melanoma Tumors

    PubMed Central

    Nakashima, Hideyuki; Miyake, Kotaro; Clark, Christopher R; Bekisz, Joseph; Finbloom, Joel; Husain, Syed R.; Baron, Samuel; Puri, Raj K.; Zoon, Kathryn C.

    2012-01-01

    Interferon-activated monocytes are known to exert cytocidal activity against tumor cells in vitro. Here, we have examined whether a combination of IFN-α2a and IFN-γ and human monocytes mediate significant antitumor effects against human ovarian and melanoma tumor xenografts in mouse models. OVCAR-3 tumors were treated i.t. with monocytes alone, IFN-α2a and IFN-γ alone or combination of all three on day 0, 15 or 30 post-tumor implantation. Mice receiving combination therapy beginning day 15 showed significantly reduced tumor growth and prolonged survival including complete regression in 40% mice., Tumor volumes measured on day 80 in mice receiving combination therapy (206 mm3) were significantly smaller than those of mice receiving the IFNs alone (1041 mm3), monocytes alone (1111 mm3) or untreated controls (1728 mm3). Similarly, combination therapy with monocytes and IFNs of much larger tumor also inhibited OVCAR-3 tumor growth. Immunohistochemistry studies showed a large number of activated macrophages (CD31+/CD68+) infiltrating into OVCAR-3 tumors and higher densities of IL-12, IP10 and NOS2, markers of M1 (classical) macrophages in tumors treated with combination therapy compared to the controls. Interestingly, IFNs activated macrophages induced apoptosis of OVCAR-3 tumor cells as monocytes alone or IFNs alone did not mediate significant apoptosis. Similar antitumor activity was observed in the LOX melanoma mouse model, but not as profound as seen with the OVCAR-3 tumors. Administration of either mixture of monocytes and IFN-α2a or monocytes and IFN-γ did not inhibit Lox melanoma growth; however a significant inhibition was observed when tumors were treated with a mixture of monocytes, IFN-α2a and IFN-γ. These results indicate that monocytes and both IFN-α2a and IFN-γ may be required to mediate profound antitumor effect against human ovarian and melanoma tumors in mouse models. PMID:22159517

  13. Glucocorticoid-induced TNF receptor family-related protein ligand regulates the migration of monocytes to the inflamed intestine

    PubMed Central

    Liao, Gongxian; van Driel, Boaz; Magelky, Erica; O'Keeffe, Michael S.; de Waal Malefyt, Rene; Engel, Pablo; Herzog, Roland W.; Mizoguchi, Emiko; Bhan, Atul K.; Terhorst, Cox

    2014-01-01

    Glucocorticoid-induced TNF receptor family-related protein (GITR) regulates the function of both T cells and antigen-presenting cells (APCs), while the function of GITR ligand (GITR-L) is largely unknown. Here we evaluate the role of GITR-L, whose expression is restricted to APCs, in the development of enterocolitis. On injecting naive CD4+ T cells, GITR-L−/−Rag−/− mice develop a markedly milder colitis than Rag−/− mice, which correlates with a 50% reduction of Ly6C+CD11b+MHCII+ macrophages in the lamina propria and mesenteric lymph nodes. The same result was observed in αCD40-induced acute colitis and during peritonitis, suggesting an altered monocyte migration. In line with these observations, the number of nondifferentiated monocytes was approximately 3-fold higher in the spleen of GITR-L−/−Rag−/− mice than in Rag−/− mice after αCD40 induction. Consistent with the dynamic change in the formation of an active angiotensin II type 1 receptor (AT1) dimer in GITR-L−/− splenic monocytes during intestinal inflammation, the migratory capability of splenic monocytes from GITR-L-deficient mice was impaired in an in vitro transwell migration assay. Conversely, αGITR-L reduces the number of splenic Ly6Chi monocytes, concomitantly with an increase in AT1 dimers. We conclude that GITR-L regulates the number of proinflammatory macrophages in sites of inflammation by controlling the egress of monocytes from the splenic reservoir.—Liao, G., van Driel, B., Magelky, E., O'Keeffe, M. S., de Waal Malefyt, R., Engel, P., Herzog, R. W., Mizoguchi, E., Bhan, A. K., Terhorst, C. Glucocorticoid-induced TNF receptor family-related protein ligand regulates the migration of monocytes to the inflamed intestine. PMID:24107315

  14. Developmental endothelial locus-1 modulates platelet-monocyte interactions and instant blood-mediated inflammatory reaction in islet transplantation.

    PubMed

    Kourtzelis, Ioannis; Kotlabova, Klara; Lim, Jong-Hyung; Mitroulis, Ioannis; Ferreira, Anaisa; Chen, Lan-Sun; Gercken, Bettina; Steffen, Anja; Kemter, Elisabeth; Klotzsche-von Ameln, Anne; Waskow, Claudia; Hosur, Kavita; Chatzigeorgiou, Antonios; Ludwig, Barbara; Wolf, Eckhard; Hajishengallis, George; Chavakis, Triantafyllos

    2016-04-01

    Platelet-monocyte interactions are strongly implicated in thrombo-inflammatory injury by actively contributing to intravascular inflammation, leukocyte recruitment to inflamed sites, and the amplification of the procoagulant response. Instant blood-mediated inflammatory reaction (IBMIR) represents thrombo-inflammatory injury elicited upon pancreatic islet transplantation (islet-Tx), thereby dramatically affecting transplant survival and function. Developmental endothelial locus-1 (Del-1) is a functionally versatile endothelial cell-derived homeostatic factor with anti-inflammatory properties, but its potential role in IBMIR has not been previously addressed. Here, we establish Del-1 as a novel inhibitor of IBMIR using a whole blood-islet model and a syngeneic murine transplantation model. Indeed, Del-1 pre-treatment of blood before addition of islets diminished coagulation activation and islet damage as assessed by C-peptide release. Consistently, intraportal islet-Tx in transgenic mice with endothelial cell-specific overexpression of Del-1 resulted in a marked decrease of monocytes and platelet-monocyte aggregates in the transplanted tissues, relative to those in wild-type recipients. Mechanistically, Del-1 decreased platelet-monocyte aggregate formation, by specifically blocking the interaction between monocyte Mac-1-integrin and platelet GPIb. Our findings reveal a hitherto unknown role of Del-1 in the regulation of platelet-monocyte interplay and the subsequent heterotypic aggregate formation in the context of IBMIR. Therefore, Del-1 may represent a novel approach to prevent or mitigate the adverse reactions mediated through thrombo-inflammatory pathways in islet-Tx and perhaps other inflammatory disorders involving platelet-leukocyte aggregate formation.

  15. The monocyte counts to HDL cholesterol ratio in obese and lean patients with polycystic ovary syndrome.

    PubMed

    Usta, Akin; Avci, Eyup; Bulbul, Cagla Bahar; Kadi, Hasan; Adali, Ertan

    2018-04-10

    Women with polycystic ovary syndrome are more likely to suffer from obesity, insulin resistance, and chronic low-grade inflammation. In fact, the excessive activation of monocytes exacerbates oxidative stress and inflammation. However, high-density lipoprotein cholesterol neutralizes the pro-inflammatory and pro-oxidant effects of monocytes. The aim of this study is to investigate whether monocyte counts to high-density lipoprotein cholesterol ratio can predict the inflammatory condition in patients with polycystic ovary syndrome. In this cross-sectional study, a total of 124 women (61 of them with polycystic ovary syndrome and 63 age-matched healthy volunteers) were included in the study population. Obese polycystic ovary syndrome patients (n = 30) with a body mass index of ≥25 kg/m 2 and lean polycystic ovary syndrome patients (n = 31) with a body mass index of < 25 kg/m 2 were compared to age-and body mass index-matched healthy subjects (30 obese and 33 non-obese). The monocyte counts to high density lipoprotein cholesterol values in women with polycystic ovary syndrome were significantly higher than in control subjects (p = 0.0018). Moreover, a regression analysis revealed that body mass index, the homeostasis model assessment of insulin resistance and the high sensitivity C-reactive protein levels were confounding factors that affected the monocyte counts to high density lipoprotein cholesterol values. Additionally, a univariate and multivariate logistic regression analysis demonstrated that the increased monocyte counts to high density lipoprotein cholesterol values were more sensitive than the other known risk factors (such as increased body mass index, homeostasis model assessment of insulin resistance and high sensitive C-reactive protein levels) in the prediction of the inflammation in patients with polycystic ovary syndrome. The present study demonstrated that the monocyte count to high density lipoprotein cholesterol may be a novel and

  16. Comparative analysis of signature genes in PRRSV-infected porcine monocyte-derived dendritic cells at differential activation statuses

    USDA-ARS?s Scientific Manuscript database

    Activation statuses of monocytic cells including monocytes, macrophages and dendritic cells (DCs) are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these c...

  17. ROLE OF MONOCYTES IN RESPIRATORY SYNCTIAL VIRUS (RSV) INFECTION.

    EPA Science Inventory

    ROLE OF MONOCYTES IN RESPIRATORY SYNCYTIAL VIRUS (RSV) INFECTION.
    Joleen M. Soukup and Susanne Becker, National Health and Environmental Effects Research
    Laboratory, US EPA, Research Traingle Park, NC USA.

    RSV infection in airway epithelial cells (EC) results i...

  18. Neuroendocrine mediators up-regulate alpha1b- and alpha1d-adrenergic receptor subtypes in human monocytes.

    PubMed

    Rouppe van der Voort, C; Kavelaars, A; van de Pol, M; Heijnen, C J

    1999-03-01

    Beta2- and alpha2-adrenergic receptors (AR) are thought to be the main AR subtypes to exert the effects of catecholamines on the immune system. However, in the present study, we demonstrate that another subtype of AR can be induced in human monocytes. Expression of alpha1b- and alpha1d-AR mRNA can be obtained by culturing freshly isolated human peripheral blood monocytes with the neuroendocrine mediators dexamethasone or the beta2-AR agonist terbutaline. Using the human monocytic cell line THP-1, we demonstrate that increased levels of alpha1b- and alpha1d-mRNA are accompanied by increased levels of receptor protein as determined by Western blot analysis and radioligand binding assays. This study describes for the first time regulated expression of alpha1-AR subtypes in human monocytes.

  19. Specific depletion of Ly6C(hi) inflammatory monocytes prevents immunopathology in experimental cerebral malaria.

    PubMed

    Schumak, Beatrix; Klocke, Katrin; Kuepper, Janina M; Biswas, Aindrila; Djie-Maletz, Andrea; Limmer, Andreas; van Rooijen, Nico; Mack, Matthias; Hoerauf, Achim; Dunay, Ildiko Rita

    2015-01-01

    Plasmodium berghei ANKA (PbA) infection of C57BL/6 mice leads to experimental cerebral malaria (ECM) that is commonly associated with serious T cell mediated damage. In other parasitic infection models, inflammatory monocytes have been shown to regulate Th1 responses but their role in ECM remains poorly defined, whereas neutrophils are reported to contribute to ECM immune pathology. Making use of the recent development of specific monoclonal antibodies (mAb), we depleted in vivo Ly6C(hi) inflammatory monocytes (by anti-CCR2), Ly6G+ neutrophils (by anti-Ly6G) or both cell types (by anti-Gr1) during infection with Ovalbumin-transgenic PbA parasites (PbTg). Notably, the application of anti-Gr1 or anti-CCR2 but not anti-Ly6G antibodies into PbTg-infected mice prevented ECM development. In addition, depletion of Ly6C(hi) inflammatory monocytes but not neutrophils led to decreased IFNγ levels and IFNγ+CD8+ T effector cells in the brain. Importantly, anti-CCR2 mAb injection did not prevent the generation of PbTg-specific T cell responses in the periphery, whereas anti-Gr1 mAb injection strongly diminished T cell frequencies and CTL responses. In conclusion, the specific depletion of Ly6C(hi) inflammatory monocytes attenuated brain inflammation and immune cell recruitment to the CNS, which prevented ECM following Plasmodium infection, pointing out a substantial role of Ly6C+ monocytes in ECM inflammatory processes.

  20. Protein kinase Cδ is a critical component of Dectin-1 signaling in primary human monocytes.

    PubMed

    Elsori, Deena H; Yakubenko, Valentin P; Roome, Talat; Thiagarajan, Praveena S; Bhattacharjee, Ashish; Yadav, Satya P; Cathcart, Martha K

    2011-09-01

    Zymosan, a mimic of fungal pathogens, and its opsonized form (ZOP) are potent stimulators of monocyte NADPH oxidase, resulting in the production of O(2)(.-), which is critical for host defense against fungal and bacterial pathogens and efficient immune responses; however, uncontrolled O(2)(.-) production may contribute to chronic inflammation and tissue injury. Our laboratory has focused on characterizing the signal transduction pathways that regulate NADPH oxidase activity in primary human monocytes. In this study, we examined the involvement of various pattern recognition receptors and found that Dectin-1 is the primary receptor for zymosan stimulation of O(2)(.-) via NADPH oxidase in human monocytes, whereas Dectin-1 and CR3 mediate the activation by ZOP. Further studies identified Syk and Src as important signaling components downstream of Dectin-1 and additionally identified PKCδ as a novel downstream signaling component for zymosan-induced O(2)(.-) as well as phagocytosis. Our results show that Syk and Src association with Dectin-1 is dependent on PKCδ activity and expression and demonstrate direct binding between Dectin-1 and PKCδ. Finally, our data show that PKCδ and Syk but not Src are required for Dectin-1-mediated phagocytosis. Taken together, our data identify Dectin-1 as the major PRR for zymosan in primary human monocytes and identify PKCδ as a novel downstream signaling kinase for Dectin-1-mediated regulation of monocyte NADPH oxidase and zymosan phagocytosis.

  1. Facial Features: What Women Perceive as Attractive and What Men Consider Attractive

    PubMed Central

    Muñoz-Reyes, José Antonio; Iglesias-Julios, Marta; Pita, Miguel; Turiegano, Enrique

    2015-01-01

    Attractiveness plays an important role in social exchange and in the ability to attract potential mates, especially for women. Several facial traits have been described as reliable indicators of attractiveness in women, but very few studies consider the influence of several measurements simultaneously. In addition, most studies consider just one of two assessments to directly measure attractiveness: either self-evaluation or men's ratings. We explored the relationship between these two estimators of attractiveness and a set of facial traits in a sample of 266 young Spanish women. These traits are: facial fluctuating asymmetry, facial averageness, facial sexual dimorphism, and facial maturity. We made use of the advantage of having recently developed methodologies that enabled us to measure these variables in real faces. We also controlled for three other widely used variables: age, body mass index and waist-to-hip ratio. The inclusion of many different variables allowed us to detect any possible interaction between the features described that could affect attractiveness perception. Our results show that facial fluctuating asymmetry is related both to self-perceived and male-rated attractiveness. Other facial traits are related only to one direct attractiveness measurement: facial averageness and facial maturity only affect men's ratings. Unmodified faces are closer to natural stimuli than are manipulated photographs, and therefore our results support the importance of employing unmodified faces to analyse the factors affecting attractiveness. We also discuss the relatively low equivalence between self-perceived and male-rated attractiveness and how various anthropometric traits are relevant to them in different ways. Finally, we highlight the need to perform integrated-variable studies to fully understand female attractiveness. PMID:26161954

  2. Facial Features: What Women Perceive as Attractive and What Men Consider Attractive.

    PubMed

    Muñoz-Reyes, José Antonio; Iglesias-Julios, Marta; Pita, Miguel; Turiegano, Enrique

    2015-01-01

    Attractiveness plays an important role in social exchange and in the ability to attract potential mates, especially for women. Several facial traits have been described as reliable indicators of attractiveness in women, but very few studies consider the influence of several measurements simultaneously. In addition, most studies consider just one of two assessments to directly measure attractiveness: either self-evaluation or men's ratings. We explored the relationship between these two estimators of attractiveness and a set of facial traits in a sample of 266 young Spanish women. These traits are: facial fluctuating asymmetry, facial averageness, facial sexual dimorphism, and facial maturity. We made use of the advantage of having recently developed methodologies that enabled us to measure these variables in real faces. We also controlled for three other widely used variables: age, body mass index and waist-to-hip ratio. The inclusion of many different variables allowed us to detect any possible interaction between the features described that could affect attractiveness perception. Our results show that facial fluctuating asymmetry is related both to self-perceived and male-rated attractiveness. Other facial traits are related only to one direct attractiveness measurement: facial averageness and facial maturity only affect men's ratings. Unmodified faces are closer to natural stimuli than are manipulated photographs, and therefore our results support the importance of employing unmodified faces to analyse the factors affecting attractiveness. We also discuss the relatively low equivalence between self-perceived and male-rated attractiveness and how various anthropometric traits are relevant to them in different ways. Finally, we highlight the need to perform integrated-variable studies to fully understand female attractiveness.

  3. Vaccine antigens modulate the innate response of monocytes to Al(OH)3

    PubMed Central

    Brummelman, Jolanda; van Els, Cécile A. C. M.; Marino, Fabio; Heck, Albert J. R.; van Riet, Elly; Metz, Bernard; Kersten, Gideon F. A.; Pennings, Jeroen L. A.; Meiring, Hugo D.

    2018-01-01

    Aluminum-based adjuvants have widely been used in human vaccines since 1926. In the absence of antigens, aluminum-based adjuvants can initiate the inflammatory preparedness of innate cells, yet the impact of antigens on this response has not been investigated so far. In this study, we address the modulating effect of vaccine antigens on the monocyte-derived innate response by comparing processes initiated by Al(OH)3 and by Infanrix, an Al(OH)3-adjuvanted trivalent combination vaccine (DTaP), containing diphtheria toxoid (D), tetanus toxoid (T) and acellular pertussis (aP) vaccine antigens. A systems-wide analysis of stimulated monocytes was performed in which full proteome analysis was combined with targeted transcriptome analysis and cytokine analysis. This comprehensive study revealed four major differences in the monocyte response, between plain Al(OH)3 and DTaP stimulation conditions: (I) DTaP increased the anti-inflammatory cytokine IL-10, whereas Al(OH)3 did not; (II) Al(OH)3 increased the gene expression of IFNγ, IL-2 and IL-17a in contrast to the limited induction or even downregulation by DTaP; (III) increased expression of type I interferons-induced proteins was not observed upon DTaP stimulation, but was observed upon Al(OH)3 stimulation; (IV) opposing regulation of protein localization pathways was observed for Al(OH)3 and DTaP stimulation, related to the induction of exocytosis by Al(OH)3 alone. This study highlights that vaccine antigens can antagonize Al(OH)3-induced programming of the innate immune responses at the monocyte level. PMID:29813132

  4. IL-27 driven upregulation of surface HLA-E expression on monocytes inhibits IFN-γ release by autologous NK cells.

    PubMed

    Morandi, Fabio; Airoldi, Irma; Pistoia, Vito

    2014-01-01

    HLA-G and HLA-E are HLA-Ib molecules with several immunoregulatory properties. Their cell surface expression can be modulated by different cytokines. Since IL-27 and IL-30 may either stimulate or regulate immune responses, we have here tested whether these cytokines may modulate HLA-G and -E expression and function on human monocytes. Monocytes expressed gp130 and WSX-1, the two chains of IL27 receptor (R), and IL6Rα (that serves as IL-30R, in combination with gp130). However, only IL27R appeared to be functional, as witnessed by IL-27 driven STAT1/ STAT3 phosphorylation. IL-27, but not IL-30, significantly upregulated HLA-E (but not HLA-G) expression on monocytes. IFN-γ; secretion by activated NK cells was dampened when the latter cells were cocultured with IL-27 pretreated autologous monocytes. Such effect was not achieved using untreated or IL-30 pretreated monocytes, thus indicating that IL-27 driven HLA-E upregulation might be involved, possibly through the interaction of this molecule with CD94/NKG2A inhibitory receptor on NK cells. In contrast, cytotoxic granules release by NK cell in response to K562 cells was unaffected in the presence of IL-27 pretreated monocytes. In conclusion, we delineated a novel immunoregulatory function of IL-27 involving HLA-E upregulation on monocytes that might in turn indirectly impair some NK cell functions.

  5. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis.

    PubMed

    Domínguez-Andrés, Jorge; Arts, Rob J W; Ter Horst, Rob; Gresnigt, Mark S; Smeekens, Sanne P; Ratter, Jacqueline M; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L; Joosten, Leo A B; Notebaart, Richard A; Ardavín, Carlos; Netea, Mihai G

    2017-09-01

    Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases.

  6. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis

    PubMed Central

    Smeekens, Sanne P.; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L.; Joosten, Leo A. B.; Ardavín, Carlos; Netea, Mihai G.

    2017-01-01

    Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases. PMID:28922415

  7. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction.

    PubMed

    Zouggari, Yasmine; Ait-Oufella, Hafid; Bonnin, Philippe; Simon, Tabassome; Sage, Andrew P; Guérin, Coralie; Vilar, José; Caligiuri, Giuseppina; Tsiantoulas, Dimitrios; Laurans, Ludivine; Dumeau, Edouard; Kotti, Salma; Bruneval, Patrick; Charo, Israel F; Binder, Christoph J; Danchin, Nicolas; Tedgui, Alain; Tedder, Thomas F; Silvestre, Jean-Sébastien; Mallat, Ziad

    2013-10-01

    Acute myocardial infarction is a severe ischemic disease responsible for heart failure and sudden death. Here, we show that after acute myocardial infarction in mice, mature B lymphocytes selectively produce Ccl7 and induce Ly6C(hi) monocyte mobilization and recruitment to the heart, leading to enhanced tissue injury and deterioration of myocardial function. Genetic (Baff receptor deficiency) or antibody-mediated (CD20- or Baff-specific antibody) depletion of mature B lymphocytes impeded Ccl7 production and monocyte mobilization, limited myocardial injury and improved heart function. These effects were recapitulated in mice with B cell-selective Ccl7 deficiency. We also show that high circulating concentrations of CCL7 and BAFF in patients with acute myocardial infarction predict increased risk of death or recurrent myocardial infarction. This work identifies a crucial interaction between mature B lymphocytes and monocytes after acute myocardial ischemia and identifies new therapeutic targets for acute myocardial infarction.

  8. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction

    PubMed Central

    Zouggari, Yasmine; Ait-Oufella, Hafid; Bonnin, Philippe; Simon, Tabassome; Sage, Andrew P; Guérin, Coralie; Vilar, José; Caligiuri, Giuseppina; Tsiantoulas, Dimitrios; Laurans, Ludivine; Dumeau, Edouard; Kotti, Salma; Bruneval, Patrick; Charo, Israel F; Binder, Christoph J; Danchin, Nicolas; Tedgui, Alain; Tedder, Thomas F; Silvestre, Jean-Sébastien; Mallat, Ziad

    2014-01-01

    Acute myocardial infarction is a severe ischemic disease responsible for heart failure and sudden death. Here, we show that after acute myocardial infarction in mice, mature B lymphocytes selectively produce Ccl7 and induce Ly6Chi monocyte mobilization and recruitment to the heart, leading to enhanced tissue injury and deterioration of myocardial function. Genetic (Baff receptor deficiency) or antibody-mediated (CD20- or Baff-specific antibody) depletion of mature B lymphocytes impeded Ccl7 production and monocyte mobilization, limited myocardial injury and improved heart function. These effects were recapitulated in mice with B cell–selective Ccl7 deficiency. We also show that high circulating concentrations of CCL7 and BAFF in patients with acute myocardial infarction predict increased risk of death or recurrent myocardial infarction. This work identifies a crucial interaction between mature B lymphocytes and monocytes after acute myocardial ischemia and identifies new therapeutic targets for acute myocardial infarction. PMID:24037091

  9. Associations between the degree of early lactation inflammation and performance, metabolism, and immune function in dairy cows.

    PubMed

    McCarthy, M M; Yasui, T; Felippe, M J B; Overton, T R

    2016-01-01

    The objective of the current study was to determine associations between the severity of systemic inflammation during the early postpartum period and performance, energy metabolism, and immune function in dairy cows. Cows were assigned to categorical quartiles (Q; Q1=0.18-0.59, Q2=0.60-1.14, Q3=1.15-2.05, and Q4=2.06-2.50 g of haptoglobin/L) based on the highest plasma haptoglobin (Hp) concentration measured during wk 1 postpartum. Although cows were assigned to different categories of inflammation during the postpartum period, we detected a quadratic relationship of inflammation on prepartum dry matter intake (DMI) and body weight (BW) such that cows in Q2 had lower prepartum DMI and cows in Q2 and Q3 had lower prepartum BW compared with cows in the other quartiles. We also detected a quadratic association of inflammation with postpartum DMI and BW such that cows in Q2 and Q3 also had generally lower postpartum DMI and BW compared with cows in Q1. There was a tendency for a Q × time interaction for milk yield and Q × time interactions for 3.5% fat-corrected milk and energy-corrected milk yields; quadratic relationships suggested decreased milk yield for Q2 and Q3 cows. We also found Q × parity and Q × time interactions for plasma glucose and insulin concentrations, suggesting alterations with differing degrees of inflammation. There was also a Q × time interaction for plasma nonesterified fatty acids concentration. In addition, alterations in liver triglyceride and glycogen contents for cows with inflammation as well as alterations in [1-(14)C]propionate oxidation in vitro were observed. Although we observed limited effects of inflammation on neutrophil and monocyte phagocytosis at d 7 postpartum, inflammation appeared to alter neutrophil and monocyte oxidative burst. Overall, cows with any degree of elevated haptoglobin in the first week after calving had alterations in both pre- and postpartum intake and postpartum metabolism. Copyright © 2016 American

  10. Frontline Science: Buprenorphine decreases CCL2-mediated migration of CD14+ CD16+ monocytes.

    PubMed

    Jaureguiberry-Bravo, Matias; Lopez, Lillie; Berman, Joan W

    2018-05-23

    HIV infection of the CNS causes neuroinflammation and damage that contributes to the development of HIV-associated neurocognitive disorders (HAND) in greater than 50% of HIV-infected individuals, despite antiretroviral therapy (ART). Opioid abuse is a major risk factor for HIV infection. It has been shown that opioids can contribute to increased HIV CNS pathogenesis, in part, by modulating the function of immune cells. HIV enters the CNS within two weeks after peripheral infection by transmigration of infected monocytes across the blood brain barrier (BBB). CD14 + CD16 + monocytes are a mature subpopulation that is increased in number in the peripheral blood of HIV-infected people. Mature monocytes can be productively infected with HIV, and they transmigrate preferentially across the BBB in response to CCL2, a chemokine elevated in the CNS and CSF of HIV-infected people even with ART. Buprenorphine, an opioid derivate, is an opioid replacement therapy for heroin addiction. It is a partial agonist of μ-opioid receptor and full antagonist of κ-opioid receptor. The effects of buprenorphine on CCL2-mediated CD14 + CD16 + monocytes transmigration across the BBB, a critical mechanism that promotes neuroinflammation and HAND, have not been characterized. We showed for the first time that buprenorphine decreases several steps of CCL2-mediated human mature monocyte transmigration. We propose that buprenorphine treatment in the context of HIV infection could serve a dual purpose, to treat opioid addiction and also to reduce neuroinflammation. Additionally, buprenorphine may be used as a treatment for HAND not only in the context of opioid abuse. ©2018 Society for Leukocyte Biology.

  11. Mono vs multilayer fibronectin coatings on polar/hydrophobic/ionic polyurethanes: Altering surface interactions with human monocytes.

    PubMed

    Gossart, Audrey; Battiston, Kyle G; Gand, Adeline; Pauthe, Emmanuel; Santerre, J Paul

    2018-01-15

    Monocyte interactions with materials that are biofunctionalized with fibronectin (Fn) are of interest because of the documented literature which associates this protein with white blood cell function at implant sites. A degradable-polar hydrophobic ionic polyurethane (D-PHI), has been reported to promote an anti-inflammatory response from human monocytes. The aim of the current work was to study the influence of intrinsic D-PHI material chemistry on Fn adsorption (mono and multi-layer structures), and to investigate the influence of such chemistry on the structural state of the Fn, as well as the latter's influence on the activity of human monocytes on the protein coated substrates. Significant differences in Fn adsorption, surface hydrophobicity and the availability of defined peptide sequences (N terminal, C terminal or Cell Binding Domain) for the Fn in mono vs multilayer structures were observed as a function of the changes in intrinsic material chemistry. A D-PHI-formulated polyurethane substrate with subtle changes in anionic and hydrophobic domain content relative to the polar non-ionic urethane/carbonate groups within the polymer matrix promoted the lowest activation of monocytes, in the presence of multi-layer Fn constructs. These results highlight the importance of chemical heterogeneity as a design parameter for biomaterial surfaces, and establishes a desired strategy for controlling human monocyte activity at the surface of devices, when these are coated with multi-layer Fn structures. The latter is an important step towards functionalizing the materials with multi-layer protein drug carriers as interventional therapeutic agents. The control of the behavior of monocytes, especially migration and activation, is of crucial interest to modulate the inflammatory response at the site of implanted biomaterial. Several studies report the influence of adsorbed serum proteins on the behavior of monocytes on biomaterials. However, few studies show the influence

  12. Macrophage Activation Mechanisms in Human Monocytic Cell Line-derived Macrophages.

    PubMed

    Sumiya, Yu; Ishikawa, Mami; Inoue, Takahiro; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito

    2015-08-01

    Although the mechanisms of macrophage activation are important for cancer immunotherapy, they are poorly understood. Recently, easy and robust assay systems for assessing the macrophage-activating factor (MAF) using monocytic cell line-derived macrophages were established. Gene-expression profiles of U937- and THP-1-derived macrophages were compared using gene expression microarray analysis and their responses against several MAFs were examined by in vitro experiments. Activated states of these macrophages could not be assigned to a specific sub-type but showed, however, different unique characteristics. The unique of monocytic cell line-derived macrophages could provide clues to understand the activation mechanism of macrophages and, therefore, help to develop effective cancer immunotherapy with MAFs. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Monocyte B7 and Sialyl Lewis X modulates the efficacy of IL-10 down-regulation of LPS-induced monocyte tissue factor in whole blood.

    PubMed

    Warnes, G; Biggerstaff, J P; Francis, J L

    1998-07-01

    Recent studies have investigated the use of anti-inflammatory cytokine, interleukin 10 (IL-10) to control the development of disseminated intravascular coagulation (DIC) in sepsis by down-regulation of monocyte tissue factor (MTF) induced by lipopolysaccharide (LPS) in the initial phase of the disease. In vitro and in vivo human studies have shown that a minimal (<1 h) delay in IL-10 treatment significantly reduces the cytokines ability to inhibit LPS-induced MTF expression and the end products of coagulation. In this whole blood in vitro study we investigated the role of lymphocyte and platelet interactions with monocytes to up-regulate MTF expression in the presence of IL-10 in the initial phase of exposure to LPS. Individual blockade of monocyte B7 or platelet P-selectin significantly (35%) reduced MTF expression (P<0.05). IL-10 showed a dose-dependent inhibition of LPS (0.1 microg/ml) induced MTF expression, with 56% inhibition at 1 ng/ml, maximizing at 5 ng/ml IL-10 (75%; P<0.05). Simultaneous exposure to LPS and IL-10 (1 ng/ml) or addition of IL-10 1 h after LPS, with individual B7 and P-selectin blockade significantly enhanced the inhibition of MTF expression by IL-10 (P<0.05). We conclude that the efficacy of IL-10 to control DIC could be enhanced by a simultaneous B7 and P-selectin blockade.

  14. Role of porcine serum haptoglobin in the host-parasite relationship of Taenia solium cysticercosis.

    PubMed

    Navarrete-Perea, José; Toledano-Magaña, Yanis; De la Torre, Patricia; Sciutto, Edda; Bobes, Raúl José; Soberón, Xavier; Laclette, Juan Pedro

    2016-06-01

    Human and porcine cysticercosis is a parasitic disease caused by the larval stage (cysts) of the tapeworm Taenia solium. Cysts may live in several host tissues such as skeletal muscle or brain. We have previously described the presence of host haptoglobin (Hp) and hemoglobin (Hb) in different protein extracts of the T. solium cysts. Here, we report the binding of host Hp and Hb to a number of cyst proteins, evaluated through measuring electrophoretic and light absorbance changes. In the sera obtained from 18 cysticercotic pigs, Hp-Hb complexes were abundant, whereas free Hp was undetectable. In contrast, in the sera from non 18 cysticercotic pigs, Hp-Hb and free Hp were found. In the soluble protein fraction of cysts tissue, free Hp was detected showing a considerable Hb-binding ability, whereas in the vesicular fluid, Hp is mainly bound to Hb. Interestingly, assays carried out with the insoluble fraction of T. solium cysts tissue, showed binding of Hp and Hp-Hb in a saturable way, suggesting the existence of specific interactions. Our results suggested that the parasite can take advantage of the uptaken host Hp and Hb, either free or in complexes, as a source of iron or as a way to modulate the inflammatory response surrounding the T. solium cysts. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Combination of plasma HA and circulating M2-like monocytes may serve as a diagnostic marker for breast cancer.

    PubMed

    Zhang, Boke; Cao, Manlin; He, Yiqing; Liu, Yiwen; Zhang, Guoliang; Yang, Cuixia; Du, Yan; Xu, Jing; Hu, Jiajie; Gao, Feng

    2017-01-01

    Background: Breast cancer (BC)-derived hyaluronan (HA) can induce the formation of M2-like tumor-associated macrophages (TAMs) in tumor context. However, little is known about the correlation between circulating M2-like monocytes and plasma HA in BC patients. This study focused on evaluating the relationship between circulating M2-like monocytes and plasma HA, and further appraised the diagnostic value of them in BC. Methods: The expression of M2-like TAMs and HA was determined in pathological tissues by immunohistochemistry. Flow cytometry was used to detect the levels of circulating CD14 + CD204 + M2-like monocytes in 81 BC patients, 45 patients with breast benign diseases, and 46 healthy subjects. The levels of HA, CEA, and CA15-3 were measured in plasma samples using chemiluminescence method. Results: M2-like TAMs and HA expressions were elevated in BC tissues compared with benign tissues. In correspondence, the frequency of circulating CD14 + CD204 + M2-like monocytes and the plasma HA levels were significantly higher in patients with BC than those in control groups. Importantly, there was a positive correlation between circulating M2-like monocytes and the plasma HA (Spearman r = 0.404, p < 0.001). Area under receiver operating characteristic curve (ROC) for the combination of circulating M2-like monocytes and HA was 0.899 (95% CI: 0.853-0.946), which was higher than the panel of CEA and CA15-3. Conclusions: The frequency of circulating CD14 + CD204 + M2-like monocytes was positively correlated to plasma HA levels. The combination of circulating CD14 + CD204 + M2-like monocytes and plasma HA could provide considerable diagnostic value in BC.

  16. Inflammatory Monocytes Recruited to the Liver within 24 Hours after Virus-Induced Inflammation Resemble Kupffer Cells but Are Functionally Distinct

    PubMed Central

    Movita, Dowty; Biesta, Paula; Kreefft, Kim; Haagmans, Bart; Zuniga, Elina; Herschke, Florence; De Jonghe, Sandra; Janssen, Harry L. A.; Gama, Lucio; Boonstra, Andre

    2015-01-01

    ABSTRACT Due to a scarcity of immunocompetent animal models for viral hepatitis, little is known about the early innate immune responses in the liver. In various hepatotoxic models, both pro- and anti-inflammatory activities of recruited monocytes have been described. In this study, we compared the effect of liver inflammation induced by the Toll-like receptor 4 ligand lipopolysaccharide (LPS) with that of a persistent virus, lymphocytic choriomeningitis virus (LCMV) clone 13, on early innate intrahepatic immune responses in mice. LCMV infection induces a remarkable influx of inflammatory monocytes in the liver within 24 h, accompanied by increased transcript levels of several proinflammatory cytokines and chemokines in whole liver. Importantly, while a single LPS injection results in similar recruitment of inflammatory monocytes to the liver, the functional properties of the infiltrating cells are dramatically different in response to LPS versus LCMV infection. In fact, intrahepatic inflammatory monocytes are skewed toward a secretory phenotype with impaired phagocytosis in LCMV-induced liver inflammation but exhibit increased endocytic capacity after LPS challenge. In contrast, F4/80high-Kupffer cells retain their steady-state endocytic functions upon LCMV infection. Strikingly, the gene expression levels of inflammatory monocytes dramatically change upon LCMV exposure and resemble those of Kupffer cells. Since inflammatory monocytes outnumber Kupffer cells 24 h after LCMV infection, it is highly likely that inflammatory monocytes contribute to the intrahepatic inflammatory response during the early phase of infection. Our findings are instrumental in understanding the early immunological events during virus-induced liver disease and point toward inflammatory monocytes as potential target cells for future treatment options in viral hepatitis. IMPORTANCE Insights into how the immune system deals with hepatitis B virus (HBV) and HCV are scarce due to the lack of

  17. CXCL4/Platelet Factor 4 is an agonist of CCR1 and drives human monocyte migration.

    PubMed

    Fox, James M; Kausar, Fahima; Day, Amy; Osborne, Michael; Hussain, Khansa; Mueller, Anja; Lin, Jessica; Tsuchiya, Tomoko; Kanegasaki, Shiro; Pease, James E

    2018-06-21

    Activated platelets release micromolar concentrations of the chemokine CXCL4/Platelet Factor-4. Deposition of CXCL4 onto the vascular endothelium is involved in atherosclerosis, facilitating monocyte arrest and recruitment by an as yet, unidentified receptor. Here, we demonstrate that CXCL4 drives chemotaxis of the monocytic cell line THP-1. Migration and intracellular calcium responses induced by CXCL4 were pertussis toxin-sensitive, implicating a GPCR in signal transduction. Cell treatment with chondroitinase ABC ablated migration, suggesting that cis presentation of CXCL4 by cell surface glycosaminoglycans to a GPCR is required. Although CXCR3 has been previously described as a CXCL4 receptor, THP-1 cells were unresponsive to CXCR3 ligands and CXCL4-induced migration was insensitive to a CXCR3 antagonist, suggesting that an alternative receptor is involved. Interrogating CC-class chemokine receptor transfectants, we unexpectedly found that CXCL4 could induce the migration of CCR1-expressing cells and also induce CCR1 endocytosis. Extending our findings to primary human monocytes, we observed that CXCL4 induced CCR1 endocytosis and could induce monocyte chemotaxis in a CCR1 antagonist-sensitive manner. Collectively, our data identify CCR1 as a previously elusive monocyte CXCL4 receptor and suggest that CCR1 may play a role in inflammation where the release of CXCL4 is implicated.

  18. Rheology of attractive emulsions

    NASA Astrophysics Data System (ADS)

    Datta, Sujit S.; Gerrard, Dustin D.; Rhodes, Travers S.; Mason, Thomas G.; Weitz, David A.

    2011-10-01

    We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, φRCP, can form soft gel-like elastic solids. However, above φRCP, attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, and, above φRCP, also undergo droplet configurational rearrangements.

  19. Rheology of attractive emulsions.

    PubMed

    Datta, Sujit S; Gerrard, Dustin D; Rhodes, Travers S; Mason, Thomas G; Weitz, David A

    2011-10-01

    We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, φ(RCP), can form soft gel-like elastic solids. However, above φ(RCP), attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, and, above φ(RCP), also undergo droplet configurational rearrangements.

  20. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing

  1. Monitoring of monocyte recruitment in reperfused myocardial infarction with intramyocardial hemorrhage and microvascular obstruction by combined fluorine 19 and proton cardiac magnetic resonance imaging.

    PubMed

    Ye, Yu-Xiang; Basse-Lüsebrink, Thomas C; Arias-Loza, Paula-Anahi; Kocoski, Vladimir; Kampf, Thomas; Gan, Qiang; Bauer, Elisabeth; Sparka, Stefanie; Helluy, Xavier; Hu, Kai; Hiller, Karl-Heinz; Boivin-Jahns, Valerie; Jakob, Peter M; Jahns, Roland; Bauer, Wolfgang R

    2013-10-22

    Monocytes and macrophages are indispensable in the healing process after myocardial infarction (MI); however, the spatiotemporal distribution of monocyte infiltration and its correlation to prognostic indicators of reperfused MI have not been well described. With combined fluorine 19/proton ((1)H) magnetic resonance imaging, we noninvasively visualized the spatiotemporal recruitment of monocytes in vivo in a rat model of reperfused MI. Blood monocytes were labeled by intravenous injection of (19)F-perfluorocarbon emulsion 1 day after MI. The distribution patterns of monocyte infiltration were correlated to the presence of microvascular obstruction (MVO) and intramyocardial hemorrhage. In vivo, (19)F/(1)H magnetic resonance imaging performed in series revealed that monocyte infiltration was spatially inhomogeneous in reperfused MI areas. In the absence of MVO, monocyte infiltration was more intense in MI regions with serious ischemia-reperfusion injuries, indicated by severe intramyocardial hemorrhage; however, monocyte recruitment was significantly impaired in MVO areas accompanied by severe intramyocardial hemorrhage. Compared with MI with isolated intramyocardial hemorrhage, MI with MVO resulted in significantly worse pump function of the left ventricle 28 days after MI. Monocyte recruitment was inhomogeneous in reperfused MI tissue. It was highly reduced in MVO areas defined by magnetic resonance imaging. The impaired monocyte infiltration in MVO regions could be related to delayed healing and worse functional outcomes in the long term. Therefore, monocyte recruitment in MI with MVO could be a potential diagnostic and therapeutic target that could be monitored noninvasively and longitudinally by (19)F/(1)H magnetic resonance imaging in vivo.

  2. Anti-inflammatory effects of the new generation synthetic surfactant CHF5633 on Ureaplasma-induced cytokine responses in human monocytes.

    PubMed

    Glaser, Kirsten; Fehrholz, Markus; Henrich, Birgit; Claus, Heike; Papsdorf, Michael; Speer, Christian P

    2017-02-01

    Synthetic surfactants represent a promising alternative to animal-derived preparations in the treatment of neonatal respiratory distress syndrome. The synthetic surfactant CHF5633 has proven biophysical effectiveness and, moreover, demonstrated anti-inflammatory effects in LPS-stimulated monocytes. With ureaplasmas being relevant pathogens in preterm lung inflammation, the present study addressed immunomodulatory features on Ureaplasma-induced monocyte cytokine responses. Ureaplasma parvum-stimulated monocytes were exposed to CHF5633. TNF-α, IL-1β, IL-8, IL-10, TLR2 and TLR4 expression were analyzed using qPCR and flow cytometry. CHF5633 did not induce pro-inflammation, and did not aggravate Ureaplasma-induced pro-inflammatory cytokine responses. It suppressed U. parvum-induced intracellular TNF-α (p < 0.05) and IL-1β (p < 0.05) in neonatal monocytes and inhibited Ureaplasma-induced TNF-α mRNA (p < 0.05), TNF-α protein (p < 0.001), and IL-1β (p = 0.05) in adult monocytes. Ureaplasma-modulated IL-8, IL-10, TLR2 and TLR4 were unaffected. CHF5633 does neither act pro-apoptotic nor pro-inflammatory in native and Ureaplasma-infected monocytes. Suppression of Ureaplasma-induced TNF-α and IL-1β underlines anti-inflammatory features of CHF5633.

  3. The role and mechanism of KCa3.1 channels in human monocyte migration induced by palmitic acid.

    PubMed

    Ma, Xiao-Zhen; Pang, Zheng-Da; Wang, Jun-Hong; Song, Zheng; Zhao, Li-Mei; Du, Xiao-Jun; Deng, Xiu-Ling

    2018-05-21

    Monocyte migration into diseased tissues contributes to the pathogenesis of diseases. Intermediate-conductance Ca 2+ -activated K + (K Ca 3.1) channels play an important role in cell migration. However, the role of K Ca 3.1 channels in mediating monocyte migration induced by palmitic acid (PA) is still unclear. Using cultured THP-1 cells and peripheral blood mononuclear cells from healthy subjects, we investigated the role and signaling mechanisms of K Ca 3.1 channels in mediating the migration induced by PA. Using methods of Western blotting analysis, RNA interference, cell migration assay and ELISA, we found that PA-treated monocytes exhibited increment of the protein levels of K Ca 3.1 channel and monocyte chemoattractant protein-1 (MCP-1), and the effects were reversed by co-incubation of PA with anti-TLR2/4 antibodies or by specific inhibitors of p38-MAPK, or NF-κB. In addition, PA increased monocyte migration, which was abolished by a specific K Ca 3.1 channel blocker, TRAM-34, or K Ca 3.1 small interfering RNA (siRNA). The expression and secretion of MCP-1 induced by PA was also similarly prevented by TRAM-34 and K Ca 3.1 siRNA. These results demonstrate for the first time that PA upregulates K Ca 3.1 channels through TLR2/4, p38-MAPK and NF-κB pathway to promote the expression of MCP-1, and then induce the trans-endothelial migration of monocytes. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Antiretroviral therapy in HIV-1-infected individuals with CD4 count below 100 cells/mm3 results in differential recovery of monocyte activation

    PubMed Central

    Patro, Sean C.; Azzoni, Livio; Joseph, Jocelin; Fair, Matthew G.; Sierra-Madero, Juan G.; Rassool, Mohammed S.; Sanne, Ian; Montaner, Luis J.

    2016-01-01

    Reversal of monocyte and macrophage activation and the relationship to viral suppression and T cell activation are unknown in patients with advanced HIV-1 infection, initiating antiretroviral therapy. This study aimed to determine whether reduction in biomarkers of monocyte and macrophage activation would be reduced in conjunction with viral suppression and resolution of T cell activation. Furthermore, we hypothesized that the addition of CCR5 antagonism (by maraviroc) would mediate greater reduction of monocyte/macrophage activation markers than suppressive antiretroviral therapy alone. In the CCR5 antagonism to decrease the incidence of immune reconstitution inflammatory syndrome study, antiretroviral therapy-naïve patients received maraviroc or placebo in addition to standard antiretroviral therapy. PBMCs and plasma from 65 patients were assessed during 24 wk of antiretroviral therapy for biomarkers of monocyte and macrophage activation. Markers of monocyte and macrophage activation were reduced significantly by 24 wk, including CD14++CD16+ intermediate monocytes (P < 0.0001), surface CD163 (P = 0.0004), CD169 (P < 0.0001), tetherin (P = 0.0153), and soluble CD163 (P < 0.0001). A change in CD38+, HLA-DR+ CD8 T cells was associated with changes in CD169 and tetherin expression. Maraviroc did not affect biomarkers of monocyte/macrophage activation but resulted in greater percentages of CCR5-positive monocytes in PBMC. HIV-1 suppression after 24 wk of antiretroviral therapy, with or without maraviroc, demonstrates robust recovery in monocyte subset activation markers, whereas soluble markers of activation demonstrate minimal decrease, qualitatively differentiating markers of monocyte/macrophage activation in advanced disease. PMID:26609048

  5. Hck is a key regulator of gene expression in alternatively activated human monocytes.

    PubMed

    Bhattacharjee, Ashish; Pal, Srabani; Feldman, Gerald M; Cathcart, Martha K

    2011-10-21

    IL-13 is a Th2 cytokine that promotes alternative activation (M2 polarization) in primary human monocytes. Our studies have characterized the functional IL-13 receptor complex and the downstream signaling events in response to IL-13 stimulation in alternatively activated monocytes/macrophages. In this report, we present evidence that IL-13 induces the activation of a Src family tyrosine kinase, which is required for IL-13 induction of M2 gene expression, including 15-lipoxygenase (15-LO). Our data show that Src kinase activity regulates IL-13-induced p38 MAPK tyrosine phosphorylation via the upstream kinases MKK3 or MKK6. Our findings also reveal that the IL-13 receptor-associated tyrosine kinase Jak2 is required for the activation of both Src kinase as well as p38 MAPK. Further, we found that Src tyrosine kinase-mediated activation of p38 MAPK is required for Stat1 and Stat3 serine 727 phosphorylation in alternatively activated monocytes/macrophages. Additional studies identify Hck as the specific Src family member, stimulated by IL-13 and involved in regulating both p38 MAPK activation and p38 MAPK-mediated 15-LO expression. Finally we show that the Hck regulates the expression of other alternative state (M2)-specific genes (Mannose receptor, MAO-A, and CD36) and therefore conclude that Hck acts as a key regulator controlling gene expression in alternatively activated monocytes/macrophages.

  6. Curcumin modulates endothelial permeability and monocyte transendothelial migration by affecting endothelial cell dynamics.

    PubMed

    Monfoulet, Laurent-Emmanuel; Mercier, Sylvie; Bayle, Dominique; Tamaian, Radu; Barber-Chamoux, Nicolas; Morand, Christine; Milenkovic, Dragan

    2017-11-01

    Curcumin is a phenolic compound that exhibits beneficial properties for cardiometabolic health. We previously showed that curcumin reduced the infiltration of immune cells into the vascular wall and prevented atherosclerosis development in mice. This study aimed to investigate the effect of curcumin on monocyte adhesion and transendothelial migration (TEM) and to decipher the underlying mechanisms of these actions. Human umbilical vein endothelial cells (HUVECs) were exposed to curcumin (0.5-1μM) for 3h prior to their activation by Tumor Necrosis Factor alpha (TNF-α). Endothelial permeability, monocyte adhesion and transendothelial migration assays were conducted under static condition and shear stress that mimics blood flow. We further investigated the impact of curcumin on signaling pathways and on the expression of genes using macroarrays. Pre-exposure of endothelial cells to curcumin reduced monocyte adhesion and their transendothelial migration in both static and shear stress conditions. Curcumin also prevented changes in both endothelial permeability and the area of HUVECs when induced by TNF-α. We showed that curcumin modulated the expression of 15 genes involved in the control of cytoskeleton and endothelial junction dynamic. Finally, we showed that curcumin inhibited NF-κB signaling likely through an antagonist interplay with several kinases as suggested by molecular docking analysis. Our findings demonstrate the ability of curcumin to reduce monocyte TEM through a multimodal regulation of the endothelial cell dynamics with a potential benefit on the vascular endothelial function barrier. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Rapid Detection of Dendritic Cell and Monocyte Disorders Using CD4 as a Lineage Marker of the Human Peripheral Blood Antigen-Presenting Cell Compartment

    PubMed Central

    Jardine, Laura; Barge, Dawn; Ames-Draycott, Ashley; Pagan, Sarah; Cookson, Sharon; Spickett, Gavin; Haniffa, Muzlifah; Collin, Matthew; Bigley, Venetia

    2013-01-01

    Dendritic cells (DCs) and monocytes are critical regulators and effectors of innate and adaptive immune responses. Monocyte expansion has been described in many pathological states while monocyte and DC deficiency syndromes are relatively recent additions to the catalog of human primary immunodeficiency disorders. Clinically applicable screening tests to diagnose and monitor these conditions are lacking. Conventional strategies for identifying human DCs and monocytes have been based on the use of a lineage gate to exclude lymphocytes, thus preventing simultaneous detection of DCs, monocytes, and lymphocyte subsets. Here we demonstrate that CD4 is a reliable lineage marker for the human peripheral blood antigen-presenting cell compartment that can be used to identify DCs and monocytes in parallel with lymphocytes. Based on this principle, simple modification of a standard lymphocyte phenotyping assay permits simultaneous enumeration of four lymphocyte and five DC/monocyte populations from a single sample. This approach is applicable to clinical samples and facilitates the diagnosis of DC and monocyte disorders in a wide range of clinical settings, including genetic deficiency, neoplasia, and inflammation. PMID:24416034

  8. CXCL4-induced monocyte survival, cytokine expression, and oxygen radical formation is regulated by sphingosine kinase 1.

    PubMed

    Kasper, Brigitte; Winoto-Morbach, Supandi; Mittelstädt, Jessica; Brandt, Ernst; Schütze, Stefan; Petersen, Frank

    2010-04-01

    Human monocytes respond to a variety of stimuli with a complex spectrum of activities ranging from acute defense mechanisms to cell differentiation or cytokine release. However, the individual intracellular signaling pathways related to these functions are not well understood. CXC chemokine ligand 4 (CXCL4) represents a broad activator of monocytes, which induces acute as well as delayed activities in these cells including cell differentiation, survival, or the release of ROS, and cytokines. Here, we report for the first time that CXCL4-treated monocytes significantly upregulate sphingosine kinase 1 (SphK1) mRNA and that CXCL4 induces SphK1 enzyme activity as well as its translocation to the cell membrane. Furthermore, we could show that pharmacological inhibition of SphK results in reversal of CXCL4-induced monocyte survival, cytokine expression, and release of oxygen radicals, which was confirmed by the use of SphK1-specific siRNA. CXCL4-mediated rescue from apoptosis, which is accompanied by inhibition of caspases, is controlled by SphK1 and its downstream element Erk. Taken together, these data assign SphK1 as a central regulator of acute and delayed monocyte activation and suggest SphK1 as a potential therapeutic target to suppress pro-inflammatory responses induced by CXCL4.

  9. CD14{sup +} monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ding, E-mail: qqhewd@gmail.com; TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin; Chen, Ke, E-mail: chenke_59@hotmail.com

    2010-09-10

    Here, the effect of CD14{sup +} monocytes on human umbilical cord matrix stem cell (hUC-MSC)-mediated immunosuppression was studied in vitro. hUC-MSCs exerted a potent inhibitory effect on the proliferation and interferon-{gamma} (IFN-{gamma}) secretion capacities of CD4{sup +} and CD8{sup +} T cells in response to anti-CD3/CD28 stimulation. Transwell co-culture system revealed that the suppressive effect was primarily mediated by soluble factors. Addition of prostaglandin synthesis inhibitors (indomethacin or NS-398) almost completely abrogated the immunosuppression activity of hUC-MSCs, identifying prostaglandin E{sub 2} (PGE{sub 2}) as an important soluble mediator. CD14{sup +} monocytes were found to be able to enhance significantly themore » immunosuppressive effect of hUC-MSCs in a dose-dependent fashion. Moreover, the inflammatory cytokine IL-1{beta}, either exogenously added or produced by CD14{sup +} monocytes in culture, could trigger expression of high levels of PGE{sub 2} by hUC-MSCs, whereas inclusion of the IL-1 receptor antagonist (IL-1RA) in the culture down-regulated not only PGE{sub 2} expression, but also reversed the promotional effect of CD14{sup +} monocytes and partially restored CD4{sup +} and CD8{sup +} T cell proliferation and IFN-{gamma} secretion. Our data demonstrate an important role of monocytes in the hUC-MSC-induced immunomodulation, which may have important implications in future efforts to explore the clinical potentials of hUC-MSCs.« less

  10. Whole Blood Activation Results in Enhanced Detection of T Cell and Monocyte Cytokine Production by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Crucian, Brian E.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and

  11. Expression of proteinase-activated receptor (PAR)-2 in monocytes from allergic patients and potential molecular mechanism.

    PubMed

    Ge, Shuqing; Li, Tao; Yao, Qijian; Yan, Hongling; Huiyun, Zhang; Zheng, Yanshan; Zhang, Bin; He, Shaoheng

    2016-12-01

    Serine proteases play an important role in inflammation via PARs. However, little is known of expression levels of PARs on monocytes of allergic patients, and influence of serine proteases and PARs on TNF-α secretion from monocytes. Using quantitative real-time PCR (qPCR) and flowcytometry techniques, we observed that the expression level of PAR-2 in monocytes of patients with allergic rhinitis and asthma was increased by 42.9 and 38.2 %. It was found that trypsin, thrombin, and tryptase induced up to 200, 320, and 310 % increase in TNF-α release from monocytes at 16 h, respectively. PAR-1 agonist peptide, SFLLR-NH 2 , and PAR-2 agonist peptide tc-LIGRLO-NH 2 provoked up to 210 and 240 % increase in release of TNF-α. Since SCH 79797, a PAR-1 antagonist, and PD98059, an inhibitor of ERK inhibited thrombin- and SFLLR-NH 2 -induced TNF-α release, the action of thrombin is most likely through a PAR-1- and ERK-mediated signaling mechanism. Similarly, because FSLLRN-NH 2 , an inhibitor of PAR-2 diminished tryptase- and tc-LIGRLO-NH 2 -induced TNF-α release, the action of tryptase appears PAR-2 dependent. Moreover, in vivo study showed that both recombinant cockroach major allergens Per a 1 and Per a 7 provoked upregulation of PAR-2 and PAR-1 expression on CD14+ cells in OVA-sensitized mouse peritoneum. In conclusion, increased expression of PAR-2 in monocytes of AR and asthma implicates that PAR-2 likely play a role in allergy. PAR-2- and PAR-1-mediated TNF-α release from monocytes suggests that these unique protease receptors are involved in the pathogenesis of inflammation.

  12. Expression of extracellular calcium (Ca2+o)-sensing receptor in human peripheral blood monocytes

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Olozak, I.; Chattopadhyay, N.; Butters, R. R.; Kifor, O.; Scadden, D. T.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    1998-01-01

    The calcium-sensing receptor (CaR) is a G protein-coupled receptor playing key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Macrophage-like mononuclear cells appear at sites of osteoclastic bone resorption during bone turnover and may play a role in the "reversal" phase of skeletal remodeling that follows osteoclastic resorption and precedes osteoblastic bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for such mononuclear cells present locally within the bone marrow microenvironment. Indeed, previous studies by other investigators have shown that raising Ca2+o either in vivo or in vitro stimulated the release of interleukin-6 (IL-6) from human peripheral blood monocytes, suggesting that these cells express a Ca2+o-sensing mechanism. In these earlier studies, however, the use of reverse transcription-polymerase chain reaction (RT-PCR) failed to detect transcripts for the CaR previously cloned from parathyroid and kidney in peripheral blood monocytes. Since we recently found that non-specific esterase-positive, putative monocytes isolated from murine bone marrow express the CaR, we reevaluated the expression of this receptor in human peripheral blood monocytes. Immunocytochemistry, flow cytometry, and Western blot analysis, performed using a polyclonal antiserum specific for the CaR, detected CaR protein in human monocytes. In addition, the use of RT-PCR with CaR-specific primers, followed by nucleotide sequencing of the amplified products, identified CaR transcripts in the cells. Therefore, taken together, our data show that human peripheral blood monocytes possess both CaR protein and mRNA very similar if not identical to those expressed in parathyroid and kidney that could mediate the previously described, direct effects of Ca2+o on these cells. Furthermore, since mononuclear cells isolated from bone marrow also express the CaR, the latter might play some role in

  13. Increase in Peripheral Blood Intermediate Monocytes is Associated with the Development of Recent-Onset Type 1 Diabetes Mellitus in Children.

    PubMed

    Ren, Xiaoya; Mou, Wenjun; Su, Chang; Chen, Xi; Zhang, Hui; Cao, Bingyan; Li, Xiaoqiao; Wu, Di; Ni, Xin; Gui, Jingang; Gong, Chunxiu

    2017-01-01

    Monocytes play important roles in antigen presentation and cytokine production to achieve a proper immune response, and are therefore largely implicated in the development and progression of autoimmune diseases. The aim of this study was to analyze the change in the intermediate (CD14+CD16+) monocyte subset in children with recent-onset type 1 diabetes mellitus (T1DM) and its possible association with clinical parameters reflecting islet β-cell dysfunction. Compared with age- and sex-matched healthy controls, intermediate monocytes were expanded in children with T1DM, which was positively associated with hemoglobin A1C and negatively associated with serum insulin and C-peptide. Interestingly, the intermediate monocytes in T1DM patients expressed higher levels of human leukocyte antigen-DR and CD86, suggesting better antigen presentation capability. Further analysis revealed that the frequency of CD45RO+CD4+ memory T cells was increased in the T1DM patients, and the memory T cell content was well correlated with the increase in intermediate monocytes. These results suggest that expanded intermediate monocytes are a predictive factor for the poor residual islet β-cell function in children with recent-onset T1DM.

  14. Comparative analysis of monocytic and granulocytic myeloid-derived suppressor cell subsets in patients with gastrointestinal malignancies.

    PubMed

    Duffy, Austin; Zhao, Fei; Haile, Lydia; Gamrekelashvili, Jaba; Fioravanti, Suzanne; Ma, Chi; Kapanadze, Tamar; Compton, Kathryn; Figg, William D; Greten, Tim F

    2013-02-01

    Myeloid-derived suppressor cells (MDSC) are a heterogenous population of cells comprising myeloid progenitor cells and immature myeloid cells, which have the ability to suppress the effector immune response. In humans, MDSC have not been well characterized owing to the lack of specific markers, although it is possible to broadly classify the MDSC phenotypes described in the literature as being predominantly granulocytic (expressing markers such as CD15, CD66, CD33) or monocytic (expressing CD14). In this study, we set out to perform a direct comparative analysis across both granulocytic and monocytic MDSC subsets in terms of their frequency, absolute number, and function in the peripheral blood of patients with advanced GI cancer. We also set out to determine the optimal method of sample processing given that this is an additional source of heterogeneity. Our findings demonstrate consistent changes across sample processing methods for monocytic MDSC, suggesting that reliance upon cryopreserved PBMC is acceptable. Although we did not see an increase in the population of granulocytic MDSC, these cells were found to be more suppressive than their monocytic counterparts.

  15. Impacts of parturition and body condition score on glucose uptake capacity of bovine monocyte subsets.

    PubMed

    Eger, Melanie; Hussen, Jamal; Drong, Caroline; Meyer, Ulrich; von Soosten, Dirk; Frahm, Jana; Daenicke, Sven; Breves, Gerhard; Schuberth, Hans-Joachim

    2015-07-15

    The peripartal period of dairy cows is associated with a higher incidence of infectious diseases like mastitis or metritis, particularly in high-yielding animals. The onset of lactation induces a negative energy balance and a shift of glucose distribution toward the udder. Glucose is used as primary fuel by monocytes which give rise to macrophages, key cells in the defense against pathogens. The aim of this study was to analyze whether animals with high or low body condition score (BCS) differ in composition and glucose uptake capacities of bovine monocyte subsets. Blood samples were taken from 27 dairy cows starting 42 days before parturition until day 56 after parturition. The cows were allocated to two groups according to their BCS. A feeding regime was applied, in which the BCS high group received higher amounts of concentrate before parturition and concentrate feeding was more restricted in the BCS high group after parturition compared with the BCS low group, to promote postpartal lipolysis and enhance negative energy balance in the BCS high group. Blood cell counts of classical (cM), intermediate (intM) and nonclassical monocytes (ncM) were increased at day 7 after calving. In the BCS low group intM numbers were significantly higher compared to the BCS high group at day 7 after parturition. Within the BCS low group cows suffering from mastitis or metritis showed significantly higher numbers of cM, intM and ncM at day 7 after parturition. Classical monocytes and intM showed similar glucose uptake capacities while values for ncM were significantly lower. Compared with antepartal capacities and irrespective of BCS and postpartal mastitis or metritis, glucose uptake of all monocyte subsets decreased after parturition. In conclusion, whereas glucose uptake capacity of bovine monocyte subsets is altered by parturition, it is not linked to the energy supply of the animals or to postpartal infectious diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Facial attractiveness, weight status, and personality trait attribution: The role of attractiveness in weight stigma.

    PubMed

    Cross, Nicole; Kiefner-Burmeister, Allison; Rossi, James; Borushok, Jessica; Hinman, Nova; Burmeister, Jacob; Carels, Robert A

    The current study examined the influence of facial attractiveness and weight status on personality trait attributions (e.g., honest, friendly) among more and less facially attractive as well as thin and overweight models. Participants viewed pictures of one of four types of models (overweight/less attractive, overweight/more attractive, thin/less attractive, thin/more attractive) and rated their attractiveness (facial, body, overall) and personality on 15 traits. Facial attractiveness and weight status additively impacted personality trait ratings. In mediation analyses, the facial attractiveness condition was no longer associated with personality traits after controlling for perceived facial attractiveness in 12 personality traits. Conversely, the thin and overweight condition was no longer associated with personality traits after controlling for perceived body attractiveness in only 2 personality traits. Post hoc moderation analysis indicated that weight status differently influenced the association between body attractiveness and personality trait attribution. Findings bear implications for attractiveness bias, weight bias, and discrimination research. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  17. Mutations of Cystic Fibrosis Transmembrane Conductance Regulator Gene Cause a Monocyte-Selective Adhesion Deficiency.

    PubMed

    Sorio, Claudio; Montresor, Alessio; Bolomini-Vittori, Matteo; Caldrer, Sara; Rossi, Barbara; Dusi, Silvia; Angiari, Stefano; Johansson, Jan E; Vezzalini, Marzia; Leal, Teresinha; Calcaterra, Elisa; Assael, Baroukh M; Melotti, Paola; Laudanna, Carlo

    2016-05-15

    Cystic fibrosis (CF) is a common genetic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Persistent lung inflammation, characterized by increasing polymorphonuclear leukocyte recruitment, is a major cause of the decline in respiratory function in patients with CF and is a leading cause of morbidity and mortality. CFTR is expressed in various cell types, including leukocytes, but its involvement in the regulation of leukocyte recruitment is unknown. We evaluated whether CF leukocytes might present with alterations in cell adhesion and migration, a key process governing innate and acquired immune responses. We used ex vivo adhesion and chemotaxis assays, flow cytometry, immunofluorescence, and GTPase activity assays in this study. We found that chemoattractant-induced activation of β1 and β2 integrins and of chemotaxis is defective in mononuclear cells isolated from patients with CF. In contrast, polymorphonuclear leukocyte adhesion and chemotaxis were normal. The functionality of β1 and β2 integrins was restored by treatment of CF monocytes with the CFTR-correcting drugs VRT325 and VX809. Moreover, treatment of healthy monocytes with the CFTR inhibitor CFTR(inh)-172 blocked integrin activation by chemoattractants. In a murine model of lung inflammation, we found that integrin-independent migration of CF monocytes into the lung parenchyma was normal, whereas, in contrast, integrin-dependent transmigration into the alveolar space was impaired. Finally, signal transduction analysis showed that, in CF monocytes, chemoattractant-triggered activation of RhoA and CDC42 Rho small GTPases (controlling integrin activation and chemotaxis, respectively) was strongly deficient. Altogether, these data highlight the critical regulatory role of CFTR in integrin activation by chemoattractants in monocytes and identify CF as a new, cell type-selective leukocyte adhesion deficiency disease, providing new insights into CF

  18. SMAD-PI3K-Akt-mTOR Pathway Mediates BMP-7 Polarization of Monocytes into M2 Macrophages

    PubMed Central

    Rocher, Crystal; Singla, Dinender K.

    2013-01-01

    Previously we demonstrated that bone morphogenetic protein-7 (BMP-7) treatment polarizes monocytes into M2 macrophages and increases the expression of anti-inflammatory cytokines. Despite these findings, the mechanisms for the observed BMP-7 induced monocyte polarization into M2 macrophages are completely unknown. In this study, we demonstrate the mechanisms involved in the polarization of monocytes into M2 macrophages. Apoptotic conditioned media (ACM) was generated to mimic the stressed conditions, inducing monocyte polarization. Monocytes were treated with ACM along with BMP-7 and/or its inhibitor, follistatin, for 48 hours. Furthermore, an inhibitor of the PI3K pathway, LY-294002, was also studied. Our data show that BMP-7 induces polarization of monocytes into M2 macrophages while significantly increasing the expression of anti-inflammatory markers, arginase-1 and IL-10, and significantly (p<0.05) decreasing the expression of pro-inflammatory markers iNOS, IL-6, TNF-α and MCP-1; (p<0.05). Moreover, addition of the PI3K inhibitor, LY-294002, significantly (p<0.05) decreases upregulation of IL-10 and arginase-1, suggesting involvement of the PI3K pathway in M2 macrophage polarization. Next, following BMP-7 treatment, a significant (p<0.05) increase in p-SMAD1/5/8 and p-PI3K expression resulting in downstream activation of p-Akt and p-mTOR was observed. Furthermore, expression of p-PTEN, an inhibitor of the PI3K pathway, was significantly (p<0.05) increased in the ACM group. However, BMP-7 treatment inhibited its expression, suggesting involvement of the PI3K-Akt-mTOR pathway. In conclusion, we demonstrate that BMP-7 polarizes monocytes into M2 macrophages and enhances anti-inflammatory cytokine expression which is mediated by the activated SMAD-PI3K-Akt-mTOR pathway. PMID:24376781

  19. Lipid emulsions differentially affect LPS-induced acute monocytes inflammation: in vitro effects on membrane remodeling and cell viability.

    PubMed

    Boisramé-Helms, Julie; Delabranche, Xavier; Klymchenko, Andrey; Drai, Jocelyne; Blond, Emilie; Zobairi, Fatiha; Mely, Yves; Hasselmann, Michel; Toti, Florence; Meziani, Ferhat

    2014-11-01

    The aim of this study was to assess how lipid emulsions for parenteral nutrition affect lipopolysaccharide (LPS)-induced acute monocyte inflammation in vitro. An 18 h long LPS induced human monocyte leukemia cell stimulation was performed and the cell-growth medium was supplemented with three different industrial lipid emulsions: Intralipid(®), containing long-chain triglycerides (LCT--soybean oil); Medialipid(®), containing LCT (soybean oil) and medium-chain triglycerides (MCT--coconut oil); and SMOFlipid(®), containing LCT, MCT, omega-9 and -3 (soybean, coconut, olive and fish oils). Cell viability and apoptosis were assessed by Trypan blue exclusion and flow cytometry respectively. Monocyte composition and membrane remodeling were studied using gas chromatography and NR12S staining. Microparticles released in supernatant were measured by prothrombinase assay. After LPS challenge, both cellular necrosis and apoptosis were increased (threefold and twofold respectively) and microparticle release was enhanced (sevenfold) after supplementation with Medialipid(®) compared to Intralipid(®), SMOFlipid(®) and monocytes in the standard medium. The monocytes differentially incorporated fatty acids after lipid emulsion challenge. Finally, lipid-treated cells displayed microparticles characterized by disrupted membrane lipid order, reflecting lipid remodeling of the parental cell plasma membrane. Our data suggest that lipid emulsions differentially alter cell viability, monocyte composition and thereby microparticle release. While MCT have deleterious effects, we have shown that parenteral nutrition emulsion containing LCT or LCT and MCT associated to n-3 and n-9 fatty acids have no effect on endotoxin-induced cell death and inflammation.

  20. Targeting inflammatory monocytes in sepsis-associated encephalopathy and long-term cognitive impairment.

    PubMed

    Andonegui, Graciela; Zelinski, Erin L; Schubert, Courtney L; Knight, Derrice; Craig, Laura A; Winston, Brent W; Spanswick, Simon C; Petri, Björn; Jenne, Craig N; Sutherland, Janice C; Nguyen, Rita; Jayawardena, Natalie; Kelly, Margaret M; Doig, Christopher J; Sutherland, Robert J; Kubes, Paul

    2018-05-03

    Sepsis-associated encephalopathy manifesting as delirium is a common problem in critical care medicine. In this study, patients that had delirium due to sepsis had significant cognitive impairments at 12-18 months after hospital discharge when compared with controls and Cambridge Neuropsychological Automated Test Battery-standardized scores in spatial recognition memory, pattern recognition memory, and delayed-matching-to-sample tests but not other cognitive functions. A mouse model of S. pneumoniae pneumonia-induced sepsis, which modeled numerous aspects of the human sepsis-associated multiorgan dysfunction, including encephalopathy, also revealed similar deficits in spatial memory but not new task learning. Both humans and mice had large increases in chemokines for myeloid cell recruitment. Intravital imaging of the brains of septic mice revealed increased neutrophil and CCR2+ inflammatory monocyte recruitment (the latter being far more robust), accompanied by subtle microglial activation. Prevention of CCR2+ inflammatory monocyte recruitment, but not neutrophil recruitment, reduced microglial activation and other signs of neuroinflammation and prevented all signs of cognitive impairment after infection. Therefore, therapeutically targeting CCR2+ inflammatory monocytes at the time of sepsis may provide a novel neuroprotective clinical intervention to prevent the development of persistent cognitive impairments.

  1. Inhibition of differentiation of monocyte to macrophages in atherosclerosis by oligomeric proanthocyanidins -In-vivo and in-vitro study.

    PubMed

    Mohana, Thiruchenduran; Navin, Alukkathara Vijayan; Jamuna, Sanker; Sakeena Sadullah, Mohammed Sadullah; Niranjali Devaraj, Sivasithamparam

    2015-08-01

    Monocyte to macrophage differentiation is a key event in the progression of atherosclerosis. An understanding on the fundamental molecular mechanisms and the identification of regulatory mechanisms behind this differentiation may aid in the identification of new therapeutic strategies. Inhibition of this phenomenon will form first line of defense in the prevention and treatment of atherosclerosis. In the current study we explored hypercholesterolemia induced monocyte to macrophage differentiation in-vivo (Wistar rats) leading to atherosclerosis and OxyLDL, M-CSF induced monocyte differentiation in-vitro (U937 cells). Oligomeric proanthocyanidin (OPC) isolated from Crataegus oxyacantha was tested for its efficacy in downregulating this differentiation and in preventing atherogenic disturbances. Cholesterol cholic acid diet induced an increased monocyte to macrophage differentiation by upregulating MCP1 and VCAM1 which induced the inflammatory cytokines that further substantiated the monocyte conversion and infiltration into the vascular walls. On addition of OxyLDL and M-CSF to U937 cells, macrophage markers CD36 and CD 68, PPARγ, MMP2 and 9 were elevated, suggesting differentiation. OPC downregulated this differentiation and thus could prevent the initiation of atherosclerosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Age-related pattern and monocyte-acquired haemozoin associated production of erythropoietin in children with severe malarial anaemia in Ghana.

    PubMed

    Abugri, James; Tetteh, John Kweku Amissah; Oseni, Lateef Adebayo; Mensah-Brown, Henrietta Esi; Delimini, Rupert Kantunye; Obuobi, David Osei; Akanmori, Bartholomew Dicky

    2014-08-20

    Malaria continues to be a global health challenge, affecting more than half the world's population and causing approximately 660,000 deaths annually. The majority of malaria cases are caused by Plasmodium falciparum and occur in sub-Saharan Africa. One of the major complications asscociated with malaria is severe anaemia, caused by a cycle of haemoglobin digestion by the parasite. Anaemia due to falciparum malaria in children has multifactorial pathogenesis, which includes suppression of bone marrow activity. Recent studies have shown that haemozoin, which is a by-product of parasite haemoglobin digestion, may play an important role in suppression of haemoglobin production, leading to anaemia. In this study we correlated the levels of erythropoietin (EPO), as an indicator of stimulation of haemoglobin production, to the levels of monocyte acquired haemozoin in children with both severe and uncomplicated malaria. There was a significantly negative correlation between levels of haemozoin-containing monocytes and EPO, which may suggest that haemozoin suppresses erythropoiesis in severe malaria. A multiple linear regression analysis and simple bar was used to investigate associations between various haematological parameters. To examine the levels of erythropoietin in the age categories, the levels of erythropoietin was measured using a commercial Enyme-Linked Immunosorbent Assay (ELISA). Giemsa-stained blood smears were used to determine percentage pigment containing monocytes. The haemozoin containing monocytes was expressed as a percentage of the total number of monocytes. To obtain the number of haemozoin containing monocytes/μL the percentage of haemozoin containing monocytes was multiplied by the absolute number of monocytes/μL from the automated haematology analyzer. The levels of erythropoietin in younger children (<3 years) was significantly higher than in older children with a similar degree of malaria anaemia (Hb levels) (p < 0.005). Haemozoin

  3. Oral Wild-Type Salmonella Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease.

    PubMed

    Toapanta, Franklin R; Bernal, Paula J; Fresnay, Stephanie; Darton, Thomas C; Jones, Claire; Waddington, Claire S; Blohmke, Christoph J; Dougan, Gordon; Angus, Brian; Levine, Myron M; Pollard, Andrew J; Sztein, Marcelo B

    2015-06-01

    A new human oral challenge model with wild-type Salmonella Typhi (S. Typhi) was recently developed. In this model, ingestion of 104 CFU of Salmonella resulted in 65% of subjects developing typhoid fever (referred here as typhoid diagnosis -TD-) 5-10 days post-challenge. TD criteria included meeting clinical (oral temperature ≥38°C for ≥12 h) and/or microbiological (S. Typhi bacteremia) endpoints. One of the first lines of defense against pathogens are the cells of the innate immune system (e.g., monocytes, dendritic cells -DCs-). Various changes in circulating monocytes and DCs have been described in the murine S. Typhimurium model; however, whether similar changes are present in humans remains to be explored. To address these questions, a subset of volunteers (5 TD and 3 who did not develop typhoid despite oral challenge -NoTD-) were evaluated for changes in circulating monocytes and DCs. Expression of CD38 and CD40 were upregulated in monocytes and DCs in TD volunteers during the disease days (TD-0h to TD-96h). Moreover, integrin α4β7, a gut homing molecule, was upregulated on monocytes but not DCs. CD21 upregulation was only identified in DCs. These changes were not observed among NoTD volunteers despite the same oral challenge. Moreover, monocytes and DCs from NoTD volunteers showed increased binding to S. Typhi one day after challenge. These monocytes showed phosphorylation of p38MAPK, NFkB and Erk1/2 upon stimulation with S. Typhi-LPS-QDot micelles. In contrast, monocytes from TD volunteers showed only a moderate increase in S. Typhi binding 48 h and 96 h post-TD, and only Erk1/2 phosphorylation. This is the first study to describe different activation and migration profiles, as well as differential signaling patterns, in monocytes and DCs which relate directly to the clinical outcome following oral challenge with wild type S. Typhi.

  4. [Molecular mechanism involved in adhesion of monocytes to endothelial cells induced by nicotine and Porphyromonas gingivalis-LPS].

    PubMed

    Wang, Yi-xiang; An, Na; Ouyang, Xiang-ying

    2015-10-18

    To investigate molecular mechanism involved in nicotine in combination with Porphyromonas gingivalis (P.g) caused monocyte-endothelial cell adhesion. The effect of nicotine, P.g-lipopolysaccharide (P.g-LPS) and their combination on the proliferation of U937 cells was determined by CCK-8 method. Interleukin-6 (IL-6) expression was investigated by real-time PCR after U937 cells were treated with nicotine, P.g-LPS and their combination. In human umbilical vein endothelial cells (HUVECs), the expressions of monocyte chemoattractant protein CCL-8 and adhesion molecules including vascular cell adhesion molecule 1 (Vcam-1), very late antigen 4 alpha (VLA4α), tumor necrosis factor receptor superfamily member 4 (OX40) and OX40 ligand (OX40L) were detected by real-time PCR or Western blotting assays after HUVEC cells were treated with nicotine, P.g-LPS and their combination. Adhesion of monocytes to endothelial cells was detected after the HUVECs and U937 cells were stimulated with nicotine, P.g-LPS and their combination, respectively. P.g-LPS did not affect the proliferative ability of nicotine in U937 cells. However, the ability of P.g-LPS induced IL-6 expression was inhibited by 100 μmol/L nicotine in U937 cells. In HUVECs, the expressions of CCL-8, Vcam-1, VLA4α, OX40 and OX40L were significantly up-regulated by nicotine and P.g-LPS combination compared with nicotine alone, P.g-LPS alone and the untreated control. Adhesion of monocytes to HUVECs results showed that the two types of cells treated with nicotine in combination with P.g-LPS could markedly increase the adhesion ability of monocytes to HUVECs. P.g-LPS in combination with nicotine could recruit monocytes to endothelial lesion through up-regulation of CCL-8, and promote adhesion of monocytes to endothelial cells through enhancement of Vcam-1/VLA4α and OX40/OX40L interactions, which could be involved in the initiation and development of atherosclerosis.

  5. Determinants of Monocyte Apoptosis in Cardiorenal Syndrome Type 1.

    PubMed

    Breglia, Andrea; Virzì, Grazia Maria; Pastori, Silvia; Brocca, Alessandra; de Cal, Massimo; Bolin, Chiara; Vescovo, Giorgio; Ronco, Claudio

    2018-05-30

    Cardiorenal syndrome type 1 (CRS type 1) is characterized by a rapid worsening of cardiac function leading to acute kidney injury (AKI). Its pathophysiology is complex and not completely understood. In this study, we examined the role of apoptosis and the caspase pathways involved. We enrolled 40 acute heart failure (AHF) patients, 11 of whom developed AKI characterizing CRS type 1. We exposed the human cell line U937 to plasma from the CRS type 1 and AHF groups and then we evaluated apoptotic activity by annexin-V evaluation, determination of caspase-3, -8 and -9 levels, and BAX, BAD, and FAS gene expression. We observed significant upregulation of apoptosis in monocytes exposed to CRS type 1 plasma compared to AHF, with increased levels of caspase-3 (p < 0.01), caspase-9 (p < 0.01), and caspase-8 (p < 0.03) showing activation of both intrinsic and extrinsic pathways. Furthermore, monocytes exposed to CRS type 1 plasma had increased gene expression of BAX and BAD (intrinsic pathways) (p = 0.010 for both). Furthermore, strong significant correlations between the caspase-9 levels and BAD and BAX gene expression were observed (Spearman ρ = - 0.76, p = 0.011, and ρ = - 0.72, p = 0.011). CRS type 1 induces dual apoptotic pathway activation in monocytes; the two pathways converged on caspase-3. Many factors may induce activation of both intrinsic and extrinsic apoptotic pathways in CRS type 1 patients, such as upregulation of proinflammatory cytokines and hypoxia/ischemia. Further investigations are necessary to corroborate the present findings, and to better understand the pathophysiological mechanism and consequent therapeutic and prognostic implications for CRS type 1. © 2018 S. Karger AG, Basel.

  6. Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma.

    PubMed

    Bekeschus, Sander; Schmidt, Anke; Bethge, Lydia; Masur, Kai; von Woedtke, Thomas; Hasse, Sybille; Wende, Kristian

    2016-01-01

    In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α), differentiation (retinoic acid signaling and interferon inducible factors), and cell growth (Yin Yang 1). Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1) and of the neutrophil attractant chemokine interleukin-8 (IL-8). Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.

  7. Sex-typicality and attractiveness: are supermale and superfemale faces super-attractive?

    PubMed

    Rhodes, G; Hickford, C; Jeffery, L

    2000-02-01

    Many animals find extreme versions of secondary sexual characteristics attractive, and such preferences can enhance reproductive success (Andersson, 1994). We hypothesized, therefore, that extreme versions of sex-typical traits may be attractive in human faces. We created supermale and superfemale faces by exaggerating all spatial differences between an average male and an average female face. In Expt 1 the male average was preferred to a supermale (50% exaggeration of differences from the female average). There was no clear preference for the female average or the superfemale (50% exaggeration). In Expt 2, participants chose the most attractive face from sets of images containing feminized as well as masculinized images for each sex, and spanning a wider range of exaggeration levels than in Expt 1. Chinese sets were also shown, to see whether similar preferences would occur for a less familiar race (participants were Caucasian). The most attractive female image was significantly feminized for faces of both races. However, the most attractive male image for both races was also significantly feminized. These results indicate that feminization, rather than sex exaggeration per se, is attractive in human faces, and they corroborate similar findings by Perrett et al. (1998).

  8. The importance of platelets in the expression of monocyte tissue factor antigen measured by a new whole blood flow cytometric assay.

    PubMed

    Amirkhosravi, A; Alexander, M; May, K; Francis, D A; Warnes, G; Biggerstaff, J; Francis, J L

    1996-01-01

    Previous methods for the determination of monocyte tissue factor (TF) have been technically complex, difficult to standardize, prone to spuriously elevated results and difficult to implement in a clinical laboratory environment. We report the development of a two-color whole blood cytometric technique that overcomes many of these disadvantages. The assay uses small volumes of citrated blood (1.0 ml), can be performed in under one hour (if endotoxin stimulation is not performed), is reproducible (CV = 5%) and uses methodology commonly available in clinical laboratories. Baseline (mean +/- SD) expression of monocyte TF in normal subjects was very low (1.1 +/- 0.95%, Mean Fluorescence [Mean FL] 0.20 +/- 0.01) making relatively small increases easy to detect. Monocyte TF expression following endotoxin (LPS) stimulation for 1 h was 34.6 +/- 11.2% (Mean FL 0.32 +/- 0.04). LPS-stimulated activity varied between subjects (21-68%) but was remarkably consistent for individual subjects (CV = 5.4%). Stimulated monocyte TF expression was directly proportional to the platelet count and was reduced by platelet protective anticoagulants and by ingestion of aspirin. Non LPS-stimulated monocyte TF was markedly increased, in a dose-dependent manner, by adding collagen to whole blood. This was apparently associated with platelet-monocyte binding and could be abolished by anti-P-Selectin. We conclude that the whole blood flow cytometric assay of monocyte TF may be a valuable tool for clinical use and a useful model system for evaluating the humoral and cellular factors governing monocyte TF expression in a natural environment.

  9. Sulforaphane regulates phenotypic and functional switching of both induced and spontaneously differentiating human monocytes.

    PubMed

    Pal, Sanjima; Konkimalla, V Badireenath

    2016-06-01

    At the site of inflammation, switching default on polarization of monocyte differentiation into classically activated macrophages (M1 type) is one of the pathogenic outcomes in several inflammatory autoimmune diseases, such as rheumatoid arthritis and osteoarthritis. In rheumatoid and osteoarthritis, a soluble collagen known as self-antigen is considered as a biomarker and acts as an important inflammatory mediator. In the present study, we investigated the effects of sulforaphane (SFN) on phenotypic changes and functional switching during in vitro induced and spontaneous differentiation of monocytes/macrophages, whose conditions were established with THP1 induced by PMA, and human peripheral blood monocytes, respectively. SFN at non-cytotoxic concentration (10μM) blocked soluble collagen induced inflammatory responses specific to M1 macrophages, COX-2, iNOS, surface CD14, CD197 expressions and production of IL12p70, suggesting that signals induced by SFN eventually shifted macrophage polarization to a direction specific to M2 macrophages (CD36high CD197extremely low). Results obtained with the induction of inflammatory conditions specific to M1 macrophages followed by SFN treatment showed that MAPKs were involved in the M1 to M2 phenotype switching. This immune-modulatory nature of SFN provides a clear indication for its ability to alleviate chronic inflammatory diseases by targeting monocytes/macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Heterogeneity of peripheral blood monocytes, endothelial dysfunction and subclinical atherosclerosis in patients with systemic lupus erythematosus.

    PubMed

    Mikołajczyk, T P; Osmenda, G; Batko, B; Wilk, G; Krezelok, M; Skiba, D; Sliwa, T; Pryjma, J R; Guzik, T J

    2016-01-01

    Systemic lupus erythematosus (SLE) is characterized by increased cardiovascular morbidity and mortality. SLE patients have increased prevalence of subclinical atherosclerosis, although the mechanisms of this observation remain unclear. Considering the emerging role of monocytes in atherosclerosis, we aimed to investigate the relationship between subclinical atherosclerosis, endothelial dysfunction and the phenotype of peripheral blood monocytes in SLE patients. We characterized the phenotype of monocyte subsets defined by the expression of CD14 and CD16 in 42 patients with SLE and 42 non-SLE controls. Using ultrasonography, intima-media thickness (IMT) of carotid arteries and brachial artery flow-mediated dilation (FMD) as well as nitroglycerin-induced dilation (NMD) were assessed. Patients with SLE had significantly, but only modestly, increased IMT when compared with non-SLE controls (median (25th/75th percentile) 0.65 (0.60/0.71) mm vs 0.60 (0.56/0.68) mm; p < 0.05). Importantly, in spite of early atherosclerotic complications in the studied SLE group, marked endothelial dysfunction was observed. CD14dimCD16+proinflammatory cell subpopulation was positively correlated with IMT in SLE patients. This phenomenon was not observed in control individuals. Interestingly, endothelial dysfunction assessed by FMD was not correlated with any of the studied monocyte subsets. Our observations suggest that CD14dimCD16+monocytes are associated with subclinical atherosclerosis in SLE, although the mechanism appears to be independent of endothelial dysfunction. © The Author(s) 2015.

  11. Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis.

    PubMed

    Wondwosen, Betelehem; Birgersson, Göran; Tekie, Habte; Torto, Baldwyn; Ignell, Rickard; Hill, Sharon R

    2018-02-21

    Anopheles arabiensis is a key vector for the transmission of human malaria in sub-Saharan Africa. Over the past 10,000 years, humans have successfully cultivated grasses and altered the landscape, creating An. arabiensis favourable environments that contain excellent habitats for both larvae and adults. Sugarcane is the most expanding agricultural system in sub-Saharan Africa, and is linked to the increased threat of malaria in rural communities. The prolific production and wind dispersal of sugarcane pollen, together with standing pools of water, often provide, as a result of irrigation, a nutrient-rich environment for the offspring of gravid malaria mosquitoes. In the present study, sugarcane pollen-associated volatiles from two cultivars are shown to attract gravid An. arabiensis in a still air two-port olfactometer and stimulate egg laying in an oviposition bioassay. Through combined gas chromatography and electroantennographic detection, as well as combined gas chromatography and mass spectrometric analyses, we identified the bioactive volatiles and generated a synthetic blend that reproduced the full behavioural repertoire of gravid mosquitoes in the Y-tube assay. Two subtractive odour blends, when compared with the full blend, were significantly more attractive. These three and four-component subtractive blends share the compounds (1R)-(+)-α-pinene, nonanal and benzaldehyde, of which, (1R)-(+)-α-pinene and nonanal are found in the attractive odour blends from rice plants and maize pollen. In pairwise comparisons, the rice synthetic odour blend was more attractive to gravid mosquitoes than either of the pollen blends, whereas the pollen blends did not differ in attraction. The attraction of gravid females to sugarcane pollen volatiles demonstrated in this study, together with the previously found grass-associated volatiles, raise the potential of developing a bioactive chimeric blend to attract gravid malaria mosquitoes. This is discussed in relation to

  12. Plant-derived micronutrients suppress monocyte adhesion to cultured human aortic endothelial cell layer by modulating its extracellular matrix composition.

    PubMed

    Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2008-07-01

    Monocyte adhesion to endothelium plays an important role in atherosclerosis. We investigated the effects of micronutrients on monocyte-binding properties of extracellular matrix (ECM) produced by human aortic endothelial cells (AoEC). Confluent cultures of AoEC were exposed to ascorbic acid, quercetin, gotu kola extract (10% asiatic acid), green tea extract (40% epigallocatechin gallate), or a mixture of these micronutrients for 48 hours. AoEC-produced ECM was exposed by differential treatment. U937 monocyte adhesion was assayed by fluorescence. ECM composition was assayed immunochemically and with radiolabeled metabolic precursors. AoEC exposure to micronutrients reduced ECM capacity to bind monocytes in a dose-dependent manner. This effect was accompanied by profound changes in the ECM composition. Correlation analysis revealed that changes in monocyte adhesion to ECM had the strongest positive correlation with ECM content for laminin (CC = 0.9681, P < 0.01), followed by fibronectin, collagens type III, I, and IV, biglycan, heparan sulfate, and elastin. The strongest negative correlation was with chondroitin sulfate (CC = -0.9623, P < 0.01), followed by perlecan and versican. Individual micronutrients had diverse effects on ECM composition and binding properties, and their mixture was the most effective treatment. In conclusion, micronutrient-dependent reduction of monocyte adhesion to endothelium is partly mediated through specific modulation of ECM composition and properties.

  13. Blood and milk polymorphonuclear leukocyte and monocyte/macrophage functions in naturally caprine arthritis encephalitis virus infection in dairy goats.

    PubMed

    Santos, Bruna Parapinski; Souza, Fernando Nogueira; Blagitz, Maiara Garcia; Batista, Camila Freitas; Bertagnon, Heloísa Godoi; Diniz, Soraia Araújo; Silva, Marcos Xavier; Haddad, João Paulo Amaral; Della Libera, Alice Maria Melville Paiva

    2017-06-01

    The exact influence of caprine arthritis encephalitis virus (CAEV) infection on blood and milk polymorphonuclear leukocytes (PMNLs) and monocyte/macrophages of goats remains unclear. Thus, the present study sought to explore the blood and milk PMNL and monocyte/macrophage functions in naturally CAEV-infected goats. The present study used 18 healthy Saanen goats that were segregated according to sera test outcomes into serologically CAEV negative (n=8; 14 halves) and positive (n=10; 14 halves) groups. All milk samples from mammary halves with milk bacteriologically positive outcomes, somatic cell count ≥2×10 6 cellsmL -1 , and abnormal secretions in the strip cup test were excluded. We evaluated the percentage of blood and milk PMNLs and monocyte/macrophages, the viability of PMNLs and monocyte/macrophages, the levels of intracellular reactive oxygen species (ROS) and the nonopsonized phagocytosis of Staphylococcus aureus and Escherichia coli by flow cytometry. In the present study, a higher percentage of milk macrophages (CD14 + ) and milk polymorphonuclear leukocytes undergoing late apoptosis or necrosis (Annexin-V + /Propidium iodide + ) was observed in CAEV-infected goats; we did not find any further alterations in blood and milk PMNL and monocyte/macrophage functions. Thus, regarding our results, the goats naturally infected with CAEV did not reveal pronounced dysfunctions in blood and milk polymorphonuclear leukocytes and monocytes/macrophages. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. In vitro knockout of human p47phox blocks superoxide anion production and LDL oxidation by activated human monocytes.

    PubMed

    Bey, E A; Cathcart, M K

    2000-03-01

    We previously reported that superoxide dismutase (SOD) blocked human monocyte oxidation of LDL and therefore concluded that superoxide anion (O(2)(.-)) was required for oxidation. Others, however, have suggested that SOD may inhibit by mechanisms alternative to the dismutation of O(2)(.-). This study definitively addresses the involvement of O(2)(.-) in monocyte oxidation of LDL. Using an antisense ODN designed to target p47phox mRNA, we found that treatment of monocytes with antisense ODN caused a substantial and selective decrease in expression of p47phox protein, whereas sense ODN was without effect. Corresponding functional assays demonstrated that antisense ODN inhibited production of O(2)(.-). As sense ODN caused no inhibition of O(2)(.-) production, these results suggested that inhibition of p47phox expression caused reduction in O(2)(.-) production. Evaluation of the contribution of O(2)(.-) production to monocyte-mediated oxidation of LDL lipids confirmed that O(2)(.-) production is required for LDL lipid oxidation as antisense ODN treatment significantly inhibited LDL oxidation whereas sense ODN treatment caused no inhibition. This is the first report of the reduction of NADPH oxidase activity in intact human monocytes by directly targeting the mRNA of a significant member of this enzyme complex. Our results provide convincing data that O(2)(.-) is indeed required for monocyte-mediated LDL oxidation.

  15. Association of lymphocyte-monocyte ratio and monocyte-to-high-density lipoprotein ratio with the presence and severity of rheumatic mitral valve stenosis.

    PubMed

    Demir, Vahit; Yilmaz, Samet; Akboga, Mehmet Kadri

    2017-08-03

    We aimed to evaluate the relationships between monocyte-to-high-density lipoprotein ratio (MHR) and lymphocyte-to-monocyte ratio (LMR) and rheumatic mitral valve stenosis (RMVS). A total of 368 patients with mitral stenosis and 80 healthy participants were included. Patients were categorized into two groups in respect to the severity of RMVS as mild-moderate group (mitral valve area ≥1.0 cm 2 ) and severe group (mitral valve area <1.0 cm 2 ). The MHR (10.6 ± 2.3, 11.6 ± 2.6, 13.8 ± 3.1; p < 0.001) and C-reactive protein levels (control group, nonsevere RMVS and severe RMVS groups 3.4 ± 0.7, 4.4 ± 1.1, 5.2 ± 1.4, respectively, p < 0.001) were significantly increased whereas LMR (4.51 ± 1.3, 3.57 ± 1.3, 3.14 ± 1.4, p < 0.001) levels were significantly decreased in parallel to the severity of mitral stenosis. MHR and LMR can be used to predict severity of RMVS.

  16. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF

    PubMed Central

    De Kleer, Ismé; Henri, Sandrine; Post, Sijranke; Vanhoutte, Leen; De Prijck, Sofie; Deswarte, Kim; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N.

    2013-01-01

    Tissue-resident macrophages can develop from circulating adult monocytes or from primitive yolk sac–derived macrophages. The precise ontogeny of alveolar macrophages (AMFs) is unknown. By performing BrdU labeling and parabiosis experiments in adult mice, we found that circulating monocytes contributed minimally to the steady-state AMF pool. Mature AMFs were undetectable before birth and only fully colonized the alveolar space by 3 d after birth. Before birth, F4/80hiCD11blo primitive macrophages and Ly6ChiCD11bhi fetal monocytes sequentially colonized the developing lung around E12.5 and E16.5, respectively. The first signs of AMF differentiation appeared around the saccular stage of lung development (E18.5). Adoptive transfer identified fetal monocytes, and not primitive macrophages, as the main precursors of AMFs. Fetal monocytes transferred to the lung of neonatal mice acquired an AMF phenotype via defined developmental stages over the course of one week, and persisted for at least three months. Early AMF commitment from fetal monocytes was absent in GM-CSF–deficient mice, whereas short-term perinatal intrapulmonary GM-CSF therapy rescued AMF development for weeks, although the resulting AMFs displayed an immature phenotype. This demonstrates that tissue-resident macrophages can also develop from fetal monocytes that adopt a stable phenotype shortly after birth in response to instructive cytokines, and then self-maintain throughout life. PMID:24043763

  17. Early decreased TLR2 expression on monocytes is associated with their reduced phagocytic activity and impaired maturation in a porcine polytrauma model

    PubMed Central

    Schimunek, Lukas; Serve, Rafael; Teuben, Michel P. J.; Störmann, Philipp; Auner, Birgit; Woschek, Mathias; Pfeifer, Roman; Horst, Klemens; Simon, Tim-P.; Kalbitz, Miriam; Sturm, Ramona; Pape, Hans-C.; Hildebrand, Frank; Marzi, Ingo

    2017-01-01

    In their post-traumatic course, trauma patients suffering from multiple injuries have a high risk for immune dysregulation, which may contribute to post-injury complications and late mortality. Monocytes as specific effector cells of the innate immunity play a crucial role in inflammation. Using their Pattern Recognition Receptors (PRRs), notably Toll-Like Receptors (TLR), the monocytes recognize pathogens and/or pathogen-associated molecular patterns (PAMPs) and organize their clearance. TLR2 is the major receptor for particles of gram-positive bacteria, and initiates their phagocytosis. Here, we investigated the phagocytizing capability of monocytes in a long-term porcine severe trauma model (polytrauma, PT) with regard to their TLR2 expression. Polytrauma consisted of femur fracture, unilateral lung contusion, liver laceration, hemorrhagic shock with subsequent resuscitation and surgical fracture fixation. After induction of PT, peripheral blood was withdrawn before (-1 h) and directly after trauma (0 h), as well as 3.5 h, 5.5 h, 24 h and 72 h later. CD14+ monocytes were identified and the expression levels of H(S)LA-DR and TLR2 were investigated by flow cytometry. Additionally, the phagocytizing activity of monocytes by applying S. aureus particles labelled with pHrodo fluorescent reagent was also assessed by flow cytometry. Furthermore, blood samples from 10 healthy pigs were exposed to a TLR2-neutralizing antibody and subsequently to S. aureus particles. Using flow cytometry, phagocytizing activity was determined. P below 0.05 was considered significant. The number of CD14+ monocytes of all circulating leukocytes remained constant during the observational time period, while the percentage of CD14+H(S)LA-DR+ monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of TLR2+ expressing cells out of all monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of phagocytizing monocytes decreased

  18. Changing the Face of Diabetic Care with Haptoglobin Genotype Selection and Vitamin E

    PubMed Central

    Levy, Nina S.; Levy, Andrew P.

    2011-01-01

    Research over the past 10 years in our laboratory has led to two major findings. The first is that haptoglobin (Hp) genotype can predict the risk of developing vascular complications in individuals with diabetes mellitus (DM), and the second, more far-reaching discovery, is that vitamin E treatment can significantly reduce vascular complications in individuals with DM and the Hp 2-2 genotype. The former finding has been well documented in numerous studies which included over 50,000 patients of diverse geographical and ethnic backgrounds. The latter discovery is more recent and less well accepted by the medical community due to confounding reports over the past 30 years regarding the efficacy of vitamin E treatment for vascular disease. We propose that the benefit of vitamin E treatment was not obvious in earlier studies due to the absence of any genetic basis for patient selection. Our studies dividing DM individuals into vitamin E treatment subgroups based on Hp genotype show a clear benefit for individuals of the Hp 2-2 genotype, while patients carrying the other two Hp genotypes are not affected or may be adversely affected by receiving vitamin E. These findings may explain the overall lack of benefit seen in previous vitamin E studies and emphasize the importance of carefully selecting which patients should receive vitamin E therapy. The pharmacogenomic paradigm discussed in this review potentially could result in a dramatic improvement in the health of millions of individuals worldwide using a treatment that is both accessible and affordable to all. PMID:23908805

  19. Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery

    NASA Astrophysics Data System (ADS)

    Smith, Bryan Ronain; Ghosn, Eliver Eid Bou; Rallapalli, Harikrishna; Prescher, Jennifer A.; Larson, Timothy; Herzenberg, Leonore A.; Gambhir, Sanjiv Sam

    2014-06-01

    In cancer imaging, nanoparticle biodistribution is typically visualized in living subjects using `bulk' imaging modalities such as magnetic resonance imaging, computerized tomography and whole-body fluorescence. Accordingly, nanoparticle influx is observed only macroscopically, and the mechanisms by which they target cancer remain elusive. Nanoparticles are assumed to accumulate via several targeting mechanisms, particularly extravasation (leakage into tumour). Here, we show that, in addition to conventional nanoparticle-uptake mechanisms, single-walled carbon nanotubes are almost exclusively taken up by a single immune cell subset, Ly-6Chi monocytes (almost 100% uptake in Ly-6Chi monocytes, below 3% in all other circulating cells), and delivered to the tumour in mice. We also demonstrate that a targeting ligand (RGD) conjugated to nanotubes significantly enhances the number of single-walled carbon nanotube-loaded monocytes reaching the tumour (P < 0.001, day 7 post-injection). The remarkable selectivity of this tumour-targeting mechanism demonstrates an advanced immune-based delivery strategy for enhancing specific tumour delivery with substantial penetration.

  20. PPARgamma is not a critical mediator of primary monocyte differentiation or foam cell formation.

    PubMed

    Patel, Lisa; Charlton, Steven J; Marshall, Ian C; Moore, Gary B T; Coxon, Phil; Moores, Kitty; Clapham, John C; Newman, Suzanna J; Smith, Stephen A; Macphee, Colin H

    2002-01-18

    In the present report we clarify the role of PPARgamma in differentiation and function of human-derived monocyte/macrophages in vitro. Rosiglitazone, a selective PPARgamma activator, had no effect on the kinetics of appearance of monocyte/macrophage differentiation markers or on cell size or granularity. Depletion of PPARgamma by more than 90% using antisense oligonucleotides did not influence accumulation of oxidized LDL or prevent the upregulation of CD36 that normally accompanies oxLDL treatment. In contrast, PPARgamma depletion reduced the expression of ABCA1 and LXRalpha mRNAs. Metalloproteinase-9 expression, a marker of atherosclerotic plaque vulnerability, was suppressed by rosiglitazone. We conclude that activation of PPARgamma does not affect monocyte/macrophage differentiation. In addition, PPARgamma is not absolutely required for oxLDL-driven lipid accumulation, but is required for full expression of ABCA1 and LXRalpha. Our data support a role for rosiglitazone as a potential directly acting antiatherosclerotic agent.