Sample records for harbor quinnipiac river

  1. 78 FR 13479 - Drawbridge Operation Regulation; New Haven Harbor, Quinnipiac and Mill Rivers, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ...-AA09 Drawbridge Operation Regulation; New Haven Harbor, Quinnipiac and Mill Rivers, CT AGENCY: Coast... regulations that govern the operation of three bridges across the Quinnipiac and Mill Rivers at New Haven...) entitled ``Drawbridge Operation Regulations New Haven Harbor, Quinnipiac and Mill Rivers,'' in the Federal...

  2. 77 FR 75917 - Drawbridge Operation Regulation; New Haven Harbor, Quinnipiac and Mill Rivers, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ...-AA09 Drawbridge Operation Regulation; New Haven Harbor, Quinnipiac and Mill Rivers, CT AGENCY: Coast..., mile 1.3, across the Quinnipiac River, and the Chapel Street Bridge, mile 0.4, across the Mill River..., across the Quinnipiac River, and the Chapel Street Bridge, mile 0.4, across the Mill River, to reduce the...

  3. 33 CFR 165.150 - New Haven Harbor, Quinnipiac River, Mill River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... River, Mill River. 165.150 Section 165.150 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... New Haven Harbor, Quinnipiac River, Mill River. (a) The following is a regulated navigation area: The... 303°T to point D at the west bank of the mouth of the Mill River 41°18′05″ N, 72°54′23″ W thence south...

  4. 75 FR 1738 - Drawbridge Operation Regulation; New Haven Harbor, Quinnipiac and Mill Rivers, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ...-AA09 Drawbridge Operation Regulation; New Haven Harbor, Quinnipiac and Mill Rivers, CT AGENCY: Coast... regulation governing the operation of three bridges across the Quinnipiac and Mill Rivers at New Haven... and 15 feet at mean low water. The Chapel Street Bridge at mile 0.4, across the Mill River has a...

  5. 33 CFR 117.213 - New Haven Harbor, Quinnipiac and Mill Rivers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mill Rivers. 117.213 Section 117.213 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Haven Harbor, Quinnipiac and Mill Rivers. The draws of the Tomlinson bridge, mile 0.0, the Ferry Street... bridge, mile 0.4 across Mill River, shall operate as follows: (a) The draws shall open on signal; except...

  6. 77 FR 47331 - Regulated Navigation Area-New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... Harbor Memorial Bridge (Interstate 95) Construction AGENCY: Coast Guard, DHS. ACTION: Notice of proposed... needed during construction of the new Pearl Harbor Memorial Bridge, and which could be needed at other... Department, U. S. Coast Guard Sector Long Island Sound, (203) 468-4544, [email protected] ; or...

  7. 77 FR 67563 - Regulated Navigation Area-New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ...; Pearl Harbor Memorial Bridge (Interstate 95) Construction AGENCY: Coast Guard, DHS. ACTION: Final rule... construction of the new Pearl Harbor Memorial Bridge, and which could be needed at other times as well. This..., call or email Petty Officer Joseph Graun, Prevention Department, U.S. Coast Guard Sector Long Island...

  8. Water resources inventory of Connecticut Part 8: Quinnipiac River basin

    USGS Publications Warehouse

    Mazzaferro, David L.; Handman, Elinor H.; Thomas, Mendall P.

    1978-01-01

    The Quinnipiac River basin area in southcentral Connecticut covers 363 square miles, and includes all drainage basins that enter Long Island Sound from the Branford to the Wepawaug Rivers. Its population in 1970 was estimated at 535,000. Precipitation averages 47 inches per year and provides an abundant supply of water. Twenty-one inches returns to the atmosphere as evapotranspiration; the remainder flows directly to streams or percolates to the water table and discharges to Long Island Sound. Small amounts of water are exported from the basin by the New Britain Water Department, and small amounts are imported to the basin by the New Haven Water Company. The amount of water that can be developed at a given place depends upon precipitation, variability of streamflow, hydraulic properties and areal extent of the aquifers, and hydraulic connection between the aquifers and major streams. The quality of the water is determined by the physical environment and the effects of man. Stratified drift is the only aquifer capable of large sustained yields of water to individual wells. Yields of 64 screened wells tapping stratified drift range from 17 to 2,000 gpm (gallons per minute); their median yield is 500 gpm. Till is widespread and generally provides only small amounts of water. Wells in till normally yield only a few hundred gallons of water daily and commonly are inadequate during dry periods. Till is generally used only as an emergency or secondary source of water. Bedrock aquifers underlie the entire report area and include sedimentary, igneous, and metamorphic rock types. These aquifers supply small but reliable quantities of water to wells throughout the basin and are the chief source for many nonurban homes and farms. About 90 percent of the wells tapping bedrock yield at least 2 pgm, and much larger yields are occasionally reported. Maximum well yields of 305 gpm for sedimentary, 75 gpm for igneous, and 200 gpm for metamorphic bedrock have been reported. Water

  9. 78 FR 38577 - Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ...-AA08 Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor... waters of the Potomac River on September 21, 2013. These special local regulations are necessary to... temporarily restrict vessel traffic in a portion of the Potomac River during the event. DATES: This rule is...

  10. 78 FR 18274 - Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ...-AA08 Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor... event,'' to be held on the waters of the Potomac River on September 21, 2013. These special local... representative. This action is intended to temporarily restrict vessel traffic in a portion of the Potomac River...

  11. 76 FR 34865 - Safety Zone; Rochester Harbor Festival, Genesee River, Rochester, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ...-AA00 Safety Zone; Rochester Harbor Festival, Genesee River, Rochester, NY AGENCY: Coast Guard, DHS... Genesee River, Rochester, NY for the Rochester Harbor Festival fireworks. This zone is intended to restrict vessels from the mouth of the Genesee River in Rochester during the Rochester Harbor Festival...

  12. 78 FR 28492 - Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... to the local maritime community via broadcast notice to mariners. 2. Impact on Small Entities Under...-AA08 Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor... establishing a special local regulation on the waters of the Wando River, Cooper River, and Charleston Harbor...

  13. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor and U.S. breakwater. 207.610 Section 207... NAVIGATION REGULATIONS § 207.610 St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and...

  14. 33 CFR 117.1083 - Duluth-Superior Harbor (St. Louis River).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Duluth-Superior Harbor (St. Louis River). 117.1083 Section 117.1083 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...-Superior Harbor (St. Louis River). (a) The draws of the Burlington Northern railroad bridge, mile 5.7 at...

  15. 78 FR 48085 - Safety Zones; Chelsea River, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ...-AA00 Safety Zones; Chelsea River, Boston Inner Harbor, Boston, MA AGENCY: Coast Guard, DHS. ACTION... for the Chelsea River, Boston Inner Harbor, Boston, MA. Since the implementation of the regulation... spanned the Chelsea River providing a means for vehicles to travel between Chelsea, MA and East Boston, MA...

  16. 33 CFR 100.T07-0110 - Special Local Regulations; Low Country Splash, Wando River, Cooper River, and Charleston Harbor...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Special Local Regulations; Low Country Splash, Wando River, Cooper River, and Charleston Harbor, Charleston, SC. 100.T07-0110 Section 100... Splash, Wando River, Cooper River, and Charleston Harbor, Charleston, SC. (a) Regulated Areas. The...

  17. 78 FR 18277 - Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ...-AA08 Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor... Harbor in Charleston, SC during the Low Country Splash in Charleston, SC, on June 1, 2013. This special... States during the Low Country Splash. C. Discussion of Proposed Rule On Saturday, June 1, 2013, the Low...

  18. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  19. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  20. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  1. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  2. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  3. Quinnipiac School of Education--The Importance of Our NAPDS Association

    ERIC Educational Resources Information Center

    Dichele, Anne M.

    2016-01-01

    The Quinnipiac University School of Education was one of two school-university partnerships honored with the 2016 NAPDS Award for Exemplary Professional Development School Achievement. In this invited article, Anne Dichele, the director of the school's Master of Arts in Teaching program, describes their ''small but innovative'' program. Now in its…

  4. 78 FR 58882 - Safety Zone; Chelsea River, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ...-AA00 Safety Zone; Chelsea River, Boston Inner Harbor, Boston, MA AGENCY: Coast Guard, DHS. ACTION...: Chelsea River, Boston Inner Harbor, Boston, MA. Since the implementation of the regulation, physical... Chelsea, MA and East Boston, MA. Several petroleum-product transfer facilities are located on the Chelsea...

  5. 77 FR 42464 - Special Local Regulations for Marine Events; Potomac River, National Harbor Access Channel, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ...--AA08 Special Local Regulations for Marine Events; Potomac River, National Harbor Access Channel, MD... Harbor'' triathlon, a marine event to be held on the waters of the Potomac River in Prince George's...; Potomac River, National Harbor Access Channel, MD'' in the Federal Register (77 FR 20750). The rulemaking...

  6. 33 CFR 165.708 - Safety/Security Zone; Charleston Harbor and Cooper River, Charleston, SC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Harbor and Cooper River, Charleston, SC. 165.708 Section 165.708 Navigation and Navigable Waters COAST... Guard District § 165.708 Safety/Security Zone; Charleston Harbor and Cooper River, Charleston, SC. (a... Cooper River. All coordinates referenced use datum: NAD 1983. (2) All waters within 100 yards of the...

  7. 78 FR 6782 - Safety Zone-Chelsea River, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ...-AA00 Safety Zone--Chelsea River, Boston Inner Harbor, Boston, MA AGENCY: Coast Guard, DHS. ACTION....120, Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA. This advance notice allows the Coast... Commercial Street, Boston, MA 02109: March 6, 2013, from 11:00 a.m. to 12:00 p.m.; April 24, 2013, from 11:00...

  8. 27 CFR 9.72 - Southeastern New England.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... 9.72 Section 9.72 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... viticultural area is located in the counties of New Haven, New London, and Middlesex in Connecticut; in the... on the “Hartford” U.S.G.S. map in New Haven Harbor; (1) Then north following the Quinnipiac River to...

  9. 33 CFR 117.669 - St. Louis River (Duluth Superior Harbor).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false St. Louis River (Duluth Superior Harbor). 117.669 Section 117.669 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.669 St. Louis River...

  10. 77 FR 20750 - Special Local Regulations for Marine Events; Potomac River, National Harbor Access Channel, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ...-AA08 Special Local Regulations for Marine Events; Potomac River, National Harbor Access Channel, MD...'' triathlon, a marine event to be held on the waters of the Potomac River in Prince George's County, Maryland... portion of the Potomac River and National Harbor Access Channel during the event. DATES: Comments and...

  11. Charleston Harbor Deepening Project. Charleston Harbor and Shipyard River, South Carolina.

    DTIC Science & Technology

    1976-04-01

    between the two basins to 250 feet; enlargement of the 0 anchorage basin near the harbor mouth by deepening to a depth of 40 feet and by extending the...and 0 Wando River; and the relocating of channels near terminals to provide 125-foot clearance between piers and the edge of the channel. * 0 0...materials; localized adverse effects on plankton and primary productivity; minor losses of larval and juvenile fishes near the dredge and disposal areas

  12. 33 CFR 165.150 - New Haven Harbor, Quinnipiac River, Mill River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... close the RNA for any situation the COTP determines would create an imminent hazard to waterway users in the RNA. Entry into the RNA during temporary closure is prohibited unless authorized by the COTP or... any vessel or equipment within the RNA. To assure wide advance notice of each closure among affected...

  13. 33 CFR 165.150 - New Haven Harbor, Quinnipiac River, Mill River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... close the RNA for any situation the COTP determines would create an imminent hazard to waterway users in the RNA. Entry into the RNA during temporary closure is prohibited unless authorized by the COTP or... any vessel or equipment within the RNA. To assure wide advance notice of each closure among affected...

  14. 33 CFR 165.120 - Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Boston Inner Harbor, Boston, MA. 165.120 Section 165.120 Navigation and Navigable Waters COAST GUARD... § 165.120 Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA. (a) Location. The following area... downstream of the Chelsea Street Bridge on the Chelsea, MA side of the Chelsea River—hereafter referred to as...

  15. 33 CFR 165.120 - Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Boston Inner Harbor, Boston, MA. 165.120 Section 165.120 Navigation and Navigable Waters COAST GUARD... § 165.120 Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA. (a) Location. The following area... downstream of the Chelsea Street Bridge on the Chelsea, MA side of the Chelsea River—hereafter referred to as...

  16. 33 CFR 165.120 - Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Boston Inner Harbor, Boston, MA. 165.120 Section 165.120 Navigation and Navigable Waters COAST GUARD... § 165.120 Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA. (a) Location. The following area... downstream of the Chelsea Street Bridge on the Chelsea, MA side of the Chelsea River—hereafter referred to as...

  17. 33 CFR 165.120 - Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Boston Inner Harbor, Boston, MA. 165.120 Section 165.120 Navigation and Navigable Waters COAST GUARD... § 165.120 Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA. (a) Location. The following area... downstream of the Chelsea Street Bridge on the Chelsea, MA side of the Chelsea River—hereafter referred to as...

  18. Section 9 of the Rivers and Harbors Appropriation Act of 1899

    EPA Pesticide Factsheets

    It shall not be lawful to construct or commence the construction of any bridge, causeway, dam, or dike over or in any port, roadstead, haven, harbor, canal, navigable river, or other navigable water of the United States until the consent of Congress.

  19. 33 CFR 165.512 - Safety Zone; Patapsco River, Northwest and Inner Harbors, Baltimore, MD.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone; Patapsco River... Guard District § 165.512 Safety Zone; Patapsco River, Northwest and Inner Harbors, Baltimore, MD. (a... towing vessels. (b) Location. The following area is a moving safety zone: All waters, from surface to...

  20. 77 FR 39630 - Special Local Regulations for Marine Events; Potomac River, National Harbor Access Channel, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... 1625-AA08 Special Local Regulations for Marine Events; Potomac River, National Harbor Access Channel... special local regulations during the swim segment of the ``Swim Across the Potomac River'' swimming competition, to be held on the waters of the Potomac River on July 8, 2012. These special local regulations...

  1. 78 FR 20849 - Special Local Regulations; Marine Events, Potomac River; National Harbor Access Channel, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ...-AA08 Special Local Regulations; Marine Events, Potomac River; National Harbor Access Channel, MD AGENCY... special local regulations during the ``Swim Across the Potomac'' swimming competition, to be held on the waters of the Potomac River on June 2, 2013. These special local regulations are necessary to provide for...

  2. 33 CFR 117.213 - New Haven Harbor, Quinnipiac and Mill Rivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a.m., noon to 12:15 p.m., 12:45 p.m. to 1 p.m., and 4:45 p.m. to 5:45 p.m., Monday through Friday....m. to 8:30 a.m. and 4:45 p.m. to 5:45 p.m., Monday through Friday, except Federal holidays, the draws need not open for the passage of vessel traffic. From 9 p.m. to 5 a.m. the draw shall open on...

  3. 33 CFR 117.213 - New Haven Harbor, Quinnipiac and Mill Rivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a.m., noon to 12:15 p.m., 12:45 p.m. to 1 p.m., and 4:45 p.m. to 5:45 p.m., Monday through Friday....m. to 8:30 a.m. and 4:45 p.m. to 5:45 p.m., Monday through Friday, except Federal holidays, the draws need not open for the passage of vessel traffic. From 9 p.m. to 5 a.m. the draw shall open on...

  4. 77 FR 36394 - Safety Zone for Fireworks Display, Potomac River, National Harbor Access Channel; Oxon Hill, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... 1625-AA00 Safety Zone for Fireworks Display, Potomac River, National Harbor Access Channel; Oxon Hill... safety zone upon specified waters of the Potomac River. This action is necessary to provide for the... zone is intended to protect the maritime public in a portion of the Potomac River. DATES: This rule is...

  5. 77 FR 42640 - Safety Zone; Can-Am Festival Fireworks, Black River Bay, Sackets Harbor, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ...-AA00 Safety Zone; Can-Am Festival Fireworks, Black River Bay, Sackets Harbor, NY AGENCY: Coast Guard... Black River Bay during the Can-Am Festival Fireworks display. This temporary safety zone is necessary to... Can-Am Festival Fireworks. This zone will be effective and enforced from 9:15 p.m. until 10:45 p.m. on...

  6. 75 FR 10814 - Proposed Programmatic Safe Harbor Agreement for the Sacramento River Conservation Area Forum in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ...] Proposed Programmatic Safe Harbor Agreement for the Sacramento River Conservation Area Forum in Shasta... Enhancement of Survival Permit from the Sacramento River Conservation Area Forum (applicant) under the... Conservation Area Forum under the Act (16 U.S.C 1531 et seq.). The permit application includes a proposed Safe...

  7. Sediment toxicity in Savannah Harbor

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.

    1995-01-01

    Savannah Harbor, located near the mouth of the Savannah River, Georgia and South Carolina, is impacted by industrial and municipal effluents. Potential release of contaminants stored in harbor sediments through dredging and shipping operations requires that contaminated areas be identified for proper management of the system and protection of wildlife resources. During 1991, Hyalella azteca were exposed in 10-d static-renewal toxicity tests to pore-water and solid-phase sediment samples collected from 26 sites within Savannah Harbor. Pore-water toxicity was more pronounced than that for solidphase sediment. Toxicity and reduced leaf consumption demonstrated impaired sediment quality at specific sites within Savannah Harbor and Back River. Factors responsible for the decreased sediment quality were ammonia, alkalinity, and metal concentrations (cadmium, chromium, lead, molybdenum, and nickel). Elevated concentrations of metals and toxicities in Back River sediments indicated impacts from adjacent dredge-spoil areas.

  8. 77 FR 31186 - Security Zone; USS MISSISSIPPI Commissioning; Pascagoula Harbor & Pascagoula River; Pascagoula, MS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... significant effect on the human environment. This rule involves security during the arrival, commissioning... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0333] RIN 1625-AA87 Security Zone; USS MISSISSIPPI Commissioning; Pascagoula Harbor & Pascagoula River; Pascagoula, MS...

  9. 33 CFR 334.470 - Cooper River and Charleston Harbor, S.C.; restricted areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Cooper River and Charleston Harbor, S.C.; restricted areas. 334.470 Section 334.470 Navigation and Navigable Waters CORPS OF...″, Longitude 79°55′31″. (b) The regulations. (1) There shall be no introduction of magnetic material or magneto...

  10. 33 CFR 334.470 - Cooper River and Charleston Harbor, S.C.; restricted areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Cooper River and Charleston Harbor, S.C.; restricted areas. 334.470 Section 334.470 Navigation and Navigable Waters CORPS OF...″, Longitude 79°55′31″. (b) The regulations. (1) There shall be no introduction of magnetic material or magneto...

  11. 33 CFR 334.470 - Cooper River and Charleston Harbor, S.C.; restricted areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Cooper River and Charleston Harbor, S.C.; restricted areas. 334.470 Section 334.470 Navigation and Navigable Waters CORPS OF...″, Longitude 79°55′31″. (b) The regulations. (1) There shall be no introduction of magnetic material or magneto...

  12. Influence of the Pearl River estuary and vertical mixing in Victoria Harbor on water quality in relation to eutrophication impacts in Hong Kong waters.

    PubMed

    Yin, Kedong; Harrison, Paul J

    2007-06-01

    This study presents water quality parameters such as nutrients, phytoplankton biomass and dissolved oxygen based on 11 years of water quality data in Victoria Harbor and examined how the Pearl River estuary discharge in summer and year round sewage discharge influenced these parameters. Nutrients in Victoria Harbor were strongly influenced by both the Pearl River and sewage effluent, as indicated by the high NO(3) inputs from the Pearl River in summer and higher NH(4) and PO(4) in Victoria Harbor than both its sides. N:P ratios were low in the dry season, but increased to >16:1 in the wet season, suggesting that P is potentially the most limiting nutrient in this area during the critical period in the summer. Although there were generally high nutrients, the phytoplankton biomass was not as high as one would expect in Victoria Harbor. In fact, there were high concentrations of chl near the bottom well below the photic zone. Salinity near the bottom was lower in Victoria Harbor than at the two entrances to Victoria Harbor, suggesting strong vertical mixing within Victoria Harbor. Therefore, strong vertical mixing and horizontal advection appear to play an important role in significantly reducing eutrophication impacts in Victoria Harbor. Consequently, dissolved oxygen near the bottom was low in summer, but only occasionally dipped to 2 mgL(-1) despite the high organic loading from sewage effluent.

  13. 75 FR 16374 - Special Local Regulations for Marine Events; Patapsco River, Northwest Harbor, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... establish special local regulations during the ``Baltimore Dragon Boat Challenge,'' a marine event to be... later notice in the Federal Register. Background and Purpose On June 19, 2010, Baltimore Dragon Boat Club, Inc. will sponsor Dragon Boat Races in the Patapsco River, Northwest Harbor at Baltimore, MD. The...

  14. 76 FR 19926 - Special Local Regulations for Marine Events; Patapsco River, Northwest Harbor, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... establish special local regulations during the ``Baltimore Dragon Boat Challenge,'' a marine event to be... June 25, 2011, the Baltimore Dragon Boat Club will sponsor Dragon Boat Races in the Patapsco River, Northwest Harbor, at Baltimore, MD. The event will consist of approximately 15 teams rowing Chinese Dragon...

  15. 76 FR 30823 - Special Local Regulations for Marine Events; Patapsco River, Northwest Harbor, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... local regulations during the ``Baltimore Dragon Boat Challenge'', a marine event to be held on the... June 25, 2011, Baltimore Dragon Boat Club, Inc. will sponsor Dragon Boat Races in the Patapsco River, Northwest Harbor, at Baltimore, MD. The event will consist of approximately 15 teams rowing Chinese Dragon...

  16. 75 FR 27430 - Special Local Regulations for Marine Events; Patapsco River, Northwest Harbor, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... local regulations during the ``Baltimore Dragon Boat Challenge'', a marine event to be held on the... public meeting was requested, and none was held. Basis and Purpose On June 19, 2010, Baltimore Dragon Boat Club, Inc. will sponsor Dragon Boat Races in the Patapsco River, Northwest Harbor at Baltimore, MD...

  17. Metals, organic compounds, and nutrients in Long Island Sound: sources, magnitudes, trends, and impacts

    USGS Publications Warehouse

    Mullaney, John R.; Varekamp, J.C.; MCElroy, A.E.; Brsslin, V.T.

    2014-01-01

    The main rivers that discharge into LIS are the East River in the west, the Housatonic and Connecticut rivers on the north, and the Thames River at the northeastern end of LIS, with the Quinnipiac and several other smaller rivers also coming in from Connecticut. The East River is a tidal strait that connects LIS with New York Harbor through the heart of the New York City metropolitan region. The Housatonic, Quinnipiac, Connecticut and Thames river basins drain agricultural, urban and industrial lands in a watershed that extends from Connecticut north to Canada. The Sound receives contaminants from many sources within and outside its contributing watershed, including direct discharges from coastal industries, wastewater treatment plants (WWTP), urban runoff, and atmospheric deposition. New England has a long history of industrial activity, with factories that once crowded its riverbanks and shores now having succumbed to economic forces that drove manufacturing overseas. Relict deposits with legacy pollutants in upland sediments persist and combine with modern runoff sources from an increasingly densely populated watershed, and continue to be a source of contaminants for LIS. While toxic exposure from legacy and active sources has diminished over the years as wastewater treatment has improved and industries closed or moved away, pockets of contamination still have consequences for many embayments and coves, particularly near urbanized areas of western LIS. Loading of nutrients and carbon have been of recent concern in LIS because of the extensive impacts observed since the mid-1980s. Excess nutrients not only create inhospitable conditions for higher forms of aquatic life through reduced oxygen levels and disrupting trophic dynamics, but also by altering the local biogeochemistry. As a result, the release of toxic substances into the water column may be enhanced in hypoxic waters, thus exerting a toxic effect or enhancing incorporation of toxic pollutants into the

  18. 33 CFR 100.35T05-0276 - Special Local Regulations for Marine Events; Potomac River, National Harbor Access Channel, MD.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Marine Events; Potomac River, National Harbor Access Channel, MD. 100.35T05-0276 Section 100.35T05-0276... SAFETY OF LIFE ON NAVIGABLE WATERS § 100.35T05-0276 Special Local Regulations for Marine Events; Potomac... area: All waters of the Potomac River, within lines connecting the following positions: From 38°47′35...

  19. 33 CFR 100.35T05-0276 - Special Local Regulations for Marine Events; Potomac River, National Harbor Access Channel, MD.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Marine Events; Potomac River, National Harbor Access Channel, MD. 100.35T05-0276 Section 100.35T05-0276... SAFETY OF LIFE ON NAVIGABLE WATERS § 100.35T05-0276 Special Local Regulations for Marine Events; Potomac... area: All waters of the Potomac River, within lines connecting the following positions: From 38°47′35...

  20. Suspended Sediment in the Indiana Harbor Canal and the Grand Calumet River, Northwestern Indiana, May 1996-June 1998

    USGS Publications Warehouse

    Renn, Danny E.

    2000-01-01

    Suspended-sediment samples and streamflow data were collected from May 1996 through June 1998 at three sites in the Grand Calumet River Basin - Indiana Harbor Canal at East Chicago, the east branch of the Grand Calumet River at Gary, and the west branch of the Grand Calumet River at Hammond. Sample analysis allowed for retention of sediments of 0.0015 millimeters or larger. At Indiana Harbor Canal at East Chicago, an automated sampler collected 2,005 suspended-sediment samples from the canal and, of these, 1,856 had associated streamflow values. To evaluate any bias between instream concentrations of suspended sediment and samples collected by the automated sampler, 27 sets of suspended-sediment samples were collected manually in the canal at the same time samples were collected by the automated sampler. There was no consistent bias between the samples collected manually instream and the samples collected by the automated sampler; therefore, no correction factor was applied to the concentrations of suspended sedment for the samples collected by the automated sampler. For the 2,005 and 1,856 samples, the mean suspended-sediment concentrations were the same, 15 milligrams per liter (mg/L), and the range in suspended-sediment concentrations were the same, from less than 1 mg/L to 97 mg/L. No apparent relation between the concentration of suspended sediment measured in samples from the Indiana Harbor Canal and streamflow was indicated, probably because of complex hydraulic conditions in the study area; most of the streamflow is from industrial and municipal discharges, and streamflow is affected by changes in water levels in Lake Michigan. There did appear to be a seasonal trend in the concentrations of suspended sediment, however, in that the largest concentrations generally were measured during the spring. During the study, four substantial rainfall events were recorded. Only for a rainfall event of 4.20 inches was there a substantial increase in the concentrations

  1. Improvement of water quality at Dongbin Harbor with construction of an inland canal, Korea.

    PubMed

    Cho, Yong-Sik

    2014-01-01

    The behaviors of the water body of Dongbin Harbor located at Pohang City, Gyongpook Province, in Korea were numerically simulated in this study. A canal was planned to connect the harbor and the Hyeongsan River to improve water quality inside the harbor. The current system was first simulated by using a commercial program RMA2, with respect to both tidal currents and river flow. The progress inside the harbor from a supply of fresh water from the Hyeongsan River was then predicted by using RMA4. Both the present and future conditions (before and after construction of an inland canal) were taken into consideration in numerical simulations. It is concluded that the water quality inside the harbor can be improved considerably after construction of the canal.

  2. Distribution and contamination status of chromium in surface sediments of northern Kaohsiung Harbor, Taiwan.

    PubMed

    Dong, Cheng-Di; Chen, Chiu-Wen; Chen, Chih-Feng

    2013-07-01

    The distribution, enrichment, accumulation, and potential ecological risk of chromium (Cr) in the surface sediments of northern Kaohsiung Harbor, Taiwan, China were investigated. Sediment samples from ten locations located between the river mouths and harbor entrance of northern Kaohsiung Harbor were collected quarterly in 2011 and characterized for Cr, aluminum, water content, organic matter, total nitrogen, total phosphorous, total grease, and grain size. Results showed that the Cr concentrations varied from 27.0 to 361.9 mg/kg with an average of (113.5 +/- 87.0) mg/kg. High Cr concentration was observed near the Jen-Gen River mouth. The mean Cr concentration was high at 255.5 mg/kg, which was at least 2 to 7 times than that of other sites. This might imply significant Cr contribution from upstream receiving tanneries wastewater into the Jen-Gen River. The spatial distribution of Cr reveals relatively high in the river mouth region, especially in Jen-Gen River, and gradually diminishes toward the harbor entrance region. This indicates that the major sources of Cr pollution from upstream industrial and municipal wastewaters discharged along the river bank; and Cr may drift with sea current and be dispersed into open sea. Moreover, Cr concentrations correlated closely to the physical-chemical properties of the sediments, which suggested the influence of industrial and municipal wastewaters discharged from the neighboring industrial parks and river basins. Results from the enrichment factor and geo-accumulation index analyses imply that the Jen-Gen River sediments can be characterized as moderate enrichment and none to medium accumulation of Cr, respectively. However, results of potential ecological risk index indicate that the sediment has low ecological potential risk. The results can provide valuable information to developing future strategies for the management of river mouth and harbor.

  3. 19. Photocopy of Blueprint (Original blueprint located in Grays Harbor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of Blueprint (Original blueprint located in Grays Harbor County Bridge File No. 4731/0.5 COAST BRIDGE COMPANY'S CONSTRUCTION BLUEPRINT OF 'FLOOR SYSTEM FOR 120' RIVETED SPAN' DATED JULY 1915 - West Wishkah Bridge, West Wishkah Road Spanning Wishkah River Middle Fork, Aberdeen, Grays Harbor County, WA

  4. Comparison of benthos and plankton for selected areas of concern and non-areas of concern in western Lake Michigan Rivers and Harbors in 2012

    USGS Publications Warehouse

    Eikenberry, Barbara C. Scudder; Bell, Amanda H.; Olds, Hayley T.; Burns, Daniel J.

    2016-07-25

    Recent data are lacking to assess whether impairments still exist at four of Wisconsin’s largest Lake Michigan harbors that were designated as Areas of Concern (AOCs) in the late 1980s due to sediment contamination and multiple Beneficial Use Impairments (BUIs), such as those affecting benthos (macroinvertebrates) and plankton (zooplankton and phytoplankton) communities. During three seasonal sampling events (“seasons”) in May through August 2012, the U.S. Geological Survey collected sediment benthos and water plankton at the four AOCs as well as six less-degraded non-AOCs along the western Lake Michigan shoreline to assess whether AOC communities were degraded in comparison to non-AOC communities. The four AOCs are the Lower Menominee River, the Lower Green Bay and Fox River, the Sheboygan River, and the Milwaukee Estuary. Due to their size and complexity, multiple locations or “subsites” were sampled within the Lower Green Bay and Fox River AOC (Lower Green Bay, the Fox River near Allouez, and the Fox River near De Pere) and within the Milwaukee Estuary AOC (the Milwaukee River, the Menomonee River, and the Milwaukee Harbor) and single locations were sampled at the other AOCs and non-AOCs. The six non-AOCs are the Escanaba River in Michigan, and the Oconto River, Ahnapee River, Kewaunee River, Manitowoc River, and Root River in Wisconsin. Benthos samples were collected by using Hester-Dendy artificial substrates deployed for 30 days and by using a dredge sampler; zooplankton were collected by net and phytoplankton by whole-water sampler. Except for the Lower Green Bay and Milwaukee Harbor locations, communities at each AOC were compared to all non-AOCs as a group and to paired non-AOCs using taxa relative abundances and metrics, including richness, diversity, and an Index of Biotic Integrity (IBI, for Hester-Dendy samples only). Benthos samples collected during one or more seasons were rated as degraded for at least one metric at all AOCs. In the

  5. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... executing river and harbor improvement work for the United States, and displaying the signals prescribed by... exercise special caution to avoid interference with the work on which the plant is engaged. Dredges...); a wharf or other structure; work under construction; plant engaged in river and harbor improvement...

  6. Establishment Patterns of Non-native Fishes: Lessons from the Duluth-Superior Harbor and Lower St. Louis River, an Invasion-prone Great Lakes Freshwater Estuary

    EPA Science Inventory

    The St. Louis River freshwater estuary which drains into western Lake Superior and includes the Duluth-Superior (MN-WI) harbor, has a long history of non-native fish introductions. From 1985 to 2002, seven new fishes were identified in the estuary, an unprecedented rate of non-n...

  7. 33 CFR 209.155 - Expenditure of Federal funds for work shoreward of harbor lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... work shoreward of harbor lines. 209.155 Section 209.155 Navigation and Navigable Waters CORPS OF... Federal funds for work shoreward of harbor lines. (a) Section 5 of the River and Harbor Act of July 13, 1892 (27 Stat. 111; 33 U.S.C. 628), prohibits the expenditure of money appropriated for the improvement...

  8. Inner Harbor Navigation Canal Basin Velocity Analysis

    DTIC Science & Technology

    2014-10-01

    ER D C/ CH L TR -1 4- 12 Inner Harbor Navigation Canal Basin Velocity Analysis Co as ta l a nd H yd ra ul ic s La bo ra to ry...Mississippi River Gulf Outlet (MRGO). The structures allow for continued navigation, and the gate structures are designed to remain open during...Water Way (GIWW) just east of the Mississippi River Gulf Outlet (MRGO). The planned structures allow for continued navigation in the IHNC, Bayou

  9. 76 FR 12 - Drawbridge Operation Regulations; New Haven Harbor, Quinnipiac and Mill Rivers, New Haven, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... to keep one lift span closed to facilitate scheduled bridge maintenance. DATES: This deviation is... temporary deviation the Ferry Street Bridge may keep one lift span in the closed position from 8 a.m. on... January 13, 2011. One lift span shall remain operational at all times. In accordance with 33 CFR 117.35(e...

  10. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China.

    PubMed

    Luo, Xiaojun; Mai, Bixian; Yang, Qingshu; Fu, Jiamo; Sheng, Guoying; Wang, Zhishi

    2004-06-01

    Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) were measured in suspended particles and dissolved phase from the Baiertang water column and the Macao water column samples as collected from the Guangzhou channel of the Pearl River and the Macao harbor, where the sediments were heavily contaminated with organic pollutants. Total OCPs concentration varies from 23.4 to 61.7 ng/l in Baiertang water column and from 25.2 to 67.8 ng/l in Macao column, while total PAHs concentration varies from 987.1 to 2878.5 ng/l in the Baiertang water column and from 944.0 to 6654.6 ng/l in the Macao column. The vertical distribution profiles of pollutants and the partition of pollutants between particles and dissolved phases indicate that the sediments in Baiertang act as an important source of selected pollutants, and the pollutants in water of this region were mainly originated from the release and re-suspension of contaminants residing in the sediments. The sediments in Macao harbor act as a reservoir for organochlorine pesticides, such as DDTs mainly introduced by river inflow from Xijiang and PAHs input by brackish water from the Lingdingyang estuary. Combustion of fossil fuels and petroleum input are the main sources of PAHs in the Macao water column, while combustion of fossil fuels and coal is responsible for the PAHs in the Baiertang water column. The ratios of DDT/(DDD+DDE) for the Macao water column samples demonstrate that such chemicals were input into this region in recent times.

  11. 34. VIEW SOUTHEAST, WEST ABUTMENT OF OPERATING MACHINERY LARGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW SOUTHEAST, WEST ABUTMENT OF OPERATING MACHINERY - LARGE GEAR AT LEFT CENTER IS 'D' - REFER TO STRAUSS SHEETS #15 AND #18 FOR POWER TRAIN RELATIONSHIPS - Tomlinson Bridge, Spanning Quinnipiac River at Forbes Street (U.S. Route 1), New Haven, New Haven County, CT

  12. Geohydrology and water quality of the Calumet aquifer, in the vicinity of the Grand Calumet River/Indiana Harbor Canal, northwestern Indiana

    USGS Publications Warehouse

    Fenelon, J.M.; Watson, Lee R.

    1993-01-01

    A comparison of primarily inorganic-constituent data from the five land-use groups to inorganic-constituent data from sites known to be contaminated shows that constituent concentrations in ground waters from wells in the land-use areas generally are lower than those in ground water from contaminated areas. Abstract 1 Likewise, a comparison of inorganic-constituent data from the land-use groups to inorganic-constituent data from areas relatively unaffected by human presence shows that constituent concentrations in ground water from wells in the land-use areas generally are greater than those in ground water from the unaffected areas. Some documented but unaccounted for chemical loads in the Grand Calumet River are from ground water. Ground water probably contributes more than 10 percent of the total chemical load of ammonia, chromium, and cyanide to the Grand Calumet River. In comparison, about 1 to 3 percent of the total streamflow in the Grand Calumet River is from ground water. Of the four major groundwater sinks in the aquifer, the east branch of the Grand Calumet River and the Indiana Harbor Canal generally receive the greatest chemical loads from ground water, whereas Lake Michigan generally receives the smallest loads.

  13. 33. EAST ABUTMENT, VIEW NORTHEAST OF OPERATING MACHINERY SMALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. EAST ABUTMENT, VIEW NORTHEAST OF OPERATING MACHINERY - SMALL GEAR IS IDENTIFIED AS 'C' - LARGE GEAR IS 'B' REFER TO GEARING DIAGRAMS - STRAUSS SHEET #15 FOR POWER TRAIN RELATIONSHIPS - Tomlinson Bridge, Spanning Quinnipiac River at Forbes Street (U.S. Route 1), New Haven, New Haven County, CT

  14. 35. VIEW SOUTHEAST, WEST ABUTMENT OF OPERATING MACHINERY BASCULE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. VIEW SOUTHEAST, WEST ABUTMENT OF OPERATING MACHINERY - BASCULE LEAF RAISED - LARGE GEAR AT LEFT CENTER IS 'D' - REFER TO STRAUSS SHEETS #15 AND #18 FOR POWER TRAIN RELATIONSHIPS - Tomlinson Bridge, Spanning Quinnipiac River at Forbes Street (U.S. Route 1), New Haven, New Haven County, CT

  15. Quality of bottom material and elutriates in the lower Willamette River, Portland Harbor, Oregon

    USGS Publications Warehouse

    Fuhrer, Gregory J.

    1989-01-01

    In October 1983 the U.S. Geological Survey, in cooperation with the U.S. Army Corp of Engineers, collected bottom-material and water samples from Portland Harbor, Oregon to determine concentrations of trace metals and organic compounds in elutriate-test filtrate and bottom material. Of the trace metals examined in bottom material, concentrations of cadmium slightly exceed those of local rocks, whereas lead and zinc exceedance is substantially larger. Of the organochlorine compounds examined in bottom material chlordane, DDD, DDE, DDT, dieldrin, and polychlorinated biphenyls (PCB's) were detected and quantified in at least 30% of the samples tested. A large DDT concentration (2,700 microgram/kilogram) near Doane Lake outlet is indicative of recent contamination. Polychlorinated biphenyls are ubiquitous in bottom sediments; median concentrations are nearly 65 micrograms/kilogram and as large as 550 microgram/kilogram. PCB loading to the Columbia River from Willamette River suspended sediment has been estimated to be 72 kilograms/year, nearly five times the PCB dredge load of 15 kilogram/year. The acid and base-neutral extractable di-n-butyl phthalate and bis (2-ethylhexyl)phthalate occur in sediments of Terminal No. 2 in concentrations as large as 1,965 and 2,200 micrograms/kilogram, respectively. Of the trace metals examined in both standard and oxic elutriate-test filtrate, only copper concentration in an oxic elutriate-test filtrate (19 micrograms/L) exceeded the water quality criteria (5.7 micrograms/L). (USGS)

  16. Mercury in the Grand Calumet River/Indiana Harbor Canal and Lake Michigan, Lake County, Indiana, August 2001 and May 2002

    USGS Publications Warehouse

    Risch, Martin R.

    2005-01-01

    Data from this study have implications for a Total Maximum Daily Load (TMDL) for mercury in the Grand Calumet River/Indiana Harbor Canal. Comparisons of data from this study with historical data do not show substantial changes in the distribution of mercury in the study area from 1994 through 2002. Treated municipal effluent had larger mercury concentrations than industrial effluent and presents a potential for larger mercury loads that could be controlled to achieve a TMDL, based on concentration. Mercury in ground-water discharge may be difficult to control to achieve a TMDL because of its diffuse and widespread distribution.

  17. Boussinesq Modeling for Inlets, Harbors, and Structures (Bouss-2D)

    DTIC Science & Technology

    2015-10-30

    a wide variety of coastal and ocean engineering and naval architecture problems, including: transformation of waves over small to medium spatial...and outputs, and GIS data used in modeling. Recent applications include: Pillar Point Harbor, Oyster Point Marina, CA; Mouth of Columbia River

  18. Land use, water use, streamflow characteristics, and water-quality characteristics of the Charlotte Harbor inflow area, Florida

    USGS Publications Warehouse

    Hammett, K.M.

    1990-01-01

    Charlotte Harbor is a 270-square-mile estuarine system in west-central Florida. It is being subjected to increasing environmental stress by rapid population growth and development. By 2020, population in the inflow area may double, which will result in increased demands for freshwater and increased waste loads. The Charlotte Harbor inflow area includes about 4,685 square miles. The Myakka, the Peace, and the Caloosahatchee are the major rivers emptying into the harbor. About 70 percent of the land in these three river basins is used for agriculture and range. In the coastal basin around Charlotte Harbor, about 50 percent of the total land area is devoted to commercial or residential uses. Water use in the inflow area is about 565 million gallons per day, of which 59 percent is used for irrigation, 26 percent for industry, 11 percent for public supply, and 4 percent for rural supply. Total freshwater inflow from the three major rivers, the coastal area, and rainfall directly into Charlotte Harbor averages between 5,700 and 6,100 cubic feet per second, which is more than 3,500 million gallons per day. A trend analysis of about 50 years of streamflow data shows a statistically significant decreasing trend for the Peace River stations at Bartow, Zolfo Springs, and Arcadia. No significant trend has been observed in the Myakka or the Caloosahatchee River data. In the Peace River, the decrease in flow may be related to a long-term decline in the potentiometric surface of the underlying Floridan aquifer system, which resulted from ground-water withdrawals. It is not possible to determine whether the trend will continue. However, if it does continue at the same rate, then, except for brief periods of storm runoff, the Peace River at Zolfo Springs could be dry year-round in about 100 years. Of the 114 facilities permitted to discharge domestic or industrial effluent to waters tributary to Charlotte Harbor, 88 are in the Peace River basin. Phosphate ore and citrus processing

  19. 78 FR 61958 - New England Hydropower Company, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-08

    ... located on Quinnipiac River, near the city of Meriden, in New Haven County, Connecticut. The sole purpose...' express permission. The proposed project would consist of the following: (1) An existing 25-foot-high, 430-foot-long earth embankment dam with four low-level, sluice gates and a 242-foot-long concrete spillway...

  20. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... used, or capable of being used, as a means of transportation on water, other than rafts. (b) Waterways... to result in a condition whereby the movement of vessel (and tow) cannot be completely halted or... construction, plant engaged in river and harbor improvement, levees withstanding floodwaters, buildings...

  1. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... used, or capable of being used, as a means of transportation on water, other than rafts. (b) Waterways... to result in a condition whereby the movement of vessel (and tow) cannot be completely halted or... construction, plant engaged in river and harbor improvement, levees withstanding floodwaters, buildings...

  2. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... used, or capable of being used, as a means of transportation on water, other than rafts. (b) Waterways... to result in a condition whereby the movement of vessel (and tow) cannot be completely halted or... construction, plant engaged in river and harbor improvement, levees withstanding floodwaters, buildings...

  3. Composition and source of butyltins in sediments of Kaohsiung Harbor, Taiwan

    NASA Astrophysics Data System (ADS)

    Dong, Cheng-Di; Chen, Chih-Feng; Chen, Chiu-Wen

    2015-04-01

    Fifty-eight sediment samples were collected from the Kaohsiung Harbor (Taiwan) for analyses of monobutyltin (MBT), dibutyltin (DBT) and tributyltin (TBT), using gas chromatography/flame photometric detector (GC/FPD). The concentration of total butyltins (ΣBTs), sum of MBT, DBT, and TBT, varied from 3.9 to 158.5 ng Sn/g dw in sediment samples with TBT being the major component of the sediment samples, except for the vicinity of the Love River mouth where MBT was the most abundant BT compound (a proportion of over 57%). Based on the BTs concentration, distribution, composition and correlations, the sources of BTs found in harbor sediments are shipping activities, and TBT is the main pollutant; the estuary (i.e. Love River) has been the anthropogenic source of MBT from upstream inputs. Influences of TBT on aquatic organisms are evaluated using the toxicity guidelines proposed by the US EPA (US Environmental Protection Agency) and the ACCI (assessment class criterion for imposex) proposed by OSPAR (Oslo and Paris Commission). The evaluation shows that the TBT contained in the sediment at Kaohsiung Harbor is likely to have a negative influence at ACCI class C because gastropods present imposex and TBT levels are above ecotoxicological assessment criteria (EAC) limits.

  4. Nineteenth Century Harbors: Accounting for Coastal Urban Development in Hydrologic Change

    NASA Astrophysics Data System (ADS)

    Schlichting, K. M.; Ruffing, C. M.; McCormack, S. M.; Urbanova, T.; Powell, L. J.; Hermans, C. M.

    2009-12-01

    Harbors complicate the analytical framework of quantifying nineteenth-century hydrologic change in the northeastern United States. The hydrology of the region was fundamentally altered by the growth of water engineering such as canals as well as by land cover changes as deforestation in the region peaked and urban centers grew. Urban coastal growth epitomized nineteenth-century development as northeastern colonial ports evolved into manufacturing and industrial centers. Coastal urban industrial development concentrated tanneries, machineries, and paper processing companies along cities’ trading rivers. Additionally, the populations of cities such as Boston, New Haven, New York, Newark, and Baltimore reached unprecedented numbers, forcing urban municipalities to confront sewerage and drinking water infrastructure in the face of shortages and waterborne disease. We discuss how the concentration of industry and population at river mouths complicates the process of quantifying the effects of municipal drinking water and sewage infrastructure on regional hydrology and how the growth of nineteenth-century urban centers shaped regional hydrologic hinterlands. Additionally, harbors oblige a reconsideration of hydrologic boundaries by forcing hydrologists and environmental historians to account for fisheries and harbor engineering alongside population and industry as factors in changes to water quality and quantity in and human response to urban nineteenth-century hydrologic change.

  5. Waterborne Commerce of the United States Calendar Year 1987. Part 3. Waterways and Harbors Great Lakes

    DTIC Science & Technology

    1989-05-31

    0-;......... .......... ALPENA HARBOR, MICH. SE CTION INCLUDEDl6. j LOWE 4,00 FET OF RIVER ANDPRIVATE HARORS NORTH IF MOUTH OF THUNDER...1,821,� 1967..................................................... 1,968,6s DETROIT, hMI, DISTRICT 31 ALPENA HARBOR, MICH...TANKER N050RG TANKER OR DRY CARGO TANKER DRY CARGO TUGBOAT DRY CARGO TUGBOATIO ALPENA HARGORP MICH. I BON OUTIOUND 22 . . . . . . . . . . . . . . 2 34

  6. Status of Aquatic Non-indigenous Species in the Duluth-Superior Harbor

    EPA Science Inventory

    As part of a study to develop recommendations for aquatic non-indigenous species (NIS) monitoring in Great Lakes areas at risk of invasion, we conducted comprehensive, multi-gear sampling in the Duluth, MN-Superior, WI harbor and lower St. Louis River in 2005-2007. This effort r...

  7. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...

  8. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...

  9. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...

  10. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...

  11. 31. VIEW NORTHEAST OF OPERATING MACHINERY. GEAR 'C5' IS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW NORTHEAST OF OPERATING MACHINERY. GEAR 'C5' IS AT LOWER LEFT AND EMERGENCY BRAKE MECHANISM ON PEDESTAL AT CENTER. NOTE LOWER EQUALIZING LINKAGE FOR COUNTERWEIGHT AT LEFT CENTER OF PHOTOGRAPH - THIS WAS A KEY COMPONENT OF STRAUSS' PATENT PARALLOGRAM LINKAGE - Tomlinson Bridge, Spanning Quinnipiac River at Forbes Street (U.S. Route 1), New Haven, New Haven County, CT

  12. Anthropogenic inputs of dissolved organic matter in New York Harbor

    NASA Astrophysics Data System (ADS)

    Gardner, G. B.; Chen, R. F.; Olavasen, J.; Peri, F.

    2016-02-01

    The Hudson River flows into the Atlantic Ocean through a highly urbanized region which includes New York City to the east and Newark, New Jersey to the west. As a result, the export of Dissolved Organic Carbon (DOC) from the Hudson to the Atlantic Ocean includes a significant anthropogenic component. A series of high resolution studies of the DOC dynamics of this system were conducted between 2003 and 2010. These included both the Hudson and adjacent large waterways (East River, Newark Bay, Kill Van Kull and Arthur Kill) using coastal research vessels and smaller tributaries (Hackensack, Pasaic and Raritan rivers) using a 25' boat. In both cases measurements were made using towed instrument packages which could be cycled from near surface to near bottom depths with horizontal resolution of approximately 20 to 200 meters depending on depth and deployment strategy. Sensors on the instrument packages included a CTD to provide depth and salinity information and a chromophoric dissolved organic matter(CDOM) fluorometer to measure the fluorescent fraction of the DOC. Discrete samples allowed calibration of the fluorometer and the CDOM data to be related to DOC. The combined data set from these cruises identified multiple scales of source and transport processes for DOC within the Hudson River/New York Harbor region. The Hudson carries a substantial amount of natural DOC from its 230 km inland stretch. Additional sources exist in fringing salt marshes adjacent to the Hackensack and Raritan rivers. However the lower Hudson/New Harbor region receives a large input of DOC from multiple publically owned treatment works (POTW) discharges. The high resolution surveys allowed us to elucidate the distribution of these sources and the manner in which they are rapidly mixed to create the total export. We estimate that anthropogenic sources account for up to 2.5 times the DOC flux contributed by natural processes.

  13. USE OF CHEMICAL OXIDATION AND BIOREMEDIATION FOR TREATING INDIANA HARBOR CANAL SEDIMENT

    EPA Science Inventory

    The Indiana Harbor Canal is a man-made canal that connects Lake Michigan with the Calumet River. It is the recipient of extremely heavy hydrocarbon and steel slag contamination from oil refineries and steel mills dating back to the 19th century. The oil is heavily weathered and i...

  14. Buffalo Harbor Study. Preliminary Feasibility Report. Volume I. Main Report.

    DTIC Science & Technology

    1983-04-01

    to usually narrow strips of riparian vegetation, which is composed of various trees and shrubs of the Salix genus (willow), sumac, aspen, boxelder...reptiles were found. Species included, leopard frogs, snapping turtles, painted turtle, and garter snakes (SUNY Brockport: 1982). (7) Endangered Species...vessel traffic on the Buffalo River causes interrupted truck service. Firms have also cited snow removal as a problem. The harbor area road service

  15. Environmental Assessment for Boston Harbor Maintenance Dredging, Boston, Massachusetts.

    DTIC Science & Technology

    1981-12-01

    Harbor was developed by Jerome et al (1966), Chesmore et al (1971) and Iwanowicz et al. (1973). The studies on the Lower Mystic River were concentrated in... Iwanowicz et al. (1973) and this data should be referred to for detailed information. Waters overlying the shellfish beds are contaminated by wastes...DMRP Technical Report DS-78-5, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. Iwanowicz , H. R., R D

  16. Vertical profile, contamination assessment, and source apportionment of heavy metals in sediment cores of Kaohsiung Harbor, Taiwan.

    PubMed

    Chen, Chih-Feng; Ju, Yun-Ru; Chen, Chiu-Wen; Dong, Cheng-Di

    2016-12-01

    Six sediment cores collected at the Kaohsiung Harbor of Taiwan were analyzed to evaluate their vertical profiles, enrichments, accumulations, and source apportionments of heavy metals. This was performed to investigate any potential ecological risks posed by heavy metals. Results indicated that the mean heavy metal content (mg kg -1 ) in the six sediment cores was as follows: Hg (0.4-6.4), Cd (<0.05-2.4), Cr (18-820), Cu (16-760), Pb (31-140), and Zn (76-1900). The patterns of heavy metal content in the sediment cores differed substantially among the four river mouths. However, the vertical profiles of metals were relatively stable, indicating that wastewater has the constant characteristics and has been discharged into the rivers for a long period of time. Results of pollution assessment of enrichment factor, geo-accumulation index, and pollution load index revealed that river mouths experience severe enrichment, strong accumulation, and high contamination from the primary heavy metals. It was not consistent in the assessment results of mean effect range median quotient, potential ecological risk index, and total toxic unit method. Potential ecological risks caused by Hg in the sediments at Canon River and Love River mouths on aquatic organisms were extremely high. The estimates derived from the receptor modeling of multiple linear regression of the absolute principal component scores indicated that the contributions of the composite heavy metals derived from the Canon River and the Love River on the potential toxicity and risks to the water environment of Kaohsiung Harbor were highest, followed by those derived from Salt River and Jen-Gen River. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Regional Sediment Budget of the Columbia River Littoral Cell, USA

    USGS Publications Warehouse

    Buijsman, Maarten C.; Sherwood, C.R.; Gibbs, A.E.; Gelfenbaum, G.; Kaminsky, G.M.; Ruggiero, P.; Franklin, J.

    2002-01-01

    Summary -- In this Open-File Report we present calculations of changes in bathymetric and topographic volumes for the Grays Harbor, Willapa Bay, and Columbia River entrances and the adjacent coasts of North Beach, Grayland Plains, Long Beach, and Clatsop Plains for four intervals: pre-jetty - 1920s (Interval 1), 1920s - 1950s (Interval 2), 1950s - 1990s (Interval 3), and 1920s 1990s (Interval 4). This analysis is part of the Southwest Washington Coastal Erosion Study (SWCES), the goals of which are to understand and predict the morphologic behavior of the Columbia River littoral cell on a management scale of tens of kilometers and decades. We obtain topographic Light Detection and Ranging (LIDAR) data from a joint project by the U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), National Aeronautic and Space Administration (NASA), and the Washington State Department of Ecology (DOE) and bathymetric data from the U.S. Coast and Geodetic Survey (USC&GS), U.S. Army Corps of Engineers (USACE), USGS, and the DOE. Shoreline data are digitized from T-Sheets and aerial photographs from the USC&GS and National Ocean Service (NOS). Instead of uncritically adjusting each survey to NAVD88, a common vertical land-based datum, we adjust some surveys to produce optimal results according to the following criteria. First, we minimize offsets in overlapping surveys within the same era, and second, we minimize bathymetric changes (relative to the 1990s) in deep water, where we assume minimal change has taken place. We grid bathymetric and topographic datasets using kriging and triangulation algorithms, calculate bathymetric-change surfaces for each interval, and calculate volume changes within polygons that are overlaid on the bathymetric-change surfaces. We find similar morphologic changes near the entrances to Grays Harbor and the Columbia River following jetty construction between 1898 and 1916 at the Grays Harbor entrance and between 1885 and

  18. Distribution of suspended sediment in a partially mixed estuary, Charleston Harbor, South Carolina, U.S.A.

    NASA Astrophysics Data System (ADS)

    Althausen, J. D.; Kjerfve, Björn

    1992-11-01

    A well-defined turbidity maximum zone (TMZ) exists 15-45 km upstream of the entrance to Charleston Harbor, South Carolina, on the Cooper River, where the salinity varies between 5-15 ppt. The TMZ is characterized by less than 60% light transmission over a 5 cm path-length near the bottom, as compared to 70-90% light transmission elsewhere. The TMZ oscillates along the Cooper River 3-13 km during a tidal cycle. The range of total suspended sediment (TSS) concentration is 40-100 mg l -1 in the TMZ, while 10-30 mg l -1 is the most common TSS concentration elsewhere in the estuarine portion of Charleston Harbor and the Cooper River. Transmissivity is well-correlated with TSS ( r2 = 0·77) throughout the estuary. TSS concentration depends largely on tidal stage and varies significantly from spring to neap tide. Spring tide TSS concentrations are 2-3 times greater than concentrations during neap tides. The net downstream transport of suspended sediment is primarily a function of fresh water discharge, but is particularly large when flood events coincide with spring tides as was evident during the sampling of the TMZ following Hurricane Hugo (22 September 1989).

  19. 75 FR 141 - Big Rivers Electric Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. NJ09-3-001] Big Rivers Electric Corporation; Notice of Filing December 23, 2009. Take notice that on December 16, 2009, pursuant... Rivers Electric Corporation filed revised tariff sheets to its ``safe harbor'' open access transmission...

  20. Grays Harbor and Chehalis River Improvements to Navigation Environmental Studies. Wildlife Studies at Proposed Disposal Sites in Grays Harbor, Washington,

    DTIC Science & Technology

    1982-01-01

    sltand. T 𔃼~P i’ W 210 three times VtwCerI November IOC’C -nd ~co l.Etls ~ ec!,!zervc-o betxwe H -gF 12 Th -ind hl rway u- 7Plie Sicuobh. E. Cumin -s 1... stress imposed by dredge dsosal ;ictivities on these species. It is difficult to rredict the effects of establishing a salt marsh in Grays Harbor on

  1. 76 FR 7701 - Special Local Regulations; Krewe of Charleston Mardi Gras Boat Parade, Charleston Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ...-AA08 Special Local Regulations; Krewe of Charleston Mardi Gras Boat Parade, Charleston Harbor... establishing a special local regulation for the Krewe of Charleston Mardi Gras Boat Parade on the Ashley River... Charleston Mardi Gras Boat Parade with sufficient time to publish an NPRM in advance of the effective date of...

  2. 33 CFR 100.109 - Winter Harbor Lobster Boat Race, Winter Harbor, ME.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Winter Harbor Lobster Boat Race, Winter Harbor, ME. 100.109 Section 100.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Lobster Boat Race, Winter Harbor, ME. (a) Regulated area. The regulated area includes all waters of Winter...

  3. Fish Health Study Ashtabula River Natural Resource Damage Assessment

    USGS Publications Warehouse

    Blazer, V.S.; Iwanowicz, L.R.; Baumann, P.C.

    2006-01-01

    INTRODUCTION The Ashtabula River is located in northeast Ohio, flowing into Lake Erie at Ashtabula, Ohio. Tributaries include Fields Brook, Hubbard Run, Strong Brook, and Ashtabula Creek. The bottom sediments, bank soils and biota of Fields Brook have been severely contaminated by unregulated discharges of hazardous substances. Hazardous substances have migrated downstream from Fields Brook to the Ashtabula River and Harbor, contaminating bottom sediments, fish and wildlife. There are presently more than 1,000,000 cubic yards of contaminated sediment in the Ashtabula River and Harbor, much of which originated from Fields Brook. Contaminants include polychlorinated biphenyls (PCBs), chlorinated benzenes, chlorinated ethenes, hexachlorobutadiene, polyaromatic hydrocarbons (PAHs), other organic chemicals, heavy metals and low level radionuclides. A Preassessment Screen, using existing data, was completed for the Ashtabula River and Harbor on May 18, 2001. Among the findings was that the fish community at Ashtabula contained approximately 45 percent fewer species and 52 percent fewer individuals than the Ohio EPA designated reference area, Conneaut Creek. The Ashtabula River and Conneaut Creek are similar in many respects, with the exception of the presence of contamination at Ashtabula. The difference in the fish communities between the two sites is believed to be at least partially a result of the hazardous substance contamination at Ashtabula. In order to investigate this matter further, the Trustees elected to conduct a study of the status and health of the aquatic biological communities of the Ashtabula River and Conneaut Creek in 2002-2004. The following document contains brief method descriptions (more detail available in attached Appendix A) and a summary of the data used to evaluate the health status of brown bullheads (Ameiurus nebulosus) and largemouth bass (Micropterus salmoides) collected from the above sites.

  4. 75 FR 18056 - Safety Zone; Fireworks Display, Patuxent River, Solomons Island Harbor, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ..., DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone... necessary to provide for the safety of life on navigable waters during a fireworks display launched from... protect the maritime public in a portion of Solomons Island Harbor. DATES: This rule is effective from 7...

  5. Seismic stability of the Duwamish River Delta, Seattle, Washington

    USGS Publications Warehouse

    Kayen, Robert E.; Barnhardt, Walter A.

    2007-01-01

    The delta front of the Duwamish River valley near Elliott Bay and Harbor Island is founded on young Holocene deposits shaped by sea-level rise, episodic volcanism, and seismicity. These river-mouth deposits are highly susceptible to seismic soil liquefaction and are potentially prone to submarine landsliding and disintegrative flow failure. A highly developed commercial-industrial corridor, extending from the City of Kent to the Elliott Bay/Harbor Island marine terminal facilities, is founded on the young Holocene deposits of the Duwamish River valley. The deposits of this Holocene delta have been shaped not only by relative sea-level rise but also by episodic volcanism and seismicity. Ground-penetrating radar (GPR), cores, in situ testing, and outcrops are being used to examine the delta stratigraphy and to infer how these deposits will respond to future volcanic eruptions and earthquakes in the region. A geotechnical investigation of these river-mouth deposits indicates high initial liquefaction susceptibility during earthquakes, and possibly the potential for unlimited-strain disintegrative flow failure of the delta front.

  6. The physical and geochemical interaction between a tidally-dominated estuary system (Wassaw Sound, GA) and a river-dominated estuary (Savannah River, GA) through salinity and inorganic carbon

    Treesearch

    Mike Scaboo; Christopher Hintz

    2016-01-01

    The Wilmington, Bull, and Savannah Rivers are interconnected waterways that flow through adjacent Savannah and Wassaw Sound Estuaries. These systems are linked by the upper reaches of the Wilmington River maintained as part of the Intracoastal Waterway. Significant changes to the Savannah River began in December 2014 with the initiation of the Savannah Harbor Expansion...

  7. 77 FR 50916 - Safety Zone; Boston Harbor's Rock Removal Project, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0767] RIN 1625-AA00 Safety Zone; Boston Harbor's Rock Removal Project, Boston Inner Harbor, Boston, MA AGENCY: Coast.... 165.T01-0767 Safety Zone; Boston Harbor's Rock Removal Project, Boston Inner Harbor, Boston, MA. (a...

  8. Lehigh River Basin, Hydropower Study. Stage 1. Reconnaissance Report.

    DTIC Science & Technology

    1980-09-01

    Works and Transportation of the U.S. House of Representatives adopted a resolution authorizing the Board of Engineers for Rivers and Harbors to review... Transportation . Early transportation was difficult. The first settlers relied on Indian trails and both rivers for travel. The first road was laid in...1735 and others quickly followed, but the rivers were the roads during much of the 1700’s. Rafts and dugout canoes transported settlers and their farm

  9. 33 CFR 125.15 - Access to waterfront facilities, and port and harbor areas, including vessels and harbor craft...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and port and harbor areas, including vessels and harbor craft therein. 125.15 Section 125.15....15 Access to waterfront facilities, and port and harbor areas, including vessels and harbor craft....09 to those waterfront facilities, and port and harbor areas, including vessels and harbor craft...

  10. The Portland Harbor Superfund Site Sustainability Project: Introduction.

    PubMed

    Fitzpatrick, Anne G; Apitz, Sabine E; Harrison, David; Ruffle, Betsy; Edwards, Deborah A

    2018-01-01

    This article introduces the Portland Harbor Superfund Site Sustainability Project (PHSP) special series in this issue. The Portland Harbor Superfund Site is one of the "mega-sediment sites" in the United States, comprising about 10 miles of the Lower Willamette River, running through the heart of Portland, Oregon. The primary aim of the PHSP was to conduct a comprehensive sustainability assessment, integrating environmental, economic, and social considerations of a selection of the remedial alternatives laid out by the US Environmental Protection Agency. A range of tools were developed for this project to quantitatively address environmental, economic, and social costs and benefits based upon diverse stakeholder values. In parallel, a probabilistic risk assessment was carried out to evaluate the risk assumptions at the core of the remedial investigation and feasibility study process. Integr Environ Assess Manag 2018;14:17-21. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  11. 33 CFR 117.541 - Baltimore Harbor-Patapsco River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Patapsco River at Baltimore, shall open on signal from 5 a.m. to 6:30 a.m., 9:30 a.m. to 4 p.m., and 6 p.m... during this period. When a vessel desires to pass the draw from 9 p.m. to 5 a.m., notice shall be given... residence after 9 p.m. If the notice is given from 5 a.m. to 9 p.m. or if at least one half hour has elapsed...

  12. 33 CFR 117.541 - Baltimore Harbor-Patapsco River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Patapsco River at Baltimore, shall open on signal from 5 a.m. to 6:30 a.m., 9:30 a.m. to 4 p.m., and 6 p.m... during this period. When a vessel desires to pass the draw from 9 p.m. to 5 a.m., notice shall be given... residence after 9 p.m. If the notice is given from 5 a.m. to 9 p.m. or if at least one half hour has elapsed...

  13. 75 FR 78228 - Takes of Marine Mammals Incidental to Specified Activities; Columbia River Crossing Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... (Zalophus californianus), and harbor seals (Phoca vitulina). Specified Activities CRC is proposing a...-water bents, consisting of one to three drilled shafts. The permanent in-water piers of both the Columbia River and North Portland Harbor crossings will be constructed using drilled shafts, rather than...

  14. Tracing submarine groundwater discharge flux in Tolo Harbor, Hong Kong (China)

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Jiao, Jiu Jimmy; Cheng, Ho Kwan

    2018-02-01

    Submarine groundwater discharge (SGD) is an important pathway for groundwater and associated chemicals to discharge to the sea. Groundwater levels monitored along a transect perpendicular to the shoreline are used to calculate SGD flux from the nearshore aquifer to Tolo Harbor, Hong Kong (China). The calculated SGD flux—recharge/discharge measured with Darcy's Law methods—agrees well with estimates based on geo-tracer techniques and seepage meter in Tolo Harbor during previous studies. The estimated freshwater SGD is 1.69-2.0 m2/d at the study site and 0.3 ± 0.04 cm/d for the whole of Tolo Harbor, which is comparable to the river discharge (0.25 ± 0.07 cm/d) and precipitation (0.45 ± 0.15 cm/d). The tide-driven SGD in the intertidal zone is 13.98-17.59 m2/d at the study site and 2.42 ± 0.56 cm/d for the whole of Tolo Harbor. The SGD occurring in the subtidal zone and the bottom of Tolo Harbor is 3.12 ± 4.63 cm/d. Fresh SGD accounts for 5% of the total SGD, while the rest ( 95%) is contributed by saline SGD driven by various forces. About 96% of the tide-driven SGD in the intertidal zone occurs in the ebbing tide period because the head difference between the groundwater level and sea level is great during this period. Tide-driven SGD in the spring tide is 1.2 times that during neap tide. The tidal fluctuation amplitude and tide-driven SGD in the intertidal zone are positively correlated to each other; thus, a spring neap variation of the tide-driven SGD is observed.

  15. Grays Harbor and Chehalis River Improvements to Navigation Environmental Studies. Grays Harbor Ocean Disposal Study. Literature Review and Preliminary Benthic Sampling,

    DTIC Science & Technology

    1980-05-01

    transects extending approximately 16 kilometers from the mouth of Grays Harbor. Sub- samples were taken for grain size analysis and wood content. The...samples were thert was".d on a 1.0 mm screen to separate benthic organisms from non-living materials. Consideration of the grain size analysis ...Nutrients 17 B. Field Study 18 Methods 18 Grain Size Analysis 18 Wood Analysis 21 Wood Fragments 21 Sediment Types 21 Discussion 24 IV. BIOLOGICAL

  16. 33 CFR 117.669 - St. Louis River (Duluth Superior Harbor).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.669 St. Louis River... 24 hours notice is given. The opening signal for the Minnesota draw is one prolonged blast followed...

  17. 33 CFR 117.669 - St. Louis River (Duluth Superior Harbor).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.669 St. Louis River... 24 hours notice is given. The opening signal for the Minnesota draw is one prolonged blast followed...

  18. 33 CFR 117.669 - St. Louis River (Duluth Superior Harbor).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.669 St. Louis River... 24 hours notice is given. The opening signal for the Minnesota draw is one prolonged blast followed...

  19. 33 CFR 117.669 - St. Louis River (Duluth Superior Harbor).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.669 St. Louis River... 24 hours notice is given. The opening signal for the Minnesota draw is one prolonged blast followed...

  20. Spatial distribution, temporal variability, and chemistry of the salt wedge in the lower Charles River, Massachusetts, June 1998 to July 1999

    USGS Publications Warehouse

    Breault, R.F.; Barlow, L.K.; Reisig, K.D.; Parker, G.W.

    2000-01-01

    The Charles River is of great recreational and ecological value to the Boston metropolitan region and the Commonwealth of Massachusetts. It is also the focus of the U.S. Environmental Protection Agency (USEPA) Region I, Clean Charles 2005 Task Force. The main goal of the Task Force is to make the Charles River 'fishable and swimmable' by the year 2005. Achieving 'fishable and swimmable' conditions will require continued progress in addressing a range of environmental conditions now degrading water quality, including the infiltration of saltwater from Boston Harbor into the freshwater Charles River.To better understand the pattern of saltwater intrusion, the U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA), Massachusetts Department of Environmental Management (MADEM), and New England Interstate Water Pollution Control Commission (NEIWPCC), collected data on the spatial distribution, temporal variability, and chemistry of the saltwater that entered the lower Charles River from June 1998 to July 1999. The purpose of this investigation is to extend and complement a regional-scale study of Charles River water quality conducted in 1996 (T. Faber, U.S. Environmental Protection Agency, written commun., 1997), and the ongoing water monitoring activities of the Massachusetts Water Resources Authority (MWRA) and the Charles River Watershed Association (CRWA). The data collected by this investigation supports the Clean Charles 2005 Task Force by providing detailed information concerning a major factor limiting 'fishable and swimmable' conditions in the lower Charles River. Finally, the study will be used to assist current planning efforts of the Metropolitan District Commission (MDC) to restore the historic parklands of the lower Charles River.The 'Basin' is the local term for the reach of the Charles River that begins at the Watertown Dam in Watertown, Mass., and extends about 8 mi through suburban and urban areas to Boston

  1. Arsenic, barium, germanium, tin, dimethylsulfide and nutrient biogeochemistry in Charlotte Harbor, Florida, a phosphorus-enriched estuary

    NASA Astrophysics Data System (ADS)

    Froelich, P. N.; Kaul, L. W.; Byrd, J. T.; Andreae, M. O.; Roe, K. K.

    1985-03-01

    Concentrations of dissolved nutrients (NO 3, PO 4, Si), germanium species, arsenic species, tin, barium, dimethylsulfide and related parameters were measured along the salinity gradient in Charlotte Harbor. Phosphate enrichment from the phosphate industry on the Peace River promotes a productive diatom bloom near the river mouth where NO 3 and Si are completely consumed. Inorganic germanium is completely depleted in this bloom by uptake into biogenic opal. The Ge/Si ratio taken up by diatoms is about 0·7 × 10 -6, the same as that provided by the river flux, confirming that siliceous organisms incorporate germanium as an accidental trace replacement for silica. Monomethylgermanium and dimethylgermanium concentrations are undetectable in the Peace River, and increase linearly with increasing salinity to the seawater end of the bay, suggesting that these organogermanium species behave conservatively in estuaries, and are neither produced nor consumed during estuarine biogenic opal formation or dissolution. Inorganic arsenic displays slight removal in the bloom. Monomethylarsenic is produced both in the bloom and in mid-estuary, while dimethylarsenic is conservative in the bloom but produced in mid-estuary. The total production of methylarsenicals within the bay approximately balances the removal of inorganic arsenic, suggesting that most biological arsenic uptake in the estuary is biomethylated and released to the water column. Dimethylsulfide increases with increasing salinity in the estuary and shows evidence of removal, probably both by degassing and by microbial consumption. An input of DMS is observed in the central estuary. The behavior of total dissolvable tin shows no biological activity in the bloom or in mid-estuary, but does display a low-salinity input signal that parallels dissolved organic material, perhaps suggesting an association between tin and DOM. Barium displays dramatic input behavior at mid-salinities, probably due to slow release from clays

  2. Community Structure and Standing Stock of Epibenthic Zooplankton at Five Sites in Grays Harbor, Washington

    DTIC Science & Technology

    1981-09-01

    4 GRAYS HARBOR AND CHEHALIS RIVER IMPROVEMENTS TO NAVIGATION ENVIRONMENTAL STUDIES COMMUNITY STRUCTURE AND STANDING © STOCK OF EPIBENTHIC... FISHERIES RESEARCH INSTITUTE %r UNIVERSITY OF WASHINGTON B of Engineers SEPTEMBER 1981 Seattle District(DISTRIBUTION STATEM EN T. -A-8-1 2 7 Approved...PERIOD COVERED Community Structure and Standing Stock of Final May 7. 1981 Epibenthic Zooplankton at Five Sites in 6. PERFORMING ORG. REPORT NUMBER

  3. Simulation of tidal-flow, circulation, and flushing of the Charlotte Harbor Estuarine System, Florida

    USGS Publications Warehouse

    Goodwin, C.R.

    1996-01-01

    connected to the gulf and some of the dye that exits to the lower harbor returns to the upper harbor by way of a landward residual flow in the deep center channel. The upper harbor is also sensitive to reduced freshwater inflow because it is the subarea closest to freshwater inflow from the Peace and Myakka Rivers. Removal of Sanibel Causeway had a slight effect on the flushing of Pine Island Sound and San Carlos Bay, but had no significant effect in upper and lower Charlotte Harbor.

  4. Status of Non-indigenous Benthic Invertebrates in the Duluth-Superior Harbor and the Role of Sampling Methods in their Detection

    EPA Science Inventory

    As part of a study to develop recommendations for non-indigenous species (NIS) monitoring in Great Lakes areas of risk, we conducted intensive sampling in the Duluth-Superior Harbor and lower St. Louis River in 2005 and 2006. Of the >200 invertebrate taxa recorded, 19 were non-...

  5. Geochemical investigation of a sediment core from the Trajan basin at Portus, the harbor of ancient Rome

    NASA Astrophysics Data System (ADS)

    Delile, H.; Mazzini, I.; Blichert-Toft, J.; Goiran, J. P.; Arnaud-Godet, F.; Salomon, F.; Albarède, F.

    2014-03-01

    From the 1st century AD and for the duration of the Roman Empire, the Portus complex was the main harbor of Rome. Its location on the Tiber delta next to the Tyrrhenian Sea produced rapid environmental changes that, together with historical vicissitudes, largely determined the fate of the harbor. We have assembled data on the mineralogy, sedimentology, geochemistry, and ostracod populations of a sediment core drilled in the access channel of the hexagonal basin of Trajan, with the expectation that such a combined data set will shed new light on how the connections of the inland Trajan basin with the Tiber river, the earlier Claudius harbor on the nearby shoreline, and the sea evolved through the centuries. The data define four distinct periods which geochemistry characterizes by different conditions of salinity and oxygenation. These in turn can be related to historical periods and events by means of 14C data. The early Imperial Period was dominated by input of well-oxygenated freshwater from the Tiber. During the Late Empire, harbor water became relatively more influenced by seawater and increasingly oxygen deficient, which attests to a decommissioning of the Canale Trasverso connecting the harbor to the Tiber. The strong anthropogenic signal, which is visible very clearly in geochemical parameters, attests to the human occupation of the harbor area up to the Early Middle Ages, when human activity was brought to an abrupt end. The simultaneous use in this study of multiple complementary tracers has allowed for the sedimentary sources of the different classes of particles in the harbor basin to be identified and assigned to either the freshwater supply from the Canale Trasverso or the seawater of the Claudius harbor.

  6. Geochemical evaluation of the land use and human activities at a Medieval harbor site, Masuda city, Shimane Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Dalai, Banzragch; Ishiga, Hiroaki

    2014-05-01

    Large-scale harbor and settlement sites from the latter half of the eleventh through sixteenth centuries have recently been discovered in the northern part of Masuda City, Shimane Prefecture, Japan. The sites were constructed at the river mouth delta of the Takatsu and Masuda rivers, facing the Sea of Japan. In former time, the mouths of the two rivers are thought to have formed a shallow lagoon connecting with the Sea of Japan. The harbor was thus well located for ships sailing along the sea coast, especially for conducting trade with the China mainland and the Korean peninsula. Archaeological investigations have identified over 800 construction pits, blacksmith hearths, harbor structures and numerous fragments of ceramic porcelain originating both from within Japan and from Asia (China, Korea, Vietnam and Thailand). It seems that the maritime trade network operated from this Medieval harbor site by the Masuda Clan was on an East Asian scale. Consequently, the harbor site can be expected to have received a considerable amount of ancient anthropogenic matter. Concentrations of 22 elements in 66 soil samples from the Nakazu Higashihara site were determined by X-ray fluorescence spectroscopy, in order to identify the land use and human impacts on soil chemistry at the harbor site. The results show that significant differences in geochemical compositional exist between the northern and southern parts of the site due to differences in lithology and land use practice. The south area was a production area of this harbor site. Three different activity areas were recognized within this area (fire pit and charcoal area, building pillars, and a blacksmith furnace area), based on geochemical and archaeological information. Cluster analysis shows a strong relationship exists between As, Pb, Cu, Br, TS, MnO and P2O5 in the fire pit and charcoal area. These charcoal materials were likely derived from fuel used in firing and heating. Close relationships occur between Cr, Sr, Sc

  7. Sediment Transport at River Lima Estuary: Developing a Sound Methodology to Assess Sediment River Basin Input to an Erosion Prone Coast (NW Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Pinho, J.; Costa, N.; Venâncio, S.; Martins, M.; Vieira, J.; Granja, H.

    2016-12-01

    The NW coast of Iberian Peninsula is mainly formed by rocky cliffs northern of the river Minho mouth and by narrow sandy beaches south of this river. These beaches are mainly in a sedimentary deficit status resulting from the north-south longitudinal drift driven by the dominant wave climate that acts from the NW direction. In this scenario understand and quantify river sediment inputs to the coast is crucial in order to follow a sustainable management policy to mitigate erosion impacts both in the natural and social environments. This work will present results from research conducted at rive Lima Estuary, one of the rivers flowing to the NW Iberian coast, based on both numerical modeling and field data acquisition. A hydrological model of the river basin and a detailed morphodynamic model of the estuary were implemented. Instrumentation of the estuary that is being conducted comprises traditional sensor pressures and new ones that are being designed and assembled to be installed at different measurement stations within the estuary. Modelling results for flood events showed that the river is capable of remove all the sediments that are deposited in the narrow estuarine canal located near the river mouth. Some of these sediments are immediately deposited downstream, within the interior of the harbor. Here, there is a strong possibility of silting of the river mouth and the central area of the harbor. Since the river flows during extreme events are controlled by an upstream reservoir, the capacity of the river to transport sediments to the coast was lowered during the last decades, which, moreover, requires dredging works over the years to maintain navigation depth requirements. Dredging sediments should be correctly deposited at the coast in order to properly feed the longitudinal drift, otherwise they will be out of the system, which aggravate the installed erosion tendency.

  8. Benthos and plankton community data for selected rivers and harbors along the western Lake Michigan shoreline, 2014

    USGS Publications Warehouse

    Scudder Eikenberry, Barbara C.; Burns, Daniel J.; Olds, Hayley T.; Bell, Amanda H.; Mapel, Kassidy T.

    2016-06-15

    Benthos (benthic invertebrates) and plankton (zooplankton and phytoplankton) communities were sampled in 2014 at 10 Wisconsin rivers and harbors, including 4 sites in Great Lakes Areas of Concern and 6 less degraded comparison sites with similar physical and chemical characteristics, including climate, latitude, geology, and land use. Previous U.S. Geological Survey sampling was completed in 2012, but because of ongoing sediment remediation at three of the Areas of Concern (AOCs) and unusually hot and dry conditions in many areas during 2012, additional sampling was added in 2014. Comparable sampling methods were used in 2012 and 2014. Benthos were collected by using Hester-Dendy artificial substrate samplers and composite Ponar grab samples of bottom sediment; zooplankton were collected by using tows from depth to the surface with a 63-micrometer mesh plankton net; phytoplankton were collected by using whole water samples composited from set depth intervals. This report describes the study areas and field sampling methods for 2014, and it presents data on taxonomic identification and abundance of benthos and plankton that can serve as a basis for evaluation of related Beneficial Use Impairments (BUIs) at the AOCs. Physical and chemical data were sampled concurrently (specific conductance, temperature, pH, dissolved oxygen, chlorophyll a, total and volatile suspended solids in water samples; particle size and volatile-on-ignition of sediment in benthic grab samples). The results of field quality assurance-quality control are also presented.

  9. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Harbor, to the northwest point. (b) Effective times and dates. This safety and security zone will be in... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone...

  10. Pacific lamprey (Entosphenus tridentatus) ammocoetes exposed to contaminated Portland Harbor sediments: Method development and effects on survival, growth, and behavior

    USGS Publications Warehouse

    Unrein, Julia R.; Morris, Jeffrey M.; Chitwood, Rob S.; Lipton, Joshua; Peers, Jennifer; van de Wetering, Stan; Schreck, Carl B.

    2016-01-01

    Many anthropogenic disturbances have contributed to the decline of Pacific lampreys (Entosphenus tridentatus), but potential negative effects of contaminants on lampreys are unclear. Lamprey ammocoetes are the only detritivorous fish in the lower Willamette River, Oregon, USA, and have been observed in Portland Harbor sediments. Their long benthic larval stage places them at risk from the effects of contaminated sediment. The authors developed experimental methods to assess the effects of contaminated sediment on the growth and behavior of field-collected ammocoetes reared in a laboratory. Specifically, they developed methods to assess individual growth and burrowing behavior. Burrowing performance demonstrated high variability among contaminated sediments; however, ammocoetes presented with noncontaminated reference sediment initiated burrowing more rapidly and completed it faster. Ammocoete reemergence from contaminated sediments suggests avoidance of some chemical compounds. The authors conducted long-term exposure experiments on individually held ammocoetes using sediment collected from their native Siletz River, which included the following: contaminated sediments collected from 9 sites within Portland Harbor, 2 uncontaminated reference sediments collected upstream, 1 uncontaminated sediment with characteristics similar to Portland Harbor sediments, and clean sand. They determined that a 24-h depuration period was sufficient to evaluate weight changes and observed no mortality or growth effects in fish exposed to any of the contaminated sediments. However, the effect on burrowing behavior appeared to be a sensitive endpoint, with potentially significant implications for predator avoidance.

  11. Pharmaceuticals and Wastewater Tracers Along the Lower Hudson River

    EPA Science Inventory

    The behavior and fate of pharmaceutical residues in urbanized, coastal ecosystems is not well understood. In this study 16 highly prescribed pharmaceuticals were measured in the lower Hudson River and New York Harbor in order to elucidate factors and processes regulating their ...

  12. Invasion by stages in the St Louis River estuary

    EPA Science Inventory

    The St. Louis River estuary is recognized as an invasive species “hotspot” - the harbor ranks among the top locations in the Great Lakes reporting the first occurrence of new, aquatic non-native species. To date, 18 non-native benthic invertebrate, 4 non-native crusta...

  13. 75 FR 78601 - Drawbridge Operation Regulation; Gulf Intracoastal Waterway, New Orleans Harbor, Inner Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ... Operation Regulation; Gulf Intracoastal Waterway, New Orleans Harbor, Inner Harbor Navigation Canal, New Orleans, Orleans Parish, LA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from... Harvey Lock), at New Orleans, Orleans Parish, Louisiana. This deviation is necessary to adjust the...

  14. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″W and 41°51′11″ N, 087°36′22″ W. (b...

  15. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″ W and 41°51′11″ N, 087°36′22″ W. (b...

  16. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″W and 41°51′11″ N, 087°36′22″ W. (b...

  17. Pearl Harbor Biological Survey

    DTIC Science & Technology

    1974-08-30

    properties, uses, and driving mechanisms affecting the harbor is given. The methods of obtaining current data, salinity profiles, and temperature... salinities were used for each calibration In order to check the salinity computation mechanism of the Instrument. Temperature calibrations were...Water Temperature Contours for Navy Thermal Discharges 3.2-23 3.2-7. General Layout of Pearl Harbor Showing Mean Monthly Salinity (3L) Variation

  18. Levels and mass burden of DDTs in sediments from fishing harbors: the importance of DDT-containing antifouling paint to the coastal environment of China.

    PubMed

    Lin, Tian; Hu, Zhaohui; Zhang, Gan; Li, Xiangdong; Xu, Weihai; Tang, Jianhui; Li, Jun

    2009-11-01

    DDT remains an important type of persistent organic pollutant (POP) in the environment of China. One of the current applications of DDT in China has been through antifouling paint for fishing ships as an active component. It has been estimated that approximately 5000 t of DDT was released into the Chinese coastal environment during the last two decades. Therefore, sediments in coastal fishing harbors of China may be the important sinks of DDT. In this study, DDT and its metabolites in 58 sediment samples from nine typical fishing harbors along the coastal line of China were characterized to assess their accumulation levels, sediment burdens, and potential ecological risks. The concentrations of DDTs ranged from 9 to 7350 ng/g dry weight, which were generally 1-2 orders of magnitude higher than those of the adjacent estuarine/marine sediments. The high concentrations of DDT coupled with the lower concentrations of HCH and TOC clearly indicated a strong local DDT input, i.e., DDT-containing antifouling paint, within the fishing harbors. A significant correlation between the total DDT concentrations and p,p'-DDT concentrations further confirmed the existence of fresh DDT input. The overall burden of DDTs within the upper 10 cm sediment layer in the fishing harbors of the Pearl River Delta, southern China, was estimated to be 1.0-5.7 t, which was several times higher than the DDT accumulation in the surface sediment of the Pearl River estuary. The concentrations of DDTs in the fishing harbor sediments significantly exceeded the sediment quality guidelines on the basis of adverse biological effects. The absence or low concentrations of p,p'-DDD in aquatic organisms and human may imply that either p,p'-DDD may be less bioaccumulated by fish and human, or is biotransformed to other metabolites. A national ban of DDT as an additive to antifouling paint was implemented in 2009 in China; however, the legacy high DDT burden in the coastal fishing harbors needs further

  19. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Channel Islands Harbor, CA. 80...

  20. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Channel Islands Harbor, CA. 80...

  1. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Channel Islands Harbor, CA. 80...

  2. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Channel Islands Harbor, CA. 80...

  3. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Channel Islands Harbor, CA. 80...

  4. Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochnauer, Tim; Claire, Christopher

    2009-05-07

    Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based onmore » potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.« less

  5. The Boston Harbor Project, and large decreases in loadings of eutrophication-related materials to Boston Harbor.

    PubMed

    Taylor, David I

    2010-04-01

    Boston Harbor, a bay-estuary in the north-east USA, has recently been the site of one of the largest wastewater infrastructure projects conducted in the USA, the Boston Harbor Project (BHP). The BHP, which was conducted from 1991 to 2000, ended over a century of direct wastewater treatment facility discharges to the harbor. The BHP caused the loadings of total nitrogen (TN), total phosphorus (TP), total suspended solids (TSS) and particulate organic carbon (POC) to the harbor, to decrease by between 80% and 90%. Approximately one-third of the decreases in TSS and POC loadings occurred between 1991 and 1992; the remaining two-thirds, between 1995 and 2000. For TN and TP, the bulk of the decreases occurred between 1997 or 1998, and 2000. (c) 2009 Elsevier Ltd. All rights reserved.

  6. A Probabilistic and Observation Based Methodology to Estimate Small Craft Harbor Vulnerability to Tsunami Events

    NASA Astrophysics Data System (ADS)

    Keen, A. S.; Lynett, P. J.; Ayca, A.

    2016-12-01

    Because of the damage resulting from the 2010 Chile and 2011 Japanese tele-tsunamis, the tsunami risk to the small craft marinas in California has become an important concern. The talk will outline an assessment tool which can be used to assess the tsunami hazard to small craft harbors. The methodology is based on the demand and structural capacity of the floating dock system, composed of floating docks/fingers and moored vessels. The structural demand is determined using a Monte Carlo methodology. Monte Carlo methodology is a probabilistic computational tool where the governing might be well known, but the independent variables of the input (demand) as well as the resisting structural components (capacity) may not be completely known. The Monte Carlo approach uses a distribution of each variable, and then uses that random variable within the described parameters, to generate a single computation. The process then repeats hundreds or thousands of times. The numerical model "Method of Splitting Tsunamis" (MOST) has been used to determine the inputs for the small craft harbors within California. Hydrodynamic model results of current speed, direction and surface elevation were incorporated via the drag equations to provide the bases of the demand term. To determine the capacities, an inspection program was developed to identify common features of structural components. A total of six harbors have been inspected ranging from Crescent City in Northern California to Oceanside Harbor in Southern California. Results from the inspection program were used to develop component capacity tables which incorporated the basic specifications of each component (e.g. bolt size and configuration) and a reduction factor (which accounts for the component reduction in capacity with age) to estimate in situ capacities. Like the demand term, these capacities are added probabilistically into the model. To date the model has been applied to Santa Cruz Harbor as well as Noyo River. Once

  7. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  8. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  9. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  10. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  11. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  12. 76 FR 70647 - Safety Zone; Fireworks Display, Potomac River, National Harbor Access Channel, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a safety zone upon specified waters of the Potomac River. This action is necessary to provide for the safety of life on... maritime public in a portion of the Potomac River. DATES: This rule is effective from 6 p.m. on November 19...

  13. 33 CFR 110.130 - Bar Harbor, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bar Harbor, Maine. 110.130... ANCHORAGE REGULATIONS Anchorage Grounds § 110.130 Bar Harbor, Maine. (a) Anchorage grounds. (1) Anchorage “A” is that portion of Frenchman Bay, Bar Harbor, ME enclosed by a rhumb line connecting the following...

  14. 33 CFR 110.9 - Wells Harbor, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Wells Harbor, Maine. 110.9... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.9 Wells Harbor, Maine. (a) Anchorage “A”. All of the... approximately 5,800 sq. yards, encompassing the central portion of Wells Harbor. (b) Anchorage “B”. All of the...

  15. 33 CFR 110.9 - Wells Harbor, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Wells Harbor, Maine. 110.9... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.9 Wells Harbor, Maine. Link to an amendment published at..., encompassing the central portion of Wells Harbor. (b) Anchorage “B”. All of the waters enclosed by a line...

  16. Vulnerability assessment of a port and harbor community to earthquake and tsunami hazards: Integrating technical expert and stakeholder input

    USGS Publications Warehouse

    Wood, Nathan J.; Good, James W.; Goodwin, Robert F.

    2002-01-01

    Research suggests that the Pacific Northwest could experience catastrophic earthquakes and tsunamis in the near future, posing a significant threat to the numerous ports and harbors along the coast. A collaborative, multiagency initiative is underway to increase the resiliency of Pacific Northwest ports and harbors to these hazards, involving Oregon Sea Grant, Washington Sea Grant, the National Oceanic and Atmospheric Administration Coastal Services Center, and the U.S. Geological Survey Center for Science Policy. One element of this research, planning, and outreach initiative is a natural hazard mitigation and emergency preparedness planning process that combines technical expertise with local stakeholder values and perceptions. This paper summarizes and examines one component of the process, the vulnerability assessment methodology, used in the pilot port and harbor community of Yaquina River, Oregon, as a case study of assessing vulnerability at the local level. In this community, stakeholders were most concerned with potential life loss and other nonstructural vulnerability issues, such as inadequate hazard awareness, communication, and response logistics, rather than structural issues, such as damage to specific buildings or infrastructure.

  17. 33 CFR 117.272 - Boot Key Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Boot Key Harbor. 117.272 Section 117.272 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.272 Boot Key Harbor. The draw of the Boot Key Harbor drawbridge, mile 0.13, between...

  18. Defense.gov Special Report: Pearl Harbor Anniversary

    Science.gov Websites

    Department of Defense Submit Search 71th Anniversary of the Attack on Pearl Harbor - World War II News Joint Chiefs of Staff, saluted veterans at the National World War II Memorial in Washington, D.C Attack Video Return To Pearl Harbor Return To Pearl Harbor World War II Timeline The attack on Pearl

  19. Geoscience rediscovers Phoenicia's buried harbors

    NASA Astrophysics Data System (ADS)

    Marriner, Nick; Morhange, Christophe; Doumet-Serhal, Claude; Carbonel, Pierre

    2006-01-01

    After centuries of archaeological debate, the harbors of Phoenicia's two most important city states, Tyre and Sidon, have been rediscovered, and including new geoarcheological results reveal how, where, and when they evolved after their Bronze Age foundations. The early ports lie beneath their present urban centers, and we have indentified four harbor phases. (1) During the Bronze Age, Tyre and Sidon were characterized by semi-open marine coves that served as protoharbors. (2) Biostratigraphic and lithostratigraphic data indicate the presence of early artificial basins after the first millennium B.C. (3) The harbors reached their apogees during the Greco-Roman and Byzantine periods. (4) Silting up and coastal progradation led to burial of the medieval basins, lost until now.

  20. Toxicity assessment of sediments from the Grand Calumet River and Indiana Harbor Canal in northwestern Indiana, USA

    USGS Publications Warehouse

    Ingersoll, C.G.; MacDonald, D.D.; Brumbaugh, W.G.; Johnson, B. Thomas; Kemble, N.E.; Kunz, J.L.; May, T.W.; Wang, N.; Smith, J.R.; Sparks, D.W.; Ireland, D.S.

    2002-01-01

    The objective of this study was to evaluate the toxicity of sediments from the Grand Calumet River and Indiana Harbor Canal located in northwestern Indiana, USA. Toxicity tests used in this assessment included 10-day sediment exposures with the amphipod Hyalella azteca, 31-day sediment exposures with the oligochaete Lumbriculus variegatus, and the Microtox® Solid-Phase Sediment Toxicity Test. A total of 30 sampling stations were selected in locations that had limited historic matching toxicity and chemistry data. Toxic effects on amphipod survival were observed in 60% of the samples from the assessment area. Results of a toxicity test with oligochaetes indicated that sediments from the assessment area were too toxic to be used in proposed bioaccumulation testing. Measurement of amphipod length after the 10-day exposures did not provide useful information beyond that provided by the survival endpoint. Seven of the 15 samples that were identified as toxic in the amphipod tests were not identified as toxic in the Microtox test, indicating that the 10-day H. azteca test was more sensitive than the Microtox test. Samples that were toxic tended to have the highest concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs). The toxic samples often had an excess of simultaneously extracted metals (SEM) relative to acid volatile sulfide (AVS) and had multiple exceedances of probable effect concentrations (PECs). Metals may have contributed to the toxicity of samples that had both an excess molar concentration of SEM relative to AVS and elevated concentrations of metals in pore water. However, of the samples that had an excess of SEM relative to AVS, only 38% of these samples had elevated concentration of metals in pore water. The lack of correspondence between SEM-AVS and pore water metals indicates that there are variables in addition to AVS controlling the concentrations of metals in pore water. A mean PEC quotient of 3

  1. Enterobacteriaceae Isolated from the River Danube: Antibiotic Resistances, with a Focus on the Presence of ESBL and Carbapenemases.

    PubMed

    Kittinger, Clemens; Lipp, Michaela; Folli, Bettina; Kirschner, Alexander; Baumert, Rita; Galler, Herbert; Grisold, Andrea J; Luxner, Josefa; Weissenbacher, Melanie; Farnleitner, Andreas H; Zarfel, Gernot

    2016-01-01

    In a clinical setting it seems to be normal these days that a relevant proportion or even the majority of different bacterial species has already one or more acquired antibiotic resistances. Unfortunately, the overuse of antibiotics for livestock breeding and medicine has also altered the wild-type resistance profiles of many bacterial species in different environmental settings. As a matter of fact, getting in contact with resistant bacteria is no longer restricted to hospitals. Beside food and food production, the aquatic environment might also play an important role as reservoir and carrier. The aim of this study was the assessment of the resistance patterns of Escherichia coli and Klebsiella spp. out of surface water without prior enrichment and under non-selective culture conditions (for antibiotic resistance). In addition, the presence of clinically important extended spectrum beta lactamase (ESBL) and carbapenmase harboring Enterobacteriaceae should be investigated. During Joint Danube Survey 3 (2013), water samples were taken over the total course of the River Danube. Resistance testing was performed for 21 different antibiotics. Samples were additionally screened for ESBL or carbapenmase harboring Enterobacteriaceae. 39% of all isolated Escherichia coli and 15% of all Klebsiella spp. from the river Danube had at least one acquired resistance. Resistance was found against all tested antibiotics except tigecycline. Taking a look on the whole stretch of the River Danube the proportion of multiresistances did not differ significantly. In total, 35 ESBL harboring Enterobacteriaceae, 17 Escherichia coli, 13 Klebsiella pneumoniae and five Enterobacter spp. were isolated. One Klebsiella pneumoniae harboring NMD-1 carbapenmases and two Enterobacteriaceae with KPC-2 could be identified. Human generated antibiotic resistance is very common in E. coli and Klebsiella spp. in the River Danube. Even isolates with resistance patterns normally associated with intensive

  2. McNary Dam, Ice Harbor Dam, and Lower Monumental Dam Smolt Monitoring Program; 1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillson, Todd; Lind, Sharon; Price, William

    1997-07-01

    The Washington Department of Fish & Wildlife (WDFW) assumed responsibility for the Smolt Monitoring Program at McNary Dam on the Columbia River in 1990 and at the new juvenile collection facility at Lower Monumental Dam on the Snake River in 1993. In 1996, Smolt Monitoring Program activities also began at the new juvenile collection facility located at Ice Harbor Dam. This report summarizes the 1996 Smolt Monitoring work at all three sites. The work at Ice Harbor consisted of Gas Bubble Trauma (GBT) monitoring only. In general, the 1996 passage season at both the McNary and Lower Monumental sites canmore » be characterized by reduced passage of juveniles through the collection systems due to elevated river flows and spill, and low (<1%) overall facility mortality rates most likely resulting from cooler water temperatures. In accordance with the National Marine Fisheries Service recommendations (NMFS, 1995) all spring migrants were bypassed at McNary Dam in 1996. Mechanical problems within the McNary collection system resulted in collection and sampling activities being delayed until April 18 at this site, while sampling and collection began on the scheduled starting date of April 1 at Lower Monumental Dam. Monitoring operations were conducted through December 14 at McNary Dam and through October 28 at Lower Monumental Dam. An ongoing transportation evaluation summer migrant marking program was conducted at McNary Dam in 1996 by the NMFS. This necessitated the sampling of 394,211 additional fish beyond the recommended sampling guidelines. All total, 509,237 and 31,219 juvenile salmonids were anesthetized and individually counted, examined for scale loss, injuries, and brands by WDFW Smolt Monitoring personnel in 1996 at McNary Dam and Lower Monumental Dam, respectively.« less

  3. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  4. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  5. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  6. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  7. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  8. 33 CFR 117.811 - Tonawanda Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tonawanda Harbor. 117.811 Section 117.811 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.811 Tonawanda Harbor. The draw of the...

  9. Rome's urban history inferred from Pb-contaminated waters trapped in its ancient harbor basins.

    PubMed

    Delile, Hugo; Keenan-Jones, Duncan; Blichert-Toft, Janne; Goiran, Jean-Philippe; Arnaud-Godet, Florent; Albarède, Francis

    2017-09-19

    Heavy metals from urban runoff preserved in sedimentary deposits record long-term economic and industrial development via the expansion and contraction of a city's infrastructure. Lead concentrations and isotopic compositions measured in the sediments of the harbor of Ostia-Rome's first harbor-show that lead pipes used in the water supply networks of Rome and Ostia were the only source of radiogenic Pb, which, in geologically young central Italy, is the hallmark of urban pollution. High-resolution geochemical, isotopic, and 14 C analyses of a sedimentary core from Ostia harbor have allowed us to date the commissioning of Rome's lead pipe water distribution system to around the second century BC, considerably later than Rome's first aqueduct built in the late fourth century BC. Even more significantly, the isotopic record of Pb pollution proves to be an unparalleled proxy for tracking the urban development of ancient Rome over more than a millennium, providing a semiquantitative record of the water system's initial expansion, its later neglect, probably during the civil wars of the first century BC, and its peaking in extent during the relative stability of the early high Imperial period. This core record fills the gap in the system's history before the appearance of more detailed literary and inscriptional evidence from the late first century BC onward. It also preserves evidence of the changes in the dynamics of the Tiber River that accompanied the construction of Rome's artificial port, Portus , during the first and second centuries AD.

  10. Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China.

    PubMed

    Mai, Bi-Xian; Fu, Jia-Mo; Sheng, Guo-Ying; Kang, Yue-Hui; Lin, Zheng; Zhang, Gan; Min, Yu-Shuan; Zeng, Eddy Y

    2002-01-01

    Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and polycyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6-1658 ng/g, while concentrations of PCBs are in the range 10-339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812 ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic condition, and land erosion due to urbanization processes. The composition of PAHs is investigated and used to assess petrogenic, combustion and naturally derived PAHs of the sediment samples of the Pearl River Delta. In addition, the concentrations of a number of organic compounds of the Pearl River Delta samples indicate that sediments of the Zhujiang river and Macao harbor are most likely to pose biological impairment.

  11. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Moss Landing Harbor, CA. 80.1136... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from the seaward extremity of the pier located 0.3 mile south of Moss Landing Harbor Entrance to the...

  12. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Moss Landing Harbor, CA. 80.1136... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from the seaward extremity of the pier located 0.3 mile south of Moss Landing Harbor Entrance to the...

  13. 77 FR 59551 - Safety Zone, Changes to Original Rule; Boston Harbor's Rock Removal Project, Boston Inner Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0767] RIN 1625-AA00 Safety Zone, Changes to Original Rule; Boston Harbor's Rock Removal Project, Boston Inner Harbor... original provisions of that temporary final rule, but adds two additional safety zones necessary for the...

  14. Concentrations, loads, and sources of polychlorinated biphenyls, Neponset River and Neponset River Estuary, eastern Massachusetts

    USGS Publications Warehouse

    Breault, Robert F.

    2011-01-01

    Walter Baker Impoundments were 3,490 and 2,450 ng/g wet wt (filleted) and 6,890 and 4,080 ng/g wet wt (whole fish). Total PCB-congener concentrations measured in the whole bodies of estuarine bait fish (common mummichog) averaged 708 ng/g wet wt. PCBs that pass from the Neponset River to the Neponset River Estuary are either dissolved or associated with particulate matter (including living and nonliving material) suspended in the water column. A small proportion of PCBs may also be transported as part of the body burden of fish and wildlife. During the period May 13, 2005 to April 28, 2006, about 5,100 g (3.8 L or 1 gal) of PCBs were transported from the Neponset River to the Neponset River Estuary. Generally, about one-half of these PCBs were dissolved in the water column and the other half were associated with particulate matter; however, the proportion that was either dissolved or particulate varied seasonally. Most PCBs transported from the river to the estuary are composed of four or fewer chlorine atoms per biphenyl molecule. The data suggest that widespread PCB contamination of the lower Neponset River originated from Mother Brook, a Neponset River tributary, starting sometime around the early 1950s or earlier. In 1955, catastrophic dam failure caused by flooding likely released PCB-contaminated sediment downstream and into the Neponset River Estuary. PCBs from this source area likely continued to be released after the flood and during subsequent rebuilding of downstream dams. Today (2007), PCBs are mostly trapped behind these dams; however, some PCBs either diffuse or are entrained back into the water column and are transported downstream by river water into the estuary or volatilize into the atmosphere. In addition to the continuing release of PCBs from historically contaminated bottom sediment, PCBs are still (2007) originating from source areas along Mother and Meadow Brook as well as other sources along the river and Boston Harbor. PCBs from the river

  15. Teaching about Pearl Harbor. Curriculum Enhancement Series #1.

    ERIC Educational Resources Information Center

    Shields, Anna Marshall

    These materials consist of sample lesson plans for teaching about the Japanese attack on Pearl Harbor on December 7, 1941, in both U.S. and world history classes. The lesson plans challenge students to examine how current attitudes toward the Japanese may be rooted in World War II and Pearl Harbor. Selected bibliographies on Pearl Harbor, World…

  16. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V.

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snakemore » River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach

  17. Continuous seismic-reflection survey defining shallow sedimentary layers in the Charlotte Harbor and Venice areas, southwest Florida

    USGS Publications Warehouse

    Wolansky, R.M.; Haeni, F.P.; Sylvester, R.E.

    1983-01-01

    A continuous marine seismic-reflection survey system was used to define the configuration of shallow sedimentary layers underlying the Charlotte Harbor and Venice areas, southwest Florida. Seismic profiling was conducted over a distance of about 57 miles of Charlotte Harbor, the Peace and Myakka Rivers, and the Intracoastal Waterway near Venice using a high resolution energy source capable of penetrating 200 feet of sediments with a resolution of 1 to 3 feet. Five stratigraphic units defined from the seismic records includes sediments to Holocene to early Miocene age. All seismic-profile records are presented, along with geologic sections constructed from the records. Seismic reflection amplitude, frequency, continuity, configuration, external form, and areal association were utilized to interpret facies and depositional environments of the stratigraphic units. The despositional framework of the units ranges from shallow shelf to prograded slope. The stratigraphic units are correlated with the surficial aquifer and intermediate artesian aquifers, and permeable zones of the aquifers are related to the seismic records. (USGS)

  18. [Pearl Harbor.

    ERIC Educational Resources Information Center

    Johnson, Jennifer, Ed.

    1992-01-01

    This issue of "Loblolly Magazine" was written in observance of the 50th anniversary of the U.S. entrance into World War II. The publication features interviews conducted by East Texas high school students with Clarence Otterman, one of the few survivors of the crew of the USS Arizona, which was bombed during the attack on Pearl Harbor,…

  19. Free-Living and Particle-Associated Bacterioplankton in Large Rivers of the Mississippi River Basin Demonstrate Biogeographic Patterns

    PubMed Central

    Millar, Justin J.; Payne, Jason T.; Ochs, Clifford A.

    2014-01-01

    The different drainage basins of large rivers such as the Mississippi River represent interesting systems in which to study patterns in freshwater microbial biogeography. Spatial variability in bacterioplankton communities in six major rivers (the Upper Mississippi, Missouri, Illinois, Ohio, Tennessee, and Arkansas) of the Mississippi River Basin was characterized using Ion Torrent 16S rRNA amplicon sequencing. When all systems were combined, particle-associated (>3 μm) bacterial assemblages were found to be different from free-living bacterioplankton in terms of overall community structure, partly because of differences in the proportional abundance of sequences affiliated with major bacterial lineages (Alphaproteobacteria, Cyanobacteria, and Planctomycetes). Both particle-associated and free-living communities ordinated by river system, a pattern that was apparent even after rare sequences or those affiliated with Cyanobacteria were removed from the analyses. Ordination of samples by river system correlated with environmental characteristics of each river, such as nutrient status and turbidity. Communities in the Upper Mississippi and the Missouri and in the Ohio and the Tennessee, pairs of rivers that join each other, contained similar taxa in terms of presence-absence data but differed in the proportional abundance of major lineages. The most common sequence types detected in particle-associated communities were picocyanobacteria in the Synechococcus/Prochlorococcus/Cyanobium (Syn/Pro) clade, while free-living communities also contained a high proportion of LD12 (SAR11/Pelagibacter)-like Alphaproteobacteria. This research shows that while different tributaries of large river systems such as the Mississippi River harbor distinct bacterioplankton communities, there is also microhabitat variation such as that between free-living and particle-associated assemblages. PMID:25217018

  20. The ecological and cultural functions of invertebrates in the Congo River basin.

    Treesearch

    Bruce G. Marcot

    2005-01-01

    One of the entomologically richest, yet least studied, regions of Africa is the interior Congo River Basin. Forests of this region have been called Earth's "second lung" (after the Amazon Basin forests) and harbor an immense diversity of invertebrates. In these tropical rainforests live people of several cultures whose lives and livelihoods are...

  1. 32 CFR 765.6 - Regulations for Pearl Harbor, Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Regulations for Pearl Harbor, Hawaii. 765.6... RULES RULES APPLICABLE TO THE PUBLIC § 765.6 Regulations for Pearl Harbor, Hawaii. The Commander, U.S. Naval Base, Pearl Harbor, Hawaii, is responsible for prescribing and enforcing such rules and...

  2. Benthos and plankton community data for selected rivers and harbors along Wisconsin's Lake Michigan shoreline, 2012

    USGS Publications Warehouse

    Scudder Eikenberry, Barbara C.; Bell, Amanda H.; Burns, Daniel J.; Olds, Hayley T.

    2014-01-01

    Four river systems on the Wisconsin shoreline of Lake Michigan are designated Areas of Concern (AOCs) because of severe environmental degradation: the Lower Menominee River, Lower Green Bay and Fox River, Sheboygan River, and Milwaukee Estuary. Each AOC has one or more Beneficial Use Impairments (BUIs) that form the basis of the AOC designation and that must be remediated or otherwise addressed before the AOC designation can be removed. All four of these AOCs have BUIs for benthos (bottom-dwelling or benthic invertebrates), and all but the Menominee River have a BUI for plankton (free-floating algae and invertebrates, or phytoplankton and zooplankton, respectively). The U.S. Geological Survey collected samples in 2012 at these four AOCs and at six non-AOCs to support the evaluation of the status of aquatic communities in the benthos and plankton at the AOCs. Samples were collected during three periods representing spring, summer, and fall. Benthos samples were collected using a dredge grab sampler and artificial substrates; plankton samples were collected using a tow net for zooplankton and a vertical water sampler for phytoplankton. Benthos and plankton were identified to the lowest possible taxonomic category and counted; samples for documenting water temperature, pH, and specific conductance, as well as sediment particle size and organic carbon were also collected during biological sampling.

  3. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  4. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  5. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  6. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  7. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  8. Bathymetric and streamflow data for the Quillayute, Dickey, and Bogachiel Rivers, Clallam County, Washington, April-May 2010

    USGS Publications Warehouse

    Czuba, Jonathan A.; Barnas, Christiana R.; McKenna, Thomas E.; Justin, Gregory; Payne, Karen L.

    2010-01-01

    To facilitate the development of a two-dimensional hydrodynamic model of the Quillayute River estuary, the U.S. Geological Survey conducted a bathymetric survey of the Quillayute River and its tributaries, upstream of the La Push Harbor. Streamflow also was measured concurrent with the bathymetric survey. This report documents the bathymetric and streamflow data collected in the Quillayute (river mile 0.4-5.7), Dickey (river mile 0-0.4), and Bogachiel Rivers (river mile 0-0.8) on April 20-21 and May 4-6, 2010, including a longitudinal profile, about 7-miles long, of water-surface and riverbed elevations. In all, 173,800 bathymetric points were collected and streamflow measurements in the mainstem Quillayute River ranged from 3,630 to 7,800 cubic feet per second.

  9. Comprehensive Conservation and Management Plan for Charlotte Harbor

    EPA Pesticide Factsheets

    This 2013 CCMP Update for Charlotte Harbor provides insight on the main priorities that the harbor is facing as well as research needed, restoration activities, legislative changes, and public outreach needs.

  10. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  11. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  12. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  13. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  14. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  15. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  16. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  17. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  18. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  19. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  20. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  1. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  2. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  3. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  4. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  5. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  6. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  7. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  8. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  9. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  10. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  11. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  12. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  13. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  14. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  15. 33 CFR 110.142 - Nantucket Harbor, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nantucket Harbor, Mass. 110.142 Section 110.142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.142 Nantucket Harbor, Mass. (a) The anchorage grounds. In the...

  16. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Boston Harbor, Mass. 110.138 Section 110.138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.138 Boston Harbor, Mass. (a) The anchorage grounds—(1) Bird...

  17. 33 CFR 110.142 - Nantucket Harbor, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Nantucket Harbor, Mass. 110.142 Section 110.142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.142 Nantucket Harbor, Mass. (a) The anchorage grounds. In the...

  18. 16 CFR 312.11 - Safe harbor programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Safe harbor programs. 312.11 Section 312.11 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE PRIVACY PROTECTION RULE § 312.11 Safe harbor programs. (a) In general. Industry groups or other persons...

  19. Erie Harbor, Pennsylvania, Channel Shoaling Analysis

    DTIC Science & Technology

    2011-07-01

    Presque Isle is located on the southern shore of Lake Erie and shelters the federal harbor at Erie , Pennsylvania . The US Army...the evaluation of the shoaling and dredging of sediment materials from Erie Harbor as part of the Presque Isle , Pennsylvania 204 feasibility study...ERDC TR-11-4 1 1 Introduction Problem statement Presque Isle is located on the southern shore of Lake Erie , Pennsylvania at the city of Erie

  20. Estuarine studies in upper Grays Harbor, Washington

    USGS Publications Warehouse

    Beverage, Joseph P.; Swecker, Milton N.

    1969-01-01

    Improved management of the water resources of Grays Harbor, Wash., requires more data on the water quality of the harbor and a better understanding of the influences of industrial and domestic wastes on the local fisheries resources. To provide a more comprehensive understanding of these influences, the U.S. Geological Survey joined other agencies in a cooperative study of Grays Harbor. This report summarizes the Survey's study of circulation patterns, description of water-quality conditions, and characterization of bottom material in the upper harbor. Salt water was found to intrude at least as far as Montesano, 28.4 nautical miles from the mouth of the harbor. Longitudinal salinity distributions were used to compute dispersion (diffusivity) coefficients ranging from 842 to 3,520 square feet per second. These values were corroborated by half-tidal-cycle dye studies. The waters of the harbor were found to be well mixed after extended periods of low fresh-water flow but stratified at high flows. Salinity data were used lo define the cumulative 'mean age' of the harbor water, which may be used to approximate a mean 'flushing time.' Velocity-time curves for the upper harbor are distorted from simple harmonic functions owing to channel geometry and frictional effects. Surface and bottom velocity data were used to estimate net tidal 'separation' distance, neglecting vertical mixing. Net separation distances between top and bottom water ranged from 1.65 nautical miles when fresh-water inflow was 610 cubic feet per second to 13.4 miles when inflow was 15,900 cubic feet per second. The cumulative mean age from integration of the fresh-water velocity equation was about twice that obtained from the salinity distribution. Excursion distances obtained with dye over half-tidal cycles exceeded those estimated from longitudinal salinity distributions and those obtained by earlier investigators who used floats. Net tidal excursions were as much as twice those obtained with floats

  1. 33 CFR 80.165 - New York Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false New York Harbor. 80.165 Section 80.165 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.165 New York Harbor. A line drawn from East...

  2. 33 CFR 110.9 - Wells Harbor, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 110.9 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.9 Wells Harbor, Maine. (a) Anchorage “A”. All of the... approximately 5,800 sq. yards, encompassing the central portion of Wells Harbor. (b) Anchorage “B”. All of the...

  3. 12 CFR 350.11 - Safe harbor provision.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Safe harbor provision. 350.11 Section 350.11 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY DISCLOSURE OF FINANCIAL AND OTHER INFORMATION BY FDIC-INSURED STATE NONMEMBER BANKS § 350.11 Safe harbor...

  4. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false St. Thomas Harbor, Charlotte... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.250 St. Thomas Harbor, Charlotte Amalie... move promptly upon notification by the Harbor Master. (4) The harbor regulations for the Port of St...

  5. Trends in chlorinated hydrocarbon levels in Hudson River basin sediments.

    PubMed

    Bopp, R F; Chillrud, S N; Shuster, E L; Simpson, H J; Estabrooks, F D

    1998-08-01

    Analysis of sections from dated sediment cores were used to establish geographic distributions and temporal trends of chlorinated hydrocarbon contaminant levels in sediments from natural waters of the Hudson River basin. Radiometric dating was based primarily on the depth distribution of 137(Cs) in the cores and on the occurrence of detectable levels of 7(Be) in surface sediment samples. Eighteen sampling sites included several along the main stem of the Hudson, its major tributaries, and components of the New York/New Jersey (NY/NJ) harbor complex. Drinking-water reservoirs were sampled to place upper limits on atmospheric inputs. Core sections were analyzed for polychlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT)-derived compounds, chlordane, and dioxins. Sediment concentrations of most contaminants at most sites have decreased significantly since the mid-1960s. The data provide a basinwide perspective on major point-source inputs of PCBs to the upper Hudson River and of 2,3,7,8-tetrachlorodibenzo-p-dioxin and DDT to the lower Passaic River. Evidence was found for significant but poorly characterized sources of PCBs and chlordane to the western NY/NJ harbor, and of highly chlorinated dioxins to the upstream sites on the main stem of the Hudson. The results indicate that analysis of dated sediment samples is a most effective and efficient monitoring tool for the study of large-scale geographic and temporal trends in levels of particle-associated contaminants.

  6. 33 CFR 117.802 - New Rochelle Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.802 New Rochelle Harbor. (a) The draw of the Glen Island Bridge, mile 0.8, at New Rochelle, New York, shall open on signal, except as... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false New Rochelle Harbor. 117.802...

  7. Decadal Changes In Benthic Community Measures In New York Harbor

    EPA Science Inventory

    Monitoring in New York Harbor, NY, as part of the Regional Environmental Monitoring and Assessment Program has spanned a decade, and includes habitat and water quality measures and sediment contaminant levels from four sub-basins (Upper NY Harbor, Lower NY Harbor, Newark Bay, and...

  8. Sediment resuspension characteristics in Baltimore Harbor, Maryland

    USGS Publications Warehouse

    Maa, J.P.-Y.; Sanford, L.; Halka, J.P.

    1998-01-01

    Critical bed shear stress for sediment resuspension and sediment erosion rate were measured in-situ at sites from inner to outer Baltimore Harbor using the VIMS Sea Carousel. Clay mineral contents and biological conditions were almost the same at the four study sites. The experimental results indicated that the erosion rate increased from the outer harbor toward the inner harbor with a maximum difference of about 10 times at an excess bed shear stress of 0.1 Pa. The measured critical bed shear stress strongly depended on the existence of a fluff layer. It was approximately 0.05 Pa if a fluff layer existed, and increases to about 0.1 Pa in the absence of a fluff layer.

  9. An assessment of injury to sediments and sediment-dwelling organisms in the Grand Calumet River and Indiana Harbor Area of Concern, USA.

    PubMed

    MacDonald, D D; Ingersoll, C G; Smorong, D E; Lindskoog, R A; Sparks, D W; Smith, J R; Simon, T P; Hanacek, M A

    2002-08-01

    This article is the first in a series of three that describe the results of a Natural Resource Damage Assessment (NRDA) conducted in the Grand Calumet River and Indiana Harbor Area of Concern (IHAOC). The assessment area is located in northwest Indiana and was divided into nine reaches to facilitate the assessment. This component of the NRDA was undertaken to determine if sediments and sediment-dwelling organisms have been injured due to exposure to contaminants that have accumulated in sediments as a result of discharges of oil or releases of other hazardous substances from industrial, municipal, and nonpoint sources. To support this assessment, information was compiled on the chemical composition of sediment and pore water; on the toxicity of whole sediments, pore water, and elutriates; and on the status of benthic invertebrate communities. The data on each of these indicators were compared to regionally relevant benchmarks to assess the presence and extent of injury to surface water resources ( i.e., sediments) or biological resources ( i.e., sediment-dwelling organisms). The results of this assessment indicate that sediment injury has occurred throughout the assessment area, with up to four distinct lines of evidence demonstrating injury within the various reaches. The primary contaminants of concern ( i.e., those substances that are present at concentrations that are sufficient to cause or substantially contribute to sediment injury) include metals, polycyclic aromatic hydrocarbons, and total polychlorinated biphenyls.

  10. Polycyclic aromatic hydrocarbons and trace elements bounded to airborne PM10 in the harbor of Volos, Greece: Implications for the impact of harbor activities

    NASA Astrophysics Data System (ADS)

    Manoli, E.; Chelioti-Chatzidimitriou, A.; Karageorgou, K.; Kouras, A.; Voutsa, D.; Samara, C.; Kampanos, I.

    2017-10-01

    Harbors are often characterized by high levels of air pollutants that are emitted from ship traffic and other harbor activities. In the present study, the concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) and trace elements (As, Cd, Ni, Pb, Cr, Mn, Zn, and Fe) bounded to the inhalable particulate matter PM10 were studied in the harbor of Volos, central Greece, during a 2-year period (2014-2015). Seasonal and daily variations were investigated. Moreover, total carcinogenic and mutagenic activities of PAHs were calculated. The effect of major wind sectors (sea, city, industrial, harbor) was estimated to assess the potential contribution of ship traffic and harbor activities, such as scrap metal handling operations. Results showed that the harbor sector (calm winds ≤ 0.5 m s-1) was associated with the highest concentrations of PM10. The harbor sector was also associated with relatively increased levels of trace elements (As, Fe, Cr, Mn, Ni), however the effect of this sector was lower than the corresponding effect of the industrial wind sector. The sea sector showed only a slight increase in B[a]Py and Σ12PAHs, whereas the highest increasing effect for PAHs and traffic-related elements, such as Pb and Zn, was evidenced for the city sector.

  11. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... line running due north from Old Harbor Buoy 4 to the shore line at City Point. (5) Explosives anchorage... beacon on top of the Boston Custom House tower; and thence to the point of beginning. (2) President Roads... adjacent land; on the east by a line between Castle Rocks Fog Signal Light and Old Harbor Shoal Buoy 2; on...

  12. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... line running due north from Old Harbor Buoy 4 to the shore line at City Point. (5) Explosives anchorage... beacon on top of the Boston Custom House tower; and thence to the point of beginning. (2) President Roads... adjacent land; on the east by a line between Castle Rocks Fog Signal Light and Old Harbor Shoal Buoy 2; on...

  13. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... line running due north from Old Harbor Buoy 4 to the shore line at City Point. (5) Explosives anchorage... beacon on top of the Boston Custom House tower; and thence to the point of beginning. (2) President Roads... adjacent land; on the east by a line between Castle Rocks Fog Signal Light and Old Harbor Shoal Buoy 2; on...

  14. Gateway to the Pacific: The Columbia River. Teacher's Resource Book, Grades 5-7.

    ERIC Educational Resources Information Center

    Osis, Vicki; And Others

    Developed as part of an international curriculum effort, this unit aims to provide information to students about the interdependence of Pacific nations and the importance of the Columbia River and its ports in international trade. Geared for grades 5-7, the materials focus on harbors both as natural ecosystems and as locations of international…

  15. Freshwater wrack along Great Lakes coasts harbors Escherichia coli: Potential for bacterial transfer between watershed environments

    USGS Publications Warehouse

    Nevers, Meredith; Przybyla-Kelly, Kasia; Spoljaric, Ashley; Shively, Dawn A.; Whitman, Richard L.; Byappanahalli, Muruleedhara

    2016-01-01

    We investigated the occurrence, persistence, and growth potential of Escherichia coli associated with freshwater organic debris (i.e., wrack) frequently deposited along shorelines (shoreline wrack), inputs from rivers (river CPOM), and parking lot runoffs (urban litter). Samples were collected from 9 Great Lakes beaches, 3 creeks, and 4 beach parking lots. Shoreline wrack samples were mainly composed of wood chips, straw, sticks, leaf litter, seeds, feathers, and mussel shells; creek and parking lot samples included dry grass, straw, seeds, wood chips, leaf/pine needle litter; soil particles were present in parking lot samples only. E. coli concentrations (most probable number, MPN) were highly variable in all sample types: shoreline wrack frequently reached 105/g dry weight (dw), river CPOM ranged from 81 to 7,916/g dw, and urban litter ranged from 0.5 to 24,952/g dw. Sequential rinsing studies showed that 61–87% of E. coli concentrations were detected in the first wash of shoreline wrack, with declining concentrations associated with 4–8 subsequent washings; viable counts were still detected even after 8 washes. E. coli grew readily in shoreline wrack and river CPOM incubated at 35 °C. At 30°C, growth was only detected in river CPOM and not in shoreline wrack or urban litter, but the bacteria persisted for at least 16 days. In summary, freshwater wrack is an understudied component of the beach ecosystem that harbors E. coli and thus likely influences estimations of water quality and the microbial community in the nearshore as a result of transfer between environments.

  16. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petoskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  17. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petroskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  18. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petoskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  19. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petoskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  20. 75 FR 18058 - Safety Zone; Patapsco River, Northwest and Inner Harbors, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... historic sloop-of-war USS CONSTELLATION on May 27, 2010. This action is necessary to provide for the safety... Baltimore, Maryland, to a point on the Patapsco River near the Fort McHenry National Monument and Historic Shrine in Baltimore, Maryland, and its return. This action will restrict vessel traffic in portions of...

  1. 77 FR 25592 - Safety Zone; Patapsco River, Northwest and Inner Harbors, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... historic sloop-of-war USS CONSTELLATION on May 24, 2012. This action is necessary to provide for the safety... Baltimore, Maryland, to a point on the Patapsco River near the Fort McHenry National Monument and Historic Shrine in Baltimore, Maryland, and its return. This action will restrict vessel traffic in portions of...

  2. 77 FR 67566 - Regulated Navigation Area; Thames River Degaussing Range Replacement Operations; New London, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... establishing a regulated navigation area (RNA) on the navigable waters of the Thames River in New London Harbor, New London, CT. The RNA will establish speed and wake restrictions and allow the Coast Guard to prohibit all vessel traffic through the RNA during degaussing range replacement operations, both planned...

  3. 33 CFR 162.165 - Buffalo and Rochester Harbors, New York.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Buffalo and Rochester Harbors, New York. 162.165 Section 162.165 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... and Rochester Harbors, New York. In Buffalo and Rochester Harbors, no vessel may exceed 6 miles per...

  4. Satellite Monitoring of Boston Harbor Water Quality: Initial Investigations

    NASA Astrophysics Data System (ADS)

    Sheldon, P.; Chen, R. F.; Schaaf, C.; Pahlevan, N.; Lee, Z.

    2016-02-01

    The transformation of Boston Harbor from the "dirtiest in America" to a National Park Area is one of the most remarkable estuarine recoveries in the world. A long-term water quality dataset from 1991 to present exists in Boston Harbor due to a $3. 8 billion lawsuit requiring the harbor clean-up. This project uses discrete water sampling and underway transects with a towed vehicle coordinated with Landsat 7 and Landsat 8 to create surface maps of chlorophyll a (Chl a), dissolved organic matter (CDOM and DOC), total suspended solids (TSS), diffuse attenuation coefficient (Kd_490), and photic depth in Boston Harbor. In addition, 3 buoys have been designed, constructed, and deployed in Boston Harbor that measure Chl a and CDOM fluorescence, optical backscatter, salinity, temperature, and meteorological parameters. We are initially using summer and fall of 2015 to develop atmospheric corrections for conditions in Boston Harbor and develop algorithms for Landsat 8 data to estimate in water photic depth, TSS, Chl a, Kd_490, and CDOM. We will report on initial buoy and cruise data and show 2015 Landsat-derived distributions of water quality parameters. It is our hope that once algorithms for present Landsat imagery can be developed, historical maps of water quality can be constructed using in water data back to 1991.

  5. Proposed Barge Terminal Expansion, Packer River Terminal, Inc., South St. Paul, Dakota County, Minnesota.

    DTIC Science & Technology

    1977-09-01

    On 24 June 1974 Packer applied to the St. Paul District, Corps of Engineers (Corps) for a DOA permit under Section 10 of the River and Harbor Act of...exercised jurisdiction under Section 404 of P.L. 92-500 to the ordinary high water mark of the • Mississippi River, Thu’, even though the proposed project...Corps of Engineers was to expand their regulatory IT ril ct ion under Sect ion 404 of P.l.. 92-500 ,nd to promulgate new r- ’~giiI.,t .; ill conjunct

  6. Occurrence of Bothriocephalus acheilognathi (Cestoda, Bothriocephallidea) in grass carp Ctenopharyngodon idella in the Changjiang River drainage

    NASA Astrophysics Data System (ADS)

    Xi, Bingwen; Wang, Guitang; Xie, Jun

    2011-05-01

    Bothriocephalus acheilognathi is a potentially serious pathogen in wild or cultured fish in worldwide distribution. We examined 58-farmed grass carp from Nanchang in the Changjiang (Yangtze) River drainage, from which 20.7% were found to harbor the parasite with an infection intensity of 36.9±54.7. The parasites were identified based on morphology and rDNA ITS sequence analysis. The present report represents the first record of the parasite in grass carp Ctenopharyngodon idella in the river drainage.

  7. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  8. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  9. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  10. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  11. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  12. 77 FR 54495 - Regulated Navigation Area; Thames River Degaussing Range Replacement Operations; New London, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... to establish a regulated navigation area (RNA) on the navigable waters of the Thames River in New London Harbor, New London, CT. The proposed RNA would establish speed and wake restrictions as well as allow the Coast Guard to prohibit all vessel traffic through the RNA during degaussing range replacement...

  13. Defense.gov Special Report: 72nd Anniversary of Pearl Harbor

    Science.gov Websites

    Department of Defense Submit Search 72nd Anniversary of the Attack on Pearl Harbor - World War II News Harbor survivors and World War II veterans gathered at the Pacific National Monument's Pearl Harbor course of world history." Story USS Mesa Verda Crew Conducts Remembrance Ceremony As Americans and

  14. 33 CFR 80.1470 - Kawaihae Harbor, Hawaii, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kawaihae Harbor, Hawaii, HI. 80.1470 Section 80.1470 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1470 Kawaihae Harbor, Hawaii, HI...

  15. 33 CFR 80.1450 - Nawiliwili Harbor, Kauai, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nawiliwili Harbor, Kauai, HI. 80.1450 Section 80.1450 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1450 Nawiliwili Harbor, Kauai, HI...

  16. Trends in chlorinated hydrocarbon levels in Hudson River basin sediments.

    PubMed Central

    Bopp, R F; Chillrud, S N; Shuster, E L; Simpson, H J; Estabrooks, F D

    1998-01-01

    Analysis of sections from dated sediment cores were used to establish geographic distributions and temporal trends of chlorinated hydrocarbon contaminant levels in sediments from natural waters of the Hudson River basin. Radiometric dating was based primarily on the depth distribution of 137(Cs) in the cores and on the occurrence of detectable levels of 7(Be) in surface sediment samples. Eighteen sampling sites included several along the main stem of the Hudson, its major tributaries, and components of the New York/New Jersey (NY/NJ) harbor complex. Drinking-water reservoirs were sampled to place upper limits on atmospheric inputs. Core sections were analyzed for polychlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT)-derived compounds, chlordane, and dioxins. Sediment concentrations of most contaminants at most sites have decreased significantly since the mid-1960s. The data provide a basinwide perspective on major point-source inputs of PCBs to the upper Hudson River and of 2,3,7,8-tetrachlorodibenzo-p-dioxin and DDT to the lower Passaic River. Evidence was found for significant but poorly characterized sources of PCBs and chlordane to the western NY/NJ harbor, and of highly chlorinated dioxins to the upstream sites on the main stem of the Hudson. The results indicate that analysis of dated sediment samples is a most effective and efficient monitoring tool for the study of large-scale geographic and temporal trends in levels of particle-associated contaminants. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9703496

  17. White sturgeon spawning areas in the lower Snake River

    USGS Publications Warehouse

    Parsley, M.J.; Kappenman, K.M.

    2000-01-01

    We documented 17 white sturgeon Acipenser transmontanus spawning locations in the Snake River from the mouth to Lower Granite Dam (river km 0 to 173). Spawning locations were determined by the collection of fertilized eggs on artificial substrates or in plankton nets. We collected 245 eggs at seven locations in McNary Reservoir, 22 eggs at three locations in Ice Harbor Reservoir, 30 eggs from two locations in Lower Monumental Reservoir, and 464 eggs at five locations in Little Goose Reservoir. All 17 locations were in high water velocity areas and between 1.0 and 7.0 km downstream from a hydroelectric dam. The documentation of spawning areas is important because this habitat is necessary to maintain natural and viable populations.

  18. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  19. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  20. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  1. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  2. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  3. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  4. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  5. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  6. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  7. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  8. 33 CFR 110.208 - Buffalo Harbor, N.Y.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Buffalo Harbor, N.Y. 110.208 Section 110.208 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.208 Buffalo Harbor, N.Y. (a) The anchorage grounds—(1...

  9. 33 CFR 110.208 - Buffalo Harbor, N.Y.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Buffalo Harbor, N.Y. 110.208 Section 110.208 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.208 Buffalo Harbor, N.Y. (a) The anchorage grounds—(1...

  10. Geomorphological and geotechnical issues affecting the seismic slope stability of the Duwamish River Delta, Port of Seattle, Washington

    USGS Publications Warehouse

    Kayen, Robert E.; Barnhardt, Walter A.; Palmer, Stephen P.

    1999-01-01

    Young Holocene deposits of the Duwamish River valley underlie a highly developed transportation-industrial corridor, extending from the City of Kent to the Elliott Bay-Harbor Island marine terminal facilities. The deposits have been shaped by relative sea-level rise, but also by episodic volcanism and seismicity. A geologic and geotechnical investigation of these river-mouth deposits indicates high initial liquefaction susceptibility during earthquakes, and possibly the potential for unlimited-strain disintegrative flow failure of the delta front.

  11. Tech Talk for Social Studies Teachers Lest We Forget: Remembering Pearl Harbor.

    ERIC Educational Resources Information Center

    Green, Tim

    2001-01-01

    Presents an annotated bibliography that provides Web sites about Pearl Harbor (Hawaii). Includes Web sites that cover Pearl Harbor history, a live view of Pearl Harbor, stories from people who remember where they were during the attack, information on the naval station at Pearl Harbor, and a virtual tour of the USS Arizona. (CMK)

  12. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  13. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Moss Landing Harbor, CA. 80.1136 Section 80.1136 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from...

  14. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Moss Landing Harbor, CA. 80.1136 Section 80.1136 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from...

  15. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Crescent City Harbor, CA. 80.1152 Section 80.1152 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn...

  16. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Moss Landing Harbor, CA. 80.1136 Section 80.1136 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from...

  17. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  18. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  19. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  20. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  1. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  2. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Crescent City Harbor, CA. 80.1152 Section 80.1152 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn...

  3. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  4. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  5. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  6. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  7. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  8. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  9. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  10. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  11. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  12. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  13. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  14. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  15. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Crescent City Harbor, CA. 80.1152 Section 80.1152 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn...

  16. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  17. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  18. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  19. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  20. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  1. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  2. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  3. 33 CFR 117.722 - Great Egg Harbor Bay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Great Egg Harbor Bay. 117.722 Section 117.722 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.722 Great Egg Harbor Bay. The draw of...

  4. 33 CFR 80.1480 - Hilo Harbor, Hawaii, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hilo Harbor, Hawaii, HI. 80.1480 Section 80.1480 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1480 Hilo Harbor, Hawaii, HI. A line drawn...

  5. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  6. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  7. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  8. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  9. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  10. 33 CFR 80.1460 - Kahului Harbor, Maui, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kahului Harbor, Maui, HI. 80.1460 Section 80.1460 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1460 Kahului Harbor, Maui, HI. A line drawn...

  11. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  12. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  13. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  14. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  15. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  16. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  17. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  18. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  19. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  20. 33 CFR 117.722 - Great Egg Harbor Bay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Great Egg Harbor Bay. 117.722 Section 117.722 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.722 Great Egg Harbor Bay. The draw of...

  1. Madaket Harbor, Nantucket, Massachusetts. Water Resources Improvement.

    DTIC Science & Technology

    1977-07-01

    will continue to be, important increases in the recreational use of land and water. The harbor area is an important arena for commercial shellfishing...an important arena for commercial shell fishing. The past few years have seen a rather rapid increase in residential land use. Construction has...beamc. Tnis material will be re-deposited,, viaj troio it 1-apfro1inr ox prior location. j, MADAKET HARBOR NANTUCKET, MASSACHUSETTS FEASIBILITY

  2. 76 FR 8653 - Drawbridge Operation Regulation; Gulf Intracoastal Waterway, New Orleans Harbor, Inner Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... regulation governing the operation of the SR 39 (Judge Seeber/Claiborne Avenue) vertical lift bridge across... (Judge Seeber/Claiborne Avenue) vertical lift bridge across the Inner Harbor Navigational Canal, mile 0.9...

  3. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Crescent City Harbor, CA. 80.1152... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn from Crescent City Entrance Light to the southeasternmost extremity of Whaler Island. [CGD 84-091, 51...

  4. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Crescent City Harbor, CA. 80.1152... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn from Crescent City Entrance Light to the southeasternmost extremity of Whaler Island. [CGD 84-091, 51...

  5. 46 CFR 7.30 - New York Harbor, NY.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false New York Harbor, NY. 7.30 Section 7.30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.30 New York Harbor, NY. A line drawn from East Rockaway Inlet Breakwater Light to Ambrose Light...

  6. Underwater noise from three types of offshore wind turbines: estimation of impact zones for harbor porpoises and harbor seals.

    PubMed

    Tougaard, Jakob; Henriksen, Oluf Damsgaard; Miller, Lee A

    2009-06-01

    Underwater noise was recorded from three different types of wind turbines in Denmark and Sweden (Middelgrunden, Vindeby, and Bockstigen-Valar) during normal operation. Wind turbine noise was only measurable above ambient noise at frequencies below 500 Hz. Total sound pressure level was in the range 109-127 dB re 1 microPa rms, measured at distances between 14 and 20 m from the foundations. The 1/3-octave noise levels were compared with audiograms of harbor seals and harbor porpoises. Maximum 1/3-octave levels were in the range 106-126 dB re 1 microPa rms. Maximum range of audibility was estimated under two extreme assumptions on transmission loss (3 and 9 dB per doubling of distance, respectively). Audibility was low for harbor porpoises extending 20-70 m from the foundation, whereas audibility for harbor seals ranged from less than 100 m to several kilometers. Behavioral reactions of porpoises to the noise appear unlikely except if they are very close to the foundations. However, behavioral reactions from seals cannot be excluded up to distances of a few hundred meters. It is unlikely that the noise reaches dangerous levels at any distance from the turbines and the noise is considered incapable of masking acoustic communication by seals and porpoises.

  7. Floating-Harbor syndrome associated with middle ear abnormalities.

    PubMed

    Hendrickx, Jan-Jaap; Keymolen, Kathelijn; Desprechins, Brigitte; Casselman, Jan; Gordts, Frans

    2010-01-01

    Floating-Harbor syndrome is a rare syndrome of unknown etiology, which was first described in 1973. A triad of main features characterizes Floating-Harbor syndrome: short stature, characteristic face, and an expressive speech delay. We present a patient in whom the hearing thresholds improved insufficiently after placement of grommets. High-resolution CT scan of the temporal bone showed a prominent soft-tissue thickening suspected of causing fixation of the malleus, and fusion of the malleus head with the body of the incus. To our knowledge this is the first reported abnormal middle ear anatomy in a patient with Floating-Harbor syndrome. A conservative treatment with hearing aids was preferred as an initial treatment in favor of a surgical exploration.

  8. 33 CFR 110.95 - Newport Bay Harbor, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (Newport Harbor Yacht Club). East of a line bearing 23° from the center of the north end of 8th Street... (Balboa Yacht Club). South of a line parallel to and 150 feet from the south pierhead line off Balboa... Newport Beach Harbor Ordinance No. 543 for pleasure boats and yachts of such sizes and alignments as...

  9. 33 CFR 110.95 - Newport Bay Harbor, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (Newport Harbor Yacht Club). East of a line bearing 23° from the center of the north end of 8th Street... (Balboa Yacht Club). South of a line parallel to and 150 feet from the south pierhead line off Balboa... Newport Beach Harbor Ordinance No. 543 for pleasure boats and yachts of such sizes and alignments as...

  10. 33 CFR 100.113 - Provincetown Harbor Swim for Life, Provincetown, MA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Provincetown Harbor Swim for Life... SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.113 Provincetown Harbor Swim for Life, Provincetown, MA. (a) Regulated Area. All waters of Provincetown Harbor within 200 feet of...

  11. 33 CFR 207.718 - Navigation locks and approach channels, Columbia and Snake Rivers, Oreg. and Wash.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Ice Harbor, WUJ 43 Lower Monumental, WUJ 44 Little Goose, or WUJ 45 Lower Granite, at least one-half... is 19 feet. When the river flow at Lower Granite exceeds 330,000 cubic feet per second the normal... Lower Granite Lock and Dam. The waters restricted to all vessels, except Government vessels, are...

  12. 33 CFR 207.718 - Navigation locks and approach channels, Columbia and Snake Rivers, Oreg. and Wash.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ice Harbor, WUJ 43 Lower Monumental, WUJ 44 Little Goose, or WUJ 45 Lower Granite, at least one-half... is 19 feet. When the river flow at Lower Granite exceeds 330,000 cubic feet per second the normal... Lower Granite Lock and Dam. The waters restricted to all vessels, except Government vessels, are...

  13. 33 CFR 207.718 - Navigation locks and approach channels, Columbia and Snake Rivers, Oreg. and Wash.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ice Harbor, WUJ 43 Lower Monumental, WUJ 44 Little Goose, or WUJ 45 Lower Granite, at least one-half... is 19 feet. When the river flow at Lower Granite exceeds 330,000 cubic feet per second the normal... Lower Granite Lock and Dam. The waters restricted to all vessels, except Government vessels, are...

  14. 33 CFR 207.718 - Navigation locks and approach channels, Columbia and Snake Rivers, Oreg. and Wash.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ice Harbor, WUJ 43 Lower Monumental, WUJ 44 Little Goose, or WUJ 45 Lower Granite, at least one-half... is 19 feet. When the river flow at Lower Granite exceeds 330,000 cubic feet per second the normal... Lower Granite Lock and Dam. The waters restricted to all vessels, except Government vessels, are...

  15. 33 CFR 207.718 - Navigation locks and approach channels, Columbia and Snake Rivers, Oreg. and Wash.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Ice Harbor, WUJ 43 Lower Monumental, WUJ 44 Little Goose, or WUJ 45 Lower Granite, at least one-half... is 19 feet. When the river flow at Lower Granite exceeds 330,000 cubic feet per second the normal... Lower Granite Lock and Dam. The waters restricted to all vessels, except Government vessels, are...

  16. 77 FR 45239 - Amendment of Class E Airspace; Bar Harbor, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ...-1366; Airspace Docket No. 11-ANE-13] Amendment of Class E Airspace; Bar Harbor, ME AGENCY: Federal... area at Bar Harbor, ME, as the Surry Non-Directional Radio Beacon (NDB) has been decommissioned and new... airspace at Bar Harbor, ME (77 FR 27666) Docket No. FAA-2011-1366. Interested parties were invited to...

  17. Planning through Partnerships : Alternative Transportation at Boston Harbor Islands National Park Area

    DOT National Transportation Integrated Search

    2004-07-31

    This case study tells the story of a successful and collaborative transportation planning process at Boston Harbor Islands National Park Area (Boston Harbor Islands). By using an innovative approach to planning, Boston Harbor Islands has been able to...

  18. Geotechnical and Geoacoustic Investigation of Seafloor Sediments on Boston Harbor Approaches

    DTIC Science & Technology

    2017-01-25

    Geoacoustic Investigation of Seafloor Sediments on Boston Harbor Approaches Andrei Abelev Marine Physics Branch Marine Geosciences Division Peter...LIMITATION OF ABSTRACT Geotechnical and Geoacoustic Investigation of Seafloor Sediments on Boston Harbor Approaches Andrei Abelev, Peter Herdic...sampling and analysis series for classification and characterization of the surficial seafloor sediment in the Boston Harbor approaches . 25-01-2017

  19. Multi-faceted monitoring of estuarine turbidity and particulate matter provenance: Case study from Salem Harbor, USA.

    PubMed

    Hubeny, J Bradford; Kenney, Melanie; Warren, Barbara; Louisos, Jeremy

    2017-01-01

    Turbidity is a water quality parameter that is known to adversely affect aquatic systems, however the causes of turbid water are often elusive. We present results of a study designed to constrain the source of particulate matter in a coastal embayment that has suffered from increased turbidity over past decades. Our approach utilized monitoring buoys to quantify turbidity at high temporal resolution complemented by geochemical isotope analysis of suspended sediment samples and meteorological data. Results reveal a complex system in which multiple sources are associated with particulate matter. Weight of evidence demonstrates that phytoplankton productivity in the water column, however, is the dominant source of particulate matter associated with elevated turbidity in Salem Harbor, Massachusetts. Allochthonous matter from the watershed was observed to mix into the pool of suspended particulate matter near river mouths, especially in spring and summer. Resuspension of harbor surface sediments likely provides additional particulates in the regions of boat moorings, especially during summer when recreational boats are attached to moorings. Our approach allows us to constrain the causes of turbidity events in this embayment, is helping with conservation efforts of environmental quality in the region, and can be used as a template for other locations. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Optimally managing water resources in large river basins for an uncertain future

    USGS Publications Warehouse

    Edwin A. Roehl, Jr.; Conrads, Paul

    2014-01-01

    Managers of large river basins face conflicting needs for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting local economies for years. The Savannah River Basin’s coastal area contains municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent since the 1970s. There is a planned deepening of the harbor that includes flow-alteration features to minimize further migration of salinity. The effectiveness of the flow-alteration features will only be known after they are constructed. One of the challenges of basin management is the optimization of water use through ongoing development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to significantly reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the

  1. Chemical and biological availability of hydrocarbons in urban harbor sediments

    USGS Publications Warehouse

    LeBlanc, L.A.; Brownawell, Bruce J.

    2002-01-01

    The degradation of saturated and aromatic hydrocarbons was studied in batch slurry experiments conducted with field-aged sediments, highly impacted by hydrocarbon pollution. Experiments focused on examining the effects of desorption limitations to hydrocarbon mineralization and degradation. Degradation of PAH (e.g., naphthalene, fluorene, acenaphthene) and saturated hydrocarbons was examined in field-aged sediments collected from four sites in greater NY Harbor and western Long Island Sound. The sites were Rikers Island in far western Long Island Sound, Williamsburg Bridge in the East River, Shooters Island in the Arthur Kill, and the Kill Van Kull off Bayonne, New Jersey. Patterns of hydrocarbon desorption and degradation in weathered sediments were complicated by the mixed combustion and oil-derived hydrocarbon sources, and differed markedly from patterns seen in sediments following an oil spill. Rates of degradation in experiments with spiked sediments, especially over short timescales, did not appear to be limited by rates of desorption. This is an abstract of a paper presented at the 224th ACS National Meeting (Boston, MA 8/18-22/2002).

  2. Design for navigation improvements at Nome Harbor, Alaska: Coastal model investigation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bottin, R.R.; Acuff, H.F.

    1998-09-01

    A 1:90-scale (undistorted) three dimensional coastal hydraulic model was used to investigate the design of proposed navigation improvements at Nome Harbor, Alaska, with respect to wave, current, and shoaling conditions at the site. The model reproduced about 3,350 m (11,000 ft) of the Alaskan shoreline, the existing harbor and lower reaches of the Snake River, and sufficient offshore bathymetry in the Norton Sound to permit generation of the required experimental waves. The model was used to determine the impacts of a new entrance channel on wave-induced current patterns and magnitudes, sediment transport patterns, and wave conditions in the new channelmore » and harbor area, as well as to optimize the lengths and alignments of new breakwaters and causeway extensions. A 24.4-m-long (9O-ft-long) unidirectional, spectral wave generator, and automated data acquisition and control system, and a crushed coal tracer material were utilized in model operation. It was concluded from study results that: (a) existing conditions are characterized by rough and turbulent wave conditions in the existing entrance. Very confused wave patterns were observed in the entrance due to wave energy reflected off the vertical walls lining the entrance. Wave heights in excess of 1.5 m (5 ft) were obtained in the entrance for typical storm conditions; and wave heights of almost 3.7 m (12 ft) were obtained in the entrance for 5O-year storm wave conditions with extreme high-water level 4 m (+13 ft); (b) wave conditions along the vertical-faced causeway docks were excessive for existing conditions. Wave heights in excess of 3.7 and 2.7 m (12 and 9 ft) were obtained along the outer and inner docks, respectively, for typical storm conditions; and wave heights of almost 7 and 5.8 m (23 and 19 ft) were recorded along these docks, respectively, for 5-year storm wave conditions with extreme high-water levels.« less

  3. Cladophora (Chlorophyta) spp. Harbor Human Bacterial Pathogens in Nearshore Water of Lake Michigan†

    PubMed Central

    Ishii, Satoshi; Yan, Tao; Shively, Dawn A.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Sadowsky, Michael J.

    2006-01-01

    Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attached Cladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC), Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. While Shigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 × 103 cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 × 102 Campylobacter cells/g Cladophora in 60 to 100% of lake- and ditchside samples. The Campylobacter densities were significantly higher (P < 0.05) in the lakeside Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat for Campylobacter and Salmonella species, our results suggest

  4. Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan.

    PubMed

    Ishii, Satoshi; Yan, Tao; Shively, Dawn A; Byappanahalli, Muruleedhara N; Whitman, Richard L; Sadowsky, Michael J

    2006-07-01

    Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attached Cladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC), Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. While Shigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 x 10(3) cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 x 10(2) Campylobacter cells/g Cladophora in 60 to 100% of lake- and ditchside samples. The Campylobacter densities were significantly higher (P < 0.05) in the lakeside Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat for Campylobacter and Salmonella species, our results suggest

  5. Ground-water status report, Pearl Harbor area, Hawaii, 1978

    USGS Publications Warehouse

    Soroos, Ronald L.; Ewart, Charles J.

    1979-01-01

    Increasing demand for freshwater in Hawaii has placed heavy stress on many of the State 's basal aquifer systems. The most heavily stressed of these systems is the Pearl Harbor on Oahu. The Pearl Harbor basal aquifer supplies as much as 277 million gallons per day. Since early in this century, spring discharge has been declining while pumpage has been increasing. Total ground-water discharge has remained steady despite short-term fluctuations. Some wells show general increases in chloride concentration while others remain steady. Chloride concentrations throughout the area show no apparent increase since 1970. Basal water head maps of the Pearl Harbor area clearly reflect the natural discharge points, which are the springs located along the shore near the center of Pearl Harbor. Basal-water hydrographs show a general decline of about 0.09 foot per year. This implies depletion of storage at a rate of about 25 million gallons per day. (USGS).

  6. Pollutant Concentrations and Toxic Effects on the Red Alga Ceramium tenuicorne of Sediments from Natural Harbors and Small Boat Harbors on the West Coast of Sweden.

    PubMed

    Eklund, Britta; Hansson, Tomas; Bengtsson, Henrik; Eriksson Wiklund, Ann-Kristin

    2016-04-01

    This investigation set out to analyze the toxicity of surface sediments in a number of natural harbors and small boat harbors on the west coast of Sweden. This was done with the growth inhibition method with Ceramium tenuicorne. Also, concentrations of copper (Cu), lead (Pb), zinc (Zn), irgarol, organotin compounds, and polycyclic aromatic hydrocarbons (PAHs) in the sediments were analyzed. The small boat harbors were heavily polluted by Cu, Zn, butyltins, and PAHs, and to a lesser extent by Pb. The Cu, Pb, Zn, and butyltins probably originated from their past and/or present use in antifouling paints, whereas the PAHs probably had multiple sources, including boat motor exhausts. The measured toxicity of the sediment was generally related to their Cu, Zn, and butyltin content, although other toxic substances than those analyzed here probably contributed to the toxicity in some of the harbors. The natural harbor sediments contained less pollutants and were less toxic than the small boat harbor sediments. Nevertheless, our data indicate that the boating pressure today may be high enough to produce toxic effects even in natural harbors in pristine areas. The strongest relationship between toxicity and the major pollutants was obtained when the sediment toxicity was expressed as gram wet weight per liter compared with gram dry weight per liter and gram total organic carbon per liter. Hence, for pollutants that can be elutriated with natural sea water, sediment toxicity expressed as gram wet weight per liter appears preferable.

  7. Identification of Marbon in the Indiana Harbor and Ship Canal.

    PubMed

    Guo, Jiehong; Venier, Marta; Romanak, Kevin; Westenbroek, Stephen; Hites, Ronald A

    2016-12-20

    Marbon is isomeric with Dechlorane Plus (DP). Both are produced by the Diels-Alder condensation of hexachlorocyclopentadiene with cyclic dienes, and both have elemental compositions of C 18 H 12 Cl 12 . Dechlorane Plus is commonly found in the environment throughout the world, but Marbon has, so far, only been detected at low levels in one sediment core collected near the mouth of the Niagara River in Lake Ontario. Here we report on the concentrations of Marbon and anti-DP in 59 water samples from five Lake Michigan tributaries [the Grand, Kalamazoo, St. Joseph, and Lower Fox Rivers, and the Indiana Harbor and Ship Canal (IHSC)], 10 surface sediment samples from the IHSC, and 2 surface sediment samples from the Chicago Sanitary and Ship Canal. Three Marbon diastereomers were detected in the water and sediment samples from the IHSC, which is far from the location of its previous detection in Lake Ontario. The sum of the concentrations of the three Marbons was greater in the water from the IHSC (N = 11, median =150 pg/L) compared to those in water from the other four tributaries (N = 11-13, medians =0.9-2.0 pg/L). Marbon concentrations in sediment samples from the IHSC were up to 450 ng/g dry weight. Anti-DP was also measured for comparison. Its concentrations were not significantly different among the water samples, but its sediment concentrations in the IHSC were significantly correlated with those of Marbon. The source of Marbon contamination in the IHSC is not clear.

  8. Modeling tidal exchange and dispersion in Boston Harbor

    USGS Publications Warehouse

    Signell, Richard P.; Butman, Bradford

    1992-01-01

    Tidal dispersion and the horizontal exchange of water between Boston Harbor and the surrounding ocean are examined with a high-resolution (200 m) depth-averaged numerical model. The strongly varying bathymetry and coastline geometry of the harbor generate complex spatial patterns in the modeled tidal currents which are verified by shipboard acoustic Doppler surveys. Lagrangian exchange experiments demonstrate that tidal currents rapidly exchange and mix material near the inlets of the harbor due to asymmetry in the ebb/flood response. This tidal mixing zone extends roughly a tidal excursion from the inlets and plays an important role in the overall flushing of the harbor. Because the tides can only efficiently mix material in this limited region, however, harbor flushing must be considered a two step process: rapid exchange in the tidal mixing zone, followed by flushing of the tidal mixing zone by nontidal residual currents. Estimates of embayment flushing based on tidal calculations alone therefore can significantly overestimate the flushing time that would be expected under typical environmental conditions. Particle-release simulations from point sources also demonstrate that while the tides efficiently exchange material in the vicinity of the inlets, the exact nature of dispersion from point sources is extremely sensitive to the timing and location of the release, and the distribution of particles is streaky and patchlike. This suggests that high-resolution modeling of dispersion from point sources in these regions must be performed explicitly and cannot be parameterized as a plume with Gaussian-spreading in a larger scale flow field.

  9. Operation and Maintence, Vermilion Harbor, Erie County, Ohio.

    DTIC Science & Technology

    1976-03-01

    channel and structural maintenance activities at Vermilion Harbor. Although 6 ...- this alternative would eliminate temporary adverse ecological effects of...of dredging on water quality, aquatic ecology , and harbor recreation and related 4 businesses wbuld be reduced to a level commensurate with reduced...effects on aquatic ecology but would have long- term, beneficial effects on shoreline erosion and beach areas. There have been no specific requests from

  10. 33 CFR 110.80b - Marquette Harbor, Marquette, Mich.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marquette Harbor, Marquette, Mich. 110.80b Section 110.80b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80b Marquette Harbor, Marquette, Mich. The...

  11. 33 CFR 110.80b - Marquette Harbor, Marquette, Mich.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Marquette Harbor, Marquette, Mich. 110.80b Section 110.80b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80b Marquette Harbor, Marquette, Mich. The...

  12. 33 CFR 110.80b - Marquette Harbor, Marquette, Mich.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Marquette Harbor, Marquette, Mich. 110.80b Section 110.80b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80b Marquette Harbor, Marquette, Mich. The...

  13. 33 CFR 110.80b - Marquette Harbor, Marquette, Mich.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Marquette Harbor, Marquette, Mich. 110.80b Section 110.80b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80b Marquette Harbor, Marquette, Mich. The...

  14. 33 CFR 110.80b - Marquette Harbor, Marquette, Mich.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Marquette Harbor, Marquette, Mich. 110.80b Section 110.80b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80b Marquette Harbor, Marquette, Mich. The...

  15. 78 FR 42016 - Safety Zone; Discovery World Fireworks, Milwaukee Harbor, Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ...-AA00 Safety Zone; Discovery World Fireworks, Milwaukee Harbor, Milwaukee, WI AGENCY: Coast Guard, DHS... Milwaukee Harbor due to 4 fireworks displays at Discovery World Pier. This safety zone is necessary to... entitled, ``Safety Zone; Discovery World Fireworks, Milwaukee Harbor, Milwaukee, Wisconsin'' in the Federal...

  16. Metal concentrations in surface sediments of Boston Harbor: Changes with time

    USGS Publications Warehouse

    Bothner, Michael H.; Buchholtz ten Brink, Marilyn R.; Manheim, F.T.

    1998-01-01

    The concentrations of metals in surface sediments of Boston Harbor have decreased during the period 1977–1993. This conclusion is supported by analysis of: (1) surface sediments collected at monitoring stations in the outer harbor between 1977 and 1993; (2) metal concentration profiles in sediment cores from depositional areas of the harbor; and (3) historical data from a contaminated-sediment database, which includes information on metal and organic contaminants and sediment texture. The background and matrix-corrected concentrations of lead (Pb) measured in the surficial layer (0–2 cm) of cores decreased by an average of 46%±12% among four locations in the outer harbor during the 16 y period. Chromium (Cr), copper (Cu), mercury (Hg), silver (Ag), and zinc (Zn) exhibited similar trends. Results from our sediment sampling are supported by historical data that were compiled from diverse sources into a regional sediment database. This sediment database contains approximately 3000 samples; of these, about 460 samples were collected and analyzed for Cu, Hg, or Zn and many other sediment parameters in Boston Harbor surface sediments between 1971–1993. The database indicates that the concentrations of these three metals also decreased with time in Boston’s Inner Harbor. The decreases in metal concentrations that are observed in more recent years parallel a general decrease in the flux of metals to the harbor, implemented by: (1) ending the sewage sludge discharge to the Harbor in December, 1991; (2) greater source reduction (e.g. recovery of silver from photographic processing) and closing or moving of industries; (3) improvements in wastewater handling and sewage treatment; and (4) diminishing use of lead in gasoline beginning about 1973. Despite the general decrease in metal concentrations in Boston Harbor surface sediments, the concentrations of Ag and Hg measured at some outer harbor stations in 1993 were still at, or above, the level associated with

  17. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  18. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  19. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  20. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  1. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  2. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  3. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  4. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  5. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  6. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  7. 76 FR 32071 - Safety Zone; Conneaut Festival Fireworks, Conneaut Harbor, Conneaut, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ...-AA00 Safety Zone; Conneaut Festival Fireworks, Conneaut Harbor, Conneaut, OH AGENCY: Coast Guard, DHS... Conneaut Harbor, Conneaut, OH for the Conneaut Festival Fireworks. This zone is intended to restrict vessels from a portion of Conneaut Harbor, Conneaut, OH during the Conneaut Festival Fireworks on July 3...

  8. Los Angeles Beach Harbors, Los Angeles County, California.

    DTIC Science & Technology

    1974-10-01

    predicted at this time. The presently proposed project is not dependent upon nor contributory to further navigation development in the V" Los Angeles...as Long Beach and Compton. The Los Angeles Harbor probably exhibited similar intensities ranging from VII to IX depending on the soil conditions...the harbor. The water quality in these aquifers is dependent upon the rates of recharge and extraction (natural and otherwise). The Dominguez Gap

  9. 78 FR 28619 - Boston Harbor Islands Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... DEPARTMENT OF THE INTERIOR [NPS-NER-BOHA-12921: PPMPSPD1Z.YM0000: PPNEBOHAS1] Boston Harbor.... SUMMARY: This notice announces a meeting of the Boston Harbor Islands Advisory Council. The agenda... park update. DATES: Date/Time: June 5, 2013, 4:00 p.m. to 6:00 p.m. (EASTERN). Location: Boston Society...

  10. 26 CFR 1.401(k)-3 - Safe harbor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Safe harbor requirements. 1.401(k)-3 Section 1.401(k)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-3 Safe harbor...

  11. 26 CFR 1.401(m)-3 - Safe harbor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Safe harbor requirements. 1.401(m)-3 Section 1.401(m)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(m)-3 Safe harbor...

  12. Pulmonary inflammatory myofibroblastic tumor harboring EML4-ALK fusion gene.

    PubMed

    Sokai, Akihiko; Enaka, Makiko; Sokai, Risa; Mori, Shoichi; Mori, Shunsuke; Gunji, Masaharu; Fujino, Masahiko; Ito, Masafumi

    2014-01-01

    Inflammatory myofibroblastic tumor is a rare tumor deriving from mesenchymal tissue. Approximately 50% of inflammatory myofibroblastic tumors harbor an anaplastic lymphoma kinase fusion gene. Pulmonary inflammatory myofibroblastic tumors harboring tropomyosin3-anaplastic lymphoma kinase or protein tyrosine phosphatase receptor-type F polypeptide-interacting protein-binding protein 1-anaplastic lymphoma kinase have been reported previously. However, it has not been reported that inflammatory myofibroblastic tumors harbor echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion gene which is considered to be very specific to lung cancers. A few tumors harboring echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion gene other than lung cancers have been reported and the tumors were all carcinomas. A 67-year-old man had been followed up for a benign tumor for approximately 3 years before the tumor demonstrated malignant transformation. Lobectomy and autopsy revealed that an inflammatory myofibroblastic tumor harboring echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion gene had transformed into an undifferentiated sarcoma. This case suggests that echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion is an oncogenic event in not only carcinomas but also sarcomas originating from stromal cells.

  13. Remembering Pearl Harbor at 75 Years.

    PubMed

    Liehr, Patricia; Sopcheck, Janet; Milbrath, Gwyneth

    2016-12-01

    : On December 7, 1941, the Sunday-morning quiet of the U.S. naval base in Pearl Harbor, Hawaii, was shattered by dive-bombing Japanese fighter planes. The planes came in two waves-and when it was all over, more than 2,400 were killed and more than 1,100 were injured.Nurses were stationed at U.S. Naval Hospital Pearl Harbor, Tripler General Hospital (now Tripler Army Medical Center), Hickam Field Hospital, Schofield Barracks Station Hospital, and aboard the USS Solace, and witnessed the devastation. But they also did what nurses do in emergencies-they responded and provided care to those in need. Here are the stories of a few of those nurses.

  14. 77 FR 27666 - Proposed Amendment of Class E Airspace; Bar Harbor, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ...-1366; Airspace Docket No. 11-ANE-13] Proposed Amendment of Class E Airspace; Bar Harbor, ME AGENCY... action proposes to amend Class E Airspace at Bar Harbor, ME, as the Surry Non-Directional Radio Beacon... Airport, Bar Harbor, ME. Airspace reconfiguration is necessary due to the decommissioning of the Surry NDB...

  15. 33 CFR 165.14-1414 - Safety Zones; Hawaiian Islands Commercial Harbors; HI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... harbors, or all of these harbors, dependent upon details in the tsunami warning. These safety zones extend... period. Paragraph (b) of this section will be enforced when a tsunami warning has been issued for the... Coast Guard's Homeport Web site. Following the passage of the tsunami or tsunami threat and harbor...

  16. Occurrence of Organic Compounds and Trace Elements in the Upper Passaic and Elizabeth Rivers and Their Tributaries in New Jersey, July 2003 to February 2004: Phase II of the New Jersey Toxics Reduction Workplan for New York-New Jersey Harbor

    USGS Publications Warehouse

    Wilson, Timothy P.; Bonin, Jennifer L.

    2008-01-01

    Samples of surface water and suspended sediment were collected from the Passaic and Elizabeth Rivers and their tributaries in New Jersey from July 2003 to February 2004 to determine the concentrations of selected chlorinated organic and inorganic constituents. This sampling and analysis was conducted as Phase II of the New York-New Jersey Harbor Estuary Workplan?Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. Samples were collected from three groups of tributaries: (1) the Second, Third, and Saddle Rivers; (2) the Pompton and upper Passaic Rivers; and (3) the West Branch and main stem of the Elizabeth River. The Second, Third, and Saddle Rivers were sampled near their confluence with the tidal Passaic River, but at locations not affected by tidal flooding. The Pompton and upper Passaic Rivers were sampled immediately upstream from their confluence at Two Bridges, N.J. The West Branch and the main stem of the Elizabeth River were sampled just upstream from their confluence at Hillside, N.J. All tributaries were sampled during low-flow discharge conditions using the protocols and analytical methods for organic constituents used in low-flow sampling in Phase I. Grab samples of streamflow also were collected at each site and were analyzed for trace elements (mercury, methylmercury, cadmium, and lead) and for suspended sediment, particulate organic carbon, and dissolved organic carbon. The measured concentrations and available historical suspended-sediment and stream-discharge data (where available) were used to estimate average annual loads of suspended sediment and organic compounds in these rivers. Total suspended-sediment loads for 1975?2000 were estimated using rating

  17. 78 FR 669 - Safety Zone; Hampton Harbor Channel Obstruction, Hampton Harbor; Hampton, NH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket Number USCG-2012-1055] RIN... docket [USCG-2012-1055]. To view documents mentioned in this preamble as being available in the docket....1. 0 2. Add Sec. 165.T01-1055 to read as follows: Sec. 165.T01-1055 Safety Zone; Hampton Harbor...

  18. Integrated approach to assess ecosystem health in harbor areas.

    PubMed

    Bebianno, M J; Pereira, C G; Rey, F; Cravo, A; Duarte, D; D'Errico, G; Regoli, F

    2015-05-01

    Harbors are critical environments with strategic economic importance but with potential environmental impact: health assessment criteria are a key issue. An ecosystem health status approach was carried out in Portimão harbor as a case-study. Priority and specific chemical levels in sediments along with their bioavailability in mussels, bioassays and a wide array of biomarkers were integrated in a biomarker index (IBR index) and the overall data in a weight of evidence (WOE) model. Metals, PAHs, PCBs and HCB were not particularly high compared with sediment guidelines and standards for dredging. Bioavailability was evident for Cd, Cu and Zn. Biomarkers proved more sensitive namely changes of antioxidant responses, metallothioneins and vittellogenin-like proteins. IBR index indicated that site 4 was the most impacted area. Assessment of the health status by WOE approach highlighted the importance of integrating sediment chemistry, bioaccumulation, biomarkers and bioassays and revealed that despite some disturbance in the harbor area, there was also an impact of urban effluents from upstream. Environmental quality assessment in harbors. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. 77 FR 43513 - Olympia Harbor Days Tug Boat Races, Budd Inlet, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... Harbor Days Tug Boat Races, Budd Inlet, WA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Special Local Regulation, Olympia Harbor Days Tug Boat... Special Local Regulation for Olympia Harbor Days Tug Boat Races, Budd Inlet, WA in 33 CFR 100.1309 on...

  20. Safe harbor: protecting ports with shipboard fuel cells.

    PubMed

    Taylor, David A

    2006-04-01

    With five of the largest harbors in the United States, California is beginning to take steps to manage the large amounts of pollution generated by these bustling centers of transport and commerce. One option for reducing diesel emissions is the use of fuel cells, which run cleaner than diesel and other internal combustion engines. Other technologies being explored by harbor officials are diesel-electric hybrid and gas turbine locomotives for moving freight within port complexes.

  1. 15. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, LOOKING OUT TOWARD ARIZONA MEMORIAL AND FORD ISLAND. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  2. 76 FR 50489 - Agency Information Collection Activities: Harbor Maintenance Fee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... Activities: Harbor Maintenance Fee AGENCY: U.S. Customs and Border Protection, Department of Homeland... Security will be submitting the following information collection request to the Office of Management and Budget (OMB) for review and approval in accordance with the Paperwork Reduction Act: Harbor Maintenance...

  3. Assessment of injury to fish and wildlife resources in the Grand Calumet River and Indiana Harbor Area of Concern, USA

    USGS Publications Warehouse

    MacDonald, D.D.; Ingersoll, C.G.; Smorong, D.E.; Lindskoog, R.A.; Sparks, D.W.; Smith, J.R.; Simon, T.P.; Hanacek, M.A.

    2002-01-01

    This article is the second in a series of three that describes the results of a Natural Resource Damage Assessment (NRDA) conducted in the Grand Calumet River and Indiana Harbor Area of Concern (IHAOC). The assessment area is located in northwest Indiana and was divided into nine reaches to facilitate the assessment. This component of the NRDA was undertaken to determine if fish and wildlife resources have been injured due to exposure to contaminants that are associated with discharges of oil or releases of other hazardous substances. To support this assessment, information was compiled on the chemical composition of sediment and tissues; on the toxicity of whole sediments, pore water, and elutriates to fish; on the status of fish communities; and on fish health. The data on each of these indicators were compared to regionally relevant benchmarks to assess the presence and extent of injury to fish and wildlife resources. The results of this assessment indicate that injury to fish and wildlife resources has occurred throughout the assessment area, with up to five distinct lines of evidence demonstrating injury within the various reaches. Based on the frequency of exceedance of the benchmarks for assessing sediment and tissue chemistry data, total polychlorinated biphenyls is the primary bioaccumulative contaminant of concern in the assessment area. It is important to note, however, that this assessment was restricted by the availability of published bioaccumulation-based sediment quality guidelines, tissue residue guidelines, and other benchmarks of sediment quality conditions. The availability of chemistry data for tissues also restricted this assessment in certain reaches of the assessment area. Furthermore, insufficient information was located to facilitate identification of the substances that are causing or substantially contributing to effects on fish (i.e., sediment toxicity, impaired fish health, or impaired fish community structure). Therefore, substances

  4. U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage System, Linear underground system extending from North Road to Icarus Way, Joint Base Pearl Harbor-Hickam, Honolulu, Honolulu County, HI

  5. 33 CFR 110.214 - Los Angeles and Long Beach harbors, California.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following locations: (A) Inner Harbor: The Henry Ford (Badger Avenue) Bridge. (B) Middle Harbor: The Pier... will be given, but not necessarily limited to: the current and anticipated demands for anchorage space...

  6. 33 CFR 110.214 - Los Angeles and Long Beach harbors, California.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following locations: (A) Inner Harbor: The Henry Ford (Badger Avenue) Bridge. (B) Middle Harbor: The Pier... will be given, but not necessarily limited to: the current and anticipated demands for anchorage space...

  7. The New Bedford Harbor Superfund Site Long Term ...

    EPA Pesticide Factsheets

    Background. New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a marine Superfund site in 1983 due to sediment contamination by polychlorinated biphenyls (PCBs). Based on risks to human health and the environment, the first two phases of the site cleanup involved dredging PCB-contaminated sediments from the harbor. Therefore, a long-term monitoring program (LTM) was developed to measure spatial and temporal chemical and biological changes in sediment, water, and biota to assess the effects and effectiveness of the remedial activities. Approach. A systematic, probabilistic sampling design was used to select approximately 70 sediment sampling stations. Sediment was collected at each station and chemical (e.g., PCBs, metals), physical (e.g., grain size), and biological (e.g., benthic community) measurements were conducted on all samples. There have been six sample collections to date: 1993-baseline, 1995-post hot spot removal, 1999-prior to full scale dredging, and then at 5 year intervals: 2004, 2009, and 2014. Mussel (Mytilus edulis) bioaccumulation has also been measured twice yearly. Results. There is a decreasing spatial gradient in sediment PCB concentrations from the northern boundary (upper harbor) to the southern boundary (outer harbor) of the site. Along this same transect, there is an increase in biological condition (e.g., benthic community diversity). Temporally, the contaminant and biological gradients have been

  8. Harbor seal vibrissa morphology suppresses vortex-induced vibrations.

    PubMed

    Hanke, Wolf; Witte, Matthias; Miersch, Lars; Brede, Martin; Oeffner, Johannes; Michael, Mark; Hanke, Frederike; Leder, Alfred; Dehnhardt, Guido

    2010-08-01

    Harbor seals (Phoca vitulina) often live in dark and turbid waters, where their mystacial vibrissae, or whiskers, play an important role in orientation. Besides detecting and discriminating objects by direct touch, harbor seals use their whiskers to analyze water movements, for example those generated by prey fish or by conspecifics. Even the weak water movements left behind by objects that have passed by earlier can be sensed and followed accurately (hydrodynamic trail following). While scanning the water for these hydrodynamic signals at a swimming speed in the order of meters per second, the seal keeps its long and flexible whiskers in an abducted position, largely perpendicular to the swimming direction. Remarkably, the whiskers of harbor seals possess a specialized undulated surface structure, the function of which was, up to now, unknown. Here, we show that this structure effectively changes the vortex street behind the whiskers and reduces the vibrations that would otherwise be induced by the shedding of vortices from the whiskers (vortex-induced vibrations). Using force measurements, flow measurements and numerical simulations, we find that the dynamic forces on harbor seal whiskers are, by at least an order of magnitude, lower than those on sea lion (Zalophus californianus) whiskers, which do not share the undulated structure. The results are discussed in the light of pinniped sensory biology and potential biomimetic applications.

  9. Lorain Harbor, Ohio. Preliminary Feasibility Study (Stage 2). Review of Reports. Volume II. Appendices.

    DTIC Science & Technology

    1980-10-01

    looked all the way from the west to all the way down to Erie , Pennsylvania . We made some initial cuts and got it down to five different ports...Harbor, MN Presque Isle :Two Harbors, MN :Gary, IN 1,721,920 25 (Litton Great Lakes):Two Harbors, MN :Calumet Harbor, IN 178,080 3 :Two Harbors, MN...WI : 2 :11 : 0: 0 : 0: 2: 3 Silver Bay, MN : 82 :67 : 96 :87 : 85 : 88: 89 Taconite, MN : 0 : 0 : 0: 0 : 0: 4: 0 Presque Isle , MI : 6 2 : 1 0.5: 2 1

  10. Frequency Domain Response at Pacific Coast Harbors to Major Tsunamis of 2005-2011

    NASA Astrophysics Data System (ADS)

    Xing, Xiuying; Kou, Zhiqing; Huang, Ziyi; Lee, Jiin-Jen

    2013-06-01

    Tsunamis waves caused by submarine earthquake or landslide might contain large wave energy, which could cause significant human loss and property damage locally as well as in distant region. The response of three harbors located at the Pacific coast (i.e. Crescent City Harbor, Los Angeles/Long Beach Port, and San Diego Harbor) to six well-known tsunamis events generated (both near-field and far-field) between 2005 and 2011 are examined and simulated using a hybrid finite element numerical model in frequency domain. The model incorporated the effects of wave refraction, wave diffraction, partial wave reflection from boundaries, entrance and bottom energy dissipation. It can be applied to harbor regions with arbitrary shapes and variable water depth. The computed resonant periods or modes of oscillation for three harbors are in good agreement with the energy spectral analysis of the time series of water surface elevations recorded at tide gauge stations inside three harbors during the six tsunamis events. The computed wave induced currents based on the present model are also in qualitative agreement with some of the reported eye-witness accounts absence of reliable current data. The simulated results show that each harbor responded differently and significantly amplified certain wave period(s) of incident wave trains according to the shape, topography, characteristic dimensions and water depth of the harbor basins.

  11. 33 CFR 110.40 - Silver Beach Harbor, North Falmouth, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Silver Beach Harbor, North Falmouth, Mass. 110.40 Section 110.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.40 Silver Beach Harbor, North...

  12. 33 CFR 110.40 - Silver Beach Harbor, North Falmouth, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Silver Beach Harbor, North Falmouth, Mass. 110.40 Section 110.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.40 Silver Beach Harbor, North...

  13. 33 CFR 110.40 - Silver Beach Harbor, North Falmouth, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Silver Beach Harbor, North Falmouth, Mass. 110.40 Section 110.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.40 Silver Beach Harbor, North...

  14. 33 CFR 110.40 - Silver Beach Harbor, North Falmouth, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Silver Beach Harbor, North Falmouth, Mass. 110.40 Section 110.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.40 Silver Beach Harbor, North...

  15. 33 CFR 110.40 - Silver Beach Harbor, North Falmouth, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Silver Beach Harbor, North Falmouth, Mass. 110.40 Section 110.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.40 Silver Beach Harbor, North...

  16. 16. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, LOOKING OUT AT MAIN CHANNEL ENTRANCE, WITH FORD ISLAND ON THE RIGHT. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  17. 78 FR 18479 - Drawbridge Operation Regulations; Inner Harbor Navigation Canal, New Orleans, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... Operation Regulations; Inner Harbor Navigation Canal, New Orleans, LA AGENCY: Coast Guard, DHS. ACTION... across the Inner Harbor Navigation Canal, mile 4.6, at New Orleans, Louisiana. This deviation is... Seabrook Highway crossing the Inner Harbor Navigation Canal, mile 4.6, in New Orleans, Louisiana. The...

  18. The vertical attenuation of light in Charlotte Harbor, a shallow, subtropical estuary, south-western Florida

    USGS Publications Warehouse

    McPherson, B.F.; Miller, R.L.

    1987-01-01

    The relative contribution of different components to the attenuation of photosynthetically active radiation was determined in the Charlotte Harbor estuarine system based on laboratory and in situ measurements. Agreement between laboratory and in situ measurements of the attenuation coefficient (kt) was good (r2 = 0??92). For all in situ measurements (n = 100), suspended, non-chlorophyll matter accounted for an average of 72% of kt, dissolved matter accounted for 21%, suspended chlorophyll for 4%, and water for the remaining 3%. For individual determinations, suspended non-chlorophyll matter, dissolved matter, suspended chlorophyll, and water, each accounted for as much as 99%, 79%, 21%, and 18% of kt. Attenuation by suspended matter was greatest near the mouth of the northern tidal rivers and was variable over the rest of the estuarine system. Attenuation by dissolved matter was greatest in the brackish tidal rivers and decreased with increasing salinity. Attenuation due to dissolved matter was positively correlated with water color. The source of the color was basin runoff. Wavelength transmittance changed along the salinity gradient. Maximum transmittance shifted from 500 to 600 nm in gulf waters to 650 to 700 nm in colored, brackish waters. Dissolved matter was primarily responsible for the large attenuation at short wavelengths (400-500 nm). ?? 1987.

  19. Hydraulic modeling of stream channels and structures in Harbor and Crow Hollow Brooks, Meriden, Connecticut

    USGS Publications Warehouse

    Weiss, Lawrence A.; Sears, Michael P.; Cervione, Michael A.

    1994-01-01

    Effects of urbanization have increased the frequency and size of floods along certain reaches of Harbor Brook and Crow Hollow Brook in Meriden, Conn. A floodprofile-modeling study was conducted to model the effects of selected channel and structural modifications on flood elevations and inundated areas. The study covered the reach of Harbor Brook downstream from Interstate 691 and the reach of Crow Hollow Brook downstream from Johnson Avenue. Proposed modifications, which include changes to bank heights, channel geometry, structural geometry, and streambed armoring on Harbor Brook and changes to bank heights on Crow Hollow Brook, significantly lower flood elevations. Results of the modeling indicate a significant reduction of flood elevations for the 10-year, 25-year, 35-year, 50-year, and 100-year flood frequencies using proposed modifications to (1 ) bank heights between Harbor Brook Towers and Interstate 691 on Harbor Brook, and between Centennial Avenue and Johnson Avenue on Crow Hollow Brook; (2) channel geometry between Coe Avenue and Interstate 69 1 on Harbor Brook; (3) bridge and culvert opening geometry between Harbor Brook Towers and Interstate 691 on Harbor Brook; and (4) channel streambed armoring between Harbor Brook Towers and Interstate 691 on Harbor Brook. The proposed modifications were developed without consideration of cost-benefit ratios.

  20. 78 FR 63381 - Safety Zones; Hawaiian Island Commercial Harbors, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2013-0021] RIN 1625-AA00 Safety Zones; Hawaiian Island Commercial Harbors, HI AGENCY: Coast Guard, DHS. ACTION: Final rule... as follows: Sec. 165. 14-1414 Safety Zones; Hawaiian Islands Commercial Harbors; HI. (a) Location...

  1. 33 CFR 162.110 - Duluth-Superior Harbor, Minnesota and Wisconsin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Duluth-Superior Harbor, Minnesota and Wisconsin. 162.110 Section 162.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Duluth-Superior Harbor, Minnesota and Wisconsin. (a) No vessel greater than 100 feet in length may exceed...

  2. 33 CFR 162.110 - Duluth-Superior Harbor, Minnesota and Wisconsin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Duluth-Superior Harbor, Minnesota and Wisconsin. 162.110 Section 162.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Duluth-Superior Harbor, Minnesota and Wisconsin. (a) No vessel greater than 100 feet in length may exceed...

  3. 33 CFR 162.110 - Duluth-Superior Harbor, Minnesota and Wisconsin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Duluth-Superior Harbor, Minnesota and Wisconsin. 162.110 Section 162.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Duluth-Superior Harbor, Minnesota and Wisconsin. (a) No vessel greater than 100 feet in length may exceed...

  4. 33 CFR 162.110 - Duluth-Superior Harbor, Minnesota and Wisconsin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Duluth-Superior Harbor, Minnesota and Wisconsin. 162.110 Section 162.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Duluth-Superior Harbor, Minnesota and Wisconsin. (a) No vessel greater than 100 feet in length may exceed...

  5. 33 CFR 162.110 - Duluth-Superior Harbor, Minnesota and Wisconsin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Duluth-Superior Harbor, Minnesota and Wisconsin. 162.110 Section 162.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Duluth-Superior Harbor, Minnesota and Wisconsin. (a) No vessel greater than 100 feet in length may exceed...

  6. 33 CFR 110.77a - Duluth-Superior Harbor, Duluth, Minn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Duluth-Superior Harbor, Duluth, Minn. 110.77a Section 110.77a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77a Duluth-Superior Harbor, Duluth...

  7. 33 CFR 110.77a - Duluth-Superior Harbor, Duluth, Minn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Duluth-Superior Harbor, Duluth, Minn. 110.77a Section 110.77a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77a Duluth-Superior Harbor, Duluth...

  8. 33 CFR 110.77a - Duluth-Superior Harbor, Duluth, Minn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Duluth-Superior Harbor, Duluth, Minn. 110.77a Section 110.77a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77a Duluth-Superior Harbor, Duluth...

  9. 33 CFR 110.77a - Duluth-Superior Harbor, Duluth, Minn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Duluth-Superior Harbor, Duluth, Minn. 110.77a Section 110.77a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77a Duluth-Superior Harbor, Duluth...

  10. 33 CFR 110.77a - Duluth-Superior Harbor, Duluth, Minn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Duluth-Superior Harbor, Duluth, Minn. 110.77a Section 110.77a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77a Duluth-Superior Harbor, Duluth...

  11. Continuous tidal streamflow, water level, and specific conductance data for Union Creek and the Little Back, Middle, and Front Rivers, Savannah River Estuary, November 2008 to March 2009

    USGS Publications Warehouse

    Lanier, Timothy H.; Conrads, Paul

    2010-01-01

    In the Water Resource Development Act of 1999, the U.S. Congress authorized the deepening of the Savannah Harbor. Additional studies were then identified by the Georgia Ports Authority and other local and regional stakeholders to determine and fully describe the potential environmental effects of deepening the channel. One need that was identified was the validation of a three-dimensional hydrodynamic model developed to evaluate mitigation scenarios for a potential harbor deepening and the effects on the Savannah River estuary. The streamflow in the estuary is very complex due to reversing tidal flows, interconnections of streams and tidal creeks, and the daily flooding and draining of the marshes. The model was calibrated using very limited streamflow data and no continuous streamflow measurements. To better characterize the streamflow dynamics and mass transport of the estuary, two index-velocity sites were instrumented with continuous acoustic velocity, water level, and specific conductance sensors on the Little Back and Middle Rivers for the 5-month period of November 2008 through March 2009. During the same period, a third acoustic velocity meter was installed on the Front River just downstream from U.S. Geological Survey streamgaging station 02198920 (Savannah River at GA 25, at Port Wentworth, Georgia) where water level and specific conductance data were being collected. A fourth index-velocity site was instrumented with continuous acoustic velocity, water level, and specific conductance sensors on Union Creek for a 2-month period starting in November 2008. In addition to monitoring the tidal cycles, streamflow measurements were made at the four index-velocity sites to develop ratings to compute continuous discharge for each site. The maximum flood (incoming) and ebb (outgoing) tides measured on Little Back River were –4,570 and 7,990 cubic feet per second, respectively. On Middle River, the maximum flood and ebb tides measured were –9,630 and 13

  12. 33 CFR 117.458 - Inner Harbor Navigation Canal, New Orleans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Inner Harbor Navigation Canal, New Orleans. 117.458 Section 117.458 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Harbor Navigation Canal, New Orleans. (a) The draws of the SR 46 (St. Claude Avenue) bridge, mile 0.5...

  13. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  14. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  15. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  16. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  17. 33 CFR 117.661 - Duluth Ship Canal (Duluth-Superior Harbor).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Duluth Ship Canal (Duluth-Superior Harbor). 117.661 Section 117.661 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Ship Canal (Duluth-Superior Harbor). The draw of the Duluth Ship Canal Aerial bridge, mile 0.25 at...

  18. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  19. Boston Harbor National Park Service sites : alternative transportation systems evaluation report

    DOT National Transportation Integrated Search

    2001-06-01

    This project puts forth a forward looking water-based transportation plan which would serve four NPS units in and around Boston Harbor: Boston Harbor Islands National Recreation Area, Boston National Historical Park, Salem Maritime Historic Site, and...

  20. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., V.I. (a) The anchorage grounds—(1) Inner harbor anchorage. Beginning at a point bearing 85°, 525... shall also be used by vessels having drafts too great to permit them to use the inner harbor anchorage...

  1. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., V.I. (a) The anchorage grounds—(1) Inner harbor anchorage. Beginning at a point bearing 85°, 525... shall also be used by vessels having drafts too great to permit them to use the inner harbor anchorage...

  2. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., V.I. (a) The anchorage grounds—(1) Inner harbor anchorage. Beginning at a point bearing 85°, 525... shall also be used by vessels having drafts too great to permit them to use the inner harbor anchorage...

  3. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., V.I. (a) The anchorage grounds—(1) Inner harbor anchorage. Beginning at a point bearing 85°, 525... shall also be used by vessels having drafts too great to permit them to use the inner harbor anchorage...

  4. Underwater localization of pure tones by harbor seals (Phoca vitulina).

    PubMed

    Bodson, Anaïs; Miersch, Lars; Dehnhardt, Guido

    2007-10-01

    The underwater sound localization acuity of harbor seals (Phoca vitulina) was measured in the horizontal plane. Minimum audible angles (MAAs) of pure tones were determined as a function of frequency from 0.2 to 16 kHz for two seals. Testing was conducted in a 10-m-diam underwater half circle using a right/left psychophysical procedure. The results indicate that for both harbor seals, MAAs were large at high frequencies (13.5 degrees and 17.4 degrees at 16 kHz), transitional at intermediate frequencies (9.6 degrees and 10.1 degrees at 4 kHz), and particularly small at low frequencies (3.2 degrees and 3.1 degrees at 0.2 kHz). Harbor seals seem to be able to utilize both binaural cues, interaural time differences (ITDs) and interaural intensity differences (IIDs), but a significant decrease in the sound localization acuity with increasing frequency suggests that IID cues may not be as robust as ITD cues under water. These results suggest that the harbor seal can be regarded as a low-frequency specialist. Additionally, to obtain a MAA more representative of the species, the horizontal underwater MAA of six adult harbor seals was measured at 2 kHz under identical conditions. The MAAs of the six animals ranged from 8.8 degrees to 11.7 degrees , resulting in a mean MAA of 10.3 degrees .

  5. Genetics Home Reference: Floating-Harbor syndrome

    MedlinePlus

    ... Patton MA, Hurst J, Donnai D, McKeown CM, Cole T, Goodship J. Floating-Harbor syndrome. J Med ... medicine? What is newborn screening? New Pages Lyme disease Fibromyalgia White-Sutton syndrome All New & Updated Pages ...

  6. 33 CFR 117.661 - Duluth Ship Canal (Duluth-Superior Harbor).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Duluth Ship Canal (Duluth-Superior Harbor). 117.661 Section 117.661 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.661 Duluth Ship Canal (Duluth-Superior Harbor). The draw o...

  7. 33 CFR 117.753 - Ship Channel, Great Egg Harbor Bay.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Ship Channel, Great Egg Harbor... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.753 Ship Channel, Great Egg Harbor Bay. The draw of the S52 (Ship Channel) bridge, mile 0.5 between Somers Point and Ocean...

  8. 33 CFR 117.753 - Ship Channel, Great Egg Harbor Bay.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Ship Channel, Great Egg Harbor... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.753 Ship Channel, Great Egg Harbor Bay. The draw of the S52 (Ship Channel) bridge, mile 0.5 between Somers Point and Ocean...

  9. 33 CFR 334.870 - San Diego Harbor, Calif.; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false San Diego Harbor, Calif... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.870 San Diego Harbor... the Pacific Ocean in North San Diego Bay in an area extending from the western boundary of North...

  10. 33 CFR 334.870 - San Diego Harbor, Calif.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false San Diego Harbor, Calif... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.870 San Diego Harbor... the Pacific Ocean in North San Diego Bay in an area extending from the western boundary of North...

  11. 77 FR 19573 - Safety Zone; Wedding Fireworks Display, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ...-AA00 Safety Zone; Wedding Fireworks Display, Boston Inner Harbor, Boston, MA AGENCY: Coast Guard, DHS... zone on the navigable waters of the Boston Inner Harbor in the vicinity of Anthony's Pier 4, Boston, MA... Boston Inner Harbor in the vicinity of Anthony's Pier 4, Boston, MA. The Captain of the Port (COTP...

  12. Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan

    USGS Publications Warehouse

    Ishii, S.; Yan, T.; Shively, D.A.; Byappanahalli, M.N.; Whitman, R.L.; Sadowsky, M.J.

    2006-01-01

    Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attachedCladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC),Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. WhileShigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 × 103 cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 × 102 Campylobacter cells/gCladophora in 60 to 100% of lake- and ditchside samples. The Campylobacterdensities were significantly higher (P < 0.05) in the lakeside Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat for

  13. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  14. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  15. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  16. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  17. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  18. APPLICATION OF EMAP METHODS AND INDICATORS TO THE NY/NJ HARBOR

    EPA Science Inventory

    The Comprehensive Conservation and Management Plan (CCMP) for the NY/NJ Harbor requires specific management actions to maintain and restore the Harbor environment. It also specifies that the progress of these management actions on the improvement of sediment quality and biologic...

  19. 33 CFR 117.753 - Ship Channel, Great Egg Harbor Bay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ship Channel, Great Egg Harbor Bay. 117.753 Section 117.753 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND..., Great Egg Harbor Bay. The draw of the S52 (Ship Channel) bridge, mile 0.5 between Somers Point and Ocean...

  20. 33 CFR 117.753 - Ship Channel, Great Egg Harbor Bay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Ship Channel, Great Egg Harbor Bay. 117.753 Section 117.753 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND..., Great Egg Harbor Bay. The draw of the S52 (Ship Channel) bridge, mile 0.5 between Somers Point and Ocean...

  1. 33 CFR 117.699 - Little Harbor.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.699 Little Harbor. The draw of the SR1B bridge, mile 1.0 between New Castle and Rye, shall open on signal from April 1 through October 31...

  2. 33 CFR 117.699 - Little Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.699 Little Harbor. The draw of the SR1B bridge, mile 1.0 between New Castle and Rye, shall open on signal from April 1 through October 31...

  3. 33 CFR 117.699 - Little Harbor.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.699 Little Harbor. The draw of the SR1B bridge, mile 1.0 between New Castle and Rye, shall open on signal from April 1 through October 31...

  4. 33 CFR 117.699 - Little Harbor.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.699 Little Harbor. The draw of the SR1B bridge, mile 1.0 between New Castle and Rye, shall open on signal from April 1 through October 31...

  5. 33 CFR 117.699 - Little Harbor.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.699 Little Harbor. The draw of the SR1B bridge, mile 1.0 between New Castle and Rye, shall open on signal from April 1 through October 31...

  6. Congress Investigates: Pearl Harbor and 9/11 Congressional Hearing Exhibits

    ERIC Educational Resources Information Center

    Blackerby, Christine

    2011-01-01

    On the morning of December 7, 1941, Japanese bombers staged a surprise attack on U.S. military forces at Pearl Harbor in Hawaii. Sixty years after the attack on Pearl Harbor, the United States was attacked again. On the morning of September 11, 2001, four commercial airplanes hijacked by 19 terrorists killed nearly 3,000 people when they crashed…

  7. Total Mercury and Methylmercury in the Great Egg Harbor River Watershed, New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Barringer, J. L.; Riskin, M. L.; Szabo, Z.; Fischer, J. M.; Reilly, P. A.; Rosman, R.; Bonin, J. L.; Heckathorn, H. A.

    2007-12-01

    Hydrologic and biogeochemical conditions are important factors in the transport and distribution of mercury (Hg) in New Jersey Coastal Plain watersheds that contain extensive freshwater wetlands and where Hg bioaccumulation is of concern. U.S. Geological Survey studies found Hg concentrations in top predator fish from the Great Egg Harbor River mainstem that ranged from 2.9 to 4.5 mg/kg (dry wt.) and exceeded 10 ng/L in the watershed's acidic streams. An ongoing study with the N.J. Department of Environmental Protection indicates that atmospheric deposition of Hg to the wetlands and streams may be augmented by substantial contributions of Hg from ground water. Although background levels of Hg in water from the underlying aquifer typically are less than 10 ng/L, concentrations in water from more than 600 domestic wells in southern New Jersey have been shown to exceed the drinking-water maximum contaminant level of 2,000 ng/L. Therefore, to determine ground-water inputs to the streams, samples of ground water discharging to the tributaries and mainstem as well as streamwater samples collected during various flow conditions were analyzed for total Hg and methylmercury (MeHg). Total Hg concentrations in ground water discharging to the tributaries and mainstem were low to moderate (0.29-22 ng/L) in relatively undeveloped areas (including wetlands), but higher (36 and 177 ng/L) in two urban/suburban areas where much of the Hg was in particulate form. In recent and ongoing studies, total Hg concentrations in unfiltered samples of surface water, except those for one suburban tributary, have ranged from 2.13 to 37.7 ng/L. Concentrations in the suburban tributary have ranged from 50 ng/L during a dry period to 250 ng/L during a wet period. Hg concentrations in samples from a wetlands-embedded reach of the mainstem varied markedly with flow. In addition to increases in concentrations of total Hg, UV absorbance and concentrations of dissolved organic carbon also increased with

  8. History of New Bedford Harbor: Ecological consequences of urbanization and implications for remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voyer, R.A.; Pesch, C.; Garber, J.

    1995-12-31

    New Bedford, Massachusetts is the product of {approximately}300 years of agricultural, commercial and industrial activities. Located on the Acushnet River and Buzzard`s Bay, New Bedford is renowned as a former whaling center and former producer of fine quality textiles. It has, however, gained notoriety as a Superfund site contaminated with PCBs. The historical research enhances understanding of sources of cumulative ecological impacts in the Acushnet River estuary. Stressors are reviewed and impacts interpreted in terms of geographic and cultural considerations aided by geographic information system techniques, Analysis of information reveals four sequential developmental periods, each with a distinctive effect anmore » estuarine conditions. Changes in coastline morphology and loss of habitat accompanied wharf building during the whaling period. Wetlands were filled and became building sites during the textile phase. A six-fold population increase between 1870 and 1920 accompanied expansion of textile industry and resulted in increased nutrient loading and raw sewage discharge to the estuary. Shellfish beds were closed throughout estuary in 1904, due to outbreaks of typhoid fever. They remain closed. During the post-textile period, discharge of PCBs further limited fishing in New Bedford and presently restricts harbor restoration. Construction of a hurricane barrier to protect the fishing fleet and city further altered estuarine hydrology. This historical analysis represents a significant adjunct to scientific examination of this site and provides a valuable context for design and conduct of remediation activities.« less

  9. Final Environmental Impact Statement on Debris Removal from Boston Harbor, Massachusetts. Revision.

    DTIC Science & Technology

    1980-05-01

    34Trace Metal Analysis of Boston Harbor Waters and Sediments", July 1972. Storey , D. A., "The Massachusetts Marina Boatyard Industry 1972-1973", Mass...is possible that a feasible re-use alternative will be identified during the final design stage of the project. If this happens, and the method of re...points. Coliform counts in the Outer Harbor routinely exceed the SB standard designated for that area. 2.27 In summary, the Harbor receives a heavy

  10. mecC-Harboring Methicillin-Resistant Staphylococcus aureus: Hiding in Plain Sight.

    PubMed

    Ford, Bradley A

    2018-01-01

    Previously there was scant data on the performance of laboratory testing to detect mecC -mediated beta-lactam resistance in Staphylococcus aureus Kriegeskorte and colleagues (J Clin Microbiol 56:e00826-17, 2018, https://doi.org/10.1128/JCM.00826-17) report the performance of various clinical tests for the detection of mecC -harboring methicillin-resistant S. aureus (MRSA), which failed to identify from 0 to 41% of tested mecC -harboring MRSA isolates. Changes in practice and new test development are necessary to address the challenge of mecC -harboring MRSA. Copyright © 2017 American Society for Microbiology.

  11. 76 FR 37269 - Safety Zone; Charleston Sharkfest Swim, Charleston Harbor, Charleston, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ...-AA00 Safety Zone; Charleston Sharkfest Swim, Charleston Harbor, Charleston, SC AGENCY: Coast Guard, DHS... waters of Charleston Harbor, in Charleston, South Carolina during the Charleston Sharkfest Swim on Sunday, [[Page 37270

  12. Sedimentation and chronology of heavy metal pollution in Oslo harbor, Norway.

    PubMed

    Lepland, Aivo; Andersen, Thorbjørn J; Lepland, Aave; Arp, Hans Peter H; Alve, Elisabeth; Breedveld, Gijs D; Rindby, Anders

    2010-09-01

    Stratigraphic profiles of Cu, Cd and Hg in ten sediment cores from the Oslo harbor, Norway, combined with results of radiometric dating demonstrate that pollution by these metals peaked between 1940 and 1970. Dating results indicate that Hg discharges peaked between 1940 and 1950, Cd reached maximum ca. 1955-1960, and Cu has the highest concentration in sediment interval corresponding to ca. 1970. Geochemical profiles and maxima of Cu, Cd and Hg concentrations can be used as chronostratigraphic markers for sediment cores from the Oslo harbor. Acoustic backscatter and sediment core data indicate that propeller wash affects the seabed in the Oslo harbor. The propeller-induced turbulence causes erosion, and in places exposes and remobilizes contaminated sediments that accumulated in the harbor during previous decades. Such re-exposure of contaminated sediments could be detrimental to local ecosystems and offset remediation efforts, warranting further impact studies and potential mitigation strategies to prevent redistribution. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  14. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  15. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  16. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  17. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  18. Annual Report Fiscal Year 2002 of the Secretary of the Army on Civil Works Activities (1 October 2001 - 30 September 2002)

    DTIC Science & Technology

    2003-08-04

    WI........................................21-2 2. Alpena Harbor, MI .........................................21-3 3. Arcadia Harbor, MI...DISTRICT $292,010 was for new work and $1,701,185 for maintenance. 2. ALPENA HARBOR, MI Location. At mouth of Thunder Bay River which empties into...Thunder Bay, Lake Huron. Harbor is 100 miles southeast of Cheboygan Harbor, MI. River has its source in Montmorency and Alpena Counties, MI. (See

  19. 33 CFR 110.214 - Los Angeles and Long Beach harbors, California.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Angeles Harbor). A circular area with a radius of 400 yards (approximately 366 meters), centered in... 400 Transportation Corridor. (C) Outer Harbor: The western boundary of Commercial Anchorage B. (2... Thence along a line described as an arc, radius of 460 meters (approximately 1509 feet) centered on 33...

  20. 33 CFR 100.118 - Searsport Lobster Boat Races, Searsport Harbor, ME.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Searsport Lobster Boat Races, Searsport Harbor, ME. 100.118 Section 100.118 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Lobster Boat Races, Searsport Harbor, ME. (a) Regulated Area. The regulated area includes all waters of...

  1. Fish assemblages in oxbow lakes relative to connectivity with the Mississippi River

    USGS Publications Warehouse

    Miranda, L.E.

    2005-01-01

    The alluvial valley of the lower Mississippi River contains hundreds of fluvial lakes that are periodically connected to the river during high water, although the frequency, duration, and timing of the connections vary. To help design plans to restore and preserve fish assemblages in these alluvial lakes, this investigation tested whether predictable patterns in lake fish assemblages were linked to the level of connectivity with the river. Results suggested that connectivity played an important role in structuring fish assemblages and that it was correlated with variables such as lake size, depth, distance from the river, and age, which exhibit a continuum of predictable features as the river migrates away from abandoned channels. Annual floods homogenize the floodplain and promote connectivity to various degrees, allowing for fish exchanges between river and floodplain that directly affect fish assemblages. The major physical changes linked to reduced connectivity are loss of depth and area, which in turn affect a multiplicity of abiotic and biotic features that indirectly affect community structure. In advanced stages of disconnection, fish assemblages in oxbow lakes are expected to include largely species that thrive in turbid, shallow systems with few predators and low oxygen content. When the river flowed without artificial restraint, oxbow lakes were created at the rate of 13-15 per century. At present, no or few oxbow lakes are being formed, and as existing lakes age, they are becoming shallower, smaller, and progressively more disconnected from the river. Given that modifications to the Mississippi River appear to be irreversible, conservation of this resource requires maintenance of existing lakes at a wide range of aging phases that provide diverse habitats and harbor distinct species assemblages.

  2. 78 FR 33219 - Special Local Regulations; Swim Across the Potomac, Potomac River; National Harbor Access Channel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Channel, MD AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is... provide for the safety of life on navigable waters during the event. This action is intended to temporarily restrict vessel traffic in a portion of the Potomac River during the event. DATES: This rule is...

  3. Flood of July 27-31, 2006, on the Grand River near Painesville, Ohio

    USGS Publications Warehouse

    Ebner, Andrew D.; Sherwood, James M.; Astifan, Brian; Lombardy, Kirk

    2007-01-01

    Two separate weather systems produced storms resulting in more than 11 inches of rain in parts of Lake County, Ohio, on July 27-28, 2006. As a result of the storms and ensuing flooding caused by the weather systems, the counties of Lake, Geauga, and Ashtabula were declared Federal and State disaster areas, with damages estimated at $30 million and one fatality in Lake County. About 600 people were evacuated in Lake County. The U.S. Geological Survey streamflow-gaging station at Grand River near Painesville, Ohio (station 04212100), had a record peak stage of 19.35 feet (elevation, 614.94 feet), with a record peak streamflow of 35,000 cubic feet per second, and an estimated recurrence interval of approximately 500 years. This report describes the meteorological factors that resulted in severe flooding on the Grand River near Painesville from July 27 to July 31, 2006, and addresses the damages caused by the storms and flooding. Peak-stage, peak-streamflow, and recurrence-interval data are reported for the Grand River near Painesville. A plot of high-water marks is also presented for the Grand River in a reach that includes the City of Painesville, Painesville Township, the Village of Fairport Harbor, and the Village of Grand River.

  4. 33 CFR 263.13 - Program scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... authority. Section 107, River and Harbor Act of 1960, as amended (33 U.S.C 577). (e) Authority for snagging and clearing for navigation. Section 3, River and Harbor Act of 1945 (33 U.S.C 603a). (f) Small beach erosion control project authority. Section 103, River and Harbor Act of 1962, as amended (33 U.S.C. 426g...

  5. Assessment of Modifications for Improving Navigation at Hilo Harbor, Hawaii

    DTIC Science & Technology

    2016-06-01

    ER D C/ CH L TR -1 6- 9 Coastal Inlets Research Program Assessment of Modifications for Improving Navigation at Hilo Harbor, Hawaii...at http://acwc.sdp.sirsi.net/client/default. Coastal Inlets Research Program ERDC/CHL TR-16-9 June 2016 Assessment of Modifications for Improving...validation with 2013–2014 field data ................................................. 86 4.5.3 Chile tsunami effect on Hilo Harbor

  6. Numerical study on transient harbor oscillations induced by successive solitary waves

    NASA Astrophysics Data System (ADS)

    Gao, Junliang; Ji, Chunyan; Liu, Yingyi; Ma, Xiaojian; Gaidai, Oleg

    2018-02-01

    Tsunamis are traveling waves which are characterized by long wavelengths and large amplitudes close to the shore. Due to the transformation of tsunamis, undular bores have been frequently observed in the coastal zone and can be viewed as a sequence of solitary waves with different wave heights and different separation distances among them. In this article, transient harbor oscillations induced by incident successive solitary waves are first investigated. The transient oscillations are simulated by a fully nonlinear Boussinesq model, FUNWAVE-TVD. The incident successive solitary waves include double solitary waves and triple solitary waves. This paper mainly focuses on the effects of different waveform parameters of the incident successive solitary waves on the relative wave energy distribution inside the harbor. These wave parameters include the incident wave height, the relative separation distance between adjacent crests, and the number of elementary solitary waves in the incident wave train. The relative separation distance between adjacent crests is defined as the ratio of the distance between adjacent crests in the incident wave train to the effective wavelength of the single solitary wave. Maximum oscillations inside the harbor excited by various incident waves are also discussed. For comparison, the transient oscillation excited by the single solitary wave is also considered. The harbor used in this paper is assumed to be long and narrow and has constant depth; the free surface movement inside the harbor is essentially one-dimensional. This study reveals that, for the given harbor and for the variation ranges of all the waveform parameters of the incident successive solitary waves studied in this paper, the larger incident wave heights and the smaller number of elementary solitary waves in the incident tsunami lead to a more uniform relative wave energy distribution inside the harbor. For the successive solitary waves, the larger relative separation distance

  7. 33 CFR 110.50b - Mystic Harbor, Groton and Stonington, Conn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Mystic Harbor, Groton and Stonington, Conn. 110.50b Section 110.50b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50b Mystic Harbor, Groton and...

  8. 33 CFR 110.50b - Mystic Harbor, Groton and Stonington, Conn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Mystic Harbor, Groton and Stonington, Conn. 110.50b Section 110.50b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50b Mystic Harbor, Groton and...

  9. 33 CFR 110.50b - Mystic Harbor, Groton and Stonington, Conn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Mystic Harbor, Groton and Stonington, Conn. 110.50b Section 110.50b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50b Mystic Harbor, Groton and...

  10. 33 CFR 110.50b - Mystic Harbor, Groton and Stonington, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mystic Harbor, Groton and Stonington, Conn. 110.50b Section 110.50b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50b Mystic Harbor, Groton and...

  11. 33 CFR 110.50b - Mystic Harbor, Groton and Stonington, Conn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Mystic Harbor, Groton and Stonington, Conn. 110.50b Section 110.50b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50b Mystic Harbor, Groton and...

  12. 33 CFR 100.113 - Provincetown Harbor Swim for Life, Provincetown, MA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Provincetown Harbor Swim for Life, Provincetown, MA. 100.113 Section 100.113 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... for Life, Provincetown, MA. (a) Regulated Area. All waters of Provincetown Harbor within 200 feet of...

  13. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  14. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  15. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  16. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  17. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  18. 75 FR 53572 - Safety Zone; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ...-AA00 Safety Zone; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA AGENCY: Coast Guard, DHS. ACTION... channel in Budd Inlet, WA during Olympia Harbor Days tug boat races. This safety zone is necessary to... waters of the Budd Inlet, WA during Olympia Harbor Days tug boat races. DATES: This rule is effective...

  19. 31 CFR 50.7 - Special Rules for Interim Guidance Safe Harbors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Special Rules for Interim Guidance Safe Harbors. 50.7 Section 50.7 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM General Provisions § 50.7 Special Rules for Interim Guidance Safe Harbors...

  20. 31 CFR 50.7 - Special Rules for Interim Guidance Safe Harbors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Special Rules for Interim Guidance Safe Harbors. 50.7 Section 50.7 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM General Provisions § 50.7 Special Rules for Interim Guidance Safe Harbors...

  1. 31 CFR 50.7 - Special Rules for Interim Guidance Safe Harbors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Special Rules for Interim Guidance Safe Harbors. 50.7 Section 50.7 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM General Provisions § 50.7 Special Rules for Interim Guidance Safe Harbors...

  2. 31 CFR 50.7 - Special Rules for Interim Guidance Safe Harbors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Special Rules for Interim Guidance Safe Harbors. 50.7 Section 50.7 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM General Provisions § 50.7 Special Rules for Interim Guidance Safe Harbors...

  3. 31 CFR 50.7 - Special Rules for Interim Guidance Safe Harbors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Special Rules for Interim Guidance Safe Harbors. 50.7 Section 50.7 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM General Provisions § 50.7 Special Rules for Interim Guidance Safe Harbors...

  4. Fine-Scale Variability in Harbor Seal Foraging Behavior

    PubMed Central

    Wilson, Kenady; Lance, Monique; Jeffries, Steven; Acevedo-Gutiérrez, Alejandro

    2014-01-01

    Understanding the variability of foraging behavior within a population of predators is important for determining their role in the ecosystem and how they may respond to future ecosystem changes. However, such variability has seldom been studied in harbor seals on a fine spatial scale (<30 km). We used a combination of standard and Bayesian generalized linear mixed models to explore how environmental variables influenced the dive behavior of harbor seals. Time-depth recorders were deployed on harbor seals from two haul-out sites in the Salish Sea in 2007 (n = 18) and 2008 (n = 11). Three behavioral bout types were classified from six dive types within each bout; however, one of these bout types was related to haul-out activity and was excluded from analyses. Deep foraging bouts (Type I) were the predominant type used throughout the study; however, variation in the use of bout types was observed relative to haul-out site, season, sex, and light (day/night). The proportional use of Type I and Type II (shallow foraging/traveling) bouts differed dramatically between haul-out sites, seasons, sexes, and whether it was day or night; individual variability between seals also contributed to the observed differences. We hypothesize that this variation in dive behavior was related to habitat or prey specialization by seals from different haul-out sites, or individual variability between seals in the study area. The results highlight the potential influence of habitat and specialization on the foraging behavior of harbor seals, and may help explain the variability in diet that is observed between different haul-out site groups in this population. PMID:24717815

  5. Rome’s urban history inferred from Pb-contaminated waters trapped in its ancient harbor basins

    PubMed Central

    Delile, Hugo; Keenan-Jones, Duncan; Goiran, Jean-Philippe; Arnaud-Godet, Florent; Albarède, Francis

    2017-01-01

    Heavy metals from urban runoff preserved in sedimentary deposits record long-term economic and industrial development via the expansion and contraction of a city’s infrastructure. Lead concentrations and isotopic compositions measured in the sediments of the harbor of Ostia—Rome’s first harbor—show that lead pipes used in the water supply networks of Rome and Ostia were the only source of radiogenic Pb, which, in geologically young central Italy, is the hallmark of urban pollution. High-resolution geochemical, isotopic, and 14C analyses of a sedimentary core from Ostia harbor have allowed us to date the commissioning of Rome’s lead pipe water distribution system to around the second century BC, considerably later than Rome’s first aqueduct built in the late fourth century BC. Even more significantly, the isotopic record of Pb pollution proves to be an unparalleled proxy for tracking the urban development of ancient Rome over more than a millennium, providing a semiquantitative record of the water system’s initial expansion, its later neglect, probably during the civil wars of the first century BC, and its peaking in extent during the relative stability of the early high Imperial period. This core record fills the gap in the system’s history before the appearance of more detailed literary and inscriptional evidence from the late first century BC onward. It also preserves evidence of the changes in the dynamics of the Tiber River that accompanied the construction of Rome’s artificial port, Portus, during the first and second centuries AD. PMID:28847928

  6. 16 CFR 312.10 - Safe harbors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Safe harbors. 312.10 Section 312.10 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE..., issued by representatives of the marketing or online industries, or by other persons, that, after notice...

  7. 16 CFR 312.10 - Safe harbors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Safe harbors. 312.10 Section 312.10 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE..., issued by representatives of the marketing or online industries, or by other persons, that, after notice...

  8. 16 CFR 312.10 - Safe harbors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Safe harbors. 312.10 Section 312.10 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE..., issued by representatives of the marketing or online industries, or by other persons, that, after notice...

  9. The dynamics of fine-grain sediment dredged from Santa Cruz Harbor

    USGS Publications Warehouse

    Storlazzi, Curt D.; Conaway, Christopher H.; Presto, M. Katherine; Logan, Joshua B.; Cronin, Katherine; van Ormondt, Maarten; Lescinski, Jamie; Harden, E. Lynne; Lacy, Jessica R.; Tonnon, Pieter K.

    2011-01-01

    In the fall and early winter of 2009, a demonstration project was done at Santa Cruz Harbor, California, to determine if 450 m3/day of predominantly (71 percent) mud-sized sediment could be dredged from the inner portion of the harbor and discharged to the coastal ocean without significant impacts to the beach and inner shelf. During the project, more than 7600 m3 of sediment (~5400 m3 of fine-grain material) was dredged during 17 days and discharged approximately 60 m offshore of the harbor at a depth of 2 m on the inner shelf. The U.S. Geological Survey's Pacific Coastal and Marine Science Center was funded by the U.S. Army Corps of Engineers and the Santa Cruz Port District to do an integrated mapping and process study to investigate the fate of the mud-sized sediment dredged from the inner portion of Santa Cruz Harbor and to determine if any of the fine-grain material settled out on the shoreline and/or inner shelf during the fall and early winter of 2009. This was done by collecting highresolution oceanographic and sediment geochemical measurements along the shoreline and on the continental shelf of northern Monterey Bay to monitor the fine-grain sediment dredged from Santa Cruz Harbor and discharged onto the inner shelf. These in place measurements, in conjunction with beach, water column, and seabed surveys, were used as boundary and calibration information for a three-dimensional numerical circulation and sediment dynamics model to better understand the fate of the fine-grain sediment dredged from Santa Cruz Harbor and the potential consequences of disposing this type of material on the beach and on the northern Monterey Bay continental shelf.

  10. 33 CFR 334.990 - Long Beach Harbor, Calif.; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Long Beach Harbor, Calif.; naval... Harbor, Calif.; naval restricted area. (a) The area. All the waters between the Navy mole and Terminal... for use by naval vessels. Permission for any person or vessel to enter the area must be obtained from...

  11. 33 CFR 334.990 - Long Beach Harbor, Calif.; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Long Beach Harbor, Calif.; naval... Harbor, Calif.; naval restricted area. (a) The area. All the waters between the Navy mole and Terminal... for use by naval vessels. Permission for any person or vessel to enter the area must be obtained from...

  12. Diversity, abundance, and possible sources of fecal bacteria in the Yangtze River.

    PubMed

    Sun, Haohao; He, Xiwei; Ye, Lin; Zhang, Xu-Xiang; Wu, Bing; Ren, Hongqiang

    2017-03-01

    The fecal bacteria in natural waters may pose serious risks on human health. Although many source tracking methods have been developed and used to determine the possible sources of the fecal pollution, little is known about the overall diversity and abundance of fecal bacterial community in natural waters. In this study, a method based on fecal bacterial sequence library was introduced to evaluate the fecal bacterial profile in the Yangtze River (Nanjing section). Our results suggested that the Yangtze River water harbors diverse fecal bacteria. Fifty-eight fecal operational taxonomic units (97% identity level) were detected in the Yangtze River water samples and the relative abundance of fecal bacteria in these samples ranged from 0.1 to 8%. It was also found that the relative abundances of the fecal bacteria in locations near to the downstream of wastewater treatment plants were obviously higher than those in other locations. However, the high abundance of fecal bacteria could decrease to the normal level in 2~4 km in the river due to degradation or dilution, and the overall fecal bacteria level changed little when the Yangtze River flew through the Nanjing City. Moreover, the fecal bacteria in the Yangtze River water were found to be highly associated (Spearman rho = 0.804, P < 0.001) with the potential pathogenic bacteria. Collectively, the findings in this study reveal the diversity, abundance, and possible sources of fecal bacteria in the Yangtze River and advance our understandings of the fecal bacteria community in the natural waters.

  13. 75 FR 52023 - Boston Harbor Islands National Recreation Area Advisory Council; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... DEPARTMENT OF THE INTERIOR National Park Service Boston Harbor Islands National Recreation Area..., Boston Harbor Islands National Recreation Area. ACTION: Notice of meeting. SUMMARY: Notice is hereby given that a meeting of the Boston Harbor Islands National Recreation Area Advisory Council will be held...

  14. A practical weighting function for harbor porpoise underwater sound level measurements.

    PubMed

    Terhune, John M

    2013-09-01

    Harbor porpoise (Phocoena phocoena) are subject to underwater noise disturbance from anthropogenic sources, especially shipping. The underwater audiograms of harbor porpoise were used to create a frequency weighting function, dBht(Phocoena phocoena), to permit estimation of the broadband perceived amplitudes of ambient and shipping noise. An equation was fit to the 0.02-20 kHz range of unmasked detection thresholds and normalizing to 0 dB at 20 kHz; dB = 46.4-35.6 log(kHz). The weighting function de-emphasizes the low frequency components of noise. Harbor porpoise hearing is less sensitive to low frequency shipping noise and, except at high amplitudes, estimating potential noise impacts using linear measurements will be misleading.

  15. Decision support system for optimally managing water resources to meet multiple objectives in the Savannah River Basin

    USGS Publications Warehouse

    Roehl, Edwin A.; Conrads, Paul

    2015-01-01

    Managers of large river basins face conflicting demands for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin, for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting dependent economies for years. The Savannah River estuary contains two municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor to expand ship traffic since the 1970s have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent. A planned deepening of the harbor includes flow-alteration features to minimize further migration of salinity, whose effectiveness will only be known after all construction is completed.One of the challenges of large basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge, while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of

  16. Restoration Science in New York Harbor: It takes a (large, diverse and engaged) village

    NASA Astrophysics Data System (ADS)

    Newton, R.; Birney, L.; Janis, S.; Groome, M.; Palmer, M.; Bone, E.; O'Neil, J. M.; Hill, J.; Dennison, W.; Malinowski, P.; Kohne, L.; Molina, M.; Moore, G.; Woods, N.

    2015-12-01

    The Curriculum + Community Enterprise for Restoration Science (CCE-RS) facilitates partnerships between scientists and middle school educators on ecological restoration and environmental monitoring projects. The educational model is designed to wrap around the student, including classroom instruction, field science, after-school programs and engagement with the student's community. Its pillars include: a teacher training fellowship at Pace University, student curriculum, a digital platform, afterschool and summer mentoring, and community exhibits. The digital platform includes a tablet app tailored to the project's field protocols and linked to a database shared across schools and partnering institutions. Through the digital platform, data is integrated into a single citizen-science monitoring project, teachers share curriculum and best practices, and students link directly to their peers at other schools. Curriculum development has been collaborative between scientists, science education specialists, and secondary school teachers. The CCE-RS is rooted in project-based learning: the New York Harbor School has engaged high school students in environmental monitoring and oyster restoration in the Harbor for about the last decade. The science partners (U. of Maryland and Columbia) have been working with students and other citizen scientists in outdoor science over about the last decade. Local partners in outside-the-classroom education include the New York Academy of Sciences, The River Project, which will provide field education services, and Good Shepherd Services, which provides after-school programming in schools serving primarily poor families. Scientists on the project engage directly with teachers and informal educators in curriculum development and citizen-science outreach. We present the lessons learned from our first cohort of Fellows, the pedagogical model, and the digital platform, which is extensible to other ecological restoration settings.

  17. The New Bedford Harbor Superfund site long-term monitoring program (1993-2009).

    PubMed

    Nelson, William G; Bergen, Barbara J

    2012-12-01

    New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a marine Superfund site in 1983 due to sediment contamination by polychlorinated biphenyls (PCBs). Based on risks to human health and the environment, the first two phases of the site cleanup involved dredging PCB-contaminated sediments from the harbor. Therefore, a long-term monitoring program (LTM) was developed to measure spatial and temporal chemical and biological changes in sediment, water, and biota to assess the effects and effectiveness of the remedial activities. A systematic, probabilistic sampling design was used to select sediment sampling stations. This unbiased design allowed the three segments of the harbor to be compared spatially and temporally to quantify changes resulting from dredging the contaminated sediments. Sediment was collected at each station, and chemical (e.g., PCBs and metals), physical (e.g., grain size), and biological (e.g., benthic community) measurements were conducted on all samples. This paper describes the overall NBH-LTM approach and the results from the five rounds of sample collections. There is a decreasing spatial gradient in sediment PCB concentrations from the northern boundary (upper harbor) to the southern boundary (outer harbor) of the site. Along this same transect, there is an increase in biological condition (e.g., benthic community diversity). Temporally, the contaminant and biological gradients have been maintained since the 1993 baseline collection; however, since the onset of full-scale remediation, PCB concentrations have decreased throughout the site, and one of the benthic community indices has shown significant improvement in the lower and outer harbor areas.

  18. Uptake of human pharmaceuticals in bull sharks (Carcharhinus leucas) inhabiting a wastewater-impacted river.

    PubMed

    Gelsleichter, James; Szabo, Nancy J

    2013-07-01

    The presence of human pharmaceuticals in sewage-impacted ecosystems is a growing concern that poses health risks to aquatic wildlife. Despite this, few studies have investigated the uptake of active pharmaceutical ingredients (APIs) in aquatic organisms. In this study, the uptake of 9 APIs from human drugs was examined and compared in neonate bull sharks (Carcharhinus leucas) residing in pristine (Myakka River) and wastewater-impacted (Caloosahatchee River) tributaries of Florida's Charlotte Harbor estuary. The synthetic estrogen used in human contraceptives (17α-ethynylestradiol) and 6 of the selective serotonin/norepinephrine reuptake inhibitors (citalopram, fluoxetine, fluvoxamine, paroxetine, sertraline, venlafaxine) used in human antidepressants were observed at detectable and, in some cases, quantifiable levels in plasma of Caloosahatchee River sharks. Comparatively, only venlafaxine was detected in the plasma of a single Myakka River shark at a level below the limit of quantitation. These results suggest that sharks residing in wastewater-impacted habitats accumulate APIs, a factor that may pose special risks to C. leucas since it is one of few shark species to regularly occupy freshwater systems. Further research is needed to determine if the low levels of API uptake observed in Caloosahatchee River bull sharks pose health risks to these animals. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Reducing Vulnerability of Ports and Harbors to Earthquake and Tsunami Hazards

    USGS Publications Warehouse

    Wood, Nathan J.; Good, James W.; Goodwin, Robert F.

    2002-01-01

    Recent scientific research suggests the Pacific Northwest could experience catastrophic earthquakes in the near future, both from distant and local sources, posing a significant threat to coastal communities. Damage could result from numerous earthquake-related hazards, such as severe ground shaking, soil liquefaction, landslides, land subsidence/uplift, and tsunami inundation. Because of their geographic location, ports and harbors are especially vulnerable to these hazards. Ports and harbors, however, are important components of many coastal communities, supporting numerous activities critical to the local and regional economy and possibly serving as vital post-event, response-recovery transportation links. A collaborative, multi-year initiative is underway to increase the resiliency of Pacific Northwest ports and harbors to earthquake and tsunami hazards, involving Oregon Sea Grant (OSG), Washington Sea Grant (WSG), the National Oceanic and Atmospheric Administration Coastal Services Center (CSC), and the U.S. Geological Survey Center for Science Policy (CSP). Specific products of this research, planning, and outreach initiative include a regional stakeholder issues and needs assessment, a community-based mitigation planning process, a Geographic Information System (GIS) — based vulnerability assessment methodology, an educational web-site and a regional data archive. This paper summarizes these efforts, including results of two pilot port-harbor community projects, one in Yaquina Bay, Oregon and the other in Sinclair Inlet, Washington. Finally, plans are outlined for outreach to other port and harbor communities in the Pacific Northwest and beyond, using "getting started" workshops and a web-based tutorial.

  20. Marine Geophysical Investigation of Selected Sites in Bridgeport Harbor, Connecticut, 2006

    USGS Publications Warehouse

    Johnson, Carole D.; White, Eric A.

    2007-01-01

    A marine geophysical investigation was conducted in 2006 to help characterize the bottom and subbottom materials and extent of bedrock in selected areas of Bridgeport Harbor, Connecticut. The data will be used by the U.S. Army Corps of Engineers in the design of confined aquatic disposal (CAD) cells within the harbor to facilitate dredging of the harbor. Three water-based geophysical methods were used to evaluate the geometry and composition of subsurface materials: (1) continuous seismic profiling (CSP) methods provide the depth to water bottom, and when sufficient signal penetration can be achieved, delineate the depth to bedrock and subbottom materials; (2) continuous resistivity profiling (CRP) methods were used to define the electrical properties of the shallow subbottom, and to possibly determine the distribution of conductive materials, such as clay, and resistive materials, such as sand and bedrock; (3) and magnetometer data were used to identify conductive anomalies of anthropogenic sources, such as cables and metallic debris. All data points were located using global positioning systems (GPS), and the GPS data were used for real-time navigation. The results of the CRP, CSP, and magnetometer data are consistent with the conceptual site model of a bedrock channel incised beneath the present day harbor. The channel appears to follow a north-northwest to south-southeast trend and is parallel to the Pequannock River. The seismic record and boring data indicate that under the channel, the depth to bedrock is as much as 42.7 meters (m) below mean low-low water (MLLW) in the dredged part of the harbor. The bedrock channel becomes shallower towards the shore, where bedrock outcrops have been mapped at land surface. CSP and CRP data were able to provide a discontinuous, but reasonable, trace from the channel toward the west under the proposed southwestern CAD cell. The data indicate a high amount of relief on the bedrock surface, as well as along the water bottom