Sample records for harbor pier daikibo

  1. 33 CFR 334.1050 - Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1050 Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. (a...

  2. 33 CFR 334.1050 - Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1050 Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. (a...

  3. 33 CFR 334.1050 - Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1050 Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. (a...

  4. 33 CFR 334.1050 - Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1050 Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. (a...

  5. 33 CFR 334.1050 - Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1050 Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. (a...

  6. Detail of pier structure and wood fenders of Facility No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of pier structure and wood fenders of Facility No. B-1, showing floats in foreground and bollards on pier, view facing east - U.S. Naval Base, Pearl Harbor, South Quay Wall & Repair Wharf, L-shaped portion of quay walls starting at east side of mouth of Dry Dock No. 1, continuing along ocean side of Sixth Street, adjacent to Pier B-2, Pearl City, Honolulu County, HI

  7. 27. A VIEW TOWARD THE FISHING PIER AT THE EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. A VIEW TOWARD THE FISHING PIER AT THE EAST END OF THE NORTH TRAINING WALL, SHOWING SIDE WALL CONSTRUCTION. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  8. 77 FR 19573 - Safety Zone; Wedding Fireworks Display, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ...-AA00 Safety Zone; Wedding Fireworks Display, Boston Inner Harbor, Boston, MA AGENCY: Coast Guard, DHS... zone on the navigable waters of the Boston Inner Harbor in the vicinity of Anthony's Pier 4, Boston, MA... Boston Inner Harbor in the vicinity of Anthony's Pier 4, Boston, MA. The Captain of the Port (COTP...

  9. 33 CFR 165.111 - Safety Zone: Boston Harbor, Boston, Massachusetts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Boston Harbor from the time such vessels depart their respective berths until the time they complete... the face of both piers to the landside points where both piers end. (3) Around the U.S.S. Constitution...

  10. Overview of Shipyard coast line with Piers G1, G2, G3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of Shipyard coast line with Piers G-1, G-2, G-3, G-4, and G-5 in view, view facing east-southeast - U.S. Naval Base, Pearl Harbor, Pier & Quay Walls, Entrance to Dry Dock No. 2 & Repair Wharfs, east & west sides of Dry Dock No. 2 & west side of Dry Dock No. 3, Pearl City, Honolulu County, HI

  11. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Moss Landing Harbor, CA. 80.1136... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from the seaward extremity of the pier located 0.3 mile south of Moss Landing Harbor Entrance to the...

  12. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Moss Landing Harbor, CA. 80.1136... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from the seaward extremity of the pier located 0.3 mile south of Moss Landing Harbor Entrance to the...

  13. 33 CFR 110.214 - Los Angeles and Long Beach harbors, California.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following locations: (A) Inner Harbor: The Henry Ford (Badger Avenue) Bridge. (B) Middle Harbor: The Pier... will be given, but not necessarily limited to: the current and anticipated demands for anchorage space...

  14. 33 CFR 110.214 - Los Angeles and Long Beach harbors, California.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following locations: (A) Inner Harbor: The Henry Ford (Badger Avenue) Bridge. (B) Middle Harbor: The Pier... will be given, but not necessarily limited to: the current and anticipated demands for anchorage space...

  15. 78 FR 42016 - Safety Zone; Discovery World Fireworks, Milwaukee Harbor, Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ...-AA00 Safety Zone; Discovery World Fireworks, Milwaukee Harbor, Milwaukee, WI AGENCY: Coast Guard, DHS... Milwaukee Harbor due to 4 fireworks displays at Discovery World Pier. This safety zone is necessary to... entitled, ``Safety Zone; Discovery World Fireworks, Milwaukee Harbor, Milwaukee, Wisconsin'' in the Federal...

  16. 78 FR 29086 - Safety Zone; Discovery World Fireworks, Milwaukee Harbor, Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... [Docket No. USCG-2013-0326] RIN 1625-AA00 Safety Zone; Discovery World Fireworks, Milwaukee Harbor... World Pier. This proposed safety zone is necessary to protect the surrounding public and vessels from... Discovery World Pier. The Captain of the Port, Lake Michigan, has determined that the likelihood of...

  17. 78 FR 49121 - Safety Zone; Luna Pier Fireworks, Luna Pier, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... Zone; Luna Pier Fireworks, Luna Pier, MI AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone for the Luna Pier Fireworks Show, Luna Pier... the fireworks launch site at the Clyde E. Evens Municipal Pier, located at position 41[deg]48'32'' N...

  18. 33 CFR 110.115 - Santa Barbara Harbor, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; excluding a fairway 225 feet wide, 100 feet from each side of and parallel to the Navy pier. Note: Fore and.... 2106 for yachts and small craft of such size and alignment as permitted by the harbor master. ...

  19. 33 CFR 110.115 - Santa Barbara Harbor, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; excluding a fairway 225 feet wide, 100 feet from each side of and parallel to the Navy pier. Note: Fore and.... 2106 for yachts and small craft of such size and alignment as permitted by the harbor master. ...

  20. PIER 2. View is to the northeast, looking from Pier ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PIER 2. View is to the northeast, looking from Pier 1 toward Pier 2 from beneath completed bridge - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  1. Charleston Harbor Deepening Project. Charleston Harbor and Shipyard River, South Carolina.

    DTIC Science & Technology

    1976-04-01

    between the two basins to 250 feet; enlargement of the 0 anchorage basin near the harbor mouth by deepening to a depth of 40 feet and by extending the...and 0 Wando River; and the relocating of channels near terminals to provide 125-foot clearance between piers and the edge of the channel. * 0 0...materials; localized adverse effects on plankton and primary productivity; minor losses of larval and juvenile fishes near the dredge and disposal areas

  2. 28. GRAIN TERMINAL/COLUMBIA STREET PIER/ALTERATIONS AND REPAIRS TO PIER SHED: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. GRAIN TERMINAL/COLUMBIA STREET PIER/ALTERATIONS AND REPAIRS TO PIER SHED: WARM AREA - PLAN AND RETAILS (Drawing 2 of 7) - New York Barge Canal, Gowanus Bay Terminal Pier, East of bulkhead supporting Columbia Street, Brooklyn, Kings County, NY

  3. 33 CFR 165.119 - Safety Zone; Captain of the Port Boston Fireworks display zones, Boston Harbor, Boston, MA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Boston Fireworks display zones, Boston Harbor, Boston, MA. 165.119 Section 165.119 Navigation and... zones, Boston Harbor, Boston, MA. (a) Boston Inner Harbor. The following areas are designated as safety...°02′36.5″ W (NAD 1983), located off of Long Wharf, Boston MA. (3) Fan Pier Safety Zone. All U.S...

  4. 5. VIEW OF CENTER PIER AND ADJACENT STRUCTURE, SHOWING PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF CENTER PIER AND ADJACENT STRUCTURE, SHOWING PIER STONE MASONRY AND LOWER PIN CONNECTIONS, LOOKING SOUTH - Emlenton Bridge, Spanning Allegheny River, Travel Route 38 (Legislative Route 75), Emlenton, Venango County, PA

  5. MOVING SHAFT FORMS FROM PIER #2 TO PIER #1. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MOVING SHAFT FORMS FROM PIER #2 TO PIER #1. View is to the northeast, with shaft forms being moved by highline - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  6. Observed and Predicted Pier Scour in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Lombard, Pamela J.

    2002-01-01

    Pier-scour and related data were collected and analyzed for nine high river flows at eight bridges across Maine from 1997 through 2001. Six bridges had multiple piers. Fifteen of 23 piers where data were measured during a high flow had observed maximum scour depths ranging from 0.5 feet (ft) to 12.0 ft. No pier scour was observed at the remaining eight piers. The maximum predicted pier-scour depths associated with the 23 piers were computed using the equations in the Federal Highway Administration's Hydraulic Engineering Circular number 18 (HEC-18), with data collected for this study. The predicted HEC-18 maximum pier-scour depths were compared to the observed maximum pier-scour depths. The HEC-18 pier-scour equations are intended to be envelope equations, ideally never underpredicting scour depths and not appreciably overpredicting them. The HEC-18 pier-scour equations performed well for rivers in Maine. Twenty-two out of 23 pier-scour depths were overpredicted by 0.7 ft to 18.3 ft. One pier-scour depth was underpredicted by 4.5 ft. For one pier at each of two bridges, large amounts of debris lodged on the piers after high-flow measurements were made at those sites. The scour associated with the debris increased the maximum pier-scour depths by about 5 ft in each case.

  7. Detail of wharf A timber framing, showing piers and pier ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of wharf A timber framing, showing piers and pier caps or plates stepping down for a sloped launching deck, now built-up for a flat deck, interior of sheet steel bulkhead is visible at wharf edge - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  8. 24 CFR 3285.307 - Perimeter support piers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... support piers. (a) Piers required at mate-line supports, perimeter piers, and piers at exterior wall openings are permitted to be constructed of single open-cell or closed-cell concrete blocks, with nominal...

  9. Mitigation of Shore Damage Attributed to the Federal Navigation Structures at Ludington Harbor, Michigan.

    DTIC Science & Technology

    1975-12-01

    In Block 20, If different from Report) IS. SUPPLEMENTARY NOTES 19. KEY WORDS (Continu, on reverse aide If necesary and Identify by block number) 20...AST’R ACT (Cndbie m reverse ohb N n..e~ww and ideti fy by block number) DD JA 473 EDITION OF I NOV GS 15 OBSOLETE 4~ -i ~SECURITY CLASSIFICATION OF...and Harbor Act of 1867 provided Federal assistance for improving the harbor and channel. Revetments and channel piers were constructed under this Act

  10. A pier-scour database: 2,427 field and laboratory measurements of pier scour

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andral W.

    2014-01-01

    The U.S. Geological Survey conducted a literature review to identify potential sources of published pier-scour data, and selected data were compiled into a digital spreadsheet called the 2014 USGS Pier-Scour Database (PSDb-2014) consisting of 569 laboratory and 1,858 field measurements. These data encompass a wide range of laboratory and field conditions and represent field data from 23 States within the United States and from 6 other countries. The digital spreadsheet is available on the Internet and offers a valuable resource to engineers and researchers seeking to understand pier-scour relations in the laboratory and field.

  11. Ocean Disposal of Man-Made Ice Piers

    EPA Pesticide Factsheets

    The National Science Foundation is permitted to ocean dump man-made ice piers from its base at McMurdo Sound in Antarctica under a MPRSA general permit. Information is provided about ice piers and impacts of ice pier disposal.

  12. Evaluation of pier-scour equations for coarse-bed streams

    USGS Publications Warehouse

    Chase, Katherine J.; Holnbeck, Stephen R.

    2004-01-01

    Streambed scour at bridge piers is among the leading causes of bridge failure in the United States. Several pier-scour equations have been developed to calculate potential scour depths at existing and proposed bridges. Because many pier-scour equations are based on data from laboratory flumes and from cohesionless silt- and sand-bottomed streams, they tend to overestimate scour for piers in coarse-bed materials. Several equations have been developed to incorporate the mitigating effects of large particle sizes on pier scour, but further investigations are needed to evaluate how accurately pier-scour depths calculated by these equations match measured field data. This report, prepared in cooperation with the Montana Department of Transportation, describes the evaluation of five pier-scour equations for coarse-bed streams. Pier-scour and associated bridge-geometry, bed-material, and streamflow-measurement data at bridges over coarse-bed streams in Montana, Alaska, Maryland, Ohio, and Virginia were selected from the Bridge Scour Data Management System. Pier scour calculated using the Simplified Chinese equation, the Froehlich equation, the Froehlich design equation, the HEC-18/Jones equation and the HEC-18/Mueller equation for flood events with approximate recurrence intervals of less than 2 to 100 years were compared to 42 pier-scour measurements. Comparison of results showed that pier-scour depths calculated with the HEC-18/Mueller equation were seldom smaller than measured pier-scour depths. In addition, pier-scour depths calculated using the HEC-18/Mueller equation were closer to measured scour than for the other equations that did not underestimate pier scour. However, more data are needed from coarse-bed streams and from less frequent flood events to further evaluate pier-scour equations.

  13. GRS bridge piers and abutments.

    DOT National Transportation Integrated Search

    2001-01-01

    This report presents the following three recent projects on load testing of geosynthetic-reinforced soil (GRS) bridge abutments and piers: a full-scale bridge pier load test conducted by the Turner-Fairbank Highway Research Center, Federal Highway Ad...

  14. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... driven in tightly so that they do not occupy more than one inch of vertical height; and (3) Hardwood... used to fill in any remaining vertical gaps. (d) Manufactured pier heights. Manufactured pier heights...

  15. Experimental study on local scouring at pile-supported piers

    NASA Astrophysics Data System (ADS)

    Moreno, Mario; Birjukova, Olga; Grimaldi, Carmelo; Gaudio, Roberto; Cardoso, António H.

    2017-06-01

    In spite of the increasing importance of complex piers for bridges, the number of studies on these piers is comparatively small and the predictors of scour depth at complex piers are only a few, derived from limited experimental evidence. The main purpose of this paper is to share with the hydraulics community the results of 67 tests on scouring at pile-supported piers (including complex piers) aligned with the flow, under clear-water conditions close to the threshold of beginning of sediment motion, while contributing to shade some more light on the influence of the pile-cap thickness on the equilibrium scour depth, the reliability of the superposition approach, the contribution of each one of the complex pier components to the equilibrium scour depth of the ensemble, and the performance of existing predictors of local scour at complex piers.

  16. 24 CFR 3285.303 - Piers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... must be capable of transmitting the vertical live and dead loads to the footings or foundation. (b... dimensions of the home, the design dead and live loads, the spacing of the piers, and the way the piers are... to the loads required to safely support the dead and live loads, as required by § 3285.301, and the...

  17. 24 CFR 3285.303 - Piers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... must be capable of transmitting the vertical live and dead loads to the footings or foundation. (b... dimensions of the home, the design dead and live loads, the spacing of the piers, and the way the piers are... to the loads required to safely support the dead and live loads, as required by § 3285.301, and the...

  18. 24 CFR 3285.303 - Piers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... must be capable of transmitting the vertical live and dead loads to the footings or foundation. (b... dimensions of the home, the design dead and live loads, the spacing of the piers, and the way the piers are... to the loads required to safely support the dead and live loads, as required by § 3285.301, and the...

  19. 24 CFR 3285.303 - Piers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... must be capable of transmitting the vertical live and dead loads to the footings or foundation. (b... dimensions of the home, the design dead and live loads, the spacing of the piers, and the way the piers are... to the loads required to safely support the dead and live loads, as required by § 3285.301, and the...

  20. 24 CFR 3285.303 - Piers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... must be capable of transmitting the vertical live and dead loads to the footings or foundation. (b... dimensions of the home, the design dead and live loads, the spacing of the piers, and the way the piers are... to the loads required to safely support the dead and live loads, as required by § 3285.301, and the...

  1. Floating Double Deck Pier Fenders

    DTIC Science & Technology

    2011-07-01

    Center FDDP Floating Double Deck Pier FEM Finite Element Model MHP Modular Hybrid Pier NAVFAC Naval Facilities RDT&E Research, Development, Testing...4. FEM Performance of MV1000x900B Elements ........................................................ 14 Figure 4-5. Biaxial UE1200x1200E3.1 Fender...Deflection .......................................................... 15 Figure 4-6. FEM Performance of Biaxial UE Fender

  2. Debris mitigation methods for bridge piers.

    DOT National Transportation Integrated Search

    2012-06-01

    Debris accumulation on bridge piers is an on-going national problem that can obstruct the waterway openings at bridges and result in significant erosion of stream banks and scour at abutments and piers. In some cases, the accumulation of debris can a...

  3. Upper bound of pier scour in laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen; Caldwell, Andral W.

    2016-01-01

    The U.S. Geological Survey (USGS), in cooperation with the South Carolina Department of Transportation, conducted several field investigations of pier scour in South Carolina and used the data to develop envelope curves defining the upper bound of pier scour. To expand on this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with pier scour data from other sources and to evaluate upper-bound relations with this larger data set. To facilitate this analysis, 569 laboratory and 1,858 field measurements of pier scour were compiled to form the 2014 USGS Pier Scour Database. This extensive database was used to develop an envelope curve for the potential maximum pier scour depth encompassing the laboratory and field data. The envelope curve provides a simple but useful tool for assessing the potential maximum pier scour depth for effective pier widths of about 30 ft or less.

  4. Engineering behavior of small-scale foundation piers constructed from alternative materials

    NASA Astrophysics Data System (ADS)

    Prokudin, Maxim Mikhaylovich

    Testing small-scale prototype pier foundations to evaluate engineering behavior is an alternative to full-scale testing that facilitates testing of several piers and pier groups at relatively low cost. In this study, various pier systems and pier groups at one tenth scale were subjected to static vertical loading under controlled conditions to evaluate stiffness, bearing capacity, and group efficiency. Pier length, material properties and methods of installation were evaluated. Pier length to diameter ratios varied between four and eight. A unique soil pit with dimensions of 2.1 m in width, 1.5 m in length and 2.0 m in depth was designed to carry out this research. The test pit was filled with moisture conditioned and compacted Western Iowa loess. A special load test frame was designed and fabricated to provide up to 25,000 kg vertical reaction force for load testing. A load cell and displacement instrumentation was setup to capture the load test data. Alternative materials to conventional cement concrete were studied. The pier materials evaluated in this study included compacted aggregate, cement stabilized silt, cementitious grouts, and fiber reinforced silt. Key findings from this study demonstrated that (1) the construction method influences the behavior of aggregate piers, (2) the composition of the pier has a significant impact on the stiffness, (3) group efficiencies were found to be a function of pier length and pier material, (4) in comparison to full-scale testing the scaled piers were found to produce a stiffer response with load-settlement and bearing capacities to be similar. Further, although full-scale test results were not available for all pier materials, the small-scale testing provided a means for comparing results between pier systems. Finally, duplicate pier tests for a given length and material were found to be repeatable.

  5. Evaluation of pier-scour measurement methods and pier-scour predictions with observed scour measurements at selected bridge sites in New Hampshire, 1995-98

    USGS Publications Warehouse

    Boehmler, Erick M.; Olimpio, Joseph R.

    2000-01-01

    In a previous study, 44 of 48 bridge sites examined in New Hampshire were categorized as scour critical. In this study, the U.S. Geological Survey (USGS) evaluated pier-scour measurement methods and predictions at many of these sites. This evaluation included measurement of pier-scour depths at 20 bridge sites using Ground- Penetrating Radar (GPR) surveys. Pier scour was also measured during floods by teams at 5 of these 20 sites. At 4 of the 20 sites, fixed instruments were installed to monitor scour. At only one bridge site investigated by a team was any pier scour measurable during a flood event. A scour depth of 0.7 foot (0.21 m) was measured at a pier in the channel at the State Route 18 bridge over the Connecticut River in Littleton. Measurements made using GPR and (or) fixed instruments indicated pier scour for six sites. The GPR surveys indicated scour along the side of a pier and further upstream from the nose of a pier that was not detected by flood-team measurements at two sites. Most pier-scour equations selected for this examination were reviewed and published in previous scour investigations. Graphical comparison of residual pier-scour depths indicate that the Shen equation yielded pier-scour depth predictions closest to those measured, without underestimating. Measured depths of scour, however, were zero feet for 14 of the 20 sites. For the Blench-Inglis II equation and the Simplified Chinese equation, most differences between measured and predicted scour depths were within 5 feet. These two equations underpredicted scour for one of six sites with measurable scour. The underprediction, however, was within the resolution of the depth measurements. The Simplified Chinese equation is less sensitive than other equations to velocity and depth input variables, and is one of the few empirical equations to integrate the influence of flow competence, or a measure of the maximum streambed particle size that a stream is capable of transporting, in the

  6. 10. VIEW OF PIER 42 BULKHEAD BUILDING INTERIOR (PARTIALLY DEMOLISHED) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF PIER 42 BULKHEAD BUILDING INTERIOR (PARTIALLY DEMOLISHED) WITH JAVA HOUSE IN BACKGROUND, FACING NORTH. - Pier 42 Bulkhead Building, Pier 42, Embarcadero, San Francisco, San Francisco County, CA

  7. Backwater effects of Piers in Subcritical Flow

    DOT National Transportation Integrated Search

    2001-10-01

    Construction or renovation of bridge structures may require placement of bridge piers within the channel or floodplain of natural waterways. These piers will obstruct the flow and may cause an increase in water levels upstream of the bridge structure...

  8. Collision loads on bridge piers : phase 2, report of guidelines for designing bridge piers and abutments for vehicle collisions

    DOT National Transportation Integrated Search

    2011-03-01

    An instrumented, simulated bridge pier was constructed, and two full-scale collisions with an : 80,000-lb van-type tractor-trailer were performed on it. The trailer was ballasted with bags of sand on : pallets. The simulated pier was 36 inches in dia...

  9. POURING FOOTING OF PIER #1. View is to the southwest, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    POURING FOOTING OF PIER #1. View is to the southwest, looking from Pier 2 in Trinity County toward Pier 1 in Humboldt County - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  10. 33 CFR 118.140 - Painting bridge piers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Painting bridge piers. 118.140 Section 118.140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.140 Painting bridge piers. The District Commander may require...

  11. 33 CFR 118.140 - Painting bridge piers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Painting bridge piers. 118.140 Section 118.140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.140 Painting bridge piers. The District Commander may require...

  12. Streambed stresses and flow around bridge piers

    USGS Publications Warehouse

    Parola, A.C.; Ruhl, K.J.; Hagerty, D.J.; Brown, B.M.; Ford, D.L.; Korves, A.A.

    1996-01-01

    Scour of streambed material around bridge foundations by floodwaters is the leading cause of catastrophic bridge failure in the United States. The potential for scour and the stability of riprap used to protect the streambed from scour during extreme flood events must be known to evaluate the likelihood of bridge failure. A parameter used in estimating the potential for scour and removal of riprap protection is the time-averaged shear stress on the streambed often referred to as boundary stress. Bridge components, such as bridge piers and abutments, obstruct flow and induce strong vortex systems that create streambed or boundary stresses significantly higher than those in unobstructed flow. These locally high stresses can erode the streambed around pier and abutment foundations to the extent that the foundation is undermined, resulting in settlement or collapse of bridge spans. The purpose of this study was to estimate streambed stresses at a bridge pier under full-scale flow conditions and to compare these stresses with those obtained previously in small-scale model studies. Two-dimensional velocity data were collected for three flow conditions around a bridge pier at the Kentucky State Highway 417 bridge over the Green River at Greensburg in Green County, Ky. Velocity vector plots and the horizontal component of streambed stress contour plots were developed from the velocity data. The streambed stress contours were developed using both a near-bed velocity and velocity gradient method. Maximum near-bed velocities measured at the pier for the three flow conditions were 1.5, 1.6, and 2.0 times the average near-bed velocities measured in the upstream approach flow. Maximum streambed stresses for the three flow conditions were determined to be 10, 15, and 36 times the streambed stresses of the upstream approach flow. Both the near-bed velocity measurements and approximate maximum streambed stresses at the full-scale pier were consistent with those observed in

  13. 14. View south from first level roof of firing pier. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View south from first level roof of firing pier. Pitched corrugated metal roof marks location of the frame approach connecting the firing pier to the shop (shown in left distance). - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  14. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...

  15. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...

  16. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...

  17. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...

  18. 8. VIEW OF ACCESS BRIDGE AND INTAKE PIER FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF ACCESS BRIDGE AND INTAKE PIER FROM THE BRIDGE PIER ABUTMENT, LOOKING NORTHEAST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  19. 103. VIEW OF BEACH STRUCTURES ON NORTHWEST SIDE OF PIER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. VIEW OF BEACH STRUCTURES ON NORTHWEST SIDE OF PIER, LOOKING SOUTHEAST; PACIFIC ELECTRIC RAILWAY CAR (UPPER LEFT), CONCESSION STANDS (LOWER LEFT), BANDSHELL (RIGHT), AND PIER IN BACKGROUND Photograph #5352-HB. Photographer unknown, c. 1914 - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  20. Development of a Cloud Computing-Based Pier Type Port Structure Stability Evaluation Platform Using Fiber Bragg Grating Sensors.

    PubMed

    Jo, Byung Wan; Jo, Jun Ho; Khan, Rana Muhammad Asad; Kim, Jung Hoon; Lee, Yun Sung

    2018-05-23

    Structure Health Monitoring is a topic of great interest in port structures due to the ageing of structures and the limitations of evaluating structures. This paper presents a cloud computing-based stability evaluation platform for a pier type port structure using Fiber Bragg Grating (FBG) sensors in a system consisting of a FBG strain sensor, FBG displacement gauge, FBG angle meter, gateway, and cloud computing-based web server. The sensors were installed on core components of the structure and measurements were taken to evaluate the structures. The measurement values were transmitted to the web server via the gateway to analyze and visualize them. All data were analyzed and visualized in the web server to evaluate the structure based on the safety evaluation index (SEI). The stability evaluation platform for pier type port structures involves the efficient monitoring of the structures which can be carried out easily anytime and anywhere by converging new technologies such as cloud computing and FBG sensors. In addition, the platform has been successfully implemented at “Maryang Harbor” situated in Maryang-Meyon of Korea to test its durability.

  1. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... block piers. 3285.306 Section 3285.306 Housing and Urban Development Regulations Relating to Housing and....306 Design procedures for concrete block piers. (a) Frame piers less than 36 inches high. (1) Frame... blocks, 8 inches “ 8 inches “ 16 inches, when the design capacity of the block is not exceeded. (2) The...

  2. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  3. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  4. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  5. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  6. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  7. The upper bound of Pier Scour defined by selected laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen; Caldwell, Andral W.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted several field investigations of pier scour in South Carolina (Benedict and Caldwell, 2006; Benedict and Caldwell, 2009) and used that data to develop envelope curves defining the upper bound of pier scour. To expand upon this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with pier-scour data from other sources and evaluate the upper bound of pier scour with this larger data set. To facilitate this analysis, a literature review was made to identify potential sources of published pier-scour data, and selected data were compiled into a digital spreadsheet consisting of approximately 570 laboratory and 1,880 field measurements. These data encompass a wide range of laboratory and field conditions and represent field data from 24 states within the United States and six other countries. This extensive database was used to define the upper bound of pier-scour depth with respect to pier width encompassing the laboratory and field data. Pier width is a primary variable that influences pier-scour depth (Laursen and Toch, 1956; Melville and Coleman, 2000; Mueller and Wagner, 2005, Ettema et al. 2011, Arneson et al. 2012) and therefore, was used as the primary explanatory variable in developing the upper-bound envelope curve. The envelope curve provides a simple but useful tool for assessing the potential maximum pier-scour depth for pier widths of about 30 feet or less.

  8. Updating HEC-18 pier scour equations for noncohesive soils.

    DOT National Transportation Integrated Search

    2016-10-01

    A dataset of 594 bridge pier scour observations from two laboratory and three field studies was compiled. The dataset served as the testing ground for evaluating potential enhancements to the pier scour tools for noncohesive soils in Hydraulic Engine...

  9. Prevention of Bridge Scour with Non-uniform Circular Piers Plane under Steady Flows

    NASA Astrophysics Data System (ADS)

    Chen, Hsing-Ting; Wang, Chuan-Yi

    2017-04-01

    River bed scour and deposit variation extremely severe because of most of rivers are steep and rapid flows, and river discharge extremely unstable and highly unsteady during different seasons in Taiwan. In addition to the obstruction of piers foundation, it causes local scour and threatens the safety of bridges. In the past, riprap, wire gabion or wrap pier works were adopted as the protections of piers foundation, but there were no effectual outcomes. The events of break off piers still happen sometimes. For example, typhoon Kalmaegi (2008) and Morakot (2009) caused heavy damages on Ho-Fon bridge in the Da-jia river and Shuang-Yuan bridge in the Kao-Ping river, respectively. Accordingly, to understand the piers scour system and propose an appropriate protection of piers foundation becomes an important topic for this study currently. This research improves the protection works of the existing uniform bridge pier (diameter D) to ensure the safety of the bridge. The non-uniform plane of circular piers (diameter D*) are placed on the top of a bridge pier foundation to reduce the down flow impacting energy and scour by its' surface roughness characteristics. This study utilize hydraulic models to simulate local scour depth and scour depth change with time for non-uniform pier diameter ratio D/D* of 0.3,0.4,0.5,0.6,0.7 and 0.8, and different type pier and initial bed level (Y) relative under the foundation top elevation under steady flows of V/Vc=0.95,0.80 and 0.65. The research results show that the scour depth increases with an increase of flow intensity (V/Vc) under different types of steady flow hydrographs. The scour depth decreases with increase of initial bed level (Y=+0.2D*,0D*and -0.2D*) relative under the foundation top elevation of the different type pier. The maximum scour depth occurred in the front of the pier for all conditions. Because of the scouring retardation by the non-uniform plane of foundation, the scour depth is reduced for the un-exposed bridge

  10. Debris mitigation methods for bridge piers : tech transfer summary.

    DOT National Transportation Integrated Search

    2012-06-01

    Problem statement: Debris accumulation on bridge piers is an on-going national problem that can obstruct waterway openings at bridges and also result in significant erosion of stream banks and scour at abutments and piers. : In some cases, debris acc...

  11. 2. View of pier #3, West approach, Detroit Superior High ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of pier #3, West approach, Detroit Superior High Level bridge (1914-1917). Pier #3 and #4 support the steel rive span. They are 116 feet by 80 feet at the base and rest on stiff blue clay 45 feet below the surface of the river. Cast-steel bolsters of the three-hinge steel arch are anchored by structural steel grillage to the masory piers. - Detroit Superior High Level Bridge, Cleveland, Cuyahoga County, OH

  12. Measured Behavior and Thermal Gradients in Innovative Bridge Piers.

    DOT National Transportation Integrated Search

    1999-02-24

    Construction of the U.S. 183 elevated highway in Austin, Texas, provided a unique opportunity to investigate the behavior of two types of innovative concrete piers. Tied Y shape piers were used to support mainlane spans. They were cast in situ with s...

  13. 129. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: LIGHTING DIAGRAM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    129. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: LIGHTING DIAGRAM. Sheet lO of 11 (#3283) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  14. 32. BARGE LOADING PIER, DETAIL OF WEST END SHOWING CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. BARGE LOADING PIER, DETAIL OF WEST END SHOWING CONTROL HOUSE AND CABLE CARS, LOOKING EAST - Pennsylvania Railroad, Canton Coal Pier, Clinton Street at Keith Avenue (Canton area), Baltimore, Independent City, MD

  15. Looking northeast over Piers 22 and 23 toward Mare Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking northeast over Piers 22 and 23 toward Mare Island Strait and the City of Vallejo - Mare Island Naval Shipyard, Finger Piers 22 & 23, Railroad Avenue near Eighteenth Street, Vallejo, Solano County, CA

  16. 47. VIEW OF PIER DECK, LOOKING SOUTHWEST FROM GATE, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. VIEW OF PIER DECK, LOOKING SOUTHWEST FROM GATE, SHOWING CAPTAIN'S GALLEY (LEFT) AND NEPTUNE'S LOCKER (RIGHT) IN CENTER - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  17. 99. VIEW OF NORTHWEST SIDE OF PIER, LOOKING EAST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. VIEW OF NORTHWEST SIDE OF PIER, LOOKING EAST FROM STORM-DAMAGED END. 3RD TEE BUILDINGS IN BACKGROUND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  18. SHAKING TABLE TESTS ON SEISMIC DEFORMATION OF PILE SUPPORTED PIER

    NASA Astrophysics Data System (ADS)

    Fujita, Daiki; Kohama, Eiji; Takenobu, Masahiro; Yoshida, Makoto; Kiku, Hiroyoshi

    The seismic deformation characeteristics of a pile supported pier was examined with the shake table test, especially focusing on the pier after its deformation during earthquakes. The model based on the similitude of the fully-plastic moment in piles was prepared to confirm the deformation and stress characteristic after reaching the fully-plastic moment. Moreover, assuming transportation of emergency supplies and occurrence of after shock in the post-disaster period, the pile supported pier was loaded with weight after reaching fully-plastic moment and excited with the shaking table. As the result, it is identified that the displacement of the pile supported pier is comparatively small if bending strength of piles does not decrease after reaching fully-plastic moment due to nonoccourrence of local backling or strain hardening.

  19. 25. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFTRIGHT) BENTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFT-RIGHT) BENTS 16-25, NEPTUNE'S LOCKER (LEFT), WITH CAPTAIN'S GALLEY BEHIND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  20. 26. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFTRIGHT) BENTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFT-RIGHT) BENTS 18-23 NEPTUNE'S LOCKER (RIGHT), WITH CAPTAIN'S GALLEY BEHIND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  1. 24. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFTRIGHT) BENTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFT-RIGHT) BENTS 10-19, NEPTUNE'S LOCKER (RIGHT), WITH CAPTAIN'S GALLEY BEHIND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  2. Central part of Pier 22, showing the southeast side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Central part of Pier 22, showing the southeast side of the Shore Power Supply Electric Distribution Center (Building 734) - Mare Island Naval Shipyard, Finger Piers 22 & 23, Railroad Avenue near Eighteenth Street, Vallejo, Solano County, CA

  3. 97. VIEW OF PIER EXTENSION WITH RAMP IN FOREGROUND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. VIEW OF PIER EXTENSION WITH RAMP IN FOREGROUND AND 4TH TEE IN BACKGROUND, LOOKING SOUTHWEST FROM 3RD TEE - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  4. 34. View of pier 3, showing supporting main anchor arm ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. View of pier 3, showing supporting main anchor arm and cantilever arm spans, as seen from shore near pier 4, looking north - Williamstown-Marietta Bridge, Spanning Ohio River between Williamstown & Marietta, Williamstown, Wood County, WV

  5. 16. VIEW SOUTHWEST OF CONCRETE PIER SUPPORTING CAMELBACK AND PENNSYLVANIA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW SOUTHWEST OF CONCRETE PIER SUPPORTING CAMELBACK AND PENNSYLVANIA PETIT TRUSSES. ORIGINAL PIER LYING IN FOREGROUND DESTROYED BY 1915 FLOOD DURING CONSTRUCTION - New River Bridge, Spanning New River at State Route 623, Pembroke, Giles County, VA

  6. 41. West tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. West tile gauge on south pier. Each square tile is 4' in size. Bottom number scale of west tile - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  7. 48. East tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. East tile gauge on south pier. Each square tile is 4' in size. Lower section of tile cross only - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  8. 15. VIEW SOUTH OF CONCRETE PIER SUPPORTING CAMELBACK AND PENNSYLVANIA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW SOUTH OF CONCRETE PIER SUPPORTING CAMELBACK AND PENNSYLVANIA PETIT TRUSSES. ORIGINAL PIER LYING IN FOREGROUND DESTROYED BY 1915 FLOOD DURING ORIGINAL CONSTRUCTION - New River Bridge, Spanning New River at State Route 623, Pembroke, Giles County, VA

  9. Central part of Pier 22, southwest part, showing the northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Central part of Pier 22, southwest part, showing the northwest side of the Shore Power Supply Electric Distribution Center (Building 734) - Mare Island Naval Shipyard, Finger Piers 22 & 23, Railroad Avenue near Eighteenth Street, Vallejo, Solano County, CA

  10. 40. West tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. West tile gauge on south pier. Each square tile is 4' in size. Bottom right hand corner of west tile - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  11. 43. East tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. East tile gauge on south pier. Each square tile is 4' in size. Eagle itself in 4' square eagle section - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  12. 39. West tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. West tile gauge on south pier. Each square tile is 4' in size. Bottom left hand corner of west tile - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  13. 51. East tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. East tile gauge on south pier. Each square tile is 4' in size. Lower end of cross second from bottom - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  14. Sediment transport in the area of the Sopot pier

    NASA Astrophysics Data System (ADS)

    Przyborska, Anna; Jakacki, Jaromir; Andrzejewski, Jan

    2017-04-01

    Coastal sediment transport is a natural process that appears when energy of waves is sufficient for moving solid particles from the bottom. Sediment transport rate depends on the median diameter of local sand and it is compatible with the direction of wave propagation. Also it is natural, that any protruded from the beach construction disturbs continuity of beach transport caused by waves. The Sopot pier has been built over 100 years ago and it is the longest wooden pier on the Baltic Sea coast, it is about half kilometre long. The pier is located at the end of the Monte Casino street and it is one of the biggest attractions of the city as well as in the country. In the past and now we have observed the disturbed sediment transport in the area of the Sopot pier. But during recent years, this process has gained greater momentum. The beach at the Sopot pier has been growing by several meters. All indicates that the cause of the observed phenomenon is the marina. The marina structure which is in some distance from the shore, has been acting as a powerful, emerged breakwater boundary. As a tool the sediment transport model was implemented for Sopot pier area. The implemented numerical forecasting sediment transport model in the area of the Sopot pier reflects well the deposit growth rate for the archived data from 2010 to 2015. On the basis of differences in bathymetry data provided by the Maritime office and the analysis the model results the average deposits in accumulation in the pear area was determined to be about 16,000 m3 / year for the assumed area of analysis, the model have shown similar result. The analysis suggests that strong winds generating significant waves as well as meaningful sediment transport dominate in the autumn and winter. You cannot, however, rule out strong waves in summer. Under moderate waves the sediment transport is insignificant. The most intense movement of the sediment is observed in the vicinity of the shoreline, it disappears with

  15. 21 CFR 1240.86 - Protection of pier water system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... interstate traffic shall make a connection between its nonpotable water system and any pier potable water...

  16. 21 CFR 1240.86 - Protection of pier water system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... interstate traffic shall make a connection between its nonpotable water system and any pier potable water...

  17. 21 CFR 1240.86 - Protection of pier water system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... interstate traffic shall make a connection between its nonpotable water system and any pier potable water...

  18. 48. VIEW OF PIER DECK, TAKEN FROM HALFWAY BETWEEN APPPROACH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. VIEW OF PIER DECK, TAKEN FROM HALFWAY BETWEEN APPPROACH AND 1ST TEE, LOOKING SOUTHWEST, SHOWING CAPTAIN'S GALLEY (LEFT) AND NEPTUNE'S LOCKER (RIGHT) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  19. 44. East tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. East tile gauge on south pier. Each square tile is 4' in size. Top left section of 4' square eagle section - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  20. 47. East tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. East tile gauge on south pier. Each square tile is 4' in size. Middle right section of 4' square eagle section - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  1. 46. East tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. East tile gauge on south pier. Each square tile is 4' in size. Lower right section of 4' square eagle section - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  2. 45. East tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. East tile gauge on south pier. Each square tile is 4' in size. Lower left section of 4' square eagel section - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  3. 30. VIEW OF THE WESTERN SIDEWALK ON PIER 5, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW OF THE WESTERN SIDEWALK ON PIER 5, SHOWING DEDICATION PLAQUE ON EASTERN PIER TOWER, LOOKING EAST - West End-North Side Bridge, Spanning Ohio River, approximately 1 mile downstream from confluence of Monongahela & Allegheny rivers, Pittsburgh, Allegheny County, PA

  4. 1. View of Pier G (center photo, on the water ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of Pier G (center photo, on the water line) taken from the foot of Washington Street. The view is of the southeastern, northeastern, and northern sides of the structure. - Lehigh Valley Railroad, Pier G, Jersey City, Hudson County, NJ

  5. 346. Caltrans, Photographer July 8, 1935 "PIER El"; VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    346. Caltrans, Photographer July 8, 1935 "PIER E-l"; VIEW OF PIER E-I, DECK TRUSS, AND CANTILEVER TRUSS ANCHOR ARM UNDER CONSTRUCTION. 5-1583 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  6. Computer modeling design of a frame pier for a high-speed railway project

    NASA Astrophysics Data System (ADS)

    Shi, Jing-xian; Fan, Jiang

    2018-03-01

    In this paper, a double line pier on a high-speed railway in China is taken as an example. the size of each location is drawn up firstly. The design of pre-stressed steel beam for its crossbeam is carried out, and the configuration of ordinary reinforcement is carried out for concrete piers. Combined with bridge structure analysis software Midas Civil and BSAS, the frame pier is modeled and calculated. The results show that the beam and pier column section size reasonable design of pre-stressed steel beam with 17-7V5 high strength low relaxation steel strand, can meet the requirements of high speed railway carrying capacity; the main reinforcement of pier shaft with HRB400 diameter is 28mm, ring arranged around the pier, can satisfy the eccentric compression strength, stiffness and stability requirements, also meet the requirements of seismic design.

  7. Oblique perspective, due east by 70 degrees. Note concrete pier, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique perspective, due east by 70 degrees. Note concrete pier, added CA. 1930's. Other piers and abutments are heavily mortared rubble stone. - Watson Mill Bridge, Spanning South Fork Broad River, Watson Mill Road, Watson Mill Bridge State Park, Comer, Madison County, GA

  8. Comparison of Scour and Flow Characteristics Around Circular and Oblong Bridge Piers in Seepage Affected Alluvial Channels

    NASA Astrophysics Data System (ADS)

    Chavan, Rutuja; Venkataramana, B.; Acharya, Pratik; Kumar, Bimlesh

    2018-06-01

    The present study examines scour geometry and turbulent flow characteristics around circular and oblong piers in alluvial channel with downward seepage. Experiments were conducted in plane sand bed of non-uniform sand under no seepage, 10% seepage and 15% seepage conditions. Scour depth at oblong pier is significantly lesser than the scour depth at circular one. However, the scour depth at both piers reduces with downward seepage. The measurements show that the velocity and Reynolds stresses are negative near the bed at upstream of piers where the strong reversal occurs. At downstream of oblong pier near the free surface, velocity and Reynolds stresses are less positive; whereas, they are negative at downstream of circular pier. The streamline shape of oblong pier leads to reduce the strength of wake vortices and consequently reversal flow at downstream of pier. With application of downward seepage turbulent kinetic energy is decreasing. The results show that the wake vortices at oblong pier are weaker than the wake vortices at circular pier. The strength of wake vortices diminishes with downward seepage. The Strouhal number is lesser for oblong pier and decreases with downward seepage for both oblong and circular piers.

  9. 18. INTAKE PIER, BRIDGE DETAILS, SHEET 9 OF 117, 1920. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. INTAKE PIER, BRIDGE DETAILS, SHEET 9 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  10. Looking northeast from shore along the length of Pier 22 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking northeast from shore along the length of Pier 22 with a view of rigging platforms and Shore Power Supply Electric Distribution Center (Building 734) in the distance - Mare Island Naval Shipyard, Finger Piers 22 & 23, Railroad Avenue near Eighteenth Street, Vallejo, Solano County, CA

  11. Three-dimensional numerical simulations of local scouring around bridge piers

    USDA-ARS?s Scientific Manuscript database

    This paper presents a novel numerical method for simulating local scouring around bridge piers using a three-dimensional free-surface RANS turbulent flow model. Strong turbulent fluctuations and the down-flows around the bridge pier are considered important factors in scouring the bed. The turbulent...

  12. View of the yacht club from avila pier, facing west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the yacht club from avila pier, facing west northwest. The main entry is to the right and the more recent deck addition is to the left. - San Luis Yacht Club, Avila Pier, South of Front Street, Avila Beach, San Luis Obispo County, CA

  13. 20. Detail of sandstone pier under north line of trusses ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail of sandstone pier under north line of trusses showing granite pier cap (darker stone) which supports the vertical strut. View to east. - Selby Avenue Bridge, Spanning Short Line Railways track at Selby Avenue between Hamline & Snelling Avenues, Saint Paul, Ramsey County, MN

  14. Fish populations associated with habitat-modified piers and natural woody debris in Piedmont Carolina reservoirs

    USGS Publications Warehouse

    Barwick, R.D.; Kwak, T.J.; Noble, R.L.; Barwick, D.H.

    2004-01-01

    A primary concern associated with reservoir shoreline residential development is reduction of littoral habitat complexity and diversity. One potential approach to compensate for this is the deployment of artificial-habitat modules under existing piers, but the benefit of this practice has not been demonstrated. To evaluate the effect of pier habitat modifications on fish populations in two Piedmont Carolina reservoirs, we studied 77 piers located on forty-seven, 100-m transects that were modified using plastic "fish hab" modules augmented with brush (brushed habs), hab modules alone (habs), or left unaltered for reference purposes. We sampled fish from all piers and transects during April, July, and October 2001 using a boat-mounted electrofisher. With few exceptions, catch rates were higher at brushed-hab piers and piers with habs than at reference piers during all seasons. Similarly, during spring and summer, fish abundance was generally higher on transects containing natural woody debris, brushed habs, and habs than on reference-developed transects; however, during fall, there were exceptions. Therefore, fish abundance associated with shorelines in these reservoirs appears to be related to the structural complexity of available habitat rather than structure composition. One year after installation, 92% of pier owners responding to a mail survey expressed satisfaction with pier modifications. Supplementing piers with habitat structures is recommended to enhance littoral habitat complexity for fishes in residentially developed reservoirs.

  15. Usability Evaluation of NLP-PIER: A Clinical Document Search Engine for Researchers.

    PubMed

    Hultman, Gretchen; McEwan, Reed; Pakhomov, Serguei; Lindemann, Elizabeth; Skube, Steven; Melton, Genevieve B

    2017-01-01

    NLP-PIER (Natural Language Processing - Patient Information Extraction for Research) is a self-service platform with a search engine for clinical researchers to perform natural language processing (NLP) queries using clinical notes. We conducted user-centered testing of NLP-PIER's usability to inform future design decisions. Quantitative and qualitative data were analyzed. Our findings will be used to improve the usability of NLP-PIER.

  16. 2. OVERALL VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERALL VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING NORTH. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  17. 16. INTAKE PIER, PLANS ELEVATIONS, AND SECTIONS, SHEETS 5 OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTAKE PIER, PLANS ELEVATIONS, AND SECTIONS, SHEETS 5 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  18. 4. DETAIL OF THE BRIDGE PIER SHOWING THE SUSPENSION CABLE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF THE BRIDGE PIER SHOWING THE SUSPENSION CABLE, LOOKING SOUTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  19. 3. APPROACH TO THE ACCESS BRIDGE AND INTAKE PIER, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. APPROACH TO THE ACCESS BRIDGE AND INTAKE PIER, LOOKING SOUTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  20. 7. DETAIL OF INTAKE PIER, LOOKING SOUTHWEST FROM EASTERN SACRAMENTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL OF INTAKE PIER, LOOKING SOUTHWEST FROM EASTERN SACRAMENTO LEVEE. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  1. 17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  2. 11. UNDERSIDE, VIEW PERPENDICULAR TO PIERS, SHOWING FLOOR SYSTEM OBLIQUELY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. UNDERSIDE, VIEW PERPENDICULAR TO PIERS, SHOWING FLOOR SYSTEM OBLIQUELY AND NORTH PIER. LOOKING NORTH. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  3. Lateral dynamic interaction analysis of a train girder pier system

    NASA Astrophysics Data System (ADS)

    Xia, H.; Guo, W. W.; Wu, X.; Pi, Y. L.; Bradford, M. A.

    2008-12-01

    A dynamic model of a coupled train-girder-pier system is developed in this paper. Each vehicle in a train is modeled with 27 degrees-of-freedom for a 4-axle passenger coach or freight car, and 31 for a 6-axle locomotive. The bridge model is applicable to straight and curved bridges. The centrifugal forces of moving vehicles on curved bridges are considered in both the vehicle model and the bridge model. The dynamic interaction between the bridge and train is realized through an assumed wheel-hunting movement. A case study is performed for a test train traversing two straight and two curved multi-span bridges with high piers. The histories of the train traversing the bridges are simulated and the dynamic responses of the piers and the train vehicles are calculated. A field experiment is carried out to verify the results of the analysis, by which the lateral resonant train speed inducing the peak pier-top amplitudes and some other observations are validated.

  4. STARTING EXCAVATION PIER 2. This view is roughly northeast, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STARTING EXCAVATION PIER 2. This view is roughly northeast, with Pier 2 on the Trinity County end of the bridge. The old suspension bridge, at upper right, was upstream of new bridge - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  5. 5. OBLIQUE VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. OBLIQUE VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING SOUTHWEST, FROM THE EASTERN LEVEE. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  6. 9. VIEW OF INTAKE PIER AND MAIN SPAN OF ACCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF INTAKE PIER AND MAIN SPAN OF ACCESS BRIDGE FROM WATER LEVEL, LOOKING NORTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  7. Reliability and Validity Evidence of the Chinese Piers-Harris Children's Self-Concept Scale Scores among Taiwanese Children

    ERIC Educational Resources Information Center

    Flahive, Mon-hsin Wang; Chuang, Ying-Chih; Li, Chien-Mo

    2011-01-01

    The Piers-Harris Children's Self-Concept Scale-Second Edition (Piers-Harris 2) was designed to measure self-concept among children and adolescents. This study aimed to assess the reliability and validity of the scores of the Chinese version of the Piers-Harris 2 (Chinese Piers-Harris). The Chinese Piers-Harris 2 was administered to 243 Taiwanese…

  8. 1. OVERALL VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING NORTHEAST FROM WESTERN LEVEE OF THE SACRAMENTO RIVER. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  9. 11. DETAIL VIEW OF APPROACH TO INTAKE PIER FROM ACCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF APPROACH TO INTAKE PIER FROM ACCESS BRIDGE, SHOWING DOOR TO INTERIOR GATE OPERATOR ROOM, LOOKING WEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  10. 41. 'Firing Pier, Second Floor Plan, Section No. 2,' submitted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. 'Firing Pier, Second Floor Plan, Section No. 2,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3867-46, Y&D Drawing 190841. Scale 1/4' = 1'. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  11. 42. 'Firing Pier, Second Floor Plan, Section No. 3,' submitted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. 'Firing Pier, Second Floor Plan, Section No. 3,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3868-46, Y&D Drawing 190842. Scale 1/4' = 1'. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  12. 36. 'Firing Pier, First Floor Plan, Section No. 1,' submitted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. 'Firing Pier, First Floor Plan, Section No. 1,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3862-46, Y&D Drawing 190836. Scale 1/4' = 1'. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  13. 38. 'Firing Pier, First Floor Plan, Section No. 3,' submitted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. 'Firing Pier, First Floor Plan, Section No. 3,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3864-46, Y&D Drawing 190838. Scale 1/4' = 1'. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  14. 40. 'Firing Pier, Second Floor Plan, Section No. 1,' submitted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. 'Firing Pier, Second Floor Plan, Section No. 1,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3866-46, Y&D Drawing 190840. Scale 1/4' = 1'. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  15. 39. 'Firing Pier, First Floor Plan, Section No. 4,' submitted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. 'Firing Pier, First Floor Plan, Section No. 4,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3865-46, Y&D Drawing 190839. Scale 1/4' = 1'. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  16. 37. 'Firing Pier, First Floor Plan, Section No. 2,' submitted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. 'Firing Pier, First Floor Plan, Section No. 2,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3863-46, Y&D Drawing 190837. Scale 1/4' = 1. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  17. Rapid repair of severely earthquake-damaged bridge piers with flexural-shear failure mode

    NASA Astrophysics Data System (ADS)

    Sun, Zhiguo; Wang, Dongsheng; Du, Xiuli; Si, Bingjun

    2011-12-01

    An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were first tested to severe damage in flexural-shear mode and repaired using early-strength concrete with high-fluidity and carbon fiber reinforced polymers (CFRP). After about four days, the repaired specimens were tested to failure again. The seismic behavior of the repaired specimens was evaluated and compared to the original specimens. Test results indicate that the proposed repair technique is highly effective. Both shear strength and lateral displacement of the repaired piers increased when compared to the original specimens, and the failure mechanism of the piers shifted from flexural-shear failure to ductile flexural failure. Finally, a simple design model based on the Seible formulation for post-earthquake repair design was compared to the experimental results. It is concluded that the design equation for bridge pier strengthening before an earthquake could be applicable to seismic repairs after an earthquake if the shear strength contribution of the spiral bars in the repaired piers is disregarded and 1.5 times more FRP sheets is provided.

  18. Impact of Geomorphological Changes to Harbor Resonance During Meteotsunamis: The Vela Luka Bay Test Case

    NASA Astrophysics Data System (ADS)

    Denamiel, Cléa; Šepić, Jadranka; Vilibić, Ivica

    2018-05-01

    In engineering studies, harbor resonance, including quality and amplification factors, is typically computed for swell and waves with periods shorter than 10 min. However, in various locations around the world, such as Vela Luka Bay in Croatia, meteotsunami waves of periods greater than 10 min can excite the bay or harbor natural modes and produce substantial structural damages. In this theoretical study, the impact of some geomorphological changes of Vela Luka Bay—i.e. deepening of the bay, dredging the harbor, adding a pier or a marina—to the amplification of the meteotsunami waves are presented for a set of 6401 idealized pressure wave field forcing used to derive robust statistics. The most substantial increase in maximum elevation is found when the Vela Luka harbor is dredged to a 5 m depth, which is in contradiction with the calculation of the quality factor showing a decrease of the harbor natural resonance. It has been shown that the forcing energy content at different frequency bands should also be taken into account when estimating the quality and amplification factors, as their typical definitions derived from the peak frequency of the sea level spectrum fail to represent the harbor response during meteotsunami events. New definitions of these factors are proposed in this study and are shown to be in good agreement with the results of the statistical analysis of the Vela Luka Bay maximum elevation results. In addition, the presented methodology can easily be applicable to any other location in the world where meteotsunamis occur.

  19. 14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION FORCE MAINS, TREATED WATER PIPELINES, AND FILTRATION PLANT, SHEET 1 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  20. 10. DETAIL VIEW OF LOWER LEVEL OF INTAKE PIER SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL VIEW OF LOWER LEVEL OF INTAKE PIER SHOWING THE RIVER HEIGHT INDICATOR, ONE OF THE FIVE GATE OPENINGS, AND MOORINGS, LOOKING SOUTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  1. 43. 'Firing Pier, Third and Fourth Floors and Roof Plan,' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. 'Firing Pier, Third and Fourth Floors and Roof Plan,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3869-46, Y&D Drawing 190843. Scale 1/4' = 1'. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  2. Investigation of pier scour in coarse-bed streams in Montana, 2001 through 2007

    USGS Publications Warehouse

    Holnbeck, Stephen R.

    2011-01-01

    A primary goal of ongoing field research of bridge scour is improvement of scour-prediction equations so that pier-scour depth is predicted accurately-an important element of hydraulic analysis and design of highway bridges that cross streams, rivers, and other waterways. Scour depth for piers in streambeds with a mixture of sand, gravel, cobbles, and boulders (coarse-bed streams, which are common in Montana) generally is less than the scour depth in finer-grained (sandy) streambeds under similar conditions. That difference is attributed to an armor layer of coarser material. Pier-scour data from the U.S. Geological Survey were used in this study to develop a bed-material correction factor, which was incorporated into the Federal Highway Administration's recommended equation for computing pier scour. This report describes results of a study of pier scour in coarse-bed streams at 59 bridge sites during 2001-2007 in the mountain and foothill regions of western Montana. Respective drainage areas ranged from about 3 square miles (mi2) to almost 20,000 mi2. Data collected and analyzed for this study included 103 pier-scour measurements; the report further describes data collection, shows expansion of the national coarse pier-scour database, discusses use of the new data in evaluation of relative accuracy of various predictive equations, and demonstrates how differences in size and gradation between surface bed material and shallow-subsurface bed material might relate to pier scour. Nearly all measurements were made under clear-water conditions with no incoming sediment supply to the bridge opening. Half of the measurements showed approach velocities that equaled or surpassed the critical velocity for incipient motion of bed material, possibly indicating that measurements were made very near the threshold between clear-water and live-bed scour, where maximum scour was shown in laboratory studies. Data collected in this study were compared to selected pier-scour data from

  3. 75 FR 71638 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliot Bay, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ...-AA00 Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliot Bay, Seattle, WA AGENCY: Coast Guard...) entitled ``Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliot Bay, Seattle, WA'' (Docket number...; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, Washington. (a) Location. The following...

  4. Seismic damage analysis of the outlet piers of arch dams using the finite element sub-model method

    NASA Astrophysics Data System (ADS)

    Song, Liangfeng; Wu, Mingxin; Wang, Jinting; Xu, Yanjie

    2016-09-01

    This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects of infinite foundation, contraction joints, and nonlinear concrete are taken into account. The detailed structures of the outlet pier are then simulated with a refined FE model in the sub-model analysis. In this way the damage mechanism of the plain (unreinforced) outlet pier is analyzed, and the effects of two reinforcement measures (i.e., post-tensioned anchor cables and reinforcing bar) on the dynamic damage to the outlet pier are investigated comprehensively. Results show that the plain pier is damaged severely by strong earthquakes while implementation of post-tensioned anchor cables strengthens the pier effectively. In addition, radiation damping strongly alleviates seismic damage to the piers.

  5. Centrifuge modeling of rocking-isolated inelastic RC bridge piers.

    PubMed

    Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George

    2014-12-01

    Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation , this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Published by John Wiley & Sons Ltd.

  6. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3) When... across capped-hollow block piers, as shown in Figures A and B to § 3285.306. (2) Caps must be solid...

  7. Progress In Electromagnetics Research Symposium (PIERS)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The third Progress In Electromagnetics Research Symposium (PIERS) was held 12-16 Jul. 1993, at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California. More than 800 presentations were made, and those abstracts are included in this publication.

  8. 76 FR 30014 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ...-AA00 Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA AGENCY: Coast Guard...) entitled ``Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA'' in the Federal... is added to read as follows: Sec. 165.1330 Safety Zone; Fleet Week Maritime Festival, Pier 66...

  9. Local sediment scour model tests for the Woodrow Wilson Bridge piers

    USGS Publications Warehouse

    Sheppard, D.M.; Jones, J.S.; Odeh, M.; Glasser, T.

    2004-01-01

    The Woodrow Wilson Bridge on I-495 over the Potomac River in Prince Georges County, Maryland is being replaced. Physical local scour model studies for the proposed piers for the new bridge were performed in order to help establish design scour depths. Tests were conducted in two different flumes, one in the USGS-BRD Conte Research Center in Turners Falls, Massachusetts and one in the FHWA Turner Fairbanks Laboratory in McLean, Virginia. Due to space limitations in this publication only the tests conducted in the USGS flume are presented in this paper. Two different pier designs were tested. One of the piers was also tested with two different diameter dolphin systems. Copyright ASCE 2004.

  10. Piers Harris and Coopersmith Measure of Self-Esteem: A Comparative Analysis

    ERIC Educational Resources Information Center

    Lynch, Mervin D.; Foley-Peres, Kathleen D.; Sullivan, Stefanie S.

    2008-01-01

    The purposes of this study were to see if the items from the Piers Harris Self Concept Scale and the Coopersmith Self Esteem Inventory had construct and predictive validity. Items used in this study were 50 items from the Coopersmith Self-Esteem Inventory and 80 items from the Piers Harris Self-Concept Scale. Construct measures were obtained using…

  11. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... across capped-hollow block piers, as shown in Figures A and B to § 3285.306. (2) Caps must be solid... shims to level the home and fill any gaps between the base of the main chassis beam and the top of the...

  12. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... across capped-hollow block piers, as shown in Figures A and B to § 3285.306. (2) Caps must be solid... shims to level the home and fill any gaps between the base of the main chassis beam and the top of the...

  13. Centrifuge modeling of rocking-isolated inelastic RC bridge piers

    PubMed Central

    Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George

    2014-01-01

    Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation, this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd. PMID:26300573

  14. 77 FR 51475 - Safety Zone; Apache Pier Labor Day Fireworks; Myrtle Beach, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ...-AA00 Safety Zone; Apache Pier Labor Day Fireworks; Myrtle Beach, SC AGENCY: Coast Guard, DHS. ACTION... Atlantic Ocean in the vicinity of Apache Pier in Myrtle Beach, SC, during the Labor Day fireworks... [[Page 51476

  15. 33 CFR 127.103 - Piers and wharves.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... facility handling LNG is in a region subject to earthquakes, the piers and wharves must be designed to resist earthquake forces. (b) Substructures, except moorings and breasting dolphins, that support or are...

  16. 33 CFR 127.103 - Piers and wharves.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... facility handling LNG is in a region subject to earthquakes, the piers and wharves must be designed to resist earthquake forces. (b) Substructures, except moorings and breasting dolphins, that support or are...

  17. 33 CFR 127.103 - Piers and wharves.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... facility handling LNG is in a region subject to earthquakes, the piers and wharves must be designed to resist earthquake forces. (b) Substructures, except moorings and breasting dolphins, that support or are...

  18. 33 CFR 127.103 - Piers and wharves.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facility handling LNG is in a region subject to earthquakes, the piers and wharves must be designed to resist earthquake forces. (b) Substructures, except moorings and breasting dolphins, that support or are...

  19. 33 CFR 127.103 - Piers and wharves.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... facility handling LNG is in a region subject to earthquakes, the piers and wharves must be designed to resist earthquake forces. (b) Substructures, except moorings and breasting dolphins, that support or are...

  20. Local-based damage detection of cyclically loaded bridge piers using wireless sensing units

    NASA Astrophysics Data System (ADS)

    Hou, Tsung-Chin; Lynch, Jerome P.; Parra-Montesinos, Gustavo

    2005-05-01

    Concrete bridge piers are a common structural element employed in the design of bridges and elevated roadways. In order to ensure adequate behavior under earthquake-induced displacements, extensive reinforcement detailing in the form of closely spaced ties or spirals is necessary, leading to congestion problems and difficulties during concrete casting. Further, costly repairs are often necessary in bridge piers after a major earthquake which in some cases involve the total or partial shutdown of the bridge. In order to increase the damage tolerance while relaxing the transverse reinforcement requirements of bridge piers, the use of high-performance fiber reinforced cementitious composites (HPFRCC) in earthquake-resistant bridge piers is explored. HPFRCCs are a relatively new class of cementitious material for civil structures with tensile strain-hardening behavior and high damage tolerance. To monitor the behavior of this new class of material in the field, low-cost wireless monitoring technologies will be adopted to provide HPFRCC structural elements the capability to accurately monitor their performance and health. In particular, the computational core of a wireless sensing unit can be harnessed to screen HPFRCC components for damage in real-time. A seismic damage index initially proposed for flexure dominated reinforced concrete elements is modified to serve as an algorithmic tool for the rapid assessment of damage (due to flexure and shear) in HPFRCC bridge piers subjected to large shear reversals. Traditional and non-traditional sensor strategies of an HPFRCC bridge pier are proposed to optimize the correlation between the proposed damage index model and the damage observed in a circular pier test specimen. Damage index models are shown to be a sufficiently accurate rough measure of the degree of local-area damage that can then be wirelessly communicated to bridge officials.

  1. Effects of seismic devices on transverse responses of piers in the Sutong Bridge

    NASA Astrophysics Data System (ADS)

    Shen, Xing; Camara, Alfredo; Ye, Aijun

    2015-12-01

    The Sutong Bridge in China opened to traffic in 2008, and is an arterial connection between the cities of Nantong and Suzhou. It is a cable-stayed bridge with a main span of 1,088 m. Due to a tight construction schedule and lack of suitable seismic devices at the time, fixed supports were installed between the piers and the girder in the transverse direction. As a result, significant transverse seismic forces could occur in the piers and foundations, especially during a return period of a 2500-year earthquake. Therefore, the piers, foundations and fixed bearings had to be designed extraordinarily strong. However, when larger earthquakes occur, the bearings, piers and foundations are still vulnerable. The recent rapid developments in seismic technology and the performance-based design approach offer a better opportunity to optimize the transverse seismic design for the Sutong Bridge piers. The optimized design can be applied to the Sutong Bridge (as a retrofit), as well as other bridges. Seismic design alternatives utilizing viscous fluid dampers (VFD), or friction pendulum sliding bearings (FPSB), or transverse yielding metallic dampers (TYMD) are thoroughly studied in this work, and the results are compared with those from the current condition with fixed transverse supports and a hypothetical condition in which only sliding bearings are provided on top of the piers (the girder can move "freely" in the transverse direction during the earthquake, except for frictional forces of the sliding bearings). Parametric analyses were performed to optimize the design of these proposed seismic devices. From the comparison of the peak bridge responses in these configurations, it was found that both VFD and TYMD are very effective in the reduction of transverse seismic forces in piers, while at the same time keeping the relative transverse displacements between piers and the box girder within acceptable limits. However, compared to VFD, TYMD do not interact with the

  2. MacMillan Pier Transportation Center Feasibility Study.

    DOT National Transportation Integrated Search

    2006-06-01

    The MacMillan Pier Transportation Center Feasibility Study examines two potential sites (landside and waterside) for a transportation center that provides a range of tourist and traveler information. It would serve as a gateway for Provincetown and t...

  3. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... configuration. (a) Concrete blocks. Installation instructions for concrete block piers must be developed in...-bearing (not decorative) concrete blocks must have nominal dimensions of at least 8 inches × 8 inches × 16 inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3) When...

  4. Prediction of Scour Depth around Bridge Piers using Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Zhang, Hanqing

    2014-05-01

    Earth's surface is continuously shaped due to the action of geophysical flows. Erosion due to the flow of water in river systems has been identified as a key problem in preserving ecological health of river systems but also a threat to our built environment and critical infrastructure, worldwide. As an example, it has been estimated that a major reason for bridge failure is due to scour. Even though the flow past bridge piers has been investigated both experimentally and numerically, and the mechanisms of scouring are relatively understood, there still lacks a tool that can offer fast and reliable predictions. Most of the existing formulas for prediction of bridge pier scour depth are empirical in nature, based on a limited range of data or for piers of specific shape. In this work, the application of a Machine Learning model that has been successfully employed in Water Engineering, namely an Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to estimate the scour depth around bridge piers. In particular, various complexity architectures are sequentially built, in order to identify the optimal for scour depth predictions, using appropriate training and validation subsets obtained from the USGS database (and pre-processed to remove incomplete records). The model has five variables, namely the effective pier width (b), the approach velocity (v), the approach depth (y), the mean grain diameter (D50) and the skew to flow. Simulations are conducted with data groups (bed material type, pier type and shape) and different number of input variables, to produce reduced complexity and easily interpretable models. Analysis and comparison of the results indicate that the developed ANFIS model has high accuracy and outstanding generalization ability for prediction of scour parameters. The effective pier width (as opposed to skew to flow) is amongst the most relevant input parameters for the estimation.

  5. Recessed floating pier caps for highway bridges.

    DOT National Transportation Integrated Search

    1973-01-01

    Presented are alternate designs for two existing bridges in Virginia - one with steel beams and the other with prestressed concrete beams - whereby the pier caps are recessed within the depth of the longitudinal beams. The purpose of this recession i...

  6. Remediation of Centre Pier, Port Hope, Ontario: Historical, Logistical, Regulatory and Technical Challenges - 13118

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson Jones, Andrea; Case, Glenn; Lawrence, Dave

    Centre Pier is a 3.9 ha property owned by the Commissioners of the Port Hope Harbour in the Municipality of Port Hope, Ontario, Canada. It is centrally located on the Port Hope waterfront and is bounded on the west by the Port Hope Harbour, on the east by the Ganaraska River, on the south by Lake Ontario, and on the north by a railway corridor. The property is currently leased by the Commissioners of the Port Hope Harbour to the Cameco Corporation which owns the four onsite building that are used as warehouse space for their uranium conversion facility locatedmore » on the western side of the Harbour. Remediation of this site forms part of the Port Hope Project being undertaken by Atomic Energy of Canada Limited (AECL) and Public Works and Government Services Canada (PWGSC) as part of the Port Hope Area Initiative (PHAI). Soil impacts include radiological, metals and petroleum hydrocarbons resulting from long term historical industrial use. Radiological impacts in soil extend across most of the site primarily within the upper metre of fill. Metals-contaminated soil is present across the entire site in the underlying fill material. The metals-contaminated fill extends to a maximum depth of 2.0 m below grade at the north end of the site which is underlain by peat. However, the metals-contaminated soil could extend to the top of the bedrock on the remainder of the site. Based on the elevation of the bedrock in the adjacent river and Harbour Basin, the metals-contaminated soil may extend to a depth of 5.6 m or 6.5 m below existing grade. Petroleum-contaminated soil is present on the southeast side of the site, where a storage tank farm was previously located. Challenges include: - The complex history of the site both relating to site use and Pier construction. Pier development began in the 1800's and was undertaken by many different entities. Modifications and repairs were made over the years resulting in several different types of Pier walls and fill that must be

  7. 33 CFR 165.1121 - Security Zone: Fleet Supply Center Industrial Pier, San Diego, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Center Industrial Pier, San Diego, CA. 165.1121 Section 165.1121 Navigation and Navigable Waters COAST... Guard District § 165.1121 Security Zone: Fleet Supply Center Industrial Pier, San Diego, CA. (a) Location. The following area is a security zone: the waters of San Diego Bay extending approximately 100...

  8. 16. DETAIL OF FLOOR BEAMS & VERTICAL PIER MEMBERS WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL OF FLOOR BEAMS & VERTICAL PIER MEMBERS WITH CROSS HATCH PATTERN INDICATING PREVIOUS USAGE OF MATERIALS, VIEW NORTH - Cottrell Road Bridge, Spanning CSX Transportation tracks, Vassar, Tuscola County, MI

  9. Structural strength deterioration of coastal bridge piers considering non-uniform corrosion in marine environments

    NASA Astrophysics Data System (ADS)

    Guo, Anxin; Yuan, Wenting; Li, Haitao; Li, Hui

    2018-04-01

    In the aggressive marine environment over a long-term service period, coastal bridges inevitably sustain corrosion-induced damage due to high sea salt and humidity. This paper investigates the strength reduction of coastal bridges, especially focusing on the effects of non-uniform corrosion along the height of bridge piers. First, the corrosion initiation time and the degradation of reinforcement and concrete are analyzed for bridge piers in marine environments. To investigate the various damage modes of the concrete cover, a discretization method with fiber cells is used for calculating time-dependent interaction diagrams of cross-sections of the bridge piers at the atmospheric zone and the splash and tidal zone under a combination of axial force and bending moment. Second, the shear strength of these aging structures is analyzed. Numerical simulation indicates that the strength of a concrete pier experiences dramatic reduction from corrosion initiation to the spalling of the concrete cover. Strength loss in the splash and tidal zone is more significant than in the atmospheric zone when structures' service time is assumed to be the same.

  10. The Multimedia Piers-Harris Children's Self-Concept Scale 2: Its Psychometric Properties, Equivalence with the Paper-and-Pencil Version, and Respondent Preferences.

    PubMed

    Flahive, Mon-hsin Wang; Chuang, Ying-Chih; Li, Chien-Mo

    2015-01-01

    A multimedia version of Piers-Harris Children's Self-Concept Scale 2 (Piers-Harris 2) was created with audio and cartoon animation to facilitate the measurement of self-concept among younger children. This study aimed to assess the psychometric qualities of the computer version of Piers-Harris 2 scores, examine its score equivalence with the paper-and-pencil version, and survey the respondent preference of the two versions. Two hundred and forty eight Taiwanese students from the first to fourth grade were recruited. In regard to the psychometric properties, high internal consistency (α = .91) was found for the total score of multimedia Piers-Harris 2. High interscale correlations (.77 to .83) of the multimedia Piers-Harris 2 scores and the results of confirmatory factor analysis suggested the multimedia Piers-Harris 2 contained good structural characteristics. The scores of the multimedia Piers-Harris 2 also had significant correlations with the scores of the Elementary School Children's Self Concept Scale. The equality of convergence and criterion-related validities of Piers-Harris 2 scores for the multimedia and paper-and-pencil versions and the results of ICCs between the scores of the multimedia and paper-and-pencil Piers-Harris 2 suggested their high level of equivalence. Participants showed more positive attitudes towards the multimedia version.

  11. The Multimedia Piers-Harris Children's Self-Concept Scale 2: Its Psychometric Properties, Equivalence with the Paper-and-Pencil Version, and Respondent Preferences

    PubMed Central

    Flahive, Mon-hsin Wang; Chuang, Ying-Chih; Li, Chien-Mo

    2015-01-01

    A multimedia version of Piers-Harris Children's Self-Concept Scale 2 (Piers-Harris 2) was created with audio and cartoon animation to facilitate the measurement of self-concept among younger children. This study aimed to assess the psychometric qualities of the computer version of Piers-Harris 2 scores, examine its score equivalence with the paper-and-pencil version, and survey the respondent preference of the two versions. Two hundred and forty eight Taiwanese students from the first to fourth grade were recruited. In regard to the psychometric properties, high internal consistency (α = .91) was found for the total score of multimedia Piers-Harris 2. High interscale correlations (.77 to .83) of the multimedia Piers-Harris 2 scores and the results of confirmatory factor analysis suggested the multimedia Piers-Harris 2 contained good structural characteristics. The scores of the multimedia Piers-Harris 2 also had significant correlations with the scores of the Elementary School Children’s Self Concept Scale. The equality of convergence and criterion-related validities of Piers-Harris 2 scores for the multimedia and paper-and-pencil versions and the results of ICCs between the scores of the multimedia and paper-and-pencil Piers-Harris 2 suggested their high level of equivalence. Participants showed more positive attitudes towards the multimedia version. PMID:26252499

  12. Analysis of large truck collisions with bridge piers : phase 1, report of guidelines for designing bridge piers and abutments for vehicle collisions.

    DOT National Transportation Integrated Search

    2010-05-01

    The American Association of State Highway and Transportation Officials (AASHTO) Load and : Resistance Factor Design (LRFD) Bridge Design Specifications require that abutments and piers located : within a distance of 30.0 ft of the edge of the road...

  13. Sacramento River Water Treatment Plant Intake Pier & Access Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  14. A smart ROV solution for ship hull and harbor inspection

    NASA Astrophysics Data System (ADS)

    Reed, Scott; Wood, Jon; Vazquez, Jose; Mignotte, Pierre-Yves; Privat, Benjamin

    2010-04-01

    Hull and harbor infrastructure inspections are frequently performed manually and involve quite a bit of risk and human and monetary resources. In any kind of threat and resource constrained environment, this involves unacceptable levels of risk and cost. Modern Remotely Operated Vehicles are highly refined machines that provide features and capabilities previously unavailable. Operations once carried out by divers can now be carried out more quickly, efficiently and safely by smart enabled ROVs. ROVs are rapidly deployable and capable of continuous, reliable operations in adverse conditions. They also provide a stable platform on which multiple sensors may be mounted and utilized to meet the harbor inspection problem. Automated Control software provides ROV's and their pilots with the capability to inspect complex, constrained environments such as those found in a harbor region. This application and the user interface allow the ROV to automatically conduct complex maneuvers relative to the area being inspected and relieves the training requirements and work load for the pilot, allowing he or she to focus on the primary task of survey, inspection and looking for possible threats (such as IEDs, Limpet Mines, signs of sabotage, etc). Real-time sensor processing tools can be integrated into the smart ROV solution to assist the operator. Automatic Target Recognition (ATR) algorithms are used to search through the sensor data collected by the ROV in real time. These algorithms provide immediate feedback on possible threats and notify the operator of regions that may require manual verification. Sensor data (sonar or video) is also mosaiced, providing the operator with real-time situational awareness and a coverage map of the hull or seafloor. Detected objects may also be placed in the context of the large scale characteristics of the hull (or bottom or pilings) and localized. Within the complex areas such as the harbor pier pilings and the running gear of the ship, real

  15. General interior view of first floor showroom, showing piers. Photograph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General interior view of first floor showroom, showing piers. Photograph taken April 1973. - Scarritt Building & Arcade, Ninth Street & Grand Avenue, & 819 Walnut Street, Kansas City, Jackson County, MO

  16. 11. VIEW OF MIDSPAN PIER SUPPORT (CYLINDRICAL CONCRETE WITH PROTECTIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF MIDSPAN PIER SUPPORT (CYLINDRICAL CONCRETE WITH PROTECTIVE METAL ENCASEMENT), LOOKING NORTHEAST, UPSTREAM - Hot Springs Bridge, Spanning Bruneau River, Hot Springs Road, Bruneau, Owyhee County, ID

  17. Construct Validation of the Piers-Harris Children's Self Concept Scale.

    ERIC Educational Resources Information Center

    Franklin, Melvin R., Jr.; And Others

    1981-01-01

    Results indicated that the Piers-Harris Children's Self Concept Scale demonstrates both convergent and discriminant validity in an assessment of a relatively stable and internally consistent construct. (Author/BW)

  18. 31. General view of piers showin 1983 repair resulting in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. General view of piers showin 1983 repair resulting in different deck chord configurations. VIEW NORTHWEST - Chelsea Street Bridge & Draw Tender's House, Spanning Chelsea River, Boston, Suffolk County, MA

  19. Deterioration of J-bar reinforcement in abutments and piers.

    DOT National Transportation Integrated Search

    2011-12-31

    Deterioration and necking of J-bars has been reportedly observed at the interface of the footing and stem wall during the demolition : of older retaining walls and bridge abutments. Similar deterioration has been reportedly observed between the pier ...

  20. Visitor center flight room, detail of twin structural piers at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Visitor center flight room, detail of twin structural piers at northeast corner supporting flight room dome - Wright Brothers National Memorial Visitor Center, Highway 158, Kill Devil Hills, Dare County, NC

  1. 18. Detail view of central pivot pier, drive gear rack, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Detail view of central pivot pier, drive gear rack, and stabilizing wheel, looking southwest - India Point Railroad Bridge, Spanning Seekonk River between Providence & East Providence, Providence, Providence County, RI

  2. Equivalent barge and flotilla impact forces on bridge piers.

    DOT National Transportation Integrated Search

    2008-06-01

    Bridge piers located in navigable inland waterways are designed to resist impact forces from barges and flotillas in addition to other design considerations (e.g., scour, dead and live loads, etc.). The primary design tool for estimating these forces...

  3. 18 CFR 1304.204 - Docks, piers, and boathouses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., boathouses, and all other residential water-use facilities shall not exceed a total footprint area of greater... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Docks, piers, and boathouses. 1304.204 Section 1304.204 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY...

  4. 18 CFR 1304.204 - Docks, piers, and boathouses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., boathouses, and all other residential water-use facilities shall not exceed a total footprint area of greater... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Docks, piers, and boathouses. 1304.204 Section 1304.204 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY...

  5. 12. Detail: pier wall and undersides of encased steel beams: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail: pier wall and undersides of encased steel beams: easternmost steel beam span, facing west. - Puente del Cano Perdomo, Route PR-2 spanning Cano Perdomo Channel, Arecibo, Arecibo Municipio, PR

  6. 78. VIEW SHOWING PLACEMENT OF LIFE SPAN SHOE ON PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. VIEW SHOWING PLACEMENT OF LIFE SPAN SHOE ON PIER 6, LOOKING NORTH, March 5, 1935 - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  7. 10. Detail of truss located on top the northeast pier, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Detail of truss located on top the northeast pier, looking southwest. - Bridge No. 4800, Spanning Minnesota River on Trunk Highway 4 between Brown & Nicollet Counties, Sleepy Eye, Brown County, MN

  8. Evaluation of pier-scour measurement methods and pier-scour predictions with observed scour measurements at selected bridge sites in New Hampshire, 1995-98

    DOT National Transportation Integrated Search

    2000-11-01

    In a previous study, 44 of 48 bridge sites examined in New Hampshire were categorized as scour critical. This report summarizes research conducted to evaluate pier-scour measurement methods and predictions at many of these sites. This evaluation incl...

  9. Fiber reinforced polymer (FRP) composite piles used on pier rehabilitation, Little Diamond Island, Casco Bay, Portland, Maine.

    DOT National Transportation Integrated Search

    2012-10-01

    Fiber reinforced polymer (FRP) composite piles were used on a pier rehabilitation project at : Little Diamond Island in Casco Bay near Portland Maine. The project was the replacement : of an aging wooden pier at the ferry berthing terminal. The FRP p...

  10. Apparent Sea Level Rise due to Loading of the Atlantic City Pier by Spectators Viewing (1929-1978) Diving Horses

    NASA Astrophysics Data System (ADS)

    Galvin, C.

    2012-12-01

    Cyril Galvin, Coastal Engineer Springfield, Virginia 22150 USA Since 1911, the Steel Pier at Atlantic City, New Jersey, has been the site of the Atlantic City tide gauge, except for two intervals: 1911-1921 when the gauge was at the Million Dollar Pier in Atlantic City, and 1985-1991 when the gauge was at the Ventnor Fishing Pier (see Table 2, Zervos, 2009). By design, the Steel Pier was an amusement pier, and its most famous amusement was the Diving Horses: they dove bareback with a woman rider from a platform about 40 feet above sea level. They did that between 1929 and 1978, except for seven years - a post-war period, 1945 to 1953, when diving was suspended. The popularity of the diving horses is recorded on photos of crowds which occupied the bleachers at the seaward end of the pier to view the diving horses. By my count, the crowd pictured in the end papers of the book by Steve Liebowitz (2009) was about 4000 people. Typically, there were multiple shows daily. The weight of the crowd, estimated from the count of the crowd, was about 150 tons. This weight was loaded down on the piles by the crowd of spectators, and unloaded between shows of the diving horses. Most of the piles supporting the pier deck were imbedded in sand newly deposited since 1850. Using Atlantic City sea levels from the PSMSL data base and historical facts from Liebowitz (2009), and beginning with a 1912 start of the tide gauge, the apparent sea level rose at a rate of 3.1mm/yr until 1929 when the horses began diving. With the 1929 start of diving, the apparent sea level rise tripled, averaging 9.4 mm/yr until the act was suspended in 1945. In the 1945-1953 interval, when the horses did not dive (no crowds on the pier), apparent sea level fell (sea level FELL) at a rate of -1.6 mm/yr. The horses resumed diving in 1953, when the apparent sea level resumed at a rate of 4.0mm/yr. This 4.0 mm/yr is identical to the longtime sea level trend (1911-2006) from Zervos (2009) of 3.99mm/yr The history

  11. 26. GENERAL VIEW LOOKING NORTH SHOWING THE STRUCTURAL PIERS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. GENERAL VIEW LOOKING NORTH SHOWING THE STRUCTURAL PIERS AND DRAFT CONE UNDER CONSTRUCTION. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  12. 7. DETAIL CENTRAL PIER (SKEWBACK) WITH BREAKWATER, UPSTREAM (EAST) SIDE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL CENTRAL PIER (SKEWBACK) WITH BREAKWATER, UPSTREAM (EAST) SIDE. NOTE FRACTURES ALONG BARREL ARCH EXTRADOS. - Roaring Creek Bridge, State Road 2005 spanning Roaring Creek in Locust Township, Slabtown, Columbia County, PA

  13. NORTH NORTHWEST, SHOWING ABUTMENTS AND PIER MADE OF CUT, SQUARED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH NORTHWEST, SHOWING ABUTMENTS AND PIER MADE OF CUT, SQUARED STONE WITH MORTARED JOINTS. - Crum Bridge, Spanning Little Muskingum River, TR 384A (formerly Old Camp Road), Rinard Mills, Monroe County, OH

  14. 77 FR 35862 - Safety Zone; Fleet Week Maritime Festival, Pier 66 Elliott Bay, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Zone; Fleet Week Maritime Festival, Pier 66 Elliott Bay, Seattle, WA AGENCY: Coast Guard, DHS. ACTION... Festival's Pier 66 Safety Zone in Elliott Bay, WA from 8 a.m. until 8 p.m. on August 1, 2012, however, it... Fleet Week Maritime Festival in 33 CFR 165.1330 on August 1, 2012, from 8 a.m. until 8 p.m.; however, it...

  15. 34. DETAILS OF CAISSON FOR PIERS 2, 3, 4 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DETAILS OF CAISSON FOR PIERS 2, 3, 4 AND 5 TO BE BUILT ON SOIL OVERBURDEN - East Bloomsburg Bridge, Spanning Susquehanna River at Pennsylvania Route 487 (Legislative Route 283), Bloomsburg, Columbia County, PA

  16. 13. Telephoto view looking east showing center pier and deck ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Telephoto view looking east showing center pier and deck superstructure. Jet Lowe, photographer, 1983 - Neshanic Station Lenticular Truss Bridge, State Route 567, spanning South Branch of Raritan River, Neshanic Station, Somerset County, NJ

  17. 42. Exterior view of dockage and barracks on piers used ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Exterior view of dockage and barracks on piers used during construction of minesweepers. Now used for storage. Sunken barge crane in foreground. - Barbour Boat Works, Tryon Palace Drive, New Bern, Craven County, NC

  18. 1. NORTHWEST CORNER ENTRANCE OF BUILDING, WITH VIADUCT PIER FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTHWEST CORNER ENTRANCE OF BUILDING, WITH VIADUCT PIER FOR JULIEN DUBUQUE BRIDGE IN FOREGROUND. VIEW TO EAST. - Commercial & Industrial Buildings, International Harvester Company Showroom, Office & Warehouse, 10 South Main Street, Dubuque, Dubuque County, IA

  19. 6. VIEW EAST OF CEMENT PIER AND TRAFFIC DECK SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW EAST OF CEMENT PIER AND TRAFFIC DECK SUPPORT SYSTEM; NOTE FLOOR BEAMS AND STRINGERS VIEWED FROM UNDERNEATH THE BRIDGE - Water Street Bridge, County Route 119/26, over Guyandotte River, Logan, Logan County, WV

  20. 19. ...INTAKE STRUCTURE AND PIER FOR SERVICE BRIDGE NEARING COMPLETION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. ...INTAKE STRUCTURE AND PIER FOR SERVICE BRIDGE NEARING COMPLETION. Volume XVI, No. 14, September 29, 1939. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  1. Behavior of reinforced concrete pier caps under concentrated bearing loads.

    DOT National Transportation Integrated Search

    1995-02-01

    At congested highway interchanges, the Texas Department of Transportation (TxDOT) uses narrow concrete piers and : shallow depth steel cap girders. Research Project ()"1302 is concerned with the connection detail between these two : elements. This re...

  2. DETAIL OF PIER C (CANADIAN SIDE), SHOWING LOWER CHORDS, VERTICALS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF PIER C (CANADIAN SIDE), SHOWING LOWER CHORDS, VERTICALS AND DIAGONALS. VIEW TO NORTH. - Blue Water Bridge, Spanning St. Clair River at I-69, I-94, & Canadian Route 402, Port Huron, St. Clair County, MI

  3. 13. View South, showing the remaining pier footings for the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View South, showing the remaining pier footings for the steam engine water tower for the Chesapeake and Ohio Railroad. - Cotton Hill Station Bridge, Spanning New River at State Route 16, Cotton Hill, Fayette County, WV

  4. Seismic retrofit of spliced sleeve connections for precast bridge piers.

    DOT National Transportation Integrated Search

    2017-03-01

    Grouted Splice Sleeve (GSS) connectors are being considered for connecting bridge columns, footings, and pier caps in Accelerated Bridge Construction (ABC). A repair technique for precast reinforced concrete bridge column-to-footing and column-to-pie...

  5. 6. DETAIL OF CONCRETE CYLINDER AND CONCRETEENCASED BEAM ON WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF CONCRETE CYLINDER AND CONCRETE-ENCASED BEAM ON WEST SIDE OF PIER 5 IMMEDIATELY SOUTH OF FOOTBRIDGE. - Baltimore Inner Harbor, Pier 5, South of Pratt Street between Market Place & Concord Street, Baltimore, Independent City, MD

  6. Elevation of pier building and main house looking south. Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation of pier building and main house looking south. Building at far right was fish smokehouse. Roof of building at right was used for drying fish. - Beacon Marine Basin, 211 East Main Street, Gloucester, Essex County, MA

  7. Propagule pressure determines recruitment from a commercial shipping pier.

    PubMed

    Hedge, Luke H; Johnston, Emma L

    2012-01-01

    Artificial structures associated with shipping and boating activities provide habitats for a diverse suite of non-indigenous marine species. Little is known about the proportion of invader success in nearby waters that is attributable to these structures. Areas close to piles, wharves and piers are likely to be exposed to increasing levels of propagule pressure, enhancing the recruitment of non-indigenous species. Recruitment of non-indigenous and native marine biofouling taxa were evaluated at different distances from a large commercial shipping pier. Since artificial structures also represent a desirable habitat for fish, how predation on marine invertebrates influences the establishment of non-indigenous and native species was also evaluated. The colonisation of several non-indigenous marine species declined rapidly with distance from the structure. Little evidence was found to suggest that predators have much influence on the colonisation success of marine sessile invertebrate species, non-indigenous or otherwise. It is suggested that propagule pressure, not predation, more strongly predicts establishment success in these biofouling assemblages.

  8. Seismic fragility curves of bridge piers accounting for ground motions in Korea

    NASA Astrophysics Data System (ADS)

    Nguyen, Duy-Duan; Lee, Tae-Hyung

    2018-04-01

    Korea is located in a slight-to-moderate seismic zone. Nevertheless, several studies pointed that the peak earthquake magnitude in the region can be reached to approximately 6.5. Accordingly, a seismic vulnerability evaluation of the existing structures accounting for ground motions in Korea is momentous. The purpose of this paper is to develop seismic fragility curves for bridge piers of a steel box girder bridge equipped with and without base isolators based on a set of ground motions recorded in Korea. A finite element simulation platform, OpenSees, is utilized to perform nonlinear time history analyses of the bridges. A series of damage states is defined based on a damage index which is expressed in terms of the column displacement ductility ratio. The fragility curves based on Korean motions were thereafter compared with the fragility curves generated using worldwide earthquakes to assess the effect of the two ground motion groups on the seismic fragility curves of the bridge piers. The results reveal that both non- and base-isolated bridge piers are less vulnerable during the Korean ground motions than that under worldwide earthquakes.

  9. PLANT AND PIER #2 EXCAVATION. View is to the northeast, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLANT AND PIER #2 EXCAVATION. View is to the northeast, looking from Humboldt County side of river toward Trinity County side - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  10. 33 CFR 334.293 - Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. 334.293 Section 334.293 Navigation and... RESTRICTED AREA REGULATIONS § 334.293 Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. (a) The area. (1) The waters within an area beginning at a point on the...

  11. 33 CFR 334.293 - Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. 334.293 Section 334.293 Navigation and... RESTRICTED AREA REGULATIONS § 334.293 Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. (a) The area. (1) The waters within an area beginning at a point on the...

  12. 33 CFR 334.293 - Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. 334.293 Section 334.293 Navigation and... RESTRICTED AREA REGULATIONS § 334.293 Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. (a) The area. (1) The waters within an area beginning at a point on the...

  13. 33 CFR 334.293 - Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. 334.293 Section 334.293 Navigation and... RESTRICTED AREA REGULATIONS § 334.293 Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. (a) The area. (1) The waters within an area beginning at a point on the...

  14. 33 CFR 334.293 - Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. 334.293 Section 334.293 Navigation and... RESTRICTED AREA REGULATIONS § 334.293 Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. (a) The area. (1) The waters within an area beginning at a point on the...

  15. Evaluation of RC Bridge Piers Retrofitted using Fiber-Reinforced Polymer (FRP)

    NASA Astrophysics Data System (ADS)

    Shayanfar, M. A.; Zarrabian, M. S.

    2008-07-01

    For many long years, steel reinforcements have been considered as the only tool for concrete confinements and studied widely, but nowadays application of Fiber Reinforced Polymer (FRP) as an effective alternative is well appreciated. Many bridges have been constructed in the past that are necessary to be retrofitted for resisting against the earthquake motions. The objective of this research is evaluation of nonlinear behavior of RC bridge piers. Eight RC bridge piers have been modeled by ABAQUS software under micromechanical model for homogeneous anisotropic fibers. Also the Bilinear Confinement Model by Nonlinear Transition Zone of Mirmiran has been considered. Then types and angles of fibers and their effects on the final responses were evaluated [1]. Finally, effects of retrofitting are evaluated and some suggestions presented.

  16. DETAIL OF VERTICAL AT PANEL OVER PIER C, SHOWING DECK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF VERTICAL AT PANEL OVER PIER C, SHOWING DECK, GUARDRAIL, VERTICAL AND UPPER CHORD, VIEW TO NORTHEAST. - Blue Water Bridge, Spanning St. Clair River at I-69, I-94, & Canadian Route 402, Port Huron, St. Clair County, MI

  17. Spatial practice, conceived space and lived space: Hong Kong's "Piers saga" through the Lefebvrian lens.

    PubMed

    Ng, Mee Kam; Tang, Wing Shing; Lee, Joanna; Leung, Darwin

    2010-01-01

    By applying the Lefebvrian lens, this paper tries to understand why unlike previous similar cases, the latest removal of the Star Ferry and Queen's Pier was so controversial. To Lefebvre, embedded in "spatial practices" that "secrete" a place are two contradicting spaces: "conceived spaces" produced by planners to create exchange values and "lived spaces" appropriated by citizens for use values. Applying Lefebvre's framework to examine the "Piers saga", it is found that the pre-Second World War (WWII) piers were "conceived" by spatial practices of a colonial and racially segregated trading enclave. The public space in the commercial heart that housed the previous generations of piers was not accessible to the Chinese community, thus denying them opportunities to appropriate them and turn them into "lived" spaces. It was only after WWII when the Government carried out further reclamation to meet the needs of an industrializing economy that inclusive public spaces were conceived in the commercial heart, enabling the general public to "appropriate" them as "lived" space. When the Government planned to remove this very first "lived" space in the political and economic heart of the city to conceive further reclamation for the restructuring economy, the more enlightened citizens were determined to defend it.

  18. 33 CFR 334.510 - U.S. Navy Fuel Depot Pier, St. Johns River, Jacksonville, Fla.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false U.S. Navy Fuel Depot Pier, St. Johns River, Jacksonville, Fla.; restricted area. 334.510 Section 334.510 Navigation and Navigable... REGULATIONS § 334.510 U.S. Navy Fuel Depot Pier, St. Johns River, Jacksonville, Fla.; restricted area. (a) The...

  19. 17. VIEW SOUTHWEST, SHARED MASONRY WALL PIER AND UNDERSIDE FRAMING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW SOUTHWEST, SHARED MASONRY WALL PIER AND UNDERSIDE FRAMING OF GIRDER SPAN - Route 1 Extension, Structure No. 0703-161, Spanning Conrail-Newark & New York Industrial tracks, Richards Lane, & Hawkins Street at Routes 1 & 9 Southbound, Newark, Essex County, NJ

  20. 7. DETAIL VIEW, LOOKING SOUTHWEST OF MASONRY PIER OUTER END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW, LOOKING SOUTHWEST OF MASONRY PIER OUTER END AT HEADGATES, WITH WEST INTAKE CHANNEL WALL BEYOND - Dundee Canal, Headgates, Guardlock & Uppermost Section, 250 feet northeast of Randolph Avenue, opposite & in line with East Clifton Avenue, Clifton, Passaic County, NJ

  1. Perspective view NW by 310. Note the concrete pier extending ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view NW by 310. Note the concrete pier extending from the bridge in the foreground. This way to allow maximum water flow during floods and rainy periods. - Weaverland Bridge, Quarry Road spanning Conestoga Creek, Terre Hill, Lancaster County, PA

  2. 77. VIEW SHOWING CONDITION OF OLD M STREET BRIDGE PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    77. VIEW SHOWING CONDITION OF OLD M STREET BRIDGE PIER 1 DOLPHIN, LOOKING SOUTHEAST, March 1, 1935. (Steamer Delta King is moored at River Lines Terminal.) - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  3. 5. DETAIL OF SOUTHERN ARCH. PIER AND ABUTMENTS HAVE BEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL OF SOUTHERN ARCH. PIER AND ABUTMENTS HAVE BEEN REINFORCED WITH CONCRETE. INTRADOS HAS BEEN PARGED WITH MORTAR. - Core Creek County Bridge, Spanning Core Creek, approximately 1 mile South of State Route 332 (Newtown Bypass), Newtown, Bucks County, PA

  4. 33 CFR 118.100 - Retroreflective panels on bridge piers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... six inches square. If the visibility required is more than one-half mile, the panels must be at least 12 inches square. (c) To mark bridge piers or channel sides on bridges not required to have bridge lighting. Lateral significant red triangles and green square retroreflective panels shall be used. The...

  5. 33 CFR 118.100 - Retroreflective panels on bridge piers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... six inches square. If the visibility required is more than one-half mile, the panels must be at least 12 inches square. (c) To mark bridge piers or channel sides on bridges not required to have bridge lighting. Lateral significant red triangles and green square retroreflective panels shall be used. The...

  6. 33 CFR 118.100 - Retroreflective panels on bridge piers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... six inches square. If the visibility required is more than one-half mile, the panels must be at least 12 inches square. (c) To mark bridge piers or channel sides on bridges not required to have bridge lighting. Lateral significant red triangles and green square retroreflective panels shall be used. The...

  7. 33 CFR 118.100 - Retroreflective panels on bridge piers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... six inches square. If the visibility required is more than one-half mile, the panels must be at least 12 inches square. (c) To mark bridge piers or channel sides on bridges not required to have bridge lighting. Lateral significant red triangles and green square retroreflective panels shall be used. The...

  8. 33 CFR 118.100 - Retroreflective panels on bridge piers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... six inches square. If the visibility required is more than one-half mile, the panels must be at least 12 inches square. (c) To mark bridge piers or channel sides on bridges not required to have bridge lighting. Lateral significant red triangles and green square retroreflective panels shall be used. The...

  9. 21 CFR 1240.86 - Protection of pier water system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION CONTROL OF COMMUNICABLE...

  10. 52. ARAII. Support piers for SL1 reactor building. September 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. ARA-II. Support piers for SL-1 reactor building. September 5, 1957. Ineel photo no. 57-4398. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  11. 26. Detail of south granite pier revealing riveted truss ends ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Detail of south granite pier revealing riveted truss ends and iron footing plates on top of granite cap stones. View north - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  12. View northeast, wharf A, portion AA, details showing earlier piers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast, wharf A, portion AA, details showing earlier piers and braces sloping toward water, reused charred plates for existing decking - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  13. Long-term remote sensing system for bridge piers and abutments.

    DOT National Transportation Integrated Search

    2010-03-01

    Scour and other natural hazards have the potential to undermine the stability of piers in highway bridges. This has led to brid : collapse in the past, and significant efforts have been undertaken to address the potential danger of scour and other ha...

  14. 8. VIEW, LOOKING SOUTHEAST OF RUBBLE MASONRY PIER AT END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW, LOOKING SOUTHEAST OF RUBBLE MASONRY PIER AT END OF EAST INTAKE CHANNEL WALL, WITH SOUTH GUARDLOCK END BEYOND - Dundee Canal, Headgates, Guardlock & Uppermost Section, 250 feet northeast of Randolph Avenue, opposite & in line with East Clifton Avenue, Clifton, Passaic County, NJ

  15. 12. DETAIL OF NORTH ABUTMENT (EAST SIDE) AND PIER. LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL OF NORTH ABUTMENT (EAST SIDE) AND PIER. LOOKING NORTH. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  16. INTERIOR OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTH. NOTE THE PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTH. NOTE THE PIER (CENTER) ON WHICH WAS WAS MOUNTED MAGNETIC MEASURING INSTRUMENTS FOR TESTING. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  17. 40. Detail of typical subdeck of granite pier showing humanscale ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Detail of typical subdeck of granite pier showing human-scale arched openings in pies. Note remnants of fender system. View north - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  18. Pier scour in clear-water conditions with non-uniform bed materials

    DOT National Transportation Integrated Search

    2012-05-01

    Pier scour design in the United States is currently accomplished through application of the Colorado State University : (CSU) equation. Since the Federal Highway Administration recommended the CSU equation in 2001, substantial : advances have been ma...

  19. 13. DETAIL VIEW, OF TAINTER GATE PIER, SHOWING RECESSES FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL VIEW, OF TAINTER GATE PIER, SHOWING RECESSES FOR EMERGENCY BULKHEADS AND DOGGING DEVICES, LOOKING SOUTHEAST (DOWN FACE). UPSTREAM FACE OF TAINTER GATE IS VISIBLE IN UPPER RIGHT CORNER - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  20. UNIDENTIFIED CATENARY SUSPENSION BRIDGE, SHOWING RIVETED METAL PIERS UNDER CONSTRUCTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    UNIDENTIFIED CATENARY SUSPENSION BRIDGE, SHOWING RIVETED METAL PIERS UNDER CONSTRUCTION. NOTE APPROACH SPANS OF PIPE CONSTRUCTION IN RIGHT BACKGROUND. 3/4 VIEW FROM BELOW. - Clear Fork of Brazos River Suspension Bridge, Spanning Clear Fork of Brazos River at County Route 179, Albany, Shackelford County, TX

  1. 6. View of lower dam masonry pier which houses the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of lower dam masonry pier which houses the sluice. Photograph taken from cut stone apron edging in Millstone Creek. VIEW WEST. - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  2. 5. Rear view of lower dam showing crest, masonry pier ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Rear view of lower dam showing crest, masonry pier and sluice gate. Photograph taken from east bank of the sandy beach. VIEW SOUTH - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  3. 13. DETAIL OF SOUTH PIER TOP (WEST SIDE) AND CANTILEVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF SOUTH PIER TOP (WEST SIDE) AND CANTILEVERED SIDEWALK. LOOKING NORTH. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  4. "U.S. Reclamation Service, Grand River Dam, details of piers 'C' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "U.S. Reclamation Service, Grand River Dam, details of piers 'C' & 'E,' Oct. 10, 1914." - Grand Valley Diversion Dam, Half a mile north of intersection of I-70 & Colorado State Route 65, Cameo, Mesa County, CO

  5. Mass transit : review of the South Boston piers transitway finance plan

    DOT National Transportation Integrated Search

    2000-11-09

    The Massachusetts Bay Transportation Authority (MBTA) is constructing a 1.5-mile underground transitway to connect its existing transit system with the South Boston Piers area, which is undergoing significant economic development. The South Boston Pi...

  6. 29. DETAIL, RUINS OF THE NORTH TRAINING WALL AT THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. DETAIL, RUINS OF THE NORTH TRAINING WALL AT THE EAST END, WHERE IT TURNS TO THE NORTH AND IS BURIED. LOOKING WEST FROM THE MIDDLE HARBOR PARK FISHING PIER. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  7. 25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING WEST FROM A POINT ABOUT 500 FEET FROM THE MIDDLE HARBOR PARK FISHING PIER. (Panoramic view 1 of 2). - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  8. 21 CFR 1240.86 - Protection of pier water system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION CONTROL OF COMMUNICABLE DISEASES Source and Use of Potable...

  9. 28. EAST END OF THE NORTH TRAINING WALL AT THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. EAST END OF THE NORTH TRAINING WALL AT THE FISHING PIER, FROM THE WATER, LOOKING NORTH-NORTHEAST. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  10. 51. ARAII. Camera looking southeast at foundation piers for SL1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. ARA-II. Camera looking southeast at foundation piers for SL-1 reactor building support. August 22, 1957. Ineel photo no. 57-4212. Photographer: Jack L. Anderson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  11. 10. A PHOTOGRAPH OF THE FIRST PIER ON THE EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. A PHOTOGRAPH OF THE FIRST PIER ON THE EAST END OF THE BRIDGE (NORTH ELEVATION). IT SUPPORTS A SOLID, SEMI-CIRCULAR ARCH. CONSIDERABLE SOIL HAS WASHED IN UNDER THE BRIDGE FROM THE BANKS OF THE RAVINE. - Main Street Bridge, Spanning East Fork Whitewater River, Richmond, Wayne County, IN

  12. Detail, squared cut stone masonry center pier, from northwest, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, squared cut stone masonry center pier, from northwest, showing original cut stone masonry, concrete-encased nose on upstream end, portion of squared cut stone masonry south abutment, and portion of truss superstructure - Castle Garden Bridge, Township Route 343 over Bennetts Branch of Sinnemahoning Creek, Driftwood, Cameron County, PA

  13. Development and evaluation of clear-water pier and contraction scour envelope curves in the Coastal Plain and Piedmont Provinces of South Carolina

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andral W.

    2016-01-01

    The U.S. Geological Survey in cooperation with the South Carolina Department of Transportation collected clear-water pier- and contraction-scour data at 116 bridges in the Coastal Plain and Piedmont Physiographic Provinces of South Carolina. Pier-scour depths collected in both provinces ranged from 0 to 8.0 feet. Contraction-scour depths collected in the Coastal Plain ranged from 0 to 3.9 feet. Using hydraulic data estimated with a one-dimensional flow model, predicted clear-water scour depths were computed with scour equations from the Federal Highway Administration Hydraulic Engineering Circular 18 and compared with measured scour. This comparison indicated that predicted clear-water scour depths, in general, exceeded measured scour depths and at times were excessive. Predicted clear-water contraction scour, however, was underpredicted approximately 30 percent of the time by as much as 7.1 feet. The investigation focused on clear-water pier scour, comparing trends in the laboratory and field data. This comparison indicated that the range of dimensionless variables (relative depth, flow intensity, relative grain size) used in laboratory investigations of pier scour, were similar to the range for field data in South Carolina, further indicating that laboratory relations may have some applicability to field conditions in South Carolina. Variables determined to be important in developing pier scour in laboratory studies were investigated to understand their influence on the South Carolina field data, and many of these variables appeared to be insignificant under field conditions in South Carolina. The strongest explanatory variables were pier width and approach velocity. Envelope curves developed from the field data are useful tools for evaluating reasonable ranges of clear-water pier and contraction scour in South Carolina. A modified version of the Hydraulic Engineering Circular 18 pier-scour equation also was developed as a tool for evaluating clearwater pier

  14. Pier and contraction scour prediction in cohesive soils at selected bridges in Illinois

    USGS Publications Warehouse

    Straub, Timothy D.; Over, Thomas M.

    2010-01-01

    This report presents the results of testing the Scour Rate In Cohesive Soils-Erosion Function Apparatus (SRICOS-EFA) method for estimating scour depth of cohesive soils at 15 bridges in Illinois. The SRICOS-EFA method for complex pier and contraction scour in cohesive soils has two primary components. The first component includes the calculation of the maximum contraction and pier scour (Zmax). The second component is an integrated approach that considers a time factor, soil properties, and continued interaction between the contraction and pier scour (SRICOS runs). The SRICOS-EFA results were compared to scour prediction results for non-cohesive soils based on Hydraulic Engineering Circular No. 18 (HEC-18). On average, the HEC-18 method predicted higher scour depths than the SRICOS-EFA method. A reduction factor was determined for each HEC-18 result to make it match the maximum of three types of SRICOS run results. The unconfined compressive strength (Qu) for the soil was then matched with the reduction factor and the results were ranked in order of increasing Qu. Reduction factors were then grouped by Qu and applied to each bridge site and soil. These results, and comparison with the SRICOS Zmax calculation, show that less than half of the reduction-factor method values were the lowest estimate of scour; whereas, the Zmax method values were the lowest estimate for over half. A tiered approach to predicting pier and contraction scour was developed. There are four levels to this approach numbered in order of complexity, with the fourth level being a full SRICOS-EFA analysis. Levels 1 and 2 involve the reduction factors and Zmax calculation, and can be completed without EFA data. Level 3 requires some surrogate EFA data. Levels 3 and 4 require streamflow for input into SRICOS. Estimation techniques for both EFA surrogate data and streamflow data were developed.

  15. Seismic retrofit of spliced sleeve connections for precast bridge piers : research brief.

    DOT National Transportation Integrated Search

    2017-03-01

    The rehabilitation method described in this paper concerns connections between precast columns and footings, and precast columns and pier caps. This research uses high-performance materials, including headed reinforcing bar, epoxy, nonshrink or expan...

  16. 107. View showing open caisson Pier 4 with anchor bolts ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    107. View showing open caisson Pier 4 with anchor bolts placed ready for last pour of concrete. Also pile driver driving falsework piles for south anchor arm. Located at end of the old ferry landing slip at Crockett side of straits. - Carquinez Bridge, Spanning Carquinez Strait at Interstate 80, Vallejo, Solano County, CA

  17. PBF Cooling Tower. Camera facing southwest. Round piers will support ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. Camera facing southwest. Round piers will support Tower's wood "fill" or "packing." Black-topped stack in far distance is at Idaho Chemical Processing Plant. Photographer: John Capek. Date: October 16, 1968. INEEL negative no. 68-4097 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  18. Effect of using guide walls and piers with different geometries on the flow at entrance of a spillway

    NASA Astrophysics Data System (ADS)

    Jahani, Matin; Sarkardeh, Hamed; Jabbari, Ebrahim

    2018-03-01

    In the present paper, the effect of guide wall and pier geometry on the flow pattern of a dam spillway was studied. Different scenarios were numerically simulated to optimize the geometry of the guide walls and piers of the spillway in different hydraulic conditions. The RNG and VOF models were used for turbulence and free surface simulations, respectively. Numerical results were validated with experimental data and good agreement was found with an average relative deviation of less than 10%. Results showed that the vertical inclination of the guide wall and pier was the main affecting factor in the approach flow condition through the spillway. A 44% increase in the vertical inclination of the guide wall resulted in a 43% reduction of the turbulence factor and in a 13% increment of the discharge coefficient of the spillway. By increasing the vertical inclination of the piers of the spillway by 28%, the flow behaviour becomes more uniform and the discharge coefficient increases by as much as 11%. Moreover, the results indicate that increasing the straight length of the guide wall leads to a reduction of the depth-averaged velocity and of the turbulence energy in the approach channel.

  19. GARAGE EXTERIOR EAST SIDE AND REAR SHOWING PIER SUPPORTS UNDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GARAGE EXTERIOR EAST SIDE AND REAR SHOWING PIER SUPPORTS UNDER SHED-ROOFED REAR STORAGE COMPARTMENT, ASBESTOS SIDING OVER ORIGINAL WOOD SIDING, AND SINGLE CASEMENT WINDOW OVER REAR STORAGE COMPARTMENT. VIEW TO NORTHWEST - Big Creek Hydroelectric System, Big Creek Town, Operator House Garage, Orchard Avenue south of Huntington Lake Road, Big Creek, Fresno County, CA

  20. 23. DETAIL PHOTO OF A TYPICAL PIER BELT COURSE AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. DETAIL PHOTO OF A TYPICAL PIER BELT COURSE AT THE SPRING LINE OF ONE OF THE ARCHES. IT IS BEVELLED AND SUPPORTED BY A SIMPLE CAVETTO MOLDING. THE PILE OF AGGREGATE ON THE COPING HAS FALLEN FROM THE ERODING ARRISES ABOVE. - Main Street Bridge, Spanning East Fork Whitewater River, Richmond, Wayne County, IN

  1. Piers Sellers

    NASA Image and Video Library

    2017-12-08

    Piers Sellers is currently Deputy Director of the Sciences and Exploration Directorate and Acting Director of the Earth Sciences Division at NASA/GSFC. He was born and educated in the United Kingdom and moved to the U.S. in 1982 to carry out climate research at NASA/GSFC. From 1982 to 1996, he worked on global climate problems, particularly those involving interactions between the biosphere and the atmosphere, and was involved in constructing computer models of the global climate system, satellite data interpretation and conducting large-scale field experiments in the USA, Canada, Africa, and Brazil. He served as project scientist for the first large Earth Observing System platform, Terra, launched in 1998. He joined the NASA astronaut corps in 1996 and flew to the International Space Station (ISS) in 2002, 2006, and 2010, carrying out six spacewalks and working on ISS assembly tasks. He returned to Goddard Space Flight Center in June, 2011. Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. 6. VIEW OF THE EASTERN BRIDGE ELEVATION, SHOWING CENTRAL PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF THE EASTERN BRIDGE ELEVATION, SHOWING CENTRAL PIER AND ASSOCIATED SUPERSTRUCTURE, AND CANTILEVERED NORTHERN TRUSS SECTION. NOTE THE JOIN BETWEEN EYE-BAR (LEFT) AND RIVETED CHANNEL (RIGHT) LOWER BRIDGE CHORDS AT CENTER LEFT OF PHOTOGRAPH. FACING NORTH. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA

  3. Development and Evaluation of Clear-Water Pier and Contraction Scour Envelope Curves in the Coastal Plain and Piedmont Provinces of South Carolina

    DOT National Transportation Integrated Search

    2016-08-01

    The U.S. Geological Survey in cooperation with the South Carolina Department of Transportation collected clear-water pier- and contraction-scour data at 116 bridges in the Coastal Plain and Piedmont Physiographic Provinces of South Carolina. Pier-sco...

  4. A Temperature-Based Monitoring System for Scour and Deposition at Bridge Piers

    DOT National Transportation Integrated Search

    2017-05-01

    Stream flows around a bridge pier can be fast and highly turbulent causing large shear stresses that may mobilize streambed sediment resulting in scour around bridge foundations. Scour is the leading cause of bridge failure in the USA because it comp...

  5. Pier Moment-Rotation of Compact and Noncompact HPS70W I-Girders.

    DOT National Transportation Integrated Search

    2003-06-01

    A project to study the pier moment-rotation behavior of compact and noncompact high performance steel HPS70W bridge I-girders was conducted at Colorado State University in the context of examining two : restrictions for inelastic design of steel brid...

  6. 78 FR 38582 - Safety Zones; Multiple Firework Displays in Captain of the Port, Puget Sound Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... Holmes Harbor, Elliot Bay Pier 90, and Southeast of Alki Point Light (approx. 1500 yds.) for various... from coming too close to the fireworks display and the associated hazards. C. Discussion of the Final... Elliot Bay, Pier 90; and Tuxedo and Tennis Shoes Event on July 20, 2013, near Alki Point Light. All...

  7. The Status and Prospect of Research into Protective Structures of Bridge Piers against Rockfall Impact

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Zhang, Shan; Zhang, Junfa; Wu, Xiangnan

    2017-06-01

    Rockfall impact on bridge piers threats severely the mountain bridge structures of lifeline engineering. Intended for mountain bridge pier protection against rockfall impact, the paper conducted comprehensive reviews on the research status of impact effects, anti-collision structure, impact response to rockfall, and protective design at home and abroad, and proposed a new-type protective structure against rockfall impact. In addition, the paper carried out deep studies on such key scientific issues as impact effect calculation, protective materials against rockfall impact, damage mechanism of protective units, and parameter optimization on the system of protective structures against rockfall impact as well, aiming to strength disaster prevention of mountain bridge structures.

  8. 33 CFR 100.109 - Winter Harbor Lobster Boat Race, Winter Harbor, ME.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Winter Harbor Lobster Boat Race, Winter Harbor, ME. 100.109 Section 100.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Lobster Boat Race, Winter Harbor, ME. (a) Regulated area. The regulated area includes all waters of Winter...

  9. 13. PRATT STREET BULKHEAD: SECTIONS 2, 3, 4, 5, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. PRATT STREET BULKHEAD: SECTIONS 2, 3, 4, 5, AND 6, DRAWER 10, PLAN NO. 1, 1 IN. = 15 FT. AND 1/2 IN. = 1 FT., APRIL 25, 1906, DRAWING SHOWS DESIGN FOR PRATT STREET BULKHEAD BETWEEN PIERS - Baltimore Inner Harbor, Pier 5, South of Pratt Street between Market Place & Concord Street, Baltimore, Independent City, MD

  10. 10. GIRDER APPROACH ON YORKTOWN SIDE, SHOWING PIERS 8S5S (LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. GIRDER APPROACH ON YORKTOWN SIDE, SHOWING PIERS 8S-5S (LEFT TO RIGHT), AND FLOORBEAM/STRINGER SYSTEM. VIEW LOOKING NORTH. - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA

  11. 75 FR 78228 - Takes of Marine Mammals Incidental to Specified Activities; Columbia River Crossing Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... (Zalophus californianus), and harbor seals (Phoca vitulina). Specified Activities CRC is proposing a...-water bents, consisting of one to three drilled shafts. The permanent in-water piers of both the Columbia River and North Portland Harbor crossings will be constructed using drilled shafts, rather than...

  12. Pier Diego Siccardi (1880-1917) and the "Clinica del Lavoro" in the trench warfare.

    PubMed

    Riva, Michele Augusto; Caramella, Michela; Turato, Massimo; Cesana, Giancarlo

    2017-12-14

    The year 2017 marks the centenary of the death of the Italian scientist Pier Diego Siccardi (1880-1917), one of Luigi Devoto's assistants at the "Clinica del Lavoro" in Milan. To commemorate Siccardi and to describe the activities of the physicians of the "Clinica del Lavoro" during World War I. A comprehensive analysis was conducted on scientific papers written by Pier Diego Siccardi and by other physicians belonging to the Clinica del Lavoro, in the period 1915-1918. During the Great War, the Clinica del Lavoro became a military hospital, even though it indirectly maintained a role in Occupational Health, assisting women who had started to work to replace the men sent to the front. Devoto and his assistants were drafted as Army doctors, but continued their research activities while at the front; focusing on the diseases that affected the soldiers, mainly infections. Bleeding fevers and jaundice were endemic among Italian troops, but their etiology was unknown. Pier Diego Siccardi identified this syndrome as an infection caused by a spirochete, and was the first one to isolate the infectious agent. Siccardi prematurely died of the same disease as a consequence of a laboratory accident, which provided further confirmation for his research. The heroic life of Siccardi and his tragic death testify the important activities of the scientists of the "Clinica del Lavoro" in the years of the Great War.

  13. Investigation of Pier Scour in Coarse-Bed Streams in Montana, 2001 through 2007

    DOT National Transportation Integrated Search

    2011-01-01

    Determination of pier-scour potential is an important consideration in the hydraulic analysis and design of highway bridges that cross streams, rivers, and other waterways in the United States. A primary goal of ongoing research in the field of bridg...

  14. UNIDENTIFIED CATENARY SUSPENSION BRIDGE ON RIVETED METAL PIERS, SHOWING HOWE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    UNIDENTIFIED CATENARY SUSPENSION BRIDGE ON RIVETED METAL PIERS, SHOWING HOWE PIPE TRUSS RAILING AND TRUSSED DECK BEAMS TYPICAL TO BRIDGES BUILT BY FLINN-MOYER COMPANY. TRIPODAL PIPE TOWERS RESEMBLE CLEAR FORK OF THE BRAZOS SUSPENSION BRIDGE’S TOWERS PRIOR TO ENCASEMENT IN CONCRETE. NOTE COLLAPSED TRUSS IN RIVER. ELEVATION VIEW. - Clear Fork of Brazos River Suspension Bridge, Spanning Clear Fork of Brazos River at County Route 179, Albany, Shackelford County, TX

  15. 77 FR 50916 - Safety Zone; Boston Harbor's Rock Removal Project, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0767] RIN 1625-AA00 Safety Zone; Boston Harbor's Rock Removal Project, Boston Inner Harbor, Boston, MA AGENCY: Coast.... 165.T01-0767 Safety Zone; Boston Harbor's Rock Removal Project, Boston Inner Harbor, Boston, MA. (a...

  16. 12. PIERS 5S AND 4S, SHOWING TRANSITION AT 4S FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. PIERS 5S AND 4S, SHOWING TRANSITION AT 4S FROM GIRDER SPAN TO 'SUSPENDED' TRUSS SPAN AT U0. VIEW LOOKING WEST. - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA

  17. Proposal for monitoring concrete painting as a preventive maintenance tool (Abutments and pier caps).

    DOT National Transportation Integrated Search

    2017-07-01

    One of the growing number of preventive bridge maintenance activities conducted by the Kentucky Transportation Cabinet (KYTC) is washing and applying thin film protective coatings to bridge abutments and piers. Previous work conducted by Kentucky Tra...

  18. Overall contextual view of Building Nos. 92, 391, and 392, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall contextual view of Building Nos. 92, 391, and 392, taken from pier side, crane rails along bravo piers in foreground, palm tree and street light at right center, view facing east-northeast - U.S. Naval Base, Pearl Harbor, Marine Railway No. 1 Accessories House & Apprentice Welding School, Additions, Intersection of Avenue B & Sixth Street, Pearl City, Honolulu County, HI

  19. 33 CFR 125.15 - Access to waterfront facilities, and port and harbor areas, including vessels and harbor craft...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and port and harbor areas, including vessels and harbor craft therein. 125.15 Section 125.15....15 Access to waterfront facilities, and port and harbor areas, including vessels and harbor craft....09 to those waterfront facilities, and port and harbor areas, including vessels and harbor craft...

  20. 3D numerical simulation of flow field with incompletely flaring gate pier in large unit discharge and deep tail water project

    NASA Astrophysics Data System (ADS)

    Zhao, Zhou; Junxing, Wang

    2018-06-01

    Limited by large unit discharge above the overflow weir and deep tail water inside the stilling basin, the incoming flow inside stilling basin is seriously short of enough energy dissipation and outgoing flow still carries much energy with large velocity, bound to result in secondary hydraulic jump outside stilling basin and scour downstream river bed. Based on the RNG k-ɛ turbulence model and the VOF method, this paper comparatively studies flow field between the conventional flat gate pier program and the incompletely flaring gate pier program to reveal energy dissipation mechanism of incomplete flaring gate pier. Results show that incompletely flaring gate pier can greatly promote the longitudinally stretched water jet to laterally diffuse and collide in the upstream region of stilling basin due to velocity gradients between adjacent inflow from each chamber through shrinking partial overflow flow chamber weir chamber, which would lead to large scale vertical axis vortex from the bottom to the surface and enhance mutual shear turbulence dissipation. This would significantly increase energy dissipation inside stilling basin to reduce outgoing velocity and totally solve the common hydraulic problems in large unit discharge and deep tail water projects.

  1. Construction of 3.6m ARIES telescope enclosure with eccentric pier at Devasthal, Nainital

    NASA Astrophysics Data System (ADS)

    Bangia, Tarun

    Space optimized enclosure with eccentric pier for 3.6m ARIES telescope presents construction challenges at the unique observing site of Devasthal, Nainital, India. Enclosure comprises of about 16.5m diameter and 14m high insulated steel framed cylindrical dome rotating on a 14m high stationery dome supporting structure and a 24m × 12m extension structure building for accommodating aluminizing plant and ventilation system etc. Great deal of manual and mechanical excavation was carried out at the rocky site using rock breaking and JCB machines. Foundation bolts for columns of dome supporting structure and extension structure building were grouted after alignment with total station. A 7m diameter hollow cylindrical pier isolated from other structures and 1.85m eccentric with dome center designed due to space limitation at site is being casted for mounting 150 MT mass of the largest 3.6m telescope in the country. A 7m diameter template was fabricated for 3.6m pier top. Most of enclosure components are manufactured and tested in works before assembly/erection at site. Dome drive was tested with dummy loads using VVVF drive with 6 drive and 12 idler wheel assemblies at works to simulate dome weight and smooth operation before erection at site. A 4.2m wide motorized windscreen is being manufactured with a special grade synthetic fabric to withstand wind speed up to 15m/s.

  2. 33 CFR 110.134 - Portland Harbor, Maine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Anchorage A (general). Beginning at latitude 43°39′37″ N, longitude 070°14′35″ W; thence approximately 090... shore to the pier on the southern end of Little Diamond Island; 133° for 1200 yards; 270° to House...

  3. 33 CFR 110.134 - Portland Harbor, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Anchorage A (general). Beginning at latitude 43°39′37″ N, longitude 070°14′35″ W; thence approximately 090... shore to the pier on the southern end of Little Diamond Island; 133° for 1200 yards; 270° to House...

  4. 33 CFR 110.134 - Portland Harbor, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Anchorage A (general). Beginning at latitude 43°39′37″ N, longitude 070°14′35″ W; thence approximately 090... shore to the pier on the southern end of Little Diamond Island; 133° for 1200 yards; 270° to House...

  5. 33 CFR 110.134 - Portland Harbor, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Anchorage A (general). Beginning at latitude 43°39′37″ N, longitude 070°14′35″ W; thence approximately 090... shore to the pier on the southern end of Little Diamond Island; 133° for 1200 yards; 270° to House...

  6. Ultimate pier and contraction scour prediction in cohesive soils at selected bridges in Illinois.

    DOT National Transportation Integrated Search

    2013-09-01

    The Scour Rate In COhesive Soils-Erosion Function Apparatus (SRICOS-EFA) method includes an ultimate scour prediction that is : the equilibrium maximum pier and contraction scour of cohesive soils over time. The purpose of this report is to present t...

  7. Surface-geophysical techniques used to detect existing and infilled scour holes near bridge piers

    USGS Publications Warehouse

    Placzek, Gary; Haeni, F.P.

    1995-01-01

    Surface-geophysical techniques were used with a position-recording system to study riverbed scour near bridge piers. From May 1989 to May 1993. Fathometers, fixed- and swept-frequency con- tinuous seismic-reflection profiling (CSP) systems, and a ground-penetrating radar (GPR) system were used with a laser-positioning system to measure the depth and extent of existing and infilled scour holes near bridge piers. Equipment was purchased commercially and modified when necessary to interface the components and (or) to improve their performance. Three 200-kHz black-and-white chart- recording Fathometers produced profiles of the riverbed that included existing scour holes and exposed pier footings. The Fathometers were used in conjunction with other geophysical techniques to help interpret the geophysical data. A 20-kHz color Fathometer delineated scour-hole geometry and, in some cases, the thickness of fill material in the hole. The signal provided subbottom information as deep as 10 ft in fine-grained materials and resolved layers of fill material as thin as 1 foot thick. Fixed-frequency and swept-frequency CSP systems were evaluated. The fixed-frequency system used a 3.5-, 7.0-, or 14-kHz signal. The 3.5-kHz signal pene- trated up to 50 ft of fine-grained material and resolved layers as thin as 2.5-ft thick. The 14-kHz signal penetrated up to 20 ft of fine-grained material and resolved layers as thin as 1-ft thick. The swept-frequency systems used a signal that swept from 2- to 16-kHz. With this system, up to 50 ft of penetration was achieved, and fill material as thin as 1 ft was resolved. Scour-hole geometry, exposed pier footings, and fill thickness in scour holes were detected with both CSP systems. The GPR system used an 80-, 100-, or 300-megahertz signal. The technique produced records in water up to 15 ft deep that had a specific conductance less than 200x11ms/cm. The 100-MHz signal penetrated up to 40 ft of resistive granular material and resolved layers as

  8. Detail of middle panel at pivot pier and above the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of middle panel at pivot pier and above the two (2) center supports. The middle panel chords (not shown) were made strong enough to provide for the full bending moment with the span open and arms swinging. The middle posts support the operator's house. When closed, the bridge acts as two (2) separate simple spans, except a small amount of negative bending is accommodated due to a continuous condition. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  9. 33 CFR 165.T09-0417 - Safety Zone; Put-In-Bay Fireworks, Fox's the Dock Pier, South Bass Island; Put-In-Bay, OH.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Fox's the Dock Pier, South Bass Island; Put-In-Bay, OH. 165.T09-0417 Section 165.T09-0417 Navigation... the Dock Pier, South Bass Island; Put-In-Bay, OH. (a) Location. The following area is a temporary safety zone: All U.S. navigable waters of Lake Erie, South Bass Island, Put-In-Bay, OH within a 50-yard...

  10. 76 FR 1521 - Security Zone: Fleet Industrial Supply Center Pier, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2010-0423] RIN 1625-AA87 Security Zone: Fleet Industrial Supply Center Pier, San Diego, CA AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: The Coast Guard is removing a security zone on the navigable waters of San Diego...

  11. Closeup view under the track at the center/pivot pier showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view under the track at the center/pivot pier showing the system of distributing girders which transfer all the load of the swing span, both dead, live load, wind, etc., onto the circular drum, thence to the rim bearing 40 20-inch diameter wheels. Note: The track timber ties supported on the bottom truss chord of the swing span truss. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  12. New Control Over Silicone Synthesis using SiH Chemistry: The Piers-Rubinsztajn Reaction.

    PubMed

    Brook, Michael A

    2018-06-18

    There is a strong imperative to synthesize polymers with highly controlled structures and narrow property ranges. Silicone polymers do not lend themselves to this paradigm because acids or bases lead to siloxane equilibration and loss of structure. By contrast, elegant levels of control are possible when using the Piers-Rubinsztajn reaction and analogues, in which the hydrophobic, strong Lewis acid B(C 6 F 5 ) 3 activates SiH groups, permitting the synthesis of precise siloxanes under mild conditions in high yield; siloxane decomposition processes are slow under these conditions. A broad range of oxygen nucleophiles including alkoxysilanes, silanols, phenols, and aryl alkyl ethers participate in the reaction to create elastomers, foams and green composites, for example, derived from lignin. In addition, the process permits the synthesis of monofunctional dendrons that can be assembled into larger entities including highly branched silicones and dendrimers either using the Piers-Rubinsztajn process alone, or in combination with hydrosilylation or other orthogonal reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Harbor, to the northwest point. (b) Effective times and dates. This safety and security zone will be in... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone...

  14. 33 CFR 110.205 - Chicago Harbor, Ill.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the east face of the filtration plant. (2) Anchorage B, south arm. West of a line parallel with and... line with the east face of the Municipal Pier; and south of a line perpendicular to the south arm 700... face of the Southeast guidewall) and 28.0 feet West of the SE Guide Wall Light; thence Westerly and...

  15. Conceptual Designs for Berthing Pier Galleries and Deck Lighting.

    DTIC Science & Technology

    1983-06-01

    to 100 feet wide and 1,200 feet long, providing four 600-foot-long berths. o For des ign purposes, a pier should accommodate a maximum of eight ships...points4. It identifies the locrit ion aind 01 ovat ion otf eajch service for oarih des igo ship frht tror and port si d-. Th is, wais used tO de to rino t...rung a n I or ea chI 11li O!l ip11), :id pos it ion i g moo r inig f it t ings alIong the p)iecr t o prope-rly, .ree;,modrite all of the des ;ign clalss

  16. 18 CFR 1304.206 - Requirements for community docks, piers, boathouses, or other water-use facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Requirements for community docks, piers, boathouses, or other water-use facilities. 1304.206 Section 1304.206 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL OF CONSTRUCTION IN THE TENNESSEE RIVER...

  17. 18 CFR 1304.206 - Requirements for community docks, piers, boathouses, or other water-use facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Requirements for community docks, piers, boathouses, or other water-use facilities. 1304.206 Section 1304.206 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL OF CONSTRUCTION IN THE TENNESSEE RIVER...

  18. 75 FR 8563 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ...-AA00 Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA AGENCY: Coast Guard... Fleet Week Maritime Festival. Entry into, transit through, mooring, or anchoring within these zones is... Fleet Week Maritime Festival. This safety zone is necessary as these events have historically resulted...

  19. 50 CFR 86.13 - What is boating infrastructure?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., currents, etc., that provide a temporary safe anchorage point or harbor of refuge during storms); (f) Floating docks and fixed piers; (g) Floating and fixed breakwaters; (h) Dinghy docks (floating or fixed...

  20. Autonomous measurements of bridge pier and abutment scour using motion-sensing radio transmitters : technical transfer summary.

    DOT National Transportation Integrated Search

    2010-01-01

    Scour around the foundations (piers and abutments) of a bridge due to river flow is often referred to as bridge scour. Bridge scour is a problem of national scope that has dramatic impacts on economics and safety of the traveling public. Bridge...

  1. 75 FR 78601 - Drawbridge Operation Regulation; Gulf Intracoastal Waterway, New Orleans Harbor, Inner Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ... Operation Regulation; Gulf Intracoastal Waterway, New Orleans Harbor, Inner Harbor Navigation Canal, New Orleans, Orleans Parish, LA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from... Harvey Lock), at New Orleans, Orleans Parish, Louisiana. This deviation is necessary to adjust the...

  2. VIEW OF FOREDECK FROM ATOP PILOT HOUSE, SIGNAL BELL SEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FOREDECK FROM ATOP PILOT HOUSE, SIGNAL BELL SEEN IN FOREGROUND WITH AUXILIARY MUSHROOM ANCHOR AND LIFTING TACKLE ON STARBOARD (RIGHT) SIDE. - Lightship 116, Pier 3, Inner Harbor, Baltimore, Independent City, MD

  3. 18 CFR 1304.206 - Requirements for community docks, piers, boathouses, or other water-use facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Requirements for community docks, piers, boathouses, or other water-use facilities. 1304.206 Section 1304.206 Conservation of... management shall be in accordance with the requirements of § 1304.203 except that, at TVA's discretion, the...

  4. 18 CFR 1304.206 - Requirements for community docks, piers, boathouses, or other water-use facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Requirements for community docks, piers, boathouses, or other water-use facilities. 1304.206 Section 1304.206 Conservation of... management shall be in accordance with the requirements of § 1304.203 except that, at TVA's discretion, the...

  5. 18 CFR 1304.206 - Requirements for community docks, piers, boathouses, or other water-use facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Requirements for community docks, piers, boathouses, or other water-use facilities. 1304.206 Section 1304.206 Conservation of... management shall be in accordance with the requirements of § 1304.203 except that, at TVA's discretion, the...

  6. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″W and 41°51′11″ N, 087°36′22″ W. (b...

  7. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″ W and 41°51′11″ N, 087°36′22″ W. (b...

  8. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″W and 41°51′11″ N, 087°36′22″ W. (b...

  9. 75 FR 53195 - Security Zone; U.S. Coast Guard BSU Seattle, Pier 36, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... its effects on them and participate in the rulemaking process. Small businesses may send comments on... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2010-0021] RIN 1625-AA87 Security Zone; U.S. Coast Guard BSU Seattle, Pier 36, Seattle, WA AGENCY: Coast Guard, DHS. ACTION...

  10. Pearl Harbor Biological Survey

    DTIC Science & Technology

    1974-08-30

    properties, uses, and driving mechanisms affecting the harbor is given. The methods of obtaining current data, salinity profiles, and temperature... salinities were used for each calibration In order to check the salinity computation mechanism of the Instrument. Temperature calibrations were...Water Temperature Contours for Navy Thermal Discharges 3.2-23 3.2-7. General Layout of Pearl Harbor Showing Mean Monthly Salinity (3L) Variation

  11. Sediment toxicity in Savannah Harbor

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.

    1995-01-01

    Savannah Harbor, located near the mouth of the Savannah River, Georgia and South Carolina, is impacted by industrial and municipal effluents. Potential release of contaminants stored in harbor sediments through dredging and shipping operations requires that contaminated areas be identified for proper management of the system and protection of wildlife resources. During 1991, Hyalella azteca were exposed in 10-d static-renewal toxicity tests to pore-water and solid-phase sediment samples collected from 26 sites within Savannah Harbor. Pore-water toxicity was more pronounced than that for solidphase sediment. Toxicity and reduced leaf consumption demonstrated impaired sediment quality at specific sites within Savannah Harbor and Back River. Factors responsible for the decreased sediment quality were ammonia, alkalinity, and metal concentrations (cadmium, chromium, lead, molybdenum, and nickel). Elevated concentrations of metals and toxicities in Back River sediments indicated impacts from adjacent dredge-spoil areas.

  12. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Channel Islands Harbor, CA. 80...

  13. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Channel Islands Harbor, CA. 80...

  14. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Channel Islands Harbor, CA. 80...

  15. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Channel Islands Harbor, CA. 80...

  16. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Channel Islands Harbor, CA. 80...

  17. A Guide for Marina and Harbor Managers

    DTIC Science & Technology

    1991-03-01

    the natural ecology of an area, and harm wildlife habitat and breeding areas. Permit authority and environmental protection agencies are designed to...designed to serve boats of various sizes. They are usually constructed of wood or metal docks that are either mounted on piers, anchored, or of the...find information on berthing facilities for possible construction. He would be referred to the laws section and the regulation that governs contruction

  18. The Boston Harbor Project, and large decreases in loadings of eutrophication-related materials to Boston Harbor.

    PubMed

    Taylor, David I

    2010-04-01

    Boston Harbor, a bay-estuary in the north-east USA, has recently been the site of one of the largest wastewater infrastructure projects conducted in the USA, the Boston Harbor Project (BHP). The BHP, which was conducted from 1991 to 2000, ended over a century of direct wastewater treatment facility discharges to the harbor. The BHP caused the loadings of total nitrogen (TN), total phosphorus (TP), total suspended solids (TSS) and particulate organic carbon (POC) to the harbor, to decrease by between 80% and 90%. Approximately one-third of the decreases in TSS and POC loadings occurred between 1991 and 1992; the remaining two-thirds, between 1995 and 2000. For TN and TP, the bulk of the decreases occurred between 1997 or 1998, and 2000. (c) 2009 Elsevier Ltd. All rights reserved.

  19. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  20. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  1. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  2. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  3. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  4. 76 FR 66274 - Small Takes of Marine Mammals Incidental to Specified Activities; Pier 36/Brannan Street Wharf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... biological functions including, but not limited to, (1) Social interactions; (2) foraging; (3) orientation...). Pinnipeds produce a wide range of social signals, most occurring at relatively low frequencies (Southall et... piers or opportunistically foraging. Pinnipeds produce a wide range of social signals, most occurring at...

  5. Time rate of local scour at complex bridge piers field and laboratory analyses : final report, April 2009.

    DOT National Transportation Integrated Search

    2009-04-01

    A local scour evolution field study was conducted under this contract. One of the piers on the A1A Bridge over the Intracoastal Waterway (ICCW) in Fort Pierce, Florida was selected for the test site. The existing local scour hole was filled with sand...

  6. 33 CFR 110.130 - Bar Harbor, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bar Harbor, Maine. 110.130... ANCHORAGE REGULATIONS Anchorage Grounds § 110.130 Bar Harbor, Maine. (a) Anchorage grounds. (1) Anchorage “A” is that portion of Frenchman Bay, Bar Harbor, ME enclosed by a rhumb line connecting the following...

  7. 33 CFR 165.1330 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, Washington.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Seattle, Washington. (a) Location. The following area is a safety zone: All waters extending 100 yards... minutes following the conclusion of the Parade of Ships. For the purpose of this rule, the Parade of Ships includes both the pass and review of the ships near Pier 66 and the aerial demonstrations immediately...

  8. 33 CFR 165.1330 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, Washington.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Seattle, Washington. (a) Location. The following area is a safety zone: All waters extending 100 yards... minutes following the conclusion of the Parade of Ships. For the purpose of this rule, the Parade of Ships includes both the pass and review of the ships near Pier 66 and the aerial demonstrations immediately...

  9. 33 CFR 165.1330 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, Washington.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Seattle, Washington. (a) Location. The following area is a safety zone: All waters extending 100 yards... minutes following the conclusion of the Parade of Ships. For the purpose of this rule, the Parade of Ships includes both the pass and review of the ships near Pier 66 and the aerial demonstrations immediately...

  10. 33 CFR 165.1330 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, Washington.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Seattle, Washington. (a) Location. The following area is a safety zone: All waters extending 100 yards... minutes following the conclusion of the Parade of Ships. For the purpose of this rule, the Parade of Ships includes both the pass and review of the ships near Pier 66 and the aerial demonstrations immediately...

  11. 33 CFR 110.9 - Wells Harbor, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Wells Harbor, Maine. 110.9... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.9 Wells Harbor, Maine. (a) Anchorage “A”. All of the... approximately 5,800 sq. yards, encompassing the central portion of Wells Harbor. (b) Anchorage “B”. All of the...

  12. 33 CFR 110.9 - Wells Harbor, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Wells Harbor, Maine. 110.9... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.9 Wells Harbor, Maine. Link to an amendment published at..., encompassing the central portion of Wells Harbor. (b) Anchorage “B”. All of the waters enclosed by a line...

  13. Use of Fiber Bragg Grating (FBG) sensors for performing automated bridge pier structural damage detection and scour monitoring.

    DOT National Transportation Integrated Search

    2012-04-01

    The goal of this study was to evaluate the performance of Fiber Bragg Grating (FBG) sensors able to detect impacts with : different frequencies on a bridge pier. The FBG technology was evaluated under controlled conditions in a laboratory : flume set...

  14. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor and U.S. breakwater. 207.610 Section 207... NAVIGATION REGULATIONS § 207.610 St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and...

  15. 33 CFR 117.272 - Boot Key Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Boot Key Harbor. 117.272 Section 117.272 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.272 Boot Key Harbor. The draw of the Boot Key Harbor drawbridge, mile 0.13, between...

  16. Defense.gov Special Report: Pearl Harbor Anniversary

    Science.gov Websites

    Department of Defense Submit Search 71th Anniversary of the Attack on Pearl Harbor - World War II News Joint Chiefs of Staff, saluted veterans at the National World War II Memorial in Washington, D.C Attack Video Return To Pearl Harbor Return To Pearl Harbor World War II Timeline The attack on Pearl

  17. Non-linear vehicle-bridge-wind interaction model for running safety assessment of high-speed trains over a high-pier viaduct

    NASA Astrophysics Data System (ADS)

    Olmos, José M.; Astiz, Miguel Á.

    2018-04-01

    In order to properly study the high-speed traffic safety on a high-pier viaduct subject to episodes of lateral turbulent winds, an efficient dynamic interaction train-bridge-wind model has been developed and experimentally validated. This model considers the full wheel and rail profiles, the friction between these two bodies in contact, and the piers P-Delta effect. The model has been used to determine the critical train and wind velocities from which the trains cannot travel safely over the O'Eixo Bridge. The dynamic simulations carried out and the results obtained in the time domain show that traffic safety rates exceed the allowed limits for turbulent winds with mean velocities at the deck higher than 25 m/s.

  18. Geoscience rediscovers Phoenicia's buried harbors

    NASA Astrophysics Data System (ADS)

    Marriner, Nick; Morhange, Christophe; Doumet-Serhal, Claude; Carbonel, Pierre

    2006-01-01

    After centuries of archaeological debate, the harbors of Phoenicia's two most important city states, Tyre and Sidon, have been rediscovered, and including new geoarcheological results reveal how, where, and when they evolved after their Bronze Age foundations. The early ports lie beneath their present urban centers, and we have indentified four harbor phases. (1) During the Bronze Age, Tyre and Sidon were characterized by semi-open marine coves that served as protoharbors. (2) Biostratigraphic and lithostratigraphic data indicate the presence of early artificial basins after the first millennium B.C. (3) The harbors reached their apogees during the Greco-Roman and Byzantine periods. (4) Silting up and coastal progradation led to burial of the medieval basins, lost until now.

  19. 78 FR 38577 - Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ...-AA08 Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor... waters of the Potomac River on September 21, 2013. These special local regulations are necessary to... temporarily restrict vessel traffic in a portion of the Potomac River during the event. DATES: This rule is...

  20. 33 CFR 334.102 - Sandy Hook Bay, Naval Weapons Station EARLE, Piers and Terminal Channel, restricted area...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Sandy Hook Bay, Naval Weapons... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.102 Sandy Hook Bay, Naval Weapons Station EARLE, Piers..., shall be enforced by the Commanding Officer, Naval Weapons Station Earle, and/or other persons or...

  1. 33 CFR 334.102 - Sandy Hook Bay, Naval Weapons Station EARLE, Piers and Terminal Channel, restricted area...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Sandy Hook Bay, Naval Weapons... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.102 Sandy Hook Bay, Naval Weapons Station EARLE, Piers..., shall be enforced by the Commanding Officer, Naval Weapons Station Earle, and/or other persons or...

  2. 33 CFR 334.102 - Sandy Hook Bay, Naval Weapons Station EARLE, Piers and Terminal Channel, restricted area...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Sandy Hook Bay, Naval Weapons... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.102 Sandy Hook Bay, Naval Weapons Station EARLE, Piers..., shall be enforced by the Commanding Officer, Naval Weapons Station Earle, and/or other persons or...

  3. 33 CFR 334.102 - Sandy Hook Bay, Naval Weapons Station EARLE, Piers and Terminal Channel, restricted area...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Sandy Hook Bay, Naval Weapons... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.102 Sandy Hook Bay, Naval Weapons Station EARLE, Piers..., shall be enforced by the Commanding Officer, Naval Weapons Station Earle, and/or other persons or...

  4. 33 CFR 334.102 - Sandy Hook Bay, Naval Weapons Station EARLE, Piers and Terminal Channel, restricted area...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Sandy Hook Bay, Naval Weapons... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.102 Sandy Hook Bay, Naval Weapons Station EARLE, Piers..., shall be enforced by the Commanding Officer, Naval Weapons Station Earle, and/or other persons or...

  5. 78 FR 18274 - Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ...-AA08 Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor... event,'' to be held on the waters of the Potomac River on September 21, 2013. These special local... representative. This action is intended to temporarily restrict vessel traffic in a portion of the Potomac River...

  6. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  7. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  8. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  9. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  10. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  11. 33 CFR 117.811 - Tonawanda Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tonawanda Harbor. 117.811 Section 117.811 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.811 Tonawanda Harbor. The draw of the...

  12. 33 CFR 165.1324 - Safety and Security Zone; Cruise Ship Protection, Elliott Bay and Pier-91, Seattle, Washington.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Areas Thirteenth Coast Guard District § 165.1324 Safety and Security Zone; Cruise Ship Protection... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zone; Cruise Ship Protection, Elliott Bay and Pier-91, Seattle, Washington. 165.1324 Section 165.1324 Navigation and...

  13. 77 FR 59551 - Safety Zone, Changes to Original Rule; Boston Harbor's Rock Removal Project, Boston Inner Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0767] RIN 1625-AA00 Safety Zone, Changes to Original Rule; Boston Harbor's Rock Removal Project, Boston Inner Harbor... original provisions of that temporary final rule, but adds two additional safety zones necessary for the...

  14. Teaching about Pearl Harbor. Curriculum Enhancement Series #1.

    ERIC Educational Resources Information Center

    Shields, Anna Marshall

    These materials consist of sample lesson plans for teaching about the Japanese attack on Pearl Harbor on December 7, 1941, in both U.S. and world history classes. The lesson plans challenge students to examine how current attitudes toward the Japanese may be rooted in World War II and Pearl Harbor. Selected bibliographies on Pearl Harbor, World…

  15. 76 FR 11332 - Drawbridge Operation Regulation; Duluth Ship Canal, Duluth-Superior Harbor, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... for the Duluth Aerial Lift Bridge for vessels under 300 gross tons. Scheduled drawbridge openings will... North Pier Light at the lakeward end of the Duluth Ship Canal. It is a vertical lift type bridge that...

  16. Effects of Gradation and Cohesion on Bridge Scour : Volume 4 : Experimental Study of Scour Around Circular Piers in Cohesive Soils

    DOT National Transportation Integrated Search

    1999-12-01

    The effects of cohesion on pier scour was investigated experimentally using four-foot-wide, eight-foot-wide, and twenty-foot-wide test flumes at the Engineering Research Center, Colorado State University. In the first part of the experiments, clay-sa...

  17. [Pearl Harbor.

    ERIC Educational Resources Information Center

    Johnson, Jennifer, Ed.

    1992-01-01

    This issue of "Loblolly Magazine" was written in observance of the 50th anniversary of the U.S. entrance into World War II. The publication features interviews conducted by East Texas high school students with Clarence Otterman, one of the few survivors of the crew of the USS Arizona, which was bombed during the attack on Pearl Harbor,…

  18. General Model Study of Scour at Proposed Pier Extensions - Santa Ana River at BNSF Bridge, Corona, California

    DTIC Science & Technology

    2017-11-01

    model of the bridge piers, other related structures, and the adjacent channel. Data from the model provided a qualitative and quantitative evaluation of...minus post-test lidar survey . ......................... 42 Figure 38. Test 1 (30,000 cfs existing conditions) pre- minus post-test lidar survey ...43 Figure 39. Test 7 (15,000 cfs original proposed conditions) pre- minus post-test lidar survey

  19. 76 FR 46626 - Safety Zone; Discovery World Private Wedding Firework Displays, Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ...-AA00 Safety Zone; Discovery World Private Wedding Firework Displays, Milwaukee, WI AGENCY: Coast Guard... the public interest. Background and Purpose The Discovery World Private Wedding fireworks are a City... will encompass all waters of Milwaukee Harbor in the vicinity of the Discovery World pier in Milwaukee...

  20. 32 CFR 765.6 - Regulations for Pearl Harbor, Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Regulations for Pearl Harbor, Hawaii. 765.6... RULES RULES APPLICABLE TO THE PUBLIC § 765.6 Regulations for Pearl Harbor, Hawaii. The Commander, U.S. Naval Base, Pearl Harbor, Hawaii, is responsible for prescribing and enforcing such rules and...

  1. 75 FR 34927 - Safety Zone; Parade of Ships, Seattle SeaFair Fleet Week, Pier 66, Elliott Bay, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ...-AA00 Safety Zone; Parade of Ships, Seattle SeaFair Fleet Week, Pier 66, Elliott Bay, WA AGENCY: Coast... Seattle SeaFair Fleet Week. This action is intended to restrict vessel traffic movement and entry into... of Ships for the annual Seattle SeaFair Fleet Week. For the purposes of this rule the Parade of Ships...

  2. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  3. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  4. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  5. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  6. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  7. Three Dimensional Analysis of the Final Design of Pier Extensions and West Guide Wall to Mitigate Local Scour Risk at the BNSF Railroad Bridge Downstream of the Prado Dam Supplemental Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lottes, S. A.; Sinha, N.; Bojanowski, C.

    This report is a supplement to a previous report [ref] covering optimization of wedge shaped pier extensions to streamline large bluff body piers as a local scour countermeasure for the Burlington Northern and Santa Fe (BNSF) Railroad Bridge over the Santa Ana River downstream of Prado Dam in Riverside County, CA. The optimized design was tested in a 1/30 scale physical model at U.S. Army Engineer Research and Development Center (ERDC) in Vicksburg, MS, and the optimized design was used as the base for the construction design. Constructability issues having to do with both materials and site conditions including accessmore » underneath the BNSF bridge yielded a construction design that required making the pier extensions wider and either moving the western curve of the west guide wall upstream or changing its geometry.« less

  8. Comprehensive Conservation and Management Plan for Charlotte Harbor

    EPA Pesticide Factsheets

    This 2013 CCMP Update for Charlotte Harbor provides insight on the main priorities that the harbor is facing as well as research needed, restoration activities, legislative changes, and public outreach needs.

  9. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  10. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  11. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  12. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  13. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  14. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  15. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  16. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  17. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  18. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  19. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  20. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  1. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  2. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  3. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  4. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  5. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  6. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  7. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  8. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  9. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  10. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  11. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  12. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  13. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  14. 33 CFR 110.142 - Nantucket Harbor, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nantucket Harbor, Mass. 110.142 Section 110.142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.142 Nantucket Harbor, Mass. (a) The anchorage grounds. In the...

  15. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Boston Harbor, Mass. 110.138 Section 110.138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.138 Boston Harbor, Mass. (a) The anchorage grounds—(1) Bird...

  16. 33 CFR 110.142 - Nantucket Harbor, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Nantucket Harbor, Mass. 110.142 Section 110.142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.142 Nantucket Harbor, Mass. (a) The anchorage grounds. In the...

  17. 16 CFR 312.11 - Safe harbor programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Safe harbor programs. 312.11 Section 312.11 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE PRIVACY PROTECTION RULE § 312.11 Safe harbor programs. (a) In general. Industry groups or other persons...

  18. 40 CFR 52.1128 - Transportation and land use controls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... City of Boston, Massachusetts, contained within the following boundaries: The Charles River and Boston... Intrastate Region enclosed within the following boundaries: The City of Cambridge; that portion of the City of Boston from the Charles River and the Boston Inner Harbor on north and northeast of pier 4 on...

  19. Erie Harbor, Pennsylvania, Channel Shoaling Analysis

    DTIC Science & Technology

    2011-07-01

    Presque Isle is located on the southern shore of Lake Erie and shelters the federal harbor at Erie , Pennsylvania . The US Army...the evaluation of the shoaling and dredging of sediment materials from Erie Harbor as part of the Presque Isle , Pennsylvania 204 feasibility study...ERDC TR-11-4 1 1 Introduction Problem statement Presque Isle is located on the southern shore of Lake Erie , Pennsylvania at the city of Erie

  20. Estuarine studies in upper Grays Harbor, Washington

    USGS Publications Warehouse

    Beverage, Joseph P.; Swecker, Milton N.

    1969-01-01

    Improved management of the water resources of Grays Harbor, Wash., requires more data on the water quality of the harbor and a better understanding of the influences of industrial and domestic wastes on the local fisheries resources. To provide a more comprehensive understanding of these influences, the U.S. Geological Survey joined other agencies in a cooperative study of Grays Harbor. This report summarizes the Survey's study of circulation patterns, description of water-quality conditions, and characterization of bottom material in the upper harbor. Salt water was found to intrude at least as far as Montesano, 28.4 nautical miles from the mouth of the harbor. Longitudinal salinity distributions were used to compute dispersion (diffusivity) coefficients ranging from 842 to 3,520 square feet per second. These values were corroborated by half-tidal-cycle dye studies. The waters of the harbor were found to be well mixed after extended periods of low fresh-water flow but stratified at high flows. Salinity data were used lo define the cumulative 'mean age' of the harbor water, which may be used to approximate a mean 'flushing time.' Velocity-time curves for the upper harbor are distorted from simple harmonic functions owing to channel geometry and frictional effects. Surface and bottom velocity data were used to estimate net tidal 'separation' distance, neglecting vertical mixing. Net separation distances between top and bottom water ranged from 1.65 nautical miles when fresh-water inflow was 610 cubic feet per second to 13.4 miles when inflow was 15,900 cubic feet per second. The cumulative mean age from integration of the fresh-water velocity equation was about twice that obtained from the salinity distribution. Excursion distances obtained with dye over half-tidal cycles exceeded those estimated from longitudinal salinity distributions and those obtained by earlier investigators who used floats. Net tidal excursions were as much as twice those obtained with floats

  1. 33 CFR 80.165 - New York Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false New York Harbor. 80.165 Section 80.165 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.165 New York Harbor. A line drawn from East...

  2. 33 CFR 110.9 - Wells Harbor, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 110.9 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.9 Wells Harbor, Maine. (a) Anchorage “A”. All of the... approximately 5,800 sq. yards, encompassing the central portion of Wells Harbor. (b) Anchorage “B”. All of the...

  3. 12 CFR 350.11 - Safe harbor provision.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Safe harbor provision. 350.11 Section 350.11 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY DISCLOSURE OF FINANCIAL AND OTHER INFORMATION BY FDIC-INSURED STATE NONMEMBER BANKS § 350.11 Safe harbor...

  4. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false St. Thomas Harbor, Charlotte... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.250 St. Thomas Harbor, Charlotte Amalie... move promptly upon notification by the Harbor Master. (4) The harbor regulations for the Port of St...

  5. 33 CFR 117.802 - New Rochelle Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.802 New Rochelle Harbor. (a) The draw of the Glen Island Bridge, mile 0.8, at New Rochelle, New York, shall open on signal, except as... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false New Rochelle Harbor. 117.802...

  6. Development and Evaluation of Live-Bed Pier- and Contraction-Scour Envelope Curves in the Coastal Plain and Piedmont Provinces of South Carolina

    DOT National Transportation Integrated Search

    2009-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, used ground-penetrating radar to collect measurements of live-bed pier scour and contraction scour at 78 bridges in the Piedmont and Coastal Plain Physio...

  7. Decadal Changes In Benthic Community Measures In New York Harbor

    EPA Science Inventory

    Monitoring in New York Harbor, NY, as part of the Regional Environmental Monitoring and Assessment Program has spanned a decade, and includes habitat and water quality measures and sediment contaminant levels from four sub-basins (Upper NY Harbor, Lower NY Harbor, Newark Bay, and...

  8. 33 CFR 6.01-4 - Waterfront facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Waterfront facility. 6.01-4... PROTECTION AND SECURITY OF VESSELS, HARBORS, AND WATERFRONT FACILITIES Definitions § 6.01-4 Waterfront facility. Waterfront facility. “Waterfront facility,” as used in this part, means all piers, wharves, docks...

  9. Sediment resuspension characteristics in Baltimore Harbor, Maryland

    USGS Publications Warehouse

    Maa, J.P.-Y.; Sanford, L.; Halka, J.P.

    1998-01-01

    Critical bed shear stress for sediment resuspension and sediment erosion rate were measured in-situ at sites from inner to outer Baltimore Harbor using the VIMS Sea Carousel. Clay mineral contents and biological conditions were almost the same at the four study sites. The experimental results indicated that the erosion rate increased from the outer harbor toward the inner harbor with a maximum difference of about 10 times at an excess bed shear stress of 0.1 Pa. The measured critical bed shear stress strongly depended on the existence of a fluff layer. It was approximately 0.05 Pa if a fluff layer existed, and increases to about 0.1 Pa in the absence of a fluff layer.

  10. Polycyclic aromatic hydrocarbons and trace elements bounded to airborne PM10 in the harbor of Volos, Greece: Implications for the impact of harbor activities

    NASA Astrophysics Data System (ADS)

    Manoli, E.; Chelioti-Chatzidimitriou, A.; Karageorgou, K.; Kouras, A.; Voutsa, D.; Samara, C.; Kampanos, I.

    2017-10-01

    Harbors are often characterized by high levels of air pollutants that are emitted from ship traffic and other harbor activities. In the present study, the concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) and trace elements (As, Cd, Ni, Pb, Cr, Mn, Zn, and Fe) bounded to the inhalable particulate matter PM10 were studied in the harbor of Volos, central Greece, during a 2-year period (2014-2015). Seasonal and daily variations were investigated. Moreover, total carcinogenic and mutagenic activities of PAHs were calculated. The effect of major wind sectors (sea, city, industrial, harbor) was estimated to assess the potential contribution of ship traffic and harbor activities, such as scrap metal handling operations. Results showed that the harbor sector (calm winds ≤ 0.5 m s-1) was associated with the highest concentrations of PM10. The harbor sector was also associated with relatively increased levels of trace elements (As, Fe, Cr, Mn, Ni), however the effect of this sector was lower than the corresponding effect of the industrial wind sector. The sea sector showed only a slight increase in B[a]Py and Σ12PAHs, whereas the highest increasing effect for PAHs and traffic-related elements, such as Pb and Zn, was evidenced for the city sector.

  11. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... line running due north from Old Harbor Buoy 4 to the shore line at City Point. (5) Explosives anchorage... beacon on top of the Boston Custom House tower; and thence to the point of beginning. (2) President Roads... adjacent land; on the east by a line between Castle Rocks Fog Signal Light and Old Harbor Shoal Buoy 2; on...

  12. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... line running due north from Old Harbor Buoy 4 to the shore line at City Point. (5) Explosives anchorage... beacon on top of the Boston Custom House tower; and thence to the point of beginning. (2) President Roads... adjacent land; on the east by a line between Castle Rocks Fog Signal Light and Old Harbor Shoal Buoy 2; on...

  13. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... line running due north from Old Harbor Buoy 4 to the shore line at City Point. (5) Explosives anchorage... beacon on top of the Boston Custom House tower; and thence to the point of beginning. (2) President Roads... adjacent land; on the east by a line between Castle Rocks Fog Signal Light and Old Harbor Shoal Buoy 2; on...

  14. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petoskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  15. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petroskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  16. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petoskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  17. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petoskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  18. 33 CFR 162.165 - Buffalo and Rochester Harbors, New York.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Buffalo and Rochester Harbors, New York. 162.165 Section 162.165 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... and Rochester Harbors, New York. In Buffalo and Rochester Harbors, no vessel may exceed 6 miles per...

  19. Satellite Monitoring of Boston Harbor Water Quality: Initial Investigations

    NASA Astrophysics Data System (ADS)

    Sheldon, P.; Chen, R. F.; Schaaf, C.; Pahlevan, N.; Lee, Z.

    2016-02-01

    The transformation of Boston Harbor from the "dirtiest in America" to a National Park Area is one of the most remarkable estuarine recoveries in the world. A long-term water quality dataset from 1991 to present exists in Boston Harbor due to a $3. 8 billion lawsuit requiring the harbor clean-up. This project uses discrete water sampling and underway transects with a towed vehicle coordinated with Landsat 7 and Landsat 8 to create surface maps of chlorophyll a (Chl a), dissolved organic matter (CDOM and DOC), total suspended solids (TSS), diffuse attenuation coefficient (Kd_490), and photic depth in Boston Harbor. In addition, 3 buoys have been designed, constructed, and deployed in Boston Harbor that measure Chl a and CDOM fluorescence, optical backscatter, salinity, temperature, and meteorological parameters. We are initially using summer and fall of 2015 to develop atmospheric corrections for conditions in Boston Harbor and develop algorithms for Landsat 8 data to estimate in water photic depth, TSS, Chl a, Kd_490, and CDOM. We will report on initial buoy and cruise data and show 2015 Landsat-derived distributions of water quality parameters. It is our hope that once algorithms for present Landsat imagery can be developed, historical maps of water quality can be constructed using in water data back to 1991.

  20. 76 FR 59119 - Notice of Availability for the Draft Environmental Impact Statement/Environmental Impact Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... approximately 210 acres of land and water. The development of Pier S and Back Channel improvements would result... pursuant to Section 404 of the Clean Water Act, Section 10 of the Rivers and Harbors Act, and Section 103 of the Marine Protection, Research, and Sanctuaries Act, to implement various regulated activities in...

  1. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  2. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  3. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  4. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  5. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  6. Defense.gov Special Report: 72nd Anniversary of Pearl Harbor

    Science.gov Websites

    Department of Defense Submit Search 72nd Anniversary of the Attack on Pearl Harbor - World War II News Harbor survivors and World War II veterans gathered at the Pacific National Monument's Pearl Harbor course of world history." Story USS Mesa Verda Crew Conducts Remembrance Ceremony As Americans and

  7. 33 CFR 80.1470 - Kawaihae Harbor, Hawaii, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kawaihae Harbor, Hawaii, HI. 80.1470 Section 80.1470 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1470 Kawaihae Harbor, Hawaii, HI...

  8. 33 CFR 80.1450 - Nawiliwili Harbor, Kauai, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nawiliwili Harbor, Kauai, HI. 80.1450 Section 80.1450 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1450 Nawiliwili Harbor, Kauai, HI...

  9. CFD modelling of Po River morphodynamics affected by bridge piers

    NASA Astrophysics Data System (ADS)

    Nones, Michael; Guerrero, Massimo; Ruther, Nils; Baranya, Sandor

    2017-04-01

    The paper presents the numerical modelling of the hydromorphological evolution of a 10-km reach of the Po River close to Ostiglia in Italy, affected by the presence of a railway bridge. The 3D simulation is performed using the freely available code SSIIM, developed at the University of Science and Technology in Trondheim in Norway. The domain consists of an unstructured grid with rectangular meshes having a dimension of 50x50 meters, with a nested detailed grid (5x5 m) around the piers. Preliminary results show the capability of the model in reproducing the behaviour of the reach, both in terms of liquid flow and morphodynamics, if compared with historical data measured along this watercourse. For the future, as a part of the Italian national project INFRASAFE, additional simulations will be performed to calibrate the model, changing the analyzed domain and used grids, and imposing, as boundary conditions, new data measured directly on the field with traditional and innovative techniques.

  10. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  11. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  12. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  13. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  14. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  15. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  16. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  17. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  18. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  19. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  20. 33 CFR 110.208 - Buffalo Harbor, N.Y.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Buffalo Harbor, N.Y. 110.208 Section 110.208 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.208 Buffalo Harbor, N.Y. (a) The anchorage grounds—(1...

  1. 33 CFR 110.208 - Buffalo Harbor, N.Y.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Buffalo Harbor, N.Y. 110.208 Section 110.208 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.208 Buffalo Harbor, N.Y. (a) The anchorage grounds—(1...

  2. 76 FR 31851 - Safety Zone; Put-in-Bay Fireworks, Fox's the Dock Pier; South Bass Island, Put-in-Bay, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2011-0417] RIN 1625-AA00 Safety Zone; Put-in-Bay Fireworks, Fox's the Dock Pier; South Bass Island, Put-in-Bay, OH AGENCY.... Add Sec. 165.T09-0417 as follows: Sec. 165.T09-0417 Safety Zone; Put-In-Bay Fireworks, Fox's the Dock...

  3. Tech Talk for Social Studies Teachers Lest We Forget: Remembering Pearl Harbor.

    ERIC Educational Resources Information Center

    Green, Tim

    2001-01-01

    Presents an annotated bibliography that provides Web sites about Pearl Harbor (Hawaii). Includes Web sites that cover Pearl Harbor history, a live view of Pearl Harbor, stories from people who remember where they were during the attack, information on the naval station at Pearl Harbor, and a virtual tour of the USS Arizona. (CMK)

  4. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  5. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Moss Landing Harbor, CA. 80.1136 Section 80.1136 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from...

  6. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Moss Landing Harbor, CA. 80.1136 Section 80.1136 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from...

  7. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Crescent City Harbor, CA. 80.1152 Section 80.1152 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn...

  8. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Moss Landing Harbor, CA. 80.1136 Section 80.1136 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from...

  9. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  10. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  11. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  12. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  13. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  14. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Crescent City Harbor, CA. 80.1152 Section 80.1152 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn...

  15. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  16. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  17. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  18. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  19. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  20. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  1. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  2. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  3. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  4. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  5. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  6. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  7. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Crescent City Harbor, CA. 80.1152 Section 80.1152 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn...

  8. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  9. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  10. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  11. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  12. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  13. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  14. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  15. 33 CFR 117.722 - Great Egg Harbor Bay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Great Egg Harbor Bay. 117.722 Section 117.722 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.722 Great Egg Harbor Bay. The draw of...

  16. 33 CFR 80.1480 - Hilo Harbor, Hawaii, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hilo Harbor, Hawaii, HI. 80.1480 Section 80.1480 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1480 Hilo Harbor, Hawaii, HI. A line drawn...

  17. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  18. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  19. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  20. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  1. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  2. 33 CFR 80.1460 - Kahului Harbor, Maui, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kahului Harbor, Maui, HI. 80.1460 Section 80.1460 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1460 Kahului Harbor, Maui, HI. A line drawn...

  3. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  4. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  5. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  6. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  7. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  8. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  9. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  10. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  11. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  12. 33 CFR 117.722 - Great Egg Harbor Bay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Great Egg Harbor Bay. 117.722 Section 117.722 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.722 Great Egg Harbor Bay. The draw of...

  13. Madaket Harbor, Nantucket, Massachusetts. Water Resources Improvement.

    DTIC Science & Technology

    1977-07-01

    will continue to be, important increases in the recreational use of land and water. The harbor area is an important arena for commercial shellfishing...an important arena for commercial shell fishing. The past few years have seen a rather rapid increase in residential land use. Construction has...beamc. Tnis material will be re-deposited,, viaj troio it 1-apfro1inr ox prior location. j, MADAKET HARBOR NANTUCKET, MASSACHUSETTS FEASIBILITY

  14. 76 FR 8653 - Drawbridge Operation Regulation; Gulf Intracoastal Waterway, New Orleans Harbor, Inner Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... regulation governing the operation of the SR 39 (Judge Seeber/Claiborne Avenue) vertical lift bridge across... (Judge Seeber/Claiborne Avenue) vertical lift bridge across the Inner Harbor Navigational Canal, mile 0.9...

  15. 76 FR 30584 - Safety Zones; Eleventh Coast Guard District Annual Fireworks Events

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    .... 2. LA County Dept of Beach and Harbors 4th of July Fireworks Sponsor Los Angeles, CA County Dept of... waters of the Sea Cliff State Beach Pier. 27. Rio Vista Bass Derby Fireworks Sponsor Rio Vista Chamber of... Vista, CA waterfront. Regulated Area 100-foot radius around the fireworks launch barge during the...

  16. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Crescent City Harbor, CA. 80.1152... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn from Crescent City Entrance Light to the southeasternmost extremity of Whaler Island. [CGD 84-091, 51...

  17. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Crescent City Harbor, CA. 80.1152... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn from Crescent City Entrance Light to the southeasternmost extremity of Whaler Island. [CGD 84-091, 51...

  18. 46 CFR 7.30 - New York Harbor, NY.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false New York Harbor, NY. 7.30 Section 7.30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.30 New York Harbor, NY. A line drawn from East Rockaway Inlet Breakwater Light to Ambrose Light...

  19. Underwater noise from three types of offshore wind turbines: estimation of impact zones for harbor porpoises and harbor seals.

    PubMed

    Tougaard, Jakob; Henriksen, Oluf Damsgaard; Miller, Lee A

    2009-06-01

    Underwater noise was recorded from three different types of wind turbines in Denmark and Sweden (Middelgrunden, Vindeby, and Bockstigen-Valar) during normal operation. Wind turbine noise was only measurable above ambient noise at frequencies below 500 Hz. Total sound pressure level was in the range 109-127 dB re 1 microPa rms, measured at distances between 14 and 20 m from the foundations. The 1/3-octave noise levels were compared with audiograms of harbor seals and harbor porpoises. Maximum 1/3-octave levels were in the range 106-126 dB re 1 microPa rms. Maximum range of audibility was estimated under two extreme assumptions on transmission loss (3 and 9 dB per doubling of distance, respectively). Audibility was low for harbor porpoises extending 20-70 m from the foundation, whereas audibility for harbor seals ranged from less than 100 m to several kilometers. Behavioral reactions of porpoises to the noise appear unlikely except if they are very close to the foundations. However, behavioral reactions from seals cannot be excluded up to distances of a few hundred meters. It is unlikely that the noise reaches dangerous levels at any distance from the turbines and the noise is considered incapable of masking acoustic communication by seals and porpoises.

  20. Floating-Harbor syndrome associated with middle ear abnormalities.

    PubMed

    Hendrickx, Jan-Jaap; Keymolen, Kathelijn; Desprechins, Brigitte; Casselman, Jan; Gordts, Frans

    2010-01-01

    Floating-Harbor syndrome is a rare syndrome of unknown etiology, which was first described in 1973. A triad of main features characterizes Floating-Harbor syndrome: short stature, characteristic face, and an expressive speech delay. We present a patient in whom the hearing thresholds improved insufficiently after placement of grommets. High-resolution CT scan of the temporal bone showed a prominent soft-tissue thickening suspected of causing fixation of the malleus, and fusion of the malleus head with the body of the incus. To our knowledge this is the first reported abnormal middle ear anatomy in a patient with Floating-Harbor syndrome. A conservative treatment with hearing aids was preferred as an initial treatment in favor of a surgical exploration.