Sample records for harbor days tug

  1. 77 FR 43513 - Olympia Harbor Days Tug Boat Races, Budd Inlet, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... Harbor Days Tug Boat Races, Budd Inlet, WA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Special Local Regulation, Olympia Harbor Days Tug Boat... Special Local Regulation for Olympia Harbor Days Tug Boat Races, Budd Inlet, WA in 33 CFR 100.1309 on...

  2. 75 FR 53572 - Safety Zone; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ...-AA00 Safety Zone; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA AGENCY: Coast Guard, DHS. ACTION... channel in Budd Inlet, WA during Olympia Harbor Days tug boat races. This safety zone is necessary to... waters of the Budd Inlet, WA during Olympia Harbor Days tug boat races. DATES: This rule is effective...

  3. 33 CFR 100.1309 - Special Local Regulation; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Special Local Regulation; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA. 100.1309 Section 100.1309 Navigation and Navigable Waters... WATERS § 100.1309 Special Local Regulation; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA. (a...

  4. 33 CFR 100.1309 - Special Local Regulation; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Special Local Regulation; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA. 100.1309 Section 100.1309 Navigation and Navigable Waters... WATERS § 100.1309 Special Local Regulation; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA. (a...

  5. 33 CFR 100.1309 - Special Local Regulation; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Special Local Regulation; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA. 100.1309 Section 100.1309 Navigation and Navigable Waters... WATERS § 100.1309 Special Local Regulation; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA. (a...

  6. 33 CFR 100.1309 - Special Local Regulation; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Special Local Regulation; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA. 100.1309 Section 100.1309 Navigation and Navigable Waters... WATERS § 100.1309 Special Local Regulation; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA. (a...

  7. 76 FR 30825 - Special Local Regulation; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ..., 2011. G.T. Blore, Rear Admiral, U.S. Coast Guard Commander, Thirteenth Coast Guard District. [FR Doc... standards (e.g., specifications of materials, performance, design, or operation; test methods; sampling..., paragraph (34)(g.) of the Instruction. This rule involves tug boat racing by various classes of tugboats in...

  8. Space tug thermal control

    NASA Technical Reports Server (NTRS)

    Ward, T. L.

    1975-01-01

    The future development of full capability Space Tug will impose strict requirements upon the thermal design. While requiring a reliable and reusable design, Space Tug must be capable of steady-state and transient thermal operation during any given mission for mission durations of up to seven days and potentially longer periods of time. Maximum flexibility and adaptability of Space Tug to the mission model requires that the vehicle operate within attitude constraints throughout any specific mission. These requirements were translated into a preliminary design study for a geostationary deploy and retrieve mission definition for Space Tug to determine the thermal control design requirements. Results of the study are discussed with emphasis given to some of the unique avenues pursued during the study, as well as the recommended thermal design configuration.

  9. IUS/TUG orbital operations and mission support study. Volume 3: Space tug operations

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A study was conducted to develop space tug operational concepts and baseline operations plan, and to provide cost estimates for space tug operations. Background data and study results are presented along with a transition phase analysis (the transition from interim upper state to tug operations). A summary is given of the tug operational and interface requirements with emphasis on the on-orbit checkout requirements, external interface operational requirements, safety requirements, and system operational interface requirements. Other topics discussed include reference missions baselined for the tug and details for the mission functional flows and timelines derived for the tug mission, tug subsystems, tug on-orbit operations prior to the tug first burn, spacecraft deployment and retrieval by the tug, operations centers, mission planning, potential problem areas, and cost data.

  10. Space tug economic analysis study. Volume 2: Tug concepts analysis. Appendix: Tug design and performance data base

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The tug design and performance data base for the economic analysis of space tug operation are presented. A compendium of the detailed design and performance information from the data base is developed. The design data are parametric across a range of reusable space tug sizes. The performance curves are generated for selected point designs of expendable orbit injection stages and reusable tugs. Data are presented in the form of graphs for various modes of operation.

  11. 33 CFR 100.107 - Windjammer Days, Boothbay Harbor, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Windjammer Days, Boothbay Harbor, Maine. 100.107 Section 100.107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.107 Windjammer Days, Boothbay...

  12. Earth-orbit mission considerations and Space Tug requirements.

    NASA Technical Reports Server (NTRS)

    Huber, W. G.

    1973-01-01

    The reusable Space Tug is a major system planned to augment the Space Shuttle's capability to deliver, retrieve, and support automated payloads. The Space Tug will be designed to perform round-trip missions from low earth orbit to geosynchronous orbit. Space Tug goals and requirements are discussed together with the characteristics of the full capability Tug. The Tug is to be operated in an unmanned 'teleoperator' fashion. Details of potential teleoperator applications are considered, giving attention to related systems studies, candidate Tug mission applications, Tug 'end-effector' alternatives, technical issues associated with Tug payload retrieval, and Tug/payload accommodations.

  13. Space tug economic analysis study. Volume 2: Tug concepts analysis. Part 1: Overall approach and data generation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An economic analysis of space tug operations is presented. The subjects discussed are: (1) data base for orbit injection stages, (2) data base for reusable space tug, (3) performance equations, (4) data integration and interpretation, (5) tug performance and mission model accomodation, (6) total program cost, (7) payload analysis, (8) computer software, and (9) comparison of tug concepts.

  14. From Campus Tug-of-War to Pulling Together: Using the Lean Approach

    ERIC Educational Resources Information Center

    MacIntyre, Stephen; Meade, Kelly; McEwen, Melissa

    2009-01-01

    Some days seem like bouts in an endless game of tug-of-war. At one end of the rope, facilities professionals must do more--tackle deferred maintenance, develop a climate strategy, and meet the energy and operational needs for a complex mix of building types and stakeholders. Tugging on the other end are the obstacles of less money, staff, and…

  15. Space tug thermal control. [design criteria and specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    It was determined that space tug will require the capability to perform its mission within a broad range of thermal environments with currently planned mission durations of up to seven days, so an investigation was conducted to define a thermal design for the forward and intertank compartments and fuel cell heat rejection system that satisfies tug requirements for low inclination geosynchronous deploy and retrieve missions. Passive concepts were demonstrated analytically for both the forward and intertank compartments, and a worst case external heating environment was determined for use during the study. The thermal control system specifications and designs which resulted from the research are shown.

  16. 75 FR 76613 - National Pearl Harbor Remembrance Day, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... million of America's sons and daughters served during World War II, and more than 400,000 paid the... hate. In honor of all who have borne the cost of battle throughout America's history, let us pledge to... National Pearl Harbor Remembrance Day, 2010 By the President of the United States of America A Proclamation...

  17. Space tug economic analysis study. Volume 2: Tug concepts analysis. Part 2: Economic analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An economic analysis of space tug operations is presented. The subjects discussed are: (1) cost uncertainties, (2) scenario analysis, (3) economic sensitivities, (4) mixed integer programming formulation of the space tug problem, and (5) critical parameters in the evaluation of a public expenditure.

  18. Space Tug systems study. Volume 2: Compendium

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Possible storable propellant configurations and program plans are evaluated for the space tug. Alternatives examined include: use of existing expendable stages modified for use with shuttle, followed by a space tug at a later date; use of a modified growth version of existing expendable stages for greater performance and potential reuse, followed by a space tug at a later date; use of a low development cost, reusable, interim space tug available at shuttle initial operational capability (IOC) that could be evolved to greater system capabilities at a later date; and use a direct developed tug with maximum potential to be available at some specified time after space shuttle IOC. The capability options were narrowed down to three final options for detailed program definition.

  19. Space tug/shuttle interface compatibility study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Shuttle interfaces required for space tug accommodation are primarily involved with supporting and servicing the tug during launch countdown, flight, and postlanding; deploying and retrieving the tug on orbit; and maintaining control over the tug when it is in or near the orbiter. Each of these interface areas was investigated to determine the best physical and operational method of accomplishing the required functions, with an overriding goal of establishing simple and flexible orbiter interface requirements suitable for tug, tug payloads, IUS and other cargo. It is concluded the orbiter payload accommodations and the MSFC baseline tug are generally interface compatible. Specific minor changes to tug and orbiter interfaces were identified to provide full compatibility. A system concept for supporting and deploying tug from orbiter is described.

  20. Tug fleet and ground operations schedules and controls. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This study presents Tug Fleet and Ground Operations Schedules and Controls plan. This plan was developed and optimized out of a combination of individual Tug program phased subplans, special emphasis studies, contingency analyses and sensitivity analyses. The subplans cover the Tug program phases: (1) Tug operational, (2) Interim Upper Stage (IUS)/Tug fleet utilization, (3) and IUS/Tug payload integration, (4) Tug site activation, (5) IUS/Tug transition, (6) Tug acquisition. Resource requirements (facility, GSE, TSE, software, manpower, logistics) are provided in each subplan, as are appropriate Tug processing flows, active and total IUS and Tug fleet requirements, fleet management and Tug payload integration concepts, facility selection recommendations, site activation and IUS to Tug transition requirements. The impact of operational concepts on Tug acquisition is assessed and the impact of operating Tugs out of KSC and WTR is analyzed and presented showing WTR as a delta. Finally, cost estimates for fleet management and ground operations of the DDT&E and operational phases of the Tug program are given.

  1. The Space Tug economic analysis study - What we learned

    NASA Technical Reports Server (NTRS)

    Hopkins, C. V.

    1975-01-01

    This paper summarizes the scope, analytical methods, and principal findings of a recently performed Space-Tug economic analysis. Both the Shuttle/Tug transportation system and its unmanned payloads were modeled in this study. A variety of upper-stage concepts capable of fulfilling the Tug mission were evaluated against this model, and the 'best' Tug concepts were identified for a range of economic measures.

  2. Space Tug systems study (storable). Volume 3: Executive summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Space tug program options that consider key issues and mission requirements are assessed, component and subsystem candidates are evaluated, and tug configurations synthesized. Three tug program options are defined and evaluated.

  3. Space Tug Aerobraking Study. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    Corso, C. J.; Eyer, C. L.

    1972-01-01

    The feasibility and practicality of employing an aerobraking trajectory for return of the reusable Space Tug from geosynchronous and other high energy missions was investigated. The aerobraking return trajectory modes from high orbits employ transfer ellipses which have low perigee altitudes wherein the earth's sensible atmosphere provides drag to reduce the Tug descent delta velocity requirements and thus decrease the required return trip propulsive energy. An aerobraked Space Tug, sized to the Space Shuttle payload capability and dimensional constraints, can accomplish 95 percent of the geosynchronous missions with a single Shuttle/Tug launch per mission. Aerodynamics, aerothermodynamics, trajectory, quidance and control, configuration concepts, materials, weights and performance parameters were identified. Sensitivities to trajectory uncertainties, atmospheric anomalies and re-entry environments were determined. New technology requirements and future studies required to further enhance the aerobraking potential were identified.

  4. 76 FR 20530 - Safety Zone; Boom Days, Buffalo Outer Harbor, Buffalo, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ...[deg]51'47.61'' W (NAD 83). (b) Effective period. This regulation will be effective and the safety zone...-AA00 Safety Zone; Boom Days, Buffalo Outer Harbor, Buffalo, NY AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone in the Buffalo Outer...

  5. IUS/TUG orbital operations and mission support study. Volume 4: Project planning data

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Planning data are presented for the development phases of interim upper stage (IUS) and tug systems. Major project planning requirements, major event schedules, milestones, system development and operations process networks, and relevant support research and technology requirements are included. Topics discussed include: IUS flight software; tug flight software; IUS/tug ground control center facilities, personnel, data systems, software, and equipment; IUS mission events; tug mission events; tug/spacecraft rendezvous and docking; tug/orbiter operations interface, and IUS/orbiter operations interface.

  6. Space tug economic analysis study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An economic analysis of space tug operations is presented. The space tug is defined as any liquid propulsion stage under 100,000 pounds propellant loading that is flown from the space shuttle cargo bay. Two classes of vehicles are the orbit injection stages and reusable space tugs. The vehicle configurations, propellant combinations, and operating modes used for the study are reported. The summary contains data on the study approach, results, conclusions, and recommendations.

  7. Reusable space tug concept and mission

    NASA Astrophysics Data System (ADS)

    Cresto Aleina, Sara; Viola, Nicole; Stesina, Fabrizio; Viscio, Maria Antonietta; Ferraris, Simona

    2016-11-01

    The paper deals with the conceptual design of a space tug to be used in support to Earth satellites transfer manoeuvres. Usually Earth satellites are released in a non-definitive low orbit, depending on the adopted launcher, and they need to be equipped with an adequate propulsion system able to perform the transfer to their final operational location. In order to reduce the mass at launch of the satellite system, an element pre-deployed on orbit, i.e. the space tug, can be exploited to perform the transfer manoeuvres; this allows simplifying the propulsion requirements for the satellite, with a consequent decrease of mass and volume, in favour of larger payloads. The space tug here presented is conceived to be used for the transfer of a few satellites from low to high orbits, and vice versa, if needed. To support these manoeuvres, dedicated refuelling operations are envisaged. The paper starts from on overview of the mission scenario, the concept of operations and the related architecture elements. Then it focuses on the detailed definition of the space tug, from the requirements' assessment up to the budgets' development, through an iterative and recursive design process. The overall mission scenario has been derived from a set of trade-off analyses that have been performed to choose the mission architecture and operations that better satisfy stakeholder expectations: the most important features of these analyses and their results are described within the paper. Eventually, in the last part of the work main conclusions are drawn on the selected mission scenario and space tug and further utilizations of this innovative system in the frame of future space exploration are discussed. Specifically, an enhanced version of the space tug that has been described in the paper could be used to support on orbit assembly of large spacecraft for distant and long exploration missions. The Space Tug development is an activity carried on in the frame of the SAPERE project (Space

  8. Space tug thermal control follow-on

    NASA Technical Reports Server (NTRS)

    Ward, T. L.

    1975-01-01

    The Space Tug Thermal Control Follow-On program was conducted to further explore some of the thermal control concepts proposed for use in space tug in a breadboard test program. The objectives were to demonstrate the thermal control capabilities of a louver/battery configuration and a thermal conditioning panel/heat pipe radiator configuration. An additional objective was added to model the header pipe and radiator of the second test and correlate the analysis with the test results. These three objectives were achieved and are discussed within this report.

  9. Natural environment design requirements for the space tug

    NASA Technical Reports Server (NTRS)

    West, G. S., Jr.

    1973-01-01

    The natural environment design requirements for the space tug are presented. Since the Space Tug is carried as cargo to orbital altitudes in the space shuttle bay, orbital environmental impacts and short-period atmospheric density variations are the main concerns. The subjects discussed are: (1) natural environment, (2) neutral environment, (3) charged particles, (4) radiation, and (5) meteoroid hazards.

  10. Space tug economic analysis study. Volume 3: Cost estimates

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Cost estimates for the space tug operation are presented. The subjects discussed are: (1) research and development costs, (2) investment costs, (3) operations costs, and (4) funding requirements. The emphasis is placed on the single stage tug configuration using various types of liquid propellants.

  11. Requirements for a near-earth space tug vehicle

    NASA Technical Reports Server (NTRS)

    Gunn, Charles R.

    1990-01-01

    The requirement for a small but powerful space tug, which will be capable of autonomous orbital rendezvous, docking and translating cargos between near-earth orbits by the end of this decade to support the growing national and international space infrastructure focused near the Space Station Freedom, is described. An aggregate of missions drives the need for a space tug including reboosting decaying satellites back to their operational altitudes, retrieving failed or exhausted satellites to Shuttle or SSF for on-orbit refueling or repair, and transporting a satellite servicer system with an FTS to ailing satellites for supervised in-place repair. It is shown that the development and operation of a space tug to perform such numerous missions is more cost effective than separate module and satellite systems to perform the same tasks.

  12. 3 CFR 9068 - Proclamation 9068 of December 5, 2013. National Pearl Harbor Remembrance Day, 2013

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... On National Pearl Harbor Remembrance Day, we honor the men and women who selflessly sacrificed for... the war effort to women who joined the assembly line alongside workers of every background and... Depression, and built the largest middle class and strongest economy in history. Today, with solemn pride and...

  13. Targeting long non-coding RNA-TUG1 inhibits tumor growth and angiogenesis in hepatoblastoma

    PubMed Central

    Dong, R; Liu, G-B; Liu, B-H; Chen, G; Li, K; Zheng, S; Dong, K-R

    2016-01-01

    Hepatoblastoma is the most common liver tumor of early childhood, which is usually characterized by unusual hypervascularity. Recently, long non-coding RNAs (lncRNA) have emerged as gene regulators and prognostic markers in several cancers, including hepatoblastoma. We previously reveal that lnRNA-TUG1 is upregulated in hepatoblastoma specimens by microarray analysis. In this study, we aim to elucidate the biological and clinical significance of TUG1 upregulation in hepatoblastoma. We show that TUG1 is significantly upregulated in human hepatoblastoma specimens and metastatic hepatoblastoma cell lines. TUG1 knockdown inhibits tumor growth and angiogenesis in vivo, and decreases hepatoblastoma cell viability, proliferation, migration, and invasion in vitro. TUG1, miR-34a-5p, and VEGFA constitutes to a regulatory network, and participates in regulating hepatoblastoma cell function, tumor progression, and tumor angiogenesis. Overall, our findings indicate that TUG1 upregulation contributes to unusual hypervascularity of hepatoblastoma. TUG1 is a promising therapeutic target for aggressive, recurrent, or metastatic hepatoblastoma. PMID:27362796

  14. Targeting long non-coding RNA-TUG1 inhibits tumor growth and angiogenesis in hepatoblastoma.

    PubMed

    Dong, R; Liu, G-B; Liu, B-H; Chen, G; Li, K; Zheng, S; Dong, K-R

    2016-06-30

    Hepatoblastoma is the most common liver tumor of early childhood, which is usually characterized by unusual hypervascularity. Recently, long non-coding RNAs (lncRNA) have emerged as gene regulators and prognostic markers in several cancers, including hepatoblastoma. We previously reveal that lnRNA-TUG1 is upregulated in hepatoblastoma specimens by microarray analysis. In this study, we aim to elucidate the biological and clinical significance of TUG1 upregulation in hepatoblastoma. We show that TUG1 is significantly upregulated in human hepatoblastoma specimens and metastatic hepatoblastoma cell lines. TUG1 knockdown inhibits tumor growth and angiogenesis in vivo, and decreases hepatoblastoma cell viability, proliferation, migration, and invasion in vitro. TUG1, miR-34a-5p, and VEGFA constitutes to a regulatory network, and participates in regulating hepatoblastoma cell function, tumor progression, and tumor angiogenesis. Overall, our findings indicate that TUG1 upregulation contributes to unusual hypervascularity of hepatoblastoma. TUG1 is a promising therapeutic target for aggressive, recurrent, or metastatic hepatoblastoma.

  15. Dynamics and offset control of tethered space-tug system

    NASA Astrophysics Data System (ADS)

    Zhang, Jingrui; Yang, Keying; Qi, Rui

    2018-01-01

    Tethered space-tug system is regarded as one of the most promising active debris removal technologies to effectively decrease the steep increasing population of space debris. In order to suppress the spin of space debris, single-tethered space-tug system is employed by regulating the tether. Unfortunately, this system is underactuated as tether length is the only input, and there are two control objectives: the spinning debris and the vibration of tether. Thus, it may suffer great oscillations and result in failure in space debris removal. This paper presents the study of attitude stabilization of the single-tethered space-tug system using not only tether length but also the offset of tether attachment point to suppress the spin of debris, so as to accomplish the space debris removal mission. Firstly, a precise 3D mathematical model in which the debris and tug are both treated as rigid bodies is developed to study the dynamical evolution of the tethered space-tug system. The relative motion equation of the system is described using Lagrange method. Secondly, the dynamic characteristic of the system is analyzed and an offset control law is designed to stabilize the spin of debris by exploiting the variation of tether offset and the regulation of tether length. Besides, an estimation formula is proposed to evaluate the capability of tether for suppressing spinning debris. Finally, the effectiveness of attitude stabilization by the utilization of the proposed scheme is demonstrated via numerical case studies.

  16. Space tug point design study. Volume 4: Program requirements

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the configuration of a space tug and to predict the performance parameters. The program plans and planning data generated in support of the tug development program are presented. The preliminary plans and supporting planning data emphasize the following requirements: (1) maintenance and refurbishment, (2) technology development, (3) production, (4) test facilities, (5) quality control, and (6) scheduling.

  17. Quantification of the tug-back by measuring the pulling force and micro computed tomographic evaluation.

    PubMed

    Jeon, Su-Jin; Moon, Young-Mi; Seo, Min-Seock

    2017-11-01

    The aims of this study were to quantify tug-back by measuring the pulling force and investigate the correlation of clinical tug-back pulling force with in vitro gutta-percha (GP) cone adaptation score using micro-computed tomography (µCT). Twenty-eight roots from human single-rooted teeth were divided into 2 groups. In the ProTaper Next (PTN) group, root canals were prepared with PTN, and in the ProFile (PF) group, root canals were prepared using PF ( n = 14). The degree of tug-back was scored after selecting taper-matched GP cones. A novel method using a spring balance was designed to quantify the tug-back by measuring the pulling force. The correlation between tug-back scores, pulling force, and percentage of the gutta-percha occupied area (pGPOA) within apical 3 mm was investigated using µCT. The data were analyzed using Pearson's correlation analysis, one-way analysis of variance (ANOVA) and Tukey's test. Specimens with a strong tug-back had a mean pulling force of 1.24 N (range, 0.15-1.70 N). This study showed a positive correlation between tug-back score, pulling force, and pGPOA. However, there was no significant difference in these factors between the PTN and PF groups. Regardless of the groups, pGPOA and pulling force were significantly higher in the specimens with a higher tug-back score ( p < 0.05). The degree of subjective tug-back was a definitive determinant for master cone adaptation in the root canal. The use of the tug-back scoring system and pulling force allows the interpretation of subjective tug-back in a more objective and quantitative manner.

  18. Tug fleet and ground operations schedules and controls. Volume 2: part 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This Tug Fleet and Ground Operations Schedules and Controls Study addresses both ground operational data and technical requirements that span the Tug planning phase and operations phase. A similar study covering mission operations (by others) provides the complimentary flight operations details. The two studies provide the planning data requirements, resource allocation, and control milestones for supporting the requirements of the STS program. This Tug Fleet and Ground Operations Schedules and Controls Study incorporates the basic ground operations requirements and concepts provided by previous studies with the interrelationships of the planning, IUS transition, and Tug fleet operations phases. The interrelationships of these phases were studied as a system to optimize overall program benefits and minimize operational risk factors.

  19. Space tug aerobraking study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Corso, C. J.; Eyer, C. L.

    1972-01-01

    The feasibility and practicality of employing an aerobraking trajectory for return of the reusable space tug from geosynchronous orbit was investigated. The aerobraking return trajectory modes employ transfer ellipses from high orbits which have low perigee altitudes wherein the earth's sensible atmosphere provides drag to reduce the tug return delta velocity requirements and thus decrease the required return trip propulsive energy. Aerodynamics, aerothermodynamics, trajectories, guidance and control, configuration concepts, materials, weights and performance were considered. Sensitivities to trajectory uncertainties, atmospheric anomalies and reentry environments were determined. New technology requirements and future studies required to further enhance the aerobraking potential were identified.

  20. Tug fleet and ground operations schedules and controls. Volume 2: part 2, addenda

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results of a study to assess the tug safing requirements at postlanding are presented. The study considered the normal (green light) conditions from orbiter landing to completion of preparations for the next launch. Normal tug ground turnaround operations include handling and transportation activities and the performance of inspections, tests, and checkout functions. These activities dictate that hazards to ground personnel, the tug, GSE, facilities, and ecology be reduced to the lowest practical level consistent with program objectives, cost, and schedules. During flight operations, the tug contains energy sources that constitute potential hazards but are required for mission accomplishment. These potential hazards have been reduced to an acceptable level for flight operation by design features and by providing for control of energy sources.

  1. Optimal three-dimensional reusable tug trajectories for planetary missions including correction for nodal precession

    NASA Technical Reports Server (NTRS)

    Borsody, J.

    1976-01-01

    Equations are derived by using the maximum principle to maximize the payload of a reusable tug for planetary missions. The analysis includes a correction for precession of the space shuttle orbit. The tug returns to this precessed orbit (within a specified time) and makes the required nodal correction. A sample case is analyzed that represents an inner planet mission as specified by a fixed declination and right ascension of the outgoing asymptote and the mission energy. The reusable stage performance corresponds to that of a typical cryogenic tug. Effects of space shuttle orbital inclination, several trajectory parameters, and tug thrust on payload are also investigated.

  2. Guidance of magnetic space tug

    NASA Astrophysics Data System (ADS)

    Fabacher, Emilien; Lizy-Destrez, Stéphanie; Alazard, Daniel; Ankersen, Finn; Profizi, Alexandre

    2017-07-01

    Magnetic tugging of a target satellite without thrust capacity can be interesting in various contexts, as for example End-Of-Life management, or to complete launchers capabilities. The aim is to gradually modify the orbit of the target by constantly exerting on it a magnetic force. To do so, the chaser is assumed equipped with a steerable magnetic dipole, able to create both forces and torques on the magnetic torque rods carried by the target. The chaser is also supposed to carry electric thrusters, creating a continuous force which modifies the orbit of the whole formation composed of chaser and target. The relative motions of both satellites are derived, in order to assess the feasibility of such a concept. Relative configuration (attitudes and position) trajectories are derived, which are compliant with the dynamics, and enable the chaser to tug the target. Considering targets in Low Earth Orbit (LEO), the magnetic field of the Earth is taken into account, modeled by the International Geomagnetic Reference Field (IGRF). The position of the magnetic torque rod of the target may not be located at its center of mass. This lever-arm is taken into account in the dynamics. As for every Electro-Magnetic Formation Flight concept developed in the literature, satellites involved in magnetic tugging are constantly subjected to torques, created by the Earth magnetic field and by the magnetic fields created by the other satellites in the formation. In this study, the solution chosen to face this problem is to take into account the attitude equilibrium of the satellites early in the guidance phase, in order to avoid having to wave the dipole, as it is generally done. Promising results are presented for different types of orbit, showing that the concept could be feasible in many different scenarios.

  3. 75 FR 2152 - Certificate of Alternative Compliance for the Anchor Handling Tug Supply Vessel HOLIDAY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... Compliance for the Anchor Handling Tug Supply Vessel HOLIDAY AGENCY: Coast Guard, DHS. ACTION: Notice... handling tug supply vessel HOLIDAY as required by 33 U.S.C. 1605(c) and 33 CFR 81.18. DATES: The... Purpose The anchor handling tug supply vessel HOLIDAY will be used for offshore supply operations. The...

  4. Space tug point design study. Volume 2: Operations, performance and requirements

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A design study to determine the configuration and characteristics of a space tug was conducted. Among the subjects analyzed in the study are: (1) flight and ground operations, (2) vehicle flight performance and performance enhancement techniques, (3) flight requirements, (4) basic design criteria, and (5) functional and procedural interface requirements between the tug and other systems.

  5. Economic case for the retirement of geosynchronous communication satellites via space tugs

    NASA Astrophysics Data System (ADS)

    Galabova, Kalina K.; de Weck, Olivier L.

    2006-05-01

    Both the United Nations (UN) and the US Federal Communications Commission (FCC) have published a ruling that calls for geostationary earth orbit (GEO) satellites to be placed in a disposal orbit at the end of their operational lives. Current procedures utilize spacecraft residual propellant and represent a major life-limiting factor for GEO satellites. An alternative approach would be to allow a space tug to capture and move the satellites after all of their fuel has been exhausted. This extended lifetime can provide significant additional revenue to some satellite operators. Before committing to such a capability, however, the lifecycle costs of a space tug infrastructure must be carefully weighed against the opportunity costs of the current retirement practice. This paper investigates the questions of tug costs, perceived benefits, and service fee. It builds a framework that can be used in evaluating various on-orbit servicing opportunities and proposes that the service fee should be charged as a percentage of the additional revenue received by the satellite operators and analyzes how cost estimation uncertainties affect the value of on-orbit tugging. The presented analysis concludes that until advanced propulsion systems gain greater use, retirement via a space tug will be of value for the 10-20 most expensive GEO assets.

  6. IUS/TUG orbital operations and mission support study. Volume 5: Cost estimates

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The costing approach, methodology, and rationale utilized for generating cost data for composite IUS and space tug orbital operations are discussed. Summary cost estimates are given along with cost data initially derived for the IUS program and space tug program individually, and cost estimates for each work breakdown structure element.

  7. Space Tug avionics definition study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A top down approach was used to identify, compile, and develop avionics functional requirements for all flight and ground operational phases. Such requirements as safety mission critical functions and criteria, minimum redundancy levels, software memory sizing, power for tug and payload, data transfer between payload, tug, shuttle, and ground were established. Those functional requirements that related to avionics support of a particular function were compiled together under that support function heading. This unique approach provided both organizational efficiency and traceability back to the applicable operational phase and event. Each functional requirement was then allocated to the appropriate subsystems and its particular characteristics were quantified.

  8. Return of the Tug-of-War

    ERIC Educational Resources Information Center

    McNamara, Julie

    2017-01-01

    Long before the release of the Common Core State Standards (CCSSI 2010), the Mathematical Tug-of-War was engaging students in the type of reasoning and problem solving described by the Standards for Mathematical Practice (SMP). In this updated version of a Marilyn Burns task, students use algebraic reasoning to determine the outcome of a contest…

  9. Towards Automating Clinical Assessments: A Survey of the Timed Up and Go (TUG)

    PubMed Central

    Sprint, Gina; Cook, Diane; Weeks, Douglas

    2016-01-01

    Older adults often suffer from functional impairments that affect their ability to perform everyday tasks. To detect the onset and changes in abilities, healthcare professionals administer standardized assessments. Recently, technology has been utilized to complement these clinical assessments to gain a more objective and detailed view of functionality. In the clinic and at home, technology is able to provide more information about patient performance and reduce subjectivity in outcome measures. The timed up and go (TUG) test is one such assessment recently instrumented with technology in several studies, yielding promising results towards the future of automating clinical assessments. Potential benefits of technological TUG implementations include additional performance parameters, generated reports, and the ability to be self-administered in the home. In this paper, we provide an overview of the TUG test and technologies utilized for TUG instrumentation. We then critically review the technological advancements and follow up with an evaluation of the benefits and limitations of each approach. Finally, we analyze the gaps in the implementations and discuss challenges for future research towards automated, self-administered assessment in the home. PMID:25594979

  10. TUG1 mediates methotrexate resistance in colorectal cancer via miR-186/CPEB2 axis.

    PubMed

    Li, Changfeng; Gao, Yongjian; Li, Yongchao; Ding, Dayong

    2017-09-16

    Colorectal cancer (CRC) is a common malignancy, most of which remain unresponsive to chemotherapy. Methotrexate (MTX) is one of the earliest cytotoxic drugs and serves as an anti-metabolite and anti-folate chemotherapy for various types of cancer. However, MTX resistance prevents its clinical application in cancer therapy. Thereby, overcoming the drug resistance is an alternative strategy to maximize the efficacy of MTX therapies in clinics. Long non-coding RNAs (lncRNAs) have gained widespread attention in recent years. More and more evidences have shown that lncRNAs play regulatory roles in various biological activities and disease progression including drug resistance in cancer cells. Here, we observed lncRNA TUG1 was associated to the MTX resistant in colorectal cancer cells. Firstly, quantitative analysis indicated that TUG1 was significantly increased in tumors which were resistant to MTX treatment. TUG1 knockdown re-sensitized the MTX resistance in colorectal cancer cells, which were MTX-resistant colorectal cell line. Furthermore, bioinformatics analysis showed that miR-186 could directly bind to TUG1, suggesting TUG1 might worked as a ceRNA to sponge miR-186. Extensively, our study also showed that CPEB2 was the direct target of miR-186 in colorectal cancer cells. Taken together, our study suggests that lncRNA TUG1 mediates MTX resistance in colorectal cancer via miR-186/CPEB2 axis. Copyright © 2017. Published by Elsevier Inc.

  11. Tug fleet and ground operations schedules and controls. Volume 2: Part 3, appendixes

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A space tug function description data sheet is prepared for each block of the space tug functional flow diagram. A summary of the basic information regarding the activities performed in its respective functional block is provided. The sheets are catalogued by functional flow block numbers with reference blocks at the end. The specific items of information contained in each data sheet are defined.

  12. Coordinated Regulation of Vasopressin Inactivation and Glucose Uptake by Action of TUG Protein in Muscle.

    PubMed

    Habtemichael, Estifanos N; Alcázar-Román, Abel; Rubin, Bradley R; Grossi, Laura R; Belman, Jonathan P; Julca, Omar; Löffler, Michael G; Li, Hongjie; Chi, Nai-Wen; Samuel, Varman T; Bogan, Jonathan S

    2015-06-05

    In adipose and muscle cells, insulin stimulates the exocytic translocation of vesicles containing GLUT4, a glucose transporter, and insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase. A substrate of IRAP is vasopressin, which controls water homeostasis. The physiological importance of IRAP translocation to inactivate vasopressin remains uncertain. We previously showed that in skeletal muscle, insulin stimulates proteolytic processing of the GLUT4 retention protein, TUG, to promote GLUT4 translocation and glucose uptake. Here we show that TUG proteolysis also controls IRAP targeting and regulates vasopressin action in vivo. Transgenic mice with constitutive TUG proteolysis in muscle consumed much more water than wild-type control mice. The transgenic mice lost more body weight during water restriction, and the abundance of renal AQP2 water channels was reduced, implying that vasopressin activity is decreased. To compensate for accelerated vasopressin degradation, vasopressin secretion was increased, as assessed by the cosecreted protein copeptin. IRAP abundance was increased in T-tubule fractions of fasting transgenic mice, when compared with controls. Recombinant IRAP bound to TUG, and this interaction was mapped to a short peptide in IRAP that was previously shown to be critical for GLUT4 intracellular retention. In cultured 3T3-L1 adipocytes, IRAP was present in TUG-bound membranes and was released by insulin stimulation. Together with previous results, these data support a model in which TUG controls vesicle translocation by interacting with IRAP as well as GLUT4. Furthermore, the effect of IRAP to reduce vasopressin activity is a physiologically important consequence of vesicle translocation, which is coordinated with the stimulation of glucose uptake. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Analysis of space tug operating techniques (study 2.4). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The costs of tug refurbishment were studied, using existing cost estimating relationships, to establish the cost of maintaining the reusable third stage of the space transportation system. Refurbishment operations sheets which describe the actual tasks that are necessary to keep the equipment functioning properly were used along with refurbishment operations sheets which contain all of the pertinent descriptive information for each of the major vehicle areas. Tug refurbishment costs per mission are tabulated.

  14. Shuttle/Agena study. Volume 2, part 2: Agena tug configurations, Shuttle/Agena interface, performance, safety, cost

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An evaluation of the compatibility of the space shuttle and Agena rocket vehicle was conducted. The Agena space tug configuration design is described in terms of the total vehicle system as well as the individual subsystems and major assemblies and components. The complete interface between the Agena space tug and the space shuttle orbiter is defined for in-flight and ground operations. The derivation and design of an evolutionary stage is also presented. This vehicle conforms to the same guidelines and interface requirements as the Agena space tug. Performance data developed for both vehicles for each of the three study baseline missions are included.

  15. P-type polymer-based Ag2S atomic switch for “tug of war” operation

    NASA Astrophysics Data System (ADS)

    Lutz, Carolin; Hasegawa, Tsuyoshi; Tsuchiya, Takashi; Adelsberger, Christoph; Hayakawa, Ryoma; Chikyow, Toyohiro

    2017-06-01

    The Ag2S gap-type atomic switch based “tug of war” device is a promising element for building a new type of CMOS free neuromorphic computer-hardware. Since Ag+ cations are reduced during operation of the device, it was thought that the gap-material should be a n-type polymer. In this study, we revealed that the polymer bithiophene-oligoethyleneoxide (BTOE) doped poly(ethylene oxide) (PEO), which was used as gap-material in the first demonstration of the “tug of war”, is a p-type polymer. For this we used impedance spectroscopy and transistor measurements. We elaborate on how the electrochemical processes in the “tug of war” devices could be explained in the case of p-type conductive gap-materials.

  16. The Space Transportation System. [Space Shuttle-Spacelab-Space Tug system

    NASA Technical Reports Server (NTRS)

    Donlan, C. J.; Brazill, E. J.

    1976-01-01

    The Space Transportation System, consisting of the Space Shuttle, Spacelab, and the Space Tug, is discussed from the viewpoint of reductions in the cost of space operations. Each of the three vehicles is described along with its mission capabilities, and the time table for system development activities is outlined. Basic attributes of the Space Transportation System are reviewed, all operational modes are considered, and the total cost picture of the system is examined from the standpoint of a mission economic analysis. It is concluded that as the features of the Space Transportation System, especially the Shuttle and the Tug, are put to more efficient use during the maturing-operation phase, the total cost of conducting space missions should be about half of what it would be if any other system were employed.

  17. Space Tug Avionics Definition Study. Volume 5: Cost and Programmatics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The baseline avionics system features a central digital computer that integrates the functions of all the space tug subsystems by means of a redundant digital data bus. The central computer consists of dual central processor units, dual input/output processors, and a fault tolerant memory, utilizing internal redundancy and error checking. Three electronically steerable phased arrays provide downlink transmission from any tug attitude directly to ground or via TDRS. Six laser gyros and six accelerometers in a dodecahedron configuration make up the inertial measurement unit. Both a scanning laser radar and a TV system, employing strobe lamps, are required as acquisition and docking sensors. Primary dc power at a nominal 28 volts is supplied from dual lightweight, thermally integrated fuel cells which operate from propellant grade reactants out of the main tanks.

  18. Solid rocket technology advancements for space tug and IUS applications

    NASA Technical Reports Server (NTRS)

    Ascher, W.; Bailey, R. L.; Behm, J. W.; Gin, W.

    1975-01-01

    In order for the shuttle tug or interim upper stage (IUS) to capture all the missions in the current mission model for the tug and the IUS, an auxiliary or kick stage, using a solid propellant rocket motor, is required. Two solid propellant rocket motor technology concepts are described. One concept, called the 'advanced propulsion module' motor, is an 1800-kg, high-mass-fraction motor, which is single-burn and contains Class 2 propellent. The other concept, called the high energy upper stage restartable solid, is a two-burn (stop-restartable on command) motor which at present contains 1400 kg of Class 7 propellant. The details and status of the motor design and component and motor test results to date are presented, along with the schedule for future work.

  19. Preliminary study of tug-glider freight systems utilizing a Boeing 747 as the tug

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.; Foss, W. E., Jr.

    1977-01-01

    Performance of the tug-glider system was severely limited by ground run. In most cases studied, additional engines were necessary. Except at short ranges for which additional payload were carried in the tow plane, the productivity of the basic aircraft was degraded by a reduction in cruise speed necessitated by the glider drag. Excessive aspect ratios did not improve system performance because of the increase in glider wing weight. Powered gliders using a tow plane only for takeoff and climb had the potential for a major reduction in fuel consumption. Uncertainty of restrictive regulatory action and the apparently increased airborne investment per unit productivity are obstacles to commercial development.

  20. Random intermittent search and the tug-of-war model of motor-driven transport

    NASA Astrophysics Data System (ADS)

    Newby, Jay; Bressloff, Paul C.

    2010-04-01

    We formulate the 'tug-of-war' model of microtubule cargo transport by multiple molecular motors as an intermittent random search for a hidden target. A motor complex consisting of multiple molecular motors with opposing directional preference is modeled using a discrete Markov process. The motors randomly pull each other off of the microtubule so that the state of the motor complex is determined by the number of bound motors. The tug-of-war model prescribes the state transition rates and corresponding cargo velocities in terms of experimentally measured physical parameters. We add space to the resulting Chapman-Kolmogorov (CK) equation so that we can consider delivery of the cargo to a hidden target at an unknown location along the microtubule track. The target represents some subcellular compartment such as a synapse in a neuron's dendrites, and target delivery is modeled as a simple absorption process. Using a quasi-steady-state (QSS) reduction technique we calculate analytical approximations of the mean first passage time (MFPT) to find the target. We show that there exists an optimal adenosine triphosphate (ATP) concentration that minimizes the MFPT for two different cases: (i) the motor complex is composed of equal numbers of kinesin motors bound to two different microtubules (symmetric tug-of-war model) and (ii) the motor complex is composed of different numbers of kinesin and dynein motors bound to a single microtubule (asymmetric tug-of-war model).

  1. Tug fleet and ground operations schedules and controls. Volume 3: Program cost estimates

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost data for the tug DDT&E and operations phases are presented. Option 6 is the recommended option selected from seven options considered and was used as the basis for ground processing estimates. Option 6 provides for processing the tug in a factory clean environment in the low bay area of VAB with subsequent cleaning to visibly clean. The basis and results of the trade study to select Option 6 processing plan is included. Cost estimating methodology, a work breakdown structure, and a dictionary of WBS definitions is also provided.

  2. 76 FR 29989 - National Maritime Day, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... and tugs, in our ports and shipyards, close to home or far at sea, to connect businesses, service... our waterways safer and more efficient every day. Today, our maritime industry is a valuable source of... Highway Program,'' an effort that enables American businesses to participate in improving the safety and...

  3. 8. CAR FLOAT AND TUG DOCKED AT BRIDGE NO. 11 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. CAR FLOAT AND TUG DOCKED AT BRIDGE NO. 11 FROM BRIDGE NO. 9 APRON. LOOKING SOUTHEAST. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ

  4. 9. LOADED CAR FLOAT AND TUG IN THE PROCESS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. LOADED CAR FLOAT AND TUG IN THE PROCESS OF DOCKING AT BRIDGE NO. 11. LOOKING EAST. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ

  5. Preliminary study of tug-glider freight systems utilizing a Boeing 747 as the tug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyson, H.H.; Foss, W.E. Jr

    1977-02-01

    Performance of the tug-glider system was severely limited by ground run. In most cases studied, additional engines were necessary. Except at short ranges for which additional payload were carried in the tow plane, the productivity of the basic aircraft was degraded by a reduction in cruise speed necessitated by the glider drag. Excessive aspect ratios did not improve system performance because of the increase in glider wing weight. Powered gliders using a tow plane only for takeoff and climb had the potential for a major reduction in fuel consumption. Uncertainty of restrictive regulatory action and the apparently increased airborne investmentmore » per unit productivity are obstacles to commercial development.« less

  6. 55. Exterior view of marine railway #4. BBW work Tug ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. Exterior view of marine railway #4. BBW work Tug Sam on the ways seen from Port Bow. This was first railway built by BBW on site (Ca.1936). - Barbour Boat Works, Tryon Palace Drive, New Bern, Craven County, NC

  7. Performance of a recoverable tug for planetary missions including use of perigee propulsion and corrections for nodal regression

    NASA Technical Reports Server (NTRS)

    Borsody, J.

    1976-01-01

    Mathematical equations are derived by using the Maximum Principle to obtain the maximum payload capability of a reusable tug for planetary missions. The mathematical formulation includes correction for nodal precession of the space shuttle orbit. The tug performs this nodal correction in returning to this precessed orbit. The sample case analyzed represents an inner planet mission as defined by the declination (fixed) and right ascension of the outgoing asymptote and the mission energy. Payload capability is derived for a typical cryogenic tug and the sample case with and without perigee propulsion. Optimal trajectory profiles and some important orbital elements are also discussed.

  8. Space tug automatic docking control study. LOCDOK users manual

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A users's manual for the computer programs involved in a study of the space tug docking simulation is presented. The following subjects are considered: (1) subroutine narratives, (2) program elements, (3) system subroutines, and (4) Univac 1108 cross reference listing. The functional and operational requirements for the computer programming are explained.

  9. Ag2S atomic switch-based `tug of war' for decision making

    NASA Astrophysics Data System (ADS)

    Lutz, C.; Hasegawa, T.; Chikyow, T.

    2016-07-01

    For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture.For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00690f

  10. Ground-water status report, Pearl Harbor area, Hawaii, 1978

    USGS Publications Warehouse

    Soroos, Ronald L.; Ewart, Charles J.

    1979-01-01

    Increasing demand for freshwater in Hawaii has placed heavy stress on many of the State 's basal aquifer systems. The most heavily stressed of these systems is the Pearl Harbor on Oahu. The Pearl Harbor basal aquifer supplies as much as 277 million gallons per day. Since early in this century, spring discharge has been declining while pumpage has been increasing. Total ground-water discharge has remained steady despite short-term fluctuations. Some wells show general increases in chloride concentration while others remain steady. Chloride concentrations throughout the area show no apparent increase since 1970. Basal water head maps of the Pearl Harbor area clearly reflect the natural discharge points, which are the springs located along the shore near the center of Pearl Harbor. Basal-water hydrographs show a general decline of about 0.09 foot per year. This implies depletion of storage at a rate of about 25 million gallons per day. (USGS).

  11. Overexpression of the long noncoding RNA TUG1 protects against cold-induced injury of mouse livers by inhibiting apoptosis and inflammation.

    PubMed

    Su, Song; Liu, Jiang; He, Kai; Zhang, Mengyu; Feng, Chunhong; Peng, Fangyi; Li, Bo; Xia, Xianming

    2016-04-01

    Hepatic injury provoked by cold storage is a major problem affecting liver transplantation, as exposure to cold induces apoptosis in hepatic tissues. Long noncoding RNAs (lncRNAs) are increasingly understood to regulate apoptosis, but the contribution of lncRNAs to cold-induced liver injury remains unknown. Using RNA-seq, we determined the differential lncRNA expression profile in mouse livers after cold storage and found that expression of the lncRNA TUG1 was significantly down-regulated. Overexpression of TUG1 attenuated cold-induced apoptosis in mouse hepatocytes and liver sinusoidal endothelial cells LSECs, in part by blocking mitochondrial apoptosis and endoplasmic reticulum (ER) stress pathways. Moreover, TUG1 attenuated apoptosis, inflammation, and oxidative stress in vivo in livers subjected to cold storage. Overexpression of TUG1 also improved hepatocyte function and prolonged hepatic graft survival rates in mice. These results suggest that the lncRNA TUG1 exerts a protective effect against cold-induced liver damage by inhibiting apoptosis in mice, and suggests a potential role for TUG1 as a target for the prevention of cold-induced liver damage in liver transplantation. RNA-seq data are available from GEO using accession number GSE76609. © 2016 Federation of European Biochemical Societies.

  12. 10. LOOKING DOWN ON TUG AND CAR FLOAT BEING UNLOADED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. LOOKING DOWN ON TUG AND CAR FLOAT BEING UNLOADED AT BRIDGE NO. 11 SHOWING TRACK, LOCKING MECHANISMS, AND MOORING WINCH IN FOREGROUND. LOOKING EAST. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ

  13. 76 FR 1384 - Special Local Regulation; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... to Mariners. Dated: November 24, 2010. G.T. Blore, Rear Admiral, U.S. Coast Guard Commander... technical standards (e.g., specifications of materials, performance, design, or operation; test methods...

  14. Generating linear regression model to predict motor functions by use of laser range finder during TUG.

    PubMed

    Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki

    2017-05-01

    The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P < 0.01), which was not significant higher correlation than TUG test time. We showed which TUG test parameters were associated with each motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  15. Hydrogeology of Two Areas of the Tug Hill Glacial-Drift Aquifer, Oswego County, New York

    USGS Publications Warehouse

    Miller, Todd S.; Bugliosi, Edward F.; Hetcher-Aguila, Kari K.; Eckhardt, David A.

    2007-01-01

    Two water-production systems, one for the Village of Pulaski and the other for the Villages of Sandy Creek and Lacona in Oswego County, New York, withdraw water from the Tug Hill glacial-drift aquifer, a regional sand and gravel aquifer along the western flank of the Tug Hill Plateau, and provide the sole source of water for these villages. As a result of concerns about contamination of the aquifer, two studies were conducted during 2001 to 2004, one for each water-production system, to refine the understanding of ground-water flow surrounding these water-production systems. Also, these studies were conducted to determine the cause of the discrepancy between ground-water ages estimated from previously constructed numerical ground-water-flow models for the Pulaski and Sandy Creek/Lacona well fields and the apparent ground-water ages determined using concentrations of tritium and chlorofluorocarbons. The Village of Pulaski withdrew 650,000 gallons per day in 2000 from four shallow, large-diameter, dug wells finished in glaciolacustrine deposits consisting of sand with some gravelly lenses 3 miles east of the village. Four 2-inch diameter test wells were installed upgradient from each production well, hydraulic heads were measured, and water samples collected and analyzed for physical properties, inorganic constituents, nutrients, bacteria, tritium, dissolved gases, and chlorofluorocarbons. Recharge to the Tug Hill glacial-drift aquifer is from precipitation directly over the aquifer and from upland sources in the eastern part of the recharge area, including (1) unchannelized runoff from till and bedrock hills east of the aquifer, (2) seepage to the aquifer from streams that drain the Tug Hill Plateau, (3) ground-water inflow from the till and bedrock on the adjoining Tug Hill Plateau. Water-quality data collected from four piezometers near the production wells in November 2003 indicated that the water is a calcium-bicarbonate type with iron concentrations that

  16. Space Tug Docking Study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of a detailed systems analysis of the entire rendezvous and docking operation to be performed by the all-up space tug are presented. Specific areas investigated include: generating of operational requirements and a data base of candidate operational techniques and subsystem mechanizations; selection and ranking of integrated system designs capable of meeting the requirements generated; and definition of this simulation/demonstration program required to select and prove the most effective manual, autonomous, and hybrid rendezvous and docking systems.

  17. Space tug propulsion system failure mode, effects and criticality analysis

    NASA Technical Reports Server (NTRS)

    Boyd, J. W.; Hardison, E. P.; Heard, C. B.; Orourke, J. C.; Osborne, F.; Wakefield, L. T.

    1972-01-01

    For purposes of the study, the propulsion system was considered as consisting of the following: (1) main engine system, (2) auxiliary propulsion system, (3) pneumatic system, (4) hydrogen feed, fill, drain and vent system, (5) oxygen feed, fill, drain and vent system, and (6) helium reentry purge system. Each component was critically examined to identify possible failure modes and the subsequent effect on mission success. Each space tug mission consists of three phases: launch to separation from shuttle, separation to redocking, and redocking to landing. The analysis considered the results of failure of a component during each phase of the mission. After the failure modes of each component were tabulated, those components whose failure would result in possible or certain loss of mission or inability to return the Tug to ground were identified as critical components and a criticality number determined for each. The criticality number of a component denotes the number of mission failures in one million missions due to the loss of that component. A total of 68 components were identified as critical with criticality numbers ranging from 1 to 2990.

  18. Auto detection and segmentation of physical activities during a Timed-Up-and-Go (TUG) task in healthy older adults using multiple inertial sensors.

    PubMed

    Nguyen, Hung P; Ayachi, Fouaz; Lavigne-Pelletier, Catherine; Blamoutier, Margaux; Rahimi, Fariborz; Boissy, Patrick; Jog, Mandar; Duval, Christian

    2015-04-11

    Recently, much attention has been given to the use of inertial sensors for remote monitoring of individuals with limited mobility. However, the focus has been mostly on the detection of symptoms, not specific activities. The objective of the present study was to develop an automated recognition and segmentation algorithm based on inertial sensor data to identify common gross motor patterns during activity of daily living. A modified Time-Up-And-Go (TUG) task was used since it is comprised of four common daily living activities; Standing, Walking, Turning, and Sitting, all performed in a continuous fashion resulting in six different segments during the task. Sixteen healthy older adults performed two trials of a 5 and 10 meter TUG task. They were outfitted with 17 inertial motion sensors covering each body segment. Data from the 10 meter TUG were used to identify pertinent sensors on the trunk, head, hip, knee, and thigh that provided suitable data for detecting and segmenting activities associated with the TUG. Raw data from sensors were detrended to remove sensor drift, normalized, and band pass filtered with optimal frequencies to reveal kinematic peaks that corresponded to different activities. Segmentation was accomplished by identifying the time stamps of the first minimum or maximum to the right and the left of these peaks. Segmentation time stamps were compared to results from two examiners visually segmenting the activities of the TUG. We were able to detect these activities in a TUG with 100% sensitivity and specificity (n = 192) during the 10 meter TUG. The rate of success was subsequently confirmed in the 5 meter TUG (n = 192) without altering the parameters of the algorithm. When applying the segmentation algorithms to the 10 meter TUG, we were able to parse 100% of the transition points (n = 224) between different segments that were as reliable and less variable than visual segmentation performed by two independent examiners. The present

  19. Space Tug Point Design Study. Volume 3: Design Definition. Part 2: Insulation, Meteoroid Protection, Structures, Mass Properties, GSE, Reliability and Safety

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the configuration and performance of a space tug. Detailed descriptions of the insulation, meteoroid protection, primary structure, and ground support equipment are presented. Technical assessments leading to the concept selection are analyzed. The tug mass properties, reliability, and safety assessments are included.

  20. Study of liquid oxygen/liquid hydrogen auxiliary propulsion systems for the space tug

    NASA Technical Reports Server (NTRS)

    Nichols, J. F.

    1975-01-01

    Design concepts are considered that permit use of a liquid-liquid (as opposed to gas-gas) oxygen/hydrogen thrust chamber for attitude control and auxiliary propulsion thrusters on the space tug. The best of the auxiliary propulsion system concepts are defined and their principal characteristics, including cost as well as operational capabilities, are established. Design requirements for each of the major components of the systems, including thrusters, are developed at the conceptual level. The competitive concepts considered use both dedicated (separate tanks) and integrated (propellant from main propulsion tanks) propellant supply. The integrated concept is selected as best for the space tug after comparative evaluation against both cryogenic and storable propellant dedicated systems. A preliminary design of the selected system is established and recommendations for supporting research and technology to further the concept are presented.

  1. Astrionic system optimization and modular astrionics for NASA missions after 1974. Preliminary definition of astrionic system for space tug Mission Vehicle Payload (MVP)

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Results of preliminary studies to define the space tug astrionic system, subsystems, and components to meet requirements for a variety of missions are reported. Emphasis is placed on demonstration of the modular astrionics approach in the design of the space tug astrionic system.

  2. Space tug geosynchronous mission simulation

    NASA Technical Reports Server (NTRS)

    Lang, T. J.

    1973-01-01

    Near-optimal three dimensional trajectories from a low earth park orbit inclined at 28.5 deg to a synchronous-equatorial mission orbit were developed for both the storable (thrust = 28,912 N (6,500 lbs), I sub sp = 339 sec) and cryogenic (thrust = 44,480 N (10,000 lbs), I sub sp = 470 sec) space tug using the iterative cost function minimization technique contained within the modularized vehicle simulation (MVS) program. The finite burn times, due to low thrust-to-weight ratios, and the associated gravity losses are accounted for in the trajectory simulation and optimization. The use of an ascent phasing orbit to achieve burnout in synchronous orbit at any longitude is investigated. The ascent phasing orbit is found to offer the additional advantage of significantly reducing the overall delta velocity by splitting the low altitude burn into two parts and thereby reducing gravity losses.

  3. Engineered tug-of-war between kinesin and dynein controls direction of microtubule transport in vivo

    PubMed Central

    Rezaul, Karim; Gupta, Dipika; Semenova, Irina; Ikeda, Kazuho; Kraikivski, Pavel; Yu, Ji; Cowan, Ann; Zaliapin, Ilya; Rodionov, Vladimir

    2017-01-01

    Bidirectional transport of membrane organelles along microtubules (MTs) is driven by plus-end directed kinesins and minus-end directed dynein bound to the same cargo. Activities of opposing MT motors produce bidirectional movement of membrane organelles and cytoplasmic particles along MT transport tracks. Directionality of MT-based transport might be controlled by a protein complex that determines which motor type is active at any given moment of time, or determined by the outcome of a tug-of-war between MT motors dragging cargo organelles in opposite directions. However, evidence in support of each mechanisms of regulation is based mostly on the results of theoretical analyses or indirect experimental data. Here, we test whether the direction of movement of membrane organelles in vivo can be controlled by the tug-of-war between opposing MT motors alone, by attaching large number of kinesin-1 motors to organelles transported by dynein to minus-ends of MTs. We find that recruitment of kinesin significantly reduces the length and velocity of minus-end-directed dynein-dependent MT runs, leading to a reversal of the overall direction of dynein-driven organelles in vivo. Therefore in the absence of external regulators tug-of-war between opposing MT motors alone is sufficient to determine the directionality of MT transport in vivo. PMID:26843027

  4. 75 FR 2153 - Certificate of Alternative Compliance for the Tractor Tug FORTE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2009-1069] Certificate of Alternative... announces that a Certificate of Alternative Compliance was issued for the tractor tug FORTE as required by 33 U.S.C. 1605(c) and 33 CFR 81.18. DATES: The Certificate of Alternative Compliance was issued on...

  5. Space tug point design study. Volume 3: Design definition. Part 1: Propulsion and mechanical, avionics, thermal control and electrical power subsystems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the configuration and performance of a space tug. Details of the space tug systems are presented to include: (1) propulsion systems, (2) avionics, (3) thermal control, and (4) electric power subsystems. The data generated include engineering drawings, schematics, subsystem operation, and component description. Various options investigated and the rational for the point design selection are analyzed.

  6. Space Tug avionics definition study. Volume 4: Supporting trade studies and analyses

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Analyses and trade studies were performed for the evaluation of the most desirable solutions to space tug subsystem requirements. These were accomplished at system, subsystem, and at component levels. The criteria, the candidate options evaluated, the selection process, and the recommended solutions that have been integrated together in the configuration descriptions are reported.

  7. Lightweight thermally efficient composite feedlines, preliminary design and evaluation. [for the space tug propulsion system

    NASA Technical Reports Server (NTRS)

    Spond, D. E.; Holzworth, R. E.; Hall, C. A.

    1974-01-01

    Six liquid hydrogen feedline design concepts were developed for the cryogenic space tug. The feedlines include composite and all-metal vacuum jacketed and non-vacuum jacketed concepts, and incorporate the latest technology developments in the areas of thermally efficient vacuum jacket end closures and standoffs, radiation shields in the vacuum annulus, thermal coatings, and lightweight dissimilar metal flanged joints. The feedline design concepts were evaluated on the basis of thermal performance, weight, cost, reliability, and reusability. It is shown that composite tubing provides improved thermal performance and reduced weight for each design concept considered. Approximately 12 kg (26 lb.) can be saved by the use of composite tubing for the LH2 feedline and the other propulsion lines in the space tug.

  8. Microsurgical refinements with the use of internal mammary (IM) perforators as recipient vessels in transverse upper gracilis (TUG) autologous breast reconstruction

    PubMed Central

    Libondi, Guido; Ramakrishnan, Venkat

    2017-01-01

    Background The transverse upper gracilis (TUG) flap is the senior authors’ second choice for autologous breast reconstruction when the DIEP flap is not available. It provides durable, pliable tissue with well hidden scars. The main criticism of this flap is the limited volume, donor site complications, short pedicle and vessel mismatch depending on which recipient vessels are used. We described methods of reducing vessel mismatch, complications of venous coupler and refinements to help give a more superior aesthetic outcome. Methods We describe several maneuvers to help reduce vessel mismatch with the use of the internal mammary (IM) perforator vessels with a modification of the Harashina fish-mouth technique or the use of a vessel bifurcation to increase vessel diameter. We also describe the optimum method of perforator preparation and potential methods to prevent palpable venous couplers. The author’s describe their case series of 14 TUG flaps to reconstruct 13 breasts in 12 patients. Results Eight unilateral, 2 partial breast reconstruction, 1 bilateral and 1 bilateral TUG flap for a unilateral reconstruction was carried out. All flaps survived with one partial flap necrosis, one donor site seroma and two cases of palpable/tender venous couplers. The mean reconstructed breast was 320 grams. Conclusions The TUG flap is a reconstructive challenge, but with correct planning a good aesthetic outcome is possible. The IM perforator is our first choice recipient vessel in TUG breast reconstructions. With meticulous preparation and by overcoming vessel mismatch the use of this recipient vessel is a reliable option. PMID:28861378

  9. 3 CFR 8463 - Proclamation 8463 of December 4, 2009. National Pearl Harbor Remembrance Day, 2009

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... by the Imperial Japanese on Pearl Harbor was an attempt to break the American will and destroy our...—thrusting our Nation into action. Japanese airplanes had launched an unprovoked assault on our military with...

  10. Evaluating the Effect of Cognitive Dysfunction on Mental Imagery in Patients with Stroke Using Temporal Congruence and the Imagined 'Timed Up and Go' Test (iTUG).

    PubMed

    Geiger, Maxime; Bonnyaud, Céline; Fery, Yves-André; Bussel, Bernard; Roche, Nicolas

    2017-01-01

    Motor imagery (MI) capacity may be altered following stroke. MI is evaluated by measuring temporal congruence between the timed performance of an imagined and an executed task. Temporal congruence between imagined and physical gait-related activities has not been evaluated following stroke. Moreover, the effect of cognitive dysfunction on temporal congruence is not known. To assess temporal congruence between the Timed Up and Go test (TUG) and the imagined TUG (iTUG) tests in patients with stroke and to investigate the role played by cognitive dysfunctions in changes in temporal congruence. TUG and iTUG performance were recorded and compared in twenty patients with chronic stroke and 20 controls. Cognitive function was measured using the Montreal Cognitive Assessment (MOCA), the Frontal Assessment Battery at Bedside (FAB) and the Bells Test. The temporal congruence of the patients with stroke was significantly altered compared to the controls, indicating a loss of MI capacity (respectively 45.11 ±35.11 vs 24.36 ±17.91, p = 0.02). Furthermore, iTUG test results were positively correlated with pathological scores on the Bells Test (r = 0.085, p = 0.013), likely suggesting that impairment of attention was a contributing factor. These results highlight the importance of evaluating potential attention disorder in patients with stroke to optimise the use of MI for rehabilitation and recovery. However further study is needed to determine how MI should be used in the case of cognitive dysfunction.

  11. Mechanical Performance of Two Left Atrial Appendage Occlusion Systems: In Vitro Comparison of Tug Force, Radial Force, Sealing and Deformation.

    PubMed

    Menne, Matthias F; Schrickel, Jan W; Nickenig, Georg; Al-Kassou, Baravan; Nelles, Dominik; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Sedaghat, Alexander

    2018-05-24

    The aim of this study was to establish in vitro bench-tests of left atrial appendage occlusion (LAAo) devices regarding tug force, radial force and sealing capacity. Two LAAo devices, namely the WATCHMAN™ and the Occlutech ® , of three different sizes underwent testing in novel dedicated in vitro setups. Radial force was assessed in a commercial radial force tester. At baseline, tug force of the WATCHMAN™ was significantly higher when compared to Occlutech ® for all devices. Repeated resheathing resulted in a reduction of device-diameter in the WATCHMAN™ devices of max. 7.9%, whereas diameters of Occlutech ® occluders remained unchanged. Tug force was not significantly impacted by resheathing in both devices. At baseline, sealing capacity in a bench-test using silicone LAA-models did not differ between the devices. Resheathing lead to an in vitro loss of sealing capacity of the WATCHMAN™ devices, increasing with resheathing and resulting in a max. peridevice leak of 91.1 ± 7.9%. Radial force was higher for the Occlutech ® devices and decreased for WATCHMAN™ occluders after resheathing. The WATCHMAN™ occluder series showed progressive deformation, increased peridevice leakage and decreased radial force after resheathing, presumably as a result of diameter reduction. Tug force of the WATCHMAN™ was not impaired by resheathing and was significantly higher than that of the Occlutech ® device.

  12. Space Tug avionics definition study. Volume 2: Avionics functional requirements

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flight and ground operational phases of the tug/shuttle system are analyzed to determine the general avionics support functions that are needed during each of the mission phases and sub-phases. Each of these general support functions is then expanded into specific avionics system requirements, which are then allocated to the appropriate avionics subsystems. This process is then repeated at the next lower level of detail where these subsystem requirements are allocated to each of the major components that comprise a subsystem.

  13. Fine-Scale Variability in Harbor Seal Foraging Behavior

    PubMed Central

    Wilson, Kenady; Lance, Monique; Jeffries, Steven; Acevedo-Gutiérrez, Alejandro

    2014-01-01

    Understanding the variability of foraging behavior within a population of predators is important for determining their role in the ecosystem and how they may respond to future ecosystem changes. However, such variability has seldom been studied in harbor seals on a fine spatial scale (<30 km). We used a combination of standard and Bayesian generalized linear mixed models to explore how environmental variables influenced the dive behavior of harbor seals. Time-depth recorders were deployed on harbor seals from two haul-out sites in the Salish Sea in 2007 (n = 18) and 2008 (n = 11). Three behavioral bout types were classified from six dive types within each bout; however, one of these bout types was related to haul-out activity and was excluded from analyses. Deep foraging bouts (Type I) were the predominant type used throughout the study; however, variation in the use of bout types was observed relative to haul-out site, season, sex, and light (day/night). The proportional use of Type I and Type II (shallow foraging/traveling) bouts differed dramatically between haul-out sites, seasons, sexes, and whether it was day or night; individual variability between seals also contributed to the observed differences. We hypothesize that this variation in dive behavior was related to habitat or prey specialization by seals from different haul-out sites, or individual variability between seals in the study area. The results highlight the potential influence of habitat and specialization on the foraging behavior of harbor seals, and may help explain the variability in diet that is observed between different haul-out site groups in this population. PMID:24717815

  14. 33 CFR 100.109 - Winter Harbor Lobster Boat Race, Winter Harbor, ME.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Winter Harbor Lobster Boat Race, Winter Harbor, ME. 100.109 Section 100.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Lobster Boat Race, Winter Harbor, ME. (a) Regulated area. The regulated area includes all waters of Winter...

  15. Evaluating the Effect of Cognitive Dysfunction on Mental Imagery in Patients with Stroke Using Temporal Congruence and the Imagined ‘Timed Up and Go’ Test (iTUG)

    PubMed Central

    Bonnyaud, Céline; Fery, Yves-André; Bussel, Bernard; Roche, Nicolas

    2017-01-01

    Background Motor imagery (MI) capacity may be altered following stroke. MI is evaluated by measuring temporal congruence between the timed performance of an imagined and an executed task. Temporal congruence between imagined and physical gait-related activities has not been evaluated following stroke. Moreover, the effect of cognitive dysfunction on temporal congruence is not known. Objective To assess temporal congruence between the Timed Up and Go test (TUG) and the imagined TUG (iTUG) tests in patients with stroke and to investigate the role played by cognitive dysfunctions in changes in temporal congruence. Methods TUG and iTUG performance were recorded and compared in twenty patients with chronic stroke and 20 controls. Cognitive function was measured using the Montreal Cognitive Assessment (MOCA), the Frontal Assessment Battery at Bedside (FAB) and the Bells Test. Results The temporal congruence of the patients with stroke was significantly altered compared to the controls, indicating a loss of MI capacity (respectively 45.11 ±35.11 vs 24.36 ±17.91, p = 0.02). Furthermore, iTUG test results were positively correlated with pathological scores on the Bells Test (r = 0.085, p = 0.013), likely suggesting that impairment of attention was a contributing factor. Conclusion These results highlight the importance of evaluating potential attention disorder in patients with stroke to optimise the use of MI for rehabilitation and recovery. However further study is needed to determine how MI should be used in the case of cognitive dysfunction. PMID:28125616

  16. Design and evaluation of thermodynamic vent/screen baffle cryogenic storage system. [for space shuttles, space tugs, and spacelab

    NASA Technical Reports Server (NTRS)

    Cady, E. C.

    1975-01-01

    A comprehensive analytical program was performed to compare an integrated thermodynamic vent/screen baffle orbital cryogenic propellant storage and transfer system with other concepts. The screen systems were found to be 20% to 29% lighter in weight than a propulsively accelerated Tug-scale LH2/LO2 resupply module. The screen systems were compared with small-scale supercritical storage systems for the space shuttle fuel cell reactant and life support system fluid supply and were lighter by up to 556 kg (1225 lb) for the extended 30-day mission. When compared with high-pressure gas storage for the spacelab atmosphere supply, the screen system saved 79% of the inert system weight for the 30-day mission. An experimental program found that heat flux rates up to 9,450 watts/sq m (3,000 Btu/hr-sq ft) degraded the LH2 bubble point performance of eight screens by a maximum of 12.5%. No effects of helium pressurant, screen material, or LH2 superheat were observed.

  17. The dynamics of fine-grain sediment dredged from Santa Cruz Harbor

    USGS Publications Warehouse

    Storlazzi, Curt D.; Conaway, Christopher H.; Presto, M. Katherine; Logan, Joshua B.; Cronin, Katherine; van Ormondt, Maarten; Lescinski, Jamie; Harden, E. Lynne; Lacy, Jessica R.; Tonnon, Pieter K.

    2011-01-01

    In the fall and early winter of 2009, a demonstration project was done at Santa Cruz Harbor, California, to determine if 450 m3/day of predominantly (71 percent) mud-sized sediment could be dredged from the inner portion of the harbor and discharged to the coastal ocean without significant impacts to the beach and inner shelf. During the project, more than 7600 m3 of sediment (~5400 m3 of fine-grain material) was dredged during 17 days and discharged approximately 60 m offshore of the harbor at a depth of 2 m on the inner shelf. The U.S. Geological Survey's Pacific Coastal and Marine Science Center was funded by the U.S. Army Corps of Engineers and the Santa Cruz Port District to do an integrated mapping and process study to investigate the fate of the mud-sized sediment dredged from the inner portion of Santa Cruz Harbor and to determine if any of the fine-grain material settled out on the shoreline and/or inner shelf during the fall and early winter of 2009. This was done by collecting highresolution oceanographic and sediment geochemical measurements along the shoreline and on the continental shelf of northern Monterey Bay to monitor the fine-grain sediment dredged from Santa Cruz Harbor and discharged onto the inner shelf. These in place measurements, in conjunction with beach, water column, and seabed surveys, were used as boundary and calibration information for a three-dimensional numerical circulation and sediment dynamics model to better understand the fate of the fine-grain sediment dredged from Santa Cruz Harbor and the potential consequences of disposing this type of material on the beach and on the northern Monterey Bay continental shelf.

  18. A New GRB follow-up Software at TUG

    NASA Astrophysics Data System (ADS)

    Dindar, M.; Parmaksizoglu, M.; Helhel, S.; Esenoglu, H.; Kirbiyik, H.

    2016-12-01

    A gamma-ray burst (GRB) optical photometric follow-up system at TUBITAK (Scientic and Technological Research Council of Turkey) National Observatory (TUG) has been planned. It uses the 0.6 m Telescope (T60) and can automatically respond to GRB Coordinates Network (GCN) alerts. The telescopes slew relatively fast, being able to point to a new target field within 30 s upon a request. Whenever available, the 1 m T100 and 2.5 m RTT150 telescopes will be used in the future. As an example in 2015, the GRB software system (will be server side) at T60-telescope responded to GRB alert and started the observation as early as 129 s after the GRB trigger autonomously.

  19. Local regularity for time-dependent tug-of-war games with varying probabilities

    NASA Astrophysics Data System (ADS)

    Parviainen, Mikko; Ruosteenoja, Eero

    2016-07-01

    We study local regularity properties of value functions of time-dependent tug-of-war games. For games with constant probabilities we get local Lipschitz continuity. For more general games with probabilities depending on space and time we obtain Hölder and Harnack estimates. The games have a connection to the normalized p (x , t)-parabolic equation ut = Δu + (p (x , t) - 2) Δ∞N u.

  20. Paving the way for space tugs

    NASA Astrophysics Data System (ADS)

    Heppenheimer, T. A.

    1985-09-01

    The Space Shuttle itself can fly no higher than a few hundred miles, while many spacecraft, such as, for example, the communication satellites, must go to a higher orbit. Currently NASA is relying on a variety of upper stages to place the spacecraft into the desired orbit. This approach has, however, a number of disadvantages. Contracts for initial studies on a space tug, or reusable orbital transfer vehicle (OTV), have, therefore, been awarded. The OTV is to have the capability to carry large payloads to geosynchronous orbit and beyond. An American aerospace company is studying the use of liquid hydrogen and liquid oxygen as propellants for the OTV. Another company has proposed the use of propellants which remain liquid at room temperature. A possible solution to the liquid hydrogen problem involves the use of a multilayer insulation for storing liquid hydrogen in space. The use of the OTV in connection with a lunar base is also considered.

  1. 77 FR 50916 - Safety Zone; Boston Harbor's Rock Removal Project, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0767] RIN 1625-AA00 Safety Zone; Boston Harbor's Rock Removal Project, Boston Inner Harbor, Boston, MA AGENCY: Coast.... 165.T01-0767 Safety Zone; Boston Harbor's Rock Removal Project, Boston Inner Harbor, Boston, MA. (a...

  2. The Voith Turbo Fin (VTF) A New System To Improve The Performance Of Escort Tractor Voith Tugs

    NASA Astrophysics Data System (ADS)

    Iglesias Baniela, Santiago; García Melón, Enrique

    The geometry of the skeg in the Escort Tractor Voith tugs is the result of a series of intense investigations in the forms of the tug and its fins, oriented to get a significant improvement in the forces on the towing line when the indirect method is used in the escort towing. For that, and with the aim of getting the best behaviour of this fin, a variety of options have been investigated for years, evaluating its merits in terms of lift force and complexity to reach the present designs, which are adapted to the functions which the tug is destined to carry out. With the object of optimizing the lift force in the skeg when the indirect method is used in the escort towing, and after long investigations, the Voith Turbo Marine has incorporated a rotating cylinder at the leading edge to its design in escort towing for the first time at the beginning of 2005. The leading edge is the part over which the water flow first falls upon in normal escort operation conditions, calling this new development Voith Turbo Fin (VTF) to the system as a whole (skeg and rotating cylinder). This fin is analyzed in this article especially with regard to its basis, ways of operation and efficiency of the novel joining rotating cylinder.

  3. 33 CFR 125.15 - Access to waterfront facilities, and port and harbor areas, including vessels and harbor craft...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and port and harbor areas, including vessels and harbor craft therein. 125.15 Section 125.15....15 Access to waterfront facilities, and port and harbor areas, including vessels and harbor craft....09 to those waterfront facilities, and port and harbor areas, including vessels and harbor craft...

  4. Effectiveness of the "Timed Up and Go" (TUG) and the Chair test as screening tools for geriatric fall risk assessment in the ED.

    PubMed

    Chow, Richard B; Lee, Andre; Kane, Bryan G; Jacoby, Jeanne L; Barraco, Robert D; Dusza, Stephen W; Meyers, Matthew C; Greenberg, Marna Rayl

    2018-06-07

    We sought to evaluate the effectiveness of the "Timed Up and Go" (TUG) and the Chair test as screening tools in the Emergency Department (ED), stratified by sex. This prospective cohort study was conducted at a Level 1 Trauma center. After consent, subjects performed the TUG and the Chair test. Subjects were contacted for phone follow-up and asked to self-report interim falling. Data from 192 subjects were analyzed. At baseline, 71.4% (n = 137) screened positive for increased falls risk based on the TUG evaluation, and 77.1% (n = 148) scored below average on the Chair test. There were no differences by patient sex. By the six-month evaluation 51 (26.6%) study participants reported at least one fall. Females reported a non-significant higher prevalence of falls compared to males (29.7% versus 22.2%, p = 0.24). TUG test had a sensitivity of 70.6% (95% CI: 56.2%-82.5%), a specificity of 28.4% (95% CI: 21.1%-36.6%), a positive predictive (PP) value 26.3% (95% CI: 19.1%-34.5%) and a negative predictive (NP) value of 72.7% (95% CI: 59.0%-83.9%). Similar results were observed with the Chair test. It had a sensitivity of 78.4% (95% CI: 64.7%-88.7%), a specificity of 23.4% (95% CI: 16.7%-31.3%), a PP value 27.0% (95% CI: 20.1%-34.9%) and a NP value of 75.0% (95% CI: 59.7%-86.8%). No significant differences were observed between sexes. There were no sex specific significant differences in TUG or Chair test screening performance. Neither test performed well as a screening tool for future falls in the elderly in the ED setting. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Software and electronic developments for TUG - T60 robotic telescope

    NASA Astrophysics Data System (ADS)

    Parmaksizoglu, M.; Dindar, M.; Kirbiyik, H.; Helhel, S.

    2014-12-01

    A robotic telescope is a telescope that can make observations without hands-on human control. Its low level behavior is automatic and computer-controlled. Robotic telescopes usually run under the control of a scheduler, which provides high-level control by selecting astronomical targets for observation. TUBITAK National Observatory (TUG) T60 Robotic Telescope is controlled by open source OCAAS software, formally named TALON. This study introduces the improvements on TALON software, new electronic and mechanic designs. The designs and software improvements were implemented in the T60 telescope control software and tested on the real system successfully.

  6. Analysis of space tug operating techniques. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design requirements for space tug systems and cost analysis of the refurbishment phases are discussed. The vehicle is an integral propulsion stage using liquid hydrogen and liquid oxygen as propellants and is capable of operating either as a fully or a partially autonomous vehicle. Structural features are an integral liquid hydrogen tank, a liquid oxygen tank, a meteoroid shield, an aft conical docking and structural support ring, and a staged combustion main engine. The vehicle is constructed of major modules for ease of maintenance. Line drawings and block diagrams are included to explain the maintenance requirements for the subsystems.

  7. The Lunar Space Tug: A sustainable bridge between low Earth orbits and the Cislunar Habitat

    NASA Astrophysics Data System (ADS)

    Mammarella, M.; Paissoni, C. A.; Viola, N.; Denaro, A.; Gargioli, E.; Massobrio, F.

    2017-09-01

    The International Space Station is the first space human outpost and over the last 15 years, it has represented a peculiar environment where science, technology and human innovation converge together in a unique microgravity and space research laboratory. With the International Space Station entering the second part of its life and its operations running steadily at nominal pace, the global space community is starting planning how the human exploration could move further, beyond Low-Earth-Orbit. According to the Global Exploration Roadmap, the Moon represents the next feasible path-way for advances in human exploration towards the nal goal, Mars. Based on the experience of the ISS, one of the most widespread ideas is to develop a Cislunar Station in preparation of long duration missions in a deep space environment. Cislunar space is de ned as the area of deep space under the influence of Earth-Moon system, including a set of special orbits, e.g. Earth-Moon Libration points and Lunar Retrograde Orbit. This habitat represents a suitable environment for demonstrating and testing technologies and capabilities in deep space. In order to achieve this goal, there are several crucial systems and technologies, in particular related to transportation and launch systems. The Orion Multi-Purpose Crew Vehicle is a reusable transportation capsule designed to provide crew transportation in deep space missions, whereas NASA is developing the Space Launch System, the most powerful rocket ever built, which could provide the necessary heavy-lift launch capability to support the same kind of missions. These innovations would allow quite-fast transfers from Earth to the Cislunar Station and vice versa, both for manned and unmanned missions. However, taking into account the whole Concept of Operations for both the growth and sustainability of the Cislunar Space Station, the Lunar Space Tug can be considered as an additional, new and fundamental element for the mission architecture. The

  8. Comparison of two-way satellite time transfer and GPS common-view time transfer between OCA and TUG

    NASA Technical Reports Server (NTRS)

    Kirchner, Dieter; Thyr, U.; Ressler, H.; Robnik, R.; Grudler, P.; Baumont, Francoise S.; Veillet, Christian; Lewandowski, Wlodzimierz W.; Hanson, W.; Clements, A.

    1992-01-01

    For about one year the time scales UTC(OCA) and UTC(TUG) were compared by means of GPS and two-way satellite time transfer. At the end of the experiment both links were independently 'calibrated' by measuring the differential delays of the GPS receivers and of the satellite earth stations by transportation of a GPS receiver and of one of the satellite terminals. The results obtained by both methods differ by about 3 ns, but reveal a seasonal variation of about 8 ns peak-to-peak which is likely the result of a temperature-dependence of the delays of the GPS receivers used. For the comparison of both methods the stabilities of the timescales are of great importance. Unfortunately, during the last three months of the experiment a less stable clock had to be used for the generation of UTC(TUG).

  9. Resolving the tug-of-war between Medicare's national and local coverage.

    PubMed

    Foote, Susan Bartlett; Wholey, Douglas; Rockwood, Todd; Halpern, Rachel

    2004-01-01

    Medicare's decentralized local coverage policy process leads to policy variation, raising serious equity and quality issues. The policy debate resembles a tug-of-war, with advocates favoring nationalization of all local policies or arguing for the status quo. We extensively analyzed thousands of local policies and surveyed Medicare's contractors. We found that all local policies are not the same. We classified them based on where they fall on the diffusion curve. The classification by type allows for reallocation to the national or local process to improve the decisions and satisfy Medicare's equity and quality goals.

  10. The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism.

    PubMed

    Hudson, Brian D; Shimpukade, Bharat; Mackenzie, Amanda E; Butcher, Adrian J; Pediani, John D; Christiansen, Elisabeth; Heathcote, Helen; Tobin, Andrew B; Ulven, Trond; Milligan, Graeme

    2013-11-01

    TUG-891 [3-(4-((4-fluoro-4'-methyl-[1,1'-biphenyl]-2-yl)methoxy)phenyl)propanoic acid] was recently described as a potent and selective agonist for the long chain free fatty acid (LCFA) receptor 4 (FFA4; previously G protein-coupled receptor 120, or GPR120). Herein, we have used TUG-891 to further define the function of FFA4 and used this compound in proof of principle studies to indicate the therapeutic potential of this receptor. TUG-891 displayed similar signaling properties to the LCFA α-linolenic acid at human FFA4 across various assay end points, including stimulation of Ca²⁺ mobilization, β-arrestin-1 and β-arrestin-2 recruitment, and extracellular signal-regulated kinase phosphorylation. Activation of human FFA4 by TUG-891 also resulted in rapid phosphorylation and internalization of the receptor. While these latter events were associated with desensitization of the FFA4 signaling response, removal of TUG-891 allowed both rapid recycling of FFA4 back to the cell surface and resensitization of the FFA4 Ca²⁺ signaling response. TUG-891 was also a potent agonist of mouse FFA4, but it showed only limited selectivity over mouse FFA1, complicating its use in vivo in this species. Pharmacologic dissection of responses to TUG-891 in model murine cell systems indicated that activation of FFA4 was able to mimic many potentially beneficial therapeutic properties previously reported for LCFAs, including stimulating glucagon-like peptide-1 secretion from enteroendocrine cells, enhancing glucose uptake in 3T3-L1 adipocytes, and inhibiting release of proinflammatory mediators from RAW264.7 macrophages, which suggests promise for FFA4 as a therapeutic target for type 2 diabetes and obesity. Together, these results demonstrate both potential but also significant challenges that still need to be overcome to therapeutically target FFA4.

  11. Tug-of-war of microtubule filaments at the boundary of a kinesin- and dynein-patterned surface

    NASA Astrophysics Data System (ADS)

    Ikuta, Junya; Kamisetty, Nagendra K.; Shintaku, Hirofumi; Kotera, Hidetoshi; Kon, Takahide; Yokokawa, Ryuji

    2014-06-01

    Intracellular cargo is transported by multiple motor proteins. Because of the force balance of motors with mixed polarities, cargo moves bidirectionally to achieve biological functions. Here, we propose a microtubule gliding assay for a tug-of-war study of kinesin and dynein. A boundary of the two motor groups is created by photolithographically patterning gold to selectively attach kinesin to the glass and dynein to the gold surface using a self-assembled monolayer. The relationship between the ratio of two antagonistic motor numbers and the velocity is derived from a force-velocity relationship for each motor to calculate the detachment force and motor backward velocity. Although the tug-of-war involves >100 motors, values are calculated for a single molecule and reflect the collective dynein and non-collective kinesin functions when they work as a team. This assay would be useful for detailed in vitro analysis of intracellular motility, e.g., mitosis, where a large number of motors with mixed polarities are involved.

  12. Tug-of-war of microtubule filaments at the boundary of a kinesin- and dynein-patterned surface

    PubMed Central

    Ikuta, Junya; Kamisetty, Nagendra K.; Shintaku, Hirofumi; Kotera, Hidetoshi; Kon, Takahide; Yokokawa, Ryuji

    2014-01-01

    Intracellular cargo is transported by multiple motor proteins. Because of the force balance of motors with mixed polarities, cargo moves bidirectionally to achieve biological functions. Here, we propose a microtubule gliding assay for a tug-of-war study of kinesin and dynein. A boundary of the two motor groups is created by photolithographically patterning gold to selectively attach kinesin to the glass and dynein to the gold surface using a self-assembled monolayer. The relationship between the ratio of two antagonistic motor numbers and the velocity is derived from a force-velocity relationship for each motor to calculate the detachment force and motor backward velocity. Although the tug-of-war involves >100 motors, values are calculated for a single molecule and reflect the collective dynein and non-collective kinesin functions when they work as a team. This assay would be useful for detailed in vitro analysis of intracellular motility, e.g., mitosis, where a large number of motors with mixed polarities are involved. PMID:24923426

  13. Unconventional nozzle tradeoff study. [space tug propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1979-01-01

    Plug cluster engine design, performance, weight, envelope, operational characteristics, development cost, and payload capability, were evaluated and comparisons were made with other space tug engine candidates using oxygen/hydrogen propellants. Parametric performance data were generated for existing developed or high technology thrust chambers clustered around a plug nozzle of very large diameter. The uncertainties in the performance prediction of plug cluster engines with large gaps between the modules (thrust chambers) were evaluated. The major uncertainty involves, the aerodynamics of the flow from discrete nozzles, and the lack of this flow to achieve the pressure ratio corresponding to the defined area ratio for a plug cluster. This uncertainty was reduced through a cluster design that consists of a plug contour that is formed from the cluster of high area ratio bell nozzles that have been scarfed. Light-weight, high area ratio, bell nozzles were achieved through the use of AGCarb (carbon-carbon cloth) nozzle extensions.

  14. Flight Mechanics and Control Requirements for a Modular Solar Electric Tug Operating in Earth-Moon Space

    NASA Astrophysics Data System (ADS)

    Woodcock, Gordon; Wingo, Dennis

    2006-01-01

    A modular design for a solar-electric tug was analyzed to establish flight control requirements and methods. Thrusters are distributed around the periphery of the solar array. This design enables modules to be berthed together to create a larger system from smaller modules. It requires a different flight mode than traditional design and a different thrust direction scheme, to achieve net thrust in the desired direction, observe thruster pointing constraints that avoid plume impingement on the tug, and balance moments. The array is perpendicular to the Sun vector for maximum electric power. The tug may maintain a constant inertial attitude or rotate around the Sun vector once per orbit. Either non-rotating or constant angular velocity rotation offers advantages over the conventional flight mode, which has highly variable roll rates. The baseline single module has 12 thrusters: two 2-axis gimbaling main thrusters, one at each ``end'', and two back-to-back Z axis thrusters at each corner of the array. Thruster pointing and throttling were optimized to maximize net thrust effectiveness while observing constraints. Control design used a spread sheet with Excel Solver to calculate nominal thruster pointing and throttling. These results are used to create lookup tables. A conventional control system generates a thruster pointing and throttling overlay on the nominals to maintain active attitude control. Gravity gradients can cause major attitude perturbations during occultation periods if thrust is off during these periods. Thrust required to maintain attitude is about 4% of system rated power. This amount of power can be delivered by a battery system, avoiding the performance penalty if chemical propulsion thrusters were used to maintain attitude.

  15. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Harbor, to the northwest point. (b) Effective times and dates. This safety and security zone will be in... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone...

  16. Tug of war in motility assay experiments

    NASA Astrophysics Data System (ADS)

    Hexner, Daniel; Kafri, Yariv

    2009-09-01

    The dynamics of two groups of molecular motors pulling in opposite directions on a rigid filament is studied theoretically. To this end we first consider the behavior of one set of motors pulling in a single direction against an external force using a new mean-field approach. Based on these results we analyze a similar setup with two sets of motors pulling in opposite directions in a tug of war in the presence of an external force. In both cases we find that the interplay of fluid friction and protein friction leads to a complex phase diagram where the force-velocity relations can exhibit regions of bistability and spontaneous symmetry breaking. Finally, motivated by recent work, we turn to the case of motility assay experiments where motors bound to a surface push on a bundle of filaments. We find that, depending on the absence or the presence of bistability in the force-velocity curve at zero force, the bundle exhibits anomalous or biased diffusion on long-time and large-length scales.

  17. Land use, water use, streamflow characteristics, and water-quality characteristics of the Charlotte Harbor inflow area, Florida

    USGS Publications Warehouse

    Hammett, K.M.

    1990-01-01

    Charlotte Harbor is a 270-square-mile estuarine system in west-central Florida. It is being subjected to increasing environmental stress by rapid population growth and development. By 2020, population in the inflow area may double, which will result in increased demands for freshwater and increased waste loads. The Charlotte Harbor inflow area includes about 4,685 square miles. The Myakka, the Peace, and the Caloosahatchee are the major rivers emptying into the harbor. About 70 percent of the land in these three river basins is used for agriculture and range. In the coastal basin around Charlotte Harbor, about 50 percent of the total land area is devoted to commercial or residential uses. Water use in the inflow area is about 565 million gallons per day, of which 59 percent is used for irrigation, 26 percent for industry, 11 percent for public supply, and 4 percent for rural supply. Total freshwater inflow from the three major rivers, the coastal area, and rainfall directly into Charlotte Harbor averages between 5,700 and 6,100 cubic feet per second, which is more than 3,500 million gallons per day. A trend analysis of about 50 years of streamflow data shows a statistically significant decreasing trend for the Peace River stations at Bartow, Zolfo Springs, and Arcadia. No significant trend has been observed in the Myakka or the Caloosahatchee River data. In the Peace River, the decrease in flow may be related to a long-term decline in the potentiometric surface of the underlying Floridan aquifer system, which resulted from ground-water withdrawals. It is not possible to determine whether the trend will continue. However, if it does continue at the same rate, then, except for brief periods of storm runoff, the Peace River at Zolfo Springs could be dry year-round in about 100 years. Of the 114 facilities permitted to discharge domestic or industrial effluent to waters tributary to Charlotte Harbor, 88 are in the Peace River basin. Phosphate ore and citrus processing

  18. An evaluation of the toxicity of contaminated sediments from Waukegan Harbor, Illinois, following remediation

    USGS Publications Warehouse

    Kemble, N.E.; Hardesty, D.G.; Ingersoll, C.G.; Johnson, B. Thomas; Dwyer, F.J.; MacDonald, D.D.

    2000-01-01

    Waukegan Harbor in Illinois was designated as a Great Lakes Area of Concern due to high concentrations of sediment-associated polychlorinated biphenyls (PCBs). The objective of this study was to evaluate the toxicity of 20 sediment samples collected after remediation (primarily dredging) of Waukegan Harbor for PCBs. A 42-day whole sediment toxicity test with the amphipod Hyalella azteca (28-day sediment exposure followed by a 14-day reproductive phase) and sediment toxicity tests with Microtox® were conducted to evaluate sediments from Waukegan Harbor. Endpoints measured were survival, growth, and reproduction (amphipods) and luminescent light emission (bacteria). Survival of amphipods was significantly reduced in 6 of the 20 sediment samples relative to the control. Growth of amphipods (either length or weight) was significantly reduced relative to the control in all samples. However, reproduction of amphipods identified only two samples as toxic relative to the control. The Microtox basic test, conducted with organic extracts of sediments identified only one site as toxic. In contrast, the Microtox solid-phase test identified about 50% of the samples as toxic. A significant negative correlation was observed between reproduction and the concentration of three polynuclear aromatic hydrocarbons (PAHs) normalized to total organic carbon. Sediment chemistry and toxicity data were evaluated using sediment quality guidelines (consensus-based probable effect concentrations, PECs). Results of these analyses indicate that sediment samples from Waukegan Harbor were toxic to H. azteca contaminated at similar contaminant concentrations as sediment samples that were toxic to H. azteca from other areas of the United States. The relationship between PECs and the observed toxicity was not as strong for the Microtox test. The results of this study indicate that the first phase of sediment remediation in Waukegan Harbor successfully lowered concentrations of PCBs at the site

  19. 75 FR 78601 - Drawbridge Operation Regulation; Gulf Intracoastal Waterway, New Orleans Harbor, Inner Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ... Operation Regulation; Gulf Intracoastal Waterway, New Orleans Harbor, Inner Harbor Navigation Canal, New Orleans, Orleans Parish, LA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from... Harvey Lock), at New Orleans, Orleans Parish, Louisiana. This deviation is necessary to adjust the...

  20. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″W and 41°51′11″ N, 087°36′22″ W. (b...

  1. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″ W and 41°51′11″ N, 087°36′22″ W. (b...

  2. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″W and 41°51′11″ N, 087°36′22″ W. (b...

  3. U. S. Naval Forces, Vietnam Monthly Historical Supplement for June 1968

    DTIC Science & Technology

    1969-02-18

    some of the cargo, and a Harbor Clearance Unit to assist in rigging beach gear CQk MT1IAL 90 7777 77- CO0N I P waWi usL on the John C. As the tugs which...personnel in Vietnam, a mooring buoy was moved from Ben Tre to Dong Tau. !LLC-l, with Harbor Clearance Team THREE embarked, soiled from Vung Tan on 27 June

  4. Pearl Harbor Biological Survey

    DTIC Science & Technology

    1974-08-30

    properties, uses, and driving mechanisms affecting the harbor is given. The methods of obtaining current data, salinity profiles, and temperature... salinities were used for each calibration In order to check the salinity computation mechanism of the Instrument. Temperature calibrations were...Water Temperature Contours for Navy Thermal Discharges 3.2-23 3.2-7. General Layout of Pearl Harbor Showing Mean Monthly Salinity (3L) Variation

  5. Sediment toxicity in Savannah Harbor

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.

    1995-01-01

    Savannah Harbor, located near the mouth of the Savannah River, Georgia and South Carolina, is impacted by industrial and municipal effluents. Potential release of contaminants stored in harbor sediments through dredging and shipping operations requires that contaminated areas be identified for proper management of the system and protection of wildlife resources. During 1991, Hyalella azteca were exposed in 10-d static-renewal toxicity tests to pore-water and solid-phase sediment samples collected from 26 sites within Savannah Harbor. Pore-water toxicity was more pronounced than that for solidphase sediment. Toxicity and reduced leaf consumption demonstrated impaired sediment quality at specific sites within Savannah Harbor and Back River. Factors responsible for the decreased sediment quality were ammonia, alkalinity, and metal concentrations (cadmium, chromium, lead, molybdenum, and nickel). Elevated concentrations of metals and toxicities in Back River sediments indicated impacts from adjacent dredge-spoil areas.

  6. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Channel Islands Harbor, CA. 80...

  7. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Channel Islands Harbor, CA. 80...

  8. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Channel Islands Harbor, CA. 80...

  9. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Channel Islands Harbor, CA. 80...

  10. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Channel Islands Harbor, CA. 80...

  11. The Boston Harbor Project, and large decreases in loadings of eutrophication-related materials to Boston Harbor.

    PubMed

    Taylor, David I

    2010-04-01

    Boston Harbor, a bay-estuary in the north-east USA, has recently been the site of one of the largest wastewater infrastructure projects conducted in the USA, the Boston Harbor Project (BHP). The BHP, which was conducted from 1991 to 2000, ended over a century of direct wastewater treatment facility discharges to the harbor. The BHP caused the loadings of total nitrogen (TN), total phosphorus (TP), total suspended solids (TSS) and particulate organic carbon (POC) to the harbor, to decrease by between 80% and 90%. Approximately one-third of the decreases in TSS and POC loadings occurred between 1991 and 1992; the remaining two-thirds, between 1995 and 2000. For TN and TP, the bulk of the decreases occurred between 1997 or 1998, and 2000. (c) 2009 Elsevier Ltd. All rights reserved.

  12. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  13. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  14. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  15. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  16. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  17. Payload analysis for space shuttle applications (study 2.2). Volume 3: Payload system operations analysis (task 2.2.1). [payload system operations analysis for shuttles and space tugs

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The technical and cost analysis that was performed for the payload system operations analysis is presented. The technical analysis consists of the operations for the payload/shuttle and payload/tug, and the spacecraft analysis which includes sortie, automated, and large observatory type payloads. The cost analysis includes the costing tradeoffs of the various payload design concepts and traffic models. The overall objectives of this effort were to identify payload design and operational concepts for the shuttle which will result in low cost design, and to examine the low cost design concepts to identify applicable design guidelines. The operations analysis examined several past and current NASA and DoD satellite programs to establish a shuttle operations model. From this model the analysis examined the payload/shuttle flow and determined facility concepts necessary for effective payload/shuttle ground operations. The study of the payload/tug operations was an examination of the various flight timelines for missions requiring the tug.

  18. 33 CFR 110.130 - Bar Harbor, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bar Harbor, Maine. 110.130... ANCHORAGE REGULATIONS Anchorage Grounds § 110.130 Bar Harbor, Maine. (a) Anchorage grounds. (1) Anchorage “A” is that portion of Frenchman Bay, Bar Harbor, ME enclosed by a rhumb line connecting the following...

  19. 33 CFR 110.9 - Wells Harbor, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Wells Harbor, Maine. 110.9... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.9 Wells Harbor, Maine. (a) Anchorage “A”. All of the... approximately 5,800 sq. yards, encompassing the central portion of Wells Harbor. (b) Anchorage “B”. All of the...

  20. 33 CFR 110.9 - Wells Harbor, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Wells Harbor, Maine. 110.9... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.9 Wells Harbor, Maine. Link to an amendment published at..., encompassing the central portion of Wells Harbor. (b) Anchorage “B”. All of the waters enclosed by a line...

  1. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor and U.S. breakwater. 207.610 Section 207... NAVIGATION REGULATIONS § 207.610 St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and...

  2. 33 CFR 117.272 - Boot Key Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Boot Key Harbor. 117.272 Section 117.272 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.272 Boot Key Harbor. The draw of the Boot Key Harbor drawbridge, mile 0.13, between...

  3. Defense.gov Special Report: Pearl Harbor Anniversary

    Science.gov Websites

    Department of Defense Submit Search 71th Anniversary of the Attack on Pearl Harbor - World War II News Joint Chiefs of Staff, saluted veterans at the National World War II Memorial in Washington, D.C Attack Video Return To Pearl Harbor Return To Pearl Harbor World War II Timeline The attack on Pearl

  4. Geoscience rediscovers Phoenicia's buried harbors

    NASA Astrophysics Data System (ADS)

    Marriner, Nick; Morhange, Christophe; Doumet-Serhal, Claude; Carbonel, Pierre

    2006-01-01

    After centuries of archaeological debate, the harbors of Phoenicia's two most important city states, Tyre and Sidon, have been rediscovered, and including new geoarcheological results reveal how, where, and when they evolved after their Bronze Age foundations. The early ports lie beneath their present urban centers, and we have indentified four harbor phases. (1) During the Bronze Age, Tyre and Sidon were characterized by semi-open marine coves that served as protoharbors. (2) Biostratigraphic and lithostratigraphic data indicate the presence of early artificial basins after the first millennium B.C. (3) The harbors reached their apogees during the Greco-Roman and Byzantine periods. (4) Silting up and coastal progradation led to burial of the medieval basins, lost until now.

  5. Tug-of-war lacunarity—A novel approach for estimating lacunarity

    NASA Astrophysics Data System (ADS)

    Reiss, Martin A.; Lemmerer, Birgit; Hanslmeier, Arnold; Ahammer, Helmut

    2016-11-01

    Modern instrumentation provides us with massive repositories of digital images that will likely only increase in the future. Therefore, it has become increasingly important to automatize the analysis of digital images, e.g., with methods from pattern recognition. These methods aim to quantify the visual appearance of captured textures with quantitative measures. As such, lacunarity is a useful multi-scale measure of texture's heterogeneity but demands high computational efforts. Here we investigate a novel approach based on the tug-of-war algorithm, which estimates lacunarity in a single pass over the image. We computed lacunarity for theoretical and real world sample images, and found that the investigated approach is able to estimate lacunarity with low uncertainties. We conclude that the proposed method combines low computational efforts with high accuracy, and that its application may have utility in the analysis of high-resolution images.

  6. Remembering Pearl Harbor: The USS Arizona Memorial. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Vierra, John, Jr.

    This lesson describes and discusses the submerged remains of the battleship USS Arizona which rests on the silt of Pearl Harbor (Hawaii), just as it had settled on December 7, 1941, the day Japan attacked the U.S. fleet and began the Pacific battles of World War II. The lesson is based on the National Register of Historic Places registration file,…

  7. Tug-of-war between classical and multicenter bonds in H-(Be)n-H species

    NASA Astrophysics Data System (ADS)

    Lundell, Katie A.; Boldyrev, Alexander I.

    2018-05-01

    Quantum chemical calculations were performed for beryllium homocatenated compounds [H-(Be)n-H]. Global minimum structures were found using machine searches (Coalescence Kick method) with density functional theory. Chemical bonding analysis was performed with the Adaptive Natural Density Partitioning method. It was found that H-(Be)2-H and H-(Be)3-H clusters are linear with classical two-center two-electron bonds, while for n > 3, three-dimensional structures are more stable with multicenter bonding. Thus, at n = 4, multicenter bonding wins the tug-of-war vs. the classical bonding.

  8. Carcinogenicity of Black Rock Harbor sediment to the eastern oyster and trophic transfer of Black Rock Harbor carcinogens from the blue mussel to the winter flounder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, G.R.; Yevich, P.P.; Malcolm, A.R.

    1991-01-01

    The eastern oyster (Crassostrea virginica) developed neoplastic disorders when experimentally exposed both in the laboratory and field to chemically contaminated sediment from Black Rock Harbor (BRH), Bridgeport, Connecticut. Neoplasia was observed in oysters after 30 or 60 days of continuous exposure in a laboratory flow-through system to a 20 mg/L suspension of BRH sediment plus postexposure periods of 3, 30, or 60 days. Composite tumor incidence was 13.6% for both exposures. Tumor occurrence was highest in the renal excretory epithelium, followed in order by gill, gonad, gastrointestinal, heart, and embryonic neural tissue. Regression of experimental neoplasia was not observed whenmore » the stimulus was discontinued. In field experiments, gill neoplasms developed in oysters, deployed in cages for 30 days at BRH and 36 days at a BRH dredge material disposal area in Central Long Island Sound, and kidney and gastrointestinal neoplasms developed in caged oysters deployed 40 days in Quincy Bay, Boston Harbor. Oysters exposed to BRH sediment in the laboratory and in the field accumulated high concentrations of polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), and chlorinated pesticides. Chemical analyses demonstrated high concentrations of PCBs, PAHs, chlorinated pesticides, and heavy metals in BRH sediment. Known genotoxic carcinogens, cocarcinogens, and tumor promoters were present as contaminants. The uptake of parent PAH and PCBs from BRH sediment observed in oysters also occurs in blue mussels (Mytilus edulis). Winter flounder fed BRH-contaminated blue mussels contained xenobiotic chemicals analyzed in mussels. The flounder developed renal and pancreatic neoplasms and hepatotoxic neoplastic precursor lesions, demonstrating trophic transfer of sediment-bound carcinogens up the food chain.« less

  9. 78 FR 38577 - Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ...-AA08 Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor... waters of the Potomac River on September 21, 2013. These special local regulations are necessary to... temporarily restrict vessel traffic in a portion of the Potomac River during the event. DATES: This rule is...

  10. 78 FR 18274 - Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ...-AA08 Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor... event,'' to be held on the waters of the Potomac River on September 21, 2013. These special local... representative. This action is intended to temporarily restrict vessel traffic in a portion of the Potomac River...

  11. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  12. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  13. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  14. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  15. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  16. A new software on TUG-T60 autonomous telescope for astronomical transient events

    NASA Astrophysics Data System (ADS)

    Dindar, Murat; Helhel, Selçuk; Esenoğlu, Hasan; Parmaksızoğlu, Murat

    2015-03-01

    Robotic telescopes usually run under the control of a scheduler, which provides high-level control by selecting astronomical targets for observation. TÜBİTAK (Scientific and Technological Research Council of Turkey) National Observatory (TUG)-T60 Robotic Telescope is controlled by open-source OCAAS software, formally named Talon. This study introduces new software which was designed for Talon to catch GRB, GAIA and transient alerts. The new GRB software module (daemon process) alertd is running with all other modules of Talon such as telescoped; focus, dome; camerad and telrun. Maximum slew velocity and acceleration limits of the T60 telescope are enough fast for the GRB and transient observations.

  17. 33 CFR 117.811 - Tonawanda Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tonawanda Harbor. 117.811 Section 117.811 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.811 Tonawanda Harbor. The draw of the...

  18. Simulation of tidal-flow, circulation, and flushing of the Charlotte Harbor Estuarine System, Florida

    USGS Publications Warehouse

    Goodwin, C.R.

    1996-01-01

    A two-dimensional circulation and constituent- transport model, SIMSYS2D, was used to simulate tidal-flow, circulation, and flushing characteristics in Charlotte Harbor. The model was calibrated and verified against field observations of stage,discharge, and velocity. Standard errors averaged about 3 percent of the range in stage at the tide stations and between 3 and 10 percent of the range in discharge measured in the inlets for the calibration period. Following calibration and verification, the model was applied to three different conditions. The first condition represented the existing physical configuration and typical freshwater inflow. The second condition represented reduced fresh water inflow, and the third represented an alteration of Sanibel Causeway. All three conditions were evaluated through Lagrangian particle tracks and simulated dye injections. Residual circulation patterns were similar for typical and reduced freshwater inflow, but reduced freshwater inflow increased the residence time in the upper harbor by a factor of two or more. Removal of Sanibel Causeway did not significantly affect residual flows in upper and lower Charlotte Harbor, Matlacha Pass, Gasparilla Sound, or the Gulf of Mexico. Analysis of Lagrangian particle tracks indicated changes in residence times in San Carlos Bay as a result of removing Sanibel Causeway, but the changes were not consistent for all particles. The residence time of 8 particles in San Carlos Bay decreased with removal of the causeway, 1 was unchanged, and the residence time of 3 particles increased. Simulated flushing characteristics of the estuarine system were affected more by reduced freshwater inflow than for typical freshwater inflow. After 30 days of simulation of reduced freshwater inflow, 42 percent of the dye injected into the upper harbor remained in the upper harbor, compared to 28 percent for typical freshwater inflow. The upper harbor has a relatively long flushing time because it is not directly

  19. Using paired visual and passive acoustic surveys to estimate passive acoustic detection parameters for harbor porpoise abundance estimates.

    PubMed

    Jacobson, Eiren K; Forney, Karin A; Barlow, Jay

    2017-01-01

    Passive acoustic monitoring is a promising approach for monitoring long-term trends in harbor porpoise (Phocoena phocoena) abundance. Before passive acoustic monitoring can be implemented to estimate harbor porpoise abundance, information about the detectability of harbor porpoise is needed to convert recorded numbers of echolocation clicks to harbor porpoise densities. In the present study, paired data from a grid of nine passive acoustic click detectors (C-PODs, Chelonia Ltd., United Kingdom) and three days of simultaneous aerial line-transect visual surveys were collected over a 370 km 2 study area. The focus of the study was estimating the effective detection area of the passive acoustic sensors, which was defined as the product of the sound production rate of individual animals and the area within which those sounds are detected by the passive acoustic sensors. Visually estimated porpoise densities were used as informative priors in a Bayesian model to solve for the effective detection area for individual harbor porpoises. This model-based approach resulted in a posterior distribution of the effective detection area of individual harbor porpoises consistent with previously published values. This technique is a viable alternative for estimating the effective detection area of passive acoustic sensors when other experimental approaches are not feasible.

  20. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Moss Landing Harbor, CA. 80.1136... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from the seaward extremity of the pier located 0.3 mile south of Moss Landing Harbor Entrance to the...

  1. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Moss Landing Harbor, CA. 80.1136... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from the seaward extremity of the pier located 0.3 mile south of Moss Landing Harbor Entrance to the...

  2. 77 FR 59551 - Safety Zone, Changes to Original Rule; Boston Harbor's Rock Removal Project, Boston Inner Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0767] RIN 1625-AA00 Safety Zone, Changes to Original Rule; Boston Harbor's Rock Removal Project, Boston Inner Harbor... original provisions of that temporary final rule, but adds two additional safety zones necessary for the...

  3. Teaching about Pearl Harbor. Curriculum Enhancement Series #1.

    ERIC Educational Resources Information Center

    Shields, Anna Marshall

    These materials consist of sample lesson plans for teaching about the Japanese attack on Pearl Harbor on December 7, 1941, in both U.S. and world history classes. The lesson plans challenge students to examine how current attitudes toward the Japanese may be rooted in World War II and Pearl Harbor. Selected bibliographies on Pearl Harbor, World…

  4. [Pearl Harbor.

    ERIC Educational Resources Information Center

    Johnson, Jennifer, Ed.

    1992-01-01

    This issue of "Loblolly Magazine" was written in observance of the 50th anniversary of the U.S. entrance into World War II. The publication features interviews conducted by East Texas high school students with Clarence Otterman, one of the few survivors of the crew of the USS Arizona, which was bombed during the attack on Pearl Harbor,…

  5. Harbor Seal (Phoca vitulina) Reproductive Advertisement Behavior and the Effects of Vessel Noise

    NASA Astrophysics Data System (ADS)

    Matthews, Leanna P.

    Harbor seals (Phoca vitulina) are a widely distributed pinniped species that mate underwater. Similar to other aquatically mating pinnipeds, male harbor seals produce vocalizations during the breeding season that function in male-male interactions and possibly as an attractant for females. I investigated multiple aspects of these reproductive advertisement displays in a population of harbor seals in Glacier Bay National Park and Preserve, Alaska. First, I looked at vocal production as a function of environmental variables, including season, daylight, and tidal state. Vocalizations were highly seasonal and detection of these vocalizations peaked in June and July, which correspond with the estimated time of breeding. Vocalizations also varied with light, with the lowest probability of detection during the day and the highest probability of detection at night. The high probability of detection corresponded to when females are known to forage. These results are similar to the vocal behavior of previously studied populations. However, unlike previously studied populations, the detection of harbor seal breeding vocalizations did not vary with tidal state. This is likely due to the location of the hydrophone, as it was not near the haul out and depth was therefore not significantly influenced by changes in tidal height. I also investigated the source levels and call parameters of vocalizations, as well as call rate and territoriality. The average source level of harbor seal breeding vocalizations was 144 dB re 1 ?Pa at 1 m and measurements ranged from 129 to 149 dB re 1 ?Pa. Analysis of call parameters indicated that vocalizations of harbor seals in Glacier Bay were similar in duration to other populations, but were much lower in frequency. During the breeding season, there were two discrete calling areas that likely represent two individual males; the average call rate in these display areas was approximately 1 call per minute. The harbor seal breeding season also

  6. 32 CFR 765.6 - Regulations for Pearl Harbor, Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Regulations for Pearl Harbor, Hawaii. 765.6... RULES RULES APPLICABLE TO THE PUBLIC § 765.6 Regulations for Pearl Harbor, Hawaii. The Commander, U.S. Naval Base, Pearl Harbor, Hawaii, is responsible for prescribing and enforcing such rules and...

  7. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  8. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  9. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  10. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  11. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  12. Comprehensive Conservation and Management Plan for Charlotte Harbor

    EPA Pesticide Factsheets

    This 2013 CCMP Update for Charlotte Harbor provides insight on the main priorities that the harbor is facing as well as research needed, restoration activities, legislative changes, and public outreach needs.

  13. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  14. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  15. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  16. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  17. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  18. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  19. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  20. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  1. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  2. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  3. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  4. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  5. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  6. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  7. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  8. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  9. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  10. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  11. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  12. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  13. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  14. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  15. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  16. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  17. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  18. 33 CFR 110.142 - Nantucket Harbor, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nantucket Harbor, Mass. 110.142 Section 110.142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.142 Nantucket Harbor, Mass. (a) The anchorage grounds. In the...

  19. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Boston Harbor, Mass. 110.138 Section 110.138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.138 Boston Harbor, Mass. (a) The anchorage grounds—(1) Bird...

  20. 33 CFR 110.142 - Nantucket Harbor, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Nantucket Harbor, Mass. 110.142 Section 110.142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.142 Nantucket Harbor, Mass. (a) The anchorage grounds. In the...

  1. 16 CFR 312.11 - Safe harbor programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Safe harbor programs. 312.11 Section 312.11 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE PRIVACY PROTECTION RULE § 312.11 Safe harbor programs. (a) In general. Industry groups or other persons...

  2. Erie Harbor, Pennsylvania, Channel Shoaling Analysis

    DTIC Science & Technology

    2011-07-01

    Presque Isle is located on the southern shore of Lake Erie and shelters the federal harbor at Erie , Pennsylvania . The US Army...the evaluation of the shoaling and dredging of sediment materials from Erie Harbor as part of the Presque Isle , Pennsylvania 204 feasibility study...ERDC TR-11-4 1 1 Introduction Problem statement Presque Isle is located on the southern shore of Lake Erie , Pennsylvania at the city of Erie

  3. Estuarine studies in upper Grays Harbor, Washington

    USGS Publications Warehouse

    Beverage, Joseph P.; Swecker, Milton N.

    1969-01-01

    Improved management of the water resources of Grays Harbor, Wash., requires more data on the water quality of the harbor and a better understanding of the influences of industrial and domestic wastes on the local fisheries resources. To provide a more comprehensive understanding of these influences, the U.S. Geological Survey joined other agencies in a cooperative study of Grays Harbor. This report summarizes the Survey's study of circulation patterns, description of water-quality conditions, and characterization of bottom material in the upper harbor. Salt water was found to intrude at least as far as Montesano, 28.4 nautical miles from the mouth of the harbor. Longitudinal salinity distributions were used to compute dispersion (diffusivity) coefficients ranging from 842 to 3,520 square feet per second. These values were corroborated by half-tidal-cycle dye studies. The waters of the harbor were found to be well mixed after extended periods of low fresh-water flow but stratified at high flows. Salinity data were used lo define the cumulative 'mean age' of the harbor water, which may be used to approximate a mean 'flushing time.' Velocity-time curves for the upper harbor are distorted from simple harmonic functions owing to channel geometry and frictional effects. Surface and bottom velocity data were used to estimate net tidal 'separation' distance, neglecting vertical mixing. Net separation distances between top and bottom water ranged from 1.65 nautical miles when fresh-water inflow was 610 cubic feet per second to 13.4 miles when inflow was 15,900 cubic feet per second. The cumulative mean age from integration of the fresh-water velocity equation was about twice that obtained from the salinity distribution. Excursion distances obtained with dye over half-tidal cycles exceeded those estimated from longitudinal salinity distributions and those obtained by earlier investigators who used floats. Net tidal excursions were as much as twice those obtained with floats

  4. Post-Breeding Season Migrations of a Top Predator, the Harbor Seal (Phoca vitulina richardii), from a Marine Protected Area in Alaska

    PubMed Central

    Womble, Jamie N.; Gende, Scott M.

    2013-01-01

    Marine protected areas (MPAs) are increasingly being used as a conservation tool for highly mobile marine vertebrates and the focus is typically on protecting breeding areas where individuals are aggregated seasonally. Yet movements during the non-breeding season can overlap with threats that may be equally as important to population dynamics. Thus understanding habitat use and movements of species during the non-breeding periods is critical for conservation. Glacier Bay National Park, Alaska, is one of the largest marine mammal protected areas in the world and has the only enforceable protection measures for reducing disturbance to harbor seals in the United States. Yet harbor seals have declined by up to 11.5%/year from 1992 to 2009. We used satellite-linked transmitters that were attached to 37 female harbor seals to quantify the post-breeding season migrations of seals and the amount of time that seals spent inside vs. outside of the MPA of Glacier Bay. Harbor seals traveled extensively beyond the boundaries of the MPA of Glacier Bay during the post-breeding season, encompassing an area (25,325 km2) significantly larger than that used by seals during the breeding season (8,125 km2). These movements included the longest migration yet recorded for a harbor seal (3,411 km) and extended use (up to 23 days) of pelagic areas by some seals. Although the collective utilization distribution of harbor seals during the post-breeding season was quite expansive, there was a substantial degree of individual variability in the percentage of days that seals spent in the MPA. Nevertheless, harbor seals demonstrated a high degree of inter-annual site fidelity (93%) to Glacier Bay the following breeding season. Our results highlight the importance of understanding the threats that seals may interact with outside of the boundaries of the MPA of Glacier Bay for understanding population dynamics of seals in Glacier Bay. PMID:23457468

  5. 33 CFR 80.165 - New York Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false New York Harbor. 80.165 Section 80.165 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.165 New York Harbor. A line drawn from East...

  6. 33 CFR 110.9 - Wells Harbor, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 110.9 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.9 Wells Harbor, Maine. (a) Anchorage “A”. All of the... approximately 5,800 sq. yards, encompassing the central portion of Wells Harbor. (b) Anchorage “B”. All of the...

  7. 12 CFR 350.11 - Safe harbor provision.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Safe harbor provision. 350.11 Section 350.11 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY DISCLOSURE OF FINANCIAL AND OTHER INFORMATION BY FDIC-INSURED STATE NONMEMBER BANKS § 350.11 Safe harbor...

  8. Haul-Out Behavior of Harbor Seals (Phoca vitulina) in Hood Canal, Washington

    PubMed Central

    London, Josh M.; Ver Hoef, Jay M.; Jeffries, Steven J.; Lance, Monique M.; Boveng, Peter L.

    2012-01-01

    The goal of this study was to model haul-out behavior of harbor seals (Phoca vitulina) in the Hood Canal region of Washington State with respect to changes in physiological, environmental, and temporal covariates. Previous research has provided a solid understanding of seal haul-out behavior. Here, we expand on that work using a generalized linear mixed model (GLMM) with temporal autocorrelation and a large dataset. Our dataset included behavioral haul-out records from archival and VHF radio tag deployments on 25 individual seals representing 61,430 seal hours. A novel application for increased computational efficiency allowed us to examine this large dataset with a GLMM that appropriately accounts for temporal autocorellation. We found significant relationships with the covariates hour of day, day of year, minutes from high tide and year. Additionally, there was a significant effect of the interaction term hour of day : day of year. This interaction term demonstrated that seals are more likely to haul out during nighttime hours in August and September, but then switch to predominantly daylight haul-out patterns in October and November. We attribute this change in behavior to an effect of human disturbance levels. This study also examined a unique ecological event to determine the role of increased killer whale (Orcinus orca) predation on haul-out behavior. In 2003 and 2005 these harbor seals were exposed to unprecedented levels of killer whale predation and results show an overall increase in haul-out probability after exposure to killer whales. The outcome of this study will be integral to understanding any changes in population abundance as a result of increased killer whale predation. PMID:22723851

  9. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false St. Thomas Harbor, Charlotte... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.250 St. Thomas Harbor, Charlotte Amalie... move promptly upon notification by the Harbor Master. (4) The harbor regulations for the Port of St...

  10. 33 CFR 117.802 - New Rochelle Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.802 New Rochelle Harbor. (a) The draw of the Glen Island Bridge, mile 0.8, at New Rochelle, New York, shall open on signal, except as... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false New Rochelle Harbor. 117.802...

  11. Design study of RL10 derivatives. Volume 3, part 1: Preliminary interface control document. [development of baseline engines for space tug vehicles

    NASA Technical Reports Server (NTRS)

    Adams, A.

    1973-01-01

    The Interface Control Document contains engine information necessary for installation of the baseline RL10 Derivative engines in the Space Tug vehicle. The ICD presents a description of the baseline engines and their operating characteristics, mass and load characteristics, and environmental criteria. The document defines the engine/vehicle mechanical, electrical, fluid and pneumatic interface requirements.

  12. Decadal Changes In Benthic Community Measures In New York Harbor

    EPA Science Inventory

    Monitoring in New York Harbor, NY, as part of the Regional Environmental Monitoring and Assessment Program has spanned a decade, and includes habitat and water quality measures and sediment contaminant levels from four sub-basins (Upper NY Harbor, Lower NY Harbor, Newark Bay, and...

  13. Sediment resuspension characteristics in Baltimore Harbor, Maryland

    USGS Publications Warehouse

    Maa, J.P.-Y.; Sanford, L.; Halka, J.P.

    1998-01-01

    Critical bed shear stress for sediment resuspension and sediment erosion rate were measured in-situ at sites from inner to outer Baltimore Harbor using the VIMS Sea Carousel. Clay mineral contents and biological conditions were almost the same at the four study sites. The experimental results indicated that the erosion rate increased from the outer harbor toward the inner harbor with a maximum difference of about 10 times at an excess bed shear stress of 0.1 Pa. The measured critical bed shear stress strongly depended on the existence of a fluff layer. It was approximately 0.05 Pa if a fluff layer existed, and increases to about 0.1 Pa in the absence of a fluff layer.

  14. Polycyclic aromatic hydrocarbons and trace elements bounded to airborne PM10 in the harbor of Volos, Greece: Implications for the impact of harbor activities

    NASA Astrophysics Data System (ADS)

    Manoli, E.; Chelioti-Chatzidimitriou, A.; Karageorgou, K.; Kouras, A.; Voutsa, D.; Samara, C.; Kampanos, I.

    2017-10-01

    Harbors are often characterized by high levels of air pollutants that are emitted from ship traffic and other harbor activities. In the present study, the concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) and trace elements (As, Cd, Ni, Pb, Cr, Mn, Zn, and Fe) bounded to the inhalable particulate matter PM10 were studied in the harbor of Volos, central Greece, during a 2-year period (2014-2015). Seasonal and daily variations were investigated. Moreover, total carcinogenic and mutagenic activities of PAHs were calculated. The effect of major wind sectors (sea, city, industrial, harbor) was estimated to assess the potential contribution of ship traffic and harbor activities, such as scrap metal handling operations. Results showed that the harbor sector (calm winds ≤ 0.5 m s-1) was associated with the highest concentrations of PM10. The harbor sector was also associated with relatively increased levels of trace elements (As, Fe, Cr, Mn, Ni), however the effect of this sector was lower than the corresponding effect of the industrial wind sector. The sea sector showed only a slight increase in B[a]Py and Σ12PAHs, whereas the highest increasing effect for PAHs and traffic-related elements, such as Pb and Zn, was evidenced for the city sector.

  15. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... line running due north from Old Harbor Buoy 4 to the shore line at City Point. (5) Explosives anchorage... beacon on top of the Boston Custom House tower; and thence to the point of beginning. (2) President Roads... adjacent land; on the east by a line between Castle Rocks Fog Signal Light and Old Harbor Shoal Buoy 2; on...

  16. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... line running due north from Old Harbor Buoy 4 to the shore line at City Point. (5) Explosives anchorage... beacon on top of the Boston Custom House tower; and thence to the point of beginning. (2) President Roads... adjacent land; on the east by a line between Castle Rocks Fog Signal Light and Old Harbor Shoal Buoy 2; on...

  17. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... line running due north from Old Harbor Buoy 4 to the shore line at City Point. (5) Explosives anchorage... beacon on top of the Boston Custom House tower; and thence to the point of beginning. (2) President Roads... adjacent land; on the east by a line between Castle Rocks Fog Signal Light and Old Harbor Shoal Buoy 2; on...

  18. Report to Congress : International, Private-Sector Tug-Of-Opportunity System for the Waters of the Olympic Coast National Marine Sanctuary and the Strait of Juan De Fuca

    DOT National Transportation Integrated Search

    1996-12-01

    The enclosed report provides information regarding the following: : (1)documentation requirements as prepared by the U.S. Coast Guard : for use in developing an ITOS, (2) performance requirements for : crew qualifications, tug performance capabilitie...

  19. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petoskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  20. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petroskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  1. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petoskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  2. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petoskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  3. 33 CFR 162.165 - Buffalo and Rochester Harbors, New York.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Buffalo and Rochester Harbors, New York. 162.165 Section 162.165 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... and Rochester Harbors, New York. In Buffalo and Rochester Harbors, no vessel may exceed 6 miles per...

  4. Satellite Monitoring of Boston Harbor Water Quality: Initial Investigations

    NASA Astrophysics Data System (ADS)

    Sheldon, P.; Chen, R. F.; Schaaf, C.; Pahlevan, N.; Lee, Z.

    2016-02-01

    The transformation of Boston Harbor from the "dirtiest in America" to a National Park Area is one of the most remarkable estuarine recoveries in the world. A long-term water quality dataset from 1991 to present exists in Boston Harbor due to a $3. 8 billion lawsuit requiring the harbor clean-up. This project uses discrete water sampling and underway transects with a towed vehicle coordinated with Landsat 7 and Landsat 8 to create surface maps of chlorophyll a (Chl a), dissolved organic matter (CDOM and DOC), total suspended solids (TSS), diffuse attenuation coefficient (Kd_490), and photic depth in Boston Harbor. In addition, 3 buoys have been designed, constructed, and deployed in Boston Harbor that measure Chl a and CDOM fluorescence, optical backscatter, salinity, temperature, and meteorological parameters. We are initially using summer and fall of 2015 to develop atmospheric corrections for conditions in Boston Harbor and develop algorithms for Landsat 8 data to estimate in water photic depth, TSS, Chl a, Kd_490, and CDOM. We will report on initial buoy and cruise data and show 2015 Landsat-derived distributions of water quality parameters. It is our hope that once algorithms for present Landsat imagery can be developed, historical maps of water quality can be constructed using in water data back to 1991.

  5. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  6. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  7. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  8. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  9. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  10. Defense.gov Special Report: 72nd Anniversary of Pearl Harbor

    Science.gov Websites

    Department of Defense Submit Search 72nd Anniversary of the Attack on Pearl Harbor - World War II News Harbor survivors and World War II veterans gathered at the Pacific National Monument's Pearl Harbor course of world history." Story USS Mesa Verda Crew Conducts Remembrance Ceremony As Americans and

  11. Movements and foraging effort of Steller's Eiders and Harlequin Ducks wintering near Dutch Harbor, Alaska

    USGS Publications Warehouse

    Reed, J.A.; Flint, Paul L.

    2007-01-01

    We studied the movements and foraging effort of radio-marked Steller's Eiders (Polysticta stelleri) and Harlequin Ducks (Histrionicus histrionicus) to evaluate habitat quality in an area impacted by industrial activity near Dutch Harbor, Alaska. Foraging effort was relatively low, with Steller's Eiders foraging only 2.7 ± 0.6 (SE) hours per day and Harlequin Ducks 4.1 ± 0.5 hours per day. Low-foraging effort during periods of high-energetic demand generally suggests high food availability, and high food availability frequently corresponds with reductions in home range size. However, the winter ranges of Harlequin Ducks did not appear to be smaller than usual, with the mean range size in our study (5.5 ± 1.1 km2) similar to that reported by previous investigators. The mean size of the winter ranges of Steller's Eiders was similar (5.1 ± 1.3 km2), but no comparable estimates are available. Eutrophication of the waters near Dutch Harbor caused by seafood processing and municipal sewage effluent may have increased populations of the invertebrate prey of these sea ducks and contributed to their low-foraging effort. The threat of predation by Bald Eagles (Haliaeetus leucocephalus) that winter near Dutch Harbor may cause Steller's Eiders and Harlequin Ducks to move further offshore when not foraging, contributing to an increase in range sizes. Thus, the movement patterns and foraging behavior of these ducks likely represent a balance between the cost and benefits of wintering in a human-influenced environment.

  12. IUS/TUG orbital operations and mission support study. Volume 2: Interim upper stage operations

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Background data and study results are presented for the interim upper stage (IUS) operations phase of the IUS/tug orbital operations study. The study was conducted to develop IUS operational concepts and an IUS baseline operations plan, and to provide cost estimates for IUS operations. The approach used was to compile and evaluate baseline concepts, definitions, and system, and to use that data as a basis for the IUS operations phase definition, analysis, and costing analysis. Both expendable and reusable IUS configurations were analyzed and two autonomy levels were specified for each configuration. Topics discussed include on-orbit operations and interfaces with the orbiter, the tracking and data relay satellites and ground station support capability analysis, and flight control center sizing to support the IUS operations.

  13. We Shared the Same Chapter: Collaboration, Learning, and Transformation from the 2008 Subsistence, the Environment, and Community Well-Being Native Youth Exchange in Old Harbor, Alaska Project

    ERIC Educational Resources Information Center

    Richmond, Laurie; Di Piero, Daniela; Espinoza, Flowers; Simeonoff, Teacon; Faraday, Margaret

    2010-01-01

    On a small island belonging to the Alutiiq people of Old Harbor, 11 people sat around a campfire. Two community leaders, a nonprofit organizer, an academic scholar, a native filmmaker, and six young people from the Indian reservation of Taos Pueblo in New Mexico gathered after a day of interacting with Old Harbor residents--fishing, hunting and…

  14. 33 CFR 80.1470 - Kawaihae Harbor, Hawaii, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kawaihae Harbor, Hawaii, HI. 80.1470 Section 80.1470 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1470 Kawaihae Harbor, Hawaii, HI...

  15. 33 CFR 80.1450 - Nawiliwili Harbor, Kauai, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nawiliwili Harbor, Kauai, HI. 80.1450 Section 80.1450 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1450 Nawiliwili Harbor, Kauai, HI...

  16. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  17. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  18. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  19. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  20. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  1. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  2. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  3. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  4. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  5. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  6. 33 CFR 110.208 - Buffalo Harbor, N.Y.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Buffalo Harbor, N.Y. 110.208 Section 110.208 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.208 Buffalo Harbor, N.Y. (a) The anchorage grounds—(1...

  7. 33 CFR 110.208 - Buffalo Harbor, N.Y.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Buffalo Harbor, N.Y. 110.208 Section 110.208 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.208 Buffalo Harbor, N.Y. (a) The anchorage grounds—(1...

  8. "Tugboat Annie:" nursing's hero of Pearl Harbor--Grace Lally (1897-1983).

    PubMed

    Hawkins, J W; Matthews, I

    1991-01-01

    In 1991 we will mark the 50th anniversary of the Japanese attack on Pearl Harbor. Few nurses know that the Chief Nurse aboard the USS Solace, the only hospital ship in port on that fateful day, played a critical role in caring for the survivors. Grace Lally's calm, professional manner, along with her sensitivity to the needs of her patients, her 12 nurses, and the crew of the Solace made her a hero. This study is an investigation of her role on December 7, 1941, and her contributions as a career military nurse.

  9. Tech Talk for Social Studies Teachers Lest We Forget: Remembering Pearl Harbor.

    ERIC Educational Resources Information Center

    Green, Tim

    2001-01-01

    Presents an annotated bibliography that provides Web sites about Pearl Harbor (Hawaii). Includes Web sites that cover Pearl Harbor history, a live view of Pearl Harbor, stories from people who remember where they were during the attack, information on the naval station at Pearl Harbor, and a virtual tour of the USS Arizona. (CMK)

  10. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  11. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Moss Landing Harbor, CA. 80.1136 Section 80.1136 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from...

  12. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Moss Landing Harbor, CA. 80.1136 Section 80.1136 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from...

  13. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Crescent City Harbor, CA. 80.1152 Section 80.1152 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn...

  14. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Moss Landing Harbor, CA. 80.1136 Section 80.1136 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from...

  15. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  16. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  17. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  18. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  19. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  20. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Crescent City Harbor, CA. 80.1152 Section 80.1152 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn...

  1. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  2. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  3. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  4. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  5. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  6. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  7. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  8. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  9. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  10. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  11. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  12. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  13. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Crescent City Harbor, CA. 80.1152 Section 80.1152 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn...

  14. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  15. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  16. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  17. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  18. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  19. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  20. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  1. 33 CFR 117.722 - Great Egg Harbor Bay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Great Egg Harbor Bay. 117.722 Section 117.722 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.722 Great Egg Harbor Bay. The draw of...

  2. 33 CFR 80.1480 - Hilo Harbor, Hawaii, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hilo Harbor, Hawaii, HI. 80.1480 Section 80.1480 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1480 Hilo Harbor, Hawaii, HI. A line drawn...

  3. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  4. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  5. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  6. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  7. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  8. 33 CFR 80.1460 - Kahului Harbor, Maui, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kahului Harbor, Maui, HI. 80.1460 Section 80.1460 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1460 Kahului Harbor, Maui, HI. A line drawn...

  9. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  10. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  11. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  12. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  13. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  14. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  15. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  16. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  17. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  18. 33 CFR 117.722 - Great Egg Harbor Bay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Great Egg Harbor Bay. 117.722 Section 117.722 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.722 Great Egg Harbor Bay. The draw of...

  19. Madaket Harbor, Nantucket, Massachusetts. Water Resources Improvement.

    DTIC Science & Technology

    1977-07-01

    will continue to be, important increases in the recreational use of land and water. The harbor area is an important arena for commercial shellfishing...an important arena for commercial shell fishing. The past few years have seen a rather rapid increase in residential land use. Construction has...beamc. Tnis material will be re-deposited,, viaj troio it 1-apfro1inr ox prior location. j, MADAKET HARBOR NANTUCKET, MASSACHUSETTS FEASIBILITY

  20. 76 FR 8653 - Drawbridge Operation Regulation; Gulf Intracoastal Waterway, New Orleans Harbor, Inner Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... regulation governing the operation of the SR 39 (Judge Seeber/Claiborne Avenue) vertical lift bridge across... (Judge Seeber/Claiborne Avenue) vertical lift bridge across the Inner Harbor Navigational Canal, mile 0.9...

  1. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Crescent City Harbor, CA. 80.1152... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn from Crescent City Entrance Light to the southeasternmost extremity of Whaler Island. [CGD 84-091, 51...

  2. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Crescent City Harbor, CA. 80.1152... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn from Crescent City Entrance Light to the southeasternmost extremity of Whaler Island. [CGD 84-091, 51...

  3. Fungal Zinc Homeostasis - A Tug of War Between the Pathogen and Host.

    PubMed

    Walencik, Paulina K; Watly, Joanna; Rowinska-Zyrek, Magdalena

    2016-01-01

    In the last decade, drug resistant invasive mycoses have become significantly more common and new antifungal drugs and ways to specifically deliver them to the fungal cell are being looked for. One of the biggest obstacles in finding such comes from the fact that fungi share essential metabolic pathways with humans. One significant difference in the metabolism of those two cells that can be challenged when looking for possible selective therapeutics is the uptake of zinc, a nutrient crucial for the fungal survival and virulence. This work summarizes the recent advances in the biological inorganic chemistry of zinc metabolism in fungi. The regulation of zinc uptake, various types of its transmembrane transport, storage and the maintenance of intracellular zinc homeostasis is discussed in detail, with a special focus on the concept of a constant 'tug of war' over zinc between the fungus and its host, with the host trying to withhold essential Zn(II), and the fungus counteracting by producing high-affinity zinc binding molecules.

  4. Lightweight thermally efficient composite feedlines for the space tug cryogenic propulsion system

    NASA Technical Reports Server (NTRS)

    Spond, D. E.

    1975-01-01

    Six liquid hydrogen feedline design concepts were developed for the cryogenic space tug. The feedlines include composite and all-metal vacuum jacketed and nonvacuum jacketed concepts, and incorporate the latest technological developments in the areas of thermally efficient vacuum jacket end closures and standoffs, radiation shields in the vacuum annulus, thermal coatings, and lightweight dissimilar metal flanged joints. The feedline design concepts are evaluated on the basis of thermal performance, weight, cost, reliability, and reusability. Design concepts were proved in a subscale test program. Detail design was completed on the most promising composite feedline concept and an all-metal feedline. Three full scale curved composite feedlines and one all-metal feedline assembly were fabricated and subjected to a test program representative of flight hardware qualification. The test results show that composite feedline technology is fully developed. Composite feedlines are ready for space vehicle application and offer significant reduction in weights over the conventional all-metal feedlines presently used.

  5. 46 CFR 7.30 - New York Harbor, NY.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false New York Harbor, NY. 7.30 Section 7.30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.30 New York Harbor, NY. A line drawn from East Rockaway Inlet Breakwater Light to Ambrose Light...

  6. Underwater noise from three types of offshore wind turbines: estimation of impact zones for harbor porpoises and harbor seals.

    PubMed

    Tougaard, Jakob; Henriksen, Oluf Damsgaard; Miller, Lee A

    2009-06-01

    Underwater noise was recorded from three different types of wind turbines in Denmark and Sweden (Middelgrunden, Vindeby, and Bockstigen-Valar) during normal operation. Wind turbine noise was only measurable above ambient noise at frequencies below 500 Hz. Total sound pressure level was in the range 109-127 dB re 1 microPa rms, measured at distances between 14 and 20 m from the foundations. The 1/3-octave noise levels were compared with audiograms of harbor seals and harbor porpoises. Maximum 1/3-octave levels were in the range 106-126 dB re 1 microPa rms. Maximum range of audibility was estimated under two extreme assumptions on transmission loss (3 and 9 dB per doubling of distance, respectively). Audibility was low for harbor porpoises extending 20-70 m from the foundation, whereas audibility for harbor seals ranged from less than 100 m to several kilometers. Behavioral reactions of porpoises to the noise appear unlikely except if they are very close to the foundations. However, behavioral reactions from seals cannot be excluded up to distances of a few hundred meters. It is unlikely that the noise reaches dangerous levels at any distance from the turbines and the noise is considered incapable of masking acoustic communication by seals and porpoises.

  7. Floating-Harbor syndrome associated with middle ear abnormalities.

    PubMed

    Hendrickx, Jan-Jaap; Keymolen, Kathelijn; Desprechins, Brigitte; Casselman, Jan; Gordts, Frans

    2010-01-01

    Floating-Harbor syndrome is a rare syndrome of unknown etiology, which was first described in 1973. A triad of main features characterizes Floating-Harbor syndrome: short stature, characteristic face, and an expressive speech delay. We present a patient in whom the hearing thresholds improved insufficiently after placement of grommets. High-resolution CT scan of the temporal bone showed a prominent soft-tissue thickening suspected of causing fixation of the malleus, and fusion of the malleus head with the body of the incus. To our knowledge this is the first reported abnormal middle ear anatomy in a patient with Floating-Harbor syndrome. A conservative treatment with hearing aids was preferred as an initial treatment in favor of a surgical exploration.

  8. 33 CFR 110.95 - Newport Bay Harbor, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (Newport Harbor Yacht Club). East of a line bearing 23° from the center of the north end of 8th Street... (Balboa Yacht Club). South of a line parallel to and 150 feet from the south pierhead line off Balboa... Newport Beach Harbor Ordinance No. 543 for pleasure boats and yachts of such sizes and alignments as...

  9. 33 CFR 110.95 - Newport Bay Harbor, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (Newport Harbor Yacht Club). East of a line bearing 23° from the center of the north end of 8th Street... (Balboa Yacht Club). South of a line parallel to and 150 feet from the south pierhead line off Balboa... Newport Beach Harbor Ordinance No. 543 for pleasure boats and yachts of such sizes and alignments as...

  10. 33 CFR 100.113 - Provincetown Harbor Swim for Life, Provincetown, MA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Provincetown Harbor Swim for Life... SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.113 Provincetown Harbor Swim for Life, Provincetown, MA. (a) Regulated Area. All waters of Provincetown Harbor within 200 feet of...

  11. 77 FR 45239 - Amendment of Class E Airspace; Bar Harbor, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ...-1366; Airspace Docket No. 11-ANE-13] Amendment of Class E Airspace; Bar Harbor, ME AGENCY: Federal... area at Bar Harbor, ME, as the Surry Non-Directional Radio Beacon (NDB) has been decommissioned and new... airspace at Bar Harbor, ME (77 FR 27666) Docket No. FAA-2011-1366. Interested parties were invited to...

  12. Planning through Partnerships : Alternative Transportation at Boston Harbor Islands National Park Area

    DOT National Transportation Integrated Search

    2004-07-31

    This case study tells the story of a successful and collaborative transportation planning process at Boston Harbor Islands National Park Area (Boston Harbor Islands). By using an innovative approach to planning, Boston Harbor Islands has been able to...

  13. Geotechnical and Geoacoustic Investigation of Seafloor Sediments on Boston Harbor Approaches

    DTIC Science & Technology

    2017-01-25

    Geoacoustic Investigation of Seafloor Sediments on Boston Harbor Approaches Andrei Abelev Marine Physics Branch Marine Geosciences Division Peter...LIMITATION OF ABSTRACT Geotechnical and Geoacoustic Investigation of Seafloor Sediments on Boston Harbor Approaches Andrei Abelev, Peter Herdic...sampling and analysis series for classification and characterization of the surficial seafloor sediment in the Boston Harbor approaches . 25-01-2017

  14. Pollutant Concentrations and Toxic Effects on the Red Alga Ceramium tenuicorne of Sediments from Natural Harbors and Small Boat Harbors on the West Coast of Sweden.

    PubMed

    Eklund, Britta; Hansson, Tomas; Bengtsson, Henrik; Eriksson Wiklund, Ann-Kristin

    2016-04-01

    This investigation set out to analyze the toxicity of surface sediments in a number of natural harbors and small boat harbors on the west coast of Sweden. This was done with the growth inhibition method with Ceramium tenuicorne. Also, concentrations of copper (Cu), lead (Pb), zinc (Zn), irgarol, organotin compounds, and polycyclic aromatic hydrocarbons (PAHs) in the sediments were analyzed. The small boat harbors were heavily polluted by Cu, Zn, butyltins, and PAHs, and to a lesser extent by Pb. The Cu, Pb, Zn, and butyltins probably originated from their past and/or present use in antifouling paints, whereas the PAHs probably had multiple sources, including boat motor exhausts. The measured toxicity of the sediment was generally related to their Cu, Zn, and butyltin content, although other toxic substances than those analyzed here probably contributed to the toxicity in some of the harbors. The natural harbor sediments contained less pollutants and were less toxic than the small boat harbor sediments. Nevertheless, our data indicate that the boating pressure today may be high enough to produce toxic effects even in natural harbors in pristine areas. The strongest relationship between toxicity and the major pollutants was obtained when the sediment toxicity was expressed as gram wet weight per liter compared with gram dry weight per liter and gram total organic carbon per liter. Hence, for pollutants that can be elutriated with natural sea water, sediment toxicity expressed as gram wet weight per liter appears preferable.

  15. Modeling tidal exchange and dispersion in Boston Harbor

    USGS Publications Warehouse

    Signell, Richard P.; Butman, Bradford

    1992-01-01

    Tidal dispersion and the horizontal exchange of water between Boston Harbor and the surrounding ocean are examined with a high-resolution (200 m) depth-averaged numerical model. The strongly varying bathymetry and coastline geometry of the harbor generate complex spatial patterns in the modeled tidal currents which are verified by shipboard acoustic Doppler surveys. Lagrangian exchange experiments demonstrate that tidal currents rapidly exchange and mix material near the inlets of the harbor due to asymmetry in the ebb/flood response. This tidal mixing zone extends roughly a tidal excursion from the inlets and plays an important role in the overall flushing of the harbor. Because the tides can only efficiently mix material in this limited region, however, harbor flushing must be considered a two step process: rapid exchange in the tidal mixing zone, followed by flushing of the tidal mixing zone by nontidal residual currents. Estimates of embayment flushing based on tidal calculations alone therefore can significantly overestimate the flushing time that would be expected under typical environmental conditions. Particle-release simulations from point sources also demonstrate that while the tides efficiently exchange material in the vicinity of the inlets, the exact nature of dispersion from point sources is extremely sensitive to the timing and location of the release, and the distribution of particles is streaky and patchlike. This suggests that high-resolution modeling of dispersion from point sources in these regions must be performed explicitly and cannot be parameterized as a plume with Gaussian-spreading in a larger scale flow field.

  16. Operation and Maintence, Vermilion Harbor, Erie County, Ohio.

    DTIC Science & Technology

    1976-03-01

    channel and structural maintenance activities at Vermilion Harbor. Although 6 ...- this alternative would eliminate temporary adverse ecological effects of...of dredging on water quality, aquatic ecology , and harbor recreation and related 4 businesses wbuld be reduced to a level commensurate with reduced...effects on aquatic ecology but would have long- term, beneficial effects on shoreline erosion and beach areas. There have been no specific requests from

  17. Design study of RL10 derivatives. Volume 3, part 2: Operational and flight support plan. [analysis of transportation requirements for rocket engine in support of space tug program

    NASA Technical Reports Server (NTRS)

    Shubert, W. C.

    1973-01-01

    Transportation requirements are considered during the engine design layout reviews and maintenance engineering analyses. Where designs cannot be influenced to avoid transportation problems, the transportation representative is advised of the problems permitting remedies early in the program. The transportation representative will monitor and be involved in the shipment of development engine and GSE hardware between FRDC and vehicle manufacturing plant and thereby will be provided an early evaluation of the transportation plans, methods and procedures to be used in the space tug support program. Unanticipated problems discovered in the shipment of development hardware will be known early enough to permit changes in packaging designs and transportation plans before the start of production hardware and engine shipments. All conventional transport media can be used for the movement of space tug engines. However, truck transport is recommended for ready availability, variety of routes, short transit time, and low cost.

  18. 33 CFR 110.80b - Marquette Harbor, Marquette, Mich.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marquette Harbor, Marquette, Mich. 110.80b Section 110.80b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80b Marquette Harbor, Marquette, Mich. The...

  19. 33 CFR 110.80b - Marquette Harbor, Marquette, Mich.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Marquette Harbor, Marquette, Mich. 110.80b Section 110.80b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80b Marquette Harbor, Marquette, Mich. The...

  20. 33 CFR 110.80b - Marquette Harbor, Marquette, Mich.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Marquette Harbor, Marquette, Mich. 110.80b Section 110.80b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80b Marquette Harbor, Marquette, Mich. The...

  1. 33 CFR 110.80b - Marquette Harbor, Marquette, Mich.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Marquette Harbor, Marquette, Mich. 110.80b Section 110.80b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80b Marquette Harbor, Marquette, Mich. The...

  2. 33 CFR 110.80b - Marquette Harbor, Marquette, Mich.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Marquette Harbor, Marquette, Mich. 110.80b Section 110.80b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80b Marquette Harbor, Marquette, Mich. The...

  3. 78 FR 42016 - Safety Zone; Discovery World Fireworks, Milwaukee Harbor, Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ...-AA00 Safety Zone; Discovery World Fireworks, Milwaukee Harbor, Milwaukee, WI AGENCY: Coast Guard, DHS... Milwaukee Harbor due to 4 fireworks displays at Discovery World Pier. This safety zone is necessary to... entitled, ``Safety Zone; Discovery World Fireworks, Milwaukee Harbor, Milwaukee, Wisconsin'' in the Federal...

  4. Metal concentrations in surface sediments of Boston Harbor: Changes with time

    USGS Publications Warehouse

    Bothner, Michael H.; Buchholtz ten Brink, Marilyn R.; Manheim, F.T.

    1998-01-01

    The concentrations of metals in surface sediments of Boston Harbor have decreased during the period 1977–1993. This conclusion is supported by analysis of: (1) surface sediments collected at monitoring stations in the outer harbor between 1977 and 1993; (2) metal concentration profiles in sediment cores from depositional areas of the harbor; and (3) historical data from a contaminated-sediment database, which includes information on metal and organic contaminants and sediment texture. The background and matrix-corrected concentrations of lead (Pb) measured in the surficial layer (0–2 cm) of cores decreased by an average of 46%±12% among four locations in the outer harbor during the 16 y period. Chromium (Cr), copper (Cu), mercury (Hg), silver (Ag), and zinc (Zn) exhibited similar trends. Results from our sediment sampling are supported by historical data that were compiled from diverse sources into a regional sediment database. This sediment database contains approximately 3000 samples; of these, about 460 samples were collected and analyzed for Cu, Hg, or Zn and many other sediment parameters in Boston Harbor surface sediments between 1971–1993. The database indicates that the concentrations of these three metals also decreased with time in Boston’s Inner Harbor. The decreases in metal concentrations that are observed in more recent years parallel a general decrease in the flux of metals to the harbor, implemented by: (1) ending the sewage sludge discharge to the Harbor in December, 1991; (2) greater source reduction (e.g. recovery of silver from photographic processing) and closing or moving of industries; (3) improvements in wastewater handling and sewage treatment; and (4) diminishing use of lead in gasoline beginning about 1973. Despite the general decrease in metal concentrations in Boston Harbor surface sediments, the concentrations of Ag and Hg measured at some outer harbor stations in 1993 were still at, or above, the level associated with

  5. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  6. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  7. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  8. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  9. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  10. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  11. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  12. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  13. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  14. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  15. 76 FR 32071 - Safety Zone; Conneaut Festival Fireworks, Conneaut Harbor, Conneaut, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ...-AA00 Safety Zone; Conneaut Festival Fireworks, Conneaut Harbor, Conneaut, OH AGENCY: Coast Guard, DHS... Conneaut Harbor, Conneaut, OH for the Conneaut Festival Fireworks. This zone is intended to restrict vessels from a portion of Conneaut Harbor, Conneaut, OH during the Conneaut Festival Fireworks on July 3...

  16. 76 FR 34865 - Safety Zone; Rochester Harbor Festival, Genesee River, Rochester, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ...-AA00 Safety Zone; Rochester Harbor Festival, Genesee River, Rochester, NY AGENCY: Coast Guard, DHS... Genesee River, Rochester, NY for the Rochester Harbor Festival fireworks. This zone is intended to restrict vessels from the mouth of the Genesee River in Rochester during the Rochester Harbor Festival...

  17. Los Angeles Beach Harbors, Los Angeles County, California.

    DTIC Science & Technology

    1974-10-01

    predicted at this time. The presently proposed project is not dependent upon nor contributory to further navigation development in the V" Los Angeles...as Long Beach and Compton. The Los Angeles Harbor probably exhibited similar intensities ranging from VII to IX depending on the soil conditions...the harbor. The water quality in these aquifers is dependent upon the rates of recharge and extraction (natural and otherwise). The Dominguez Gap

  18. 78 FR 28619 - Boston Harbor Islands Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... DEPARTMENT OF THE INTERIOR [NPS-NER-BOHA-12921: PPMPSPD1Z.YM0000: PPNEBOHAS1] Boston Harbor.... SUMMARY: This notice announces a meeting of the Boston Harbor Islands Advisory Council. The agenda... park update. DATES: Date/Time: June 5, 2013, 4:00 p.m. to 6:00 p.m. (EASTERN). Location: Boston Society...

  19. 26 CFR 1.401(k)-3 - Safe harbor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Safe harbor requirements. 1.401(k)-3 Section 1.401(k)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-3 Safe harbor...

  20. 26 CFR 1.401(m)-3 - Safe harbor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Safe harbor requirements. 1.401(m)-3 Section 1.401(m)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(m)-3 Safe harbor...

  1. Pulmonary inflammatory myofibroblastic tumor harboring EML4-ALK fusion gene.

    PubMed

    Sokai, Akihiko; Enaka, Makiko; Sokai, Risa; Mori, Shoichi; Mori, Shunsuke; Gunji, Masaharu; Fujino, Masahiko; Ito, Masafumi

    2014-01-01

    Inflammatory myofibroblastic tumor is a rare tumor deriving from mesenchymal tissue. Approximately 50% of inflammatory myofibroblastic tumors harbor an anaplastic lymphoma kinase fusion gene. Pulmonary inflammatory myofibroblastic tumors harboring tropomyosin3-anaplastic lymphoma kinase or protein tyrosine phosphatase receptor-type F polypeptide-interacting protein-binding protein 1-anaplastic lymphoma kinase have been reported previously. However, it has not been reported that inflammatory myofibroblastic tumors harbor echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion gene which is considered to be very specific to lung cancers. A few tumors harboring echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion gene other than lung cancers have been reported and the tumors were all carcinomas. A 67-year-old man had been followed up for a benign tumor for approximately 3 years before the tumor demonstrated malignant transformation. Lobectomy and autopsy revealed that an inflammatory myofibroblastic tumor harboring echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion gene had transformed into an undifferentiated sarcoma. This case suggests that echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion is an oncogenic event in not only carcinomas but also sarcomas originating from stromal cells.

  2. Remembering Pearl Harbor at 75 Years.

    PubMed

    Liehr, Patricia; Sopcheck, Janet; Milbrath, Gwyneth

    2016-12-01

    : On December 7, 1941, the Sunday-morning quiet of the U.S. naval base in Pearl Harbor, Hawaii, was shattered by dive-bombing Japanese fighter planes. The planes came in two waves-and when it was all over, more than 2,400 were killed and more than 1,100 were injured.Nurses were stationed at U.S. Naval Hospital Pearl Harbor, Tripler General Hospital (now Tripler Army Medical Center), Hickam Field Hospital, Schofield Barracks Station Hospital, and aboard the USS Solace, and witnessed the devastation. But they also did what nurses do in emergencies-they responded and provided care to those in need. Here are the stories of a few of those nurses.

  3. 77 FR 27666 - Proposed Amendment of Class E Airspace; Bar Harbor, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ...-1366; Airspace Docket No. 11-ANE-13] Proposed Amendment of Class E Airspace; Bar Harbor, ME AGENCY... action proposes to amend Class E Airspace at Bar Harbor, ME, as the Surry Non-Directional Radio Beacon... Airport, Bar Harbor, ME. Airspace reconfiguration is necessary due to the decommissioning of the Surry NDB...

  4. 33 CFR 165.14-1414 - Safety Zones; Hawaiian Islands Commercial Harbors; HI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... harbors, or all of these harbors, dependent upon details in the tsunami warning. These safety zones extend... period. Paragraph (b) of this section will be enforced when a tsunami warning has been issued for the... Coast Guard's Homeport Web site. Following the passage of the tsunami or tsunami threat and harbor...

  5. 78 FR 669 - Safety Zone; Hampton Harbor Channel Obstruction, Hampton Harbor; Hampton, NH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket Number USCG-2012-1055] RIN... docket [USCG-2012-1055]. To view documents mentioned in this preamble as being available in the docket....1. 0 2. Add Sec. 165.T01-1055 to read as follows: Sec. 165.T01-1055 Safety Zone; Hampton Harbor...

  6. Integrated approach to assess ecosystem health in harbor areas.

    PubMed

    Bebianno, M J; Pereira, C G; Rey, F; Cravo, A; Duarte, D; D'Errico, G; Regoli, F

    2015-05-01

    Harbors are critical environments with strategic economic importance but with potential environmental impact: health assessment criteria are a key issue. An ecosystem health status approach was carried out in Portimão harbor as a case-study. Priority and specific chemical levels in sediments along with their bioavailability in mussels, bioassays and a wide array of biomarkers were integrated in a biomarker index (IBR index) and the overall data in a weight of evidence (WOE) model. Metals, PAHs, PCBs and HCB were not particularly high compared with sediment guidelines and standards for dredging. Bioavailability was evident for Cd, Cu and Zn. Biomarkers proved more sensitive namely changes of antioxidant responses, metallothioneins and vittellogenin-like proteins. IBR index indicated that site 4 was the most impacted area. Assessment of the health status by WOE approach highlighted the importance of integrating sediment chemistry, bioaccumulation, biomarkers and bioassays and revealed that despite some disturbance in the harbor area, there was also an impact of urban effluents from upstream. Environmental quality assessment in harbors. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Safe harbor: protecting ports with shipboard fuel cells.

    PubMed

    Taylor, David A

    2006-04-01

    With five of the largest harbors in the United States, California is beginning to take steps to manage the large amounts of pollution generated by these bustling centers of transport and commerce. One option for reducing diesel emissions is the use of fuel cells, which run cleaner than diesel and other internal combustion engines. Other technologies being explored by harbor officials are diesel-electric hybrid and gas turbine locomotives for moving freight within port complexes.

  8. 15. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, LOOKING OUT TOWARD ARIZONA MEMORIAL AND FORD ISLAND. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  9. Charleston Harbor Deepening Project. Charleston Harbor and Shipyard River, South Carolina.

    DTIC Science & Technology

    1976-04-01

    between the two basins to 250 feet; enlargement of the 0 anchorage basin near the harbor mouth by deepening to a depth of 40 feet and by extending the...and 0 Wando River; and the relocating of channels near terminals to provide 125-foot clearance between piers and the edge of the channel. * 0 0...materials; localized adverse effects on plankton and primary productivity; minor losses of larval and juvenile fishes near the dredge and disposal areas

  10. 76 FR 50489 - Agency Information Collection Activities: Harbor Maintenance Fee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... Activities: Harbor Maintenance Fee AGENCY: U.S. Customs and Border Protection, Department of Homeland... Security will be submitting the following information collection request to the Office of Management and Budget (OMB) for review and approval in accordance with the Paperwork Reduction Act: Harbor Maintenance...

  11. U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage System, Linear underground system extending from North Road to Icarus Way, Joint Base Pearl Harbor-Hickam, Honolulu, Honolulu County, HI

  12. The tug-of-war behavior of a Brownian particle in an asymmetric double optical trap with stochastic fluctuations

    NASA Astrophysics Data System (ADS)

    Long, Fei; Zhu, Jia-Pei

    2018-07-01

    A Brownian particle optically trapped in an asymmetric double potential surrounded by a thermal bath was simulated. Under the cooperative action of the resultant deterministic optical force and the stochastic fluctuations of the thermal bath, the confined particle undergoes Kramers transition, and oscillates between the two traps with a probability of trap occupancy that is asymmetrically distributed about the midpoint. The simulation results obtained at different temperatures indicate that the oscillation behavior of the particle can be treated as the result of a tug-of-war game played between the resultant deterministic force and the random force. We also employ a bistable model to explain the observed phenomena.

  13. 33 CFR 110.214 - Los Angeles and Long Beach harbors, California.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following locations: (A) Inner Harbor: The Henry Ford (Badger Avenue) Bridge. (B) Middle Harbor: The Pier... will be given, but not necessarily limited to: the current and anticipated demands for anchorage space...

  14. 33 CFR 110.214 - Los Angeles and Long Beach harbors, California.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following locations: (A) Inner Harbor: The Henry Ford (Badger Avenue) Bridge. (B) Middle Harbor: The Pier... will be given, but not necessarily limited to: the current and anticipated demands for anchorage space...

  15. The New Bedford Harbor Superfund Site Long Term ...

    EPA Pesticide Factsheets

    Background. New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a marine Superfund site in 1983 due to sediment contamination by polychlorinated biphenyls (PCBs). Based on risks to human health and the environment, the first two phases of the site cleanup involved dredging PCB-contaminated sediments from the harbor. Therefore, a long-term monitoring program (LTM) was developed to measure spatial and temporal chemical and biological changes in sediment, water, and biota to assess the effects and effectiveness of the remedial activities. Approach. A systematic, probabilistic sampling design was used to select approximately 70 sediment sampling stations. Sediment was collected at each station and chemical (e.g., PCBs, metals), physical (e.g., grain size), and biological (e.g., benthic community) measurements were conducted on all samples. There have been six sample collections to date: 1993-baseline, 1995-post hot spot removal, 1999-prior to full scale dredging, and then at 5 year intervals: 2004, 2009, and 2014. Mussel (Mytilus edulis) bioaccumulation has also been measured twice yearly. Results. There is a decreasing spatial gradient in sediment PCB concentrations from the northern boundary (upper harbor) to the southern boundary (outer harbor) of the site. Along this same transect, there is an increase in biological condition (e.g., benthic community diversity). Temporally, the contaminant and biological gradients have been

  16. Harbor seal vibrissa morphology suppresses vortex-induced vibrations.

    PubMed

    Hanke, Wolf; Witte, Matthias; Miersch, Lars; Brede, Martin; Oeffner, Johannes; Michael, Mark; Hanke, Frederike; Leder, Alfred; Dehnhardt, Guido

    2010-08-01

    Harbor seals (Phoca vitulina) often live in dark and turbid waters, where their mystacial vibrissae, or whiskers, play an important role in orientation. Besides detecting and discriminating objects by direct touch, harbor seals use their whiskers to analyze water movements, for example those generated by prey fish or by conspecifics. Even the weak water movements left behind by objects that have passed by earlier can be sensed and followed accurately (hydrodynamic trail following). While scanning the water for these hydrodynamic signals at a swimming speed in the order of meters per second, the seal keeps its long and flexible whiskers in an abducted position, largely perpendicular to the swimming direction. Remarkably, the whiskers of harbor seals possess a specialized undulated surface structure, the function of which was, up to now, unknown. Here, we show that this structure effectively changes the vortex street behind the whiskers and reduces the vibrations that would otherwise be induced by the shedding of vortices from the whiskers (vortex-induced vibrations). Using force measurements, flow measurements and numerical simulations, we find that the dynamic forces on harbor seal whiskers are, by at least an order of magnitude, lower than those on sea lion (Zalophus californianus) whiskers, which do not share the undulated structure. The results are discussed in the light of pinniped sensory biology and potential biomimetic applications.

  17. Lorain Harbor, Ohio. Preliminary Feasibility Study (Stage 2). Review of Reports. Volume II. Appendices.

    DTIC Science & Technology

    1980-10-01

    looked all the way from the west to all the way down to Erie , Pennsylvania . We made some initial cuts and got it down to five different ports...Harbor, MN Presque Isle :Two Harbors, MN :Gary, IN 1,721,920 25 (Litton Great Lakes):Two Harbors, MN :Calumet Harbor, IN 178,080 3 :Two Harbors, MN...WI : 2 :11 : 0: 0 : 0: 2: 3 Silver Bay, MN : 82 :67 : 96 :87 : 85 : 88: 89 Taconite, MN : 0 : 0 : 0: 0 : 0: 4: 0 Presque Isle , MI : 6 2 : 1 0.5: 2 1

  18. Frequency Domain Response at Pacific Coast Harbors to Major Tsunamis of 2005-2011

    NASA Astrophysics Data System (ADS)

    Xing, Xiuying; Kou, Zhiqing; Huang, Ziyi; Lee, Jiin-Jen

    2013-06-01

    Tsunamis waves caused by submarine earthquake or landslide might contain large wave energy, which could cause significant human loss and property damage locally as well as in distant region. The response of three harbors located at the Pacific coast (i.e. Crescent City Harbor, Los Angeles/Long Beach Port, and San Diego Harbor) to six well-known tsunamis events generated (both near-field and far-field) between 2005 and 2011 are examined and simulated using a hybrid finite element numerical model in frequency domain. The model incorporated the effects of wave refraction, wave diffraction, partial wave reflection from boundaries, entrance and bottom energy dissipation. It can be applied to harbor regions with arbitrary shapes and variable water depth. The computed resonant periods or modes of oscillation for three harbors are in good agreement with the energy spectral analysis of the time series of water surface elevations recorded at tide gauge stations inside three harbors during the six tsunamis events. The computed wave induced currents based on the present model are also in qualitative agreement with some of the reported eye-witness accounts absence of reliable current data. The simulated results show that each harbor responded differently and significantly amplified certain wave period(s) of incident wave trains according to the shape, topography, characteristic dimensions and water depth of the harbor basins.

  19. 33 CFR 110.40 - Silver Beach Harbor, North Falmouth, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Silver Beach Harbor, North Falmouth, Mass. 110.40 Section 110.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.40 Silver Beach Harbor, North...

  20. 33 CFR 110.40 - Silver Beach Harbor, North Falmouth, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Silver Beach Harbor, North Falmouth, Mass. 110.40 Section 110.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.40 Silver Beach Harbor, North...

  1. 33 CFR 110.40 - Silver Beach Harbor, North Falmouth, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Silver Beach Harbor, North Falmouth, Mass. 110.40 Section 110.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.40 Silver Beach Harbor, North...

  2. 33 CFR 110.40 - Silver Beach Harbor, North Falmouth, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Silver Beach Harbor, North Falmouth, Mass. 110.40 Section 110.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.40 Silver Beach Harbor, North...

  3. 33 CFR 110.40 - Silver Beach Harbor, North Falmouth, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Silver Beach Harbor, North Falmouth, Mass. 110.40 Section 110.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.40 Silver Beach Harbor, North...

  4. 16. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, LOOKING OUT AT MAIN CHANNEL ENTRANCE, WITH FORD ISLAND ON THE RIGHT. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  5. Payload design requirements analysis (study 2.2). Volume 3. Guideline analysis. [economic analysis of payloads for space shuttles and space tugs

    NASA Technical Reports Server (NTRS)

    Shiokari, T.

    1973-01-01

    Payloads to be launched on the space shuttle/space tug/sortie lab combinations are discussed. The payloads are of four types: (1) expendable, (2) ground refurbishable, (3) on-orbit maintainable, and (4) sortie. Economic comparisons are limited to the four types of payloads described. Additional system guidelines were developed by analyzing two payloads parameterically and demonstrating the results on an example satellite. In addition to analyzing the selected guidelines, emphasis was placed on providing economic tradeoff data and identifying payload parameters influencing the low cost approaches.

  6. 78 FR 18479 - Drawbridge Operation Regulations; Inner Harbor Navigation Canal, New Orleans, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... Operation Regulations; Inner Harbor Navigation Canal, New Orleans, LA AGENCY: Coast Guard, DHS. ACTION... across the Inner Harbor Navigation Canal, mile 4.6, at New Orleans, Louisiana. This deviation is... Seabrook Highway crossing the Inner Harbor Navigation Canal, mile 4.6, in New Orleans, Louisiana. The...

  7. Hydraulic modeling of stream channels and structures in Harbor and Crow Hollow Brooks, Meriden, Connecticut

    USGS Publications Warehouse

    Weiss, Lawrence A.; Sears, Michael P.; Cervione, Michael A.

    1994-01-01

    Effects of urbanization have increased the frequency and size of floods along certain reaches of Harbor Brook and Crow Hollow Brook in Meriden, Conn. A floodprofile-modeling study was conducted to model the effects of selected channel and structural modifications on flood elevations and inundated areas. The study covered the reach of Harbor Brook downstream from Interstate 691 and the reach of Crow Hollow Brook downstream from Johnson Avenue. Proposed modifications, which include changes to bank heights, channel geometry, structural geometry, and streambed armoring on Harbor Brook and changes to bank heights on Crow Hollow Brook, significantly lower flood elevations. Results of the modeling indicate a significant reduction of flood elevations for the 10-year, 25-year, 35-year, 50-year, and 100-year flood frequencies using proposed modifications to (1 ) bank heights between Harbor Brook Towers and Interstate 691 on Harbor Brook, and between Centennial Avenue and Johnson Avenue on Crow Hollow Brook; (2) channel geometry between Coe Avenue and Interstate 69 1 on Harbor Brook; (3) bridge and culvert opening geometry between Harbor Brook Towers and Interstate 691 on Harbor Brook; and (4) channel streambed armoring between Harbor Brook Towers and Interstate 691 on Harbor Brook. The proposed modifications were developed without consideration of cost-benefit ratios.

  8. 78 FR 63381 - Safety Zones; Hawaiian Island Commercial Harbors, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2013-0021] RIN 1625-AA00 Safety Zones; Hawaiian Island Commercial Harbors, HI AGENCY: Coast Guard, DHS. ACTION: Final rule... as follows: Sec. 165. 14-1414 Safety Zones; Hawaiian Islands Commercial Harbors; HI. (a) Location...

  9. 33 CFR 162.110 - Duluth-Superior Harbor, Minnesota and Wisconsin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Duluth-Superior Harbor, Minnesota and Wisconsin. 162.110 Section 162.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Duluth-Superior Harbor, Minnesota and Wisconsin. (a) No vessel greater than 100 feet in length may exceed...

  10. 33 CFR 162.110 - Duluth-Superior Harbor, Minnesota and Wisconsin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Duluth-Superior Harbor, Minnesota and Wisconsin. 162.110 Section 162.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Duluth-Superior Harbor, Minnesota and Wisconsin. (a) No vessel greater than 100 feet in length may exceed...

  11. 33 CFR 162.110 - Duluth-Superior Harbor, Minnesota and Wisconsin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Duluth-Superior Harbor, Minnesota and Wisconsin. 162.110 Section 162.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Duluth-Superior Harbor, Minnesota and Wisconsin. (a) No vessel greater than 100 feet in length may exceed...

  12. 33 CFR 162.110 - Duluth-Superior Harbor, Minnesota and Wisconsin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Duluth-Superior Harbor, Minnesota and Wisconsin. 162.110 Section 162.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Duluth-Superior Harbor, Minnesota and Wisconsin. (a) No vessel greater than 100 feet in length may exceed...

  13. 33 CFR 162.110 - Duluth-Superior Harbor, Minnesota and Wisconsin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Duluth-Superior Harbor, Minnesota and Wisconsin. 162.110 Section 162.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Duluth-Superior Harbor, Minnesota and Wisconsin. (a) No vessel greater than 100 feet in length may exceed...

  14. 33 CFR 110.77a - Duluth-Superior Harbor, Duluth, Minn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Duluth-Superior Harbor, Duluth, Minn. 110.77a Section 110.77a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77a Duluth-Superior Harbor, Duluth...

  15. 33 CFR 110.77a - Duluth-Superior Harbor, Duluth, Minn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Duluth-Superior Harbor, Duluth, Minn. 110.77a Section 110.77a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77a Duluth-Superior Harbor, Duluth...

  16. 33 CFR 110.77a - Duluth-Superior Harbor, Duluth, Minn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Duluth-Superior Harbor, Duluth, Minn. 110.77a Section 110.77a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77a Duluth-Superior Harbor, Duluth...

  17. 33 CFR 110.77a - Duluth-Superior Harbor, Duluth, Minn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Duluth-Superior Harbor, Duluth, Minn. 110.77a Section 110.77a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77a Duluth-Superior Harbor, Duluth...

  18. 33 CFR 110.77a - Duluth-Superior Harbor, Duluth, Minn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Duluth-Superior Harbor, Duluth, Minn. 110.77a Section 110.77a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77a Duluth-Superior Harbor, Duluth...

  19. 19. Photocopy of Blueprint (Original blueprint located in Grays Harbor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of Blueprint (Original blueprint located in Grays Harbor County Bridge File No. 4731/0.5 COAST BRIDGE COMPANY'S CONSTRUCTION BLUEPRINT OF 'FLOOR SYSTEM FOR 120' RIVETED SPAN' DATED JULY 1915 - West Wishkah Bridge, West Wishkah Road Spanning Wishkah River Middle Fork, Aberdeen, Grays Harbor County, WA

  20. 33 CFR 117.458 - Inner Harbor Navigation Canal, New Orleans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Inner Harbor Navigation Canal, New Orleans. 117.458 Section 117.458 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Harbor Navigation Canal, New Orleans. (a) The draws of the SR 46 (St. Claude Avenue) bridge, mile 0.5...

  1. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  2. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  3. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  4. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  5. 33 CFR 117.1083 - Duluth-Superior Harbor (St. Louis River).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Duluth-Superior Harbor (St. Louis River). 117.1083 Section 117.1083 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...-Superior Harbor (St. Louis River). (a) The draws of the Burlington Northern railroad bridge, mile 5.7 at...

  6. 33 CFR 117.661 - Duluth Ship Canal (Duluth-Superior Harbor).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Duluth Ship Canal (Duluth-Superior Harbor). 117.661 Section 117.661 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Ship Canal (Duluth-Superior Harbor). The draw of the Duluth Ship Canal Aerial bridge, mile 0.25 at...

  7. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  8. Boston Harbor National Park Service sites : alternative transportation systems evaluation report

    DOT National Transportation Integrated Search

    2001-06-01

    This project puts forth a forward looking water-based transportation plan which would serve four NPS units in and around Boston Harbor: Boston Harbor Islands National Recreation Area, Boston National Historical Park, Salem Maritime Historic Site, and...

  9. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., V.I. (a) The anchorage grounds—(1) Inner harbor anchorage. Beginning at a point bearing 85°, 525... shall also be used by vessels having drafts too great to permit them to use the inner harbor anchorage...

  10. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., V.I. (a) The anchorage grounds—(1) Inner harbor anchorage. Beginning at a point bearing 85°, 525... shall also be used by vessels having drafts too great to permit them to use the inner harbor anchorage...

  11. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., V.I. (a) The anchorage grounds—(1) Inner harbor anchorage. Beginning at a point bearing 85°, 525... shall also be used by vessels having drafts too great to permit them to use the inner harbor anchorage...

  12. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., V.I. (a) The anchorage grounds—(1) Inner harbor anchorage. Beginning at a point bearing 85°, 525... shall also be used by vessels having drafts too great to permit them to use the inner harbor anchorage...

  13. Underwater localization of pure tones by harbor seals (Phoca vitulina).

    PubMed

    Bodson, Anaïs; Miersch, Lars; Dehnhardt, Guido

    2007-10-01

    The underwater sound localization acuity of harbor seals (Phoca vitulina) was measured in the horizontal plane. Minimum audible angles (MAAs) of pure tones were determined as a function of frequency from 0.2 to 16 kHz for two seals. Testing was conducted in a 10-m-diam underwater half circle using a right/left psychophysical procedure. The results indicate that for both harbor seals, MAAs were large at high frequencies (13.5 degrees and 17.4 degrees at 16 kHz), transitional at intermediate frequencies (9.6 degrees and 10.1 degrees at 4 kHz), and particularly small at low frequencies (3.2 degrees and 3.1 degrees at 0.2 kHz). Harbor seals seem to be able to utilize both binaural cues, interaural time differences (ITDs) and interaural intensity differences (IIDs), but a significant decrease in the sound localization acuity with increasing frequency suggests that IID cues may not be as robust as ITD cues under water. These results suggest that the harbor seal can be regarded as a low-frequency specialist. Additionally, to obtain a MAA more representative of the species, the horizontal underwater MAA of six adult harbor seals was measured at 2 kHz under identical conditions. The MAAs of the six animals ranged from 8.8 degrees to 11.7 degrees , resulting in a mean MAA of 10.3 degrees .

  14. Genetics Home Reference: Floating-Harbor syndrome

    MedlinePlus

    ... Patton MA, Hurst J, Donnai D, McKeown CM, Cole T, Goodship J. Floating-Harbor syndrome. J Med ... medicine? What is newborn screening? New Pages Lyme disease Fibromyalgia White-Sutton syndrome All New & Updated Pages ...

  15. Search for Production of Single Top Quarks Via tcg and tug Flavor-Changing-Neutral-Current Couplings

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.; Aguilo, E.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.; Ancu, L. S.; Andeen, T.; Anderson, S.; Andrieu, B.; Anzelc, M. S.; Arnoud, Y.; Arov, M.; Askew, A.; Åsman, B.; Assis Jesus, A. C. S.; Atramentov, O.; Autermann, C.; Avila, C.; Ay, C.; Badaud, F.; Baden, A.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, P.; Banerjee, S.; Barberis, E.; Barfuss, A.-F.; Bargassa, P.; Baringer, P.; Barnes, C.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bauer, D.; Beale, S.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.; Bellantoni, L.; Bellavance, A.; Benitez, J. A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Berntzon, L.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Binder, M.; Biscarat, C.; Blackler, I.; Blazey, G.; Blekman, F.; Blessing, S.; Bloch, D.; Bloom, K.; Boehnlein, A.; Boline, D.; Bolton, T. A.; Boos, E. E.; Borissov, G.; Bos, K.; Bose, T.; Brandt, A.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burke, S.; Burnett, T. H.; Busato, E.; Buszello, C. P.; Butler, J. M.; Calfayan, P.; Calvet, S.; Cammin, J.; Caron, S.; Carvalho, W.; Casey, B. C. K.; Cason, N. M.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K.; Chan, K. M.; Chandra, A.; Charles, F.; Cheu, E.; Chevallier, F.; Cho, D. K.; Choi, S.; Choudhary, B.; Christofek, L.; Christoudias, T.; Claes, D.; Clément, B.; Clément, C.; Coadou, Y.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cox, B.; Crépé-Renaudin, S.; Cutts, D.; Ćwiok, M.; da Motta, H.; Das, A.; Davies, B.; Davies, G.; de, K.; de Jong, P.; de Jong, S. J.; de La Cruz-Burelo, E.; de Oliveira Martins, C.; Degenhardt, J. D.; Déliot, F.; Demarteau, M.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doidge, M.; Dominguez, A.; Dong, H.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duggan, D.; Duperrin, A.; Dyer, J.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Eno, S.; Ermolov, P.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Ferapontov, A. V.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Ford, M.; Fortner, M.; Fox, H.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Gallas, E.; Galyaev, E.; Garcia, C.; Garcia-Bellido, A.; Gavrilov, V.; Gay, P.; Geist, W.; Gelé, D.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Ginther, G.; Gollub, N.; Gómez, B.; Goussiou, A.; Grannis, P. D.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guo, F.; Guo, J.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.; Haefner, P.; Hagopian, S.; Haley, J.; Hall, I.; Hall, R. E.; Han, L.; Hanagaki, K.; Hansson, P.; Harder, K.; Harel, A.; Harrington, R.; Hauptman, J. M.; Hauser, R.; Hays, J.; Hebbeker, T.; Hedin, D.; Hegeman, J. G.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hensel, C.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoeth, H.; Hohlfeld, M.; Hong, S. J.; Hooper, R.; Houben, P.; Hu, Y.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jain, S.; Jakobs, K.; Jarvis, C.; Jenkins, A.; Jesik, R.; Johns, K.; Johnson, C.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Juste, A.; Käfer, D.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.; Kalk, J. M.; Kalk, J. R.; Kappler, S.; Karmanov, D.; Kasper, J.; Kasper, P.; Katsanos, I.; Kau, D.; Kaur, R.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. M.; Khatidze, D.; Kim, H.; Kim, T. J.; Kirby, M. H.; Klima, B.; Kohli, J. M.; Konrath, J.-P.; Kopal, M.; Korablev, V. M.; Kotcher, J.; Kothari, B.; Koubarovsky, A.; Kozelov, A. V.; Krop, D.; Kryemadhi, A.; Kuhl, T.; Kumar, A.; Kunori, S.; Kupco, A.; Kurča, T.; Kvita, J.; Lam, D.; Lammers, S.; Landsberg, G.; Lazoflores, J.; Lebrun, P.; Lee, W. M.; Leflat, A.; Lehner, F.; Lesne, V.; Leveque, J.; Lewis, P.; Li, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lima, J. G. R.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Z.; Lobo, L.; Lobodenko, A.; Lokajicek, M.; Lounis, A.; Love, P.; Lubatti, H. J.; Lynker, M.; Lyon, A. L.; Maciel, A. K. A.; Madaras, R. J.; Mättig, P.; Magass, C.; Magerkurth, A.; Makovec, N.; Mal, P. K.; Malbouisson, H. B.; Malik, S.; Malyshev, V. L.; Mao, H. S.; Maravin, Y.; Martin, B.; McCarthy, R.; Melnitchouk, A.; Mendes, A.; Mendoza, L.; Mercadante, P. G.; Merkin, M.; Merritt, K. W.; Meyer, A.; Meyer, J.; Michaut, M.; Miettinen, H.; Millet, T.; Mitrevski, J.; Molina, J.; Mommsen, R. K.; Mondal, N. K.; Monk, J.; Moore, R. W.; Moulik, T.; Muanza, G. S.; Mulders, M.; Mulhearn, M.; Mundal, O.; Mundim, L.; Nagy, E.; Naimuddin, M.; Narain, M.; Naumann, N. A.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nilsen, H.; Noeding, C.; Nomerotski, A.; Novaes, S. F.; Nunnemann, T.; O'Dell, V.; O'Neil, D. C.; Obrant, G.; Ochando, C.; Oguri, V.; Oliveira, N.; Onoprienko, D.; Oshima, N.; Osta, J.; Otec, R.; Otero Y Garzón, G. J.; Owen, M.; Padley, P.; Pangilinan, M.; Parashar, N.; Park, S.-J.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa, A.; Pawloski, G.; Perea, P. M.; Perfilov, M.; Peters, K.; Peters, Y.; Pétroff, P.; Petteni, M.; Piegaia, R.; Piper, J.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pogorelov, Y.; Pol, M.-E.; Pompoš, A.; Pope, B. G.; Popov, A. V.; Potter, C.; Prado da Silva, W. L.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Rani, K. J.; Ranjan, K.; Ratoff, P. N.; Renkel, P.; Reucroft, S.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Robinson, S.; Rodrigues, R. F.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santoro, A.; Savage, G.; Sawyer, L.; Scanlon, T.; Schaile, D.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schieferdecker, P.; Schmitt, C.; Schwanenberger, C.; Schwartzman, A.; Schwienhorst, R.; Sekaric, J.; Sengupta, S.; Severini, H.; Shabalina, E.; Shamim, M.; Shary, V.; Shchukin, A. A.; Shivpuri, R. K.; Shpakov, D.; Siccardi, V.; Sidwell, R. A.; Simak, V.; Sirotenko, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, R. P.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Sopczak, A.; Sosebee, M.; Soustruznik, K.; Souza, M.; Spurlock, B.; Stark, J.; Steele, J.; Stolin, V.; Stone, A.; Stoyanova, D. A.; Strandberg, J.; Strandberg, S.; Strang, M. A.; Strauss, M.; Ströhmer, R.; Strom, D.; Strovink, M.; Stutte, L.; Sumowidagdo, S.; Svoisky, P.; Sznajder, A.; Talby, M.; Tamburello, P.; Taylor, W.; Telford, P.; Temple, J.; Tiller, B.; Tissandier, F.; Titov, M.; Tokmenin, V. V.; Tomoto, M.; Toole, T.; Torchiani, I.; Trefzger, T.; Trincaz-Duvoid, S.; Tsybychev, D.; Tuchming, B.; Tully, C.; Tuts, P. M.; Unalan, R.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Vachon, B.; van den Berg, P. J.; van Eijk, B.; van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vartapetian, A.; Vasilyev, I. A.; Vaupel, M.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Villeneuve-Seguier, F.; Vint, P.; Vlimant, J.-R.; von Toerne, E.; Voutilainen, M.; Vreeswijk, M.; Wahl, H. D.; Wang, L.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weber, G.; Weber, M.; Weerts, H.; Wenger, A.; Wermes, N.; Wetstein, M.; White, A.; Wicke, D.; Wilson, G. W.; Wimpenny, S. J.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yacoob, S.; Yamada, R.; Yan, M.; Yasuda, T.; Yatsunenko, Y. A.; Yip, K.; Yoo, H. D.; Youn, S. W.; Yu, C.; Yu, J.; Yurkewicz, A.; Zatserklyaniy, A.; Zeitnitz, C.; Zhang, D.; Zhao, T.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.

    2007-11-01

    We search for the production of single top quarks via flavor-changing-neutral-current couplings of a gluon to the top quark and a charm (c) or up (u) quark. We analyze 230pb-1 of lepton+jets data from pp¯ collisions at a center of mass energy of 1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider. We observe no significant deviation from standard model predictions, and hence set upper limits on the anomalous coupling parameters κgc/Λ and κgu/Λ, where κg define the strength of tcg and tug couplings, and Λ defines the scale of new physics. The limits at 95% C.L. are κgc/Λ<0.15TeV-1 and κgu/Λ<0.037TeV-1.

  16. 33 CFR 117.661 - Duluth Ship Canal (Duluth-Superior Harbor).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Duluth Ship Canal (Duluth-Superior Harbor). 117.661 Section 117.661 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.661 Duluth Ship Canal (Duluth-Superior Harbor). The draw o...

  17. 33 CFR 117.753 - Ship Channel, Great Egg Harbor Bay.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Ship Channel, Great Egg Harbor... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.753 Ship Channel, Great Egg Harbor Bay. The draw of the S52 (Ship Channel) bridge, mile 0.5 between Somers Point and Ocean...

  18. 33 CFR 117.753 - Ship Channel, Great Egg Harbor Bay.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Ship Channel, Great Egg Harbor... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.753 Ship Channel, Great Egg Harbor Bay. The draw of the S52 (Ship Channel) bridge, mile 0.5 between Somers Point and Ocean...

  19. 33 CFR 334.870 - San Diego Harbor, Calif.; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false San Diego Harbor, Calif... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.870 San Diego Harbor... the Pacific Ocean in North San Diego Bay in an area extending from the western boundary of North...

  20. 33 CFR 334.870 - San Diego Harbor, Calif.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false San Diego Harbor, Calif... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.870 San Diego Harbor... the Pacific Ocean in North San Diego Bay in an area extending from the western boundary of North...

  1. 77 FR 19573 - Safety Zone; Wedding Fireworks Display, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ...-AA00 Safety Zone; Wedding Fireworks Display, Boston Inner Harbor, Boston, MA AGENCY: Coast Guard, DHS... zone on the navigable waters of the Boston Inner Harbor in the vicinity of Anthony's Pier 4, Boston, MA... Boston Inner Harbor in the vicinity of Anthony's Pier 4, Boston, MA. The Captain of the Port (COTP...

  2. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  3. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  4. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  5. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  6. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  7. APPLICATION OF EMAP METHODS AND INDICATORS TO THE NY/NJ HARBOR

    EPA Science Inventory

    The Comprehensive Conservation and Management Plan (CCMP) for the NY/NJ Harbor requires specific management actions to maintain and restore the Harbor environment. It also specifies that the progress of these management actions on the improvement of sediment quality and biologic...

  8. 33 CFR 117.753 - Ship Channel, Great Egg Harbor Bay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ship Channel, Great Egg Harbor Bay. 117.753 Section 117.753 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND..., Great Egg Harbor Bay. The draw of the S52 (Ship Channel) bridge, mile 0.5 between Somers Point and Ocean...

  9. 33 CFR 117.753 - Ship Channel, Great Egg Harbor Bay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Ship Channel, Great Egg Harbor Bay. 117.753 Section 117.753 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND..., Great Egg Harbor Bay. The draw of the S52 (Ship Channel) bridge, mile 0.5 between Somers Point and Ocean...

  10. 33 CFR 117.699 - Little Harbor.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.699 Little Harbor. The draw of the SR1B bridge, mile 1.0 between New Castle and Rye, shall open on signal from April 1 through October 31...

  11. 33 CFR 117.699 - Little Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.699 Little Harbor. The draw of the SR1B bridge, mile 1.0 between New Castle and Rye, shall open on signal from April 1 through October 31...

  12. 33 CFR 117.699 - Little Harbor.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.699 Little Harbor. The draw of the SR1B bridge, mile 1.0 between New Castle and Rye, shall open on signal from April 1 through October 31...

  13. 33 CFR 117.699 - Little Harbor.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.699 Little Harbor. The draw of the SR1B bridge, mile 1.0 between New Castle and Rye, shall open on signal from April 1 through October 31...

  14. 33 CFR 117.699 - Little Harbor.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.699 Little Harbor. The draw of the SR1B bridge, mile 1.0 between New Castle and Rye, shall open on signal from April 1 through October 31...

  15. Congress Investigates: Pearl Harbor and 9/11 Congressional Hearing Exhibits

    ERIC Educational Resources Information Center

    Blackerby, Christine

    2011-01-01

    On the morning of December 7, 1941, Japanese bombers staged a surprise attack on U.S. military forces at Pearl Harbor in Hawaii. Sixty years after the attack on Pearl Harbor, the United States was attacked again. On the morning of September 11, 2001, four commercial airplanes hijacked by 19 terrorists killed nearly 3,000 people when they crashed…

  16. Final Environmental Impact Statement on Debris Removal from Boston Harbor, Massachusetts. Revision.

    DTIC Science & Technology

    1980-05-01

    34Trace Metal Analysis of Boston Harbor Waters and Sediments", July 1972. Storey , D. A., "The Massachusetts Marina Boatyard Industry 1972-1973", Mass...is possible that a feasible re-use alternative will be identified during the final design stage of the project. If this happens, and the method of re...points. Coliform counts in the Outer Harbor routinely exceed the SB standard designated for that area. 2.27 In summary, the Harbor receives a heavy

  17. Comparative Analysis of Potential Auxiliary Icebreaking Devices/Systems for Great Lakes. Volume I.

    DTIC Science & Technology

    1981-06-01

    Archimedes Screw Vehicle Mechanical Impact Device Water Hull Lubrication Systems Low Friction Hull Coatings Stem Knives Bow Ramp A harbor tug with...direct mounting on ships but rather on bow attachments or specialized material handling concepts. Archimedes Screw Vehicle (Figure A-il) The Archimedes ...or pull ships through ice and water. The Archimedes screw works better in a soft pliable terrain than in water or on a hard material such as sheet

  18. mecC-Harboring Methicillin-Resistant Staphylococcus aureus: Hiding in Plain Sight.

    PubMed

    Ford, Bradley A

    2018-01-01

    Previously there was scant data on the performance of laboratory testing to detect mecC -mediated beta-lactam resistance in Staphylococcus aureus Kriegeskorte and colleagues (J Clin Microbiol 56:e00826-17, 2018, https://doi.org/10.1128/JCM.00826-17) report the performance of various clinical tests for the detection of mecC -harboring methicillin-resistant S. aureus (MRSA), which failed to identify from 0 to 41% of tested mecC -harboring MRSA isolates. Changes in practice and new test development are necessary to address the challenge of mecC -harboring MRSA. Copyright © 2017 American Society for Microbiology.

  19. 76 FR 37269 - Safety Zone; Charleston Sharkfest Swim, Charleston Harbor, Charleston, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ...-AA00 Safety Zone; Charleston Sharkfest Swim, Charleston Harbor, Charleston, SC AGENCY: Coast Guard, DHS... waters of Charleston Harbor, in Charleston, South Carolina during the Charleston Sharkfest Swim on Sunday, [[Page 37270

  20. Sedimentation and chronology of heavy metal pollution in Oslo harbor, Norway.

    PubMed

    Lepland, Aivo; Andersen, Thorbjørn J; Lepland, Aave; Arp, Hans Peter H; Alve, Elisabeth; Breedveld, Gijs D; Rindby, Anders

    2010-09-01

    Stratigraphic profiles of Cu, Cd and Hg in ten sediment cores from the Oslo harbor, Norway, combined with results of radiometric dating demonstrate that pollution by these metals peaked between 1940 and 1970. Dating results indicate that Hg discharges peaked between 1940 and 1950, Cd reached maximum ca. 1955-1960, and Cu has the highest concentration in sediment interval corresponding to ca. 1970. Geochemical profiles and maxima of Cu, Cd and Hg concentrations can be used as chronostratigraphic markers for sediment cores from the Oslo harbor. Acoustic backscatter and sediment core data indicate that propeller wash affects the seabed in the Oslo harbor. The propeller-induced turbulence causes erosion, and in places exposes and remobilizes contaminated sediments that accumulated in the harbor during previous decades. Such re-exposure of contaminated sediments could be detrimental to local ecosystems and offset remediation efforts, warranting further impact studies and potential mitigation strategies to prevent redistribution. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  2. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  3. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  4. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  5. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  6. Improvement of water quality at Dongbin Harbor with construction of an inland canal, Korea.

    PubMed

    Cho, Yong-Sik

    2014-01-01

    The behaviors of the water body of Dongbin Harbor located at Pohang City, Gyongpook Province, in Korea were numerically simulated in this study. A canal was planned to connect the harbor and the Hyeongsan River to improve water quality inside the harbor. The current system was first simulated by using a commercial program RMA2, with respect to both tidal currents and river flow. The progress inside the harbor from a supply of fresh water from the Hyeongsan River was then predicted by using RMA4. Both the present and future conditions (before and after construction of an inland canal) were taken into consideration in numerical simulations. It is concluded that the water quality inside the harbor can be improved considerably after construction of the canal.

  7. KSC volunteers help paint Baxley Manor as part of Days of Caring '99

    NASA Technical Reports Server (NTRS)

    1999-01-01

    KSC volunteers with Days of Caring '99 share tasks while getting ready to paint at Baxley Manor, an apartment building for senior citizens on Merritt Island. Coordinated by the KSC Community Relations Council, Days of Caring provides an opportunity for employees to volunteer their services in projects such as painting, planting flowers, reading to school children, and more. Organizations accepting volunteers include The Embers, Yellow Umbrella, Serene Harbor, Domestic Violence Program, the YMCA of Brevard County, and others.

  8. KSC volunteers help paint Baxley Manor as part of Days of Caring '99

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Volunteers for Days of Caring '99 set up the paint trays for painting at Baxley Manor, an apartment building for senior citizens on Merritt Island. Coordinated by the KSC Community Relations Council, Days of Caring provides an opportunity for employees to volunteer their services in projects such as painting, planting flowers, reading to school children, and more. Organizations accepting volunteers include The Embers, Yellow Umbrella, Serene Harbor, Domestic Violence Program, the YMCA of Brevard County, and others.

  9. KSC volunteers help paint Baxley Manor as part of Days of Caring '99

    NASA Technical Reports Server (NTRS)

    1999-01-01

    KSC volunteers for Days of Caring '99 unfold protective materials before getting ready to paint at Baxley Manor, an apartment building for senior citizens on Merritt Island. Coordinated by the KSC Community Relations Council, Days of Caring provides an opportunity for employees to volunteer their services in projects such as painting, planting flowers, reading to school children, and more. Organizations accepting volunteers include The Embers, Yellow Umbrella, Serene Harbor, Domestic Violence Program, the YMCA of Brevard County, and others.

  10. Search for production of single top quarks via tcg and tug flavor-changing-neutral-current couplings.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cox, B; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, B; Davies, G; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jenkins, A; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Monk, J; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Oguri, V; Oliveira, N; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Pompos, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Sidwell, R A; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, R P; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Trincaz-Duvoid, S; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; van Eijk, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vlimant, J-R; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G

    2007-11-09

    We search for the production of single top quarks via flavor-changing-neutral-current couplings of a gluon to the top quark and a charm (c) or up (u) quark. We analyze 230 pb{-1} of lepton+jets data from pp[over] collisions at a center of mass energy of 1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider. We observe no significant deviation from standard model predictions, and hence set upper limits on the anomalous coupling parameters kappa{g}{c}/Lambda and kappa{g}{u}/Lambda, where kappa{g} define the strength of tcg and tug couplings, and Lambda defines the scale of new physics. The limits at 95% C.L. are kappa{g}{c}/Lambda<0.15 TeV-1 and kappa{g}{u}/Lambda<0.037 TeV-1.

  11. 33 CFR 110.214 - Los Angeles and Long Beach harbors, California.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Angeles Harbor). A circular area with a radius of 400 yards (approximately 366 meters), centered in... 400 Transportation Corridor. (C) Outer Harbor: The western boundary of Commercial Anchorage B. (2... Thence along a line described as an arc, radius of 460 meters (approximately 1509 feet) centered on 33...

  12. 33 CFR 100.118 - Searsport Lobster Boat Races, Searsport Harbor, ME.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Searsport Lobster Boat Races, Searsport Harbor, ME. 100.118 Section 100.118 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Lobster Boat Races, Searsport Harbor, ME. (a) Regulated Area. The regulated area includes all waters of...

  13. Assessment of Modifications for Improving Navigation at Hilo Harbor, Hawaii

    DTIC Science & Technology

    2016-06-01

    ER D C/ CH L TR -1 6- 9 Coastal Inlets Research Program Assessment of Modifications for Improving Navigation at Hilo Harbor, Hawaii...at http://acwc.sdp.sirsi.net/client/default. Coastal Inlets Research Program ERDC/CHL TR-16-9 June 2016 Assessment of Modifications for Improving...validation with 2013–2014 field data ................................................. 86 4.5.3 Chile tsunami effect on Hilo Harbor

  14. Numerical study on transient harbor oscillations induced by successive solitary waves

    NASA Astrophysics Data System (ADS)

    Gao, Junliang; Ji, Chunyan; Liu, Yingyi; Ma, Xiaojian; Gaidai, Oleg

    2018-02-01

    Tsunamis are traveling waves which are characterized by long wavelengths and large amplitudes close to the shore. Due to the transformation of tsunamis, undular bores have been frequently observed in the coastal zone and can be viewed as a sequence of solitary waves with different wave heights and different separation distances among them. In this article, transient harbor oscillations induced by incident successive solitary waves are first investigated. The transient oscillations are simulated by a fully nonlinear Boussinesq model, FUNWAVE-TVD. The incident successive solitary waves include double solitary waves and triple solitary waves. This paper mainly focuses on the effects of different waveform parameters of the incident successive solitary waves on the relative wave energy distribution inside the harbor. These wave parameters include the incident wave height, the relative separation distance between adjacent crests, and the number of elementary solitary waves in the incident wave train. The relative separation distance between adjacent crests is defined as the ratio of the distance between adjacent crests in the incident wave train to the effective wavelength of the single solitary wave. Maximum oscillations inside the harbor excited by various incident waves are also discussed. For comparison, the transient oscillation excited by the single solitary wave is also considered. The harbor used in this paper is assumed to be long and narrow and has constant depth; the free surface movement inside the harbor is essentially one-dimensional. This study reveals that, for the given harbor and for the variation ranges of all the waveform parameters of the incident successive solitary waves studied in this paper, the larger incident wave heights and the smaller number of elementary solitary waves in the incident tsunami lead to a more uniform relative wave energy distribution inside the harbor. For the successive solitary waves, the larger relative separation distance

  15. 33 CFR 110.50b - Mystic Harbor, Groton and Stonington, Conn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Mystic Harbor, Groton and Stonington, Conn. 110.50b Section 110.50b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50b Mystic Harbor, Groton and...

  16. 33 CFR 110.50b - Mystic Harbor, Groton and Stonington, Conn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Mystic Harbor, Groton and Stonington, Conn. 110.50b Section 110.50b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50b Mystic Harbor, Groton and...

  17. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  18. 33 CFR 110.50b - Mystic Harbor, Groton and Stonington, Conn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Mystic Harbor, Groton and Stonington, Conn. 110.50b Section 110.50b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50b Mystic Harbor, Groton and...

  19. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  20. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  1. 33 CFR 110.50b - Mystic Harbor, Groton and Stonington, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mystic Harbor, Groton and Stonington, Conn. 110.50b Section 110.50b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50b Mystic Harbor, Groton and...

  2. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  3. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  4. 33 CFR 110.50b - Mystic Harbor, Groton and Stonington, Conn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Mystic Harbor, Groton and Stonington, Conn. 110.50b Section 110.50b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50b Mystic Harbor, Groton and...

  5. 33 CFR 100.113 - Provincetown Harbor Swim for Life, Provincetown, MA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Provincetown Harbor Swim for Life, Provincetown, MA. 100.113 Section 100.113 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... for Life, Provincetown, MA. (a) Regulated Area. All waters of Provincetown Harbor within 200 feet of...

  6. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  7. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  8. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  9. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  10. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  11. 33 CFR 209.155 - Expenditure of Federal funds for work shoreward of harbor lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... work shoreward of harbor lines. 209.155 Section 209.155 Navigation and Navigable Waters CORPS OF... Federal funds for work shoreward of harbor lines. (a) Section 5 of the River and Harbor Act of July 13, 1892 (27 Stat. 111; 33 U.S.C. 628), prohibits the expenditure of money appropriated for the improvement...

  12. 31 CFR 50.7 - Special Rules for Interim Guidance Safe Harbors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Special Rules for Interim Guidance Safe Harbors. 50.7 Section 50.7 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM General Provisions § 50.7 Special Rules for Interim Guidance Safe Harbors...

  13. 31 CFR 50.7 - Special Rules for Interim Guidance Safe Harbors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Special Rules for Interim Guidance Safe Harbors. 50.7 Section 50.7 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM General Provisions § 50.7 Special Rules for Interim Guidance Safe Harbors...

  14. 31 CFR 50.7 - Special Rules for Interim Guidance Safe Harbors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Special Rules for Interim Guidance Safe Harbors. 50.7 Section 50.7 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM General Provisions § 50.7 Special Rules for Interim Guidance Safe Harbors...

  15. 31 CFR 50.7 - Special Rules for Interim Guidance Safe Harbors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Special Rules for Interim Guidance Safe Harbors. 50.7 Section 50.7 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM General Provisions § 50.7 Special Rules for Interim Guidance Safe Harbors...

  16. 31 CFR 50.7 - Special Rules for Interim Guidance Safe Harbors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Special Rules for Interim Guidance Safe Harbors. 50.7 Section 50.7 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM General Provisions § 50.7 Special Rules for Interim Guidance Safe Harbors...

  17. 16 CFR 312.10 - Safe harbors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Safe harbors. 312.10 Section 312.10 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE..., issued by representatives of the marketing or online industries, or by other persons, that, after notice...

  18. 16 CFR 312.10 - Safe harbors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Safe harbors. 312.10 Section 312.10 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE..., issued by representatives of the marketing or online industries, or by other persons, that, after notice...

  19. 16 CFR 312.10 - Safe harbors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Safe harbors. 312.10 Section 312.10 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE..., issued by representatives of the marketing or online industries, or by other persons, that, after notice...

  20. KSC volunteers help paint Baxley Manor as part of Days of Caring '99

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A volunteer for Days of Caring '99 prepares a light fixture before painting the walls in the hallway at Baxley Manor, an apartment building for senior citizens on Merritt Island. Coordinated by the KSC Community Relations Council, Days of Caring provides an opportunity for employees to volunteer their services in projects such as painting, planting flowers, reading to school children, and more. Organizations accepting volunteers include The Embers, Yellow Umbrella, Serene Harbor, Domestic Violence Program, the YMCA of Brevard County, and others.

  1. Long Distance Movements and Disjunct Spatial Use of Harbor Seals (Phoca vitulina) in the Inland Waters of the Pacific Northwest

    PubMed Central

    Peterson, Sarah H.; Lance, Monique M.; Jeffries, Steven J.; Acevedo-Gutiérrez, Alejandro

    2012-01-01

    Background Worldwide, adult harbor seals (Phoca vitulina) typically limit their movements and activity to <50 km from their primary haul-out site. As a result, the ecological impact of harbor seals is viewed as limited to relatively small spatial scales. Harbor seals in the Pacific Northwest are believed to remain <30 km from their primary haul-out site, one of several contributing factors to the current stock designation. However, movement patterns within the region are not well understood because previous studies have used radio-telemetry, which has range limitations. Our objective was to use satellite-telemetry to determine the regional spatial scale of movements. Methodology/Principal Findings Satellite tags were deployed on 20 adult seals (n=16 males and 4 females) from two rocky reefs and a mudflat-bay during April–May 2007. Standard filtering algorithms were used to remove outliers, resulting in an average (± SD) of 693 (±377) locations per seal over 110 (±32) days. A particle filter was implemented to interpolate locations temporally and decrease erroneous locations on land. Minimum over-water distances were calculated between filtered locations and each seal's capture site to show movement of seals over time relative to their capture site, and we estimated utilization distributions from kernel density analysis to reflect spatial use. Eight males moved >100 km from their capture site at least once, two of which traveled round trip to and from the Pacific coast, a total distance >400 km. Disjunct spatial use patterns observed provide new insight into general harbor seal behavior. Conclusions/Significance Long-distance movements and disjunct spatial use of adult harbor seals have not been reported for the study region and are rare worldwide in such a large proportion of tagged individuals. Thus, the ecological influence of individual seals may reach farther than previously assumed. PMID:22723925

  2. 33 CFR 334.990 - Long Beach Harbor, Calif.; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Long Beach Harbor, Calif.; naval... Harbor, Calif.; naval restricted area. (a) The area. All the waters between the Navy mole and Terminal... for use by naval vessels. Permission for any person or vessel to enter the area must be obtained from...

  3. 33 CFR 334.990 - Long Beach Harbor, Calif.; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Long Beach Harbor, Calif.; naval... Harbor, Calif.; naval restricted area. (a) The area. All the waters between the Navy mole and Terminal... for use by naval vessels. Permission for any person or vessel to enter the area must be obtained from...

  4. 75 FR 52023 - Boston Harbor Islands National Recreation Area Advisory Council; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... DEPARTMENT OF THE INTERIOR National Park Service Boston Harbor Islands National Recreation Area..., Boston Harbor Islands National Recreation Area. ACTION: Notice of meeting. SUMMARY: Notice is hereby given that a meeting of the Boston Harbor Islands National Recreation Area Advisory Council will be held...

  5. A practical weighting function for harbor porpoise underwater sound level measurements.

    PubMed

    Terhune, John M

    2013-09-01

    Harbor porpoise (Phocoena phocoena) are subject to underwater noise disturbance from anthropogenic sources, especially shipping. The underwater audiograms of harbor porpoise were used to create a frequency weighting function, dBht(Phocoena phocoena), to permit estimation of the broadband perceived amplitudes of ambient and shipping noise. An equation was fit to the 0.02-20 kHz range of unmasked detection thresholds and normalizing to 0 dB at 20 kHz; dB = 46.4-35.6 log(kHz). The weighting function de-emphasizes the low frequency components of noise. Harbor porpoise hearing is less sensitive to low frequency shipping noise and, except at high amplitudes, estimating potential noise impacts using linear measurements will be misleading.

  6. Investigation of trends in flooding in the Tug Fork basin of Kentucky, Virginia, and West Virginia

    USGS Publications Warehouse

    Hirsch, Robert M.; Scott, Arthur G.; Wyant, Timothy

    1982-01-01

    Statistical analysis indicates that the average size of annual-flood peaks of the Tug Fork (Ky., Va., and W. Va.) has been increasing. However, additional statistical analysis does not indicate that the flood levels that were exceeded typically once or twice a year in the period 1947-79 are any more likely to be exceeded now than in 1947. Possible trends in streamchannel size also are investigated at three locations. No discernible trends in channel size are noted. Further statistical analysis of the trend in the size of annual-flood peaks shows that much of the annual variation is related to local rainfall and to the 'natural' hydrologic response in a relatively undisturbed subbasin. However, some statistical indication of trend persists after accounting for these natural factors, though it is of borderline statistical significance. Further study in the basin may relate flood magnitudes to both rainfall and to land use.

  7. The New Bedford Harbor Superfund site long-term monitoring program (1993-2009).

    PubMed

    Nelson, William G; Bergen, Barbara J

    2012-12-01

    New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a marine Superfund site in 1983 due to sediment contamination by polychlorinated biphenyls (PCBs). Based on risks to human health and the environment, the first two phases of the site cleanup involved dredging PCB-contaminated sediments from the harbor. Therefore, a long-term monitoring program (LTM) was developed to measure spatial and temporal chemical and biological changes in sediment, water, and biota to assess the effects and effectiveness of the remedial activities. A systematic, probabilistic sampling design was used to select sediment sampling stations. This unbiased design allowed the three segments of the harbor to be compared spatially and temporally to quantify changes resulting from dredging the contaminated sediments. Sediment was collected at each station, and chemical (e.g., PCBs and metals), physical (e.g., grain size), and biological (e.g., benthic community) measurements were conducted on all samples. This paper describes the overall NBH-LTM approach and the results from the five rounds of sample collections. There is a decreasing spatial gradient in sediment PCB concentrations from the northern boundary (upper harbor) to the southern boundary (outer harbor) of the site. Along this same transect, there is an increase in biological condition (e.g., benthic community diversity). Temporally, the contaminant and biological gradients have been maintained since the 1993 baseline collection; however, since the onset of full-scale remediation, PCB concentrations have decreased throughout the site, and one of the benthic community indices has shown significant improvement in the lower and outer harbor areas.

  8. Comparison of the larvicidal efficacies of moxidectin or a five-day regimen of fenbendazole in horses harboring cyathostomin populations resistant to the adulticidal dosage of fenbendazole.

    PubMed

    Reinemeyer, C R; Prado, J C; Nielsen, M K

    2015-11-30

    Despite widespread acknowledgement of cyathostomin resistance to adult icidal dosages of benzimidazole (BZD) anthelmintics, many strongyle control programs continue to feature regularly scheduled larvicidal treatment with fenbendazole (FBZ). However, no studies have been conducted to evaluate the efficacy of larvicidal regimens against encysted cyathostomins in a BZD-resistant (BZD-R) population. A masked, randomized, controlled clinical study was conducted with 18 juvenile horses harboring populations of cyathostomins that were considered BZD-R on the basis of fecal egg count reduction (FECR). Horses were blocked by prior history, ranked by egg counts, and allocated randomly to one of three treatment groups: 1--control, 2--FBZ >10mg/kg once daily for five consecutive days, or 3--moxidectin (MOX) >0.4 mg/kg once. Fecal samples were collected prior to treatment and seven and 14 days after the final dose of anthelmintic. On Days 18-20, complete replicates of horses were euthanatized and necropsied, and 1% aliquots of large intestinal contents were recovered for determination of complete worm counts. The cecum and ventral colon were weighed, and measured proportions of the respective organ walls were processed for quantitation and characterization of encysted cyathostomin populations. The five-day regimen of FBZ achieved 44.6% fecal egg count reduction, had 56.4% activity against luminal adults and larvae, and was 38.6% and 71.2% effective against encysted early third stage (EL3) and late third stage/ fourth stage (LL3/L4) cyathostomin larvae, respectively. In contrast, MOX provided 99.9% FECR, removed 99.8% of luminal stages, and exhibited 63.6% and 85.2% efficacy against EL3 and LL3/L4 mucosal cyathostomins, respectively. Although BZD-R was the most feasible explanation for the lower larvicidal efficacies of FBZ, mean larval counts of moxidectin-treated horses were not significantly different from controls or those treated with FBZ. The lack of significant

  9. Reducing Vulnerability of Ports and Harbors to Earthquake and Tsunami Hazards

    USGS Publications Warehouse

    Wood, Nathan J.; Good, James W.; Goodwin, Robert F.

    2002-01-01

    Recent scientific research suggests the Pacific Northwest could experience catastrophic earthquakes in the near future, both from distant and local sources, posing a significant threat to coastal communities. Damage could result from numerous earthquake-related hazards, such as severe ground shaking, soil liquefaction, landslides, land subsidence/uplift, and tsunami inundation. Because of their geographic location, ports and harbors are especially vulnerable to these hazards. Ports and harbors, however, are important components of many coastal communities, supporting numerous activities critical to the local and regional economy and possibly serving as vital post-event, response-recovery transportation links. A collaborative, multi-year initiative is underway to increase the resiliency of Pacific Northwest ports and harbors to earthquake and tsunami hazards, involving Oregon Sea Grant (OSG), Washington Sea Grant (WSG), the National Oceanic and Atmospheric Administration Coastal Services Center (CSC), and the U.S. Geological Survey Center for Science Policy (CSP). Specific products of this research, planning, and outreach initiative include a regional stakeholder issues and needs assessment, a community-based mitigation planning process, a Geographic Information System (GIS) — based vulnerability assessment methodology, an educational web-site and a regional data archive. This paper summarizes these efforts, including results of two pilot port-harbor community projects, one in Yaquina Bay, Oregon and the other in Sinclair Inlet, Washington. Finally, plans are outlined for outreach to other port and harbor communities in the Pacific Northwest and beyond, using "getting started" workshops and a web-based tutorial.

  10. 75 FR 26198 - Foreign-Trade Zone 152 - Burns Harbor, Indiana, Application for Reorganization under Alternative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 32-2010] Foreign-Trade Zone 152 - Burns... six sites in the Burns Harbor/Gary, Indiana area: Site 1: (533,288 sq. ft.) located at 201 Mississippi... of Indiana/Burns International Harbor, Burns Harbor (Porter County); Site 3: (330 acres) within the...

  11. 46 CFR 45.181 - Load line exemption requirements for the Burns Harbor and Milwaukee routes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Load line exemption requirements for the Burns Harbor... line exemption requirements for the Burns Harbor and Milwaukee routes. Barges operating on the Burns... addresses and telephone numbers); (3) Service route (Milwaukee and/or Burns Harbor); (4) Design type...

  12. 46 CFR 45.181 - Load line exemption requirements for the Burns Harbor and Milwaukee routes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Load line exemption requirements for the Burns Harbor... line exemption requirements for the Burns Harbor and Milwaukee routes. Barges operating on the Burns... addresses and telephone numbers); (3) Service route (Milwaukee and/or Burns Harbor); (4) Design type...

  13. 46 CFR 45.181 - Load line exemption requirements for the Burns Harbor and Milwaukee routes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Load line exemption requirements for the Burns Harbor... line exemption requirements for the Burns Harbor and Milwaukee routes. Barges operating on the Burns... addresses and telephone numbers); (3) Service route (Milwaukee and/or Burns Harbor); (4) Design type...

  14. 46 CFR 45.181 - Load line exemption requirements for the Burns Harbor and Milwaukee routes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Load line exemption requirements for the Burns Harbor... line exemption requirements for the Burns Harbor and Milwaukee routes. Barges operating on the Burns... addresses and telephone numbers); (3) Service route (Milwaukee and/or Burns Harbor); (4) Design type...

  15. 46 CFR 45.181 - Load line exemption requirements for the Burns Harbor and Milwaukee routes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Load line exemption requirements for the Burns Harbor... line exemption requirements for the Burns Harbor and Milwaukee routes. Barges operating on the Burns... (Milwaukee and/or Burns Harbor); (4) Design type (covered/uncovered hopper, deck, etc.); (5) External...

  16. Subsidence at the Fairport Harbor Water Level Gauge

    NASA Astrophysics Data System (ADS)

    Conner, D. A.

    2014-12-01

    SUBSIDENCE AT THE FAIRPORT HARBOR WATER LEVEL GAUGE I will provide information on methods being used to monitor Lake Erie water levels and earth movement at Fairport Harbor, Ohio. Glacial Isostatic Adjustment (GIA) is responsible for vertical movement throughout the Great Lakes region. Fairport Harbor is also experiencing vertical movement due to salt mining, so the nearby water level gauge operated by the National Oceanic and Atmospheric Administration (NOAA) is affected by both GIA and mining. NOAA's National Geodetic Survey (NGS) defines and maintains the National Spatial Reference System (NSRS). The NSRS includes a network of permanently marked points; a consistent, accurate, and up-to-date national shoreline; a network of Continuously Operating Reference Stations (CORS) which supports three-dimensional positioning activities; and a set of accurate models describing dynamic, geophysical processes that affect spatial measurements. The NSRS provides the spatial reference foundation for transportation, mapping, charting and a multitude of scientific and engineering applications. Fundamental elements of geodetic infrastructure include GPS CORS (3-D), water level and tide gauges (height) and a system of vertical bench marks (height). When two or more of these elements converge they may provide an independent determination of position and vertical stability as is the case here at the Fairport Harbor water level gauge. Analysis of GPS, leveling and water level data reveal that this gauge is subsiding at about 2-3 mm/year, independent of the effects of GIA. Analysis of data from the nearby OHLA GPS CORS shows it subsiding at about 4 mm/yr, four times faster than expected due to GIA alone. A long history of salt mine activity in the area is known to geologists but it came as a surprise to other scientists.

  17. 78 FR 58882 - Safety Zone; Chelsea River, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ...-AA00 Safety Zone; Chelsea River, Boston Inner Harbor, Boston, MA AGENCY: Coast Guard, DHS. ACTION...: Chelsea River, Boston Inner Harbor, Boston, MA. Since the implementation of the regulation, physical... Chelsea, MA and East Boston, MA. Several petroleum-product transfer facilities are located on the Chelsea...

  18. Comparison of benthos and plankton for Waukegan Harbor Area of Concern, Illinois, and Burns Harbor-Port of Indiana non-Area of Concern, Indiana, in 2015

    USGS Publications Warehouse

    Eikenberry, Barbara C. Scudder; Olds, Hayley T.; Burns, Daniel J.; Dobrowolski, Edward G.; Schmude, Kurt L.

    2017-06-06

    During two seasonal sampling events in spring (June) and fall (August) of 2015, the U.S. Geological Survey collected benthos (benthic invertebrates) and plankton (zooplankton and phytoplankton) at three sites each in the Waukegan Harbor Area of Concern (AOC) in Illinois and in Burns Harbor-Port of Indiana, a non-AOC comparison site in Indiana. The study was done in cooperation with the U.S. Environmental Protection Agency and the Illinois Department of Natural Resources. Samples were collected concurrently for physical and chemical parameters (specific conductance, temperature, pH, dissolved oxygen, chlorophyll-a, total and volatile suspended solids in water samples; particle size and volatile-on-ignition solids of sediment in dredge samples). The purpose of the study was to assess whether or not aquatic communities at the AOC were degraded in comparison to communities at the non-AOC, which was presumed to be less impaired than the AOC. Benthos were collected by using Hester-Dendy artificial substrate samplers and a Ponar® dredge sampler to collect composited grabs of bottom sediment; zooplankton were collected by using tows from depth to the surface with a 63-micrometer mesh plankton net; phytoplankton were collected by using whole water samples composited from set depth intervals. Aquatic communities at the AOC and the non-AOC were compared by use of univariate statistical analyses with metrics such as taxa richness (number of unique taxa), diversity, and a multimetric Index of Biotic Integrity (IBI, for artificial-substrate samples only) as well as by use of multivariate statistical analyses of taxa relative abundances.Although benthos communities at Waukegan Harbor AOC were not rated as degraded in comparison to the non-AOC, metrics for zooplankton and phytoplankton communities did show some impairment for the 2015 sampling. Across seasons, benthos richness and diversity were significantly higher and rated as less degraded at the AOC compared to the non

  19. KSC volunteers help Meals on Wheels as part of Days of Caring '99

    NASA Technical Reports Server (NTRS)

    1999-01-01

    KSC volunteers at Miracle City Mall, Titusville, help unload containers for Meals on Wheels delivery as part of their '99 Days of Caring participation. The volunteers will also help deliver the meals. Coordinated by the KSC Community Relations Council, Days of Caring provides an opportunity for employees to volunteer their services in projects such as painting, planting flowers, reading to school children, and more. Organizations accepting volunteers include The Embers, Yellow Umbrella, Serene Harbor, Domestic Violence Program, the YMCA of Brevard County, and others.

  20. Dual-Task Performance: Influence of Frailty, Level of Physical Activity, and Cognition.

    PubMed

    Giusti Rossi, Paulo; Pires de Andrade, Larissa; Hotta Ansai, Juliana; Silva Farche, Ana Claudia; Carnaz, Leticia; Dalpubel, Daniela; Ferriolli, Eduardo; Assis Carvalho Vale, Francisco; de Medeiros Takahashi, Anielle Cristhine

    2018-03-08

    Cognition and level of physical activity have been associated with frailty syndrome. The development of tools that assess deficits related to physical and cognitive frailties simultaneously are of common interest. However, little is known about how much these aspects influence the performance of dual-task tests. Our aims were (a) to verify the influence of frailty syndrome and objectively measured physical activity and cognition on the Timed Up and Go (TUG) test and Timed Up and Go associated with dual-task (TUG-DT) performances; and (b) to compare TUG and TUG-DT performances between older adults who develop frailty syndrome. Sixty-four community-dwelling older adults were divided into frail, prefrail, and nonfrail groups, according to frailty phenotype. Assessments included anamnesis, screening of frailty syndrome, cognitive assessment (Addenbrooke's cognitive examination), placement of a triaxial accelerometer to assess level of physical activity, and TUG and TUG-DT (TUG associated with a motor-cognitive task of calling a phone number) performances. After 7 days, the accelerometer was removed. A multiple linear regression was applied to identify which independent variables could explain performances in the TUG and TUG-DT. Subsequently, the analysis of covariance test, adjusted for age, cognition, and level of physical activity covariates, was used to compare test performances. There were no differences in cognition between groups. Significant differences in the level of physical activity were found in the frail group. Compared with the frail group, the nonfrail group required less time and fewer steps to complete the TUG. Regarding the TUG-DT, cognition and age influenced the time spent and number of steps, respectively; however, no differences were found between groups. Frail older adults presented worse performance in the TUG when compared with nonfrail older adults. The dual-task test does not differentiate older adults with frailty syndrome, regardless of

  1. Better functional mobility in community-dwelling elderly is related to D-hormone serum levels and to daily calcium intake.

    PubMed

    Dukas, L; Staehelin, H B; Schacht, E; Bischoff, H A

    2005-01-01

    The influence of calcitropic hormones on functional mobility has been studied in vitamin D (calcidiol) deficient elderly or elderly with a history of falls, however, data in community-dwelling independent vitamin D replete elderly are missing. We therefore assessed in an observational survey the association of calcidiol (25(OH)D3) and calcitriol (D-hormone / 1,25(OH)2D3) status as well as of daily calcium intake on functional mobility in older subjects We evaluated 192 women and 188 men, aged superior 70 years and living independently. Average Timed-up and go test (TUG-test) in seconds was taken as measure of functional mobility. Calcidiol and D-hormone serum concentrations and daily calcium intake were studied in multivariate controlled linear regression models with TUG-test performance as the dependent variable and/or as dichotomous variables (deficient vs. non-deficient, above vs. below the median, respectively). Subjects with low D-hormone serum concentrations took significantly more time to perform the TUG-test (low = 7.70s +/- 2.52 SD ; high = 6.70s +/- 1.29 SD; p = 0.004). In the linear multivariate controlled regression model increased D-hormone serum concentrations predicted better TUG-test performance (estimate -0.0007, p = 0.044). Participants with a calcium intake of > or =512 mg/day were significantly faster to perform the TUG-test than participants with a daily calcium intake of <512 mg/day (estimate:-0.43, p = 0.007). Other significant predictors of better TUG-test performance in both models were: male gender, less comorbid conditions, younger age, lower BMI, iPTH serum levels and creatinine clearance. Calcidiol serum levels were not associated with TUG-test performance. Higher D-hormone status and a calcium intake of > or =512 mg/day in community-dwelling independent older persons are significant determinants of better functional mobility. Therefore, to ensure optimal functional mobility, the care of older persons should address correction of D

  2. 31 CFR 212.10 - Safe harbor.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PAYMENTS § 212.10 Safe harbor. (a) Protection during examination and pending review. A financial... if the United States or a State child support enforcement agency has attached or included a Notice of Right to Garnish Federal Benefits, as set forth in § 212.4; or (2) The time between the financial...

  3. 31 CFR 212.10 - Safe harbor.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PAYMENTS § 212.10 Safe harbor. (a) Protection during examination and pending review. A financial... if the United States or a State child support enforcement agency has attached or included a Notice of Right to Garnish Federal Benefits, as set forth in § 212.4; or (2) The time between the financial...

  4. 31 CFR 212.10 - Safe harbor.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PAYMENTS § 212.10 Safe harbor. (a) Protection during examination and pending review. A financial... if the United States or a State child support enforcement agency has attached or included a Notice of Right to Garnish Federal Benefits, as set forth in § 212.4; or (2) The time between the financial...

  5. 31 CFR 212.10 - Safe harbor.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PAYMENTS § 212.10 Safe harbor. (a) Protection during examination and pending review. A financial... if the United States or a State child support enforcement agency has attached or included a Notice of Right to Garnish Federal Benefits, as set forth in § 212.4; or (2) The time between the financial...

  6. 78 FR 48085 - Safety Zones; Chelsea River, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ...-AA00 Safety Zones; Chelsea River, Boston Inner Harbor, Boston, MA AGENCY: Coast Guard, DHS. ACTION... for the Chelsea River, Boston Inner Harbor, Boston, MA. Since the implementation of the regulation... spanned the Chelsea River providing a means for vehicles to travel between Chelsea, MA and East Boston, MA...

  7. A geochemical and sedimentological perspective of the life cycle of Neapolis harbor (Naples, southern Italy)

    NASA Astrophysics Data System (ADS)

    Delile, H.; Goiran, J.-P.; Blichert-Toft, J.; Arnaud-Godet, F.; Romano, P.; Bravard, J.-P.

    2016-10-01

    Since the discovery of the ancient harbor of Naples in 2004 during construction work on an underground railway, geoarchaeological studies undertaken on the archaeological excavation have revealed the main stratigraphic and paleo-environmental levels of the harbor site near the Piazza Municipio. However, knowledge of the dynamics and paleo-environmental changes in the water column of the harbor, as well as the processes of transport and deposition of sediments that led to siltation and infilling of the harbor basin, has been lacking due to the absence of high-resolution data. To fill these gaps, we have undertaken a three-dimensional study (longitudinal, transverse and vertical) of the harbor deposits by carrying out geochemical and sedimentological analyses of four stratigraphic sections of the archaeological excavation. The results show that after a phase of relative calm during the first half of the 1st c. AD, siltation of the harbor progressed exponentially up to the 5th c. AD, when dredging operations were carried out to obtain a water level sufficient for the development of maritime and harbor activities. We attribute this acceleration of siltation to a combination of climatic, anthropic and volcanic factors. Volcanic activity was responsible for a high-energy, tsunami-type event during the eruption of Vesuvius in 79 AD. From the 5th c. AD onwards, the harbor basin of Neapolis does not appear to have been functional as evidenced by its transformation into a lagoon following coastal progradation. The last stage of infilling was the development of a flood-dominated fan delta under the combined influences of climatic cooling in the Early Medieval Cool Period and agro-pastoral activities in the catchment area of the harbor. Several generations of paleo-channels, containing flash flood deposits, as well as sheet wash from sheet floods, are indicative of high environmental instability in this period.

  8. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...

  9. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...

  10. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...

  11. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...

  12. Toxic elements and organochlorines in harbor seals (Phoca vitulina richardsi), Kodiak, Alaska, USA

    USGS Publications Warehouse

    Miles, A.K.; Calkins, D.G.; Coon, N.C.

    1992-01-01

    Marine and estuarine habitats near urban or industrialized regions are vulnerable to contaminated runoff. Harbor seals (Phoca vitulina richardsi), which occur throughout much of the northern hemisphere, are useful mammalian biomonitors because they feed, reproduce, and rest near or on shore and are high-level trophic consumers. They have often been monitored for contaminants in Europe (Wagemann and Muir 1984). To date, no studies have been reported on contaminants in harbor seals from industrialized areas of Alaska. In the vicinity of Anchorage, Alaska's largest urban and industrial city, harbor seals are sedentary and limited to coastal waters; some movements have been documented but there is no evidence of extensive migrations. Although some harbor seals in the Kodiak Archipelago move up to 100 km along the shore, strong fidelity to specific haulout sites is more common (Pitcher and Calkins 1979). These seals eat mainly non-migratory fishes and octopi. Harbor seal numbers have declined substantially from unknown causes in the southern part of the Kodiak Archipelago. The Alaska Department of Fish and Game (ADF&G) suggested that the decline is a trend for the entire Kodiak region and other Alaskan waters. Contaminants have been suggested as a possible reason for the precipitous decline of Steller sea lions (Eumetopias jubatus) in the region (Braham et al. 1980), and were suspected in the decline of harbor seals. In this study, harbor seals were sampled from throughout the Kodiak Archipelago to determine concentrations of certain metals, metalloids, polychlorinated biphenyls (PCBs), and organochlorine pesticides, and to determine if these concentrations varied by sex or accumulated with age. All seals were collected within 75 km of Cook Inlet, an estuary next to Anchorage. The targeted elements or compounds were known to be toxic to a wide spectrum of organisms (e.g., MARC 1980; Eisler 1986).

  13. New Bedford Harbor Long Term Monitoring Program

    EPA Science Inventory

    New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a Superfund site in 1983 due to unacceptably high levels of sediment contamination by polychlorinated biphenyls (PCBs). Based on human health and environmental concerns, the decision was made to d...

  14. 33 CFR 110.31 - Hull Bay and Allerton Harbor at Hull, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Hull Bay and Allerton Harbor at Hull, Mass. 110.31 Section 110.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.31 Hull Bay and Allerton Harbor at...

  15. 33 CFR 110.31 - Hull Bay and Allerton Harbor at Hull, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hull Bay and Allerton Harbor at Hull, Mass. 110.31 Section 110.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.31 Hull Bay and Allerton Harbor at...

  16. 33 CFR 207.580 - Buffalo Harbor, N.Y.; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Buffalo Harbor, N.Y.; use, administration, and navigation. 207.580 Section 207.580 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.580 Buffalo Harbor, N.Y.; use...

  17. 75 FR 42069 - Expansion of Foreign-Trade Zone 152, Burns Harbor, Indiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1695] Expansion of Foreign-Trade Zone 152, Burns Harbor, Indiana Pursuant to its authority under the Foreign-Trade Zones (FTZ) Act of June... application to the Board for authority to expand FTZ 152 in the Burns Harbor, Indiana, area, within the...

  18. Developing a Passive Acoustic Monitoring Network for Harbor Porpoise in California

    NASA Astrophysics Data System (ADS)

    Jacobson, Eiren Kate

    Assessing the abundance of and trends in whale, dolphin, and porpoise (cetacean) populations using traditional visual methods can be challenging due primarily to their limited availability at the surface of the ocean. As a result, researchers are increasingly interested in incorporating non-visual and remote observations to improve cetacean population assessments. Passive acoustic monitoring (PAM) can complement or replace visual surveys for cetaceans that produce echolocation clicks, whistles, and other vocalizations. My doctoral dissertation is focused on developing methods to improve PAM of cetaceans. I used the Monterey Bay population of harbor porpoise (Phocoena phocoena ) as a case study for methods development. In Chapter 2, I used passive acoustic data to document that harbor porpoises avoid bottlenose dolphins (Tursiops truncatus) in nearshore Monterey Bay. In Chapter 3, I investigated whether different passive acoustic instruments could be used to monitor harbor porpoise. I recorded harbor porpoise echolocation clicks simultaneously on two different passive acoustic instruments and compared the number and peak frequency of echolocation signals recorded on the two instruments. I found that the number of echolocation clicks was highly correlated between instruments but that the peak frequency of echolocation clicks was not well-correlated, suggesting that some instruments may not be capable of discriminating harbor porpoise echolocation clicks in regions where multiple species with similar echolocation signals are present. In Chapter 4, I used paired visual and passive acoustic surveys to estimate the effective detection area of the passive acoustic sensors in a Bayesian framework. This approach resulted in a posterior distribution of the effective detection area that was consistent with previously published values. In Chapter 5, I used aerial survey and passive acoustic data in a simulation framework to investigate the statistical power of different

  19. ENVIRONMENTAL MONITORING OF REMEDIAL DREDGING AT THE NEW BEDFORD HARBOR, MA, SUPERFUND SITE

    EPA Science Inventory

    New Bedford Harbor (NBH), MA, is a Superfund site due to high sediment polychlorinated biphenyl (PCB) concentrations. An initial remedial dredging operation removed the most contaminated sediments from the upper harbor ("Hot Spot"). During remediation, a monitoring program assess...

  20. 76 FR 37641 - Safety Zone; Independence Day Fireworks Celebration for the City of Half Moon Bay, Half Moon Bay, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ...-AA00 Safety Zone; Independence Day Fireworks Celebration for the City of Half Moon Bay, Half Moon Bay... temporary safety zone in the navigable waters of Half Moon Bay, off of Pillar Point Harbor beach, Half Moon Bay, CA in support of the Independence Day Fireworks Celebration for the City of Half Moon Bay...