Sample records for harbor somatic mutations

  1. Clinicopathological analysis of endometrial carcinomas harboring somatic POLE exonuclease domain mutations.

    PubMed

    Hussein, Yaser R; Weigelt, Britta; Levine, Douglas A; Schoolmeester, J Kenneth; Dao, Linda N; Balzer, Bonnie L; Liles, Georgia; Karlan, Beth; Köbel, Martin; Lee, Cheng-Han; Soslow, Robert A

    2015-04-01

    The Cancer Genome Atlas described four major genomic groups of endometrial carcinomas, including a POLE ultramutated subtype comprising ∼10% of endometrioid adenocarcinoma, characterized by POLE exonuclease domain mutations, ultrahigh somatic mutation rates, and favorable outcome. Our aim was to examine the morphological and clinicopathological features of ultramutated endometrial carcinomas harboring somatic POLE exonuclease domain mutations. Hematoxylin and eosin slides and pathology reports for 8/17 POLE-mutated endometrial carcinomas described in the Cancer Genome Atlas study were studied; for the remaining cases, virtual whole slide images publicly available at cBioPortal (www.cbioportal.org) were examined. A second cohort of eight POLE mutated endometrial carcinomas from University of Calgary was also studied. Median age was 55 years (range 33-87 years). Nineteen patients presented as stage I, 1 stage II, and 5 stage III. The majority of cases (24 of the 25) demonstrated defining morphological features of endometrioid differentiation. The studied cases were frequently high grade (60%) and rich in tumor-infiltrating lymphocytes and/or peri-tumoral lymphocytes (84%); many tumors showed morphological heterogeneity (52%) and ambiguity (16%). Foci demonstrating severe nuclear atypia led to concern for serous carcinoma in 28% of cases. At the molecular level, the majority of the Cancer Genome Atlas POLE-mutated tumors were microsatellite stable (65%), and TP53 mutations were present in 35% of cases. They also harbored mutations in PTEN (94%), FBXW7 (82%), ARID1A (76%), and PIK3CA (71%). All patients from both cohorts were alive without disease, and none of the patients developed recurrence at the time of follow-up (median 33 months; range 2-102 months). In conclusion, the recognition of ultramutated endometrial carcinomas with POLE exonuclease domain mutation is important given their favorable outcome. Our histopathological review revealed that these tumors are

  2. Frequent PIK3CA Mutations in Colorectal and Endometrial Cancer with Double Somatic Mismatch Repair Mutations

    PubMed Central

    Cohen, Stacey A.; Turner, Emily H.; Beightol, Mallory B.; Jacobson, Angela; Gooley, Ted A.; Salipante, Stephen J.; Haraldsdottir, Sigurdis; Smith, Christina; Scroggins, Sheena; Tait, Jonathan F.; Grady, William M.; Lin, Edward H.; Cohn, David E.; Goodfellow, Paul J.; Arnold, Mark W.; de la Chapelle, Albert; Pearlman, Rachel; Hampel, Heather; Pritchard, Colin C.

    2016-01-01

    Background & Aims Double somatic mutations in mismatch repair (MMR) genes have recently been described in colorectal and endometrial cancers with microsatellite instability (MSI) not attributable to MLH1 hypermethylation or germline mutation. We sought to define the molecular phenotype of this newly recognized tumor subtype. Methods From two prospective Lynch syndrome screening studies, we identified patients with colorectal and endometrial tumors harboring ≥2 somatic MMR mutations, but normal germline MMR testing (“double somatic”). We determined the frequencies of tumor PIK3CA, BRAF, KRAS, NRAS, and PTEN mutations by targeted next-generation sequencing and used logistic-regression models to compare them to: Lynch syndrome, MLH1 hypermethylated, and microsatellite stable (MSS) tumors. We validated our findings using independent datasets from The Cancer Genome Atlas (TCGA). Results Among colorectal cancer cases, we found that 14/21 (67%) of double somatic cases had PIK3CA mutations vs. 4/18 (22%) Lynch syndrome, 2/10 (20%) MLH1 hypermethylated, and 12/78 (15%) MSS tumors; p<0.0001. PIK3CA mutations were detected in 100% of 13 double somatic endometrial cancers (p=0.04). BRAF mutations were absent in double somatic and Lynch syndrome colorectal tumors. We found highly similar results in a validation cohort from TCGA (113 colorectal, 178 endometrial cancer), with 100% of double somatic cases harboring a PIK3CA mutation (p<0.0001). Conclusions PIK3CA mutations are present in double somatic mutated colorectal and endometrial cancers at substantially higher frequencies than other MSI subgroups. PIK3CA mutation status may better define an emerging molecular entity in colorectal and endometrial cancers, with the potential to inform screening and therapeutic decision making. PMID:27302833

  3. POLE somatic mutations in advanced colorectal cancer.

    PubMed

    Guerra, Joana; Pinto, Carla; Pinto, Diana; Pinheiro, Manuela; Silva, Romina; Peixoto, Ana; Rocha, Patrícia; Veiga, Isabel; Santos, Catarina; Santos, Rui; Cabreira, Verónica; Lopes, Paula; Henrique, Rui; Teixeira, Manuel R

    2017-12-01

    Despite all the knowledge already gathered, the picture of somatic genetic changes in colorectal tumorigenesis is far from complete. Recently, germline and somatic mutations in the exonuclease domain of polymerase epsilon, catalytic subunit (POLE) gene have been reported in a small subset of microsatellite-stable and hypermutated colorectal carcinomas (CRCs), affecting the proofreading activity of the enzyme and leading to misincorporation of bases during DNA replication. To evaluate the role of POLE mutations in colorectal carcinogenesis, namely in advanced CRC, we searched for somatic mutations by Sanger sequencing in tumor DNA samples from 307 cases. Microsatellite instability and mutation analyses of a panel of oncogenes were performed in the tumors harboring POLE mutations. Three heterozygous mutations were found in two tumors, the c.857C>G, p.Pro286Arg, the c.901G>A, p.Asp301Asn, and the c.1376C>T, p.Ser459Phe. Of the POLE-mutated CRCs, one tumor was microsatellite-stable and the other had low microsatellite instability, whereas KRAS and PIK3CA mutations were found in one tumor each. We conclude that POLE somatic mutations exist but are rare in advanced CRC, with further larger studies being necessary to evaluate its biological and clinical implications. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  4. Somatic USP8 Gene Mutations Are a Common Cause of Pediatric Cushing Disease.

    PubMed

    Faucz, Fabio R; Tirosh, Amit; Tatsi, Christina; Berthon, Annabel; Hernández-Ramírez, Laura C; Settas, Nikolaos; Angelousi, Anna; Correa, Ricardo; Papadakis, Georgios Z; Chittiboina, Prashant; Quezado, Martha; Pankratz, Nathan; Lane, John; Dimopoulos, Aggeliki; Mills, James L; Lodish, Maya; Stratakis, Constantine A

    2017-08-01

    Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have been recently identified as the most common genetic alteration in patients with Cushing disease (CD). However, the frequency of these mutations in the pediatric population has not been extensively assessed. We investigated the status of the USP8 gene at the somatic level in a cohort of pediatric patients with corticotroph adenomas. The USP8 gene was fully sequenced in both germline and tumor DNA samples from 42 pediatric patients with CD. Clinical, biochemical, and imaging data were compared between patients with and without somatic USP8 mutations. Five different USP8 mutations (three missense, one frameshift, and one in-frame deletion) were identified in 13 patients (31%), all of them located in exon 14 at the previously described mutational hotspot, affecting the 14-3-3 binding motif of the protein. Patients with somatic mutations were older at disease presentation [mean 5.1 ± 2.1 standard deviation (SD) vs 13.1 ± 3.6 years, P = 0.03]. Levels of urinary free cortisol, midnight serum cortisol, and adrenocorticotropic hormone, as well as tumor size and frequency of invasion of the cavernous sinus, were not significantly different between the two groups. However, patients harboring somatic USP8 mutations had a higher likelihood of recurrence compared with patients without mutations (46.2% vs 10.3%, P = 0.009). Somatic USP8 gene mutations are a common cause of pediatric CD. Patients harboring a somatic mutation had a higher likelihood of tumor recurrence, highlighting the potential importance of this molecular defect for the disease prognosis and the development of targeted therapeutic options. Copyright © 2017 Endocrine Society

  5. Somatic POLE mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis

    PubMed Central

    Erson-Omay, E. Zeynep; Çağlayan, Ahmet Okay; Schultz, Nikolaus; Weinhold, Nils; Omay, S. Bülent; Özduman, Koray; Köksal, Yavuz; Li, Jie; Serin Harmancı, Akdes; Clark, Victoria; Carrión-Grant, Geneive; Baranoski, Jacob; Çağlar, Caner; Barak, Tanyeri; Coşkun, Süleyman; Baran, Burçin; Köse, Doğan; Sun, Jia; Bakırcıoğlu, Mehmet; Moliterno Günel, Jennifer; Pamir, M. Necmettin; Mishra-Gorur, Ketu; Bilguvar, Kaya; Yasuno, Katsuhito; Vortmeyer, Alexander; Huttner, Anita J.; Sander, Chris; Günel, Murat

    2015-01-01

    Background Malignant high-grade gliomas (HGGs), including the most aggressive form, glioblastoma multiforme, show significant clinical and genomic heterogeneity. Despite recent advances, the overall survival of HGGs and their response to treatment remain poor. In order to gain further insight into disease pathophysiology by correlating genomic landscape with clinical behavior, thereby identifying distinct HGG molecular subgroups associated with improved prognosis, we performed a comprehensive genomic analysis. Methods We analyzed and compared 720 exome-sequenced gliomas (136 from Yale, 584 from The Cancer Genome Atlas) based on their genomic, histological, and clinical features. Results We identified a subgroup of HGGs (6 total, 4 adults and 2 children) that harbored a statistically significantly increased number of somatic mutations (mean = 9257.3 vs 76.2, P = .002). All of these “ultramutated” tumors harbored somatic mutations in the exonuclease domain of the polymerase epsilon gene (POLE), displaying a distinctive genetic profile, characterized by genomic stability and increased C-to-A transversions. Histologically, they all harbored multinucleated giant or bizarre cells, some with predominant infiltrating immune cells. One adult and both pediatric patients carried homozygous germline mutations in the mutS homolog 6 (MSH6) gene. In adults, POLE mutations were observed in patients younger than 40 years and were associated with a longer progression-free survival. Conclusions We identified a genomically, histologically, and clinically distinct subgroup of HGGs that harbored somatic POLE mutations and carried an improved prognosis. Identification of distinctive molecular and pathological HGG phenotypes has implications not only for improved classification but also for potential targeted treatments. PMID:25740784

  6. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands

    PubMed Central

    Nishimoto, Koshiro; Tomlins, Scott A.; Kuick, Rork; Cani, Andi K.; Giordano, Thomas J.; Hovelson, Daniel H.; Liu, Chia-Jen; Sanjanwala, Aalok R.; Edwards, Michael A.; Gomez-Sanchez, Celso E.; Nanba, Kazutaka; Rainey, William E.

    2015-01-01

    Primary aldosteronism (PA) represents the most common cause of secondary hypertension, but little is known regarding its adrenal cellular origins. Recently, aldosterone-producing cell clusters (APCCs) with high expression of aldosterone synthase (CYP11B2) were found in both normal and PA adrenal tissue. PA-causing aldosterone-producing adenomas (APAs) harbor mutations in genes encoding ion channels/pumps that alter intracellular calcium homeostasis and cause renin-independent aldosterone production through increased CYP11B2 expression. Herein, we hypothesized that APCCs have APA-related aldosterone-stimulating somatic gene mutations. APCCs were studied in 42 normal adrenals from kidney donors. To clarify APCC molecular characteristics, we used microarrays to compare the APCC transcriptome with conventional adrenocortical zones [zona glomerulosa (ZG), zona fasciculata, and zona reticularis]. The APCC transcriptome was most similar to ZG but with an enhanced capacity to produce aldosterone. To determine if APCCs harbored APA-related mutations, we performed targeted next generation sequencing of DNA from 23 APCCs and adjacent normal adrenal tissue isolated from both formalin-fixed, paraffin-embedded, and frozen tissues. Known aldosterone driver mutations were identified in 8 of 23 (35%) APCCs, including mutations in calcium channel, voltage-dependent, L-type, α1D-subunit (CACNA1D; 6 of 23 APCCs) and ATPase, Na+/K+ transporting, α1-polypeptide (ATP1A1; 2 of 23 APCCs), which were not observed in the adjacent normal adrenal tissue. Overall, we show three major findings: (i) APCCs are common in normal adrenals, (ii) APCCs harbor somatic mutations known to cause excess aldosterone production, and (iii) the mutation spectrum of aldosterone-driving mutations is different in APCCs from that seen in APA. These results provide molecular support for APCC as a precursor of PA. PMID:26240369

  7. E2F1 somatic mutation within miRNA target site impairs gene regulation in colorectal cancer.

    PubMed

    Lopes-Ramos, Camila M; Barros, Bruna P; Koyama, Fernanda C; Carpinetti, Paola A; Pezuk, Julia; Doimo, Nayara T S; Habr-Gama, Angelita; Perez, Rodrigo O; Parmigiani, Raphael B

    2017-01-01

    Genetic studies have largely concentrated on the impact of somatic mutations found in coding regions, and have neglected mutations outside of these. However, 3' untranslated regions (3' UTR) mutations can also disrupt or create miRNA target sites, and trigger oncogene activation or tumor suppressor inactivation. We used next-generation sequencing to widely screen for genetic alterations within predicted miRNA target sites of oncogenes associated with colorectal cancer, and evaluated the functional impact of a new somatic mutation. Target sequencing of 47 genes was performed for 29 primary colorectal tumor samples. For 71 independent samples, Sanger methodology was used to screen for E2F1 mutations in miRNA predicted target sites, and the functional impact of these mutations was evaluated by luciferase reporter assays. We identified germline and somatic alterations in E2F1. Of the 100 samples evaluated, 3 had germline alterations at the MIR205-5p target site, while one had a somatic mutation at MIR136-5p target site. E2F1 gene expression was similar between normal and tumor tissues bearing the germline alteration; however, expression was increased 4-fold in tumor tissue that harbored a somatic mutation compared to that in normal tissue. Luciferase reporter assays revealed both germline and somatic alterations increased E2F1 activity relative to wild-type E2F1. We demonstrated that somatic mutation within E2F1:MIR136-5p target site impairs miRNA-mediated regulation and leads to increased gene activity. We conclude that somatic mutations that disrupt miRNA target sites have the potential to impact gene regulation, highlighting an important mechanism of oncogene activation.

  8. The Landscape of Somatic Genetic Alterations in Breast Cancers From ATM Germline Mutation Carriers.

    PubMed

    Weigelt, Britta; Bi, Rui; Kumar, Rahul; Blecua, Pedro; Mandelker, Diana L; Geyer, Felipe C; Pareja, Fresia; James, Paul A; Couch, Fergus J; Eccles, Diana M; Blows, Fiona; Pharoah, Paul; Li, Anqi; Selenica, Pier; Lim, Raymond S; Jayakumaran, Gowtham; Waddell, Nic; Shen, Ronglai; Norton, Larry; Wen, Hannah Y; Powell, Simon N; Riaz, Nadeem; Robson, Mark E; Reis-Filho, Jorge S; Chenevix-Trench, Georgia

    2018-02-28

    Pathogenic germline variants in ataxia-telangiectasia mutated (ATM), a gene that plays a role in DNA damage response and cell cycle checkpoints, confer an increased breast cancer (BC) risk. Here, we investigated the phenotypic characteristics and landscape of somatic genetic alterations in 24 BCs from ATM germline mutation carriers by whole-exome and targeted sequencing. ATM-associated BCs were consistently hormone receptor positive and largely displayed minimal immune infiltrate. Although 79.2% of these tumors exhibited loss of heterozygosity of the ATM wild-type allele, none displayed high activity of mutational signature 3 associated with defective homologous recombination DNA (HRD) repair. No TP53 mutations were found in the ATM-associated BCs. Analysis of an independent data set confirmed that germline ATM variants and TP53 somatic mutations are mutually exclusive. Our findings indicate that ATM-associated BCs often harbor bi-allelic inactivation of ATM, are phenotypically distinct from BRCA1/2-associated BCs, lack HRD-related mutational signatures, and that TP53 and ATM genetic alterations are likely epistatic.

  9. Molecular profiling and sequential somatic mutation shift in hypermutator tumours harbouring POLE mutations.

    PubMed

    Hatakeyama, Keiichi; Ohshima, Keiichi; Nagashima, Takeshi; Ohnami, Shumpei; Ohnami, Sumiko; Serizawa, Masakuni; Shimoda, Yuji; Maruyama, Koji; Akiyama, Yasuto; Urakami, Kenichi; Kusuhara, Masatoshi; Mochizuki, Tohru; Yamaguchi, Ken

    2018-06-07

    Defective DNA polymerase ε (POLE) proofreading leads to extensive somatic mutations that exhibit biased mutational properties; however, the characteristics of POLE-mutated tumours remain unclear. In the present study, we describe a molecular profile using whole exome sequencing based on the transition of somatic mutations in 10 POLE-mutated solid tumours that were obtained from 2,042 Japanese patients. The bias of accumulated variations in these mutants was quantified to follow a pattern of somatic mutations, thereby classifying the sequential mutation shift into three periods. During the period prior to occurrence of the aberrant POLE, bare accumulation of mutations in cancer-related genes was observed, whereas PTEN was highly mutated in conjunction with or subsequent to the event, suggesting that POLE and PTEN mutations were responsible for the development of POLE-mutated tumours. Furthermore, homologous recombination was restored following the occurrence of PTEN mutations. Our strategy for estimation of the footprint of somatic mutations may provide new insight towards the understanding of mutation-driven tumourigenesis.

  10. Coherent Somatic Mutation in Autoimmune Disease

    PubMed Central

    Ross, Kenneth Andrew

    2014-01-01

    Background Many aspects of autoimmune disease are not well understood, including the specificities of autoimmune targets, and patterns of co-morbidity and cross-heritability across diseases. Prior work has provided evidence that somatic mutation caused by gene conversion and deletion at segmentally duplicated loci is relevant to several diseases. Simple tandem repeat (STR) sequence is highly mutable, both somatically and in the germ-line, and somatic STR mutations are observed under inflammation. Results Protein-coding genes spanning STRs having markers of mutability, including germ-line variability, high total length, repeat count and/or repeat similarity, are evaluated in the context of autoimmunity. For the initiation of autoimmune disease, antigens whose autoantibodies are the first observed in a disease, termed primary autoantigens, are informative. Three primary autoantigens, thyroid peroxidase (TPO), phogrin (PTPRN2) and filaggrin (FLG), include STRs that are among the eleven longest STRs spanned by protein-coding genes. This association of primary autoantigens with long STR sequence is highly significant (). Long STRs occur within twenty genes that are associated with sixteen common autoimmune diseases and atherosclerosis. The repeat within the TTC34 gene is an outlier in terms of length and a link with systemic lupus erythematosus is proposed. Conclusions The results support the hypothesis that many autoimmune diseases are triggered by immune responses to proteins whose DNA sequence mutates somatically in a coherent, consistent fashion. Other autoimmune diseases may be caused by coherent somatic mutations in immune cells. The coherent somatic mutation hypothesis has the potential to be a comprehensive explanation for the initiation of many autoimmune diseases. PMID:24988487

  11. Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers.

    PubMed

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S; Garcia-Closas, Montserrat; Sherman, Mark E; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P; Khan, Javed; Chanock, Stephen

    2011-01-17

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  12. Detection of Somatic Mutations by High-Resolution DNA Melting (HRM) Analysis in Multiple Cancers

    PubMed Central

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S.; Garcia-Closas, Montserrat; Sherman, Mark E.; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P.; Khan, Javed; Chanock, Stephen

    2011-01-01

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples. PMID:21264207

  13. Order Matters: The Order of Somatic Mutations Influences Cancer Evolution.

    PubMed

    Kent, David G; Green, Anthony R

    2017-04-03

    Cancers evolve as a consequence of multiple somatic lesions, with competition between subclones and sequential subclonal evolution. Some driver mutations arise either early or late in the evolution of different individual tumors, suggesting that the final malignant properties of a subclone reflect the sum of mutations acquired rather than the order in which they arose. However, very little is known about the cellular consequences of altering the order in which mutations are acquired. Recent studies of human myeloproliferative neoplasms show that the order in which individual mutations are acquired has a dramatic impact on the cell biological and molecular properties of tumor-initiating cells. Differences in clinical presentation, complications, and response to targeted therapy were all observed and implicate mutation order as an important player in cancer biology. These observations represent the first demonstration that the order of mutation acquisition influences stem and progenitor cell behavior and clonal evolution in any cancer. Thus far, the impact of different mutation orders has only been studied in hematological malignancies, and analogous studies of solid cancers are now required. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. Frequent somatic TERT promoter mutations and CTNNB1 mutations in hepatocellular carcinoma.

    PubMed

    Lee, Seung Eun; Chang, Seong-Hwan; Kim, Wook Youn; Lim, So Dug; Kim, Wan Seop; Hwang, Tea Sook; Han, Hye Seung

    2016-10-25

    Genetic alterations of TERT and CTNNB1 have been documented in hepatocellular carcinoma. TERT promoter mutations are the earliest genetic events in the multistep process of hepatocarcinogenesis related to cirrhosis. However, analyses of TERT promoter and CTNNB1 mutations in hepatocellular carcinoma tumor samples have not been performed in the Korean population, where hepatitis B virus-related hepatocellular carcinoma is prevalent. In order to identify the role of TERT promoter and CTNNB1 mutations in the hepatocarcinogenesis and pathogenesis of recurrent hepatocellular carcinoma, we performed the sequence analyses in 140 hepatocellular nodules (including 107 hepatocellular carcinomas), and 8 pairs of matched primary and relapsed hepatocellular carcinomas. TERT promoter and CTNNB1 mutations were only observed in hepatocellular carcinomas but not in precursor lesions. Of 109 patients with hepatocellular carcinoma, 41 (39.0%) and 15 (14.6%) harbored TERT and CTNNB1 mutations, respectively. TERT promotermutations were significantly more frequent in hepatocellular carcinomas related to hepatitis C virus infection (5/6; 83.3%) compared to tumors of other etiologies (P = 0.001). In two cases, discordance in TERT promoter mutation status was observed between the primary and the corresponding recurrent hepatocellular carcinoma. The two patients with discordant cases had early relapses. In conclusion, we identified TERT promoter and CTNNB1 mutations as the most frequent somatic genetic alterations observed in hepatocellular carcinoma, indicating its pivotal role in hepatocarcinogenesis. Furthermore, we suggest the possibility of intratumoral genetic heterogeneity of TERT promoter mutations in hepatocellular carcinoma as indicated by the discordance in TERT promoter mutations between primary and corresponding recurrent hepatocellular carcinoma.

  15. Novel somatic KIT exon 8 mutation with dramatic response to imatinib in a patient with mucosal melanoma: a case report.

    PubMed

    Rapisuwon, Suthee; Parks, Kellie; Al-Refaie, Waddah; Atkins, Michael B

    2014-10-01

    Primary mucosal melanomas represent ∼1.3% of all cases of melanoma diagnosed in the USA. The sinonasal location is the most common primary site. Mutations in the KIT gene occur in 10-22% of mucosal melanomas. Tumor response to imatinib mesylate has been reported in about half of the patients with tumors harboring KIT mutations. Responses are almost exclusively restricted to tumors with mutations in KIT exon 9 or 11. We report a case of a patient with a sinonasal mucosal melanoma with a novel exon 8 mutation (C443S) who had marked initial response to imatinib. Somatic exon 8 KIT mutations have not been previously reported in mucosal melanoma or in other human solid tumors; however, such mutations have been reported in canine and feline mast cell tumors. Protein transcripts from exon 8 play an important role in the structural and functional integrity of the extracellular domain of KIT. In preclinical studies, a mutation in exon 8 led to autophosphorylation, independent of KIT ligand, and constitutive activation of the tyrosine kinase. This biology may explain the successful application of imatinib in animals with tumors harboring exon 8 KIT mutations and in our patient with mucosal melanoma. This report expands the population of patients with melanoma who might benefit from imatinib to those with somatic exon 8 KIT mutations. Such mutations should be looked for in patients with mucosal melanoma.

  16. Somatic mutations in early onset luminal breast cancer

    PubMed Central

    de Lyra, Eduardo Carneiro; Hirata Katayama, Maria Lucia; Maistro, Simone; de Vasconcellos Valle, Pedro Wilson Mompean; de Lima Pereira, Gláucia Fernanda; Rodrigues, Lívia Munhoz; de Menezes Pacheco Serio, Pedro Adolpho; de Gouvêa, Ana Carolina Ribeiro Chaves; Geyer, Felipe Correa; Basso, Ricardo Alves; Pasini, Fátima Solange; del Pilar Esteves Diz, Maria; Brentani, Maria Mitzi; Guedes Sampaio Góes, João Carlos; Chammas, Roger; Boutros, Paul C.; Koike Folgueira, Maria Aparecida Azevedo

    2018-01-01

    Breast cancer arising in very young patients may be biologically distinct; however, these tumors have been less well studied. We characterized a group of very young patients (≤ 35 years) for BRCA germline mutation and for somatic mutations in luminal (HER2 negative) breast cancer. Thirteen of 79 unselected very young patients were BRCA1/2 germline mutation carriers. Of the non-BRCA tumors, eight with luminal subtype (HER2 negative) were submitted for whole exome sequencing and integrated with 29 luminal samples from the COSMIC database or previous literature for analysis. We identified C to T single nucleotide variants (SNVs) as the most common base-change. A median of six candidate driver genes was mutated by SNVs in each sample and the most frequently mutated genes were PIK3CA, GATA3, TP53 and MAP2K4. Potential cancer drivers affected in the present non-BRCA tumors include GRHL2, PIK3AP1, CACNA1E, SEMA6D, SMURF2, RSBN1 and MTHFD2. Sixteen out of 37 luminal tumors (43%) harbored SNVs in DNA repair genes, such as ATR, BAP1, ERCC6, FANCD2, FANCL, MLH1, MUTYH, PALB2, POLD1, POLE, RAD9A, RAD51 and TP53, and 54% presented pathogenic mutations (frameshift or nonsense) in at least one gene involved in gene transcription. The differential biology of luminal early-age onset breast cancer needs a deeper genomic investigation. PMID:29854292

  17. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauthammer, Michael; Kong, Yong; Ha, Byung Hak

    We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequentmore » in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1{sup P29S}) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1{sup P29S} showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.« less

  18. Somatic Point Mutation Calling in Low Cellularity Tumors

    PubMed Central

    Kassahn, Karin S.; Holmes, Oliver; Nones, Katia; Patch, Ann-Marie; Miller, David K.; Christ, Angelika N.; Harliwong, Ivon; Bruxner, Timothy J.; Xu, Qinying; Anderson, Matthew; Wood, Scott; Leonard, Conrad; Taylor, Darrin; Newell, Felicity; Song, Sarah; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Steptoe, Anita; Pajic, Marina; Cowley, Mark J.; Pinese, Mark; Chang, David K.; Gill, Anthony J.; Johns, Amber L.; Wu, Jianmin; Wilson, Peter J.; Fink, Lynn; Biankin, Andrew V.; Waddell, Nicola; Grimmond, Sean M.; Pearson, John V.

    2013-01-01

    Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-clonality and copy number changes also confound the identification of true somatic events against a background of germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/) for somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs verified on an orthogonal platform. PMID:24250782

  19. Clinical significance of somatic mutation in unexplained blood cytopenia

    PubMed Central

    Gallì, Anna; Travaglino, Erica; Ambaglio, Ilaria; Rizzo, Ettore; Molteni, Elisabetta; Elena, Chiara; Ferretti, Virginia Valeria; Catricalà, Silvia; Bono, Elisa; Todisco, Gabriele; Bianchessi, Antonio; Rumi, Elisa; Zibellini, Silvia; Pietra, Daniela; Boveri, Emanuela; Camaschella, Clara; Toniolo, Daniela; Papaemmanuil, Elli; Ogawa, Seishi; Cazzola, Mario

    2017-01-01

    Unexplained blood cytopenias, in particular anemia, are often found in older persons. The relationship between these cytopenias and myeloid neoplasms like myelodysplastic syndromes is currently poorly defined. We studied a prospective cohort of patients with unexplained cytopenia with the aim to estimate the predictive value of somatic mutations for identifying subjects with, or at risk of, developing a myeloid neoplasm. The study included a learning cohort of 683 consecutive patients investigated for unexplained cytopenia, and a validation cohort of 190 patients referred for suspected myeloid neoplasm. Using granulocyte DNA, we looked for somatic mutations in 40 genes that are recurrently mutated in myeloid malignancies. Overall, 435/683 patients carried a somatic mutation in at least 1 of these genes. Carrying a somatic mutation with a variant allele frequency ≥0.10, or carrying 2 or more mutations, had a positive predictive value for diagnosis of myeloid neoplasm equal to 0.86 and 0.88, respectively. Spliceosome gene mutations and comutation patterns involving TET2, DNMT3A, or ASXL1 had positive predictive values for myeloid neoplasm ranging from 0.86 to 1.0. Within subjects with inconclusive diagnostic findings, carrying 1 or more somatic mutations was associated with a high probability of developing a myeloid neoplasm during follow-up (hazard ratio = 13.9, P < .001). The predictive values of mutation analysis were confirmed in the independent validation cohort. The findings of this study indicate that mutation analysis on peripheral blood granulocytes may significantly improve the current diagnostic approach to unexplained cytopenia and more generally the diagnostic accuracy of myeloid neoplasms. PMID:28424163

  20. Somatic mutations in histiocytic sarcoma identified by next generation sequencing.

    PubMed

    Liu, Qingqing; Tomaszewicz, Keith; Hutchinson, Lloyd; Hornick, Jason L; Woda, Bruce; Yu, Hongbo

    2016-08-01

    Histiocytic sarcoma is a rare malignant neoplasm of presumed hematopoietic origin showing morphologic and immunophenotypic evidence of histiocytic differentiation. Somatic mutation importance in the pathogenesis or disease progression of histiocytic sarcoma was largely unknown. To identify somatic mutations in histiocytic sarcoma, we studied 5 histiocytic sarcomas [3 female and 2 male patients; mean age 54.8 (20-72), anatomic sites include lymph node, uterus, and pleura] and matched normal tissues from each patient as germ line controls. Somatic mutations in 50 "Hotspot" oncogenes and tumor suppressor genes were examined using next generation sequencing. Three (out of five) histiocytic sarcoma cases carried somatic mutations in BRAF. Among them, G464V [variant frequency (VF) of 43.6 %] and G466R (VF of 29.6 %) located at the P loop potentially interfere with the hydrophobic interaction between P and activating loops and ultimately activation of BRAF. Also detected was BRAF somatic mutation N581S (VF of 7.4 %), which was located at the catalytic loop of BRAF kinase domain: its role in modifying kinase activity was unclear. A similar mutational analysis was also performed on nine acute monocytic/monoblastic leukemia cases, which did not identify any BRAF somatic mutations. Our study detected several BRAF mutations in histiocytic sarcomas, which may be important in understanding the tumorigenesis of this rare neoplasm and providing mechanisms for potential therapeutical opportunities.

  1. Emerging patterns of somatic mutations in cancer

    PubMed Central

    Watson, Ian R.; Takahashi, Koichi; Futreal, P. Andrew; Chin, Lynda

    2014-01-01

    The advance in technological tools for massively parallel, high-throughput sequencing of DNA has enabled the comprehensive characterization of somatic mutations in large number of tumor samples. Here, we review recent cancer genomic studies that have assembled emerging views of the landscapes of somatic mutations through deep sequencing analyses of the coding exomes and whole genomes in various cancer types. We discuss the comparative genomics of different cancers, including mutation rates, spectrums, and roles of environmental insults that influence these processes. We highlight the developing statistical approaches used to identify significantly mutated genes, and discuss the emerging biological and clinical insights from such analyses as well as the challenges ahead translating these genomic data into clinical impacts. PMID:24022702

  2. Clock-like mutational processes in human somatic cells

    PubMed Central

    Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; Sale, Julian E.; Campbell, Peter J.; Nik-Zainal, Serena; Stratton, Michael R.

    2016-01-01

    During the course of a lifetime somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell’s genome. Some processes generate mutations throughout life at a constant rate in all individuals and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutation rates in different tissues. However, their mutation rates are not correlated indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This study provides the first survey of clock-like mutational processes operative in human somatic cells. PMID:26551669

  3. Clock-like mutational processes in human somatic cells

    DOE PAGES

    Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; ...

    2015-11-09

    During the course of a lifetime, somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell's genome. Some processes generate mutations throughout life at a constant rate in all individuals, and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutationmore » rates in different tissues. However, their mutation rates are not correlated, indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This paper provides the first survey of clock-like mutational processes operating in human somatic cells.« less

  4. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.

    PubMed

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.

  5. Somatic mutations affect key pathways in lung adenocarcinoma

    PubMed Central

    Ding, Li; Getz, Gad; Wheeler, David A.; Mardis, Elaine R.; McLellan, Michael D.; Cibulskis, Kristian; Sougnez, Carrie; Greulich, Heidi; Muzny, Donna M.; Morgan, Margaret B.; Fulton, Lucinda; Fulton, Robert S.; Zhang, Qunyuan; Wendl, Michael C.; Lawrence, Michael S.; Larson, David E.; Chen, Ken; Dooling, David J.; Sabo, Aniko; Hawes, Alicia C.; Shen, Hua; Jhangiani, Shalini N.; Lewis, Lora R.; Hall, Otis; Zhu, Yiming; Mathew, Tittu; Ren, Yanru; Yao, Jiqiang; Scherer, Steven E.; Clerc, Kerstin; Metcalf, Ginger A.; Ng, Brian; Milosavljevic, Aleksandar; Gonzalez-Garay, Manuel L.; Osborne, John R.; Meyer, Rick; Shi, Xiaoqi; Tang, Yuzhu; Koboldt, Daniel C.; Lin, Ling; Abbott, Rachel; Miner, Tracie L.; Pohl, Craig; Fewell, Ginger; Haipek, Carrie; Schmidt, Heather; Dunford-Shore, Brian H.; Kraja, Aldi; Crosby, Seth D.; Sawyer, Christopher S.; Vickery, Tammi; Sander, Sacha; Robinson, Jody; Winckler, Wendy; Baldwin, Jennifer; Chirieac, Lucian R.; Dutt, Amit; Fennell, Tim; Hanna, Megan; Johnson, Bruce E.; Onofrio, Robert C.; Thomas, Roman K.; Tonon, Giovanni; Weir, Barbara A.; Zhao, Xiaojun; Ziaugra, Liuda; Zody, Michael C.; Giordano, Thomas; Orringer, Mark B.; Roth, Jack A.; Spitz, Margaret R.; Wistuba, Ignacio I.; Ozenberger, Bradley; Good, Peter J.; Chang, Andrew C.; Beer, David G.; Watson, Mark A.; Ladanyi, Marc; Broderick, Stephen; Yoshizawa, Akihiko; Travis, William D.; Pao, William; Province, Michael A.; Weinstock, George M.; Varmus, Harold E.; Gabriel, Stacey B.; Lander, Eric S.; Gibbs, Richard A.; Meyerson, Matthew; Wilson, Richard K.

    2009-01-01

    Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers—including NF1, APC, RB1 and ATM—and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment. PMID:18948947

  6. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data

    PubMed Central

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A.; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths. PMID:27002637

  7. Landscape of somatic mutations in 560 breast cancer whole-genome sequences

    DOE PAGES

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; ...

    2016-05-02

    Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less

  8. Landscape of somatic mutations in 560 breast cancer whole-genome sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan

    Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less

  9. Landscape of somatic mutations in 560 breast cancer whole genome sequences

    PubMed Central

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; Ramakrishna, Manasa; Glodzik, Dominik; Zou, Xueqing; Martincorena, Inigo; Alexandrov, Ludmil B.; Martin, Sancha; Wedge, David C.; Van Loo, Peter; Ju, Young Seok; Smid, Marcel; Brinkman, Arie B; Morganella, Sandro; Aure, Miriam R.; Lingjærde, Ole Christian; Langerød, Anita; Ringnér, Markus; Ahn, Sung-Min; Boyault, Sandrine; Brock, Jane E.; Broeks, Annegien; Butler, Adam; Desmedt, Christine; Dirix, Luc; Dronov, Serge; Fatima, Aquila; Foekens, John A.; Gerstung, Moritz; Hooijer, Gerrit KJ; Jang, Se Jin; Jones, David R.; Kim, Hyung-Yong; King, Tari A.; Krishnamurthy, Savitri; Lee, Hee Jin; Lee, Jeong-Yeon; Li, Yilong; McLaren, Stuart; Menzies, Andrew; Mustonen, Ville; O’Meara, Sarah; Pauporté, Iris; Pivot, Xavier; Purdie, Colin A.; Raine, Keiran; Ramakrishnan, Kamna; Rodríguez-González, F. Germán; Romieu, Gilles; Sieuwerts, Anieta M.; Simpson, Peter T; Shepherd, Rebecca; Stebbings, Lucy; Stefansson, Olafur A; Teague, Jon; Tommasi, Stefania; Treilleux, Isabelle; Van den Eynden, Gert G.; Vermeulen, Peter; Vincent-Salomon, Anne; Yates, Lucy; Caldas, Carlos; van’t Veer, Laura; Tutt, Andrew; Knappskog, Stian; Tan, Benita Kiat Tee; Jonkers, Jos; Borg, Åke; Ueno, Naoto T; Sotiriou, Christos; Viari, Alain; Futreal, P. Andrew; Campbell, Peter J; Span, Paul N.; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E.; Thompson, Alastair M.; Birney, Ewan; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W.M.; Børresen-Dale, Anne-Lise; Richardson, Andrea L.; Kong, Gu; Thomas, Gilles; Stratton, Michael R.

    2016-01-01

    We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer. PMID:27135926

  10. Bloom syndrome: a mendelian prototype of somatic mutational disease.

    PubMed

    German, J

    1993-11-01

    Spontaneous mutations in human somatic cells occur far more often than normal in individuals with Bloom syndrome. The basis for understanding these mutations and their developmental consequences emerges from examination of BS at the molecular, cellular, and clinical levels. The major clinical feature of BS, proportional dwarfism, as well as its major clinical complication, an exceptionally early emergence of neoplasia of the types and sites that affect the general population, are attributable to the excessive occurrence of mutations in somatic cells. Here, the following aspects of BS are discussed: (i) the BS phenotype; (ii) neoplasia in BS, including the means--the Bloom's Syndrome Registry--by which the significant risk for diverse sites and types of cancer in these patients was revealed; (iii) the biological basis for the cancer proneness of BS; and, finally, (iv) the significance for both basic human biology and clinical medicine of BS as the prototype of somatic mutational disease.

  11. Fungal Infection Increases the Rate of Somatic Mutation in Scots Pine (Pinus sylvestris L.).

    PubMed

    Ranade, Sonali Sachin; Ganea, Laura-Stefana; Razzak, Abdur M; García Gil, M R

    2015-01-01

    Somatic mutations are transmitted during mitosis in developing somatic tissue. Somatic cells bearing the mutations can develop into reproductive (germ) cells and the somatic mutations are then passed on to the next generation of plants. Somatic mutations are a source of variation essential to evolve new defense strategies and adapt to the environment. Stem rust disease in Scots pine has a negative effect on wood quality, and thus adversely affects the economy. It is caused by the 2 most destructive fungal species in Scandinavia: Peridermium pini and Cronartium flaccidum. We studied nuclear genome stability in Scots pine under biotic stress (fungus-infected, 22 trees) compared to a control population (plantation, 20 trees). Stability was assessed as accumulation of new somatic mutations in 10 microsatellite loci selected for genotyping. Microsatellites are widely used as molecular markers in population genetics studies of plants, and are particularly used for detection of somatic mutations as their rate of mutation is of a much higher magnitude when compared with other DNA markers. We report double the rate of somatic mutation per locus in the fungus-infected trees (4.8×10(-3) mutations per locus), as compared to the controls (2.0×10(-3) mutations per locus) when individual samples were analyzed at 10 different microsatellite markers. Pearson's chi-squared test indicated a significant effect of the fungal infection which increased the number of mutations in the fungus-infected trees (χ(2) = 12.9883, df = 1, P = 0.0003134). © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Somatic deleterious mutation rate in a woody plant: estimation from phenotypic data

    PubMed Central

    Bobiwash, K; Schultz, S T; Schoen, D J

    2013-01-01

    We conducted controlled crosses in populations of the long-lived clonal shrub, Vaccinium angustifolium (lowbush blueberry) to estimate inbreeding depression and mutation parameters associated with somatic deleterious mutation. Inbreeding depression level was high, with many plants failing to set fruit after self-pollination. We also compared fruit set from autogamous pollinations (pollen collected from within the same inflorescence) with fruit set from geitonogamous pollinations (pollen collected from the same plant but from inflorescences separated by several meters of branch growth). The difference between geitonogamous versus autogamous fitness within single plants is referred to as ‘autogamy depression' (AD). AD can be caused by somatic deleterious mutation. AD was significantly different from zero for fruit set. We developed a maximum-likelihood procedure to estimate somatic mutation parameters from AD, and applied it to geitonogamous and autogamous fruit set data from this experiment. We infer that, on average, approximately three sublethal, partially dominant somatic mutations exist within the crowns of the plants studied. We conclude that somatic mutation in this woody plant results in an overall genomic deleterious mutation rate that exceeds the rate measured to date for annual plants. Some implications of this result for evolutionary biology and agriculture are discussed. PMID:23778990

  13. Somatic Mutations and Neoepitope Homology in Melanomas Treated with CTLA-4 Blockade.

    PubMed

    Nathanson, Tavi; Ahuja, Arun; Rubinsteyn, Alexander; Aksoy, Bulent Arman; Hellmann, Matthew D; Miao, Diana; Van Allen, Eliezer; Merghoub, Taha; Wolchok, Jedd D; Snyder, Alexandra; Hammerbacher, Jeff

    2017-01-01

    Immune checkpoint inhibitors are promising treatments for patients with a variety of malignancies. Toward understanding the determinants of response to immune checkpoint inhibitors, it was previously demonstrated that the presence of somatic mutations is associated with benefit from checkpoint inhibition. A hypothesis was posited that neoantigen homology to pathogens may in part explain the link between somatic mutations and response. To further examine this hypothesis, we reanalyzed cancer exome data obtained from our previously published study of 64 melanoma patients treated with CTLA-4 blockade and a new dataset of RNA-Seq data from 24 of these patients. We found that the ability to accurately predict patient benefit did not increase as the analysis narrowed from somatic mutation burden, to inclusion of only those mutations predicted to be MHC class I neoantigens, to only including those neoantigens that were expressed or that had homology to pathogens. The only association between somatic mutation burden and response was found when examining samples obtained prior to treatment. Neoantigen and expressed neoantigen burden were also associated with response, but neither was more predictive than somatic mutation burden. Neither the previously described tetrapeptide signature nor an updated method to evaluate neoepitope homology to pathogens was more predictive than mutation burden. Cancer Immunol Res; 5(1); 84-91. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. Somatic mitochondrial mutation in gastric cancer.

    PubMed Central

    Burgart, L. J.; Zheng, J.; Shu, Q.; Strickler, J. G.; Shibata, D.

    1995-01-01

    Likely hot spots for mutations are mitochondrial sequences as there is less repair and more damage by carcinogens compared with nuclear sequences. A somatic 50-bp mitochondrial D-loop deletion was detected in four gastric adenocarcinomas. The deletion included the CSB2 region and was flanked by 9-bp direct repeats. The deletion was more frequent in adenocarcinomas arising from the gastroesophageal junction (4/32, 12.5%) compared with more distal tumors (0/45). Topographical analysis revealed the absence of the deletion from normal tissues except in focal portions of smooth muscle in one case. In two cases, apparent mutant homoplasmy was present throughout two tumors, including their metastases. In the two other cases, the mutation was present in only minor focal portions ( < 5%) of their primary tumors. These findings document the presence of somatic mitochondrial alterations in gastric cancer, which may reflect the environmental and genetic influences operative during tumor progression. Images Figure 3 Figure 4 Figure 5 PMID:7573355

  15. Cancer-Associated Mutations in Endometriosis without Cancer

    PubMed Central

    Anglesio, M.S.; Papadopoulos, N.; Ayhan, A.; Nazeran, T.M.; Noë, M.; Horlings, H.M.; Lum, A.; Jones, S.; Senz, J.; Seckin, T.; Ho, J.; Wu, R.-C.; Lac, V.; Ogawa, H.; Tessier-Cloutier, B.; Alhassan, R.; Wang, A.; Wang, Y.; Cohen, J.D.; Wong, F.; Hasanovic, A.; Orr, N.; Zhang, M.; Popoli, M.; McMahon, W.; Wood, L.D.; Mattox, A.; Allaire, C.; Segars, J.; Williams, C.; Tomasetti, C.; Boyd, N.; Kinzler, K.W.; Gilks, C.B.; Diaz, L.; Wang, T.-L.; Vogelstein, B.; Yong, P.J.; Huntsman, D.G.; Shih, I.-M.

    2017-01-01

    BACKGROUND Endometriosis, defined as the presence of ectopic endometrial stroma and epithelium, affects approximately 10% of reproductive-age women and can cause pelvic pain and infertility. Endometriotic lesions are considered to be benign inflammatory lesions but have cancerlike features such as local invasion and resistance to apoptosis. METHODS We analyzed deeply infiltrating endometriotic lesions from 27 patients by means of exomewide sequencing (24 patients) or cancer-driver targeted sequencing (3 patients). Mutations were validated with the use of digital genomic methods in micro-dissected epithelium and stroma. Epithelial and stromal components of lesions from an additional 12 patients were analyzed by means of a droplet digital polymerase-chain-reaction (PCR) assay for recurrent activating KRAS mutations. RESULTS Exome sequencing revealed somatic mutations in 19 of 24 patients (79%). Five patients harbored known cancer driver mutations in ARID1A, PIK3CA, KRAS, or PPP2R1A, which were validated by Safe-Sequencing System or immunohistochemical analysis. The likelihood of driver genes being affected at this rate in the absence of selection was estimated at P = 0.001 (binomial test). Targeted sequencing and a droplet digital PCR assay identified KRAS mutations in 2 of 3 patients and 3 of 12 patients, respectively, with mutations in the epithelium but not the stroma. One patient harbored two different KRAS mutations, c.35G→T and c.35G→C, and another carried identical KRAS c.35G→A mutations in three distinct lesions. CONCLUSIONS We found that lesions in deep infiltrating endometriosis, which are associated with virtually no risk of malignant transformation, harbor somatic cancer driver mutations. Ten of 39 deep infiltrating lesions (26%) carried driver mutations; all the tested somatic mutations appeared to be confined to the epithelial compartment of endometriotic lesions. PMID:28489996

  16. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2

    PubMed Central

    Baxter, E.J.; Nice, F.L.; Gundem, G.; Wedge, D.C.; Avezov, E.; Li, J.; Kollmann, K.; Kent, D.G.; Aziz, A.; Godfrey, A.L.; Hinton, J.; Martincorena, I.; Van Loo, P.; Jones, A.V.; Guglielmelli, P.; Tarpey, P.; Harding, H.P.; Fitzpatrick, J.D.; Goudie, C.T.; Ortmann, C.A.; Loughran, S.J.; Raine, K.; Jones, D.R.; Butler, A.P.; Teague, J.W.; O’Meara, S.; McLaren, S.; Bianchi, M.; Silber, Y.; Dimitropoulou, D.; Bloxham, D.; Mudie, L.; Maddison, M.; Robinson, B.; Keohane, C.; Maclean, C.; Hill, K.; Orchard, K.; Tauro, S.; Du, M.-Q.; Greaves, M.; Bowen, D.; Huntly, B.J.P.; Harrison, C.N.; Cross, N.C.P.; Ron, D.; Vannucchi, A.M.; Papaemmanuil, E.; Campbell, P.J.; Green, A.R.

    2014-01-01

    BACKGROUND Somatic mutations in the Janus kinase 2 gene (JAK2) occur in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge. METHODS We performed exome sequencing of samples obtained from 151 patients with myeloproliferative neoplasms. The mutation status of the gene encoding calreticulin (CALR) was assessed in an additional 1345 hematologic cancers, 1517 other cancers, and 550 controls. We established phylogenetic trees using hematopoietic colonies. We assessed calreticulin subcellular localization using immunofluorescence and flow cytometry. RESULTS Exome sequencing identified 1498 mutations in 151 patients, with medians of 6.5, 6.5, and 13.0 mutations per patient in samples of polycythemia vera, essential thrombocythemia, and myelofibrosis, respectively. Somatic CALR mutations were found in 70 to 84% of samples of myeloproliferative neoplasms with nonmutated JAK2, in 8% of myelodysplasia samples, in occasional samples of other myeloid cancers, and in none of the other cancers. A total of 148 CALR mutations were identified with 19 distinct variants. Mutations were located in exon 9 and generated a +1 base-pair frameshift, which would result in a mutant protein with a novel C-terminal. Mutant calreticulin was observed in the endoplasmic reticulum without increased cell-surface or Golgi accumulation. Patients with myeloproliferative neoplasms carrying CALR mutations presented with higher platelet counts and lower hemoglobin levels than patients with mutated JAK2. Mutation of CALR was detected in hematopoietic stem and progenitor cells. Clonal analyses showed CALR mutations in the earliest phylogenetic node, a finding consistent with its role as an initiating mutation in some patients. CONCLUSIONS Somatic mutations in the endoplasmic reticulum chaperone CALR were found in a majority of patients with myeloproliferative neoplasms with

  17. Somatic mutations in salivary duct carcinoma and potential therapeutic targets

    PubMed Central

    Smith, Joel A.; Clarke, Angus J.; Luk, Peter P.; Selinger, Christina I.; Mahon, Kate L.; Kraitsek, Spiridoula; Palme, Carsten; Boyer, Michael J.; Dinger, Marcel E.; Cowley, Mark J.; O’Toole, Sandra A.

    2017-01-01

    Background Salivary duct carcinomas (SDCa) are rare highly aggressive malignancies. Most patients die from distant metastatic disease within three years of diagnosis. There are limited therapeutic options for disseminated disease. Results 11 cases showed androgen receptor expression and 6 cases showed HER2 amplification. 6 Somatic mutations with additional available targeted therapies were identified: EGFR (p.G721A: Gefitinib), PDGFRA (p.H845Y: Imatinib and Crenolanib), PIK3CA (p.H1047R: Everolimus), ERBB2 (p.V842I: Lapatinib), HRAS (p.Q61R: Selumetinib) and KIT (p.T670I: Sorafenib). Furthermore, alterations in PTEN, PIK3CA and HRAS that alter response to androgen deprivation therapy and HER2 inhibition were also seen. Materials and Methods Somatic mutation analysis was performed on DNA extracted from 15 archival cases of SDCa using the targeted Illumina TruSeq Amplicon Cancer Panel. Potential targetable genetic alterations were identified using extensive literature and international somatic mutation database (COSMIC, KEGG) search. Immunohistochemistry for androgen receptor and immunohistochemistry and fluorescent in situ hybridization for HER2 were also performed. Conclusions SDCa show multiple somatic mutations, some that are amenable to pharmacologic manipulation and others that confer resistance to treatments currently under investigation. These findings emphasize the need to develop testing and treatment strategies for SDCa. PMID:29100278

  18. Somatic mutation detection in human biomonitoring.

    PubMed

    Olsen, L S; Nielsen, L R; Nexø, B A; Wassermann, K

    1996-06-01

    Somatic cell gene mutation arising in vivo may be considered to be a biomarker for genotoxicity. Assays detecting mutations of the haemoglobin and glycophorin A genes in red blood cells and of the hypoxanthine-guanine phosphoribosyltransferase and human leucocyte antigenes in T-lymphocytes are available in humans. This MiniReview describes these assays and their application to studies of individuals exposed to genotoxic agents. Moreover, with the implementation of techniques of molecular biology mutation spectra can now be defined in addition to the quantitation of in vivo mutant frequencies. We describe current screening methods for unknown mutations, including the denaturing gradient gel electrophoresis, single strand conformation polymorphism analysis, heteroduplex analysis, chemical modification techniques and enzymatic cleavage methods. The advantage of mutation detection as a biomarker is that it integrates exposure and sensitivity in one measurement. With the analysis of mutation spectra it may thus be possible to identify the causative genotoxic agent.

  19. Somatic diversification of chicken immunoglobulin light chains by point mutations.

    PubMed

    Parvari, R; Ziv, E; Lantner, F; Heller, D; Schechter, I

    1990-04-01

    The light-chain locus of chicken has 1 functional V lambda 1 gene, 1 J gene, and 25 pseudo-V lambda-genes (where V = variable and J = joining). A major problem is which somatic mechanisms expand this extremely limited germ-line information to generate many different antibodies. Weill's group [Reynaud, C. A., Anquez, V., Grimal, H. & Weill, J. C. (1987) Cell 48, 379-388] has shown that the pseudo-V lambda-genes diversify the rearranged V lambda 1 by gene conversion. Here we demonstrate that chicken light chains are further diversified by somatic point mutations and by V lambda 1-J flexible joining. Somatic point mutations were identified in the J and 3' noncoding DNA of rearranged light-chain genes of chicken. These regions were analyzed because point mutations in V lambda 1 are obscured by gene conversion; the J and 3' noncoding DNA are presented in one copy per haploid genome and are not subject to gene conversion. In rodents point mutations occur as frequently in the V-J coding regions as in the adjacent flanking DNA. Therefore, we conclude that somatic point mutations diversify the V lambda 1 of chicken. The frequency (0-1%) and distribution of the mutations (decreasing in number with increased distance from the V lambda 1 segment) in chicken were as observed in rodents. Sequence variability at the V lambda 1-J junctions could be attributed to imprecise joining of the V lambda 1 and J genes. The modification by gene conversion of rearranged V lambda 1 genes in the bursa was similar in chicken aged 3 months (9.5%) or 3 weeks (9.1%)--i.e., gene conversion that generates the preimmune repertoire in the bursa seems to level off around 3 weeks of age. This preimmune repertoire can be further diversified by somatic point mutations that presumably lead to the formation of antibodies with increased affinity. A segment with structural features of a matrix association region [(A + T)-rich and four topoisomerase II binding sites] was identified in the middle of the J

  20. Recurrent PTPRB and PLCG1 mutations in angiosarcoma.

    PubMed

    Behjati, Sam; Tarpey, Patrick S; Sheldon, Helen; Martincorena, Inigo; Van Loo, Peter; Gundem, Gunes; Wedge, David C; Ramakrishna, Manasa; Cooke, Susanna L; Pillay, Nischalan; Vollan, Hans Kristian M; Papaemmanuil, Elli; Koss, Hans; Bunney, Tom D; Hardy, Claire; Joseph, Olivia R; Martin, Sancha; Mudie, Laura; Butler, Adam; Teague, Jon W; Patil, Meena; Steers, Graham; Cao, Yu; Gumbs, Curtis; Ingram, Davis; Lazar, Alexander J; Little, Latasha; Mahadeshwar, Harshad; Protopopov, Alexei; Al Sannaa, Ghadah A; Seth, Sahil; Song, Xingzhi; Tang, Jiabin; Zhang, Jianhua; Ravi, Vinod; Torres, Keila E; Khatri, Bhavisha; Halai, Dina; Roxanis, Ioannis; Baumhoer, Daniel; Tirabosco, Roberto; Amary, M Fernanda; Boshoff, Chris; McDermott, Ultan; Katan, Matilda; Stratton, Michael R; Futreal, P Andrew; Flanagan, Adrienne M; Harris, Adrian; Campbell, Peter J

    2014-04-01

    Angiosarcoma is an aggressive malignancy that arises spontaneously or secondarily to ionizing radiation or chronic lymphoedema. Previous work has identified aberrant angiogenesis, including occasional somatic mutations in angiogenesis signaling genes, as a key driver of angiosarcoma. Here we employed whole-genome, whole-exome and targeted sequencing to study the somatic changes underpinning primary and secondary angiosarcoma. We identified recurrent mutations in two genes, PTPRB and PLCG1, which are intimately linked to angiogenesis. The endothelial phosphatase PTPRB, a negative regulator of vascular growth factor tyrosine kinases, harbored predominantly truncating mutations in 10 of 39 tumors (26%). PLCG1, a signal transducer of tyrosine kinases, encoded a recurrent, likely activating p.Arg707Gln missense variant in 3 of 34 cases (9%). Overall, 15 of 39 tumors (38%) harbored at least one driver mutation in angiogenesis signaling genes. Our findings inform and reinforce current therapeutic efforts to target angiogenesis signaling in angiosarcoma.

  1. Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia.

    PubMed

    Yoshizato, Tetsuichi; Dumitriu, Bogdan; Hosokawa, Kohei; Makishima, Hideki; Yoshida, Kenichi; Townsley, Danielle; Sato-Otsubo, Aiko; Sato, Yusuke; Liu, Delong; Suzuki, Hiromichi; Wu, Colin O; Shiraishi, Yuichi; Clemente, Michael J; Kataoka, Keisuke; Shiozawa, Yusuke; Okuno, Yusuke; Chiba, Kenichi; Tanaka, Hiroko; Nagata, Yasunobu; Katagiri, Takamasa; Kon, Ayana; Sanada, Masashi; Scheinberg, Phillip; Miyano, Satoru; Maciejewski, Jaroslaw P; Nakao, Shinji; Young, Neal S; Ogawa, Seishi

    2015-07-02

    In patients with acquired aplastic anemia, destruction of hematopoietic cells by the immune system leads to pancytopenia. Patients have a response to immunosuppressive therapy, but myelodysplastic syndromes and acute myeloid leukemia develop in about 15% of the patients, usually many months to years after the diagnosis of aplastic anemia. We performed next-generation sequencing and array-based karyotyping using 668 blood samples obtained from 439 patients with aplastic anemia. We analyzed serial samples obtained from 82 patients. Somatic mutations in myeloid cancer candidate genes were present in one third of the patients, in a limited number of genes and at low initial variant allele frequency. Clonal hematopoiesis was detected in 47% of the patients, most frequently as acquired mutations. The prevalence of the mutations increased with age, and mutations had an age-related signature. DNMT3A-mutated and ASXL1-mutated clones tended to increase in size over time; the size of BCOR- and BCORL1-mutated and PIGA-mutated clones decreased or remained stable. Mutations in PIGA and BCOR and BCORL1 correlated with a better response to immunosuppressive therapy and longer and a higher rate of overall and progression-free survival; mutations in a subgroup of genes that included DNMT3A and ASXL1 were associated with worse outcomes. However, clonal dynamics were highly variable and might not necessarily have predicted the response to therapy and long-term survival among individual patients. Clonal hematopoiesis was prevalent in aplastic anemia. Some mutations were related to clinical outcomes. A highly biased set of mutations is evidence of Darwinian selection in the failed bone marrow environment. The pattern of somatic clones in individual patients over time was variable and frequently unpredictable. (Funded by Grant-in-Aid for Scientific Research and others.).

  2. Discordance of somatic mutations between Asian and Caucasian patient populations with gastric cancer

    PubMed Central

    Jia, Feifei; Teer, Jamie K.; Knepper, Todd C.; Lee, Jae K.; Zhou, Hong-Hao; He, Yi-Jing; McLeod, Howard L.

    2017-01-01

    Background Differences in response to cancer treatments have been observed among racially and ethnically diverse gastric cancer patient populations. In the era of targeted therapy, mutation profiling of cancer is a crucial aspect of making therapeutic decisions. Mapping driver gene mutations for the gastric cancer patient population as a whole has significant potential to advance precision therapy. Methods Gastric cancer patient cases with sequencing data (total n=473) were obtained from The Cancer Genome Atlas (TCGA; n=295), Moffitt Cancer Center Total Cancer Care™ (TCC; n=33), and three published studies (n=145). Relevant somatic mutation frequency data were obtained from cBioPortal, TCC database and in-house analysis tool, and relevant publication Results We have found somatic mutation rates of several driver genes significantly vary between gastric cancer patients of Asian and Caucasian descent, with substantial variation across different geographic regions. Non-parametric statistical tests were performed to examine significant differences in protein-altering somatic mutations between Asian and Caucasian gastric cancer patient groups. Frequencies of somatic mutations of 5 genes were APC(Asian: Caucasian 6.06% vs. 14.40%, p=0.0076) ARIDIA(20.7% vs. 32.1%, p=0.01) KMT2A(4.04% vs. 12.35%, p=0.003) PIK3CA(9.6% vs. 18.52%, p=0.01) PTEN(2.52% vs. 9.05%, p=0.008), showing significant differences between Asian and Caucasian gastric cancer patients. Conclusions Our study has found significant differences in protein-altering somatic mutation frequencies in diverse geographic populations. In particular, we found that the somatic patterns may offer better insight and important opportunities for both targeted drug development and precision therapeutic strategies between Asian and Caucasian gastric cancer patients. PMID:28039579

  3. Discordance of Somatic Mutations Between Asian and Caucasian Patient Populations with Gastric Cancer.

    PubMed

    Jia, Feifei; Teer, Jamie K; Knepper, Todd C; Lee, Jae K; Zhou, Hong-Hao; He, Yi-Jing; McLeod, Howard L

    2017-04-01

    Differences in response to cancer treatments have been observed among racially and ethnically diverse gastric cancer (GC) patient populations. In the era of targeted therapy, mutation profiling of cancer is a crucial aspect of making therapeutic decisions. Mapping driver gene mutations for the GC patient population as a whole has significant potential to advance precision therapy. GC patients with sequencing data (N = 473) were obtained from The Cancer Genome Atlas (TCGA; n = 295), Moffitt Cancer Center Total Cancer Care™ (TCC; n = 33), and three published studies (n = 145). In addition, relevant somatic mutation frequency data were obtained from cBioPortal, the TCC database, and an in-house analysis tool, as well as relevant publications. We found that the somatic mutation rates of several driver genes vary significantly between GC patients of Asian and Caucasian descent, with substantial variation across different geographic regions. Non-parametric statistical tests were performed to examine the significant differences in protein-altering somatic mutations between Asian and Caucasian GC patient groups. The frequencies of somatic mutations of five genes were: APC (Asian: Caucasian 6.06 vs. 14.40%, p = 0.0076), ARIDIA (20.7 vs. 32.1%, p = 0.01), KMT2A (4.04 vs. 12.35%, p = 0.003), PIK3CA (9.6 vs. 18.52%, p = 0.01), and PTEN (2.52 vs. 9.05%, p = 0.008), showing significant differences between Asian and Caucasian GC patients. Our study found significant differences in protein-altering somatic mutation frequencies in diverse geographic populations. In particular, we found that the somatic patterns may offer better insight and important opportunities for both targeted drug development and precision therapeutic strategies between Asian and Caucasian GC patients.

  4. Molecular methods for somatic mutation testing in lung adenocarcinoma: EGFR and beyond

    PubMed Central

    Rogers, Toni-Maree; Fellowes, Andrew; Bell, Anthony; Fox, Stephen

    2015-01-01

    Somatic mutational profiling in cancer has revolutionized the practice of clinical oncology. The discovery of driver mutations in non-small cell lung cancer (NSCLC) is an example of this. Molecular testing of lung adenocarcinoma is now considered standard of care and part of the diagnostic algorithm. This article provides an overview of the workflow of molecular testing in a clinical diagnostic laboratory discussing in particular novel assays that are currently in use for somatic mutation detection in NSCLC focussing on epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK), ROS1 and RET rearrangements. PMID:25870795

  5. Mutalisk: a web-based somatic MUTation AnaLyIS toolKit for genomic, transcriptional and epigenomic signatures.

    PubMed

    Lee, Jongkeun; Lee, Andy Jinseok; Lee, June-Koo; Park, Jongkeun; Kwon, Youngoh; Park, Seongyeol; Chun, Hyonho; Ju, Young Seok; Hong, Dongwan

    2018-05-22

    Somatic genome mutations occur due to combinations of various intrinsic/extrinsic mutational processes and DNA repair mechanisms. Different molecular processes frequently generate different signatures of somatic mutations in their own favored contexts. As a result, the regional somatic mutation rate is dependent on the local DNA sequence, the DNA replication/RNA transcription dynamics and epigenomic chromatin organization landscape in the genome. Here, we propose an online computational framework, termed Mutalisk, which correlates somatic mutations with various genomic, transcriptional and epigenomic features in order to understand mutational processes that contribute to the generation of the mutations. This user-friendly tool explores the presence of localized hypermutations (kataegis), dissects the spectrum of mutations into the maximum likelihood combination of known mutational signatures and associates the mutation density with numerous regulatory elements in the genome. As a result, global patterns of somatic mutations in any query sample can be efficiently screened, thus enabling a deeper understanding of various mutagenic factors. This tool will facilitate more effective downstream analyses of cancer genome sequences to elucidate the diversity of mutational processes underlying the development and clonal evolution of cancer cells. Mutalisk is freely available at http://mutalisk.org.

  6. Cryopyrin-associated Periodic Syndrome Caused by a Myeloid-Restricted Somatic NLRP3 Mutation

    PubMed Central

    Zhou, Qing; Aksentijevich, Ivona; Wood, Geryl M.; Walts, Avram D.; Hoffmann, Patrycja; Remmers, Elaine F.; Kastner, Daniel L.; Ombrello, Amanda K.

    2015-01-01

    Objective To identify the cause of disease in an adult patient presenting with recent onset fevers, chills, urticaria, fatigue, and profound myalgia, who was negative for cryopyrin-associated periodic syndrome (CAPS) NLRP3 mutations by conventional Sanger DNA sequencing. Methods We performed whole-exome sequencing and targeted deep sequencing using DNA from the patient’s whole blood to identify a possible NLRP3 somatic mutation. We then screened for this mutation in subcloned NLRP3 amplicons from fibroblasts, buccal cells, granulocytes, negatively-selected monocytes, and T and B lymphocytes and further confirmed the somatic mutation by targeted sequencing of exon 3. Results We identified a previously reported CAPS-associated mutation, p.Tyr570Cys, with a mutant allele frequency of 15% based on exome data. Targeted sequencing and subcloning of NLRP3 amplicons confirmed the presence of the somatic mutation in whole blood at a ratio similar to the exome data. The mutant allele frequency was in the range of 13.3%–16.8% in monocytes and 15.2%–18% in granulocytes; Notably, this mutation was either absent or present at a very low frequency in B and T lymphocytes, buccal cells, and in the patient’s cultured fibroblasts. Conclusion These data document the possibility of myeloid-restricted somatic mosaicism in the pathogenesis of CAPS, underscoring the emerging role of massively-parallel sequencing in clinical diagnosis. PMID:25988971

  7. Colon and Endometrial Cancers with Mismatch Repair Deficiency can Arise from Somatic, Rather Than Germline, Mutations

    PubMed Central

    Haraldsdottir, Sigurdis; Hampel, Heather; Tomsic, Jerneja; Frankel, Wendy L.; Pearlman, Rachel; de la Chapelle, Albert; Pritchard, Colin C.

    2014-01-01

    Background & Aims Patients with Lynch syndrome carry germline mutations in single alleles of genes encoding the MMR proteins MLH1, MSH2, MSH6 and PMS2; when the second allele becomes mutated, cancer can develop. Increased screening for Lynch syndrome has identified patients with tumors that have deficiency in MMR, but no germline mutations in genes encoding MMR proteins. We investigated whether tumors with deficient MMR had acquired somatic mutations in patients without germline mutations in MMR genes using next-generation sequencing. Methods We analyzed blood and tumor samples from 32 patients with colorectal or endometrial cancer who participated in Lynch syndrome screening studies in Ohio and were found to have tumors with MMR deficiency (based on microsatellite instability and/or absence of MMR proteins in immunohistochemical analysis, without hypermethylation of MLH1), but no germline mutations in MMR genes. Tumor DNA was sequenced for MLH1, MSH2, MSH6, PMS2, EPCAM, POLE and POLD1 with ColoSeq and mutation frequencies were established. Results Twenty-two of 32 patients (69%) were found to have two somatic (tumor) mutations in MMR genes encoding proteins that were lost from tumor samples, based on immunohistochemistry. Of the 10 tumors without somatic mutations in MMR genes, 3 had somatic mutations with possible loss of heterozygosity that could lead to MMR deficiency, 6 were found to be false-positive results (19%), and 1 had no mutations known to be associated with MMR deficiency. All of the tumors found to have somatic MMR mutations were of the hypermutated phenotype (>12 mutations/Mb); 6 had mutation frequencies >200 per Mb, and 5 of these had somatic mutations in POLE, which encodes a DNA polymerase. Conclusions Some patients are found to have tumors with MMR deficiency during screening for Lynch syndrome, yet have no identifiable germline mutations in MMR genes. We found that almost 70% of these patients acquire somatic mutations in MMR genes, leading to

  8. Differential analysis between somatic mutation and germline variation profiles reveals cancer-related genes.

    PubMed

    Przytycki, Pawel F; Singh, Mona

    2017-08-25

    A major aim of cancer genomics is to pinpoint which somatically mutated genes are involved in tumor initiation and progression. We introduce a new framework for uncovering cancer genes, differential mutation analysis, which compares the mutational profiles of genes across cancer genomes with their natural germline variation across healthy individuals. We present DiffMut, a fast and simple approach for differential mutational analysis, and demonstrate that it is more effective in discovering cancer genes than considerably more sophisticated approaches. We conclude that germline variation across healthy human genomes provides a powerful means for characterizing somatic mutation frequency and identifying cancer driver genes. DiffMut is available at https://github.com/Singh-Lab/Differential-Mutation-Analysis .

  9. Characterization of Somatic Mutations in Air Pollution-Related Lung Cancer.

    PubMed

    Yu, Xian-Jun; Yang, Min-Jun; Zhou, Bo; Wang, Gui-Zhen; Huang, Yun-Chao; Wu, Li-Chuan; Cheng, Xin; Wen, Zhe-Sheng; Huang, Jin-Yan; Zhang, Yun-Dong; Gao, Xiao-Hong; Li, Gao-Feng; He, Shui-Wang; Gu, Zhao-Hui; Ma, Liang; Pan, Chun-Ming; Wang, Ping; Chen, Hao-Bin; Hong, Zhi-Peng; Wang, Xiao-Lu; Mao, Wen-Jing; Jin, Xiao-Long; Kang, Hui; Chen, Shu-Ting; Zhu, Yong-Qiang; Gu, Wen-Yi; Liu, Zi; Dong, Hui; Tian, Lin-Wei; Chen, Sai-Juan; Cao, Yi; Wang, Sheng-Yue; Zhou, Guang-Biao

    2015-06-01

    Air pollution has been classified as Group 1 carcinogenic to humans, but the underlying tumorigenesis remains unclear. In Xuanwei City of Yunnan Province, the lung cancer incidence is among the highest in China attributed to severe air pollution generated by combustion of smoky coal, providing a unique opportunity to dissect lung carcinogenesis of air pollution. Here we analyzed the somatic mutations of 164 non-small cell lung cancers (NSCLCs) from Xuanwei and control regions (CR) where smoky coal was not used. Whole genome sequencing revealed a mean of 289 somatic exonic mutations per tumor and the frequent C:G → A:T nucleotide substitutions in Xuanwei NSCLCs. Exome sequencing of 2010 genes showed that Xuanwei and CR NSCLCs had a mean of 68 and 22 mutated genes per tumor, respectively (p < 0.0001). We found 167 genes (including TP53, RYR2, KRAS, CACNA1E) which had significantly higher mutation frequencies in Xuanwei than CR patients, and mutations in most genes in Xuanwei NSCLCs differed from those in CR cases. The mutation rates of 70 genes (e.g., RYR2, MYH3, GPR144, CACNA1E) were associated with patients' lifetime benzo(a)pyrene exposure. This study uncovers the mutation spectrum of air pollution-related lung cancers, and provides evidence for pollution exposure-genomic mutation relationship at a large scale.

  10. Prevalence and Characterization of Somatic Mutations in Chinese Aldosterone-Producing Adenoma Patients

    PubMed Central

    Wang, Baojun; Li, Xintao; Zhang, Xu; Ma, Xin; Chen, Luyao; Zhang, Yu; Lyu, Xiangjun; Tang, Yuzhe; Huang, Qingbo; Gao, Yu; Fan, Yang; Ouyang, Jinzhi

    2015-01-01

    Abstract Recently somatic mutations of KCNJ5, ATP1A1, ATP2B3, and CACNA1D have been identified in patients with aldosterone-producing adenoma (APA). The present study sequenced the DNA in the tissues and blood samples from Chinese patients with APA for KCNJ5, ATP1A1, ATP2B3, and CACNA1D gene mutations. Among the 114 patients, 86 (75.4%) were identified with KCNJ5 somatic mutations, including 3 previously reported (G151R, L168R, T158A) and 2 other unreported mutations. One patient presented with both a point mutation (E147) and an insertion mutation, whereas another had a 36-base duplication, G153_G164dup. No mutation of ATP1A1 and ATP2B3 in the known hotspots was identified and only 1 male patient was detected with a novel CACNA1D mutation, V748I. Unlike other studies, male and female patients had similar KCNJ5 mutation rates (76.9% vs 74.2%). Mutation carriers were younger and had lower preoperative potassium level, whereas male (but not female) mutation carriers had higher preoperative plasma aldosterone concentration and preoperative blood pressures. Mutation carriers also had higher LV mass index (LVMI) than nonmutation carriers. After surgery, LVMI improved significantly in the KCNJ5 mutation group but not in the nonmutation group. The mRNA expression of KCNJ5, CYP11B2, and ATP2B3 was higher in the KCNJ5-mutated APA tissues. Functional characterization of the 2 novel KCNJ5 mutations showed that they were associated with decreased proliferation, membrane depolarization, elevated secretion of aldosterone, and increased expression of CYP11B1 and CYP11B2. In conclusion, Chinese APA patients appear to have a high frequency of somatic KCNJ5 mutation. Mutation prevalence rates are similar among men and women and 2 novel mutations are identified. KCNJ5-mutated patients benefit more from surgical resection of APA than nonmutated patients. PMID:25906099

  11. Elevated Levels of Somatic Mutation as a Biomarker of Environmental Effects Contributing to Breast Carcinogenesis

    DTIC Science & Technology

    2001-07-01

    and hepatocellular carcinoma patients have been shown to exhibit elevated somatic mutation frequencies with the GPA assay (Okada et al., 1997...T, Kyogoku A, Yoshimori M (1997) Evidence for increased somatic cell mutations in patients with hepatocellular carcinoma . Carcinogenesis 18: 445-449...significant increase in mutation at the GPA locus has been reported for a population of hepatocellular carcinoma patients (Okada et al., 1997

  12. Human mitochondrial DNA: roles of inherited and somatic mutations

    PubMed Central

    Schon, Eric A.; DiMauro, Salvatore; Hirano, Michio

    2014-01-01

    Mutations in the human mitochondrial genome are known to cause an array of diverse disorders, most of which are maternally inherited, and all of which are associated with defects in oxidative energy metabolism. It is now emerging that somatic mutations in mitochondrial DNA (mtDNA) are also linked to other complex traits, including neurodegenerative diseases, ageing and cancer. Here we discuss insights into the roles of mtDNA mutations in a wide variety of diseases, highlighting the interesting genetic characteristics of the mitochondrial genome and challenges in studying its contribution to pathogenesis. PMID:23154810

  13. CSN1 Somatic Mutations in Penile Squamous Cell Carcinoma.

    PubMed

    Feber, Andrew; Worth, Daniel C; Chakravarthy, Ankur; de Winter, Patricia; Shah, Kunal; Arya, Manit; Saqib, Muhammad; Nigam, Raj; Malone, Peter R; Tan, Wei Shen; Rodney, Simon; Freeman, Alex; Jameson, Charles; Wilson, Gareth A; Powles, Tom; Beck, Stephan; Fenton, Tim; Sharp, Tyson V; Muneer, Asif; Kelly, John D

    2016-08-15

    Other than an association with HPV infection, little is known about the genetic alterations determining the development of penile cancer. Although penile cancer is rare in the developed world, it presents a significant burden in developing countries. Here, we report the findings of whole-exome sequencing (WES) to determine the somatic mutational landscape of penile cancer. WES was performed on penile cancer and matched germline DNA from 27 patients undergoing surgical resection. Targeted resequencing of candidate genes was performed in an independent 70 patient cohort. Mutation data were also integrated with DNA methylation and copy-number information from the same patients. We identified an HPV-associated APOBEC mutation signature and an NpCpG signature in HPV-negative disease. We also identified recurrent mutations in the novel penile cancer tumor suppressor genes CSN1(GPS1) and FAT1 Expression of CSN1 mutants in cells resulted in colocalization with AGO2 in cytoplasmic P-bodies, ultimately leading to the loss of miRNA-mediated gene silencing, which may contribute to disease etiology. Our findings represent the first comprehensive analysis of somatic alterations in penile cancer, highlighting the complex landscape of alterations in this malignancy. Cancer Res; 76(16); 4720-7. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. Variation of mutational burden in healthy human tissues suggests non-random strand segregation and allows measuring somatic mutation rates.

    PubMed

    Werner, Benjamin; Sottoriva, Andrea

    2018-06-01

    The immortal strand hypothesis poses that stem cells could produce differentiated progeny while conserving the original template strand, thus avoiding accumulating somatic mutations. However, quantitating the extent of non-random DNA strand segregation in human stem cells remains difficult in vivo. Here we show that the change of the mean and variance of the mutational burden with age in healthy human tissues allows estimating strand segregation probabilities and somatic mutation rates. We analysed deep sequencing data from healthy human colon, small intestine, liver, skin and brain. We found highly effective non-random DNA strand segregation in all adult tissues (mean strand segregation probability: 0.98, standard error bounds (0.97,0.99)). In contrast, non-random strand segregation efficiency is reduced to 0.87 (0.78,0.88) in neural tissue during early development, suggesting stem cell pool expansions due to symmetric self-renewal. Healthy somatic mutation rates differed across tissue types, ranging from 3.5 × 10-9/bp/division in small intestine to 1.6 × 10-7/bp/division in skin.

  15. Germline mutations and somatic inactivation of TRIM28 in Wilms tumour

    PubMed Central

    Halliday, Benjamin J.; Markie, David M.; Grundy, Richard G.; Ludgate, Jackie L.; Black, Michael A.; Weeks, Robert J.; Catchpoole, Daniel R.; Reeve, Anthony E.

    2018-01-01

    Wilms tumour is a childhood tumour that arises as a consequence of somatic and rare germline mutations, the characterisation of which has refined our understanding of nephrogenesis and carcinogenesis. Here we report that germline loss of function mutations in TRIM28 predispose children to Wilms tumour. Loss of function of this transcriptional co-repressor, which has a role in nephrogenesis, has not previously been associated with cancer. Inactivation of TRIM28, either germline or somatic, occurred through inactivating mutations, loss of heterozygosity or epigenetic silencing. TRIM28-mutated tumours had a monomorphic epithelial histology that is uncommon for Wilms tumour. Critically, these tumours were negative for TRIM28 immunohistochemical staining whereas the epithelial component in normal tissue and other Wilms tumours stained positively. These data, together with a characteristic gene expression profile, suggest that inactivation of TRIM28 provides the molecular basis for defining a previously described subtype of Wilms tumour, that has early age of onset and excellent prognosis. PMID:29912901

  16. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE PAGES

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz; ...

    2017-03-22

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  17. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  18. Somatic GNAQ Mutation is Enriched in Brain Endothelial Cells in Sturge-Weber Syndrome.

    PubMed

    Huang, Lan; Couto, Javier A; Pinto, Anna; Alexandrescu, Sanda; Madsen, Joseph R; Greene, Arin K; Sahin, Mustafa; Bischoff, Joyce

    2017-02-01

    Sturge-Weber syndrome (SWS) is a rare congenital neurocutaneous disorder characterized by facial and extracraniofacial capillary malformations and capillary-venule malformations in the leptomeninges. A somatic mosaic mutation in GNAQ (c.548G>A; p.R183Q) was found in SWS brain and skin capillary malformations. Our laboratory showed endothelial cells in skin capillary malformations are enriched for the GNAQ mutation. The purpose of this study is to determine whether the GNAQ mutation is also enriched in endothelial cells in affected SWS brain. Two human SWS brain specimens were fractionated by fluorescence-activated cell sorting into hematopoietic (CD45), endothelial (CD31, VE-Cadherin, and vascular endothelial growth factor receptor 2), and perivascular (platelet-derived growth factor receptor beta) cells and cells negative for all markers. The sorted cell populations were analyzed for GNAQ p.R183Q mutation by droplet digital polymerase chain reaction. SWS patient-derived brain endothelial cells were selected by anti-CD31-coated magnetic beads and cultured in endothelial growth medium in vitro. The GNAQ p.R183Q mutation was present in brain endothelial cells in two SWS specimens, with mutant allelic frequencies of 34.7% and 24.0%. Cells negative for all markers also harbored the GNAQ mutation. The mutant allelic frequencies in these unidentified cells were 9.2% and 8.4%. SWS patient-derived brain endothelial cells with mutant allelic frequencies of 14.7% and 21% survived and proliferated in vitro. Our study provides evidence that GNAQ p.R183Q mutation is enriched in endothelial cells in SWS brain lesions and thereby reveals endothelial cells as a source of aberrant Gαq signaling. This will help to understand the pathophysiology of SWS, to discover biomarkers for predicting cerebral involvement, and to develop therapeutic targets to prevent neurological impairments in SWS. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Somatic mutations of amino acid metabolism-related genes in gastric and colorectal cancers and their regional heterogeneity--a short report.

    PubMed

    Oh, Hye Rim; An, Chang Hyeok; Yoo, Nam Jin; Lee, Sug Hyung

    2014-12-01

    Metabolic reprogramming is an emerging topic in cancer research. However, genetic alterations in genes encoding enzymes involved in amino acid metabolism are largely unknown. The aim of this study was to explore whether genes known to be involved in amino acid metabolism are mutated in gastric cancer (GC) and/or colorectal cancer (CRC). Through a public database search, we found that a number of genes known to be involved in amino acid metabolism, i.e., AGXT, ALDH2, APIP, MTR, DNMT1, ASH1L, ASPA, CAD, DDC, GCDH, DLD, LAP3, MCEE and MUT, harbor mononucleotide repeats that may serve as mutation targets in cancers exhibiting microsatellite instability (MSI). We assessed these genes for the presence of the mutations in 79 GCs and 124 CRCs using single-strand conformation polymorphism (SSCP) and direct sequencing analyses. Using SSCP in conjunction with DNA sequencing we detected frameshift mutations in AGXT (17 cases), ALDH2 (3 cases), APIP (4 cases), MTR (5 cases), DNMT1 (1 case), ASH1L (1 case), ASPA (2 cases), CAD (2 cases), DDC (1 case), GCDH (3 cases), DLD (1 case), LAP3 (1 case), MCEE (5 cases) and MUT (1 case). These mutations were exclusively detected in MSI-high (MSI-H), and not in MSI-low or MSI-stable (MSI-L/MSS) cases. In addition, we analyzed 16 CRCs for the presence of intra-tumor heterogeneity (ITH) and found that two CRCs harbored regional ITH for GCDH frameshift mutations. Our data indicate that genes known to be involved in amino acid metabolism recurrently acquire somatic mutations in MSH-H GCs and MSH-H CRCs and that, in addition, mutation ITH does occur in at least some of these tumors. Together, these data suggest that metabolic reprogramming may play a role in the etiology of MSI-H GCs and CRCs. Our data also suggest that ultra-regional mutation analysis is required for a more comprehensive evaluation of the mutation status in these tumors.

  20. Proteogenomics connects somatic mutations to signalling in breast cancer.

    PubMed

    Mertins, Philipp; Mani, D R; Ruggles, Kelly V; Gillette, Michael A; Clauser, Karl R; Wang, Pei; Wang, Xianlong; Qiao, Jana W; Cao, Song; Petralia, Francesca; Kawaler, Emily; Mundt, Filip; Krug, Karsten; Tu, Zhidong; Lei, Jonathan T; Gatza, Michael L; Wilkerson, Matthew; Perou, Charles M; Yellapantula, Venkata; Huang, Kuan-lin; Lin, Chenwei; McLellan, Michael D; Yan, Ping; Davies, Sherri R; Townsend, R Reid; Skates, Steven J; Wang, Jing; Zhang, Bing; Kinsinger, Christopher R; Mesri, Mehdi; Rodriguez, Henry; Ding, Li; Paulovich, Amanda G; Fenyö, David; Ellis, Matthew J; Carr, Steven A

    2016-06-02

    Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. Here we describe quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers, of which 77 provided high-quality data. Integrated analyses provided insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. Interrogation of the 5q trans-effects against the Library of Integrated Network-based Cellular Signatures, connected loss of CETN3 and SKP1 to elevated expression of epidermal growth factor receptor (EGFR), and SKP1 loss also to increased SRC tyrosine kinase. Global proteomic data confirmed a stromal-enriched group of proteins in addition to basal and luminal clusters, and pathway analysis of the phosphoproteome identified a G-protein-coupled receptor cluster that was not readily identified at the mRNA level. In addition to ERBB2, other amplicon-associated highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates the functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets.

  1. Brief Report: Cryopyrin-Associated Periodic Syndrome Caused by a Myeloid-Restricted Somatic NLRP3 Mutation.

    PubMed

    Zhou, Qing; Aksentijevich, Ivona; Wood, Geryl M; Walts, Avram D; Hoffmann, Patrycja; Remmers, Elaine F; Kastner, Daniel L; Ombrello, Amanda K

    2015-09-01

    To identify the cause of disease in an adult patient presenting with recent-onset fevers, chills, urticaria, fatigue, and profound myalgia, who was found to be negative for cryopyrin-associated periodic syndrome (CAPS) NLRP3 mutations by conventional Sanger DNA sequencing. We performed whole-exome sequencing and targeted deep sequencing using DNA from the patient's whole blood to identify a possible NLRP3 somatic mutation. We then screened for this mutation in subcloned NLRP3 amplicons from fibroblasts, buccal cells, granulocytes, negatively selected monocytes, and T and B lymphocytes and further confirmed the somatic mutation by targeted sequencing of exon 3. We identified a previously reported CAPS-associated mutation, p.Tyr570Cys, with a mutant allele frequency of 15% based on exome data. Targeted sequencing and subcloning of NLRP3 amplicons confirmed the presence of the somatic mutation in whole blood at a ratio similar to the exome data. The mutant allele frequency was in the range of 13.3-16.8% in monocytes and 15.2-18% in granulocytes. Notably, this mutation was either absent or present at a very low frequency in B and T lymphocytes, in buccal cells, and in the patient's cultured fibroblasts. Our findings indicate the possibility of myeloid-restricted somatic mosaicism in the pathogenesis of CAPS, underscoring the emerging role of massively parallel sequencing in clinical diagnosis. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  2. Paternal Somatic Mosaicism of a Novel Frameshift Mutation in ELANE Causing Severe Congenital Neutropenia.

    PubMed

    Kim, Hee-Jung; Song, Min-Jung; Lee, Ki-O; Kim, Sun-Hee; Kim, Hee-Jin

    2015-12-01

    Severe congenital neutropenia (SCN) is a bone marrow failure disease with an autosomal dominant inheritance from mutations in ELANE. Here, we report a 7-week-old Korean male with SCN. His elder sister died from pneumonia at 2 years. Direct sequencing of ELANE in the proband identified a heterozygous novel frameshift mutation: c.658delC (p.Arg220Glyfs20*). Family study involving his asymptomatic parents with normal cell counts revealed that his father had the same mutation, but at a lower burden than expected in a typical heterozygous state. Further molecular investigation demonstrated somatic mosaicism with ~18% mutant alleles. We concluded the proband inherited the mutation from his somatic mosaic father. © 2015 Wiley Periodicals, Inc.

  3. Somatic mutations of the histone H3K27 demethylase, UTX, in human cancer

    PubMed Central

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O’Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Dunmore, Rebecca; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Lee, Mulderrig; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J.; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2010-01-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase, UTX, pointing to histone H3 lysine methylation deregulation in multiple tumour types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene. PMID:19330029

  4. Oncogenetic tree model of somatic mutations and DNA methylation in colon tumors.

    PubMed

    Sweeney, Carol; Boucher, Kenneth M; Samowitz, Wade S; Wolff, Roger K; Albertsen, Hans; Curtin, Karen; Caan, Bette J; Slattery, Martha L

    2009-01-01

    Our understanding of somatic alterations in colon cancer has evolved from a concept of a series of events taking place in a single sequence to a recognition of multiple pathways. An oncogenetic tree is a model intended to describe the pathways and sequence of somatic alterations in carcinogenesis without assuming that tumors will fall in mutually exclusive categories. We applied this model to data on colon tumor somatic alterations. An oncogenetic tree model was built using data on mutations of TP53, KRAS2, APC, and BRAF genes, methylation at CpG sites of MLH1 and TP16 genes, methylation in tumor (MINT) markers, and microsatellite instability (MSI) for 971 colon tumors from a population-based series. Oncogenetic tree analysis resulted in a reproducible tree with three branches. The model represents methylation of MINT markers as initiating a branch and predisposing to MSI, methylation of MHL1 and TP16, and BRAF mutation. APC mutation is the first alteration in an independent branch and is followed by TP53 mutation. KRAS2 mutation was placed a third independent branch, implying that it neither depends on, nor predisposes to, the other alterations. Individual tumors were observed to have alteration patterns representing every combination of one, two, or all three branches. The oncogenetic tree model assumptions are appropriate for the observed heterogeneity of colon tumors, and the model produces a useful visual schematic of the sequence of events in pathways of colon carcinogenesis.

  5. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.

    PubMed

    Mathelier, Anthony; Lefebvre, Calvin; Zhang, Allen W; Arenillas, David J; Ding, Jiarui; Wasserman, Wyeth W; Shah, Sohrab P

    2015-04-23

    With the rapid increase of whole-genome sequencing of human cancers, an important opportunity to analyze and characterize somatic mutations lying within cis-regulatory regions has emerged. A focus on protein-coding regions to identify nonsense or missense mutations disruptive to protein structure and/or function has led to important insights; however, the impact on gene expression of mutations lying within cis-regulatory regions remains under-explored. We analyzed somatic mutations from 84 matched tumor-normal whole genomes from B-cell lymphomas with accompanying gene expression measurements to elucidate the extent to which these cancers are disrupted by cis-regulatory mutations. We characterize mutations overlapping a high quality set of well-annotated transcription factor binding sites (TFBSs), covering a similar portion of the genome as protein-coding exons. Our results indicate that cis-regulatory mutations overlapping predicted TFBSs are enriched in promoter regions of genes involved in apoptosis or growth/proliferation. By integrating gene expression data with mutation data, our computational approach culminates with identification of cis-regulatory mutations most likely to participate in dysregulation of the gene expression program. The impact can be measured along with protein-coding mutations to highlight key mutations disrupting gene expression and pathways in cancer. Our study yields specific genes with disrupted expression triggered by genomic mutations in either the coding or the regulatory space. It implies that mutated regulatory components of the genome contribute substantially to cancer pathways. Our analyses demonstrate that identifying genomically altered cis-regulatory elements coupled with analysis of gene expression data will augment biological interpretation of mutational landscapes of cancers.

  6. Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern

    PubMed Central

    Hafner, Christian; López-Knowles, Elena; Luis, Nuno M.; Toll, Agustí; Baselga, Eulàlia; Fernández-Casado, Alex; Hernández, Silvia; Ribé, Adriana; Mentzel, Thomas; Stoehr, Robert; Hofstaedter, Ferdinand; Landthaler, Michael; Vogt, Thomas; Pujol, Ramòn M.; Hartmann, Arndt; Real, Francisco X.

    2007-01-01

    Activating mutations of the p110 α subunit of PI3K (PIK3CA) oncogene have been identified in a broad spectrum of malignant tumors. However, their role in benign or preneoplastic conditions is unknown. Activating FGF receptor 3 (FGFR3) mutations are common in benign skin lesions, either as embryonic mutations in epidermal nevi (EN) or as somatic mutations in seborrheic keratoses (SK). FGFR3 mutations are also common in low-grade malignant bladder tumors, where they often occur in association with PIK3CA mutations. Therefore, we examined exons 9 and 20 of PIK3CA and FGFR3 hotspot mutations in EN (n = 33) and SK (n = 62), two proliferative skin lesions lacking malignant potential. Nine of 33 (27%) EN harbored PIK3CA mutations; all cases showed the E545G substitution, which is uncommon in cancers. In EN, R248C was the only FGFR3 mutation identified. By contrast, 10 of 62 (16%) SK revealed the typical cancer-associated PIK3CA mutations E542K, E545K, and H1047R. The same lesions displayed a wide range of FGFR3 mutations. Corresponding unaffected tissue was available for four EN and two mutant SK: all control samples displayed a WT sequence, confirming the somatic nature of the mutations found in lesional tissue. Forty of 95 (42%) lesions showed at least one mutation in either gene. PIK3CA and FGFR3 mutations displayed an independent distribution; 5/95 lesions harbored mutations in both genes. Our findings suggest that, in addition to their role in cancer, oncogenic PIK3CA mutations contribute to the pathogenesis of skin tumors lacking malignant potential. The remarkable genotype–phenotype correlation as observed in this study points to a distinct etiopathogenesis of the mutations in keratinocytes occuring either during fetal development or in adult life. PMID:17673550

  7. Impact of Somatic Mutations in the D-Loop of Mitochondrial DNA on the Survival of Oral Squamous Cell Carcinoma Patients

    PubMed Central

    Lin, Jin-Ching; Wang, Chen-Chi; Jiang, Rong-San; Wang, Wen-Yi; Liu, Shih-An

    2015-01-01

    Objectives The aim of this study was to investigate somatic mutations in the D-loop of mitochondrial DNA (mtDNA) and their impact on survival in oral squamous cell carcinoma patients. Materials and Methods Surgical specimen confirmed by pathological examination and corresponding non-cancerous tissues were collected from 120 oral squamous cell carcinoma patients. The sequence in the D-loop of mtDNA from non-cancerous tissues was compared with that from paired cancer samples and any sequence differences were recognized as somatic mutations. Results Somatic mutations in the D-loop of mtDNA were identified in 75 (62.5%) oral squamous cell carcinoma patients and most of them occurred in the poly-C tract. Although there were no significant differences in demographic and tumor-related features between participants with and without somatic mutation, the mutation group had a better survival rate (5 year disease-specific survival rate: 64.0% vs. 43.0%, P = 0.0266). Conclusion Somatic mutation in D-loop of mtDNA was associated with a better survival in oral squamous cell carcinoma patients. PMID:25906372

  8. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer.

    PubMed

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O'Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Mulderrig, Lee; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2009-05-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase gene UTX, pointing to histone H3 lysine methylation deregulation in multiple tumor types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene.

  9. Polycythemia and paraganglioma with a novel somatic HIF2A mutation in a male.

    PubMed

    Toyoda, Hidemi; Hirayama, Jyunya; Sugimoto, Yuka; Uchida, Keiichi; Ohishi, Kohshi; Hirayama, Masahiro; Komada, Yoshihiro

    2014-06-01

    Recently, a new syndrome of paraganglioma, somatostatinoma, and polycythemia has been discovered (known as Pacak-Zhuang syndrome). This new syndrome, with somatic HIF2A gain-of-function mutations, has never been reported in male patients. We describe a male patient with Pacak-Zhuang syndrome who carries a newly discovered HIF2A mutation. Congenital polycythemias have diverse etiologies, including germline mutations in the oxygen-sensing pathway. These include von Hippel-Lindau (Chuvash polycythemia), prolyl hydroxylase domain-containing protein-2, and hypoxia-inducible factor-2α (HIF-2α). Somatic gain-of-function mutations in the gene encoding HIF-2α were reported in patients with paraganglioma and polycythemia and have been found exclusively in female patients. Through sequencing of the HIF2A using DNA from paraganglioma in 15-year-old male patient, we identified a novel mutation of HIF2A: a heterozygous C to A substitution at base 1589 in exon 12 of HIF2A. The mutation was not found in germline DNA from leukocytes. The C1589A mutations resulted in substitution of alanine 530 in the HIF-2α protein with glutamic acid. This mutation is undoubtedly associated with increased HIF-2α activity and increased protein half-life, because it affects the vicinity of the prolyl hydroxylase target residue, proline 531. To our knowledge, this is the first report describing Pacak-Zhuang syndrome with somatic gain-of-function mutation in HIF2A in a male patient. Congenital polycythemia of unknown origin should raise suspicion for the novel disorder Pacak-Zhuang syndrome, even in male patients. Copyright © 2014 by the American Academy of Pediatrics.

  10. Transcriptional Noise and Somatic Mutations in the Aging Pancreas.

    PubMed

    Swisa, Avital; Kaestner, Klaus H; Dor, Yuval

    2017-12-05

    The underlying mechanisms and functional significance of pancreatic β cell heterogeneity are an intensive area of investigation. In a recent Cell paper, Enge and colleagues (2017) performed single-cell RNA sequencing of human pancreatic cells and concluded that with age, pancreatic cells become transcriptionally noisy and accumulate somatic mutations. Copyright © 2017. Published by Elsevier Inc.

  11. A MELAS syndrome family harboring two mutations in mitochondrial genome.

    PubMed

    Choi, Byung-Ok; Hwang, Jung Hee; Kim, Joonki; Cho, Eun Min; Cho, Sun Young; Hwang, Su Jin; Lee, Hyang Woon; Kim, Song Ja; Chung, Ki Wha

    2008-06-30

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a genetically heterogeneous mitochondrial disorder with variable clinical symptoms. Here, from the sequencing of the entire mitochondrial genome, we report a Korean MELAS family harboring two homoplasmic missense mutations, which were reported 9957T>C (Phe251Leu) transition mutation in the cytochrome c oxidase subunit 3 (COX3) gene and a novel 13849A>C (Asn505His) transversion mutation in the NADH dehydrogenase subunit 5 (ND5) gene. Neither of these mutations was found in 205 normal controls. Both mutations were identified from the proband and his mother, but not his father. The patients showed cataract symptom in addition to MELAS phenotype. We believe that the 9957T>C mutation is pathogenic, however, the 13849A>C mutation is of unclear significance. It is likely that the 13849A>C mutation might function as the secondary mutation which increase the expressivity of overlapping phenotypes of MELAS and cataract. This study also demonstrates the importance of full sequencing of mtDNA for the molecular genetic understanding of mitochondrial disorders.

  12. A comprehensive analysis of clinical outcomes in lung cancer patients harboring a MET exon 14 skipping mutation compared to other driver mutations in an East Asian population.

    PubMed

    Gow, Chien-Hung; Hsieh, Min-Shu; Wu, Shang-Gin; Shih, Jin-Yuan

    2017-01-01

    Recurrent somatic splice-site alterations at MET exon 14 (MET Δ14 ), which result in exon skipping and MET proto-oncogene, receptor tyrosine kinase (MET) activation, have been characterised. However, their demographic features and clinical outcomes in East Asian lung cancer patients have yet to be determined. A one-step reverse transcription-polymerase chain reaction (RT-PCR), using RNA samples from 850 East Asian lung cancer patients, was performed in order to detect MET Δ14 and five other major driver mutations, including those in the EGFR, KRAS, ALK, HER2, and ROS1 genes. Immunohistochemistry (IHC) was used to confirm the overexpression of MET in patients harbouring the MET Δ14 mutation. We analysed the demographic data and clinical outcomes of MET Δ14 mutation positive lung cancer patients and compared them to those of MET Δ14 mutation negative lung cancer patients. In total, 27 lung adenocarcinoma (ADC) patients and 1 squamous cell carcinoma patient with the MET Δ14 mutation were identified. The overall incidence was 3.3% for lung cancer and 4.0% for lung ADC. IHC demonstrated that the majority of lung cancer patients harboring a MET Δ14 mutation exhibited a strong cytoplasmic expression of MET. MET Δ14 mutation positive patients were generally quite elderly individuals. Stage IV MET Δ14 mutation positive lung cancer patients receiving no specific anti-MET therapy were observed to have a similar overall survival (OS) compared to patients in the all negative group (P>0.05). In the multivariate analysis, mutation status was found not to be a major risk factor for OS in lung cancer patients without appropriate tyrosine kinase inhibitors treatment. The OS of MET Δ14 mutation positive lung cancer patients is comparable to that of the major driver gene mutation negative lung cancer patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Novel homozygous FANCL mutation and somatic heterozygous SETBP1 mutation in a Chinese girl with Fanconi Anemia.

    PubMed

    Wu, Weiqing; Liu, Yang; Zhou, Qinghua; Wang, Qin; Luo, Fuwei; Xu, Zhiyong; Geng, Qian; Li, Peining; Zhang, Hui Z; Xie, Jiansheng

    2017-07-01

    Fanconi Anemia (FA) is a rare genetically heterogeneous disorder with 17 known complement groups caused by mutations in different genes. FA complementation group L (FA-L, OMIM #608111) occurred in 0.2% of all FA and only eight mutant variants in the FANCL gene were documented. Phenotype and genotype correlation in FANCL associated FA is still obscure. Here we describe a Chinese girl with FA-L caused by a novel homozygous mutation c.822_823insCTTTCAGG (p.Asp275LeufsX13) in the FANCL gene. The patient's clinical course was typical for FA with progression to bone marrow failure, and death from acute myelomonocytic leukemia (AML-M4) at 9 years of age. Mutation analysis also detected a likely somatic c.2608G > A (p.Gly870Ser) in the SETBP1 gene. Consistent copy number losses of 7q and 18p and gains of 3q and 21q and accumulated non-clonal single cell chromosomal abnormalities were detected in blood leukocytes as her FA progressed. This is the first Chinese FA-L case caused by a novel FANCL mutation. The somatic gene mutation and copy number aberrations could be used to monitor disease progression and the clinical findings provide further information for genotype-phenotype correlation for FA-L. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. The prevalence of CTNNB1 mutations in primary aldosteronism and consequences for clinical outcomes.

    PubMed

    Wu, Vin-Cent; Wang, Shuo-Meng; Chueh, Shih-Chieh Jeff; Yang, Shao-Yu; Huang, Kuo-How; Lin, Yen-Hung; Wang, Jian-Jhong; Connolly, Rory; Hu, Ya-Hui; Gomez-Sanchez, Celso E; Peng, Kang-Yung; Wu, Kwan-Dun

    2017-01-19

    Constitutive activation of the Wnt pathway/β-catenin signaling may be important in aldosterone-producing adenoma (APA). However, significant gaps remain in our understanding of the prevalence and clinical outcomes after adrenalectomy in APA patients harboring CTNNB1 mutations. The molecular expression of CYP11B2 and gonadal receptors in adenomas were also explored. Adenomas from 219 APA patients (95 men; 44.2%; aged 50.5 ± 11.9 years) showed a high rate of somatic mutations (n = 128, 58.4%). The majority of them harbored KCNJ5 mutations (n = 116, 52.9%); 8 patients (3.7%, 6 women) had CTNNB1 mutations. Patients with APAs harboring CTNNB1 mutations were older and had shorter duration of hypertension. After adrenalectomy, CTNNB1 mutation carriers had a higher possibility (87.5%) of residual hypertension than other APA patients. APAs harboring CTNNB1 mutations have heterogeneous staining of β-catenin and variable expression of gonadal receptors and both CYP11B1 and CYP11B2. This suggests that CTNNB1 mutations may be more related to tumorigenesis rather than excessive aldosterone production.

  15. Somatic mutations in cancer: Stochastic versus predictable.

    PubMed

    Gold, Barry

    2017-02-01

    The origins of human cancers remain unclear except for a limited number of potent environmental mutagens, such as tobacco and UV light, and in rare cases, familial germ line mutations that affect tumor suppressor genes or oncogenes. A significant component of cancer etiology has been deemed stochastic and correlated with the number of stem cells in a tissue, the number of times the stem cells divide and a low incidence of random DNA polymerase errors that occur during each cell division. While somatic mutations occur during each round of DNA replication, mutations in cancer driver genes are not stochastic. Out of a total of 2843 codons, 1031 can be changed to stop codons by a single base substitution in the tumor suppressor APC gene, which is mutated in 76% of colorectal cancers (CRC). However, the nonsense mutations, which comprise 65% of all the APC driver mutations in CRC, are not random: 43% occur at Arg CGA codons, although they represent <3% of the codons. In TP53, CGA codons comprise <3% of the total 393 codons but they account for 72% and 39% of the mutations in CRC and ovarian cancer OVC, respectively. This mutation pattern is consistent with the kinetically slow, but not stochastic, hydrolytic deamination of 5-methylcytosine residues at specific methylated CpG sites to afford T·G mismatches that lead to C→T transitions and stop codons at CGA. Analysis of nonsense mutations in CRC, OVC and a number of other cancers indicates the need to expand the predictable risk factors for cancer to include, in addition to random polymerase errors, the methylation status of gene body CGA codons in tumor suppressor genes. Copyright © 2017. Published by Elsevier B.V.

  16. A novel somatic JAK2 kinase-domain mutation in pediatric acute lymphoblastic leukemia with rapid on-treatment development of LOH.

    PubMed

    Sadras, Teresa; Heatley, Susan L; Kok, Chung H; McClure, Barbara J; Yeung, David; Hughes, Timothy P; Sutton, Rosemary; Ziegler, David S; White, Deborah L

    2017-10-01

    We report a novel somatic mutation in the kinase domain of JAK2 (R938Q) in a high-risk pediatric case of B-cell acute lymphoblastic leukemia (ALL). The patient developed on-therapy relapse at 12 months, and interestingly, the JAK2 locus acquired loss of heterozygosity during treatment resulting in 100% mutation load. Furthermore, we show that primary ALL mononuclear cells harboring the JAK2 R938Q mutation display reduced sensitivity to the JAK1/2 ATP-competitive inhibitor ruxolitinib in vitro, compared to ALL cells that carry a more common JAK2 pseudokinase domain mutation. Our findings are in line with previous reports that demonstrate that mutations within the kinase domain of JAK2 are associated with resistance to type I JAK inhibitors. Importantly, given the recent inclusion of ruxolitinib in trial protocols for children with JAK pathway alterations, we predict that inter-patient genetic variability may result in suboptimal responses to JAK inhibitor therapy in a subset of cases. The need for alternate targeted and/or combination therapies for patients who display inherent or developed resistance to JAK inhibitor therapy will be warranted, and we propose that kinase-mutants less sensitive to type I JAK inhibitors may present a currently unexplored platform for investigation of improved therapies. Copyright © 2017. Published by Elsevier Inc.

  17. Correlation of RET somatic mutations with clinicopathological features in sporadic medullary thyroid carcinomas

    PubMed Central

    Moura, M M; Cavaco, B M; Pinto, A E; Domingues, R; Santos, J R; Cid, M O; Bugalho, M J; Leite, V

    2009-01-01

    Screening of REarranged during Transfection (RET) gene mutations has been carried out in different series of sporadic medullary thyroid carcinomas (MTC). RET-positive tumours seem to be associated to a worse clinical outcome. However, the correlation between the type of RET mutation and the patients' clinicopathological data has not been evaluated yet. We analysed RET exons 5, 8, 10–16 in fifty-one sporadic MTC, and found somatic mutations in thirty-three (64.7%) tumours. Among the RET-positive cases, exon 16 was the most frequently affected (60.6%). Two novel somatic mutations (Cys630Gly, c.1881del18) were identified. MTC patients were divided into three groups: group 1, with mutations in RET exons 15 and 16; group 2, with other RET mutations; group 3, having no RET mutations. Group 1 had higher prevalence (P=0.0051) and number of lymph node metastases (P=0.0017), and presented more often multifocal tumours (P=0.037) and persistent disease at last control (P=0.0242) than group 2. Detectable serum calcitonin levels at last screening (P=0.0119) and stage IV disease (P=0.0145) were more frequent in group 1, than in the other groups. Our results suggest that, among the sporadic MTC, cases with RET mutations in exons 15 and 16 are associated with the worst prognosis. Cases with other RET mutations have the most indolent course, and those with no RET mutations have an intermediate risk. PMID:19401695

  18. Monitoring exposure to atomic bomb radiation by somatic mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiyama, Mitoshi; Kyoizumi, Seishi; Kusunoki, Yoichiro

    Atomic bomb survivors are a population suitable for studying the relationship between somatic mutation and cancer risk because their exposure doses are relatively well known and their dose responses in terms of cancer risk have also been thoroughly studied. An analysis has been made of erythrocyte glycophorin A (GPA) gene mutations in 1,226 atomic bomb survivors in Hiroshima and Nagasaki. The GPA mutation frequency (Mf) increased slightly but significantly with age at the time of measurement and with the number of cigarettes smoked. After adjustment for the effect of smoking, the Mf was significantly higher in males than in femalesmore » and higher in Hiroshima than in Nagasaki. All of these characteristics of the background GPA Mf were in accord with those of solid tumor incidence obtained from an earlier epidemiological study of A-bomb survivors. Analysis of the dose effect on Mf revealed the doubling dose to be about 1.20 Sv and the minimum dose for detection of a significant increase to be about 0.24 Sv. No significant dose effect for difference in sex, city, or age at the time of bombing was observed. Interestingly, the doubling dose for the GPA Mf approximated that for solid cancer incidence (1.59 Sv). And the minimum dose for detection was not inconsistent with the data for solid cancer incidence. The dose effect was significantly higher in those diagnosed with cancer before or after measurement than in those without a history of cancer. These findings are consistent with the hypothesis that somatic mutations are the main cause of excess cancer risk from radiation exposure. 27 refs., 2 figs.« less

  19. A MELAS syndrome family harboring two mutations in mitochondrial genome

    PubMed Central

    Choi, Byung-Ok; Hwang, Jung Hee; Kim, Joonki; Cho, Eun Min; Cho, Sun Young; Hwang, Su Jin; Lee, Hyang Woon; Kim, Song Ja

    2008-01-01

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a genetically heterogeneous mitochondrial disorder with variable clinical symptoms. Here, from the sequencing of the entire mitochondrial genome, we report a Korean MELAS family harboring two homoplasmic missense mutations, which were reported 9957T > C (Phe251Leu) transition mutation in the cytochrome c oxidase subunit 3 (COX3) gene and a novel 13849A > C (Asn505His) transversion mutation in the NADH dehydrogenase subunit 5 (ND5) gene. Neither of these mutations was found in 205 normal controls. Both mutations were identified from the proband and his mother, but not his father. The patients showed cataract symptom in addition to MELAS phenotype. We believe that the 9957T > C mutation is pathogenic, however, the 13849A > C mutation is of unclear significance. It is likely that the 13849A > C mutation might function as the secondary mutation which increase the expressivity of overlapping phenotypes of MELAS and cataract. This study also demonstrates the importance of full sequencing of mtDNA for the molecular genetic understanding of mitochondrial disorders. PMID:18587274

  20. Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory

    PubMed Central

    Kaji, Tomohiro; Ishige, Akiko; Hikida, Masaki; Taka, Junko; Hijikata, Atsushi; Kubo, Masato; Nagashima, Takeshi; Takahashi, Yoshimasa; Kurosaki, Tomohiro; Okada, Mariko; Ohara, Osamu

    2012-01-01

    One component of memory in the antibody system is long-lived memory B cells selected for the expression of somatically mutated, high-affinity antibodies in the T cell–dependent germinal center (GC) reaction. A puzzling observation has been that the memory B cell compartment also contains cells expressing unmutated, low-affinity antibodies. Using conditional Bcl6 ablation, we demonstrate that these cells are generated through proliferative expansion early after immunization in a T cell–dependent but GC-independent manner. They soon become resting and long-lived and display a novel distinct gene expression signature which distinguishes memory B cells from other classes of B cells. GC-independent memory B cells are later joined by somatically mutated GC descendants at roughly equal proportions and these two types of memory cells efficiently generate adoptive secondary antibody responses. Deletion of T follicular helper (Tfh) cells significantly reduces the generation of mutated, but not unmutated, memory cells early on in the response. Thus, B cell memory is generated along two fundamentally distinct cellular differentiation pathways. One pathway is dedicated to the generation of high-affinity somatic antibody mutants, whereas the other preserves germ line antibody specificities and may prepare the organism for rapid responses to antigenic variants of the invading pathogen. PMID:23027924

  1. Sun exposure causes somatic second-hit mutations and angiofibroma development in tuberous sclerosis complex

    PubMed Central

    Tyburczy, Magdalena E.; Wang, Ji-an; Li, Shaowei; Thangapazham, Rajesh; Chekaluk, Yvonne; Moss, Joel; Kwiatkowski, David J.; Darling, Thomas N.

    2014-01-01

    Tuberous sclerosis complex (TSC) is characterized by the formation of tumors in multiple organs and is caused by germline mutation in one of two tumor suppressor genes, TSC1 and TSC2. As for other tumor suppressor gene syndromes, the mechanism of somatic second-hit events in TSC tumors is unknown. We grew fibroblast-like cells from 29 TSC skin tumors from 22 TSC subjects and identified germline and second-hit mutations in TSC1/TSC2 using next-generation sequencing. Eighteen of 22 (82%) subjects had a mutation identified, and 8 of the 18 (44%) subjects were mosaic with mutant allele frequencies of 0 to 19% in normal tissue DNA. Multiple tumors were available from four patients, and in each case, second-hit mutations in TSC2 were distinct indicating they arose independently. Most remarkably, 7 (50%) of the 14 somatic point mutations were CC>TT ultraviolet ‘signature’ mutations, never seen as a TSC germline mutation. These occurred exclusively in facial angiofibroma tumors from sun-exposed sites. These results implicate UV-induced DNA damage as a cause of second-hit mutations and development of TSC facial angiofibromas and suggest that measures to limit UV exposure in TSC children and adults should reduce the frequency and severity of these lesions. PMID:24271014

  2. NetNorM: Capturing cancer-relevant information in somatic exome mutation data with gene networks for cancer stratification and prognosis.

    PubMed

    Le Morvan, Marine; Zinovyev, Andrei; Vert, Jean-Philippe

    2017-06-01

    Genome-wide somatic mutation profiles of tumours can now be assessed efficiently and promise to move precision medicine forward. Statistical analysis of mutation profiles is however challenging due to the low frequency of most mutations, the varying mutation rates across tumours, and the presence of a majority of passenger events that hide the contribution of driver events. Here we propose a method, NetNorM, to represent whole-exome somatic mutation data in a form that enhances cancer-relevant information using a gene network as background knowledge. We evaluate its relevance for two tasks: survival prediction and unsupervised patient stratification. Using data from 8 cancer types from The Cancer Genome Atlas (TCGA), we show that it improves over the raw binary mutation data and network diffusion for these two tasks. In doing so, we also provide a thorough assessment of somatic mutations prognostic power which has been overlooked by previous studies because of the sparse and binary nature of mutations.

  3. NetNorM: Capturing cancer-relevant information in somatic exome mutation data with gene networks for cancer stratification and prognosis

    PubMed Central

    2017-01-01

    Genome-wide somatic mutation profiles of tumours can now be assessed efficiently and promise to move precision medicine forward. Statistical analysis of mutation profiles is however challenging due to the low frequency of most mutations, the varying mutation rates across tumours, and the presence of a majority of passenger events that hide the contribution of driver events. Here we propose a method, NetNorM, to represent whole-exome somatic mutation data in a form that enhances cancer-relevant information using a gene network as background knowledge. We evaluate its relevance for two tasks: survival prediction and unsupervised patient stratification. Using data from 8 cancer types from The Cancer Genome Atlas (TCGA), we show that it improves over the raw binary mutation data and network diffusion for these two tasks. In doing so, we also provide a thorough assessment of somatic mutations prognostic power which has been overlooked by previous studies because of the sparse and binary nature of mutations. PMID:28650955

  4. Global Gene Expression Patterns and Somatic Mutations in Sporadic Intracranial Aneurysms.

    PubMed

    Li, Zhili; Tan, Haibin; Shi, Yi; Huang, Guangfu; Wang, Zhenyu; Liu, Ling; Yin, Cheng; Wang, Qi

    2017-04-01

    High-throughput sequencing technologies can expand our understanding of the pathologic basis of intracranial aneurysms (IAs). Our study was aimed to decipher the gene expression signature and genetic factors associated with IAs. We determined the gene expression levels of 3 cases of IAs by RNA sequencing. Bioinformatics analysis was conducted to identify the differentially expressed genes (DEGs) and uncover their biological function. In addition, whole genome sequencing was performed on an additional 6 cases of IAs to detect the potential somatic alterations in DEGs. Compared with the normal arterial tissue, 1709 genes were differentially expressed in IAs arterial tissue. The most significantly up-regulated gene and down-regulated gene, H19 and HIST1H3J, may be essential for tumorigenesis of IAs. Hub protein of IKBKG in protein-protein interaction network was probably involved in the inflammation process in aneurysms. Another 2 hub proteins, ACTB and MKI67IP, as well as up-regulated genes, might be abnormally activated in aneurysms and involved in the pathogenesis of IAs. Further whole genome sequencing and filtering yielded 4 candidate somatic single nucleotide variants including MUC3B, and BLM may be involved in the pathogenesis of IAs. Even though, our results do not support the hypothesis of somatic mutations occurred in the DEGs. Two-dimensional genomic data from transcriptome and whole genome sequencing indicated that no somatic mutations occurred in DEGs. In addition, 3 DEGs (IKBKG, ACTB, and MKI67IP) and 2 mutant genes (MUC3B and BLM) were essential in IAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Characterization of differential gene expression in adrenocortical tumors harboring beta-catenin (CTNNB1) mutations.

    PubMed

    Durand, Julien; Lampron, Antoine; Mazzuco, Tania L; Chapman, Audrey; Bourdeau, Isabelle

    2011-07-01

    Mutations of β-catenin gene (CTNNB1) are frequent in adrenocortical adenomas (AA) and adrenocortical carcinomas (ACC). However, the target genes of β-catenin have not yet been identified in adrenocortical tumors. Our objective was to identify genes deregulated in adrenocortical tumors harboring CTNNB1 genetic alterations and nuclear accumulation of β-catenin. Microarray analysis identified a dataset of genes that were differently expressed between AA with CTNNB1 mutations and wild-type (WT) tumors. Within this dataset, the expression profiles of five genes were validated by real time-PCR (RT-PCR) in a cohort of 34 adrenocortical tissues (six AA and one ACC with CTNNB1 mutations, 13 AA and four ACC with WT CTNNB1, and 10 normal adrenal glands) and two human ACC cell lines. We then studied the effects of suppressing β-catenin transcriptional activity with the T-cell factor/β-catenin inhibitors PKF115-584 and PNU74654 on gene expression in H295R and SW13 cells. RT-PCR analysis confirmed the overexpression of ISM1, RALBP1, and PDE2A and the down-regulation of PHYHIP in five of six AA harboring CTNNB1 mutations compared with WT AA (n = 13) and normal adrenal glands (n = 10). RALBP1 and PDE2A overexpression was also confirmed at the protein level by Western blotting analysis in mutated tumors. ENC1 was specifically overexpressed in three of three AA harboring CTNNB1 point mutations. mRNA expression and protein levels of RALBP1, PDE2A, and ENC1 were decreased in a dose-dependent manner in H295R cells after treatment with PKF115-584 or PNU74654. This study identified candidate genes deregulated in CTNNB1-mutated adrenocortical tumors that may lead to a better understanding of the role of the Wnt-β-catenin pathway in adrenocortical tumorigenesis.

  6. Brooke-Spiegler syndrome: report of 10 patients from 8 families with novel germline mutations: evidence of diverse somatic mutations in the same patient regardless of tumor type.

    PubMed

    Sima, Radek; Vanecek, Tomas; Kacerovska, Denisa; Trubac, Pavel; Cribier, Bernard; Rutten, Arno; Vazmitel, Marina; Spagnolo, Dominic V; Litvik, Radek; Vantuchova, Yvetta; Weyers, Wolfgang; Pearce, Robert L; Pearn, John; Michal, Michal; Kazakov, Dmitry V

    2010-06-01

    Brooke-Spiegler syndrome (BSS) is an inherited autosomal dominant disease characterized by the development of multiple adnexal cutaneous neoplasms including spiradenoma, cylindroma, spiradenocylindroma, and trichoepithelioma (cribriform trichoblastoma). BSS patients have various mutations in the CYLD gene, a tumor suppressor gene located on chromosome 16q. Our search of the literature revealed 51 germline CYLD mutations reported to date. Somatic CYLD mutations have rarely been investigated. We studied 10 patients from 8 families with BSS. Analysis of germline mutations of the CYLD gene was performed using either peripheral blood or nontumorous tissue. In addition, 19 formalin-fixed paraffin-embedded tumor samples were analyzed for somatic mutations, including loss of heterozygosity studies. A total of 38 tumors were available for histopathologic review. We have identified 8 novel germline mutations, all of which consisted of substitutions, deletions, and insertions/duplications and all except one led to premature stop codons. The substitution mutation in a single case was also predicted to disrupt protein function and seems causally implicated in tumor formation. We demonstrate for the first time that somatic events, loss of heterozygosity, or sequence mutations may differ among multiple neoplasms even of the same histologic type, occurring in the same patient.

  7. Protein Domain-Level Landscape of Cancer-Type-Specific Somatic Mutations

    PubMed Central

    Yang, Fan; Petsalaki, Evangelia; Rolland, Thomas; Hill, David E.; Vidal, Marc; Roth, Frederick P.

    2015-01-01

    Identifying driver mutations and their functional consequences is critical to our understanding of cancer. Towards this goal, and because domains are the functional units of a protein, we explored the protein domain-level landscape of cancer-type-specific somatic mutations. Specifically, we systematically examined tumor genomes from 21 cancer types to identify domains with high mutational density in specific tissues, the positions of mutational hotspots within these domains, and the functional and structural context where possible. While hotspots corresponding to specific gain-of-function mutations are expected for oncoproteins, we found that tumor suppressor proteins also exhibit strong biases toward being mutated in particular domains. Within domains, however, we observed the expected patterns of mutation, with recurrently mutated positions for oncogenes and evenly distributed mutations for tumor suppressors. For example, we identified both known and new endometrial cancer hotspots in the tyrosine kinase domain of the FGFR2 protein, one of which is also a hotspot in breast cancer, and found new two hotspots in the Immunoglobulin I-set domain in colon cancer. Thus, to prioritize cancer mutations for further functional studies aimed at more precise cancer treatments, we have systematically correlated mutations and cancer types at the protein domain level. PMID:25794154

  8. Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs

    PubMed Central

    2013-01-01

    Background The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations – changes specific to a tumor and not within an individual’s germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. Results We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. Conclusion We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic. PMID:23642077

  9. Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs.

    PubMed

    Christoforides, Alexis; Carpten, John D; Weiss, Glen J; Demeure, Michael J; Von Hoff, Daniel D; Craig, David W

    2013-05-04

    The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations--changes specific to a tumor and not within an individual's germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic.

  10. DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations.

    PubMed

    Yuan, Yuchen; Shi, Yi; Li, Changyang; Kim, Jinman; Cai, Weidong; Han, Zeguang; Feng, David Dagan

    2016-12-23

    With the developments of DNA sequencing technology, large amounts of sequencing data have become available in recent years and provide unprecedented opportunities for advanced association studies between somatic point mutations and cancer types/subtypes, which may contribute to more accurate somatic point mutation based cancer classification (SMCC). However in existing SMCC methods, issues like high data sparsity, small volume of sample size, and the application of simple linear classifiers, are major obstacles in improving the classification performance. To address the obstacles in existing SMCC studies, we propose DeepGene, an advanced deep neural network (DNN) based classifier, that consists of three steps: firstly, the clustered gene filtering (CGF) concentrates the gene data by mutation occurrence frequency, filtering out the majority of irrelevant genes; secondly, the indexed sparsity reduction (ISR) converts the gene data into indexes of its non-zero elements, thereby significantly suppressing the impact of data sparsity; finally, the data after CGF and ISR is fed into a DNN classifier, which extracts high-level features for accurate classification. Experimental results on our curated TCGA-DeepGene dataset, which is a reformulated subset of the TCGA dataset containing 12 selected types of cancer, show that CGF, ISR and DNN all contribute in improving the overall classification performance. We further compare DeepGene with three widely adopted classifiers and demonstrate that DeepGene has at least 24% performance improvement in terms of testing accuracy. Based on deep learning and somatic point mutation data, we devise DeepGene, an advanced cancer type classifier, which addresses the obstacles in existing SMCC studies. Experiments indicate that DeepGene outperforms three widely adopted existing classifiers, which is mainly attributed to its deep learning module that is able to extract the high level features between combinatorial somatic point mutations and

  11. Somatic mutations contribute to genotypic diversity in sterile and fertile populations of the threatened shrub, Grevillea rhizomatosa (Proteaceae).

    PubMed

    Gross, C L; Nelson, Penelope A; Haddadchi, Azadeh; Fatemi, Mohammad

    2012-02-01

    Grevillea rhizomatosa is a spreading shrub which exhibits multiple breeding strategies within a narrow area in the fire-prone heathlands of eastern Australia. Reproductive strategies include self-compatibility, self-incompatibility and clonality (with and without sterility). The close proximity of contrasting breeding systems provides an opportunity to explore the evolution of sterility and to compare and contrast the origins of genotypic diversity (recombinant or somatic) against degrees of sexual expression. ISSR markers for 120 band positions (putative loci) were used to compare genetic diversity among five populations at a macro-scale of 5 m between samples (n = 244 shrubs), and at a micro-scale of nearest neighbours for all plants in five 25-m(2) quadrats with contrasting fertilities (n = 162 shrubs). Nearest-neighbour sampling included several clusters of connected ramets. Matrix incompatibility (MIC) analyses were used to evaluate the relative contribution of recombination and somatic mutation to genotype diversity. High levels of genotypic diversity were found in all populations regardless of fertilities (fertile populations, G/N ≥ 0·94; sterile populations, G/N ≥ 0·97) and most sterile populations had a unique genetic profile. Somatic mutations were detected along connected ramets in ten out of 42 ramet clusters. MIC analyses showed that somatic mutations have contributed to diversity in all populations and particularly so in sterile populations. Somatic mutations contribute significantly to gene diversity in sterile populations of Grevillea rhizomatosa, the accumulation of which is the likely cause of male and female sterility. High levels of genetic diversity therefore may not always be synonymous with sexual fitness and genetic health. We hypothesize that frequent fires drive selection for clonal reproduction, at the cost of flowering such that sexual functions are not maintained through selection, and the build-up of somatic mutations in

  12. Biallelic germline and somatic mutations in malignant mesothelioma: multiple mutations in transcription regulators including mSWI/SNF genes.

    PubMed

    Yoshikawa, Yoshie; Sato, Ayuko; Tsujimura, Tohru; Otsuki, Taiichiro; Fukuoka, Kazuya; Hasegawa, Seiki; Nakano, Takashi; Hashimoto-Tamaoki, Tomoko

    2015-02-01

    We detected low levels of acetylation for histone H3 tail lysines in malignant mesothelioma (MM) cell lines resistant to histone deacetylase inhibitors. To identify the possible genetic causes related to the low histone acetylation levels, whole-exome sequencing was conducted with MM cell lines established from eight patients. A mono-allelic variant of BRD1 was common to two MM cell lines with very low acetylation levels. We identified 318 homozygous protein-damaging variants/mutations (18-78 variants/mutations per patient); annotation analysis showed enrichment of the molecules associated with mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complexes and co-activators that facilitate initiation of transcription. In seven of the patients, we detected a combination of variants in histone modifiers or transcription factors/co-factors, in addition to variants in mSWI/SNF. Direct sequencing showed that homozygous mutations in SMARCA4, PBRM1 and ARID2 were somatic. In one patient, homozygous germline variants were observed for SMARCC1 and SETD2 in chr3p22.1-3p14.2. These exhibited extended germline homozygosity and were in regions containing somatic mutations, leading to a loss of BAP1 and PBRM1 expression in MM cell line. Most protein-damaging variants were heterozygous in normal tissues. Heterozygous germline variants were often converted into hemizygous variants by mono-allelic deletion, and were rarely homozygous because of acquired uniparental disomy. Our findings imply that MM might develop through the somatic inactivation of mSWI/SNF complex subunits and/or histone modifiers, including BAP1, in subjects that have rare germline variants of these transcription regulators and/or transcription factors/co-factors, and in regions prone to mono-allelic deletion during oncogenesis. © 2014 UICC.

  13. Deep Sequencing Reveals Spatially Distributed Distinct Hot Spot Mutations in DICER1-Related Multinodular Goiter.

    PubMed

    de Kock, Leanne; Bah, Ismaël; Revil, Timothée; Bérubé, Pierre; Wu, Mona K; Sabbaghian, Nelly; Priest, John R; Ragoussis, Jiannis; Foulkes, William D

    2016-10-01

    Nontoxic multinodular goiter (MNG) occurs frequently, but its genetic etiology is not well established. Familial MNG and MNG occurring with ovarian Sertoli-Leydig cell tumor are associated with germline DICER1 mutations. We recently identified second somatic DICER1 ribonuclease (RNase) IIIb mutations in two MNGs. The objective of the study was to investigate the occurrence of somatic DICER1 mutations and mutational clonality in MNG. MNGs from 15 patients (10 with and five without germline DICER1 mutations) were selected based on tissue availability. Core biopsies/scrapings (n = 70) were obtained, sampling areas of follicular hyperplasia, hyperplasia within colloid pools, unremarkable thyroid parenchyma, and areas of thyroid parenchyma, not classified. After capture with a Fluidigm access array, the coding sequence of DICER1 was deep sequenced using DNA from each core/scraping. All germline DICER1-mutated cases were found to harbor at least one RNase III mutation. Specifically, we identified 12 individually distinct DICER1 RNase IIIb hot spot mutations in 32 of the follicular hyperplasia or hyperplasia within colloid pools cores/scrapings. These mutations are predicted to affect the metal-ion binding residues at positions p.Glu1705, p.Asp1709, p.Gly1809, p.Asp1810, and p.Glu1813. Somatic RNase IIIb mutations were identified in the 10 DICER1 germline mutated MNGs as follows: two cases contained one somatic mutation, five cases contained two mutations, and three cases contained three distinct somatic hot spot mutations. No RNase IIIb mutations were identified in the MNGs from individuals without germline DICER1 mutations. This study demonstrates that nodules within MNG occurring in DICER1 syndrome are associated with spatially distributed somatic DICER1 RNase IIIb mutations.

  14. Somatic mutations of GUCY2F, EPHA3, and NTRK3 in human cancers.

    PubMed

    Wood, Laura D; Calhoun, Eric S; Silliman, Natalie; Ptak, Janine; Szabo, Steve; Powell, Steve M; Riggins, Gregory J; Wang, Tian-Li; Yan, Hai; Gazdar, Adi; Kern, Scott E; Pennacchio, Len; Kinzler, Kenneth W; Vogelstein, Bert; Velculescu, Victor E

    2006-10-01

    Tyrosine kinases are major regulators of signal transduction cascades involved in cellular proliferation and have important roles in tumorigenesis. We have recently analyzed the tyrosine kinase gene family for alterations in human colorectal cancers and identified somatic mutations in seven members of this gene family. In this study we have used high-throughput sequencing approaches to further evaluate this subset of genes for genetic alterations in other human tumors. We identified somatic mutations in GUCY2F, EPHA3, and NTRK3 in breast, lung, and pancreatic cancers. Our results implicate these tyrosine kinase genes in the pathogenesis of other tumor types and suggest that they may be useful targets for diagnostic and therapeutic intervention in selected patients.

  15. Environmental modulation of somatic mutations: nature of interactions. Final report, 1 June 1974--31 May 1977. [Effects of diurnal temperature changes in Tradescantia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mericle, L.W.

    1977-05-01

    Research on this project has had as a major goal a combined ecologic-genetic investigation of somatic mutations in order to evaluate the impacts of certain changing environmental parameters. The ultimate aim, to better understand how such environmental-mutation interactions operate and to assure the information obtained be extrapolatable to conditions and events in nature. Higher plants delineate reproductive tissues late in development from meristematic, somatic tissues. Moreover, the prevailing method of reproduction may be without sexual fusion of gametes and/or wholly asexual (vegetative). Therefore, somatic mutations can have as far-reaching genetic significance for a plant population as when germ cells, themselves,more » are directly affected. Our data show diurnal temperature differences (DTD) of greater than or equal to 22.2 C-degrees to be very effective mutagenic agents in the Tradescantia somatic mutation system. Further, these ranges of DTD were found to occur often in important seed production areas. A DTD of 22.2 in magnitude can increase mutations 10-fold. And, durations short as 1-day can induce significant increases in mutation rate. Whether interaction of 22.2 DTD with low-level radiation (800 mR/day) is synergistic or attenuative is still debatable. We believe, however, that spontaneous, and 22.2 DTD induced, mutations occur mainly via the genetic mechanism of somatic crossing-over; mutations from acute ionizing radiation (e.g., 30-60 R ..gamma..) via chromosome breakage, producing micronuclei. Requirements for maximizing the Discriminatory Response Capability (DRC) in the Tradescantia somatic mutation system are set forth.« less

  16. An integrative somatic mutation analysis to identify pathways linked with survival outcomes across 19 cancer types

    PubMed Central

    Park, Sunho; Kim, Seung-Jun; Yu, Donghyeon; Peña-Llopis, Samuel; Gao, Jianjiong; Park, Jin Suk; Chen, Beibei; Norris, Jessie; Wang, Xinlei; Chen, Min; Kim, Minsoo; Yong, Jeongsik; Wardak, Zabi; Choe, Kevin; Story, Michael; Starr, Timothy; Cheong, Jae-Ho; Hwang, Tae Hyun

    2016-01-01

    Motivation: Identification of altered pathways that are clinically relevant across human cancers is a key challenge in cancer genomics. Precise identification and understanding of these altered pathways may provide novel insights into patient stratification, therapeutic strategies and the development of new drugs. However, a challenge remains in accurately identifying pathways altered by somatic mutations across human cancers, due to the diverse mutation spectrum. We developed an innovative approach to integrate somatic mutation data with gene networks and pathways, in order to identify pathways altered by somatic mutations across cancers. Results: We applied our approach to The Cancer Genome Atlas (TCGA) dataset of somatic mutations in 4790 cancer patients with 19 different types of tumors. Our analysis identified cancer-type-specific altered pathways enriched with known cancer-relevant genes and targets of currently available drugs. To investigate the clinical significance of these altered pathways, we performed consensus clustering for patient stratification using member genes in the altered pathways coupled with gene expression datasets from 4870 patients from TCGA, and multiple independent cohorts confirmed that the altered pathways could be used to stratify patients into subgroups with significantly different clinical outcomes. Of particular significance, certain patient subpopulations with poor prognosis were identified because they had specific altered pathways for which there are available targeted therapies. These findings could be used to tailor and intensify therapy in these patients, for whom current therapy is suboptimal. Availability and implementation: The code is available at: http://www.taehyunlab.org. Contact: jhcheong@yuhs.ac or taehyun.hwang@utsouthwestern.edu or taehyun.cs@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26635139

  17. Novel Secondary Somatic Mutations in Ewing's Sarcoma and Desmoplastic Small Round Cell Tumors

    PubMed Central

    Janku, Filip; Ludwig, Joseph A.; Naing, Aung; Benjamin, Robert S.; Brown, Robert E.; Anderson, Pete; Kurzrock, Razelle

    2014-01-01

    Background Ewing's sarcoma (ES) and desmoplastic small round cell tumors (DSRCT) are small round blue cell tumors driven by an N-terminal containing EWS translocation. Very few somatic mutations have been reported in ES, and none have been identified in DSRCT. The aim of this study is to explore potential actionable mutations in ES and DSRCT. Methodology Twenty eight patients with ES or DSRCT had tumor tissue available that could be analyzed by one of the following methods: 1) Next-generation exome sequencing platform; 2) Multiplex PCR/Mass Spectroscopy; 3) Polymerase chain reaction (PCR)-based single- gene mutation screening; 4) Sanger sequencing; 5) Morphoproteomics. Principal Findings Novel somatic mutations were identified in four out of 18 patients with advanced ES and two of 10 patients with advanced DSRCT (six out of 28 (21.4%));KRAS (n = 1), PTPRD (n = 1), GRB10 (n = 2), MET (n = 2) and PIK3CA (n = 1). One patient with both PTPRD and GRB10 mutations and one with a GRB10 mutation achieved a complete remission (CR) on an Insulin like growth factor 1 receptor (IGF1R) inhibitor based treatment. One patient, who achieved a partial remission (PR) with IGF1R inhibitor treatment, but later developed resistance, demonstrated a KRAS mutation in the post-treatment resistant tumor, but not in the pre-treatment tumor suggesting that the RAF/RAS/MEK pathway was activated with progression. Conclusions We have reported several different mutations in advanced ES and DSRCT that have direct implications for molecularly-directed targeted therapy. Our technology agnostic approach provides an initial mutational roadmap used in the path towards individualized combination therapy. PMID:25119929

  18. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

    PubMed Central

    Lohr, Jens G.; Stojanov, Petar; Lawrence, Michael S.; Auclair, Daniel; Chapuy, Bjoern; Sougnez, Carrie; Cruz-Gordillo, Peter; Knoechel, Birgit; Asmann, Yan W.; Slager, Susan L.; Novak, Anne J.; Dogan, Ahmet; Ansell, Stephen M.; Zou, Lihua; Gould, Joshua; Saksena, Gordon; Stransky, Nicolas; Rangel-Escareño, Claudia; Fernandez-Lopez, Juan Carlos; Hidalgo-Miranda, Alfredo; Melendez-Zajgla, Jorge; Hernández-Lemus, Enrique; Schwarz-Cruz y Celis, Angela; Imaz-Rosshandler, Ivan; Ojesina, Akinyemi I.; Jung, Joonil; Pedamallu, Chandra S.; Lander, Eric S.; Habermann, Thomas M.; Cerhan, James R.; Shipp, Margaret A.; Getz, Gad; Golub, Todd R.

    2012-01-01

    To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase–mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease. PMID:22343534

  19. Somatic mutation profiles of clear cell endometrial tumors revealed by whole exome and targeted gene sequencing.

    PubMed

    Le Gallo, Matthieu; Rudd, Meghan L; Urick, Mary Ellen; Hansen, Nancy F; Zhang, Suiyuan; Lozy, Fred; Sgroi, Dennis C; Vidal Bel, August; Matias-Guiu, Xavier; Broaddus, Russell R; Lu, Karen H; Levine, Douglas A; Mutch, David G; Goodfellow, Paul J; Salvesen, Helga B; Mullikin, James C; Bell, Daphne W

    2017-09-01

    The molecular pathogenesis of clear cell endometrial cancer (CCEC), a tumor type with a relatively unfavorable prognosis, is not well defined. We searched exome-wide for novel somatically mutated genes in CCEC and assessed the mutational spectrum of known and candidate driver genes in a large cohort of cases. We conducted whole exome sequencing of paired tumor-normal DNAs from 16 cases of CCEC (12 CCECs and the CCEC components of 4 mixed histology tumors). Twenty-two genes-of-interest were Sanger-sequenced from another 47 cases of CCEC. Microsatellite instability (MSI) and microsatellite stability (MSS) were determined by genotyping 5 mononucleotide repeats. Two tumor exomes had relatively high mutational loads and MSI. The other 14 tumor exomes were MSS and had 236 validated nonsynonymous or splice junction somatic mutations among 222 protein-encoding genes. Among the 63 cases of CCEC in this study, we identified frequent somatic mutations in TP53 (39.7%), PIK3CA (23.8%), PIK3R1 (15.9%), ARID1A (15.9%), PPP2R1A (15.9%), SPOP (14.3%), and TAF1 (9.5%), as well as MSI (11.3%). Five of 8 mutations in TAF1, a gene with no known role in CCEC, localized to the putative histone acetyltransferase domain and included 2 recurrently mutated residues. Based on patterns of MSI and mutations in 7 genes, CCEC subsets molecularly resembled serous endometrial cancer (SEC) or endometrioid endometrial cancer (EEC). Our findings demonstrate molecular similarities between CCEC and SEC and EEC and implicate TAF1 as a novel candidate CCEC driver gene. Cancer 2017;123:3261-8. © 2017 American Cancer Society. © 2017 American Cancer Society.

  20. PTEN/MMAC1 Mutations in Hepatocellular Carcinomas: Somatic Inactivation of Both Alleles in Tumors

    PubMed Central

    Kawamura, Naoki; Nagai, Hisaki; Bando, Koichi; Koyama, Masaaki; Matsumoto, Satoshi; Tajiri, Takashi; Onda, Masahiko; Fujimoto, Jiro; Ueki, Takahiro; Konishi, Noboru; Shiba, Tadayoshi

    1999-01-01

    Allelic loss of loci on chromosome 10q occurs frequently in hepatocellular carcinomas. Somatic mutations of the PTEN/MMAC1 gene on this chromosome at 10q23 were recently identified in sporadic cancers of the uterus, brain, prostate and breast. To investigate the potential role of PTEN/MMAC1 gene in the genesis of hepatocellular carcinomas, we examined 96 tumors for allelic loss on 10q and also for subtle mutations anywhere within the coding region of PTEN/MMAC1 gene. Allelic loss was identified in 25 of the 89 (27%) tumors that were informative for polymorphic markers in the region. Somatic mutations were identified in five of those tumors: three frameshift mutations, a 1‐bp insertion at codon 83–84 in exon 4 and two 4‐bp deletions, both at codon 318–319 in exon 8; two C‐to‐G transversion mutation, both at ‐9 bp from the initiation codon in the 5’non‐coding region of exon 1. No missense mutation was observed in this panel of tumors. In most of the informative tumors carrying intragenic mutations of one allele, we were able to detect loss of heterozygosity as well. These findings suggest that two alleles of the PTEN/MMAC1 gene may be inactivated by a combination of intragenic point mutation on one allele and loss of chromosomal material on the other allele in some of these tumors. PMID:10363579

  1. Whole exome sequencing reveals recurrent mutations in BRCA2 and FAT genes in acinar cell carcinomas of the pancreas.

    PubMed

    Furukawa, Toru; Sakamoto, Hitomi; Takeuchi, Shoko; Ameri, Mitra; Kuboki, Yuko; Yamamoto, Toshiyuki; Hatori, Takashi; Yamamoto, Masakazu; Sugiyama, Masanori; Ohike, Nobuyuki; Yamaguchi, Hiroshi; Shimizu, Michio; Shibata, Noriyuki; Shimizu, Kyoko; Shiratori, Keiko

    2015-03-06

    Acinar cell carcinoma of the pancreas is a rare tumor with a poor prognosis. Compared to pancreatic ductal adenocarcinoma, its molecular features are poorly known. We studied a total of 11 acinar cell carcinomas, including 3 by exome and 4 by target sequencing. Exome sequencing revealed 65 nonsynonymous mutations and 22 indels with a mutation rate of 3.4 mutations/Mb per tumor, on average. By accounting for not only somatic but also germline mutations with loss of the wild-type allele, we identified recurrent mutations of BRCA2 and FAT genes. BRCA2 showed somatic or germline premature termination mutations, with loss of the wild-type allele in 3 of 7 tumors. FAT1, FAT3, and FAT4 showed somatic or germline missense mutations in 4 of 7 tumors. The germline FAT mutations were with loss of the wild-type allele. Loss of BRCA2 expression was observed in 5 of 11 tumors. One patient with a BRCA2-mutated tumor experienced complete remission of liver metastasis following cisplatinum chemotherapy. In conclusion, acinar cell carcinomas show a distinct mutation pattern and often harbor somatic or germline mutations of BRCA2 and FAT genes. This result may warrant assessment of BRCA2 abrogation in patients with the carcinoma to determine their sensitivity to chemotherapy.

  2. Somatic Mutations in NEK9 Cause Nevus Comedonicus

    PubMed Central

    Levinsohn, Jonathan L.; Sugarman, Jeffrey L.; McNiff, Jennifer M.; Antaya, Richard J.; Choate, Keith A.

    2016-01-01

    Acne vulgaris (AV) affects most adolescents, and of those affected, moderate to severe disease occurs in 20%. Comedones, follicular plugs consisting of desquamated keratinocytes and sebum, are central to its pathogenesis. Despite high heritability in first-degree relatives, AV genetic determinants remain incompletely understood. We therefore employed whole-exome sequencing (WES) in nevus comedonicus (NC), a rare disorder that features comedones and inflammatory acne cysts in localized, linear configurations. WES identified somatic NEK9 mutations, each affecting highly conserved residues within its kinase or RCC1 domains, in affected tissue of three out of three NC-affected subjects. All mutations are gain of function, resulting in increased phosphorylation at Thr210, a hallmark of NEK9 kinase activation. We found that comedo formation in NC is marked by loss of follicular differentiation markers, expansion of keratin-15-positive cells from localization within the bulge to the entire sub-bulge follicle and cyst, and ectopic expression of keratin 10, a marker of interfollicular differentiation not present in normal follicles. These findings suggest that NEK9 mutations in NC disrupt normal follicular differentiation and identify NEK9 as a potential regulator of follicular homeostasis. PMID:27153399

  3. A somatic T15091C mutation in the Cytb gene of mouse mitochondrial DNA dominantly induces respiration defects.

    PubMed

    Hayashi, Chisato; Takibuchi, Gaku; Shimizu, Akinori; Mito, Takayuki; Ishikawa, Kaori; Nakada, Kazuto; Hayashi, Jun-Ichi

    2015-08-07

    Our previous studies provided evidence that mammalian mitochondrial DNA (mtDNA) mutations that cause mitochondrial respiration defects behave in a recessive manner, because the induction of respiration defects could be prevented with the help of a small proportion (10%-20%) of mtDNA without the mutations. However, subsequent studies found the induction of respiration defects by the accelerated accumulation of a small proportion of mtDNA with various somatic mutations, indicating the presence of mtDNA mutations that behave in a dominant manner. Here, to provide the evidence for the presence of dominant mutations in mtDNA, we used mouse lung carcinoma P29 cells and examined whether some mtDNA molecules possess somatic mutations that dominantly induce respiration defects. Cloning and sequence analysis of 40-48 mtDNA molecules from P29 cells was carried out to screen for somatic mutations in protein-coding genes, because mutations in these genes could dominantly regulate respiration defects by formation of abnormal polypeptides. We found 108 missense mutations existing in one or more of 40-48 mtDNA molecules. Of these missense mutations, a T15091C mutation in the Cytb gene was expected to be pathogenic due to the presence of its orthologous mutation in mtDNA from a patient with cardiomyopathy. After isolation of many subclones from parental P29 cells, we obtained subclones with various proportions of T15091C mtDNA, and showed that the respiration defects were induced in a subclone with only 49% T15091C mtDNA. Because the induction of respiration defects could not be prevented with the help of the remaining 51% mtDNA without the T15091C mutation, the results indicate that the T15091C mutation in mtDNA dominantly induced the respiration defects. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Interferon-α Based Individualized Treatment of a High Risk Chronic Myelogenous Leukemia Patient Harboring T315I Mutation.

    PubMed

    Zeng, Yunxin; Zhang, Jingwen; Li, Xiaoqing; Zhang, Ling; Liu, Jiajun

    2018-06-01

    T315I mutation is the most common BCR-ABL mutation and confers resistance to all the first and second generation BCR-ABL tyrosine kinases, including nilotinib and dasatinib. We report a high risk chronic myelogenous leukemia (CML) patient harboring the T315I mutation treated by Interferon-α (INF-α) solo and subsequently combined with dasatinib. Hematological investigation, bone marrow cytology inspection, chromosomal analysis (G-banding), and real-time quantitative polymerase chain reaction (RQ-PCR) were performed on a 47-year-old male patient. After 8 months IFN-α monotherapy, the patient lost the T315I mutation but acquired a new F359V mutation. After 2 months on dasatinib and INF-α treatment, the patient achieved complete hematologic response (CHR). IFN-α based combination therapy could be a viable treatment option for CML patients harboring T315I BCR-ABL mutation.

  5. Effect of actionable somatic mutations on racial/ethnic disparities in head and neck cancer prognosis.

    PubMed

    Wu, Evan S; Park, Jong Y; Zeitouni, Joseph A; Gomez, Carmen R; Reis, Isildinha M; Zhao, Wei; Kwon, Deukwoo; Lee, Eunkyung; Nelson, Omar L; Lin, Hui-Yi; Franzmann, Elizabeth J; Savell, Jason; McCaffrey, Thomas V; Goodwin, W Jarrard; Hu, Jennifer J

    2016-08-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and minorities have the worst survival. However, the molecular mechanisms underlying survival disparities have not been elucidated. In a retrospective study, we assessed association between HNSCC early death (<2 years) and 208 somatic mutations of 10 cancer-related genes in 214 patients: 98 non-Hispanic whites (46%), 72 Hispanic whites (34%), and 44 African Americans (20%). Hispanic whites and African Americans had significantly higher mutation rates for EGFR, HRAS, KRAS, and TP53. HNSCC early death was significantly associated with 3+ mutations (odds ratio [OR] = 2.78, 95% confidence interval [CI] = 1.16, 6.69), NOTCH1 mutations in non-Hispanic whites (OR = 5.51; 95% CI = 1.22-24.83) and TP53 mutations in Hispanic whites (OR = 3.84; 95% CI = 1.08-13.68) in multivariable analysis adjusted for age, sex, tumor site, and tumor stage. We have provided the proof-of-principal data to link racial/ethnic-specific somatic mutations and HNSCC prognosis and pave the way for precision medicine to overcome HNSCC survival disparities. © 2016 Wiley Periodicals, Inc. Head Neck 38:1234-1241, 2016. © 2016 Wiley Periodicals, Inc.

  6. Multiple independent second-site mutations in two siblings with somatic mosaicism for Wiskott-Aldrich syndrome.

    PubMed

    Boztug, K; Germeshausen, M; Avedillo Díez, I; Gulacsy, V; Diestelhorst, J; Ballmaier, M; Welte, K; Maródi, L; Chernyshova, Li; Klein, C

    2008-07-01

    Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency disorder associated with microthrombocytopenia, eczema, autoimmunity and predisposition to malignant lymphoma. Although rare, few cases of somatic mosaicism have been published in WAS patients to date. We here report on two Ukrainian siblings who were referred to us at the age of 3 and 4 years, respectively. Both patients suffered from severe WAS caused by a nonsense mutation in exon 1 of the WAS gene. In both siblings, flow cytometric analysis revealed the presence of Wiskott-Aldrich syndrome protein (WASp)-positive and WASp-negative cell populations among T and B lymphocytes as well as natural killer (NK) cells. In contrast to previously described cases of revertant mosaicism in WAS, molecular analyses in both children showed that the WASp-positive T cells, B cells, and NK cells carried multiple different second-site mutations, resulting in different missense mutations. To our knowledge, this is the first report describing somatic mosaicism in WAS patients caused by several independent second-site mutations in the WAS gene.

  7. Prevalence of somatic mitochondrial mutations and spatial distribution of mitochondria in non-small cell lung cancer.

    PubMed

    Kazdal, Daniel; Harms, Alexander; Endris, Volker; Penzel, Roland; Kriegsmann, Mark; Eichhorn, Florian; Muley, Thomas; Stenzinger, Albrecht; Pfarr, Nicole; Weichert, Wilko; Warth, Arne

    2017-07-11

    Mitochondria are considered relevant players in many tumour entities and first data indicate beneficial effects of mitochondria-targeted antioxidants in both cancer prevention and anticancer therapies. To further dissect the potential roles of mitochondria in NSCLC we comprehensively analysed somatic mitochondrial mutations, determined the spatial distribution of mitochondrial DNA within complete tumour sections and investigated the mitochondrial load in a large-scale approach. Whole mitochondrial genome sequencing of 26 matched tumour and non-neoplastic tissue samples extended by reviewing published data of 326 cases. Systematical stepwise real-time PCR quantification of mitochondrial DNA covering 16 whole surgical tumour sections. Immunohistochemical determination of the mitochondrial load in 171 adenocarcinoma and 145 squamous cell carcinoma. Our results demonstrate very low recurrences (max. 1.7%) and a broad distribution of 456 different somatic mitochondrial mutations. Large inter- and intra-tumour heterogeneity were seen for mitochondrial DNA copy numbers in conjunction with a correlation to the predominant histological growth pattern. Furthermore, tumour cells had significantly higher mitochondrial level compared to adjacent stroma, whereas differences between tumour entities were negligible. Non-evident somatic mitochondrial mutations and highly varying mitochondrial DNA level delineate challenges for the approach of mitochondria-targeted anticancer therapies in NSCLC.

  8. Recurrent Somatic PDGFRB Mutations in Sporadic Infantile/Solitary Adult Myofibromas But Not in Angioleiomyomas and Myopericytomas.

    PubMed

    Agaimy, Abbas; Bieg, Matthias; Michal, Michael; Geddert, Helene; Märkl, Bruno; Seitz, Jan; Moskalev, Evgeny A; Schlesner, Matthias; Metzler, Markus; Hartmann, Arndt; Wiemann, Stefan; Michal, Michal; Mentzel, Thomas; Haller, Florian

    2017-02-01

    Infantile myofibroma (MF) is an uncommon benign myofibroblastic tumor of infancy and childhood. Solitary adult MF shares similar features with infantile MF. The lesions occur in 3 clinicopathologic settings: solitary, multicentric, and generalized and can be either sporadic or familial. Traditionally, infantile MF has been included in the spectrum of infantile hemangiopericytoma. The recent World Health Organization classification listed MF, angioleiomyoma, and myopericytoma under the general heading of perivascular tumors in the sense of a morphologic spectrum of perivascular myoid cell neoplasms. Although activating germline PDGFRB mutations have recently been linked to familial infantile MF, the molecular pathogenesis of sporadic infantile and adult solitary MF remained unclear. In this study, we analyzed 25 solitary MFs without evidence of familial disease (9 infantile and 16 adult MFs) to address the question whether somatic PDGFRB mutations might be responsible for the sporadic form of the disease. Given the presumed histogenetic link of MF to myopericytoma and angioleiomyoma, we additionally analyzed a control group of 6 myopericytomas and 9 angioleiomyomas for PDGFRB mutations. We detected PDGFRB mutations in 6/8 (75%) analyzable infantile and in 11/16 (69%) adult MFs but in none of the angioleiomyomas or myopericytomas. In 2 infantile MFs, additional sequencing of the germline confirmed the somatic nature of PDGFRB mutations. To our knowledge, this is the first study reporting apparently somatic recurrent PDGFRB mutations as molecular driver events in the majority of sporadic infantile and adult solitary MFs. Our results suggest molecular distinctness of MF as compared with angioleiomyoma/myopericytoma. Investigation of more cases including those with atypical and worrisome features, as well as other mimickers in the heterogenous morphologic spectrum of MF, is mandatory for validating the potential diagnostic value of PDGFRB mutation testing as a possible

  9. Cutaneous-Skeletal Hypophosphatemia Syndrome is a Multilineage Somatic Mosaic RASopathy

    PubMed Central

    Lim, Young H.; Ovejero, Diana; Derrick, Kristina M.; Collins, Michael T.; Choate, Keith A.

    2016-01-01

    Background We recently demonstrated multilineage somatic mosaicism in cutaneous-skeletal hypophosphatemia syndrome (CSHS), which features epidermal or melanocytic nevi, elevated fibroblast growth factor-23 (FGF23) and hypophosphatemia, finding identical RAS mutations in affected skin and bone. Objective 1) To provide an updated overview of CSHS; 2) To review its pathobiology; 3) To present a new CSHS patient; and 4) To discuss treatment modalities. Methods We searched PubMed for “nevus AND rickets,” and “nevus AND hypophosphatemia,” identifying cases of nevi with hypophosphatemic rickets or elevated serum FGF23. For our additional CSHS patient, we performed histopathologic and radiographic surveys of skin and skeletal lesions, respectively. Sequencing was performed for HRAS, KRAS, and NRAS to determine causative mutations. Results Our new case harbored somatic activating HRAS p.G13R mutation in affected tissue, consistent with previous findings. While the mechanism of FGF23 dysregulation is unknown in CSHS, interaction between FGF and MAPK pathways may provide insight into pathobiology. Anti-FGF23 antibody KRN23 may be useful in managing CSHS. Limitations Multilineage RAS mutation in CSHS was recently identified; further studies on mechanism are unavailable. Conclusion Patients with nevi in association with skeletal disease should be evaluated for serum phosphate and FGF23. Further studies investigating the role of RAS in FGF23 regulation are needed. PMID:27444071

  10. Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: an analysis of genome sequence data.

    PubMed

    Haricharan, Svasti; Bainbridge, Matthew N; Scheet, Paul; Brown, Powel H

    2014-07-01

    Breast cancer is one of the most commonly diagnosed cancers in women. While there are several effective therapies for breast cancer and important single gene prognostic/predictive markers, more than 40,000 women die from this disease every year. The increasing availability of large-scale genomic datasets provides opportunities for identifying factors that influence breast cancer survival in smaller, well-defined subsets. The purpose of this study was to investigate the genomic landscape of various breast cancer subtypes and its potential associations with clinical outcomes. We used statistical analysis of sequence data generated by the Cancer Genome Atlas initiative including somatic mutation load (SML) analysis, Kaplan-Meier survival curves, gene mutational frequency, and mutational enrichment evaluation to study the genomic landscape of breast cancer. We show that ER(+), but not ER(-), tumors with high SML associate with poor overall survival (HR = 2.02). Further, these high mutation load tumors are enriched for coincident mutations in both DNA damage repair and ER signature genes. While it is known that somatic mutations in specific genes affect breast cancer survival, this study is the first to identify that SML may constitute an important global signature for a subset of ER(+) tumors prone to high mortality. Moreover, although somatic mutations in individual DNA damage genes affect clinical outcome, our results indicate that coincident mutations in DNA damage response and signature ER genes may prove more informative for ER(+) breast cancer survival. Next generation sequencing may prove an essential tool for identifying pathways underlying poor outcomes and for tailoring therapeutic strategies.

  11. Impact of experimental design on PET radiomics in predicting somatic mutation status.

    PubMed

    Yip, Stephen S F; Parmar, Chintan; Kim, John; Huynh, Elizabeth; Mak, Raymond H; Aerts, Hugo J W L

    2017-12-01

    PET-based radiomic features have demonstrated great promises in predicting genetic data. However, various experimental parameters can influence the feature extraction pipeline, and hence, Here, we investigated how experimental settings affect the performance of radiomic features in predicting somatic mutation status in non-small cell lung cancer (NSCLC) patients. 348 NSCLC patients with somatic mutation testing and diagnostic PET images were included in our analysis. Radiomic feature extractions were analyzed for varying voxel sizes, filters and bin widths. 66 radiomic features were evaluated. The performance of features in predicting mutations status was assessed using the area under the receiver-operating-characteristic curve (AUC). The influence of experimental parameters on feature predictability was quantified as the relative difference between the minimum and maximum AUC (δ). The large majority of features (n=56, 85%) were significantly predictive for EGFR mutation status (AUC≥0.61). 29 radiomic features significantly predicted EGFR mutations and were robust to experimental settings with δ Overall <5%. The overall influence (δ Overall ) of the voxel size, filter and bin width for all features ranged from 5% to 15%, respectively. For all features, none of the experimental designs was predictive of KRAS+ from KRAS- (AUC≤0.56). The predictability of 29 radiomic features was robust to the choice of experimental settings; however, these settings need to be carefully chosen for all other features. The combined effect of the investigated processing methods could be substantial and must be considered. Optimized settings that will maximize the predictive performance of individual radiomic features should be investigated in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation

    PubMed Central

    Béguelin, Wendy; Popovic, Relja; Teater, Matt; Jiang, Yanwen; Bunting, Karen L.; Rosen, Monica; Shen, Hao; Yang, Shao Ning; Wang, Ling; Ezponda, Teresa; Martinez-Garcia, Eva; Zhang, Haikuo; Zhang, Yupeng; Verma, Sharad K.; McCabe, Michael T.; Ott, Heidi M.; Van Aller, Glenn S.; Kruger, Ryan G.; Liu, Yan; McHugh, Charles F.; Scott, David W.; Chung, Young Rock; Kelleher, Neil; Shaknovich, Rita; Creasy, Caretha L.; Gascoyne, Randy D.; Wong, Kwok-Kin; Cerchietti, Leandro C.; Levine, Ross L.; Abdel-Wahab, Omar; Licht, Jonathan D.; Elemento, Olivier; Melnick, Ari M.

    2013-01-01

    The EZH2 histone methyltransferase is highly expressed in germinal center (GC) B-cells and targeted by somatic mutations in B-cell lymphomas. Here we find that EZH2 deletion or pharmacologic inhibition suppresses GC formation and functions in mice. EZH2 represses proliferation checkpoint genes and helps establish bivalent chromatin domains at key regulatory loci to transiently suppress GC B-cell differentiation. Somatic mutations reinforce these physiological effects through enhanced silencing of EZH2 targets in B-cells, and in human B-cell lymphomas. Conditional expression of mutant EZH2 in mice induces GC hyperplasia and accelerated lymphomagenesis in cooperation with BCL2. GCB-type DLBCLs are mostly addicted to EZH2, regardless of mutation status, but not the more differentiated ABC-type DLBCLs, thus clarifying the therapeutic scope of EZH2 targeting. PMID:23680150

  13. Somatic Mutation Patterns in Hemizygous Genomic Regions Unveil Purifying Selection during Tumor Evolution

    PubMed Central

    Basu, Swaraj; Larsson, Erik

    2016-01-01

    Identification of cancer driver genes using somatic mutation patterns indicative of positive selection has become a major goal in cancer genomics. However, cancer cells additionally depend on a large number of genes involved in basic cellular processes. While such genes should in theory be subject to strong purifying (negative) selection against damaging somatic mutations, these patterns have been elusive and purifying selection remains inadequately explored in cancer. Here, we hypothesized that purifying selection should be evident in hemizygous genomic regions, where damaging mutations cannot be compensated for by healthy alleles. Using a 7,781-sample pan-cancer dataset, we first confirmed this in POLR2A, an essential gene where hemizygous deletions are known to confer elevated sensitivity to pharmacological suppression. We next used this principle to identify several genes and pathways that show patterns indicative of purifying selection to avoid deleterious mutations. These include the POLR2A interacting protein INTS10 as well as genes involved in mRNA splicing, nonsense-mediated mRNA decay and other RNA processing pathways. Many of these genes belong to large protein complexes, and strong overlaps were observed with recent functional screens for gene essentiality in human cells. Our analysis supports that purifying selection acts to preserve the remaining function of many hemizygously deleted essential genes in tumors, indicating vulnerabilities that might be exploited by future therapeutic strategies. PMID:28027311

  14. Clonal hematopoiesis as determined by the HUMARA assay is a marker for acquired mutations in epigenetic regulators in older women.

    PubMed

    Wiedmeier, Julia Erin; Kato, Catherine; Zhang, Zhenzhen; Lee, Hyunjung; Dunlap, Jennifer; Nutt, Eric; Rattray, Rogan; McKay, Sarah; Eide, Christopher; Press, Richard; Mori, Motomi; Druker, Brian; Dao, Kim-Hien

    2016-09-01

    Recent large cohort studies revealed that healthy older individuals harbor somatic mutations that increase their risk for hematologic malignancy and all-cause cardiovascular deaths. The majority of these mutations are in chromatin and epigenetic regulatory genes (CERGs). CERGs play a key role in regulation of DNA methylation (DNMT3A and TET2) and histone function (ASXL1) and in clonal proliferation of hematopoietic stem cells. We hypothesize that older women manifesting clonal hematopoiesis, defined here as a functional phenomenon in which a hematopoietic stem cell has acquired a survival and proliferative advantage, harbor a higher frequency of somatic mutations in CERGs. The human androgen receptor gene (HUMARA) assay was used in our study to detect the presence of nonrandom X inactivation in women, a marker for clonal hematopoiesis. In our pilot study, we tested 127 blood samples from women ≥65 years old without a history of invasive cancer or hematologic malignancies. Applying stringent qualitative criteria, we found that 26% displayed clonal hematopoiesis; 52.8% displayed polyclonal hematopoiesis; and 21.3% had indeterminate patterns (too close to call by qualitative assessment). Using Illumina MiSeq next-generation sequencing, we identified somatic mutations in CERGs in 15.2% of subjects displaying clonal hematopoiesis (three ASXL1 and two DNMT3A mutations with an average variant allele frequency of 15.7%, range: 6.3%-23.3%). In a more limited sequencing analysis, we evaluated the frequency of ASXL1 mutations by Sanger sequencing and found mutations in 9.7% of the clonal samples and 0% of the polyclonal samples. By comparing several recent studies (with some caveats as described), we determined the fold enrichment of detecting CERG mutations by using the HUMARA assay as a functional screen for clonal hematopoiesis. We conclude that a functional assay of clonal hematopoiesis is enriching for older women with somatic mutations in CERGs, particularly for ASXL

  15. Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells.

    PubMed

    Yoshida, Keita; Hozumi, Akiko; Treen, Nicholas; Sakuma, Tetsushi; Yamamoto, Takashi; Shirae-Kurabayashi, Maki; Sasakura, Yasunori

    2017-03-15

    The ascidian Ciona intestinalis has a high regeneration capacity that enables the regeneration of artificially removed primordial germ cells (PGCs) from somatic cells. We utilized PGC regeneration to establish efficient methods of germ line mutagenesis with transcription activator-like effector nucleases (TALENs). When PGCs were artificially removed from animals in which a TALEN pair was expressed, somatic cells harboring mutations in the target gene were converted into germ cells, this germ cell population exhibited higher mutation rates than animals not subjected to PGC removal. PGC regeneration enables us to use TALEN expression vectors of specific somatic tissues for germ cell mutagenesis. Unexpectedly, cis elements for epidermis, neural tissue and muscle could be used for germ cell mutagenesis, indicating there are multiple sources of regenerated PGCs, suggesting a flexibility of differentiated Ciona somatic cells to regain totipotency. Sperm and eggs of a single hermaphroditic, PGC regenerated animal typically have different mutations, suggesting they arise from different cells. PGCs can be generated from somatic cells even though the maternal PGCs are not removed, suggesting that the PGC regeneration is not solely an artificial event but could have an endogenous function in Ciona. This study provides a technical innovation in the genome-editing methods, including easy establishment of mutant lines. Moreover, this study suggests cellular mechanisms and the potential evolutionary significance of PGC regeneration in Ciona. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Germline MC1R status influences somatic mutation burden in melanoma.

    PubMed

    Robles-Espinoza, Carla Daniela; Roberts, Nicola D; Chen, Shuyang; Leacy, Finbarr P; Alexandrov, Ludmil B; Pornputtapong, Natapol; Halaban, Ruth; Krauthammer, Michael; Cui, Rutao; Timothy Bishop, D; Adams, David J

    2016-07-12

    The major genetic determinants of cutaneous melanoma risk in the general population are disruptive variants (R alleles) in the melanocortin 1 receptor (MC1R) gene. These alleles are also linked to red hair, freckling, and sun sensitivity, all of which are known melanoma phenotypic risk factors. Here we report that in melanomas and for somatic C>T mutations, a signature linked to sun exposure, the expected single-nucleotide variant count associated with the presence of an R allele is estimated to be 42% (95% CI, 15-76%) higher than that among persons without an R allele. This figure is comparable to the expected mutational burden associated with an additional 21 years of age. We also find significant and similar enrichment of non-C>T mutation classes supporting a role for additional mutagenic processes in melanoma development in individuals carrying R alleles.

  17. Coexistence of EGFR with KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts

    PubMed Central

    Li, S; Li, L; Zhu, Y; Huang, C; Qin, Y; Liu, H; Ren-Heidenreich, L; Shi, B; Ren, H; Chu, X; Kang, J; Wang, W; Xu, J; Tang, K; Yang, H; Zheng, Y; He, J; Yu, G; Liang, N

    2014-01-01

    Background: Determining the somatic mutations of epidermal growth factor receptor (EGFR)-pathway networks is the key to effective treatment for non-small cell lung cancer (NSCLC) with tyrosine kinase inhibitors (TKIs).The somatic mutation frequencies and their association with gender, smoking history and histology was analysed and reported in this study. Methods: Five thousand one hundred and twenty-five NSCLC patients' pathology samples were collected, and EGFR, KRAS, BRAF and PIK3CA mutations were detected by multiplex testing. The mutation status of EGFR, KRAS, BRAF and PIK3CA and their association with gender, age, smoking history and histological type were evaluated by appropriate statistical analysis. Results: EGFR, KRAS, BRAF and PIK3CA mutation rates revealed 36.2%, 8.4%, 0.5% and 3.3%, respectively, across the 5125 pathology samples. For the first time, evidence of KRAS mutations were detected in two female, non-smoking patients, age 5 and 14, with NSCLC. Furthermore, we identified 153 double and coexisting mutations and 7 triple mutations. Interestingly, the second drug-resistant mutations, T790M or E545K, were found in 44 samples from patients who had never received TKI treatments. Conclusions: EGFR exons 19, 20 and 21, and BRAF mutations tend to happen in females and non-smokers, whereas KRAS mutations were more inclined to males and smokers. Activating and resistant mutations to EGFR-TKI drugs can coexist and ‘second drug-resistant mutations', T790M or E545K, may be primary mutations in some patients. These results will help oncologists to decide candidates for mutation testing and EGFR-TKI treatment. PMID:24743704

  18. Cutaneous skeletal hypophosphatemia syndrome (CSHS) is a multilineage somatic mosaic RASopathy.

    PubMed

    Lim, Young H; Ovejero, Diana; Derrick, Kristina M; Collins, Michael T; Choate, Keith A

    2016-08-01

    We recently demonstrated multilineage somatic mosaicism in cutaneous skeletal hypophosphatemia syndrome (CSHS), which features epidermal or melanocytic nevi, elevated fibroblast growth factor (FGF)-23, and hypophosphatemia, finding identical RAS mutations in affected skin and bone. We sought to: (1) provide an updated overview of CSHS; (2) review its pathobiology; (3) present a new patient with CSHS; and (4) discuss treatment modalities. We searched PubMed for "nevus AND rickets," and "nevus AND hypophosphatemia," identifying cases of nevi with hypophosphatemic rickets or elevated serum FGF-23. For our additional patient with CSHS, we performed histopathologic and radiographic surveys of skin and skeletal lesions, respectively. Sequencing was performed for HRAS, KRAS, and NRAS to determine causative mutations. Our new case harbored somatic activating HRAS p.G13 R mutation in affected tissue, consistent with previous findings. Although the mechanism of FGF-23 dysregulation is unknown in CSHS, interaction between FGF and MAPK pathways may provide insight into pathobiology. Anti-FGF-23 antibody KRN-23 may be useful in managing CSHS. Multilineage RAS mutation in CSHS was recently identified; further studies on mechanism are unavailable. Patients with nevi in association with skeletal disease should be evaluated for serum phosphate and FGF-23. Further studies investigating the role of RAS in FGF-23 regulation are needed. Published by Elsevier Inc.

  19. Next-Generation Sequencing of Matched Primary and Metastatic Rectal Adenocarcinomas Demonstrates Minimal Mutation Gain and Concordance to Colonic Adenocarcinomas.

    PubMed

    Crumley, Suzanne M; Pepper, Kristi L; Phan, Alexandria T; Olsen, Randall J; Schwartz, Mary R; Portier, Bryce P

    2016-06-01

    -Colorectal carcinoma is the third most common cause of cancer death in males and females in the United States. Rectal adenocarcinoma can have distinct therapeutic and surgical management from colonic adenocarcinoma owing to its location and anatomic considerations. -To determine the oncologic driver mutations and better understand the molecular pathogenesis of rectal adenocarcinoma in relation to colon adenocarcinoma. -Next-generation sequencing was performed on 20 cases of primary rectal adenocarcinoma with a paired lymph node or solid organ metastasis by using an amplicon-based assay of more than 2800 Catalogue of Somatic Mutations in Cancer (COSMIC)-identified somatic mutations. -Next-generation sequencing data were obtained on both the primary tumor and metastasis from 16 patients. Most rectal adenocarcinoma cases demonstrated identical mutations in the primary tumor and metastasis (13 of 16, 81%). The mutations identified, listed in order of frequency, included TP53, KRAS, APC, FBXW7, GNAS, FGFR3, BRAF, NRAS, PIK3CA, and SMAD4. -The somatic mutations identified in our rectal adenocarcinoma cohort showed a strong correlation to those previously characterized in colonic adenocarcinoma. In addition, most rectal adenocarcinomas harbored identical somatic mutations in both the primary tumor and metastasis. These findings demonstrate evidence that rectal adenocarcinoma follows a similar molecular pathogenesis as colonic adenocarcinoma and that sampling either the primary or metastatic lesion is valid for initial evaluation of somatic mutations and selection of possible targeted therapy.

  20. Abnormal Expressions of DNA Glycosylase Genes NEIL1, NEIL2, and NEIL3 Are Associated with Somatic Mutation Loads in Human Cancer.

    PubMed

    Shinmura, Kazuya; Kato, Hisami; Kawanishi, Yuichi; Igarashi, Hisaki; Goto, Masanori; Tao, Hong; Inoue, Yusuke; Nakamura, Satoki; Misawa, Kiyoshi; Mineta, Hiroyuki; Sugimura, Haruhiko

    2016-01-01

    The effects of abnormalities in the DNA glycosylases NEIL1, NEIL2, and NEIL3 on human cancer have not been fully elucidated. In this paper, we found that the median somatic total mutation loads and the median somatic single nucleotide mutation loads exhibited significant inverse correlations with the median NEIL1 and NEIL2 expression levels and a significant positive correlation with the median NEIL3 expression level using data for 13 cancer types from the Cancer Genome Atlas (TCGA) database. A subset of the cancer types exhibited reduced NEIL1 and NEIL2 expressions and elevated NEIL3 expression, and such abnormal expressions of NEIL1, NEIL2, and NEIL3 were also significantly associated with the mutation loads in cancer. As a mechanism underlying the reduced expression of NEIL1 in cancer, the epigenetic silencing of NEIL1 through promoter hypermethylation was found. Finally, we investigated the reason why an elevated NEIL3 expression level was associated with an increased number of somatic mutations in cancer and found that NEIL3 expression was positively correlated with the expression of APOBEC3B, a potent inducer of mutations, in diverse cancers. These results suggested that the abnormal expressions of NEIL1, NEIL2, and NEIL3 are involved in cancer through their association with the somatic mutation load.

  1. Novel somatic and germline mutations in intracranial germ cell tumours.

    PubMed

    Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M; Gibbs, Richard A; Leal, Suzanne M; Wheeler, David A; Lau, Ching C

    2014-07-10

    Intracranial germ cell tumours (IGCTs) are a group of rare heterogeneous brain tumours that are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographical and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically five- to eightfold greater in Japan and other East Asian countries than in Western countries, with peak incidence near the time of puberty. About half of the tumours are located in the pineal region. The male-to-female incidence ratio is approximately 3-4:1 overall, but is even higher for tumours located in the pineal region. Owing to the scarcity of tumour specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next-generation sequencing, single nucleotide polymorphism array and expression array. We find the KIT/RAS signalling pathway frequently mutated in more than 50% of IGCTs, including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gains of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional co-repressor and tumour suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, which codes for a histone demethylase and is a coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway.

  2. Novel somatic and germline mutations in intracranial germ cell tumors

    PubMed Central

    Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D.; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M.; Gibbs, Richard A.; Leal, Suzanne M.; Wheeler, David A.; Lau, Ching C.

    2015-01-01

    Intracranial germ cell tumors (IGCTs) are a group of rare heterogeneous brain tumors which are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographic and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically 5–8 fold greater in Japan and other East Asian countries than in Western countries1 with peak incidence near the time of puberty2. About half of the tumors are located in the pineal region. The male-to-female incidence ratio is approximately 3–4:1 overall but even higher for tumors located in the pineal region3. Due to the scarcity of tumor specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next generation sequencing, SNP array and expression array. We find the KIT/RAS signaling pathway frequently mutated in over 50% of IGCTs including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gain of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional corepressor and tumor suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, a histone demethylase and coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway. PMID:24896186

  3. Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation.

    PubMed

    Diaz, M; Velez, J; Singh, M; Cerny, J; Flajnik, M F

    1999-05-01

    The pattern of somatic mutations of shark and frog Ig is distinct from somatic hypermutation of Ig in mammals in that there is a bias to mutate GC base pairs and a low frequency of mutations. Previous analysis of the new antigen receptor gene in nurse sharks (NAR), however, revealed no bias to mutate GC base pairs and the frequency of mutation was comparable to that of mammalian IgG. Here, we analyzed 1023 mutations in NAR and found no targeting of the mechanism to any particular nucleotide but did obtain strong evidence for a transition bias and for strand polarity. As seen for all species studied to date, the serine codon AGC/T in NAR was a mutational hotspot. The NAR mutational pattern is most similar to that of mammalian IgG and furthermore both are strikingly akin to mutations acquired during the neutral evolution of nuclear pseudogenes, suggesting that a similar mechanism is at work for both processes. In yeast, most spontaneous mutations are introduced by the translesion synthesis DNA polymerase zeta (REV3) and in various DNA repair-deficient backgrounds transitions were more often REV3-dependent than were transversions. Therefore, we propose a model of somatic hypermutation where DNA polymerase zeta is recruited to the Ig locus. An excess of DNA glycosylases in germinal center reactions may further enhance the mutation frequency by a REV3-dependent mutagenic process known as imbalanced base excision repair.

  4. Identification of two poorly prognosed ovarian carcinoma subtypes associated with CHEK2 germ-line mutation and non-CHEK2 somatic mutation gene signatures.

    PubMed

    Ow, Ghim Siong; Ivshina, Anna V; Fuentes, Gloria; Kuznetsov, Vladimir A

    2014-01-01

    High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-function mutations in BRCA1/2 predispose to cancer in 9.5-13% of EOC patients. However, the overall burden of disease due to either inherited or sporadic mutations is not known. We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes potentially driven by either hereditary or sporadic factors. We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of mutations at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature. Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understanding of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations.

  5. Identification of two poorly prognosed ovarian carcinoma subtypes associated with CHEK2 germ-line mutation and non-CHEK2 somatic mutation gene signatures

    PubMed Central

    Ow, Ghim Siong; Ivshina, Anna V; Fuentes, Gloria; Kuznetsov, Vladimir A

    2014-01-01

    High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-function mutations in BRCA1/2 predispose to cancer in 9.5–13% of EOC patients. However, the overall burden of disease due to either inherited or sporadic mutations is not known.     We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes potentially driven by either hereditary or sporadic factors. We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of mutations at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature. Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understanding of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations. PMID:24879340

  6. DNA polymerase θ contributes to the generation of C/G mutations during somatic hypermutation of Ig genes

    PubMed Central

    Masuda, Keiji; Ouchida, Rika; Takeuchi, Arata; Saito, Takashi; Koseki, Haruhiko; Kawamura, Kiyoko; Tagawa, Masatoshi; Tokuhisa, Takeshi; Azuma, Takachika; O-Wang, Jiyang

    2005-01-01

    Somatic hypermutation of Ig variable region genes is initiated by activation-induced cytidine deaminase; however, the activity of multiple DNA polymerases is required to ultimately introduce mutations. DNA polymerase η (Polη) has been implicated in mutations at A/T, but polymerases involved in C/G mutations have not been identified. We have generated mutant mice expressing DNA polymerase (Polθ) specifically devoid of polymerase activity. Compared with WT mice, Polq-inactive (Polq, the gene encoding Polθ) mice exhibited a reduced level of serum IgM and IgG1. The mutant mice mounted relatively normal primary and secondary immune responses to a T-dependent antigen, but the production of high-affinity specific antibodies was partially impaired. Analysis of the JH4 intronic sequences revealed a slight reduction in the overall mutation frequency in Polq-inactive mice. Remarkably, although mutations at A/T were unaffected, mutations at C/G were significantly decreased, indicating an important, albeit not exclusive, role for Polθ activity. The reduction of C/G mutations was particularly focused on the intrinsic somatic hypermutation hotspots and both transitions and transversions were similarly reduced. These findings, together with the recent observation that Polθ efficiently catalyzes the bypass of abasic sites, lead us to propose that Polθ introduces mutations at C/G by replicating over abasic sites generated via uracil-DNA glycosylase. PMID:16172387

  7. SomInaClust: detection of cancer genes based on somatic mutation patterns of inactivation and clustering.

    PubMed

    Van den Eynden, Jimmy; Fierro, Ana Carolina; Verbeke, Lieven P C; Marchal, Kathleen

    2015-04-23

    With the advances in high throughput technologies, increasing amounts of cancer somatic mutation data are being generated and made available. Only a small number of (driver) mutations occur in driver genes and are responsible for carcinogenesis, while the majority of (passenger) mutations do not influence tumour biology. In this study, SomInaClust is introduced, a method that accurately identifies driver genes based on their mutation pattern across tumour samples and then classifies them into oncogenes or tumour suppressor genes respectively. SomInaClust starts from the observation that oncogenes mainly contain mutations that, due to positive selection, cluster at similar positions in a gene across patient samples, whereas tumour suppressor genes contain a high number of protein-truncating mutations throughout the entire gene length. The method was shown to prioritize driver genes in 9 different solid cancers. Furthermore it was found to be complementary to existing similar-purpose methods with the additional advantages that it has a higher sensitivity, also for rare mutations (occurring in less than 1% of all samples), and it accurately classifies candidate driver genes in putative oncogenes and tumour suppressor genes. Pathway enrichment analysis showed that the identified genes belong to known cancer signalling pathways, and that the distinction between oncogenes and tumour suppressor genes is biologically relevant. SomInaClust was shown to detect candidate driver genes based on somatic mutation patterns of inactivation and clustering and to distinguish oncogenes from tumour suppressor genes. The method could be used for the identification of new cancer genes or to filter mutation data for further data-integration purposes.

  8. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia.

    PubMed

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W; Papadopoulos, Nickolas; Malek, Sami N

    2011-11-24

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML.

  9. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia

    PubMed Central

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W.

    2011-01-01

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML. PMID:21989985

  10. Somatic activating mutations in MAP2K1 cause melorheostosis.

    PubMed

    Kang, Heeseog; Jha, Smita; Deng, Zuoming; Fratzl-Zelman, Nadja; Cabral, Wayne A; Ivovic, Aleksandra; Meylan, Françoise; Hanson, Eric P; Lange, Eileen; Katz, James; Roschger, Paul; Klaushofer, Klaus; Cowen, Edward W; Siegel, Richard M; Marini, Joan C; Bhattacharyya, Timothy

    2018-04-11

    Melorheostosis is a sporadic disease of uncertain etiology characterized by asymmetric bone overgrowth and functional impairment. Using whole exome sequencing, we identify somatic mosaic MAP2K1 mutations in affected, but not unaffected, bone of eight unrelated patients with melorheostosis. The activating mutations (Q56P, K57E and K57N) cluster tightly in the MEK1 negative regulatory domain. Affected bone displays a mosaic pattern of increased p-ERK1/2 in osteoblast immunohistochemistry. Osteoblasts cultured from affected bone comprise two populations with distinct p-ERK1/2 levels by flow cytometry, enhanced ERK1/2 activation, and increased cell proliferation. However, these MAP2K1 mutations inhibit BMP2-mediated osteoblast mineralization and differentiation in vitro, underlying the markedly increased osteoid detected in affected bone histology. Mosaicism is also detected in the skin overlying bone lesions in four of five patients tested. Our data show that the MAP2K1 oncogene is important in human bone formation and implicate MEK1 inhibition as a potential treatment avenue for melorheostosis.

  11. ExScalibur: A High-Performance Cloud-Enabled Suite for Whole Exome Germline and Somatic Mutation Identification.

    PubMed

    Bao, Riyue; Hernandez, Kyle; Huang, Lei; Kang, Wenjun; Bartom, Elizabeth; Onel, Kenan; Volchenboum, Samuel; Andrade, Jorge

    2015-01-01

    Whole exome sequencing has facilitated the discovery of causal genetic variants associated with human diseases at deep coverage and low cost. In particular, the detection of somatic mutations from tumor/normal pairs has provided insights into the cancer genome. Although there is an abundance of publicly-available software for the detection of germline and somatic variants, concordance is generally limited among variant callers and alignment algorithms. Successful integration of variants detected by multiple methods requires in-depth knowledge of the software, access to high-performance computing resources, and advanced programming techniques. We present ExScalibur, a set of fully automated, highly scalable and modulated pipelines for whole exome data analysis. The suite integrates multiple alignment and variant calling algorithms for the accurate detection of germline and somatic mutations with close to 99% sensitivity and specificity. ExScalibur implements streamlined execution of analytical modules, real-time monitoring of pipeline progress, robust handling of errors and intuitive documentation that allows for increased reproducibility and sharing of results and workflows. It runs on local computers, high-performance computing clusters and cloud environments. In addition, we provide a data analysis report utility to facilitate visualization of the results that offers interactive exploration of quality control files, read alignment and variant calls, assisting downstream customization of potential disease-causing mutations. ExScalibur is open-source and is also available as a public image on Amazon cloud.

  12. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly.

    PubMed

    Rios, Jonathan J; Paria, Nandina; Burns, Dennis K; Israel, Bonnie A; Cornelia, Reuel; Wise, Carol A; Ezaki, Marybeth

    2013-02-01

    Macrodactyly is a discrete congenital anomaly consisting of enlargement of all tissues localized to the terminal portions of a limb, typically within a 'nerve territory'. The classic terminology for this condition is 'lipofibromatous hamartoma of nerve' or Type I macrodactyly. The peripheral nerve, itself, is enlarged both in circumference and in length. It is not related to neurofibromatosis (NF1), nor is it associated with vascular malformations, such as in the recently reported CLOVES syndrome. The specific nerve pathophysiology in this form of macrodactyly has not been well described and a genetic etiology for this specific form of enlargement is unknown. To identify the genetic cause of macrodactyly, we used whole-exome sequencing to identify somatic mutations present in the affected nerve of a single patient. We confirmed a novel mutation in PIK3CA (R115P) present in the patient's affected nerve tissue but not in blood DNA. Sequencing PIK3CA exons identified gain-of-function mutations (E542K, H1047L or H1047R) in the affected tissue of five additional unrelated patients; mutations were absent in blood DNA available from three patients. Immunocytochemistry confirmed AKT activation in cultured cells from the nerve of a macrodactyly patient. Additionally, we found that the most abnormal structure within the involved nerve in a macrodactylous digit is the perineurium, with additional secondary effects on the axon number and size. Thus, isolated congenital macrodactyly is caused by somatic activation of the PI3K/AKT cell-signaling pathway and is genetically and biochemically related to other overgrowth syndromes.

  13. Germline and somatic polymerase ε and δ mutations define a new class of hypermutated colorectal and endometrial cancers

    PubMed Central

    Briggs, Sarah; Tomlinson, Ian

    2013-01-01

    Polymerases ϵ and δ are the main enzymes that replicate eukaryotic DNA. Accurate replication occurs through Watson–Crick base pairing and also through the action of the polymerases' exonuclease (proofreading) domains. We have recently shown that germline exonuclease domain mutations (EDMs) of POLE and POLD1 confer a high risk of multiple colorectal adenomas and carcinoma (CRC). POLD1 mutations also predispose to endometrial cancer (EC). These mutations are associated with high penetrance and dominant inheritance, although the phenotype can be variable. We have named the condition polymerase proofreading-associated polyposis (PPAP). Somatic POLE EDMs have also been found in sporadic CRCs and ECs, although very few somatic POLD1 EDMs have been detected. Both the germline and the somatic DNA polymerase EDMs cause an ‘ultramutated’, apparently microsatellite-stable, type of cancer, sometimes leading to over a million base substitutions per tumour. Here, we present the evidence for POLE and POLD1 as important contributors to the pathogenesis of CRC and EC, and highlight some of the key questions in this emerging field. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd PMID:23447401

  14. UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model.

    PubMed

    Wang, Jake; Perry, Curtis J; Meeth, Katrina; Thakral, Durga; Damsky, William; Micevic, Goran; Kaech, Susan; Blenman, Kim; Bosenberg, Marcus

    2017-07-01

    Human melanomas exhibit relatively high somatic mutation burden compared to other malignancies. These somatic mutations may produce neoantigens that are recognized by the immune system, leading to an antitumor response. By irradiating a parental mouse melanoma cell line carrying three driver mutations with UVB and expanding a single-cell clone, we generated a mutagenized model that exhibits high somatic mutation burden. When inoculated at low cell numbers in immunocompetent C57BL/6J mice, YUMMER1.7 (Yale University Mouse Melanoma Exposed to Radiation) regresses after a brief period of growth. This regression phenotype is dependent on T cells as YUMMER1.7 tumors grow significantly faster in immunodeficient Rag1 -/- mice and C57BL/6J mice depleted of CD4 and CD8 T cells. Interestingly, regression can be overcome by injecting higher cell numbers of YUMMER1.7, which results in tumors that grow without effective rejection. Mice that have previously rejected YUMMER1.7 tumors develop immunity against higher doses of YUMMER1.7 tumor challenge. In addition, escaping YUMMER1.7 tumors are sensitive to anti-CTLA-4 and anti-PD-1 therapy, establishing a new model for the evaluation of immune checkpoint inhibition and antitumor immune responses. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Genotoxicity testing of different types of beverages in the Drosophila wing Somatic Mutation And Recombination Test.

    PubMed

    Graf, U; Moraga, A A; Castro, R; Díaz Carrillo, E

    1994-05-01

    Five wines and one brandy of Spanish origin as well as three herbal teas and ordinary black tea were tested for genotoxicity in the wing Somatic Mutation And Recombination Test (SMART) which makes use of the two recessive wing cell markers multiple wing hairs (mwh) and flare (flr3) on the left arm of chromosome 3 of Drosophila melanogaster. 3-day-old larvae trans-heterozygous for these two markers were fed the beverages at different concentrations and for different feeding periods using Drosophila instant medium. Somatic mutations or mitotic recombinations induced in the cells of the wing imaginal discs give rise to mutant single or twin spots on the wing blade of the emerging adult flies showing either the mwh phenotype or/and the flr phenotype. One of the red wines showed a clear genotoxic activity that was not due to its ethanol content. Two herbal teas (Urtica dioica, Achillea millefolium) and black tea (Camellia sinensis) proved to be weakly genotoxic as well. Furthermore, it was shown that quercetin and rutin, two flavonols present in beverages of plant origin, also exhibited weak genotoxic activity in the somatic cells of Drosophila. These results demonstrate that Drosophila in vivo somatic assays can detect the genotoxicity of complex mixtures such as beverages. In particular, it is possible to administer these test materials in the same form as that in which they are normally consumed.

  16. KIT mutations in Russian patients with mucosal melanoma.

    PubMed

    Abysheva, Svetlana N; Iyevleva, Aglaya G; Efimova, Nina V; Mokhina, Yulia B; Sabirova, Feruza A; Ivantsov, Alexandr O; Artemieva, Anna S; Togo, Alexandr V; Moiseyenko, Vladimir M; Matsko, Dmitry E; Imyanitov, Evgeny N

    2011-12-01

    A single institution series of 48 mucosal melanomas (MMs) has been analyzed for the presence of KIT mutations using high-resolution melting and sequencing of abnormally melted DNA fragments. The analysis of exons 9, 11, 13, and 17 has revealed eight of 48 (17%) nonsynonymous alterations, including zero of seven head and neck, six of 24 anorectal, one of 15 genitourinary, one of one gastric, and zero of one mediastinal MMs. Seven of these mutations were potentially associated with the tumor sensitivity to KIT tyrosine kinase inhibitors. One tumor harbored somatically acquired silent nucleotide substitution c.1383A>G (T461T). This study adds to the evidence that a substantial portion of MMs carry a therapeutically relevant mutation in the KIT oncogene.

  17. Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia

    PubMed Central

    Lim, Young H.; Ovejero, Diana; Sugarman, Jeffrey S.; DeKlotz, Cynthia M.C.; Maruri, Ann; Eichenfield, Lawrence F.; Kelley, Patrick K.; Jüppner, Harald; Gottschalk, Michael; Tifft, Cynthia J.; Gafni, Rachel I.; Boyce, Alison M.; Cowen, Edward W.; Bhattacharyya, Nisan; Guthrie, Lori C.; Gahl, William A.; Golas, Gretchen; Loring, Erin C.; Overton, John D.; Mane, Shrikant M.; Lifton, Richard P.; Levy, Moise L.; Collins, Michael T.; Choate, Keith A.

    2014-01-01

    Pathologically elevated serum levels of fibroblast growth factor-23 (FGF23), a bone-derived hormone that regulates phosphorus homeostasis, result in renal phosphate wasting and lead to rickets or osteomalacia. Rarely, elevated serum FGF23 levels are found in association with mosaic cutaneous disorders that affect large proportions of the skin and appear in patterns corresponding to the migration of ectodermal progenitors. The cause and source of elevated serum FGF23 is unknown. In those conditions, such as epidermal and large congenital melanocytic nevi, skin lesions are variably associated with other abnormalities in the eye, brain and vasculature. The wide distribution of involved tissues and the appearance of multiple segmental skin and bone lesions suggest that these conditions result from early embryonic somatic mutations. We report five such cases with elevated serum FGF23 and bone lesions, four with large epidermal nevi and one with a giant congenital melanocytic nevus. Exome sequencing of blood and affected skin tissue identified somatic activating mutations of HRAS or NRAS in each case without recurrent secondary mutation, and we further found that the same mutation is present in dysplastic bone. Our finding of somatic activating RAS mutation in bone, the endogenous source of FGF23, provides the first evidence that elevated serum FGF23 levels, hypophosphatemia and osteomalacia are associated with pathologic Ras activation and may provide insight in the heretofore limited understanding of the regulation of FGF23. PMID:24006476

  18. Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia.

    PubMed

    Lim, Young H; Ovejero, Diana; Sugarman, Jeffrey S; Deklotz, Cynthia M C; Maruri, Ann; Eichenfield, Lawrence F; Kelley, Patrick K; Jüppner, Harald; Gottschalk, Michael; Tifft, Cynthia J; Gafni, Rachel I; Boyce, Alison M; Cowen, Edward W; Bhattacharyya, Nisan; Guthrie, Lori C; Gahl, William A; Golas, Gretchen; Loring, Erin C; Overton, John D; Mane, Shrikant M; Lifton, Richard P; Levy, Moise L; Collins, Michael T; Choate, Keith A

    2014-01-15

    Pathologically elevated serum levels of fibroblast growth factor-23 (FGF23), a bone-derived hormone that regulates phosphorus homeostasis, result in renal phosphate wasting and lead to rickets or osteomalacia. Rarely, elevated serum FGF23 levels are found in association with mosaic cutaneous disorders that affect large proportions of the skin and appear in patterns corresponding to the migration of ectodermal progenitors. The cause and source of elevated serum FGF23 is unknown. In those conditions, such as epidermal and large congenital melanocytic nevi, skin lesions are variably associated with other abnormalities in the eye, brain and vasculature. The wide distribution of involved tissues and the appearance of multiple segmental skin and bone lesions suggest that these conditions result from early embryonic somatic mutations. We report five such cases with elevated serum FGF23 and bone lesions, four with large epidermal nevi and one with a giant congenital melanocytic nevus. Exome sequencing of blood and affected skin tissue identified somatic activating mutations of HRAS or NRAS in each case without recurrent secondary mutation, and we further found that the same mutation is present in dysplastic bone. Our finding of somatic activating RAS mutation in bone, the endogenous source of FGF23, provides the first evidence that elevated serum FGF23 levels, hypophosphatemia and osteomalacia are associated with pathologic Ras activation and may provide insight in the heretofore limited understanding of the regulation of FGF23.

  19. Germline PMS2 and somatic POLE exonuclease mutations cause hypermutability of the leading DNA strand in biallelic mismatch repair deficiency syndrome brain tumours.

    PubMed

    Andrianova, Maria A; Chetan, Ghati Kasturirangan; Sibin, Madathan Kandi; Mckee, Thomas; Merkler, Doron; Narasinga, Rao Kvl; Ribaux, Pascale; Blouin, Jean-Louis; Makrythanasis, Periklis; Seplyarskiy, Vladimir B; Antonarakis, Stylianos E; Nikolaev, Sergey I

    2017-11-01

    Biallelic mismatch repair deficiency (bMMRD) in tumours is frequently associated with somatic mutations in the exonuclease domains of DNA polymerases POLE or POLD1, and results in a characteristic mutational profile. In this article, we describe the genetic basis of ultramutated high-grade brain tumours in the context of bMMRD. We performed exome sequencing of two second-cousin patients from a large consanguineous family of Indian origin with early onset of high-grade glioblastoma and astrocytoma. We identified a germline homozygous nonsense variant, p.R802*, in the PMS2 gene. Additionally, by genome sequencing of these tumours, we found extremely high somatic mutation rates (237/Mb and 123/Mb), as well as somatic mutations in the proofreading domain of POLE polymerase (p.P436H and p.L424V), which replicates the leading DNA strand. Most interestingly, we found, in both cancers, that the vast majority of mutations were consistent with the signature of POLE exo - , i.e. an abundance of C>A and C>T mutations, particularly in special contexts, on the leading strand. We showed that the fraction of mutations under positive selection among mutations in tumour suppressor genes is more than two-fold lower in ultramutated tumours than in other glioblastomas. Genetic analyses enabled the diagnosis of the two consanguineous childhood brain tumours as being due to a combination of PMS2 germline and POLE somatic variants, and confirmed them as bMMRD/POLE exo - disorders. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. ExScalibur: A High-Performance Cloud-Enabled Suite for Whole Exome Germline and Somatic Mutation Identification

    PubMed Central

    Huang, Lei; Kang, Wenjun; Bartom, Elizabeth; Onel, Kenan; Volchenboum, Samuel; Andrade, Jorge

    2015-01-01

    Whole exome sequencing has facilitated the discovery of causal genetic variants associated with human diseases at deep coverage and low cost. In particular, the detection of somatic mutations from tumor/normal pairs has provided insights into the cancer genome. Although there is an abundance of publicly-available software for the detection of germline and somatic variants, concordance is generally limited among variant callers and alignment algorithms. Successful integration of variants detected by multiple methods requires in-depth knowledge of the software, access to high-performance computing resources, and advanced programming techniques. We present ExScalibur, a set of fully automated, highly scalable and modulated pipelines for whole exome data analysis. The suite integrates multiple alignment and variant calling algorithms for the accurate detection of germline and somatic mutations with close to 99% sensitivity and specificity. ExScalibur implements streamlined execution of analytical modules, real-time monitoring of pipeline progress, robust handling of errors and intuitive documentation that allows for increased reproducibility and sharing of results and workflows. It runs on local computers, high-performance computing clusters and cloud environments. In addition, we provide a data analysis report utility to facilitate visualization of the results that offers interactive exploration of quality control files, read alignment and variant calls, assisting downstream customization of potential disease-causing mutations. ExScalibur is open-source and is also available as a public image on Amazon cloud. PMID:26271043

  1. Clinical characteristics of non-small cell lung cancer harboring mutations in exon 20 of EGFR or HER2.

    PubMed

    Takeda, Masayuki; Sakai, Kazuko; Hayashi, Hidetoshi; Tanaka, Kaoru; Tanizaki, Junko; Takahama, Takayuki; Haratani, Koji; Nishio, Kazuto; Nakagawa, Kazuhiko

    2018-04-20

    Unlike common epidermal growth factor receptor gene ( EGFR ) mutations that confer sensitivity to tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC), mutations in exon 20 of either EGFR or the human EGFR2 gene ( HER2 ) are associated with insensitivity to EGFR-TKIs, with treatment options for patients with such mutations being limited. Clinical characteristics, outcome of EGFR-TKI or nivolumab treatment, and the presence of coexisting mutations were reviewed for NSCLC patients with exon-20 mutations of EGFR or HER2 as detected by routine application of an amplicon-based next-generation sequencing panel. Between July 2013 and June 2017, 206 patients with pathologically confirmed lung cancer were screened for genetic alterations including HER2 and EGFR mutations. Ten patients harbored HER2 exon-20 insertions (one of whom also carried an exon-19 deletion of EGFR ), and 12 patients harbored EGFR exon-20 mutations. Five of the 13 patients with EGFR mutations were treated with EGFR-TKIs, two of whom manifested a partial response, two stable disease, and one progressive disease. Among the seven patients treated with nivolumab, one patient manifested a partial response, three stable disease, and three progressive disease, with most (86%) of these patients discontinuing treatment as a result of disease progression within 4 months. The H1047R mutation of PIK3CA detected in one patient was the only actionable mutation coexisting with the exon-20 mutations of EGFR or HER2 . Potentially actionable mutations thus rarely coexist with exon-20 mutations of EGFR or HER2 , and EGFR-TKIs and nivolumab show limited efficacy in patients with such exon-20 mutations.

  2. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly

    PubMed Central

    Rios, Jonathan J.; Paria, Nandina; Burns, Dennis K.; Israel, Bonnie A.; Cornelia, Reuel; Wise, Carol A.; Ezaki, Marybeth

    2013-01-01

    Macrodactyly is a discrete congenital anomaly consisting of enlargement of all tissues localized to the terminal portions of a limb, typically within a ‘nerve territory’. The classic terminology for this condition is ‘lipofibromatous hamartoma of nerve’ or Type I macrodactyly. The peripheral nerve, itself, is enlarged both in circumference and in length. It is not related to neurofibromatosis (NF1), nor is it associated with vascular malformations, such as in the recently reported CLOVES syndrome. The specific nerve pathophysiology in this form of macrodactyly has not been well described and a genetic etiology for this specific form of enlargement is unknown. To identify the genetic cause of macrodactyly, we used whole-exome sequencing to identify somatic mutations present in the affected nerve of a single patient. We confirmed a novel mutation in PIK3CA (R115P) present in the patient's affected nerve tissue but not in blood DNA. Sequencing PIK3CA exons identified gain-of-function mutations (E542K, H1047L or H1047R) in the affected tissue of five additional unrelated patients; mutations were absent in blood DNA available from three patients. Immunocytochemistry confirmed AKT activation in cultured cells from the nerve of a macrodactyly patient. Additionally, we found that the most abnormal structure within the involved nerve in a macrodactylous digit is the perineurium, with additional secondary effects on the axon number and size. Thus, isolated congenital macrodactyly is caused by somatic activation of the PI3K/AKT cell-signaling pathway and is genetically and biochemically related to other overgrowth syndromes. PMID:23100325

  3. Spectrum of somatic EGFR, KRAS, BRAF, PTEN mutations and TTF-1 expression in Brazilian lung cancer patients.

    PubMed

    Carneiro, Juliana G; Couto, Patricia G; Bastos-Rodrigues, Luciana; Bicalho, Maria Aparecida C; Vidigal, Paula V; Vilhena, Alyne; Amaral, Nilson F; Bale, Allen E; Friedman, Eitan; De Marco, Luiz

    2014-01-01

    Lung cancer is the leading global cause of cancer-related mortality. Inter-individual variability in treatment response and prognosis has been associated with genetic polymorphisms in specific genes: EGFR, KRAS, BRAF, PTEN and TTF-1. Somatic mutations in EGFR and KRAS genes are reported at rates of 15-40% in non-small cell lung cancer (NSCLC) in ethnically diverse populations. BRAF and PTEN are commonly mutated genes in various cancer types, including NSCLC, with PTEN mutations exerting an effect on the therapeutic response of EGFR/AKT/PI3K pathway inhibitors. TTF-1 is expressed in approximately 80% of lung adenocarcinomas and its positivity correlates with higher prevalence of EGFR mutation in this cancer type. To determine molecular markers for lung cancer in Brazilian patients, the rate of the predominant EGFR, KRAS, BRAF and PTEN mutations, as well as TTF-1 expression, was assessed in 88 Brazilian NSCLC patients. EGFR exon 19 deletions (del746-750) were detected in 3/88 (3·4%) patients. Activating KRAS mutations in codons 12 and 61 were noted in five (5·7%) and two (2·3%) patients, respectively. None of the common somatic mutations were detected in either the BRAF or PTEN genes. TTF-1 was overexpressed in 40·7% of squamous-cell carcinoma (SCC). Our findings add to a growing body of data that highlights the genetic heterogeneity of the abnormal EGFR pathway in lung cancer among ethnically diverse populations.

  4. Somatic HLA Mutations Expose the Role of Class I-Mediated Autoimmunity in Aplastic Anemia and its Clonal Complications.

    PubMed

    Babushok, Daria V; Duke, Jamie L; Xie, Hongbo M; Stanley, Natasha; Atienza, Jamie; Perdigones, Nieves; Nicholas, Peter; Ferriola, Deborah; Li, Yimei; Huang, Hugh; Ye, Wenda; Morrissette, Jennifer J D; Kearns, Jane; Porter, David L; Podsakoff, Gregory M; Eisenlohr, Laurence C; Biegel, Jaclyn A; Chou, Stella T; Monos, Dimitrios S; Bessler, Monica; Olson, Timothy S

    2017-10-10

    Acquired aplastic anemia (aAA) is an acquired deficiency of early hematopoietic cells, characterized by inadequate blood production, and a predisposition to myelodysplastic syndrome (MDS) and leukemia. Although its exact pathogenesis is unknown, aAA is thought to be driven by Human Leukocyte Antigen (HLA)-restricted T cell immunity, with earlier studies favoring HLA class II-mediated pathways. Using whole exome sequencing (WES), we recently identified two aAA patients with somatic mutations in HLA class I genes. We hypothesized that HLA class I mutations are pathognomonic for autoimmunity in aAA, but were previously underappreciated because the Major Histocompatibility Complex (MHC) region is notoriously difficult to analyze by WES. Using a combination of targeted deep sequencing of HLA class I genes and single nucleotide polymorphism array (SNP-A) genotyping we screened 66 aAA patients for somatic HLA class I loss. We found somatic HLA loss in eleven patients (17%), with thirteen loss-of-function mutations in HLA-A *33:03, HLA-A *68:01, HLA-B *14:02 and HLA-B *40:02 alleles. Three patients had more than one mutation targeting the same HLA allele. Interestingly, HLA-B *14:02 and HLA-B *40:02 were significantly overrepresented in aAA patients, compared to ethnicity-matched controls. Patients who inherited the targeted HLA alleles, regardless of HLA mutation status, had a more severe disease course with more frequent clonal complications as assessed by WES, SNP-A, and metaphase cytogenetics, and more frequent secondary MDS. The finding of recurrent HLA class I mutations provides compelling evidence for a predominant HLA class I-driven autoimmunity in aAA, and establishes a novel link between aAA patients' immunogenetics and clonal evolution.

  5. Somatic HLA mutations expose the role of class I–mediated autoimmunity in aplastic anemia and its clonal complications

    PubMed Central

    Duke, Jamie L.; Xie, Hongbo M.; Stanley, Natasha; Atienza, Jamie; Perdigones, Nieves; Nicholas, Peter; Ferriola, Deborah; Li, Yimei; Huang, Hugh; Ye, Wenda; Morrissette, Jennifer J. D.; Kearns, Jane; Porter, David L.; Podsakoff, Gregory M.; Eisenlohr, Laurence C.; Biegel, Jaclyn A.; Chou, Stella T.; Monos, Dimitrios S.; Bessler, Monica; Olson, Timothy S.

    2017-01-01

    Acquired aplastic anemia (aAA) is an acquired deficiency of early hematopoietic cells, characterized by inadequate blood production, and a predisposition to myelodysplastic syndrome (MDS) and leukemia. Although its exact pathogenesis is unknown, aAA is thought to be driven by human leukocyte antigen (HLA)–restricted T cell immunity, with earlier studies favoring HLA class II-mediated pathways. Using whole-exome sequencing (WES), we recently identified 2 patients with aAA with somatic mutations in HLA class I genes. We hypothesized that HLA class I mutations are pathognomonic for autoimmunity in aAA, but were previously underappreciated because the major histocompatibility complex (MHC) region is notoriously difficult to analyze by WES. Using a combination of targeted deep sequencing of HLA class I genes and single nucleotide polymorphism array (SNP-A) genotyping, we screened 66 patients with aAA for somatic HLA class I loss. We found somatic HLA loss in 11 patients (17%), with 13 loss-of-function mutations in HLA-A*33:03, HLA-A*68:01, HLA-B*14:02, and HLA-B*40:02 alleles. Three patients had more than 1 mutation targeting the same HLA allele. Interestingly, HLA-B*14:02 and HLA-B*40:02 were significantly overrepresented in patients with aAA compared with ethnicity-matched controls. Patients who inherited the targeted HLA alleles, regardless of HLA mutation status, had a more severe disease course with more frequent clonal complications as assessed by WES, SNP-A, and metaphase cytogenetics, and more frequent secondary MDS. The finding of recurrent HLA class I mutations provides compelling evidence for a predominant HLA class I-driven autoimmunity in aAA and establishes a novel link between immunogenetics and clonal evolution of patients with aAA. PMID:28971166

  6. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin.

    PubMed

    Hodi, F Stephen; Corless, Christopher L; Giobbie-Hurder, Anita; Fletcher, Jonathan A; Zhu, Meijun; Marino-Enriquez, Adrian; Friedlander, Philip; Gonzalez, Rene; Weber, Jeffrey S; Gajewski, Thomas F; O'Day, Steven J; Kim, Kevin B; Lawrence, Donald; Flaherty, Keith T; Luke, Jason J; Collichio, Frances A; Ernstoff, Marc S; Heinrich, Michael C; Beadling, Carol; Zukotynski, Katherine A; Yap, Jeffrey T; Van den Abbeele, Annick D; Demetri, George D; Fisher, David E

    2013-09-10

    Amplifications and mutations in the KIT proto-oncogene in subsets of melanomas provide therapeutic opportunities. We conducted a multicenter phase II trial of imatinib in metastatic mucosal, acral, or chronically sun-damaged (CSD) melanoma with KIT amplifications and/or mutations. Patients received imatinib 400 mg once per day or 400 mg twice per day if there was no initial response. Dose reductions were permitted for treatment-related toxicities. Additional oncogene mutation screening was performed by mass spectroscopy. Twenty-five patients were enrolled (24 evaluable). Eight patients (33%) had tumors with KIT mutations, 11 (46%) with KIT amplifications, and five (21%) with both. Median follow-up was 10.6 months (range, 3.7 to 27.1 months). Best overall response rate (BORR) was 29% (21% excluding nonconfirmed responses) with a two-stage 95% CI of 13% to 51%. BORR was significantly greater than the hypothesized null of 5% and statistically significantly different by mutation status (7 of 13 or 54% KIT mutated v 0% KIT amplified only). There were no statistical differences in rates of progression or survival by mutation status or by melanoma site. The overall disease control rate was 50% but varied significantly by KIT mutation status (77% mutated v 18% amplified). Four patients harbored pretreatment NRAS mutations, and one patient acquired increased KIT amplification after treatment. Melanomas that arise on mucosal, acral, or CSD skin should be assessed for KIT mutations. Imatinib can be effective when tumors harbor KIT mutations, but not if KIT is amplified only. NRAS mutations and KIT copy number gain may be mechanisms of therapeutic resistance to imatinib.

  7. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome.

    PubMed

    Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael

    2017-07-01

    Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.

  8. Efficacy and safety of cytotoxic drug chemotherapy after first-line EGFR-TKI treatment in elderly patients with non-small-cell lung cancer harboring sensitive EGFR mutations.

    PubMed

    Imai, Hisao; Minemura, Hiroyuki; Sugiyama, Tomohide; Yamada, Yutaka; Kaira, Kyoichi; Kanazawa, Kenya; Kasai, Takashi; Kaburagi, Takayuki; Minato, Koichi

    2018-05-08

    Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) is effective as first-line chemotherapy for patients with advanced non-small-cell lung cancer (NSCLC) harboring sensitive EGFR mutations. However, whether the efficacy of second-line cytotoxic drug chemotherapy after first-line EGFR-TKI treatment is similar to that of first-line cytotoxic drug chemotherapy in elderly patients aged ≥ 75 years harboring sensitive EGFR mutations is unclear. Therefore, we aimed to investigate the efficacy and safety of cytotoxic drug chemotherapy after first-line EGFR-TKI treatment in elderly patients with NSCLC harboring sensitive EGFR mutations. We retrospectively evaluated the clinical effects and safety profiles of second-line cytotoxic drug chemotherapy after first-line EGFR-TKI treatment in elderly patients with NSCLC harboring sensitive EGFR mutations (exon 19 deletion/exon 21 L858R mutation). Between April 2008 and December 2015, 78 elderly patients with advanced NSCLC harboring sensitive EGFR mutations received first-line EGFR-TKI at four Japanese institutions. Baseline characteristics, regimens, responses to first- and second-line treatments, whether or not patients received subsequent treatment, and if not, the reasons for non-administration were recorded. Overall, 20 patients with a median age of 79.5 years (range 75-85 years) were included in our analysis. The overall response, disease control, median progression-free survival, and overall survival rates were 15.0, 60.0%, 2.4, and 13.2 months, respectively. Common adverse events included leukopenia, neutropenia, anemia, thrombocytopenia, malaise, and anorexia. Major grade 3 or 4 toxicities included leukopenia (25.0%) and neutropenia (45.0%). No treatment-related deaths were noted. Second-line cytotoxic drug chemotherapy after first-line EGFR-TKI treatment among elderly patients with NSCLC harboring sensitive EGFR mutations was effective and safe and showed equivalent outcomes to first

  9. Somatic Host Cell Alterations in HPV Carcinogenesis

    PubMed Central

    Litwin, Tamara R.; Clarke, Megan A.; Dean, Michael; Wentzensen, Nicolas

    2017-01-01

    High-risk human papilloma virus (HPV) infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and phosphatase and tensin homolog (PTEN), human leukocyte antigen A and B (HLA-A and HLA-B)-A/B, and the transforming growth factor beta (TGFβ) pathway, and rarely have mutations in the tumor protein p53 (TP53) and RB transcriptional corepressor 1 (RB1) tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions. PMID:28771191

  10. Somatic Host Cell Alterations in HPV Carcinogenesis.

    PubMed

    Litwin, Tamara R; Clarke, Megan A; Dean, Michael; Wentzensen, Nicolas

    2017-08-03

    High-risk human papilloma virus (HPV) infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha ( PIK3CA ) and phosphatase and tensin homolog ( PTEN ), human leukocyte antigen A and B ( HLA-A and HLA-B ) -A/B , and the transforming growth factor beta (TGFβ) pathway, and rarely have mutations in the tumor protein p53 ( TP53 ) and RB transcriptional corepressor 1 ( RB1 ) tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions.

  11. Mitochondrial DNA mutations in single human blood cells.

    PubMed

    Yao, Yong-Gang; Kajigaya, Sachiko; Young, Neal S

    2015-09-01

    Determination mitochondrial DNA (mtDNA) sequences from extremely small amounts of DNA extracted from tissue of limited amounts and/or degraded samples is frequently employed in medical, forensic, and anthropologic studies. Polymerase chain reaction (PCR) amplification followed by DNA cloning is a routine method, especially to examine heteroplasmy of mtDNA mutations. In this review, we compare the mtDNA mutation patterns detected by three different sequencing strategies. Cloning and sequencing methods that are based on PCR amplification of DNA extracted from either single cells or pooled cells yield a high frequency of mutations, partly due to the artifacts introduced by PCR and/or the DNA cloning process. Direct sequencing of PCR product which has been amplified from DNA in individual cells is able to detect the low levels of mtDNA mutations present within a cell. We further summarize the findings in our recent studies that utilized this single cell method to assay mtDNA mutation patterns in different human blood cells. Our data show that many somatic mutations observed in the end-stage differentiated cells are found in hematopoietic stem cells (HSCs) and progenitors within the CD34(+) cell compartment. Accumulation of mtDNA variations in the individual CD34+ cells is affected by both aging and family genetic background. Granulocytes harbor higher numbers of mutations compared with the other cells, such as CD34(+) cells and lymphocytes. Serial assessment of mtDNA mutations in a population of single CD34(+) cells obtained from the same donor over time suggests stability of some somatic mutations. CD34(+) cell clones from a donor marked by specific mtDNA somatic mutations can be found in the recipient after transplantation. The significance of these findings is discussed in terms of the lineage tracing of HSCs, aging effect on accumulation of mtDNA mutations and the usage of mtDNA sequence in forensic identification. Copyright © 2015 Elsevier B.V. All rights

  12. Germline and somatic JAK2 mutations and susceptibility to chronic myeloproliferative neoplasms

    PubMed Central

    2009-01-01

    Myeloproliferative neoplasms (MPNs) are a group of closely related stem-cell-derived clonal proliferative diseases. Most cases are sporadic but first-degree relatives of MPN patients have a five- to seven-fold increased risk for developing an MPN. The tumors of most patients carry a mutation in the Janus kinase 2 gene (JAK2V617F). Recently, three groups have described a strong association of JAK2 germline polymorphisms with MPN in patients positive for JAK2V617F. The somatic mutation occurs primarily on one particular germline JAK2 haplotype, which may account for as much as 50% of the risk to first-degree relatives. This finding provides new directions for unraveling the pathogenesis of MPN. PMID:19490586

  13. Somatic POLE exonuclease domain mutations are early events in sporadic endometrial and colorectal carcinogenesis, determining driver mutational landscape, clonal neoantigen burden and immune response.

    PubMed

    Temko, Daniel; Van Gool, Inge C; Rayner, Emily; Glaire, Mark; Makino, Seiko; Brown, Matthew; Chegwidden, Laura; Palles, Claire; Depreeuw, Jeroen; Beggs, Andrew; Stathopoulou, Chaido; Mason, John; Baker, Ann-Marie; Williams, Marc; Cerundolo, Vincenzo; Rei, Margarida; Taylor, Jenny C; Schuh, Anna; Ahmed, Ahmed; Amant, Frédéric; Lambrechts, Diether; Smit, Vincent Thbm; Bosse, Tjalling; Graham, Trevor A; Church, David N; Tomlinson, Ian

    2018-03-31

    Genomic instability, which is a hallmark of cancer, is generally thought to occur in the middle to late stages of tumourigenesis, following the acquisition of permissive molecular aberrations such as TP53 mutation or whole genome doubling. Tumours with somatic POLE exonuclease domain mutations are notable for their extreme genomic instability (their mutation burden is among the highest in human cancer), distinct mutational signature, lymphocytic infiltrate, and excellent prognosis. To what extent these characteristics are determined by the timing of POLE mutations in oncogenesis is unknown. Here, we have shown that pathogenic POLE mutations are detectable in non-malignant precursors of endometrial and colorectal cancer. Using genome and exome sequencing, we found that multiple driver mutations in POLE-mutant cancers show the characteristic POLE mutational signature, including those in genes conventionally regarded as initiators of tumourigenesis. In POLE-mutant cancers, the proportion of monoclonal predicted neoantigens was similar to that in other cancers, but the absolute number was much greater. We also found that the prominent CD8 + T-cell infiltrate present in POLE-mutant cancers was evident in their precursor lesions. Collectively, these data indicate that somatic POLE mutations are early, quite possibly initiating, events in the endometrial and colorectal cancers in which they occur. The resulting early onset of genomic instability may account for the striking immune response and excellent prognosis of these tumours, as well as their early presentation. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  14. Radiological Features of Brain Metastases from Non-small Cell Lung Cancer Harboring EGFR Mutation.

    PubMed

    Takamori, Shinkichi; Toyokawa, Gouji; Shimokawa, Mototsugu; Kinoshita, Fumihiko; Kozuma, Yuka; Matsubara, Taichi; Haratake, Naoki; Akamine, Takaki; Mukae, Nobutaka; Hirai, Fumihiko; Tagawa, Tetsuzo; Oda, Yoshinao; Iwaki, Toru; Iihara, Koji; Honda, Hiroshi; Maehara, Yoshihiko

    2018-06-01

    To investigate the radiological features on computed tomography (CT) of brain metastasis (BM) from epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC). Thirty-four patients with NSCLC with BMs who underwent surgical resection of the BMs at the Department of Neurosurgery, Kyushu University from 2005 to 2016 were enrolled in the study. The EGFR statuses of the 34 BMs were investigated. Radiological features, including the number, size, and location of the tumor, were delineated by CT. Patients with EGFR-mutated BMs had significantly higher frequencies of multiple metastases than those with the non-EGFR-mutated type (p=0.042). BMs harboring mutations in EGFR were more frequently observed in the central area of the brain compared to those without mutations in EGFR (p=0.037). Careful follow-up of patients with EGFR-mutated NSCLC may be necessary given the high frequencies of multiple BMs and their location in the central area of the brain. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. Identical mitochondrial somatic mutations unique to chronic periodontitis and coronary artery disease

    PubMed Central

    Pallavi, Tokala; Chandra, Rampalli Viswa; Reddy, Aileni Amarender; Reddy, Bavigadda Harish; Naveen, Anumala

    2016-01-01

    Context: The inflammatory processes involved in chronic periodontitis and coronary artery diseases (CADs) are similar and produce reactive oxygen species that may result in similar somatic mutations in mitochondrial deoxyribonucleic acid (mtDNA). Aims: The aims of the present study were to identify somatic mtDNA mutations in periodontal and cardiac tissues from subjects undergoing coronary artery bypass surgery and determine what fraction was identical and unique to these tissues. Settings and Design: The study population consisted of 30 chronic periodontitis subjects who underwent coronary artery surgery after an angiogram had indicated CAD. Materials and Methods: Gingival tissue samples were taken from the site with deepest probing depth; coronary artery tissue samples were taken during the coronary artery bypass grafting procedures, and blood samples were drawn during this surgical procedure. These samples were stored under aseptic conditions and later transported for mtDNA analysis. Statistical Analysis Used: Complete mtDNA sequences were obtained and aligned with the revised Cambridge reference sequence (NC_012920) using sequence analysis and auto assembler tools. Results: Among the complete mtDNA sequences, a total of 162 variations were spread across the whole mitochondrial genome and present only in the coronary artery and the gingival tissue samples but not in the blood samples. Among the 162 variations, 12 were novel and four of the 12 novel variations were found in mitochondrial NADH dehydrogenase subunit 5 complex I gene (33.3%). Conclusions: Analysis of mtDNA mutations indicated 162 variants unique to periodontitis and CAD. Of these, 12 were novel and may have resulted from destructive oxidative forces common to these two diseases. PMID:27041832

  16. B cell Variable genes have evolved their codon usage to focus the targeted patterns of somatic mutation on the complementarity determining regions

    PubMed Central

    Saini, Jasmine; Hershberg, Uri

    2015-01-01

    The exceptional ability of B cells to diversify through somatic mutation and improve affinity of the repertoire towards the antigens is the cornerstone of adaptive immunity. Somatic mutation is not evenly distributed and exhibits certain micro-sequence specificities. We show here that the combination of somatic mutation targeting and the codon usage in human B cell receptor (BCR) Variable (V) genes create expected patterns of mutation and post mutation changes that are focused on their complementarity determining regions (CDR). T cell V genes are also skewed in targeting mutations but to a lesser extent and are lacking the codon usage bias observed in BCRs. This suggests that the observed skew in T cell receptors is due to their amino acid usage, which is similar to that of BCRs. The mutation targeting and the codon bias allow B cell CDRs to diversify by specifically accumulating nonconservative changes. We counted the distribution of mutations to CDR in 4 different human datasets. In all four cases we found that the number of actual mutations in the CDR correlated significantly with the V gene mutation biases to the CDR predicted by our models. Finally, it appears that the mutation bias in V genes indeed relates to their long-term survival in actual human repertoires. We observed that resting repertoires of B cells overexpressed V genes that were especially biased towards focused mutation and change in the CDR. This bias in V gene usage was somewhat relaxed at the height of the immune response to a vaccine, presumably because of the need for a wider diversity in a primary response. However, older patients did not retain this flexibility and were biased towards using only highly skewed V genes at all stages of their response. PMID:25660968

  17. B cell variable genes have evolved their codon usage to focus the targeted patterns of somatic mutation on the complementarity determining regions.

    PubMed

    Saini, Jasmine; Hershberg, Uri

    2015-05-01

    The exceptional ability of B cells to diversify through somatic mutation and improve affinity of the repertoire toward the antigens is the cornerstone of adaptive immunity. Somatic mutation is not evenly distributed and exhibits certain micro-sequence specificities. We show here that the combination of somatic mutation targeting and the codon usage in human B cell receptor (BCR) Variable (V) genes create expected patterns of mutation and post mutation changes that are focused on their complementarity determining regions (CDR). T cell V genes are also skewed in targeting mutations but to a lesser extent and are lacking the codon usage bias observed in BCRs. This suggests that the observed skew in T cell receptors is due to their amino acid usage, which is similar to that of BCRs. The mutation targeting and the codon bias allow B cell CDRs to diversify by specifically accumulating nonconservative changes. We counted the distribution of mutations to CDR in 4 different human datasets. In all four cases we found that the number of actual mutations in the CDR correlated significantly with the V gene mutation biases to the CDR predicted by our models. Finally, it appears that the mutation bias in V genes indeed relates to their long-term survival in actual human repertoires. We observed that resting repertoires of B cells overexpressed V genes that were especially biased toward focused mutation and change in the CDR. This bias in V gene usage was somewhat relaxed at the height of the immune response to a vaccine, presumably because of the need for a wider diversity in a primary response. However, older patients did not retain this flexibility and were biased toward using only highly skewed V genes at all stages of their response. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Somatic mosaicism of a CDKL5 mutation identified by next-generation sequencing.

    PubMed

    Kato, Takeshi; Morisada, Naoya; Nagase, Hiroaki; Nishiyama, Masahiro; Toyoshima, Daisaku; Nakagawa, Taku; Maruyama, Azusa; Fu, Xue Jun; Nozu, Kandai; Wada, Hiroko; Takada, Satoshi; Iijima, Kazumoto

    2015-10-01

    CDKL5-related encephalopathy is an X-linked dominantly inherited disorder that is characterized by early infantile epileptic encephalopathy or atypical Rett syndrome. We describe a 5-year-old Japanese boy with intractable epilepsy, severe developmental delay, and Rett syndrome-like features. Onset was at 2 months, when his electroencephalogram showed sporadic single poly spikes and diffuse irregular poly spikes. We conducted a genetic analysis using an Illumina® TruSight™ One sequencing panel on a next-generation sequencer. We identified two epilepsy-associated single nucleotide variants in our case: CDKL5 p.Ala40Val and KCNQ2 p.Glu515Asp. CDKL5 p.Ala40Val has been previously reported to be responsible for early infantile epileptic encephalopathy. In our case, the CDKL5 heterozygous mutation showed somatic mosaicism because the boy's karyotype was 46,XY. The KCNQ2 variant p.Glu515Asp is known to cause benign familial neonatal seizures-1, and this variant showed paternal inheritance. Although we believe that the somatic mosaic CDKL5 mutation is mainly responsible for the neurological phenotype in the patient, the KCNQ2 variant might have some neurological effect. Genetic analysis by next-generation sequencing is capable of identifying multiple variants in a patient. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  19. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Masahito; Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571; Umeyama, Kazuhiro

    2010-11-05

    Research highlights: {yields} EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. {yields} ZFNs induced targeted mutations in porcine primary cultured cells. {yields} Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor themore » exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.« less

  20. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer

    PubMed Central

    An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai

    2015-01-01

    Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan–Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients. PMID:26691761

  1. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer.

    PubMed

    An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai

    2015-12-22

    Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan-Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients.

  2. Antitumor activity of alectinib, a selective ALK inhibitor, in an ALK-positive NSCLC cell line harboring G1269A mutation: Efficacy of alectinib against ALK G1269A mutated cells.

    PubMed

    Yoshimura, Yasushi; Kurasawa, Mitsue; Yorozu, Keigo; Puig, Oscar; Bordogna, Walter; Harada, Naoki

    2016-03-01

    Alectinib is a highly selective next-generation anaplastic lymphoma kinase (ALK) inhibitor. Although alectinib shows inhibitory activity against various crizotinib-resistant ALK mutations in studies using cell-free kinase assays and Ba/F3 cell-based assays, it has not been tested for efficacy against non-small cell lung cancer (NSCLC) with the ALK mutations. We conducted in vitro and in vivo investigations into the antitumor activity of alectinib against an ALK-positive NSCLC cell line, SNU-2535, which harbors an ALK G1269A mutation. The clinical efficacy of alectinib against a NSCLC patient harboring ALK G1269A mutation was evaluated in the phase I part of the North American study. Alectinib exhibited antiproliferative activity against SNU-2535 cells in vitro with IC50 of 33.1 nM. Alectinib strongly inhibited phosphorylation of ALK and its downstream signaling molecules ERK1/2, AKT, and STAT3. In a mouse xenograft model, once-daily oral administration of alectinib for 21 days resulted in strong tumor regression. In addition, administration of alectinib for 100 days achieved continuous tumor regression without tumor regrowth in all mice. Notably, eradication of tumor cells was observed in half of the mice. In the clinical study, a patient with ALK G1269A mutation showed partial response to alectinib with a duration of response of 84 days. These results indicated that alectinib has potent antitumor activity against NSCLC cells harboring the crizotinib-resistant mutation ALK G1269A. It is expected that alectinib would provide a valuable therapeutic option for patients with NSCLC having not only native ALK but also crizotinib-resistant ALK mutations.

  3. Correlation of somatic mutations and clinical outcome in melanoma patients treated with carboplatin, paclitaxel, and sorafenib

    PubMed Central

    Wilson, Melissa A.; Zhao, Fengmin; Letrero, Richard; D’Andrea, Kurt; Rimm, David L.; Kirkwood, John M.; Kluger, Harriet M.; Lee, Sandra J.; Schuchter, Lynn M.; Flaherty, Keith T.; Nathanson, Katherine L.

    2014-01-01

    Purpose Sorafenib is an inhibitor of VEGFR, PDGFR, and RAF kinases, amongst others. We assessed the association of somatic mutations with clinicopathologic features and clinical outcomes in patients with metastatic melanoma treated on E2603, comparing treatment with carboplatin, paclitaxel +/− sorafenib (CP vs. CPS). Experimental Design Pre-treatment tumor samples from 179 unique individuals enrolled on E2603 were analyzed. Genotyping was performed using a custom iPlex panel interrogating 74 mutations in 13 genes. Statistical analysis was performed using Fisher’s exact test, logistic regression, and Cox’s proportional-hazards models. Progression free survival and overall survival were estimated using Kaplan-Meier methods. Results BRAF and NRAS mutations were found at frequencies consistent with other metastatic melanoma cohorts. BRAF-mutant melanoma was associated with worse performance status, increased number of disease sites, and younger age at diagnosis; NRAS-mutant melanoma was associated with better performance status, fewer sites of disease, and female gender. BRAF and NRAS mutations were not significantly predictive of response or survival when treated with CPS vs. CP. However, patients with NRAS-mutant melanoma trended towards a worse response and PFS on CP than those with BRAF-mutant or WT/WT melanoma, an association that was reversed for this group on the CPS arm. Conclusions This study of somatic mutations in melanoma is the last prospectively collected phase III clinical trial population prior to the era of BRAF targeted therapy. A trend towards improved clinical response in patients with NRAS-mutant melanoma treated with CPS was observed, possibly due to sorafenib’s effect on CRAF. PMID:24714776

  4. Mutational analysis of FLASH and PTPN13 genes in colorectal carcinomas.

    PubMed

    Jeong, Eun Goo; Lee, Sung Hak; Yoo, Nam Jin; Lee, Sug Hyung

    2008-01-01

    The Fas-Fas ligand system is considered a major pathway for induction of apoptosis in cells and tissues. FLASH was identified as a pro-apoptotic protein that transmits apoptosis signal during Fas-mediated apoptosis. PTPN13 interacts with Fas and functions as both suppressor and inducer of Fas-mediated apoptosis. There are polyadenine tracts in both FLASH (A8 and A9 in exon 8) and PTPN13 (A8 in exon 7) genes that could be frameshift mutation targets in colorectal carcinomas. Because genes encoding proteins in Fas-mediated apoptosis frequently harbor somatic mutations in cancers, we explored the possibility as to whether mutations of FLASH and PTPN13 are a feature of colorectal carcinomas. We analysed human FLASH in exon 8 and PTPN13 in exon 7 for the detection of somatic mutations in 103 colorectal carcinomas by a polymerase chain reaction (PCR)- based single-strand conformation polymorphism (SSCP). We detected two mutations in FLASH gene, but none in PTPN13 gene. However, the two mutations were not frameshift (deletion or insertion) mutations in the polyadenine tracts of FLASH. The two mutations consisted of a deletion mutation (c.3734-3737delAGAA) and a missense mutation (c.3703A>C). These data indicate that frameshift mutation in the polyadenine tracts in both FLASH and PTPN13 genes is rare in colorectal carcinomas. Also, the data suggest that both FLASH and PTPN13 mutations in the polyadenine tracts may not have a crucial role in the pathogenesis of colorectal carcinomas.

  5. Differences in somatic mutation landscape of hepatocellular carcinoma in Asian American and European American populations

    PubMed Central

    Hu, Qiang; Yan, Li; Liu, Biao; Ambrosone, Christine B.; Wang, Jianmin; Liu, Song

    2016-01-01

    The incidence rate of hepatocellular carcinoma (HCC) is higher in populations of Asian ancestry than European ancestry (EA). We sought to investigate HCC mutational differences between the two populations, which may reflect differences in the prevalence of etiological factors. We compared HCC somatic mutations in patients of self-reported Asian American and EA from The Cancer Genome Atlas (TCGA), and assessed associations of tumor mutations with established HCC risk factors. Although the average mutation burden was similar, TP53 and RB1 were mutated at a much higher frequency in Asian Americans than in EAs (TP53: 43% vs. 21%; RB1: 19% vs. 2%). Three putative oncogenic genes, including TRPM3, SAGE1, and ADAMTS7, were mutated exclusively in Asians. In addition, VEGF binding pathway, a druggable target by tyrosine kinase inhibitors such as sorafenib, was mutated at a higher frequency among Asians (13% vs. 2%); while the negative regulation of IL17 production, involved in inflammation and autoimmunity, was mutated only in EAs (12% vs. 0). Accounting for HCC risk factors had little impact on any of the mutational differences. In conclusion, we demonstrated here mutational differences in important cancer genes and pathways between Asian and European ancestries. These differences may have implications for the prevention and treatment of HCC. PMID:27246981

  6. Differences in somatic mutation landscape of hepatocellular carcinoma in Asian American and European American populations.

    PubMed

    Yao, Song; Johnson, Christopher; Hu, Qiang; Yan, Li; Liu, Biao; Ambrosone, Christine B; Wang, Jianmin; Liu, Song

    2016-06-28

    The incidence rate of hepatocellular carcinoma (HCC) is higher in populations of Asian ancestry than European ancestry (EA). We sought to investigate HCC mutational differences between the two populations, which may reflect differences in the prevalence of etiological factors. We compared HCC somatic mutations in patients of self-reported Asian American and EA from The Cancer Genome Atlas (TCGA), and assessed associations of tumor mutations with established HCC risk factors. Although the average mutation burden was similar, TP53 and RB1 were mutated at a much higher frequency in Asian Americans than in EAs (TP53: 43% vs. 21%; RB1: 19% vs. 2%). Three putative oncogenic genes, including TRPM3, SAGE1, and ADAMTS7, were mutated exclusively in Asians. In addition, VEGF binding pathway, a druggable target by tyrosine kinase inhibitors such as sorafenib, was mutated at a higher frequency among Asians (13% vs. 2%); while the negative regulation of IL17 production, involved in inflammation and autoimmunity, was mutated only in EAs (12% vs. 0). Accounting for HCC risk factors had little impact on any of the mutational differences. In conclusion, we demonstrated here mutational differences in important cancer genes and pathways between Asian and European ancestries. These differences may have implications for the prevention and treatment of HCC.

  7. Low frequency of broadly neutralizing HIV antibodies during chronic infection even in quaternary epitope targeting antibodies containing large numbers of somatic mutations.

    PubMed

    Hicar, Mark D; Chen, Xuemin; Kalams, Spyros A; Sojar, Hakimuddin; Landucci, Gary; Forthal, Donald N; Spearman, Paul; Crowe, James E

    2016-02-01

    Neutralizing antibodies (Abs) are thought to be a critical component of an appropriate HIV vaccine response. It has been proposed that Abs recognizing conformationally dependent quaternary epitopes on the HIV envelope (Env) trimer may be necessary to neutralize diverse HIV strains. A number of recently described broadly neutralizing monoclonal Abs (mAbs) recognize complex and quaternary epitopes. Generally, many such Abs exhibit extensive numbers of somatic mutations and unique structural characteristics. We sought to characterize the native antibody (Ab) response against circulating HIV focusing on such conformational responses, without a prior selection based on neutralization. Using a capture system based on VLPs incorporating cleaved envelope protein, we identified a selection of B cells that produce quaternary epitope targeting Abs (QtAbs). Similar to a number of broadly neutralizing Abs, the Ab genes encoding these QtAbs showed extensive numbers of somatic mutations. However, when expressed as recombinant molecules, these Abs failed to neutralize virus or mediate ADCVI activity. Molecular analysis showed unusually high numbers of mutations in the Ab heavy chain framework 3 region of the variable genes. The analysis suggests that large numbers of somatic mutations occur in Ab genes encoding HIV Abs in chronically infected individuals in a non-directed, stochastic, manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glodzik, Dominik; Morganella, Sandro; Davies, Helen

    Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may be sites of selective susceptibility to double-strand-break damage due to high transcriptional activity or, through incrementally increasing copy number, may be sites of secondary selective pressure. Furthermore, the transcriptomicmore » consequences ranged from strong individual oncogene effects to weak but quantifiable multigene expression effects. We thus present a somatic-rearrangement mutational process affecting coding sequences and noncoding regulatory elements and contributing a continuum of driver consequences, from modest to strong effects, thereby supporting a polygenic model of cancer development.« less

  9. A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers

    DOE PAGES

    Glodzik, Dominik; Morganella, Sandro; Davies, Helen; ...

    2017-01-23

    Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may be sites of selective susceptibility to double-strand-break damage due to high transcriptional activity or, through incrementally increasing copy number, may be sites of secondary selective pressure. Furthermore, the transcriptomicmore » consequences ranged from strong individual oncogene effects to weak but quantifiable multigene expression effects. We thus present a somatic-rearrangement mutational process affecting coding sequences and noncoding regulatory elements and contributing a continuum of driver consequences, from modest to strong effects, thereby supporting a polygenic model of cancer development.« less

  10. Ultra-sensitive Sequencing Identifies High Prevalence of Clonal Hematopoiesis-Associated Mutations throughout Adult Life.

    PubMed

    Acuna-Hidalgo, Rocio; Sengul, Hilal; Steehouwer, Marloes; van de Vorst, Maartje; Vermeulen, Sita H; Kiemeney, Lambertus A L M; Veltman, Joris A; Gilissen, Christian; Hoischen, Alexander

    2017-07-06

    Clonal hematopoiesis results from somatic mutations in hematopoietic stem cells, which give an advantage to mutant cells, driving their clonal expansion and potentially leading to leukemia. The acquisition of clonal hematopoiesis-driver mutations (CHDMs) occurs with normal aging and these mutations have been detected in more than 10% of individuals ≥65 years. We aimed to examine the prevalence and characteristics of CHDMs throughout adult life. We developed a targeted re-sequencing assay combining high-throughput with ultra-high sensitivity based on single-molecule molecular inversion probes (smMIPs). Using smMIPs, we screened more than 100 loci for CHDMs in more than 2,000 blood DNA samples from population controls between 20 and 69 years of age. Loci screened included 40 regions known to drive clonal hematopoiesis when mutated and 64 novel candidate loci. We identified 224 somatic mutations throughout our cohort, of which 216 were coding mutations in known driver genes (DNMT3A, JAK2, GNAS, TET2, and ASXL1), including 196 point mutations and 20 indels. Our assay's improved sensitivity allowed us to detect mutations with variant allele frequencies as low as 0.001. CHDMs were identified in more than 20% of individuals 60 to 69 years of age and in 3% of individuals 20 to 29 years of age, approximately double the previously reported prevalence despite screening a limited set of loci. Our findings support the occurrence of clonal hematopoiesis-associated mutations as a widespread mechanism linked with aging, suggesting that mosaicism as a result of clonal evolution of cells harboring somatic mutations is a universal mechanism occurring at all ages in healthy humans. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts

    PubMed Central

    Saini, Natalie; Chan, Kin; Grimm, Sara A.; Dai, Shuangshuang; Fargo, David C.; Kaufmann, William K.; Taylor, Jack A.; Lee, Eunjung; Cortes-Ciriano, Isidro; Park, Peter J.; Schurman, Shepherd H.; Malc, Ewa P.; Mieczkowski, Piotr A.

    2016-01-01

    Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration ClinicalTrials.gov NCT01087307 PMID:27788131

  12. Somatic mutations in benign breast disease tissue and risk of subsequent invasive breast cancer.

    PubMed

    Rohan, Thomas E; Miller, Christopher A; Li, Tiandao; Wang, Yihong; Loudig, Olivier; Ginsberg, Mindy; Glass, Andrew; Mardis, Elaine

    2018-06-06

    Insights into the molecular pathogenesis of breast cancer might come from molecular analysis of tissue from early stages of the disease. We conducted a case-control study nested in a cohort of women who had biopsy-confirmed benign breast disease (BBD) diagnosed between 1971 and 2006 at Kaiser Permanente Northwest and who were followed to mid-2015 to ascertain subsequent invasive breast cancer (IBC); cases (n = 218) were women with BBD who developed subsequent IBC and controls, individually matched (1:1) to cases, were women with BBD who did not develop IBC in the same follow-up interval as that for the corresponding case. Targeted sequence capture and sequencing were performed for 83 genes of importance in breast cancer. There were no significant case-control differences in mutation burden overall, for non-silent mutations, for individual genes, or with respect either to the nature of the gene mutations or to mutational enrichment at the pathway level. For seven subjects with DNA from the BBD and ipsilateral IBC, virtually no mutations were shared. This study, the first to use a targeted multi-gene sequencing approach on early breast cancer precursor lesions to investigate the genomic basis of the disease, showed that somatic mutations detected in BBD tissue were not associated with breast cancer risk.

  13. Endometrial cancer and somatic G>T KRAS transversion in patients with constitutional MUTYH biallelic mutations.

    PubMed

    Tricarico, Rossella; Bet, Paola; Ciambotti, Benedetta; Di Gregorio, Carmela; Gatteschi, Beatrice; Gismondi, Viviana; Toschi, Benedetta; Tonelli, Francesco; Varesco, Liliana; Genuardi, Maurizio

    2009-02-18

    MUTYH-associated polyposis (MAP) is an autosomal recessive condition predisposing to colorectal cancer, caused by constitutional biallelic mutations in the base excision repair (BER) gene MUTYH. Colorectal tumours from MAP patients display an excess of somatic G>T mutations in the APC and KRAS genes due to defective BER function. To date, few extracolonic manifestations have been observed in MAP patients, and the clinical spectrum of this condition is not yet fully established. Recently, one patient with a diagnosis of endometrial cancer and biallelic MUTYH mutations has been described. We here report on two additional unrelated MAP patients with biallelic MUTYH germline mutations who developed endometrioid endometrial carcinoma. The endometrial tumours were evaluated for PTEN, PIK3CA, KRAS, BRAF and CTNNB1 mutations. A G>T transversion at codon 12 of the KRAS gene was observed in one tumour. A single 1bp frameshift deletion of PTEN was observed in the same sample. Overall, these findings suggest that endometrial carcinoma is a phenotypic manifestations of MAP and that inefficient repair of oxidative damage can be involved in its pathogenesis.

  14. Somatic INK4a-ARF locus mutations: a significant mechanism of gene inactivation in squamous cell carcinomas of the head and neck.

    PubMed

    Poi, M J; Yen, T; Li, J; Song, H; Lang, J C; Schuller, D E; Pearl, D K; Casto, B C; Tsai, M D; Weghorst, C M

    2001-01-01

    The INK4a-ARF locus is located on human chromosome 9p21 and is known to encode two functionally distinct tumor-suppressor genes. The p16(INK4a) (p16) tumor-suppressor gene product is a negative regulator of cyclin-dependent kinases 4 and 6, which in turn positively regulate progression of mammalian cells through the cell cycle. The p14(ARF) tumor-suppressor gene product specifically interacts with human double minute 2, leading to the subsequent stabilization of p53 and G(1) arrest. Previous investigations analyzing the p16 gene in squamous cell carcinomas of the head and neck (SCCHNs) have suggested the predominate inactivating events to be homozygous gene deletions and hypermethylation of the p16 promoter. Somatic mutational inactivation of p16 has been reported to be low (0-10%, with a combined incidence of 25 of 279, or 9%) and to play only a minor role in the development of SCCHN. The present study examined whether this particular mechanism of INK4a/ARF inactivation, specifically somatic mutation, has been underestimated in SCCHN by determining the mutational status of the p16 and p14(ARF) genes in 100 primary SCCHNs with the use of polymerase chain reaction technology and a highly sensitive, nonradioactive modification of single-stranded conformational polymorphism (SSCP) analysis termed "cold" SSCP. Exons 1alpha, 1beta, and 2 of INK4a/ARF were amplified using intron-based primers or a combination of intron- and exon-based primers. A total of 27 SCCHNs (27%) exhibited sequence alterations in this locus, 22 (22%) of which were somatic sequence alterations and five (5%) of which were a single polymorphism in codon 148. Of the 22 somatic alterations, 20 (91%) directly or indirectly involved exon 2, and two (9%) were located within exon 1alpha. No mutations were found in exon 1beta. All 22 somatic mutations would be expected to yield altered p16 proteins, but only 15 of them should affect p14(ARF) proteins. Specific somatic alterations included microdeletions or

  15. DNA polymerase ι functions in the generation of tandem mutations during somatic hypermutation of antibody genes.

    PubMed

    Maul, Robert W; MacCarthy, Thomas; Frank, Ekaterina G; Donigan, Katherine A; McLenigan, Mary P; Yang, William; Saribasak, Huseyin; Huston, Donald E; Lange, Sabine S; Woodgate, Roger; Gearhart, Patricia J

    2016-08-22

    DNA polymerase ι (Pol ι) is an attractive candidate for somatic hypermutation in antibody genes because of its low fidelity. To identify a role for Pol ι, we analyzed mutations in two strains of mice with deficiencies in the enzyme: 129 mice with negligible expression of truncated Pol ι, and knock-in mice that express full-length Pol ι that is catalytically inactive. Both strains had normal frequencies and spectra of mutations in the variable region, indicating that loss of Pol ι did not change overall mutagenesis. We next examined if Pol ι affected tandem mutations generated by another error-prone polymerase, Pol ζ. The frequency of contiguous mutations was analyzed using a novel computational model to determine if they occur during a single DNA transaction or during two independent events. Analyses of 2,000 mutations from both strains indicated that Pol ι-compromised mice lost the tandem signature, whereas C57BL/6 mice accumulated significant amounts of double mutations. The results support a model where Pol ι occasionally accesses the replication fork to generate a first mutation, and Pol ζ extends the mismatch with a second mutation. @2016.

  16. DNA polymerase ι functions in the generation of tandem mutations during somatic hypermutation of antibody genes

    PubMed Central

    Donigan, Katherine A.; Huston, Donald E.; Lange, Sabine S.

    2016-01-01

    DNA polymerase ι (Pol ι) is an attractive candidate for somatic hypermutation in antibody genes because of its low fidelity. To identify a role for Pol ι, we analyzed mutations in two strains of mice with deficiencies in the enzyme: 129 mice with negligible expression of truncated Pol ι, and knock-in mice that express full-length Pol ι that is catalytically inactive. Both strains had normal frequencies and spectra of mutations in the variable region, indicating that loss of Pol ι did not change overall mutagenesis. We next examined if Pol ι affected tandem mutations generated by another error-prone polymerase, Pol ζ. The frequency of contiguous mutations was analyzed using a novel computational model to determine if they occur during a single DNA transaction or during two independent events. Analyses of 2,000 mutations from both strains indicated that Pol ι–compromised mice lost the tandem signature, whereas C57BL/6 mice accumulated significant amounts of double mutations. The results support a model where Pol ι occasionally accesses the replication fork to generate a first mutation, and Pol ζ extends the mismatch with a second mutation. PMID:27455952

  17. Novel somatic mutations in the catalytic subunit of the protein kinase A as a cause of adrenal Cushing's syndrome: a European multicentric study.

    PubMed

    Di Dalmazi, Guido; Kisker, Caroline; Calebiro, Davide; Mannelli, Massimo; Canu, Letizia; Arnaldi, Giorgio; Quinkler, Marcus; Rayes, Nada; Tabarin, Antoine; Laure Jullié, Marie; Mantero, Franco; Rubin, Beatrice; Waldmann, Jens; Bartsch, Detlef K; Pasquali, Renato; Lohse, Martin; Allolio, Bruno; Fassnacht, Martin; Beuschlein, Felix; Reincke, Martin

    2014-10-01

    Somatic mutations in PRKACA gene, encoding the catalytic subunit of protein kinase A (PKA), have been recently found in a high proportion of sporadic adenomas associated with Cushing's syndrome. The aim was to analyze the PRKACA mutation in a large cohort of patients with adrenocortical masses. Samples from nine European centers were included (Germany, n = 4; Italy, n = 4; France, n = 1). Samples were drawn from 149 patients with nonsecreting adenomas (n = 32 + 2 peritumoral), subclinical hypercortisolism (n = 36), Cushing's syndrome (n = 64 + 2 peritumoral), androgen-producing tumors (n = 4), adrenocortical carcinomas (n = 5 + 2 peritumoral), and primary bilateral macronodular adrenal hyperplasias (n = 8). Blood samples were available from patients with nonsecreting adenomas (n = 15), subclinical hypercortisolism (n = 10), and Cushing's syndrome (n = 35). Clinical and hormonal data were collected. DNA amplification by PCR of exons 6 and 7 of the PRKACA gene and direct sequencing were performed. PRKACA heterozygous mutations were found in 22/64 samples of Cushing's syndrome patients (34%). No mutations were found in peritumoral tissue and blood samples or in other tumors examined. The c.617A>C (p.Leu206Arg) occurred in 18/22 patients. Furthermore, two novel mutations were identified: c.600_601insGTG/p.Cys200_Gly201insVal in three patients and c.639C>G+c.638_640insATTATCCTGAGG/p.Ser213Arg+p.Leu212_Lys214insIle-Ile-Leu-Arg) in one. All the mutations involved a region implicated in interaction between PKA regulatory and catalytic subunits. Patients with somatic PRKACA mutations showed higher levels of cortisol after dexamethasone test and a smaller adenoma size, compared with nonmutated subjects. These data confirm and extend previous observations that somatic PRKACA mutations are specific for adrenocortical adenomas causing Cushing's syndrome.

  18. Multiplex Droplet Digital PCR Quantification of Recurrent Somatic Mutations in Diffuse Large B-Cell and Follicular Lymphoma.

    PubMed

    Alcaide, Miguel; Yu, Stephen; Bushell, Kevin; Fornika, Daniel; Nielsen, Julie S; Nelson, Brad H; Mann, Koren K; Assouline, Sarit; Johnson, Nathalie A; Morin, Ryan D

    2016-09-01

    A plethora of options to detect mutations in tumor-derived DNA currently exist but each suffers limitations in analytical sensitivity, cost, or scalability. Droplet digital PCR (ddPCR) is an appealing technology for detecting the presence of specific mutations based on a priori knowledge and can be applied to tumor biopsies, including formalin-fixed paraffin embedded (FFPE) tissues. More recently, ddPCR has gained popularity in its utility in quantifying circulating tumor DNA. We have developed a suite of novel ddPCR assays for detecting recurrent mutations that are prevalent in common B-cell non-Hodgkin lymphomas (NHLs), including diffuse large B-cell lymphoma, follicular lymphoma, and lymphoplasmacytic lymphoma. These assays allowed the differentiation and counting of mutant and wild-type molecules using one single hydrolysis probe. We also implemented multiplexing that allowed the simultaneous detection of distinct mutations and an "inverted" ddPCR assay design, based on employing probes matching wild-type alleles, capable of detecting the presence of multiple single nucleotide polymorphisms. The assays successfully detected and quantified somatic mutations commonly affecting enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) (Y641) and signal transducer and activator of transcription 6 (STAT6) (D419) hotspots in fresh tumor, FFPE, and liquid biopsies. The "inverted" ddPCR approach effectively reported any single nucleotide variant affecting either of these 2 hotspots as well. Finally, we could effectively multiplex hydrolysis probes targeting 2 additional lymphoma-related hotspots: myeloid differentiation primary response 88 (MYD88; L265P) and cyclin D3 (CCND3; I290R). Our suite of ddPCR assays provides sufficient analytical sensitivity and specificity for either the invasive or noninvasive detection of multiple recurrent somatic mutations in B-cell NHLs. © 2016 American Association for Clinical Chemistry.

  19. Kv1.1 channelopathy abolishes presynaptic spike width modulation by subthreshold somatic depolarization

    PubMed Central

    Vivekananda, Umesh; Novak, Pavel; Bello, Oscar D.; Korchev, Yuri E.; Krishnakumar, Shyam S.; Volynski, Kirill E.; Kullmann, Dimitri M.

    2017-01-01

    Although action potentials propagate along axons in an all-or-none manner, subthreshold membrane potential fluctuations at the soma affect neurotransmitter release from synaptic boutons. An important mechanism underlying analog–digital modulation is depolarization-mediated inactivation of presynaptic Kv1-family potassium channels, leading to action potential broadening and increased calcium influx. Previous studies have relied heavily on recordings from blebs formed after axon transection, which may exaggerate the passive propagation of somatic depolarization. We recorded instead from small boutons supplied by intact axons identified with scanning ion conductance microscopy in primary hippocampal cultures and asked how distinct potassium channels interact in determining the basal spike width and its modulation by subthreshold somatic depolarization. Pharmacological or genetic deletion of Kv1.1 broadened presynaptic spikes without preventing further prolongation by brief depolarizing somatic prepulses. A heterozygous mouse model of episodic ataxia type 1 harboring a dominant Kv1.1 mutation had a similar broadening effect on basal spike shape as deletion of Kv1.1; however, spike modulation by somatic prepulses was abolished. These results argue that the Kv1.1 subunit is not necessary for subthreshold modulation of spike width. However, a disease-associated mutant subunit prevents the interplay of analog and digital transmission, possibly by disrupting the normal stoichiometry of presynaptic potassium channels. PMID:28193892

  20. Ultrasensitive Detection of Multiplexed Somatic Mutations Using MALDI-TOF Mass Spectrometry.

    PubMed

    Mosko, Michael J; Nakorchevsky, Aleksey A; Flores, Eunice; Metzler, Heath; Ehrich, Mathias; van den Boom, Dirk J; Sherwood, James L; Nygren, Anders O H

    2016-01-01

    Multiplex detection of low-frequency mutations is becoming a necessary diagnostic tool for clinical laboratories interested in noninvasive prognosis and prediction. Challenges include the detection of minor alleles among abundant wild-type alleles, the heterogeneous nature of tumors, and the limited amount of available tissue. A method that can reliably detect minor variants <1% in a multiplexed reaction using a platform amenable to a variety of throughputs would meet these requirements. We developed a novel approach, UltraSEEK, for high-throughput, multiplexed, ultrasensitive mutation detection and used it for detection of mutant sequence mixtures as low as 0.1% minor allele frequency. The process consisted of multiplex PCR, followed by mutation-specific, single-base extension using chain terminators labeled with a moiety for solid phase capture. The captured and enriched products were then identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. For verification, we successfully analyzed ultralow fractions of mutations in a set of characterized cell lines, and included a direct comparison to droplet digital PCR. Finally, we verified the specificity in a set of 122 paired tumor and circulating cell-free DNA samples from melanoma patients. Our results show that the UltraSEEK chemistry is a particularly powerful approach for the detection of somatic variants, with the potential to be an invaluable resource to investigators in saving time and material without compromising analytical sensitivity and accuracy. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  1. Correlation of ophthalmic examination with carrier status in females potentially harboring a severe Norrie disease gene mutation.

    PubMed

    Khan, Arif O; Aldahmesh, Mohammed A; Meyer, Brian

    2008-04-01

    To correlate ophthalmic findings with carrier status for a severe Norrie disease (ND) gene mutation (C95F). Prospective interventional case series. Six potential carriers and 1 obligate carrier from a family harboring the mutation. An ophthalmologist blind to the pedigree performed a full ophthalmic examination for the 7 asymptomatic family members. A peripheral blood sample was collected from each for ND gene sequencing. Ophthalmic examination findings (with attention to the presence or absence of retinal findings) and results of ND gene sequencing. Three carriers were identified by molecular genetics, and all 3 of them had peripheral retinal abnormality. However, 3 of the 4 genetically identified noncarriers also exhibited peripheral retinal abnormality. Two of these noncarriers with retinal findings were the offspring of a confirmed noncarrier. The genetically identified noncarrier with a normal peripheral retinal examination was the daughter of an obligate carrier. The presence of peripheral retinal changes was not useful for carrier prediction in a family harboring ND. There are likely additional loci responsible for phenotypic expression.

  2. Clinical implications of somatic mutations in aplastic anemia and myelodysplastic syndrome in genomic age.

    PubMed

    Maciejewski, Jaroslaw P; Balasubramanian, Suresh K

    2017-12-08

    Recent technological advances in genomics have led to the discovery of new somatic mutations and have brought deeper insights into clonal diversity. This discovery has changed not only the understanding of disease mechanisms but also the diagnostics and clinical management of bone marrow failure. The clinical applications of genomics include enhancement of current prognostic schemas, prediction of sensitivity or refractoriness to treatments, and conceptualization and selective application of targeted therapies. However, beyond these traditional clinical aspects, complex hierarchical clonal architecture has been uncovered and linked to the current concepts of leukemogenesis and stem cell biology. Detection of clonal mutations, otherwise typical of myelodysplastic syndrome, in the course of aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria has led to new pathogenic concepts in these conditions and created a new link between AA and its clonal complications, such as post-AA and paroxysmal nocturnal hemoglobinuria. Distinctions among founder vs subclonal mutations, types of clonal evolution (linear or branching), and biological features of individual mutations (sweeping, persistent, or vanishing) will allow for better predictions of the biologic impact they impart in individual cases. As clonal markers, mutations can be used for monitoring clonal dynamics of the stem cell compartment during physiologic aging, disease processes, and leukemic evolution. © 2016 by The American Society of Hematology. All rights reserved.

  3. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    PubMed Central

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  4. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.

    PubMed

    McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold

    2016-10-18

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.

  5. Diphtheria toxin resistance in human lymphocytes and lymphoblasts in the in vivo somatic cell mutation test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomkins, D.J.; Wei, L.; Laurie, K.E.

    1985-01-01

    It has been shown that circulating peripheral blood lymphocytes can be used for the enumeration of 6-thioguanine-resistant cells that presumably arise by mutation in vivo. This somatic cell mutation test has been studied in lymphocytes from human populations exposed to known mutagens and/or carcinogens. The sensitivity of the test could be further enhanced by including other gene markers, since there is evidence for locus-specific differences in response to mutagens. Resistance to diphtheria toxin (Dip/sup r/) seemed like a potential marker to incorporate into the test because the mutation acts codominantly, can readily be selected in human diploid fibroblasts and Chinesemore » hamster cells with no evidence for cell density or cross-feeding effects, and can be assayed for in nondividing cells by measuring protein synthesis inhibition. Blood samples were collected from seven individuals, and fresh, cryopreserved, or Epstein-Barr virus (EBV)-transformed lymphocytes were tested for continued DNA synthesis (TH-thymidine, autoradiography) or protein synthesis (TVS-methionine, scintillation counting). Both fresh and cryopreserved lymphocytes, stimulated to divide with phytohemagglutinin (PHA), continued to synthesize DNA in the presence of high doses of diphtheria toxin (DT). Similarly, both dividing (PHA-stimulated) and nondividing fresh lymphocytes carried on significant levels of protein synthesis even 68 hr after exposure to 100 flocculating units (LF)/ml DT. The results suggest that human T and B lymphocytes may not be as sensitive to DT protein synthesis inhibition as human fibroblast and Chinese hamster cells. For this reason, Dip/sup r/ may not be a suitable marker for the somatic cell mutation test.« less

  6. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression

    PubMed Central

    Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D.; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario

    2016-01-01

    The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma. Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines. We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK. Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%. Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression. Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants. In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842

  7. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression.

    PubMed

    Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario

    2016-04-19

    The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma.Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines.We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK.Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%.Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression.Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants.In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression.

  8. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers.

    PubMed

    Shlien, Adam; Campbell, Brittany B; de Borja, Richard; Alexandrov, Ludmil B; Merico, Daniele; Wedge, David; Van Loo, Peter; Tarpey, Patrick S; Coupland, Paul; Behjati, Sam; Pollett, Aaron; Lipman, Tatiana; Heidari, Abolfazl; Deshmukh, Shriya; Avitzur, Na'ama; Meier, Bettina; Gerstung, Moritz; Hong, Ye; Merino, Diana M; Ramakrishna, Manasa; Remke, Marc; Arnold, Roland; Panigrahi, Gagan B; Thakkar, Neha P; Hodel, Karl P; Henninger, Erin E; Göksenin, A Yasemin; Bakry, Doua; Charames, George S; Druker, Harriet; Lerner-Ellis, Jordan; Mistry, Matthew; Dvir, Rina; Grant, Ronald; Elhasid, Ronit; Farah, Roula; Taylor, Glenn P; Nathan, Paul C; Alexander, Sarah; Ben-Shachar, Shay; Ling, Simon C; Gallinger, Steven; Constantini, Shlomi; Dirks, Peter; Huang, Annie; Scherer, Stephen W; Grundy, Richard G; Durno, Carol; Aronson, Melyssa; Gartner, Anton; Meyn, M Stephen; Taylor, Michael D; Pursell, Zachary F; Pearson, Christopher E; Malkin, David; Futreal, P Andrew; Stratton, Michael R; Bouffet, Eric; Hawkins, Cynthia; Campbell, Peter J; Tabori, Uri

    2015-03-01

    DNA replication-associated mutations are repaired by two components: polymerase proofreading and mismatch repair. The mutation consequences of disruption to both repair components in humans are not well studied. We sequenced cancer genomes from children with inherited biallelic mismatch repair deficiency (bMMRD). High-grade bMMRD brain tumors exhibited massive numbers of substitution mutations (>250/Mb), which was greater than all childhood and most cancers (>7,000 analyzed). All ultra-hypermutated bMMRD cancers acquired early somatic driver mutations in DNA polymerase ɛ or δ. The ensuing mutation signatures and numbers are unique and diagnostic of childhood germ-line bMMRD (P < 10(-13)). Sequential tumor biopsy analysis revealed that bMMRD/polymerase-mutant cancers rapidly amass an excess of simultaneous mutations (∼600 mutations/cell division), reaching but not exceeding ∼20,000 exonic mutations in <6 months. This implies a threshold compatible with cancer-cell survival. We suggest a new mechanism of cancer progression in which mutations develop in a rapid burst after ablation of replication repair.

  9. Clinical significance of acquired somatic mutations in aplastic anaemia.

    PubMed

    Marsh, J C W; Mufti, G J

    2016-08-01

    Aplastic anaemia (AA) is frequently associated with other disorders of clonal haemopoiesis such as paroxysmal nocturnal haemoglobinuria (PNH), myelodysplastic syndrome (MDS) and T-large granular lymphocytosis. Certain clones may escape the immune attack within the bone marrow environment and proliferate and attain a survival advantage over normal haemopoietic stem cells, such as trisomy 8, loss of heterozygosity of short arm of chromosome 6 and del13q clones. Recently acquired somatic mutations (SM), excluding PNH clones, have been reported in around 20-25 % of patients with AA, which predispose to a higher risk of later malignant transformation to MDS/acute myeloid leukaemia. Furthermore, certain SM, such as ASXL1 and DNMT3A are associated with poor survival following immunosuppressive therapy, whereas PIGA, BCOR/BCORL1 predict for good response and survival. Further detailed and serial analysis of the immune signature in AA is needed to understand the pathogenetic basis for the presence of clones with SM in a significant proportion of patients.

  10. Next generation sequencing of Cytokeratin 20-negative Merkel cell carcinoma reveals ultraviolet-signature mutations and recurrent TP53 and RB1 inactivation.

    PubMed

    Harms, Paul W; Collie, Angela M B; Hovelson, Daniel H; Cani, Andi K; Verhaegen, Monique E; Patel, Rajiv M; Fullen, Douglas R; Omata, Kei; Dlugosz, Andrzej A; Tomlins, Scott A; Billings, Steven D

    2016-03-01

    Merkel cell carcinoma is a rare but highly aggressive cutaneous neuroendocrine carcinoma. Cytokeratin 20 (CK20) is expressed in ~95% of Merkel cell carcinomas and is useful for distinction from morphologically similar entities including metastatic small-cell lung carcinoma. Lack of CK20 expression may make diagnosis of Merkel cell carcinoma more challenging, and has unknown biological significance. Approximately 80% of CK20-positive Merkel cell carcinomas are associated with the oncogenic Merkel cell polyomavirus. Merkel cell carcinomas lacking Merkel cell polyomavirus display distinct genetic changes from Merkel cell polyomavirus-positive Merkel cell carcinoma, including RB1 inactivating mutations. Unlike CK20-positive Merkel cell carcinoma, the majority of CK20-negative Merkel cell carcinomas are Merkel cell polyomavirus-negative, suggesting CK20-negative Merkel cell carcinomas predominantly arise through virus-independent pathway(s) and may harbor additional genetic differences from conventional Merkel cell carcinoma. Hence, we analyzed 15 CK20-negative Merkel cell carcinoma tumors (10 Merkel cell polyomavirus-negative, four Merkel cell polyomavirus-positive, and one undetermined) using the Ion Ampliseq Comprehensive Cancer Panel, which assesses copy number alterations and mutations in 409 cancer-relevant genes. Twelve tumors displayed prioritized high-level chromosomal gains or losses (average 1.9 per tumor). Non-synonymous high-confidence somatic mutations were detected in 14 tumors (average 11.9 per tumor). Assessing all somatic coding mutations, an ultraviolet-signature mutational profile was present, and more prevalent in Merkel cell polyomavirus-negative tumors. Recurrent deleterious tumor suppressor mutations affected TP53 (9/15, 60%), RB1 (3/15, 20%), and BAP1 (2/15, 13%). Oncogenic activating mutations included PIK3CA (3/15, 20%), AKT1 (1/15, 7%) and EZH2 (1/15, 7%). In conclusion, CK20-negative Merkel cell carcinoma display overlapping genetic changes

  11. Next Generation Sequencing of Cytokeratin 20-Negative Merkel Cell Carcinoma Reveals Ultraviolet Signature Mutations and Recurrent TP53 and RB1 Inactivation

    PubMed Central

    Harms, Paul W.; Collie, Angela M. B.; Hovelson, Daniel H.; Cani, Andi K.; Verhaegen, Monique E.; Patel, Rajiv M.; Fullen, Douglas R.; Omata, Kei; Dlugosz, Andrzej A.; Tomlins, Scott A.; Billings, Steven D.

    2016-01-01

    Merkel cell carcinoma is a rare but highly aggressive cutaneous neuroendocrine carcinoma. Cytokeratin-20 (CK20) is expressed in approximately 95% of Merkel cell carcinomas and is useful for distinction from morphologically similar entities including metastatic small cell lung carcinoma. Lack of CK20 expression may make diagnosis of Merkel cell carcinoma more challenging, and has unknown biological significance. Approximately 80% of CK20-positive Merkel cell carcinomas are associated with the oncogenic Merkel cell polyomavirus. Merkel cell carcinomas lacking Merkel cell polyomavirus display distinct genetic changes from Merkel cell polyomavirus-positive Merkel cell carcinoma, including RB1 inactivating mutations. Unlike CK20-positive Merkel cell carcinoma, the majority of CK20-negative Merkel cell carcinomas are Merkel cell polyomavirus-negative, suggesting CK20-negative Merkel cell carcinomas predominantly arise through virus-independent pathway(s) and may harbor additional genetic differences from conventional Merkel cell carcinoma. Hence, we analyzed 15 CK20-negative Merkel cell carcinoma tumors (ten Merkel cell polyomavirus-negative, four Merkel cell polyomavirus-positive, and one undetermined) using the Ion Ampliseq Comprehensive Cancer Panel, which assesses copy number alterations and mutations in 409 cancer-relevant genes. Twelve tumors displayed prioritized high-level chromosomal gains or losses (average 1.9 per tumor). Non-synonymous high confidence somatic mutations were detected in 14 tumors (average 11.9 per tumor). Assessing all somatic coding mutations, an ultraviolet-signature mutational profile was present, and more prevalent in Merkel cell polyomavirus-negative tumors. Recurrent deleterious tumor suppressor mutations affected TP53 (9/15, 60%), RB1 (3/15, 20%), and BAP1 (2/15, 13%). Oncogenic activating mutations included PIK3CA (3/15, 20%), AKT1 (1/15, 7%)) and EZH2 (1/15, 7%). In conclusion, CK20-negative Merkel cell carcinoma display overlapping

  12. PPM1D Mosaic Truncating Variants in Ovarian Cancer Cases May Be Treatment-Related Somatic Mutations

    PubMed Central

    Pharoah, Paul D. P.; Song, Honglin; Dicks, Ed; Intermaggio, Maria P.; Harrington, Patricia; Baynes, Caroline; Alsop, Kathryn; Bogdanova, Natalia; Cicek, Mine S.; Cunningham, Julie M.; Fridley, Brooke L.; Gentry-Maharaj, Aleksandra; Hillemanns, Peter; Lele, Shashi; Lester, Jenny; McGuire, Valerie; Moysich, Kirsten B.; Poblete, Samantha; Sieh, Weiva; Sucheston-Campbell, Lara; Widschwendter, Martin; Whittemore, Alice S.; Dörk, Thilo; Menon, Usha; Odunsi, Kunle; Goode, Ellen L.; Karlan, Beth Y.; Bowtell, David D.; Gayther, Simon A.; Ramus, Susan J.

    2016-01-01

    Mosaic truncating mutations in the protein phosphatase, Mg2+/Mn2+-dependent, 1D (PPM1D) gene have recently been reported with a statistically significantly greater frequency in lymphocyte DNA from ovarian cancer case patients compared with unaffected control patients. Using massively parallel sequencing (MPS) we identified truncating PPM1D mutations in 12 of 3236 epithelial ovarian cancer (EOC) case patients (0.37%) but in only one of 3431 unaffected control patients (0.03%) (P = .001). All statistical tests were two-sided. A combination of Sanger sequencing, pyrosequencing, and MPS data suggested that 12 of the 13 mutations were mosaic. All mutations were identified in post-chemotherapy treatment blood samples from case patients (n = 1827) (average 1234 days post-treatment in carriers) rather than from cases collected pretreatment (less than 14 days after diagnosis, n = 1384) (P = .002). These data suggest that PPM1D variants in EOC cases are primarily somatic mosaic mutations caused by treatment and are not associated with germline predisposition to EOC. PMID:26823519

  13. SubClonal Hierarchy Inference from Somatic Mutations: Automatic Reconstruction of Cancer Evolutionary Trees from Multi-region Next Generation Sequencing

    PubMed Central

    Niknafs, Noushin; Beleva-Guthrie, Violeta; Naiman, Daniel Q.; Karchin, Rachel

    2015-01-01

    Recent improvements in next-generation sequencing of tumor samples and the ability to identify somatic mutations at low allelic fractions have opened the way for new approaches to model the evolution of individual cancers. The power and utility of these models is increased when tumor samples from multiple sites are sequenced. Temporal ordering of the samples may provide insight into the etiology of both primary and metastatic lesions and rationalizations for tumor recurrence and therapeutic failures. Additional insights may be provided by temporal ordering of evolving subclones—cellular subpopulations with unique mutational profiles. Current methods for subclone hierarchy inference tightly couple the problem of temporal ordering with that of estimating the fraction of cancer cells harboring each mutation. We present a new framework that includes a rigorous statistical hypothesis test and a collection of tools that make it possible to decouple these problems, which we believe will enable substantial progress in the field of subclone hierarchy inference. The methods presented here can be flexibly combined with methods developed by others addressing either of these problems. We provide tools to interpret hypothesis test results, which inform phylogenetic tree construction, and we introduce the first genetic algorithm designed for this purpose. The utility of our framework is systematically demonstrated in simulations. For most tested combinations of tumor purity, sequencing coverage, and tree complexity, good power (≥ 0.8) can be achieved and Type 1 error is well controlled when at least three tumor samples are available from a patient. Using data from three published multi-region tumor sequencing studies of (murine) small cell lung cancer, acute myeloid leukemia, and chronic lymphocytic leukemia, in which the authors reconstructed subclonal phylogenetic trees by manual expert curation, we show how different configurations of our tools can identify either a single

  14. Somatic gene mutations in African Americans may predict worse outcomes in colorectal cancer.

    PubMed

    Kang, Melissa; Shen, Xiang J; Kim, Sangmi; Araujo-Perez, Felix; Galanko, Joseph A; Martin, Chris F; Sandler, Robert S; Keku, Temitope O

    2013-01-01

    African Americans have worse outcomes in colorectal cancer (CRC) than Caucasians. We sought to determine if KRAS, BRAF and PIK3CA mutations might contribute to the racial differences in CRC outcome. DNA was extracted from tissue microarrays made from CRC samples from 67 African Americans and 237 Caucasians. Mutations in KRAS, BRAF, and PIK3CA were evaluated by PCR sequencing. We also examined microsatellite instability (MSI) status. Associations of mutation status with tumor stage and grade were examined using a logistic regression model. Cox proportional hazards models were used to estimate the all-cause mortality associated with mutational status, race and other clinicopathologic features. KRAS mutations were more common in African Americans than among Caucasians (37% vs 21%, p=0.01) and were associated with advanced stage (unadjusted odds ratio (OR)=3.31, 95% confidence interval (CI) 1.03-10.61) and grade (unadjusted OR=5.60, 95% CI 1.01-31.95) among African Americans. Presence of BRAF mutations was also positively associated with advanced tumor stage (adjusted OR=3.99, 95%CI 1.43-11.12) and grade (adjusted OR=3.93, 95%CI 1.05-14.69). PIK3CA mutations showed a trend toward an association with an increased risk of death compared to absence of those mutations (adjusted for age, sex and CRC site HR=1.89, 95% CI 0.98-3.65). Among African Americans, the association was more evident (adjusted for age, sex and CRC site HR=3.92, 95% CI 1.03-14.93) and remained significant after adjustment for MSI-H status and combined education-income level, with HR of 12.22 (95%CI 1.32-121.38). Our results suggest that African Americans may have different frequencies of somatic genetic alterations that may partially explain the worse prognosis among African Americans with CRC compared to whites.

  15. Immunostaining with EGFR mutation-specific antibodies: a reliable screening method for lung adenocarcinomas harboring EGFR mutation in biopsy and resection samples.

    PubMed

    Fan, Xiangshan; Liu, Biao; Xu, Haodong; Yu, Bo; Shi, Shanshan; Zhang, Jin; Wang, Xuan; Wang, Jiandong; Lu, Zhenfeng; Ma, Henghui; Zhou, Xiaojun

    2013-08-01

    Mutation analysis of epidermal growth factor receptor (EGFR) is essential in determining the therapeutic strategy for lung adenocarcinoma. Immunohistochemical (IHC) staining with EGFR mutation-specific antibodies of del E746-A750 in exon 19 and L858R in exon 21 has been evaluated in resection specimens in a few studies but rarely in biopsy samples. A total of 169 cases (78 biopsies and 91 resected specimens) of lung adenocarcinoma with EGFR mutation status predefined by direct DNA sequencing were histologically examined, and IHC was performed using EGFR mutation-specific antibodies of del E746-A750 and L858R. The cases with positive results by IHC but negative results by direct DNA sequencing were examined by amplified refractory mutation system. Our results showed that the frequency of EGFR mutations for both E746-A750 deletion and L858R mutation was 38.5% (65/169) by DNA sequencing or amplified refractory mutation system and 34.3% (58/169) by IHC in lung adenocarcinomas. Based on molecular test results, the overall sensitivity, specificity, positive predictive value, and negative predictive value of IHC using these 2 antibodies in all (biopsy/resection) cases were 87.7% (80%/94.3%), 99.0% (97.9%/100%), 98.3% (96%/100%), and 92.8% (88.7%/96.6%), respectively. Lung adenocarcinomas with a predominant acinar, papillary, lepidic, or solid growth pattern more often harbor EGFR mutation of del E746-A750 or L858R. In conclusion, the immunostaining with EGFR del E746-A750 and L858R mutation antibodies is a reliable screening method with high specificity and sensitivity for identifying the EGFR mutation in both resected and biopsied lung adenocarcinomas. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The somatic POLE P286R mutation defines a unique subclass of colorectal cancer featuring hypermutation, representing a potential genomic biomarker for immunotherapy

    PubMed Central

    Kim, Jihun; Kim, Deokhoon; Chun, Sung-Min; Kim, Jiyun; Kim, Tae Won; Park, Inja; Yu, Chang-Sik; Jang, Se Jin

    2016-01-01

    Early-onset colorectal cancers (EOCRCs) may have biological or genomic features distinct from late-onset CRCs (LOCRCs). Previous studies have mostly focused on the germline predisposition conditions of EOCRCs, but we hypothesized that EOCRCs may have distinct somatic aberrations that accelerate cancer development. To identify the somatic aberrations that accelerate cancer development at an early age, we conducted whole exome sequencing for 28 polyposis-unrelated, microsatellite stable (MSS) EOCRCs with no known germline predisposition conditions. Surprisingly, we found two distinct groups in the context of mutational burden: 6 hypermutated cases with 2325 to 10973 mutations and 22 nonhypermutated cases with 47 to 154 mutations. Further analysis revealed that four of the six hypermutated cases had the same POLE P286R mutation. We validated this finding in 83 MSS EOCRCs and 27 MSS LOCRCs, which revealed that 7.2% of EOCRCs (6/83) had the POLE P286R mutation, which was not found in LOCRCs. Clinicopathologically, EOCRCs with POLE mutations occurred far more frequently in the right colon than in the left colon, affecting men more frequently than women. In summary, we have identified a unique subclass of colon cancer characterized by a hypermutation associated with the POLE mutation. The acquisition of the POLE mutation leading to hypermutation can accelerate cancer development. Clinically, this subset with hypermutation may be susceptible to immune checkpoint blockade. PMID:27612425

  17. Genomic profiling of multiple sequentially acquired tumor metastatic sites from an “exceptional responder” lung adenocarcinoma patient reveals extensive genomic heterogeneity and novel somatic variants driving treatment response

    PubMed Central

    Biswas, Romi; Gao, Shaojian; Cultraro, Constance M.; Maity, Tapan K.; Venugopalan, Abhilash; Abdullaev, Zied; Shaytan, Alexey K.; Carter, Corey A.; Thomas, Anish; Rajan, Arun; Song, Young; Pitts, Stephanie; Chen, Kevin; Bass, Sara; Boland, Joseph; Hanada, Ken-Ichi; Chen, Jinqiu; Meltzer, Paul S.; Panchenko, Anna R.; Yang, James C.; Pack, Svetlana; Giaccone, Giuseppe; Schrump, David S.; Khan, Javed; Guha, Udayan

    2016-01-01

    We used next-generation sequencing to identify somatic alterations in multiple metastatic sites from an “exceptional responder” lung adenocarcinoma patient during his 7-yr course of ERBB2-directed therapies. The degree of heterogeneity was unprecedented, with ∼1% similarity between somatic alterations of the lung and lymph nodes. One novel translocation, PLAG1-ACTA2, present in both sites, up-regulated ACTA2 expression. ERBB2, the predominant driver oncogene, was amplified in both sites, more pronounced in the lung, and harbored an L869R mutation in the lymph node. Functional studies showed increased proliferation, migration, metastasis, and resistance to ERBB2-directed therapy because of L869R mutation and increased migration because of ACTA2 overexpression. Within the lung, a nonfunctional CDK12, due to a novel G879V mutation, correlated with down-regulation of DNA damage response genes, causing genomic instability, and sensitivity to chemotherapy. We propose a model whereby a subclone metastasized early from the primary site and evolved independently in lymph nodes. PMID:27900369

  18. Somatic Crossing over in GLYCINE MAX (L.) Merrill: Effect of Some Inhibitors of DNA Synthesis on the Induction of Somatic Crossing over and Point Mutations.

    PubMed

    Vig, B K

    1973-04-01

    Glycine max (soybean) is the only known higher plant with a definitely established occurrence of somatic crossing over. This material lends itself to the analysis of somatic crossing over, gross chromosomal aberrations and mutations, all of which may be induced by the same treatment of the mutagen given to seeds. This is made possible because gene Y(11) for chlorophyll development in the variety L65-1237 is incompletely dominant over its allele y(11), so that twin or double spots composed of a dark green (Y(11)Y(11)) and a yellow (y(11)y(11)) component can be observed adjacent to and as mirror images of each other on the light green Y(11)y(11) leaves in the areas of complementary exchange for these genes. Lack of growth of either component of this double spot as well as several types of chromosomal disturbances give rise to single spots resembling phenotypes of y(11)y(11) or Y(11)Y(11) leaves. Point mutations can be studied by looking for green sectors originating from Y(11)y(11) genotype on the y(11)y(11) plants. Seeds obtained from heterozygous plants were treated with caffeine, cytosine arabinoside, actinomycin D and 5-fluoro-deoxyuridine, all known inhibitors of DNA synthesis, and puromycin, an inhibitor of synthesis of proteins. The treatments with caffeine and actinomycin D increased the frequency of somatic crossing over as measured by the frequency of double spots on Y(11)y(11) leaves, but cytosine arabinoside, 5-fluorodeoxyuridine and puromycin did not. Thus somatic crossing over was induced only by those chemicals which are known to allow rejoining of chromosomes, thereby suggesting a correlation between the two phenomena. These observations indicate that it is not the mere inhibition of DNA synthesis, but some rather more specific event in DNA repair which is responsible for complementary exchanges. Some of these results differ from studies carried out with fungi. The main effect of all chemicals tested, except caffeine and actinomycin D, was inferred to

  19. Acquired Resistance Mechanisms to Combination Met-TKI/EGFR-TKI Exposure in Met-Amplified EGFR-TKI-Resistant Lung Adenocarcinoma Harboring an Activating EGFR Mutation.

    PubMed

    Yamaoka, Toshimitsu; Ohmori, Tohru; Ohba, Motoi; Arata, Satoru; Kishino, Yasunari; Murata, Yasunori; Kusumoto, Sojiro; Ishida, Hiroo; Shirai, Takao; Hirose, Takashi; Ohnishi, Tsukasa; Sasaki, Yasutsuna

    2016-12-01

    Met-amplified EGFR-tyrosine kinase inhibitor (TKI)-resistant non-small cell lung cancer (NSCLC) harboring an activating EGFR mutation is responsive to concurrent EGFR-TKI and Met-TKI treatment in a preclinical model. Here, we determined that Met-amplified gefitinib-resistant cells acquire dual resistance to inhibition of EGFR and Met tyrosine kinase activities. PC-9 lung adenocarcinoma cells harboring 15-bp deletions (Del E746_A750) in EGFR exon 19 were treated with increasing concentrations of the Met-TKI PHA665752 and 1 μmol/L gefitinib for 1 year; three resistant clones were established via Met amplification. The three dual-resistance cell lines (PC-9DR2, PC-9DR4, and PC-9DR6, designated as DR2, DR4, and DR6, respectively) exhibited different mechanisms for evading both EGFR and Met inhibition. None of the clones harbored a secondary mutation of EGFR T790M or a Met mutation. Insulin-like growth factor (IGF)/IGF1 receptor activation in DR2 and DR4 cells acted as a bypass signaling pathway. Met expression was attenuated to a greater extent in DR2 than in PC-9 cells, but was maintained in DR4 cells by overexpression of IGF-binding protein 3. In DR6 cells, Met was further amplified by association with HSP90, which protected Met from degradation and induced SET and MYND domain-containing 3 (SMYD3)-mediated Met transcription. This is the first report describing the acquisition of dual resistance mechanisms in NSCLC harboring an activating EGFR mutation to Met-TKI and EGFR-TKI following previous EGFR-TKI treatment. These results might inform the development of more effective therapeutic strategies for NSCLC treatment. Mol Cancer Ther; 15(12); 3040-54. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. Molecular and clinical evidence for an ARMC5 tumor syndrome: concurrent inactivating germline and somatic mutations are associated with both primary macronodular adrenal hyperplasia and meningioma.

    PubMed

    Elbelt, Ulf; Trovato, Alessia; Kloth, Michael; Gentz, Enno; Finke, Reinhard; Spranger, Joachim; Galas, David; Weber, Susanne; Wolf, Cristina; König, Katharina; Arlt, Wiebke; Büttner, Reinhard; May, Patrick; Allolio, Bruno; Schneider, Jochen G

    2015-01-01

    Primary macronodular adrenal hyperplasia (PMAH) is a rare cause of Cushing's syndrome, which may present in the context of different familial multitumor syndromes. Heterozygous inactivating germline mutations of armadillo repeat containing 5 (ARMC5) have very recently been described as cause for sporadic PMAH. Whether this genetic condition also causes familial PMAH in association with other neoplasias is unclear. The aim of the present study was to delineate the molecular cause in a large family with PMAH and other neoplasias. Whole-genome sequencing and comprehensive clinical and biochemical phenotyping was performed in members of a PMAH affected family. Nodules derived from adrenal surgery and pancreatic and meningeal tumor tissue were analyzed for accompanying somatic mutations in the identified target genes. PMAH presenting either as overt or subclinical Cushing's syndrome was accompanied by a heterozygous germline mutation in ARMC5 (p.A110fs*9) located on chromosome 16. Analysis of tumor tissue showed different somatic ARMC5 mutations in adrenal nodules supporting a second hit hypothesis with inactivation of a tumor suppressor gene. A damaging somatic ARMC5 mutation was also found in a concomitant meningioma (p.R502fs) but not in a pancreatic tumor, suggesting biallelic inactivation of ARMC5 as causal also for the intracranial meningioma. Our analysis further confirms inherited inactivating ARMC5 mutations as a cause of familial PMAH and suggests an additional role for the development of concomitant intracranial meningiomas.

  1. Coats' disease of the retina (unilateral retinal telangiectasis) caused by somatic mutation in the NDP gene: a role for norrin in retinal angiogenesis.

    PubMed

    Black, G C; Perveen, R; Bonshek, R; Cahill, M; Clayton-Smith, J; Lloyd, I C; McLeod, D

    1999-10-01

    Coats' disease is characterized by abnormal retinal vascular development (so-called 'retinal telangiectasis') which results in massive intraretinal and subretinal lipid accumulation (exudative retinal detachment). The classical form of Coats' disease is almost invariably isolated, unilateral and seen in males. A female with a unilateral variant of Coats' disease gave birth to a son affected by Norrie disease. Both carried a missense mutation within the NDP gene on chromosome Xp11.2. Subsequently analysis of the retinas of nine enucleated eyes from males with Coats' disease demonstrated in one a somatic mutation in the NDP gene which was not present within non-retinal tissue. We suggest that Coats' telangiectasis is secondary to somatic mutation in the NDP gene which results in a deficiency of norrin (the protein product of the NDP gene) within the developing retina. This supports recent observations that the protein is critical for normal retinal vasculogenesis.

  2. Detection of somatic mutations in the mitochondrial DNA control region D-loop in brain tumors: The first report in Malaysian patients.

    PubMed

    Mohamed Yusoff, Abdul Aziz; Mohd Nasir, Khairol Naaim; Haris, Khalilah; Mohd Khair, Siti Zulaikha Nashwa; Abdul Ghani, Abdul Rahman Izaini; Idris, Zamzuri; Abdullah, Jafri Malin

    2017-11-01

    Although the role of nuclear-encoded gene alterations has been well documented in brain tumor development, the involvement of the mitochondrial genome in brain tumorigenesis has not yet been fully elucidated and remains controversial. The present study aimed to identify mutations in the mitochondrial DNA (mtDNA) control region D-loop in patients with brain tumors in Malaysia. A mutation analysis was performed in which DNA was extracted from paired tumor tissue and blood samples obtained from 49 patients with brain tumors. The D-loop region DNA was amplified using the PCR technique, and genetic data from DNA sequencing analyses were compared with the published revised Cambridge sequence to identify somatic mutations. Among the 49 brain tumor tissue samples evaluated, 25 cases (51%) had somatic mutations of the mtDNA D-loop, with a total of 48 mutations. Novel mutations that had not previously been identified in the D-loop region (176 A-deletion, 476 C>A, 566 C>A and 16405 A-deletion) were also classified. No significant associations between the D-loop mutation status and the clinicopathological parameters were observed. To the best of our knowledge, the current study presents the first evidence of alterations in the mtDNA D-loop regions in the brain tumors of Malaysian patients. These results may provide an overview and data regarding the incidence of mitochondrial genome alterations in Malaysian patients with brain tumors. In addition to nuclear genome aberrations, these specific mitochondrial genome alterations may also be considered as potential cancer biomarkers for the diagnosis and staging of brain cancers.

  3. Prolonged Response to Trastuzumab in a Patient With HER2-Nonamplified Breast Cancer With Elevated HER2 Dimerization Harboring an ERBB2 S310F Mutation.

    PubMed

    Chumsri, Saranya; Weidler, Jodi; Ali, Siraj; Balasubramanian, Sohail; Wallweber, Gerald; DeFazio-Eli, Lisa; Chenna, Ahmed; Huang, Weidong; DeRidder, Angela; Goicocheal, Lindsay; Perez, Edith A

    2015-09-01

    In the current genomic era, increasing evidence demonstrates that approximately 2% of HER2-negative breast cancers, by current standard testings, harbor activating mutations of ERBB2. However, whether patients with HER2-negative breast cancer with activating mutations of ERBB2 also experience response to anti-HER2 therapies remains unclear. This case report describes a patient with HER2-nonamplified heavily pretreated breast cancer who experienced prolonged response to trastuzumab in combination with pertuzumab and fulvestrant. Further molecular analysis demonstrated that her tumors had an elevated HER2 dimerization that corresponded to ERBB2 S310F mutation. Located in the extracellular domain of the HER2 protein, this mutation was reported to promote noncovalent dimerization that results in the activation of the downstream signaling pathways. This case highlights the fact that HER2-targeted therapy may be valuable in patients harboring an ERBB2 S310F mutation. Copyright © 2015 by the National Comprehensive Cancer Network.

  4. A marked response to icotinib in a patient with large cell neuroendocrine carcinoma harboring an EGFR mutation: A case report.

    PubMed

    Wang, Yuehong; Shen, Yi Hong; Ma, Shanni; Zhou, Jianying

    2015-09-01

    The present study reports the case of an 84-year-old male with primary pulmonary large cell neuroendocrine carcinoma (LCNEC) harboring an epidermal growth factor receptor (EGFR) gene mutation that exhibited a long-lasting response to the EGFR-tyrosine kinase inhibitor (EGFR-TKI) icotinib. The patient had an extensive smoking history, a poor performance status, and presented with an irregular mass in the middle lobe of the right lung on computed tomography (CT) and an enlarged left supraclavicular lymph node on physical examination. Right middle lobe bronchial brushing during fiberoptic bronchoscopy identified poorly-differentiated cancer cells. The left supraclavicular lymph node was biopsied and a diagnosis of metastatic LCNEC was determined. Furthermore, an EGFR exon 19 deletion was identified by DNA sequencing. Following diagnosis, icotinib was administered at a dose of 125 mg three times a day. Chest CT scans were performed after 1 month of treatment, which indicated that the tumor was in partial remission. This marked response to icotinib lasted for 8 months. Thus, the present case illustrates the possibility of identifying EGFR mutations in LCNEC and indicates that EGFR-tyrosine kinase inhibitors may be an alternative treatment strategy for patients with LCNEC harboring activating EGFR mutations.

  5. A comparison of somatic mutational spectra in healthy study populations from Russia, Sweden and USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noori, P; Hou, S; Jones, I M

    Comparison of mutation spectra at the hypoxanthine-phosphoribosyl transferase (HPRT) gene of peripheral blood T lymphocytes may provide insight into the aetiology of somatic mutation contributing to carcinogenesis and other diseases. To increase knowledge of mutation spectra in healthy people, we have analyzed HPRT mutant T-cells of 50 healthy Russians originally recruited as controls for a study of Chernobyl clean-up workers (Jones et al. Radiation Res. 158, 2002, 424). Reverse transcriptase polymerase chain reactions and DNA sequencing identified 161 independent mutations among 176 thioguanine resistant mutants. Forty (40) mutations affected splicing mechanisms and 27 deletions or insertions of 1 to 60more » nucleotides were identified. Ninety four (94) single base substitutions were identified, including 62 different mutations at 55 different nucleotide positions, of which 19 had not previously been reported in human T-cells. Comparison of this base substitution spectrum with mutation spectra in a USA (Burkhart-Schultz et al. Carcinogenesis 17, 1996, 1871) and two Swedish populations (Podlutsky et al, Carcinogenesis 19, 1998, 557, Podlutsky et al. Mutation Res. 431, 1999, 325) revealed similarity in the type, frequency and distribution of mutations in the four spectra, consistent with aetiologies inherent in human metabolism. There were 15-19 identical mutations in the three pair-wise comparisons of Russian with USA and Swedish spectra. Intriguingly, there were 21 mutations unique to the Russian spectrum, and comparison by the Monte Carlo method of Adams and Skopek (J. Mol. Biol. 194, 1987, 391) indicated that the Russian spectrum was different from both Swedish spectra (P=0.007, 0.002) but not different from the USA spectrum (P=0.07), when Bonferroni correction for multiple comparisons was made (p < 0.008 required for significance). Age and smoking did not account for these differences. Other factors causing mutational differences need to be explored.« less

  6. PPM1D Mosaic Truncating Variants in Ovarian Cancer Cases May Be Treatment-Related Somatic Mutations.

    PubMed

    Pharoah, Paul D P; Song, Honglin; Dicks, Ed; Intermaggio, Maria P; Harrington, Patricia; Baynes, Caroline; Alsop, Kathryn; Bogdanova, Natalia; Cicek, Mine S; Cunningham, Julie M; Fridley, Brooke L; Gentry-Maharaj, Aleksandra; Hillemanns, Peter; Lele, Shashi; Lester, Jenny; McGuire, Valerie; Moysich, Kirsten B; Poblete, Samantha; Sieh, Weiva; Sucheston-Campbell, Lara; Widschwendter, Martin; Whittemore, Alice S; Dörk, Thilo; Menon, Usha; Odunsi, Kunle; Goode, Ellen L; Karlan, Beth Y; Bowtell, David D; Gayther, Simon A; Ramus, Susan J

    2016-03-01

    Mosaic truncating mutations in the protein phosphatase, Mg(2+)/Mn(2+)-dependent, 1D (PPM1D) gene have recently been reported with a statistically significantly greater frequency in lymphocyte DNA from ovarian cancer case patients compared with unaffected control patients. Using massively parallel sequencing (MPS) we identified truncating PPM1D mutations in 12 of 3236 epithelial ovarian cancer (EOC) case patients (0.37%) but in only one of 3431 unaffected control patients (0.03%) (P = .001). All statistical tests were two-sided. A combination of Sanger sequencing, pyrosequencing, and MPS data suggested that 12 of the 13 mutations were mosaic. All mutations were identified in post-chemotherapy treatment blood samples from case patients (n = 1827) (average 1234 days post-treatment in carriers) rather than from cases collected pretreatment (less than 14 days after diagnosis, n = 1384) (P = .002). These data suggest that PPM1D variants in EOC cases are primarily somatic mosaic mutations caused by treatment and are not associated with germline predisposition to EOC. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Somatic mutation of EZH2 (Y641) in follicular and diffuse large B-cell lymphomas of germinal center origin | Office of Cancer Genomics

    Cancer.gov

    Morin et al. describe recurrent somatic mutations in EZH2, a polycomb group oncogene. The mutation, found in the SET domain of this gene encoding a histone methyltransferase, is found only in a subset of lymphoma samples. Specifically, EZH2 mutations are found in about 12% of follicular lymphomas (FL) and almost 23% of diffuse large B-cell lymphomas (DLBCL) of germinal center origin. This paper goes on to demonstrate that altered EZH2 proteins, corresponding to the most frequent mutations found in human lymphomas, have reduced activity using in vitro histone methylation assays.

  8. A Somatic HIF2α Mutation-Induced Multiple and Recurrent Pheochromocytoma/Paraganglioma with Polycythemia: Clinical Study with Literature Review.

    PubMed

    Liu, Qiuli; Wang, Yan; Tong, Dali; Liu, Gaolei; Yuan, Wenqiang; Zhang, Jun; Ye, Jin; Zhang, Yao; Yuan, Gang; Feng, Qingxing; Zhang, Dianzheng; Jiang, Jun

    2017-03-01

    A syndrome known as pheochromocytomas (PCC)/paragangliomas (PGL) and polycythemia resulted from gain-of-function mutation of hypoxia-inducible factor 2α (HIF2α) has been reported recently. However, clinical features of this syndrome vary from patient to patient. In our study, we described the clinical features of the patient within 15-year follow-up with a literature review. The patient presented with "red face" since childhood and was diagnosed with polycythemia and pheochromocytoma in 2000, and then, tumor was removed at his age of 27 (year 2000). However, 13 years later (2013), he was diagnosed with multiple paragangliomas. Moreover, 2 years later (2015), another two paragangaliomas were also confirmed. Genetic analysis of hereditary PCC/PGL-related genes was conducted. A somatic heterozygous missense mutation of HIF2α (c.1589C>T) was identified at exon 12, which is responsible for the elevated levels of HIF2α and erythropoietin (EPO) and subsequent development of paragangaliomas. However, this mutation was only found in the tumors from three different areas, not in the blood. So far, 13 cases of PCC/PGL with polycythemia have been reported. Among them, somatic mutations of HIF2α at exon 12 are responsible for 12 cases, and only 1 case was caused by germline mutation of HIF2α at exon 9. The HIF2α mutation-induced polycythemia with PCC/PGL is a rare syndrome with no treatment for cure. Comprehensive therapies for this disease include removal of the tumors and intermittent phlebotomies; administration of medications to control blood pressure and to prevent complications or death resulted from high concentration of red blood cell (RBC). Genetic test is strongly recommended for patients with early onset of polycythemia and multiple/recurrent PCC/PGL.

  9. Histopathological analysis of aggressive renal cell carcinoma harboring a unique germline mutation in fumarate hydratase.

    PubMed

    Matsumoto, Kana; Udaka, Naoko; Hasumi, Hisashi; Nakaigawa, Noboru; Nagashima, Yoji; Tanaka, Reiko; Kato, Ikuma; Yao, Masahiro; Furuya, Mitsuko

    2018-05-24

    Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a rare genetic disorder characterized by cutaneous and uterine leiomyomatosis with RCC. This disorder is caused by a germline mutation in the fumarate hydratase (FH) gene, which encodes an important enzyme of the tricarboxylic acid (TCA) cycle. This mutation distinguishes HLRCC from sporadic RCCs. Herein, we investigated a case of HLRCC in a 32-year-old man who underwent nephrectomy for treatment of a solid-cystic tumor in the left kidney. Histopathology demonstrated a variegated architecture of papillary, tubulocystic and cribriform patterns composed of high-grade tumor cells with enlarged nuclei and eosinophilic nucleoli. Immunostaining and western blotting revealed no FH expression in the tumor. Genomic DNA sequencing identified a heterozygous mutation involving deletion of the 3' end of exon 2 and intron 2 of the FH gene (c.251_267+7delTGACAGAACGCATGCCAGTAAGTG), and RT-PCR confirmed exon 2 skipping in FH mRNA. The somatic FH gene status of the tumor showed only the mutated allele, indicating loss of heterozygosity as the "second hit" of tumor suppressor gene inactivation. These data support that an FH mutation involving the splice site causes exon skipping, changing the conformation of the protein and accelerating carcinogenic cascades under impaired FH functioning in the TCA cycle. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  10. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations.

    PubMed

    Liu, Xiaoying; Mody, Kabir; de Abreu, Francine B; Pipas, J Marc; Peterson, Jason D; Gallagher, Torrey L; Suriawinata, Arief A; Ripple, Gregory H; Hourdequin, Kathryn C; Smith, Kerrington D; Barth, Richard J; Colacchio, Thomas A; Tsapakos, Michael J; Zaki, Bassem I; Gardner, Timothy B; Gordon, Stuart R; Amos, Christopher I; Wells, Wendy A; Tsongalis, Gregory J

    2014-07-01

    Some epithelial neoplasms of the appendix, including low-grade appendiceal mucinous neoplasm and adenocarcinoma, can result in pseudomyxoma peritonei (PMP). Little is known about the mutational spectra of these tumor types and whether mutations may be of clinical significance with respect to therapeutic selection. In this study, we identified somatic mutations using the Ion Torrent AmpliSeq Cancer Hotspot Panel v2. Specimens consisted of 3 nonneoplastic retention cysts/mucocele, 15 low-grade mucinous neoplasms (LAMNs), 8 low-grade/well-differentiated mucinous adenocarcinomas with pseudomyxoma peritonei, and 12 adenocarcinomas with/without goblet cell/signet ring cell features. Barcoded libraries were prepared from up to 10 ng of extracted DNA and multiplexed on single 318 chips for sequencing. Data analysis was performed using Golden Helix SVS. Variants that remained after the analysis pipeline were individually interrogated using the Integrative Genomics Viewer. A single Janus kinase 3 (JAK3) mutation was detected in the mucocele group. Eight mutations were identified in the V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and GNAS complex locus (GNAS) genes among LAMN samples. Additional gene mutations were identified in the AKT1 (v-akt murine thymoma viral oncogene homolog 1), APC (adenomatous polyposis coli), JAK3, MET (met proto-oncogene), phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA), RB1 (retinoblastoma 1), STK11 (serine/threonine kinase 11), and tumor protein p53 (TP53) genes. Among the PMPs, 6 mutations were detected in the KRAS gene and also in the GNAS, TP53, and RB1 genes. Appendiceal cancers showed mutations in the APC, ATM (ataxia telangiectasia mutated), KRAS, IDH1 [isocitrate dehydrogenase 1 (NADP+)], NRAS [neuroblastoma RAS viral (v-ras) oncogene homolog], PIK3CA, SMAD4 (SMAD family member 4), and TP53 genes. Our results suggest molecular heterogeneity among epithelial tumors of the appendix. Next generation sequencing efforts

  11. β-catenin contributes to lung tumor development induced by EGFR mutations

    PubMed Central

    Nakayama, Sohei; Sng, Natasha; Carretero, Julian; Welner, Robert; Hayashi, Yuichiro; Yamamoto, Mihoko; Tan, Alistair J.; Yamaguchi, Norihiro; Yasuda, Hiroyuki; Li, Danan; Soejima, Kenzo; Soo, Ross A.; Costa, Daniel B.; Wong, Kwok-Kin; Kobayashi, Susumu S.

    2014-01-01

    The discovery of somatic mutations in epidermal growth factor receptor (EGFR) and development of EGFR tyrosine kinase inhibitors (TKIs) have revolutionized treatment for lung cancer. However, resistance to TKIs emerges in almost all patients and currently no effective treatment is available. Here we show that β-catenin is essential for development of EGFR mutated lung cancers. β-catenin was upregulated and activated in EGFR mutated cells. Mutant EGFR preferentially bound to and tyrosine-phosphorylated β-catenin, leading to increase in β-catenin-mediated transactivation, particularly in cells harboring the gefitinib/erlotinib-resistant gatekeeper EGFR-T790M mutation. Pharmacological inhibition of β-catenin suppressed EGFR-L858R-T790M mutated lung tumor growth and genetic deletion of the β-catenin gene dramatically reduced lung tumor formation in EGFR-L858R-T790M transgenic mice. These data suggest that β-catenin plays an essential role in lung tumorigenesis and that targeting the β-catenin pathway may provide novel strategies to prevent lung cancer development or overcome resistance to EGFR TKIs. PMID:25164010

  12. Combined "Infiltrating Astrocytoma/Pleomorphic Xanthoastrocytoma" Harboring IDH1 R132H and BRAF V600E Mutations.

    PubMed

    Yamada, Seiji; Kipp, Benjamin R; Voss, Jesse S; Giannini, Caterina; Raghunathan, Aditya

    2016-02-01

    Pleomorphic xanthoastrocytoma (PXA) has rarely been reported in combination with infiltrating glioma, historically interpreted as a "collision tumor." Isocitrate dehydrogenase 1 (IDH1) and BRAF V600E mutations are usually not concurrent. The former is typical of adult infiltrating gliomas, and the latter is identified in a variety of primary central nervous system neoplasms, including PXA, ganglioglioma, pilocytic astrocytoma, and rarely infiltrating gliomas. We report the case of a 56-year-old man presenting with seizures and headaches. Magnetic resonance imaging revealed a large right temporal lobe mass with low T1 and high T2/FLAIR signal and a discrete contrast-enhancing focus. Histologically, the tumor showed 2 distinct components: an infiltrating astrocytoma harboring 5 mitoses/10 high-power fields and a relatively circumscribed focus, resembling PXA with, at most, 2 mitoses/10 high-power fields. No microvascular proliferation or necrosis was present in either component. The infiltrating astrocytoma component contained numerous axons, whereas the PXA-like component had sparse axons, as demonstrated by the neurofilament immunostain. Both components were positive for the mutant IDH1 R132H and showed loss of ATRX expression, whereas BRAF V600E was restricted to the PXA-like component. On sequencing of the 2 components separately after microdissection, both showed identical IDH1 R132H and TP53 R273C point mutations, whereas the BRAF V600E mutation was limited to the PXA-like component. These findings are consistent with clonal expansion of a morphologically distinct focus, harboring a private BRAF V600E mutation within an IDH1-mutant glioma. Intratumoral heterogeneity and clonal evolution, as seems to have occurred here, suggest reevaluation of "collision tumors" as a concept.

  13. Smoking History as a Predictor of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients with Non-Small Cell Lung Cancer Harboring EGFR Mutations.

    PubMed

    Nishinarita, Noriko; Igawa, Satoshi; Kasajima, Masashi; Kusuhara, Seiichiro; Harada, Shinya; Okuma, Yuriko; Sugita, Keisuke; Ozawa, Takahiro; Fukui, Tomoya; Mitsufuji, Hisashi; Yokoba, Masanori; Katagiri, Masato; Kubota, Masaru; Sasaki, Jiichiro; Naoki, Katsuhiko

    2018-04-26

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKIs) therapy has been recognized as the standard treatment for patients with non-small cell lung cancer (NSCLC) harboring EGFR mutations. However, resistance to EGFR-TKIs has been observed in certain subpopulations of these patients. We aimed to evaluate the impact of smoking history on the efficacy of EGFR-TKIs. The records of patients (n = 248) with NSCLC harboring activating EGFR mutations who were treated with gefitinib or erlotinib at our institution between March 2010 and June 2016 were retrospectively reviewed, and the treatment outcomes were evaluated. The overall response rate and median progression-free survival (PFS) were 59.7% and 10.7 months, respectively. The overall response rate was significantly higher in the ex- and nonsmokers than in the current smokers (64.6 vs. 51.1%, p = 0.038). PFS also differed significantly between the current smokers and the ex- and nonsmokers (12.4 vs. 7.4 months, p = 0.016). Multivariate analysis identified smoking history as an independent predictor of PFS and overall survival. The clinical data obtained in this study provide a valuable rationale for considering smoking history as a predictor of the efficacy of EGFR-TKI in NSCLC patients harboring activating EGFR mutations. © 2018 S. Karger AG, Basel.

  14. The Genomic Evolution of Prostate Cancer

    DTIC Science & Technology

    2014-10-01

    Mutation characteristics. (a) Number of high-confidence somatic mutations across all foci. Non- silent , non- silent mutations; Unique, number of unique...genes harboring a non- silent mutation; Reported, gene reported to be mutated in references 9–12 and 14. (b) Spectrum of unique high confidence somatic...epigenetic and micr- oRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells. Oncogene 2011; 30

  15. AIP mutations in Brazilian patients with sporadic pituitary adenomas: a single-center evaluation

    PubMed Central

    Kasuki, Leandro; de Azeredo Lima, Carlos Henrique; Ogino, Liana; Camacho, Aline H S; Chimelli, Leila; Korbonits, Márta

    2017-01-01

    Aryl hydrocarbon receptor-interacting protein (AIP) gene mutations (AIPmut) are the most frequent germline mutations found in apparently sporadic pituitary adenomas (SPA). Our aim was to evaluate the frequency of AIPmut among young Brazilian patients with SPA. We performed an observational cohort study between 2013 and 2016 in a single referral center. AIPmut screening was carried out in 132 SPA patients with macroadenomas diagnosed up to 40 years or in adenomas of any size diagnosed until 18 years of age. Twelve tumor samples were also analyzed. Leukocyte DNA and tumor tissue DNA were sequenced for the entire AIP-coding region for evaluation of mutations. Eleven (8.3%) of the 132 patients had AIPmut, comprising 9/74 (12%) somatotropinomas, 1/38 (2.6%) prolactinoma, 1/10 (10%) corticotropinoma and no non-functioning adenomas. In pediatric patients (≤18 years), AIPmut frequency was 13.3% (2/15). Out of the 5 patients with gigantism, two had AIPmut, both truncating mutations. The Y268* mutation was described in Brazilian patients and the K273Rfs*30 mutation is a novel mutation in our patient. No somatic AIP mutations were found in the 12 tumor samples. A tumor sample from an acromegaly patient harboring the A299V AIPmut showed loss of heterozygosity. In conclusion, AIPmut frequency in SPA Brazilian patients is similar to other populations. Our study identified two mutations exclusively found in Brazilians and also shows, for the first time, loss of heterozygosity in tumor DNA from an acromegaly patient harboring the A299V AIPmut. Our findings corroborate previous observations that AIPmut screening should be performed in young patients with SPA. PMID:29074612

  16. IgV(H) and bcl6 somatic mutation analysis reveals the heterogeneity of cutaneous B-cell lymphoma, and indicates the presence of undisclosed local antigens.

    PubMed

    Franco, Renato; Camacho, Francisca I; Fernández-Vázquez, Amalia; Algara, Patrocinio; Rodríguez-Peralto, José L; De Rosa, Gaetano; Piris, Miguel A

    2004-06-01

    Our understanding of the ontology of B-cell lymphomas (BCL) has been improved by the study of mutational status of IgV(H) and bcl6 genes, but only a few cases of cutaneous BCL have been examined for this status. We analyzed IgV(H) and bcl6 somatic mutations in 10 cutaneous BCL, classified as follicular (three primary and one secondary), primary marginal zone (two cases), and diffuse large BCL (three primary and one secondary). We observed a lower rate (<2%) of IgV(H) mutation in all marginal zone lymphomas, and a preferential usage of V(H)2-70 (one primary follicular and two primary diffuse large BCL). Fewer than expected replacement mutations in framework regions (FR) were observed in three primary follicular lymphomas (FLs) and in all diffuse large BCL, indicating a negative antigen selection pressure. Ongoing mutations were observed in eight of 10 cases. Only two primary FLs and two diffuse large BCL showed bcl6 somatic mutation. These data support the heterogeneous nature of the different cutaneous BCL, and specifically the distinction between cutaneous follicular and marginal zone lymphomas. The biased usage of V(H)2-70, the low rate of replacement mutation in the FR, and the presence of ongoing mutation imply that local antigens could modulate the growth of primary cutaneous BCL.

  17. Exome-wide Sequencing Shows Low Mutation Rates and Identifies Novel Mutated Genes in Seminomas.

    PubMed

    Cutcutache, Ioana; Suzuki, Yuka; Tan, Iain Beehuat; Ramgopal, Subhashini; Zhang, Shenli; Ramnarayanan, Kalpana; Gan, Anna; Lee, Heng Hong; Tay, Su Ting; Ooi, Aikseng; Ong, Choon Kiat; Bolthouse, Jonathan T; Lane, Brian R; Anema, John G; Kahnoski, Richard J; Tan, Patrick; Teh, Bin Tean; Rozen, Steven G

    2015-07-01

    Testicular germ cell tumors are the most common cancer diagnosed in young men, and seminomas are the most common type of these cancers. There have been no exome-wide examinations of genes mutated in seminomas or of overall rates of nonsilent somatic mutations in these tumors. The objective was to analyze somatic mutations in seminomas to determine which genes are affected and to determine rates of nonsilent mutations. Eight seminomas and matched normal samples were surgically obtained from eight patients. DNA was extracted from tissue samples and exome sequenced on massively parallel Illumina DNA sequencers. Single-nucleotide polymorphism chip-based copy number analysis was also performed to assess copy number alterations. The DNA sequencing read data were analyzed to detect somatic mutations including single-nucleotide substitutions and short insertions and deletions. The detected mutations were validated by independent sequencing and further checked for subclonality. The rate of nonsynonymous somatic mutations averaged 0.31 mutations/Mb. We detected nonsilent somatic mutations in 96 genes that were not previously known to be mutated in seminomas, of which some may be driver mutations. Many of the mutations appear to have been present in subclonal populations. In addition, two genes, KIT and KRAS, were affected in two tumors each with mutations that were previously observed in other cancers and are presumably oncogenic. Our study, the first report on exome sequencing of seminomas, detected somatic mutations in 96 new genes, several of which may be targetable drivers. Furthermore, our results show that seminoma mutation rates are five times higher than previously thought, but are nevertheless low compared to other common cancers. Similar low rates are seen in other cancers that also have excellent rates of remission achieved with chemotherapy. We examined the DNA sequences of seminomas, the most common type of testicular germ cell cancer. Our study identified 96

  18. Biological implications of somatic DDX41 p.R525H mutation in acute myeloid leukemia.

    PubMed

    Kadono, Moe; Kanai, Akinori; Nagamachi, Akiko; Shinriki, Satoru; Kawata, Jin; Iwato, Koji; Kyo, Taiichi; Oshima, Kumi; Yokoyama, Akihiko; Kawamura, Takeshi; Nagase, Reina; Inoue, Daichi; Kitamura, Toshio; Inaba, Toshiya; Ichinohe, Tatsuo; Matsui, Hirotaka

    2016-08-01

    The DDX41 gene, encoding a DEAD-box type ATP-dependent RNA helicase, is rarely but reproducibly mutated in myeloid diseases. The acquired mutation in DDX41 is highly concentrated at c.G1574A (p.R525H) in the conserved motif VI located at the C-terminus of the helicase core domain where ATP interacts and is hydrolyzed. Therefore, it is likely that the p.R525H mutation perturbs ATPase activity in a dominant-negative manner. In this study, we screened for the DDX41 mutation of CD34-positive tumor cells based on mRNA sequencing and identified the p.R525H mutation in three cases among 23 patients. Intriguingly, these patients commonly exhibited acute myeloid leukemia (AML) with peripheral blood cytopenias and low blast counts, suggesting that the mutation inhibits the growth and differentiation of hematopoietic cells. Data from cord blood cells and leukemia cell lines suggest a role for DDX41 in preribosomal RNA processing, in which the expression of the p.R525H mutant causes a certain ribosomopathy phenotype in hematopoietic cells by suppressing MDM2-mediated RB degradation, thus triggering the inhibition of E2F activity. This study uncovered a pathogenic role of p.R525H DDX41 in the slow growth rate of tumor cells. Age-dependent epigenetic alterations or other somatic changes might collaborate with the mutation to cause AML. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  19. Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy.

    PubMed

    Goh, Gerald; Walradt, Trent; Markarov, Vladimir; Blom, Astrid; Riaz, Nadeem; Doumani, Ryan; Stafstrom, Krista; Moshiri, Ata; Yelistratova, Lola; Levinsohn, Jonathan; Chan, Timothy A; Nghiem, Paul; Lifton, Richard P; Choi, Jaehyuk

    2016-01-19

    Merkel cell carcinoma (MCC) is a rare but highly aggressive cutaneous neuroendocrine carcinoma, associated with the Merkel cell polyomavirus (MCPyV) in 80% of cases. To define the genetic basis of MCCs, we performed exome sequencing of 49 MCCs. We show that MCPyV-negative MCCs have a high mutation burden (median of 1121 somatic single nucleotide variants (SSNVs) per-exome with frequent mutations in RB1 and TP53 and additional damaging mutations in genes in the chromatin modification (ASXL1, MLL2, and MLL3), JNK (MAP3K1 and TRAF7), and DNA-damage pathways (ATM, MSH2, and BRCA1). In contrast, MCPyV-positive MCCs harbor few SSNVs (median of 12.5 SSNVs/tumor) with none in the genes listed above. In both subgroups, there are rare cancer-promoting mutations predicted to activate the PI3K pathway (HRAS, KRAS, PIK3CA, PTEN, and TSC1) and to inactivate the Notch pathway (Notch1 and Notch2). TP53 mutations appear to be clinically relevant in virus-negative MCCs as 37% of these tumors harbor potentially targetable gain-of-function mutations in TP53 at p.R248 and p.P278. Moreover, TP53 mutational status predicts death in early stage MCC (5-year survival in TP53 mutant vs wild-type stage I and II MCCs is 20% vs. 92%, respectively; P = 0.0036). Lastly, we identified the tumor neoantigens in MCPyV-negative and MCPyV-positive MCCs. We found that virus-negative MCCs harbor more tumor neoantigens than melanomas or non-small cell lung cancers (median of 173, 65, and 111 neoantigens/sample, respectively), two cancers for which immune checkpoint blockade can produce durable clinical responses. Collectively, these data support the use of immunotherapies for virus-negative MCCs.

  20. Prevalence and clinical significance of mediator complex subunit 12 mutations in 362 Han Chinese samples with uterine leiomyoma.

    PubMed

    Wu, Juan; Zou, Yang; Luo, Yong; Guo, Jiu-Bai; Liu, Fa-Ying; Zhou, Jiang-Yan; Zhang, Zi-Yu; Wan, Lei; Huang, Ou-Ping

    2017-07-01

    Uterine leiomyomas (ULs) are the most common gynecological benign tumors originating from the myometrium. Prevalent mutations in the mediator complex subunit 12 (MED12) gene have been identified in ULs, and functional evidence has revealed that these mutations may promote the development of ULs. However, whether MED12 mutations are associated with certain clinical characteristics in ULs remains largely unknown. In the present study, the potential mutations of MED12 and its paralogous gene, mediator complex subunit 12-like (MED12L), were screened in 362 UL tumors from Han Chinese patients. A total of 158 out of 362 UL tumors (43.6%) were identified as harboring MED12 somatic mutations, and the majority of these mutations were restricted to the 44th residue. MED12 mutations were also observed in 2 out of 145 (1.4%) adjacent control myometrium. Furthermore, the mutation spectrum of MED12 in the concurrent leiomyomas was noticeably different. Correlation analysis of MED12 mutations with the available clinical features indicated that patients with mutated MED12 tended to have smaller cervical diameters. By contrast, no MED12L mutation was identified in the present samples. In summary, the present study demonstrated the presence of prevalent MED12 somatic mutations in UL samples, and the MED12 mutation was associated with smaller cervical diameters. The low mutation frequency of MED12 in adjacent control myometrium indicated that MED12 mutation may be an early event in the pathogenesis of ULs. Furthermore, MED12 mutation status in concurrent tumors from multiple leiomyomas supported several prior observations that the majority of these tumors arose independently.

  1. The effect of icotinib combined with chemotherapy in untreated non-small-cell lung cancer that harbored EGFR-sensitive mutations in a real-life setting: a retrospective analysis.

    PubMed

    Wang, Lulu; Li, Yan; Li, Luchun; Wu, Zhijuan; Yang, Dan; Ma, Huiwen; Wang, Donglin

    2018-01-01

    This study was conducted to compare the efficacy of a combination of icotinib and chemotherapy with icotinib or chemotherapy alone in untreated non-small cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR)-sensitive mutations and to analyze the curative effect of different treatments on different genetic mutations (EGFR 19 exon deletion and L858R mutation) in a real-life setting. One hundred ninety-one patients were studied in this retrospective analysis from January 2013 to December 2015. The baseline characteristics, curative effects and adverse events of patients were analyzed. The primary endpoint was progression free survival (PFS). Longer PFS and overall survival (OS), and better objective response rate (ORR) were observed in the combination group compared to icotinib or chemotherapy along. For patients with an EGFR 19 exon deletion, the PFS, OS, and ORR in the combination group were superior to those in the icotinib or chemotherapy group. For the patients with the EGFR L858R mutation, better PFS and ORR were observed in the combination group, but OS was not obviously prolonged. Grade 3 or 4 adverse events were most commonly reported with combination therapy or chemotherapy alone. No possible drug-related interstitial lung disease or of drug related deaths occurred. The combination of icotinib and chemotherapy in patients with untreated NSCLC harboring sensitive EGFR mutations resulted in improved PFS and OS, especially in those who harbored the EGFR exon 19 deletion.

  2. The effect of icotinib combined with chemotherapy in untreated non-small-cell lung cancer that harbored EGFR-sensitive mutations in a real-life setting: a retrospective analysis

    PubMed Central

    Wang, Lulu; Li, Yan; Li, Luchun; Wu, Zhijuan; Yang, Dan; Ma, Huiwen; Wang, Donglin

    2018-01-01

    Purpose This study was conducted to compare the efficacy of a combination of icotinib and chemotherapy with icotinib or chemotherapy alone in untreated non-small cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR)-sensitive mutations and to analyze the curative effect of different treatments on different genetic mutations (EGFR 19 exon deletion and L858R mutation) in a real-life setting. Patients and methods One hundred ninety-one patients were studied in this retrospective analysis from January 2013 to December 2015. The baseline characteristics, curative effects and adverse events of patients were analyzed. The primary endpoint was progression free survival (PFS). Results Longer PFS and overall survival (OS), and better objective response rate (ORR) were observed in the combination group compared to icotinib or chemotherapy along. For patients with an EGFR 19 exon deletion, the PFS, OS, and ORR in the combination group were superior to those in the icotinib or chemotherapy group. For the patients with the EGFR L858R mutation, better PFS and ORR were observed in the combination group, but OS was not obviously prolonged. Grade 3 or 4 adverse events were most commonly reported with combination therapy or chemotherapy alone. No possible drug-related interstitial lung disease or of drug related deaths occurred. Conclusion The combination of icotinib and chemotherapy in patients with untreated NSCLC harboring sensitive EGFR mutations resulted in improved PFS and OS, especially in those who harbored the EGFR exon 19 deletion. PMID:29731642

  3. Novel mutations in the CDKL5 gene in complex genotypes associated with West syndrome with variable phenotype: First description of somatic mosaic state.

    PubMed

    Jdila, Marwa Ben; Issa, Abir Ben; Khabou, Boudour; Rhouma, Bochra Ben; Kamoun, Fatma; Ammar-Keskes, Leila; Triki, Chahnez; Fakhfakh, Faiza

    2017-10-01

    West syndrome is a rare epileptic encephalopathy of early infancy, characterized by epileptic spasms, hypsarrhythmia, and psychomotor retardation beginning in the first year of life. The present study reports the clinical, molecular and bioinformatic investigation in the three studied West patients. The results revealed a complex genotype with more than one mutation in each patient including the known mutations c.1910C>G (P2, P3); c.2372A>C in P3 and c.2395C>G in P1 and novel variants including c.616G>A, shared by the three patients P1, P2 and P3; c.1403G>C shared by P2 and P3 and c.2288A>G in patient P1. All the mutations were at somatic mosaic state and were de novo in the patients except ones (c.2372A>C). To our knowledge; the somatic mosaic state is described for the first time in patients with West syndrome. Five identified mutations were located in the C-terminal domain of the protein, while the novel mutation (c.616G>A) was in the catalytic domain. Bioinformatic tools predicted that this latter is the most pathogenic substitution affecting 3D protein structure and the secondary mRNA structure. Complex genotype composed of different combinations of mutations in each patient seems to be related to the phenotype variability. Copyright © 2017. Published by Elsevier B.V.

  4. Infrequent detectable somatic mutations of the RET and glial cell line-derived neurotrophic factor (GDNF) genes in human pituitary adenomas.

    PubMed

    Yoshimoto, K; Tanaka, C; Moritani, M; Shimizu, E; Yamaoka, T; Yamada, S; Sano, T; Itakura, M

    1999-02-01

    RET is a receptor tyrosine kinase expressed in neuroendocrine cells and tumors. RET is activated by a ligand complex comprising glial cell line-derived neurotrophic factor (GDNF) and GDNF receptor-alpha (GDNFR-alpha). Activating mutations of the RET proto-oncogene were found in multiple endocrine neoplasia (MEN) 2 and in sporadic medullary thyroid carcinoma and pheochromocytoma of neuroendocrine origin. Mutations of the RET proto-oncogene and the glial cell line-derived neurotrophic factor (GDNF) gene were examined in human pituitary tumors. No mutations of the RET proto-oncogene including the cysteine-rich region or codon 768 and 918 in the tyrosine kinase domain were detected in 172 human pituitary adenomas either by polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) or by PCR-restriction fragment length polymorphism (RFLP). Further, somatic mutations of the GDNF gene in 33 human pituitary adenomas were not detected by PCR-SSCP. One polymorphism of the GDNF gene at codon 145 of TGC or TGT was observed in a prolactinoma. The RET proto-oncogene message was detected in a normal human pituitary gland or 4 of 4 human pituitary adenomas with reverse transcription (RT)-PCR, and in rodent pituitary tumor cell lines with Western blotting. The expression of GDNF gene was detected in 1 of 4 human somatotroph adenomas, 1 of 2 corticotroph adenomas, and 2 of 6 rodent pituitary tumor cell lines with RT-PCR. Based on these, it is concluded that somatic mutations of the RET proto-oncogene or the GDNF gene do not appear to play a major role in the pituitary tumorigenesis in examined tumors.

  5. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma.

    PubMed

    Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh

    2017-03-03

    In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies.

  6. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma

    PubMed Central

    Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh

    2017-01-01

    In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies. PMID:28256603

  7. Inducing Somatic Pkd1 Mutations in Vivo in a Mouse Model of Autosomal-Dominant Polycystic Kidney Disease

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0237 TITLE: Inducing Somatic Pkd1 Mutations in Vivo in a Mouse Model of Autosomal-Dominant Polycystic Kidney ... Kidney Disease 5b. GRANT NUMBER W81XWH-15-1-0237 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Cristina Cebrian-Ligero 5d. PROJECT NUMBER 5e. TASK...Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the world’s most common life-threatening genetic diseases. Over 95% of diagnosed cases of

  8. Distinct subtype distribution and somatic mutation spectrum of lymphomas in East Asia.

    PubMed

    Ren, Weicheng; Li, Wei; Ye, Xiaofei; Liu, Hui; Pan-Hammarström, Qiang

    2017-07-01

    Here, we give an updated overview of the subtype distribution of lymphomas in East Asia and also present the genome sequencing data on two major subtypes of these tumors. The distribution of lymphoma types/subtypes among East Asian countries is very similar, with a lower proportion of B-cell malignancies and a higher proportion of T/natural killer (NK)-cell lymphomas as compared to Western populations. Extranodal NK/T-cell lymphoma is more frequently observed in East Asia, whereas follicular lymphoma and chronic lymphocytic leukemia, are proportionally lower. The incidence rate of lymphoma subtypes in Asians living in the US was generally intermediate to the general rate in US and Asia, suggesting that both genetic and environmental factors may underlie the geographical variations observed.Key cancer driver mutations have been identified in Asian patients with diffuse large B-cell lymphoma or extranodal NK/T-cell lymphoma through genome sequencing. A distinct somatic mutation profile has also been observed in Chinese diffuse large B-cell lymphoma patients. The incidence and distribution of lymphoma subtypes differed significantly between patients from East Asia and Western countries, suggesting subtype-specific etiologic mechanisms. Further studies on the mechanism underlying these geographical variations may give new insights into our understanding of lymphomagenesis.

  9. Combining molecular and immunohistochemical analyses of key drivers in primary melanomas: interplay between germline and somatic variations.

    PubMed

    Bruno, William; Martinuzzi, Claudia; Dalmasso, Bruna; Andreotti, Virginia; Pastorino, Lorenza; Cabiddu, Francesco; Gualco, Marina; Spagnolo, Francesco; Ballestrero, Alberto; Queirolo, Paola; Grillo, Federica; Mastracci, Luca; Ghiorzo, Paola

    2018-01-19

    Due to the high mutational somatic burden of Cutaneous Malignant Melanoma (CMM) a thorough profiling of the driver mutations and their interplay is necessary to explain the timing of tumorigenesis or for the identification of actionable genetic events. The aim of this study was to establish the mutation rate of some of the key drivers in melanoma tumorigenesis combining molecular analyses and/or immunohistochemistry in 93 primary CMMs from an Italian cohort also characterized for germline status, and to investigate an interplay between germline and somatic variants. BRAF mutations were present in 68% of cases, while CDKN2A germline mutations were found in 16 % and p16 loss in tissue was found in 63%. TERT promoter somatic mutations were detected in 38% of cases while the TERT -245T>C polymorphism was found in 51% of cases. NRAS mutations were found in 39% of BRAF negative or undetermined cases. NF1 was expressed in all cases analysed. MC1R variations were both considered as a dichotomous variable or scored. While a positive, although not significant association between CDKN2A germline mutations, but not MC1R variants, and BRAF somatic mutation was found, we did not observe other associations between germline and somatic events. A yet undescribed inverse correlation between TERT -245T>C polymorphism and the presence of BRAF mutation was found. It is possible to hypothesize that -245T>C polymorphism could be included in those genotypes which may influence the occurrence of BRAF mutations. Further studies are needed to investigate the role of -245T>C polymorphism as a germline predictor of BRAF somatic mutation status.

  10. Development of breast tumors in CHEK2, NBN/NBS1 and BLM mutation carriers does not commonly involve somatic inactivation of the wild-type allele.

    PubMed

    Suspitsin, Evgeny N; Yanus, Grigory A; Sokolenko, Anna P; Yatsuk, Olga S; Zaitseva, Olga A; Bessonov, Alexandr A; Ivantsov, Alexandr O; Heinstein, Valeria A; Klimashevskiy, Valery F; Togo, Alexandr V; Imyanitov, Evgeny N

    2014-02-01

    Somatic inactivation of the remaining allele is a characteristic feature of cancers arising in BRCA1 and BRCA2 mutation carriers, which determines their unprecedented sensitivity to some DNA-damaging agents. Data on tumor-specific status of the involved gene in novel varieties of hereditary breast cancer (BC) remain incomplete. We analyzed 32 tumors obtained from 30 patients with non-BRCA1/2 BC-associated germ-line mutations: 25 women were single mutation carriers (7 BLM, 15 CHEK2 and 3 NBN/NBS1) and 5 were double mutation carriers (2 BLM/BRCA1, 1 CHEK2/BLM, 1 CHEK2/BRCA1 and 1 NBN/BLM). Losses of heterozygosity affecting the wild-type allele were detected in none of the tumors from BLM mutation carriers, 3/18 (17 %) CHEK2-associated BC and 1/4 (25 %) NBN/NBS1-driven tumors. The remaining 28 BC were subjected to the sequence analysis of entire coding region of the involved gene; no somatic mutations were identified. We conclude that the tumor-specific loss of the wild-type allele is not characteristic for BC arising in CHEK2, NBN/NBS1 and BLM mutation carriers. Rarity of "second-hit" inactivation of the involved gene in CHEK2-, NBN/NBS1- and BLM-associated BC demonstrates their substantial biological difference from BRCA1/2-driven cancers and makes them poorly suitable for the clinical trials with cisplatin and PARP inhibitors.

  11. Rapid intracranial response to osimertinib, without radiotherapy, in nonsmall cell lung cancer patients harboring the EGFR T790M mutation

    PubMed Central

    Koba, Taro; Kijima, Takashi; Takimoto, Takayuki; Hirata, Haruhiko; Naito, Yujiro; Hamaguchi, Masanari; Otsuka, Tomoyuki; Kuroyama, Muneyoshi; Nagatomo, Izumi; Takeda, Yoshito; Kida, Hiroshi; Kumanogoh, Atsushi

    2017-01-01

    Abstract Rationale: Most of nonsmall cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) activating mutations eventually acquire resistance to the first EGFR-tyrosine kinase inhibitors (TKIs) therapy after varying periods of treatment. Of note, approximately one-third of those patients develop brain metastases, which deteriorate their quality of life and survival. The effect of systemic chemotherapy on brain metastases after acquisition of EGFR-TKI resistance is limited, and thus far, whole-brain radiation therapy, which may cause the harmful effect on neurocognitive functions, has been the only established therapeutic option for especially symptomatic brain metastases. Osimertinib is a third-generation oral, potent, and irreversible EGFR-TKI. It can bind to EGFRs with high affinity even when the EGFR T790M mutation exists in addition to the sensitizing mutations. Its clinical efficacy for NSCLC patients harboring the T790M mutation has already been shown; however, the evidence of osimertinib on brain metastases has not been documented well, especially in terms of the appropriate timing for treatment and its response evaluation. Patient concerns, Diagnoses, and Interventions: We experienced 2 NSCLC patients with the EGFR T790M mutation; a 67-year-old woman with symptomatic multiple brain metastases administered osimertinib as seventh-line chemotherapy, and a 76-year old man with an asymptomatic single brain metastasis administered osimertinib as fifth-line chemotherapy. Outcomes: These patients showed great response to osimertinib within 2 weeks without radiation therapy. Lessons: These are the first reports to reveal the rapid response of the brain metastases to osimertinib within 2 weeks. These cases suggest the possibility that preemptive administration of osimertinib may help patients to postpone or avoid radiation exposures. In addition, rapid reassessment of the effect of osimertinib on brain metastases could prevent patients

  12. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma.

    PubMed

    Tonacchera, M; Chiovato, L; Pinchera, A; Agretti, P; Fiore, E; Cetani, F; Rocchi, R; Viacava, P; Miccoli, P; Vitti, P

    1998-02-01

    Toxic multinodular goiter is a cause of nonautoimmune hyperthyroidism and is believed to differ in its nature and pathogenesis from toxic adenoma. Gain-of-function mutations of the TSH receptor gene have been identified as a cause of toxic adenoma. The pathogenesis at the molecular level of hyperfunctioning nodules in toxic multinodular goiter has yet not been reported. Six patients with a single hot nodule within a multinodular goiter and 11 patients with toxic thyroid adenoma were enrolled in our study. At histology five hyperfunctioning nodules in multinodular goiters showed the features of adenomas, and one was identified as a hyperplastic nodule. The entire exon 10 of the TSH receptor gene was directly sequenced after PCR amplification from genomic DNA obtained from surgical specimens. Functional studies of mutated receptors were performed in COS-7 cells. Five out of 6 (83%) hyperfunctioning nodules within toxic multinodular goiters harbored a TSH receptor mutation. A TSH receptor mutation was also evident in the hyperfunctioning nodule that at histology had the features of noncapsulated hyperplastic nodule. Among toxic adenomas, 8 out of 11 (72%) nodules harbored a TSH receptor mutation. All the mutations were heterozygotic and somatic. Nonfunctioning nodules, whether adenomas or hyperplastic nodules present in association with hyperfunctioning nodules in the same multinodular goiters, had no TSH receptor mutation. All the mutations identified had constitutive activity as assessed by cAMP production after expression in COS-7 cells. Hyperfunctioning thyroid nodules in multinodular goiters recognize the same pathogenetic event (TSH receptor mutation) as toxic adenoma. Other mechanisms are implicated in the growth of nonfunctioning thyroid nodules coexistent in the same gland.

  13. Right ventricular outflow tract tachycardia due to a somatic cell mutation in G protein subunitalphai2.

    PubMed Central

    Lerman, B B; Dong, B; Stein, K M; Markowitz, S M; Linden, J; Catanzaro, D F

    1998-01-01

    Idiopathic ventricular tachycardia is a generic term that describes the various forms of ventricular arrhythmias that occur in patients without structural heart disease and in the absence of the long QT syndrome. Many of these tachycardias are focal in origin, localize to the right ventricular outflow tract (RVOT), terminate in response to beta blockers, verapamil, vagal maneuvers, and adenosine, and are thought to result from cAMP-mediated triggered activity. DNA was prepared from biopsy samples obtained from myocardial tissue from a patient with adenosine-insensitive idiopathic ventricular tachycardia arising from the RVOT. Genomic sequences of the inhibitory G protein Galphai2 were determined after amplification by PCR and subcloning. A point mutation (F200L) in the GTP binding domain of the inhibitory G protein Galphai2 was identified in a biopsy sample from the arrhythmogenic focus. This mutation was shown to increase intracellular cAMP concentration and inhibit suppression of cAMP by adenosine. No mutations were detected in Galphai2 sequences from myocardial tissue sampled from regions remote from the origin of tachycardia, or from peripheral lymphocytes. These findings suggest that somatic cell mutations in the cAMP-dependent signal transduction pathway occurring during myocardial development may be responsible for some forms of idiopathic ventricular tachycardia. PMID:9637720

  14. Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes.

    PubMed

    Cheng, Feixiong; Zhao, Junfei; Zhao, Zhongming

    2016-07-01

    Cancer is often driven by the accumulation of genetic alterations, including single nucleotide variants, small insertions or deletions, gene fusions, copy-number variations, and large chromosomal rearrangements. Recent advances in next-generation sequencing technologies have helped investigators generate massive amounts of cancer genomic data and catalog somatic mutations in both common and rare cancer types. So far, the somatic mutation landscapes and signatures of >10 major cancer types have been reported; however, pinpointing driver mutations and cancer genes from millions of available cancer somatic mutations remains a monumental challenge. To tackle this important task, many methods and computational tools have been developed during the past several years and, thus, a review of its advances is urgently needed. Here, we first summarize the main features of these methods and tools for whole-exome, whole-genome and whole-transcriptome sequencing data. Then, we discuss major challenges like tumor intra-heterogeneity, tumor sample saturation and functionality of synonymous mutations in cancer, all of which may result in false-positive discoveries. Finally, we highlight new directions in studying regulatory roles of noncoding somatic mutations and quantitatively measuring circulating tumor DNA in cancer. This review may help investigators find an appropriate tool for detecting potential driver or actionable mutations in rapidly emerging precision cancer medicine. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Somatic KRAS mutation in an infant with linear nevus sebaceous syndrome associated with lymphatic malformations: A case report and literature review.

    PubMed

    Lihua, Jiang; Feng, Gao; Shanshan, Mao; Jialu, Xu; Kewen, Jiang

    2017-11-01

    Linear nevus sebaceous syndrome (LNSS) is a rare neurocutaneous syndrome, characterized by nevus sebaceous,central nervous system (CNS), ocular and skeletal abnormalities. The present study describes KRAS somatic mosaic mutation in a case of LNSS with lymphatic malformations (LMs). A 4-month-old female with a clinical diagnosis of LNSS presented with infantile spasms, mental retardation, skull dysplasia, ocular abnormalities, congenital atrial septal defect, and LMs. Cervical ultrasonography revealed a 4.6 × 4.6 × 2.2cm no echo packet with clear boundary in the subcutaneous tissues of the right neck. The neck MRI indicated a cyst in the subcutaneous tissues of the right neck. Whole-exome sequencing revealed a low-level heterozygous mutation of the KRAS gene (c.35C > T; p.G12D, 19%) in the skin lesion sample. This mutation was not present in the blood samples of the patient and her parents. The patient received sclerotherapy with paicibanil (OK-432) injection for the cyst. Following 1 year of treatment, the patient exhibited fewer seizures. The mental and motor development was significantly improved. The patient can currently walk with assistance and speak simple words. LNSS is a rare, congenital neurocutaneous syndrome consisting of a spectrum of abnormalities involving the skin, central nervous system, eyes, LMs and other systems. LNSS can be caused by postzygotic somatic mutation in the RAS family of genes. Multidisciplinary evaluation and treatment is needed. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  16. Discovery of somatic mutations in the progression of chronic myeloid leukemia by whole-exome sequencing.

    PubMed

    Huang, Y; Zheng, J; Hu, J D; Wu, Y A; Zheng, X Y; Liu, T B; Chen, F L

    2014-02-19

    We performed whole-exome sequencing in samples representing accelerated phase (AP) and blastic crisis (BC) in a subject with chronic myeloid leukemia (CML). A total of 12.74 Gb clean data were generated, achieving a mean depth coverage of 64.45 and 69.53 for AP and BC samples, respectively, of the target region. A total of 148 somatic variants were detected, including 76 insertions and deletions (indels), 64 single-nucleotide variations (SNV), and 8 structural variations (SV). On the basis of annotation and functional prediction analysis, we identified 3 SNVs and 6 SVs that showed a potential association with CML progression. Among the genes that harbor the identified variants, GATA2 has previously been reported to play important roles in the progression from AP to BC in CML. Identification of these genes will allow us to gain a better understanding of the pathological mechanism of CML and represents a critical advance toward new molecular diagnostic tests for the development of potential therapies for CML.

  17. Somatic alterations of the serine/threonine kinase LKB1 gene in squamous cell (SCC) and large cell (LCC) lung carcinoma.

    PubMed

    Strazisar, Mojca; Mlakar, Vid; Rott, Tomaz; Glavac, Damjan

    2009-05-01

    Somatic LKB1 serine/threonine kinase alterations are rare in sporadic cancers, with the exception lung adenocarcinoma, but no mutations in squamous cell or large cell primary carcinoma were discovered. We screened the LKB1 gene in 129 primary nonsmall cell lung carcinomas, adjacent healthy lung tissue, and control blood samples. Forty-five percent of nonsmall cell lung tumors harbored either intron or exon alterations. We identified R86G, F354L, Y272Y and three polymorphisms: 290+36G/T, 386+156G/T, and 862+145C/T (novel). R86G (novel) and F354L mutations were found in six squamous cell carcinomas and three large cell cancer carcinomas, but not in the adjacent healthy tissue or controls samples. The F354L mutation was found in advanced squamous cell carcinomas with elevated COX-2 expression, rare P53, and no K-RAS mutation. Results indicate that the LKB1 gene is changed in a certain proportion of nonsmall cell lung tumors, predominately in advanced squamous lung carcinoma. Inactivation of the gene takes place via the C-terminal domain and could be related to mechanisms influencing tumor initiation, differentiation, and metastasis.

  18. Somatic mutation dynamics in MDS patients treated with azacitidine indicate clonal selection in patients-responders

    PubMed Central

    Polgarova, Kamila; Vargova, Karina; Kulvait, Vojtech; Dusilkova, Nina; Minarik, Lubomir; Zemanova, Zuzana; Pesta, Michal; Jonasova, Anna; Stopka, Tomas

    2017-01-01

    Azacitidine (AZA) for higher risk MDS patients is a standard therapy with limited durability. To monitor mutation dynamics during AZA therapy we utilized massive parallel sequencing of 54 genes previously associated with MDS/AML pathogenesis. Serial sampling before and during AZA therapy of 38 patients (reaching median overall survival 24 months (Mo) with 60% clinical responses) identified 116 somatic pathogenic variants with allele frequency (VAF) exceeding 5%. High accuracy of data was achieved via duplicate libraries from myeloid cells and T-cell controls. We observed that nearly half of the variants were stable while other variants were highly dynamic. Patients with marked decrease of allelic burden upon AZA therapy achieved clinical responses. In contrast, early-progressing patients on AZA displayed minimal changes of the mutation pattern. We modeled the VAF dynamics on AZA and utilized a joint model for the overall survival and response duration. While the presence of certain variants associated with clinical outcomes, such as the mutations of CDKN2A were adverse predictors while KDM6A mutations yield lower risk of dying, the data also indicate that allelic burden volatility represents additional important prognostic variable. In addition, preceding 5q- syndrome represents strong positive predictor of longer overall survival and response duration in high risk MDS patients treated with AZA. In conclusion, variants dynamics detected via serial sampling represents another parameter to consider when evaluating AZA efficacy and predicting outcome. PMID:29340104

  19. Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network.

    PubMed

    McConnell, Michael J; Moran, John V; Abyzov, Alexej; Akbarian, Schahram; Bae, Taejeong; Cortes-Ciriano, Isidro; Erwin, Jennifer A; Fasching, Liana; Flasch, Diane A; Freed, Donald; Ganz, Javier; Jaffe, Andrew E; Kwan, Kenneth Y; Kwon, Minseok; Lodato, Michael A; Mills, Ryan E; Paquola, Apua C M; Rodin, Rachel E; Rosenbluh, Chaggai; Sestan, Nenad; Sherman, Maxwell A; Shin, Joo Heon; Song, Saera; Straub, Richard E; Thorpe, Jeremy; Weinberger, Daniel R; Urban, Alexander E; Zhou, Bo; Gage, Fred H; Lehner, Thomas; Senthil, Geetha; Walsh, Christopher A; Chess, Andrew; Courchesne, Eric; Gleeson, Joseph G; Kidd, Jeffrey M; Park, Peter J; Pevsner, Jonathan; Vaccarino, Flora M

    2017-04-28

    Neuropsychiatric disorders have a complex genetic architecture. Human genetic population-based studies have identified numerous heritable sequence and structural genomic variants associated with susceptibility to neuropsychiatric disease. However, these germline variants do not fully account for disease risk. During brain development, progenitor cells undergo billions of cell divisions to generate the ~80 billion neurons in the brain. The failure to accurately repair DNA damage arising during replication, transcription, and cellular metabolism amid this dramatic cellular expansion can lead to somatic mutations. Somatic mutations that alter subsets of neuronal transcriptomes and proteomes can, in turn, affect cell proliferation and survival and lead to neurodevelopmental disorders. The long life span of individual neurons and the direct relationship between neural circuits and behavior suggest that somatic mutations in small populations of neurons can significantly affect individual neurodevelopment. The Brain Somatic Mosaicism Network has been founded to study somatic mosaicism both in neurotypical human brains and in the context of complex neuropsychiatric disorders. Copyright © 2017, American Association for the Advancement of Science.

  20. TumorNext-Lynch-MMR: a comprehensive next generation sequencing assay for the detection of germline and somatic mutations in genes associated with mismatch repair deficiency and Lynch syndrome.

    PubMed

    Gray, Phillip N; Tsai, Pei; Chen, Daniel; Wu, Sitao; Hoo, Jayne; Mu, Wenbo; Li, Bing; Vuong, Huy; Lu, Hsiao-Mei; Batth, Navanjot; Willett, Sara; Uyeda, Lisa; Shah, Swati; Gau, Chia-Ling; Umali, Monalyn; Espenschied, Carin; Janicek, Mike; Brown, Sandra; Margileth, David; Dobrea, Lavinia; Wagman, Lawrence; Rana, Huma; Hall, Michael J; Ross, Theodora; Terdiman, Jonathan; Cullinane, Carey; Ries, Savita; Totten, Ellen; Elliott, Aaron M

    2018-04-17

    The current algorithm for Lynch syndrome diagnosis is highly complex with multiple steps which can result in an extended time to diagnosis while depleting precious tumor specimens. Here we describe the analytical validation of a custom probe-based NGS tumor panel, TumorNext-Lynch-MMR, which generates a comprehensive genetic profile of both germline and somatic mutations that can accelerate and streamline the time to diagnosis and preserve specimen. TumorNext-Lynch-MMR can detect single nucleotide variants, small insertions and deletions in 39 genes that are frequently mutated in Lynch syndrome and colorectal cancer. Moreover, the panel provides microsatellite instability status and detects loss of heterozygosity in the five Lynch genes; MSH2 , MSH6 , MLH1 , PMS2 and EPCAM . Clinical cases are described that highlight the assays ability to differentiate between somatic and germline mutations, precisely classify variants and resolve discordant cases.

  1. TumorNext-Lynch-MMR: a comprehensive next generation sequencing assay for the detection of germline and somatic mutations in genes associated with mismatch repair deficiency and Lynch syndrome

    PubMed Central

    Gray, Phillip N.; Tsai, Pei; Chen, Daniel; Wu, Sitao; Hoo, Jayne; Mu, Wenbo; Li, Bing; Vuong, Huy; Lu, Hsiao-Mei; Batth, Navanjot; Willett, Sara; Uyeda, Lisa; Shah, Swati; Gau, Chia-Ling; Umali, Monalyn; Espenschied, Carin; Janicek, Mike; Brown, Sandra; Margileth, David; Dobrea, Lavinia; Wagman, Lawrence; Rana, Huma; Hall, Michael J.; Ross, Theodora; Terdiman, Jonathan; Cullinane, Carey; Ries, Savita; Totten, Ellen; Elliott, Aaron M.

    2018-01-01

    The current algorithm for Lynch syndrome diagnosis is highly complex with multiple steps which can result in an extended time to diagnosis while depleting precious tumor specimens. Here we describe the analytical validation of a custom probe-based NGS tumor panel, TumorNext-Lynch-MMR, which generates a comprehensive genetic profile of both germline and somatic mutations that can accelerate and streamline the time to diagnosis and preserve specimen. TumorNext-Lynch-MMR can detect single nucleotide variants, small insertions and deletions in 39 genes that are frequently mutated in Lynch syndrome and colorectal cancer. Moreover, the panel provides microsatellite instability status and detects loss of heterozygosity in the five Lynch genes; MSH2, MSH6, MLH1, PMS2 and EPCAM. Clinical cases are described that highlight the assays ability to differentiate between somatic and germline mutations, precisely classify variants and resolve discordant cases. PMID:29755653

  2. Immunohistochemical loss of 5-hydroxymethylcytosine expression in acute myeloid leukaemia: relationship to somatic gene mutations affecting epigenetic pathways.

    PubMed

    Magotra, Minoti; Sakhdari, Ali; Lee, Paul J; Tomaszewicz, Keith; Dresser, Karen; Hutchinson, Lloyd M; Woda, Bruce A; Chen, Benjamin J

    2016-12-01

    Genes affecting epigenetic pathways are frequently mutated in myeloid malignancies, including acute myeloid leukaemia (AML). The genes encoding TET2, IDH1 and IDH2 are among the most commonly mutated genes, and cause defective conversion of 5-methylcytosine into 5-hydroxymethylcytosine (5hmC), impairing demethylation of DNA, and presumably serving as driver mutations in leukaemogenesis. The aim of this study was to correlate 5hmC immunohistochemical loss with the mutation status of genes involved in epigenetic pathways in AML. Immunohistochemical staining with an anti-5hmC antibody was performed on 41 decalcified, formalin-fixed paraffin-embedded (FFPE) bone marrow biopsies from patients with AML. Archived DNA was subjected to next-generation sequencing for analysis of a panel of genes, including TET2, IDH1, IDH2, WT1 and DNMT3A. TET2, IDH1, IDH2, WT1 and DNMT3A mutations were found in 46% (19/41) of the cases. Ten of 15 cases (67%) with TET2, IDH1, IDH2 or WT1 mutations showed deficient 5hmC staining, whereas nine of 26 cases (35%) without a mutation in these genes showed loss of 5hmC. It is of note that all four cases with TET2 mutations showed deficient 5hmC staining. Overall, somatic mutations in TET2, IDH1, IDH2, WT1 and DNMT3A were common in our cohort of AML cases. Immunohistochemical staining for 5hmC was lost in the majority of cases harbouring mutations in these genes, reflecting the proposed relationship between dysfunctional epigenetic pathways and leukaemogenesis. © 2016 John Wiley & Sons Ltd.

  3. Evidence that the oxygen enhancement ratio for pink somatic mutations in Tradescantia stamen hairs may approach unity at very low x-ray doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underbrink, A.G.; Woch, B.

    1980-11-01

    Experimental evidence was found that the oxygen enhancement ratio (OER) for pink somatic mutations in the stamen hairs of Tradescantia clone 02 appears to reach unity at X-ray doses of 2 to 3 rad. There is also a small segment on the dose-response curves from about 3 to 10 rad where the OER appears to be dose-dependent. At higher doses the aerated and hypoxic curves are parallel, and the OER is 3.2 up to doses where the mutation frequency reaches a plateau.

  4. Novel KRAS Gene Mutations in Sporadic Colorectal Cancer

    PubMed Central

    Naser, Walid M.; Shawarby, Mohamed A.; Al-Tamimi, Dalal M.; Seth, Arun; Al-Quorain, Abdulaziz; Nemer, Areej M. Al; Albagha, Omar M. E.

    2014-01-01

    Introduction In this article, we report 7 novel KRAS gene mutations discovered while retrospectively studying the prevalence and pattern of KRAS mutations in cancerous tissue obtained from 56 Saudi sporadic colorectal cancer patients from the Eastern Province. Methods Genomic DNA was extracted from formalin-fixed, paraffin-embedded cancerous and noncancerous colorectal tissues. Successful and specific PCR products were then bi-directionally sequenced to detect exon 4 mutations while Mutector II Detection Kits were used for identifying mutations in codons 12, 13 and 61. The functional impact of the novel mutations was assessed using bioinformatics tools and molecular modeling. Results KRAS gene mutations were detected in the cancer tissue of 24 cases (42.85%). Of these, 11 had exon 4 mutations (19.64%). They harbored 8 different mutations all of which except two altered the KRAS protein amino acid sequence and all except one were novel as revealed by COSMIC database. The detected novel mutations were found to be somatic. One mutation is predicted to be benign. The remaining mutations are predicted to cause substantial changes in the protein structure. Of these, the Q150X nonsense mutation is the second truncating mutation to be reported in colorectal cancer in the literature. Conclusions Our discovery of novel exon 4 KRAS mutations that are, so far, unique to Saudi colorectal cancer patients may be attributed to environmental factors and/or racial/ethnic variations due to genetic differences. Alternatively, it may be related to paucity of clinical studies on mutations other than those in codons 12, 13, 61 and 146. Further KRAS testing on a large number of patients of various ethnicities, particularly beyond the most common hotspot alleles in exons 2 and 3 is needed to assess the prevalence and explore the exact prognostic and predictive significance of the discovered novel mutations as well as their possible role in colorectal carcinogenesis. PMID:25412182

  5. A phase II trial of regorafenib in patients with metastatic and/or a unresectable gastrointestinal stromal tumor harboring secondary mutations of exon 17.

    PubMed

    Yeh, Chun-Nan; Chen, Ming-Huang; Chen, Yen-Yang; Yang, Ching-Yao; Yen, Chueh-Chuan; Tzen, Chin-Yuan; Chen, Li-Tzong; Chen, Jen-Shi

    2017-07-04

    Gastrointestinal stromal tumors (GISTs) are caused by the constitutive activation of KIT or platelet-derived growth factor receptor alpha (PDGFRA) mutations. Imatinib selectively inhibits KIT and PDGFR, leading to disease control for 80%-90% of patients with metastatic GIST. Imatinib resistance can occur within a median of 2-3 years due to secondary mutations in KIT. According to preclinical studies, both imatinib and sunitinib are ineffective against exon 17 mutations. However, the treatment efficacy of regorafenib for patients with GIST with exon 17 mutations is still unknown. Documented patients with GIST with exon 17 mutations were enrolled in this study. Patients received 160 mg of oral regorafenib daily on days 1-21 of a 28-day cycle. The primary end point of this trial was the clinical benefit rate (CBR; i.e., complete or partial response [PR], as well as stable disease [SD]) at 16 weeks. The secondary end points of this study included progression free survival (PFS), overall survival, and safety. Between June 2014 to May 2016, 18 patients were enrolled (15 of which were eligible for response evaluation). The CBR at 16 weeks was 93.3% (14 of 15; 6 PR and 8 SD). The median PFS was 22.1 months. The most common grade 3 toxicities were hand-and-foot skin reactions (10 of 18; 55.6%), followed by hypertension (5 of 18; 27.8%). Regorafenib significantly prolonged PFS in patients with advanced GIST harboring secondary mutations of exon 17. A phase III trial of regorafenib versus placebo is warranted. This trial is registered at ClinicalTrials.gov in November 2015, number NCT02606097.Key message: This phase II trial was conducted to assess the efficacy and safety of regorafenib in patients with GIST with exon 17 mutations. The results provide strong evidence that regorafenib significantly prolonged PFS in patients with advanced GIST harboring secondary mutations of exon 17.

  6. Post-irradiation somatic mutation and clonal stabilisation time in the human colon.

    PubMed Central

    Campbell, F; Williams, G T; Appleton, M A; Dixon, M F; Harris, M; Williams, E D

    1996-01-01

    BACKGROUND: Colorectal crypts are clonal units in which somatic mutation of marker genes in stem cells leads to crypt restricted phenotypic conversion initially involving part of the crypt, later the whole crypt. Studies in mice show that the time taken for the great majority of mutated crypts to be completely converted, the clonal stabilisation time, is four weeks in the colon and 21 weeks in the ileum. Differences in the clonal stabilisation time between tissues and species are thought to reflect differences in stem cell organisation and crypt kinetics. AIM: To study the clonal stabilisation time in the human colorectum. METHODS: Stem cell mutation can lead to crypt restricted loss of O-acetylation of sialomucins in subjects heterozygous for O-acetyltransferase gene activity. mPAS histochemistry was used to visualise and quantify crypts partially or wholly involved by the mutant phenotype in 21 informative cases who had undergone colectomy up to 34 years after radiotherapy. RESULTS: Radiotherapy was followed by a considerable increase in the discordant crypt frequency that remained significantly increased for many years. The proportion of discordant crypts showing partial involvement was initially high but fell to normal levels about 12 months after irradiation. CONCLUSIONS: Crypts wholly involved by a mutant phenotype are stable and persistent while partially involved crypts are transient. The clonal stabilisation time is approximately one year in the human colon compared with four weeks in the mouse. The most likely reason for this is a difference in the number of stem cells in a crypt stem cell niche, although differences in stem cell cycle time and crypt fission may also contribute. These findings are of relevance to colorectal gene therapy and carcinogenesis in stem cell systems. PMID:8944567

  7. JAK2V617F somatic mutation in the general population: myeloproliferative neoplasm development and progression rate

    PubMed Central

    Nielsen, Camilla; Bojesen, Stig E.; Nordestgaard, Børge G.; Kofoed, Klaus F.; Birgens, Henrik S.

    2014-01-01

    Clinical significance of the JAK2V617F mutation in patients with a myeloproliferative neoplasm has been the target of intensive research in recent years. However, there is considerably uncertainty about prognosis in JAK2V617F positive individuals without overt signs of myeloproliferative disease. In this study, we tested the hypothesis that increased JAK2V617F somatic mutation burden is associated with myeloproliferative neoplasm progression rate in the general population. Among 49,488 individuals from the Copenhagen General Population Study, 63 (0.1%) tested positive for the JAK2V617F mutation in the time period 2003–2008. Of these, 48 were available for re-examination in 2012. Level of JAK2V617F mutation burden was associated with myeloproliferative neoplasm progression rate, consistent with a biological continuum of increasing JAK2V617F mutation burden across increasing severity of myeloproliferative neoplasm from no disease (n=8 at re-examination) through essential thrombocythemia (n=20) and polycythemia vera (n=13) to primary myelofibrosis (n=7). Among those diagnosed with a myeloproliferative neoplasm only at re-examination in 2012, in the preceding years JAK2V617F mutation burden increased by 0.55% per year, erythrocyte volume fraction increased by 1.19% per year, and erythrocyte mean corpuscular volume increased by 1.25% per year, while there was no change in platelet count or erythropoietin levels. Furthermore, we established a JAK2V617F mutation burden cut-off point of 2% indicative of disease versus no disease; however, individuals with a mutation burden below 2% may suffer from a latent form of myeloproliferative disease revealed by a slightly larger spleen and/or slightly higher lactic acid dehydrogenase concentration compared to controls. Of all 63 JAK2V617F positive individuals, 48 were eventually diagnosed with a myeloproliferative neoplasm. PMID:24907356

  8. Impact on disease-free survival of adjuvant erlotinib or gefitinib in patients with resected lung adenocarcinomas that harbor epidermal growth factor receptor (EGFR) mutations

    PubMed Central

    Janjigian, Yelena Y.; Park, Bernard J.; Zakowski, Maureen F.; Ladanyi, Marc; Pao, William; D’Angelo, Sandra P.; Kris, Mark G.; Shen, Ronglai; Zheng, Junting; Azzoli, Christopher G.

    2013-01-01

    Background Patients with stage IV lung adenocarcinoma and EGFR mutation derive clinical benefit from treatment with EGFR tyrosine kinase inhibitors (TKI). Whether treatment with TKI improves outcomes in patients with resected lung adenocarcinoma and EGFR mutation is unknown. Methods Data were analyzed from a surgical database of patients with resected lung adenocarcinoma harboring EGFR exon 19 or 21 mutations. In a multivariate analysis, we evaluated the impact of treatment with adjuvant TKI. Results The cohort consists of 167 patients with completely resected stage I–III lung adenocarcinoma. 93 patients (56%) had exon 19 del, 74 patients (44%) had exon 21 mutations, 56 patients (33%) received perioperative TKI. In a multivariate analysis controlling for sex, stage, type of surgery and adjuvant platinum chemotherapy, the 2-year DFS was 89% for patients treated with adjuvant TKI compared with 72% in control group (hazard ratio [HR] = 0.53; 95% confidence interval [CI] 0.28 to 1.03; p = 0.06). The 2-year OS was 96% with adjuvant EGFR TKI and 90% in the group that did not receive TKI (HR 0.62; 95% CI 0.26 to 1.51; p = 0.296). Conclusions Compared to patients who did not receive adjuvant TKI, we observed a trend toward improvement in disease free survival among individuals with resected stages I–III lung adenocarcinomas harboring mutations in EGFR exons 19 or 21 who received these agents as adjuvant therapy. Based on these data, 320 patients are needed for a randomized trial to prospectively validate this DFS benefit. PMID:21150674

  9. An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer.

    PubMed

    Ruggles, Kelly V; Tang, Zuojian; Wang, Xuya; Grover, Himanshu; Askenazi, Manor; Teubl, Jennifer; Cao, Song; McLellan, Michael D; Clauser, Karl R; Tabb, David L; Mertins, Philipp; Slebos, Robbert; Erdmann-Gilmore, Petra; Li, Shunqiang; Gunawardena, Harsha P; Xie, Ling; Liu, Tao; Zhou, Jian-Ying; Sun, Shisheng; Hoadley, Katherine A; Perou, Charles M; Chen, Xian; Davies, Sherri R; Maher, Christopher A; Kinsinger, Christopher R; Rodland, Karen D; Zhang, Hui; Zhang, Zhen; Ding, Li; Townsend, R Reid; Rodriguez, Henry; Chan, Daniel; Smith, Richard D; Liebler, Daniel C; Carr, Steven A; Payne, Samuel; Ellis, Matthew J; Fenyő, David

    2016-03-01

    Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations, and splice variants identified in cancer cells are translated. Herein, we apply a proteogenomic data integration tool (QUILTS) to illustrate protein variant discovery using whole genome, whole transcriptome, and global proteome datasets generated from a pair of luminal and basal-like breast-cancer-patient-derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS sample process replicates defined here as an independent tandem MS experiment using identical sample material. Despite analysis of over 30 sample process replicates, only about 10% of SNVs (somatic and germline) detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNVs without a detectable mRNA transcript were also observed, suggesting that transcriptome coverage was incomplete (∼80%). In contrast to germline variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than in the luminal tumor, raising the possibility of differential translation or protein degradation effects. In conclusion, this large-scale proteogenomic integration allowed us to determine the degree to which mutations are translated and identify gaps in sequence coverage, thereby benchmarking current technology and progress toward whole cancer proteome and transcriptome analysis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Retrospective study of adjuvant icotinib in postoperative lung cancer patients harboring epidermal growth factor receptor mutations

    PubMed Central

    Yao, Shuyang; Zhi, Xiuyi; Wang, Ruotian; Qian, Kun; Hu, Mu

    2016-01-01

    Background Epidermal growth factor receptor (EGFR) mutations occur in about 50% of Asian patients with non‐small cell lung cancer (NSCLC). Patients with advanced NSCLC and EGFR mutations derive clinical benefit from treatment with EGFR‐tyrosine kinase inhibitors (TKIs). This study assessed the efficacy and safety of adjuvant icotinib without chemotherapy in EGFR‐mutated NSCLC patients undergoing resection of stage IB–IIIA. Methods Our retrospective study enrolled 20 patients treated with icotinib as adjuvant therapy. Survival factors were evaluated by univariate and Cox regression analysis. Results The median follow‐up time was 30 months (range 24–41). At the data cut‐off, five patients (25%) had recurrence or metastasis and one patient had died of the disease. The two‐year disease‐free survival (DFS) rate was 85%. No recurrence occurred in the high‐risk stage IB subgroup during the follow‐up period. In univariate analysis, the micropapillary pattern had a statistically significant effect on DFS (P = 0.040). Multivariate logistic regression analysis showed that there was no independent predictor. Drug related adverse events (AEs) occurred in nine patients (45.0%). The most common AEs were skin‐related events and diarrhea, but were relatively mild. No grade 3 AEs or occurrences of intolerable toxicity were observed. Conclusions Icotinib as adjuvant therapy is effective in patients harboring EGFR mutations after complete resection, with an acceptable AE profile. Further trials with larger sample sizes might confirm the efficiency of adjuvant TKI in selected patients. PMID:27766784

  11. Analysis of genotoxic activity of ketamine and rocuronium bromide using the somatic mutation and recombination test in Drosophila melanogaster.

    PubMed

    Koksal, Pakize Muge; Gürbüzel, Mehmet

    2015-03-01

    The present study evaluated the mutagenic and recombinogenic effects of two commonly used anesthetic agents, ketamine and rocuronium bromide, in medicine using the wing somatic mutation and recombination test (SMART) in Drosophila. The standard (ST) cross and the high-bioactivation (HB) cross with high sensitivity to procarcinogens and promutagens were used. The SMART test is based on the loss of heterozygosity, which occurs via various mechanisms, such as chromosome loss and deletion, half-translocation, mitotic recombination, mutation, and non-disjunction. Genetic alterations occurring in the somatic cells of the wing's imaginal discs result in mutant clones in the wing blade. Three-day-old trans-heterozygous larvae with two recessive markers, multiple wing hairs (mwh) and flare (flr(3)), were treated with ketamine and rocuronium bromide. Analysis of the ST cross indicated that ketamine exhibited genotoxicity activity and that this activity was particularly dependent on homologous mitotic recombination at concentrations of 250 μg/ml and above. Rocuronium bromide did not exert mutagenic and/or recombinogenic effects. In the HB cross, ketamine at a concentration of 1000 μg/ml and rocuronium bromide at all concentrations, with the exception of 250 μg/ml (inconclusive), exerted genotoxic effects, which could also be associated with the increase in mitotic recombination. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The determination of complete human mitochondrial DNA sequences in single cells: implications for the study of somatic mitochondrial DNA point mutations

    PubMed Central

    Taylor, Robert W.; Taylor, Geoffrey A.; Durham, Steve E.; Turnbull, Douglass M.

    2001-01-01

    Studies of single cells have previously shown intracellular clonal expansion of mitochondrial DNA (mtDNA) mutations to levels that can cause a focal cytochrome c oxidase (COX) defect. Whilst techniques are available to study mtDNA rearrangements at the level of the single cell, recent interest has focused on the possible role of somatic mtDNA point mutations in ageing, neurodegenerative disease and cancer. We have therefore developed a method that permits the reliable determination of the entire mtDNA sequence from single cells without amplifying contaminating, nuclear-embedded pseudogenes. Sequencing and PCR–RFLP analyses of individual COX-negative muscle fibres from a patient with a previously described heteroplasmic COX II (T7587C) mutation indicate that mutant loads as low as 30% can be reliably detected by sequencing. This technique will be particularly useful in identifying the mtDNA mutational spectra in age-related COX-negative cells and will increase our understanding of the pathogenetic mechanisms by which they occur. PMID:11470889

  13. Subjects harboring presenilin familial Alzheimer’s disease mutations exhibit diverse white matter biochemistry alterations

    PubMed Central

    Roher, Alex E; Maarouf, Chera L; Malek-Ahmadi, Michael; Wilson, Jeffrey; Kokjohn, Tyler A; Daugs, Ian D; Whiteside, Charisse M; Kalback, Walter M; Macias, MiMi P; Jacobson, Sandra A; Sabbagh, Marwan N; Ghetti, Bernardino; Beach, Thomas G

    2013-01-01

    Alzheimer’s disease (AD) dementia impacts all facets of higher order cognitive function and is characterized by the presence of distinctive pathological lesions in the gray matter (GM). The profound alterations in GM structure and function have fostered the view that AD impacts are primarily a consequence of GM damage. However, the white matter (WM) represents about 50% of the cerebrum and this area of the brain is substantially atrophied and profoundly abnormal in both sporadic AD (SAD) and familial AD (FAD). We examined the WM biochemistry by ELISA and Western blot analyses of key proteins in 10 FAD cases harboring mutations in the presenilin genes PSEN1 and PSEN2 as well as in 4 non-demented control (NDC) individuals and 4 subjects with SAD. The molecules examined were direct substrates of PSEN1 such as Notch-1 and amyloid precursor protein (APP). In addition, apolipoproteins, axonal transport molecules, cytoskeletal and structural proteins, neurotrophic factors and synaptic proteins were examined. PSEN-FAD subjects had, on average, higher amounts of WM amyloid-beta (Aβ) peptides compared to SAD, which may play a role in the devastating dysfunction of the brain. However, the PSEN-FAD mutations we examined did not produce uniform increases in the relative proportions of Aβ42 and exhibited substantial variability in total Aβ levels. These observations suggest that neurodegeneration and dementia do not depend solely on enhanced Aβ42 levels. Our data revealed additional complexities in PSEN-FAD individuals. Some direct substrates of γ-secretase, such as Notch, N-cadherin, Erb-B4 and APP, deviated substantially from the NDC group baseline for some, but not all, mutation types. Proteins that were not direct γ-secretase substrates, but play key structural and functional roles in the WM, likewise exhibited varied concentrations in the distinct PSEN mutation backgrounds. Detailing the diverse biochemical pathology spectrum of PSEN mutations may offer valuable

  14. Mitochondrial-Associated Cell Death Mechanisms Are Reset to an Embryonic-Like State in Aged Donor-Derived iPS Cells Harboring Chromosomal Aberrations

    PubMed Central

    Prigione, Alessandro; Hossini, Amir M.; Lichtner, Björn; Serin, Akdes; Fauler, Beatrix; Megges, Matthias; Lurz, Rudi; Lehrach, Hans; Zouboulis, Christos C.

    2011-01-01

    Somatic cells reprogrammed into induced pluripotent stem cells (iPSCs) acquire features of human embryonic stem cells (hESCs) and thus represent a promising source for cellular therapy of debilitating diseases, such as age-related disorders. However, reprogrammed cell lines have been found to harbor various genomic alterations. In addition, we recently discovered that the mitochondrial DNA of human fibroblasts also undergoes random mutational events upon reprogramming. Aged somatic cells might possess high susceptibility to nuclear and mitochondrial genome instability. Hence, concerns over the oncogenic potential of reprogrammed cells due to the lack of genomic integrity may hinder the applicability of iPSC-based therapies for age-associated conditions. Here, we investigated whether aged reprogrammed cells harboring chromosomal abnormalities show resistance to apoptotic cell death or mitochondrial-associated oxidative stress, both hallmarks of cancer transformation. Four iPSC lines were generated from dermal fibroblasts derived from an 84-year-old woman, representing the oldest human donor so far reprogrammed to pluripotency. Despite the presence of karyotype aberrations, all aged-iPSCs were able to differentiate into neurons, re-establish telomerase activity, and reconfigure mitochondrial ultra-structure and functionality to a hESC-like state. Importantly, aged-iPSCs exhibited high sensitivity to drug-induced apoptosis and low levels of oxidative stress and DNA damage, in a similar fashion as iPSCs derived from young donors and hESCs. Thus, the occurrence of chromosomal abnormalities within aged reprogrammed cells might not be sufficient to over-ride the cellular surveillance machinery and induce malignant transformation through the alteration of mitochondrial-associated cell death. Taken together, we unveiled that cellular reprogramming is capable of reversing aging-related features in somatic cells from a very old subject, despite the presence of genomic

  15. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma

    PubMed Central

    Odejide, Oreofe; Weigert, Oliver; Lane, Andrew A.; Toscano, Dan; Lunning, Matthew A.; Kopp, Nadja; Kim, Sunhee; van Bodegom, Diederik; Bolla, Sudha; Schatz, Jonathan H.; Teruya-Feldstein, Julie; Hochberg, Ephraim; Louissaint, Abner; Dorfman, David; Stevenson, Kristen; Rodig, Scott J.; Piccaluga, Pier Paolo; Jacobsen, Eric; Pileri, Stefano A.; Harris, Nancy L.; Ferrero, Simone; Inghirami, Giorgio; Horwitz, Steven M.

    2014-01-01

    The genetics of angioimmunoblastic T-cell lymphoma (AITL) are very poorly understood. We defined the mutational landscape of AITL across 219 genes in 85 cases from the United States and Europe. We identified ≥2 mutations in 34 genes, nearly all of which were not previously implicated in AITL. These included loss-of-function mutations in TP53 (n = 4), ETV6 (n = 3), CCND3 (n = 2), and EP300 (n = 5), as well as gain-of-function mutations in JAK2 (n = 2) and STAT3 (n = 4). TET2 was mutated in 65 (76%) AITLs, including 43 that harbored 2 or 3 TET2 mutations. DNMT3A mutations occurred in 28 (33%) AITLs; 100% of these also harbored TET2 mutations (P < .0001). Seventeen AITLs harbored IDH2 R172 substitutions, including 15 with TET2 mutations. In summary, AITL is characterized by high frequencies of overlapping mutations in epigenetic modifiers and targetable mutations in a subset of cases. PMID:24345752

  16. Mutational Signatures in Cancer (MuSiCa): a web application to implement mutational signatures analysis in cancer samples.

    PubMed

    Díaz-Gay, Marcos; Vila-Casadesús, Maria; Franch-Expósito, Sebastià; Hernández-Illán, Eva; Lozano, Juan José; Castellví-Bel, Sergi

    2018-06-14

    Mutational signatures have been proved as a valuable pattern in somatic genomics, mainly regarding cancer, with a potential application as a biomarker in clinical practice. Up to now, several bioinformatic packages to address this topic have been developed in different languages/platforms. MutationalPatterns has arisen as the most efficient tool for the comparison with the signatures currently reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. However, the analysis of mutational signatures is nowadays restricted to a small community of bioinformatic experts. In this work we present Mutational Signatures in Cancer (MuSiCa), a new web tool based on MutationalPatterns and built using the Shiny framework in R language. By means of a simple interface suited to non-specialized researchers, it provides a comprehensive analysis of the somatic mutational status of the supplied cancer samples. It permits characterizing the profile and burden of mutations, as well as quantifying COSMIC-reported mutational signatures. It also allows classifying samples according to the above signature contributions. MuSiCa is a helpful web application to characterize mutational signatures in cancer samples. It is accessible online at http://bioinfo.ciberehd.org/GPtoCRC/en/tools.html and source code is freely available at https://github.com/marcos-diazg/musica .

  17. Widening the Heterogeneity of Leigh Syndrome: Clinical, Biochemical, and Neuroradiologic Features in a Patient Harboring a NDUFA10 Mutation.

    PubMed

    Minoia, Francesca; Bertamino, Marta; Picco, Paolo; Severino, Mariasavina; Rossi, Andrea; Fiorillo, Chiara; Minetti, Carlo; Nesti, Claudia; Santorelli, Filippo Maria; Di Rocco, Maja

    2017-01-01

    Leigh syndrome (LS) is an early-onset progressive neurodegenerative disorder, characterized by a wide clinical and genetic heterogeneity, and is the most frequent disorder of mitochondrial energy production in children. Beside its great variability in clinical, biochemical, and genetic features, LS is pathologically uniformly characterized by multifocal bilateral and symmetric spongiform degeneration of the basal ganglia, brainstem, thalamus, cerebellum, spinal cord, and optic nerves. Isolated complex I deficiency is the most common defect identified in Leigh syndrome. In 2011, the first child with a mutation of NDUFA10 gene, coding for an accessory subunits of complex I, was described. Here, we present an additional description of a child with Leigh syndrome harboring a homozygous mutation in NDUFA10, providing insights in clinical, biochemical, and neuroradiologic features for future earlier recognition.

  18. Somatic clonal evolution: A selection-centric perspective.

    PubMed

    Scott, Jacob; Marusyk, Andriy

    2017-04-01

    It is generally accepted that the initiation and progression of cancers is the result of somatic clonal evolution. Despite many peculiarities, evolution within populations of somatic cells should obey the same Darwinian principles as evolution within natural populations, i.e. variability of heritable phenotypes provides the substrate for context-specific selection forces leading to increased population frequencies of phenotypes, which are better adapted to their environment. Yet, within cancer biology, the more prevalent way to view evolution is as being entirely driven by the accumulation of "driver" mutations. Context-specific selection forces are either ignored, or viewed as constraints from which tumor cells liberate themselves during the course of malignant progression. In this review, we will argue that explicitly focusing on selection forces acting on the populations of neoplastic cells as the driving force of somatic clonal evolution might provide for a more accurate conceptual framework compared to the mutation-centric driver gene paradigm. Whereas little can be done to counteract the "bad luck" of stochastic occurrences of cancer-related mutations, changes in selective pressures and the phenotypic adaptations they induce can, in principle, be exploited to limit the incidence of cancers and to increase the efficiency of existing and future therapies. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Somatic and germline mosaicism for a mutation of the PHEX gene can lead to genetic transmission of X-linked hypophosphatemic rickets that mimics an autosomal dominant trait.

    PubMed

    Goji, Katsumi; Ozaki, Kayo; Sadewa, Ahmad H; Nishio, Hisahide; Matsuo, Masafumi

    2006-02-01

    Familial hypophosphatemic rickets is usually transmitted as an X-linked dominant disorder (XLH), although autosomal dominant forms have also been observed. Genetic studies of these disorders have identified mutations in PHEX and FGF23 as the causes of X-linked dominant disorder and autosomal dominant forms, respectively. The objective of the study was to describe the molecular genetic findings in a family affected by hypophosphatemic rickets with presumed autosomal dominant inheritance. We studied a family in which the father and the elder of his two daughters, but not the second daughter, were affected by hypophosphatemic rickets. The pedigree interpretation of the family suggested that genetic transmission of the disorder occurred as an autosomal dominant trait. Direct nucleotide sequencing of FGF23 and PHEX revealed that the elder daughter was heterozygous for an R567X mutation in PHEX, rather than FGF23, suggesting that the genetic transmission occurred as an X-linked dominant trait. Unexpectedly, the father was heterozygous for this mutation. Single-nucleotide primer extension and denaturing HPLC analysis of the father using DNA from single hair roots revealed that he was a somatic mosaic for the mutation. Haplotype analysis confirmed that the father transmitted the genotypes for 18 markers on the X chromosome equally to his two daughters. The fact that the father transmitted the mutation to only one of his two daughters indicated that he was a germline mosaic for the mutation. Somatic and germline mosaicism for an X-linked dominant mutation in PHEX may mimic autosomal dominant inheritance.

  20. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    PubMed

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder.

  1. A Novel KCNJ5-insT149 Somatic Mutation Close to, but Outside, the Selectivity Filter Causes Resistant Hypertension by Loss of Selectivity for Potassium

    PubMed Central

    Kuppusamy, Maniselvan; Caroccia, Brasilina; Stindl, Julia; Bandulik, Sascha; Lenzini, Livia; Gioco, Francesca; Fishman, Veniamin; Zanotti, Giuseppe; Gomez-Sanchez, Celso; Bader, Michael; Warth, Richard

    2014-01-01

    Context: Understanding the function of the KCNJ5 potassium channel through characterization of naturally occurring novel mutations is key for dissecting the mechanism(s) of autonomous aldosterone secretion in primary aldosteronism. Objective: We sought for such novel KCNJ5 channel mutations in a large database of patients with aldosterone-producing adenomas (APAs). Methods: We discovered a novel somatic c.446insAAC insertion, resulting in the mutant protein KCNJ5-insT149, in a patient with severe drug-resistant hypertension among 195 consecutive patients with a conclusive diagnosis of APA, 24.6% of whom showed somatic KCNJ5 mutations. By site-directed mutagenesis, we created the mutated cDNA that was transfected, along with KCNJ3 cDNA, in mammalian cells. We also localized CYP11B2 in the excised adrenal gland with immunohistochemistry and immunofluorescence using an antibody specific to human CYP11B2. Whole-cell patch clamp recordings, CYP11B2 mRNA, aldosterone measurement, and molecular modeling were performed to characterize the novel KCNJ5-insT149 mutation. Results: Compared with wild-type and mock-transfected adrenocortical cells, HAC15 cells expressing the mutant KCNJ5 showed increased CYP11B2 expression and aldosterone secretion. Mammalian cells expressing the mutated KCNJ5-insT149 channel exhibited a strong Na+ inward current and, in parallel, a substantial rise in intracellular Ca2+, caused by activation of voltage-gated Ca2+ channels and reduced Ca2+ elimination by Na+/Ca2+ exchangers, as well as an increased production of aldosterone. Conclusions: This novel mutation shows pathological Na+ permeability, membrane depolarization, raised cytosolic Ca2+, and increased aldosterone synthesis. Hence, a novel KCNJ5 channelopathy located after the pore α-helix preceding the selectivity filter causes constitutive secretion of aldosterone with ensuing resistant hypertension in a patient with a small APA. PMID:25057880

  2. Recurrent hotspot mutations in HRAS Q61 and PI3K-AKT pathway genes as drivers of breast adenomyoepitheliomas.

    PubMed

    Geyer, Felipe C; Li, Anqi; Papanastasiou, Anastasios D; Smith, Alison; Selenica, Pier; Burke, Kathleen A; Edelweiss, Marcia; Wen, Huei-Chi; Piscuoglio, Salvatore; Schultheis, Anne M; Martelotto, Luciano G; Pareja, Fresia; Kumar, Rahul; Brandes, Alissa; Fan, Dan; Basili, Thais; Da Cruz Paula, Arnaud; Lozada, John R; Blecua, Pedro; Muenst, Simone; Jungbluth, Achim A; Foschini, Maria P; Wen, Hannah Y; Brogi, Edi; Palazzo, Juan; Rubin, Brian P; Ng, Charlotte K Y; Norton, Larry; Varga, Zsuzsanna; Ellis, Ian O; Rakha, Emad A; Chandarlapaty, Sarat; Weigelt, Britta; Reis-Filho, Jorge S

    2018-05-08

    Adenomyoepithelioma of the breast is a rare tumor characterized by epithelial-myoepithelial differentiation, whose genetic underpinning is largely unknown. Here we show through whole-exome and targeted massively parallel sequencing analysis that whilst estrogen receptor (ER)-positive adenomyoepitheliomas display PIK3CA or AKT1 activating mutations, ER-negative adenomyoepitheliomas harbor highly recurrent codon Q61 HRAS hotspot mutations, which co-occur with PIK3CA or PIK3R1 mutations. In two- and three-dimensional cell culture models, forced expression of HRAS Q61R in non-malignant ER-negative breast epithelial cells with or without a PIK3CA H1047R somatic knock-in results in transformation and the acquisition of the cardinal features of adenomyoepitheliomas, including the expression of myoepithelial markers, a reduction in E-cadherin expression, and an increase in AKT signaling. Our results demonstrate that adenomyoepitheliomas are genetically heterogeneous, and qualify mutations in HRAS, a gene whose mutations are vanishingly rare in common-type breast cancers, as likely drivers of ER-negative adenomyoepitheliomas.

  3. Efficient Generation of Gene-Modified Pigs Harboring Precise Orthologous Human Mutation via CRISPR/Cas9-Induced Homology-Directed Repair in Zygotes.

    PubMed

    Zhou, Xiaoyang; Wang, Lulu; Du, Yinan; Xie, Fei; Li, Liang; Liu, Yu; Liu, Chuanhong; Wang, Shiqiang; Zhang, Shibing; Huang, Xingxu; Wang, Yong; Wei, Hong

    2016-01-01

    Precise genetic mutation of model animals is highly valuable for functional investigation of human mutations. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-induced homology-directed repair (HDR) is usually used for precise genetic mutation, being limited by the relatively low efficiency compared with that of non-homologous end joining (NHEJ). Although inhibition of NHEJ was shown to enhance HDR-derived mutation, in this work, without inhibition of NHEJ, we first generated gene-modified pigs harboring precise orthologous human mutation (Sox10 c.A325>T) via CRISPR/Cas9-induced HDR in zygotes using single-strand oligo DNA (ssODN) as template with an efficiency as high as 80%, indicating that pig zygotes exhibited high activities of HDR relative to NHEJ and were highly amendable to genetic mutation via CIRSPR/Cas9-induced HDR. Besides, we found a higher concentration of ssODN remarkably reduced HDR-derived mutation in pig zygotes, suggesting a possible balance for optimal HDR-derived mutation in zygotes between the excessive accessibility to HDR templates and the activities of HDR relative to NHEJ which appeared to be negatively correlated to ssODN concentration. In addition, the HDR-derived mutation, as well as those from NHEJ, extensively integrated into various tissues including gonad of founder pig without detected off-targeting, suggesting CRISPR/Cas9-induced HDR in zygotes is a reliable approach for precise genetic mutation in pigs. © 2015 WILEY PERIODICALS, INC.

  4. Somatic HRPT2 Mutation (Arg234X) of Parathyroid Carcinoma Associated with Slipped Capital Femoral Epiphysis: A First Case Report.

    PubMed

    Niramitmahapanya, Sathit; Deerochanawong, Chaicharn; Sarinnapakorn, Veerasak; Sunthornthepvarakul, Thongkum; Pingsuthiwong, Sarinee; Athipan, Pornake; Sangsuda, Yuthana

    2016-02-01

    A 14-year-old boy was admitted to the orthopedic clinic of Rajavithi Hospital complaining of pain in the left hip. A year earlier, pain had developed in his left joint and had gradually increased in intensity in both hips. A month before he was referred, radiographs obtained at another hospital showed bilateral slipped capital femoral epiphysis (SCFE). The patient's biochemical laboratory data showed hypercalcemia, hypophosphatemia, and a high level of intact parathyroid hormone (iPTH) compatible with primary hyperparathyroidism. HRPT2 gene analysis found heterozygosity for c. 700 C > T mutation (Arg234X) of HRPT2 gene at exon 7. This is the first report in the literature about somatic mutation of the HRPT2 gene of parathyroid carcinoma associated with slipped capital femoral epiphysis.

  5. Rapid intracranial response to osimertinib, without radiotherapy, in nonsmall cell lung cancer patients harboring the EGFR T790M mutation: Two Case Reports.

    PubMed

    Koba, Taro; Kijima, Takashi; Takimoto, Takayuki; Hirata, Haruhiko; Naito, Yujiro; Hamaguchi, Masanari; Otsuka, Tomoyuki; Kuroyama, Muneyoshi; Nagatomo, Izumi; Takeda, Yoshito; Kida, Hiroshi; Kumanogoh, Atsushi

    2017-02-01

    Most of nonsmall cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) activating mutations eventually acquire resistance to the first EGFR-tyrosine kinase inhibitors (TKIs) therapy after varying periods of treatment. Of note, approximately one-third of those patients develop brain metastases, which deteriorate their quality of life and survival. The effect of systemic chemotherapy on brain metastases after acquisition of EGFR-TKI resistance is limited, and thus far, whole-brain radiation therapy, which may cause the harmful effect on neurocognitive functions, has been the only established therapeutic option for especially symptomatic brain metastases. Osimertinib is a third-generation oral, potent, and irreversible EGFR-TKI. It can bind to EGFRs with high affinity even when the EGFR T790M mutation exists in addition to the sensitizing mutations. Its clinical efficacy for NSCLC patients harboring the T790M mutation has already been shown; however, the evidence of osimertinib on brain metastases has not been documented well, especially in terms of the appropriate timing for treatment and its response evaluation. We experienced 2 NSCLC patients with the EGFR T790M mutation; a 67-year-old woman with symptomatic multiple brain metastases administered osimertinib as seventh-line chemotherapy, and a 76-year old man with an asymptomatic single brain metastasis administered osimertinib as fifth-line chemotherapy. These patients showed great response to osimertinib within 2 weeks without radiation therapy. These are the first reports to reveal the rapid response of the brain metastases to osimertinib within 2 weeks. These cases suggest the possibility that preemptive administration of osimertinib may help patients to postpone or avoid radiation exposures. In addition, rapid reassessment of the effect of osimertinib on brain metastases could prevent patients from being too late to receive essential radiotherapy.

  6. Retrospective study of adjuvant icotinib in postoperative lung cancer patients harboring epidermal growth factor receptor mutations.

    PubMed

    Yao, Shuyang; Zhi, Xiuyi; Wang, Ruotian; Qian, Kun; Hu, Mu; Zhang, Yi

    2016-09-01

    Epidermal growth factor receptor (EGFR) mutations occur in about 50% of Asian patients with non-small cell lung cancer (NSCLC). Patients with advanced NSCLC and EGFR mutations derive clinical benefit from treatment with EGFR-tyrosine kinase inhibitors (TKIs). This study assessed the efficacy and safety of adjuvant icotinib without chemotherapy in EGFR-mutated NSCLC patients undergoing resection of stage IB-IIIA. Our retrospective study enrolled 20 patients treated with icotinib as adjuvant therapy. Survival factors were evaluated by univariate and Cox regression analysis. The median follow-up time was 30 months (range 24-41). At the data cut-off, five patients (25%) had recurrence or metastasis and one patient had died of the disease. The two-year disease-free survival (DFS) rate was 85%. No recurrence occurred in the high-risk stage IB subgroup during the follow-up period. In univariate analysis, the micropapillary pattern had a statistically significant effect on DFS ( P = 0.040). Multivariate logistic regression analysis showed that there was no independent predictor. Drug related adverse events (AEs) occurred in nine patients (45.0%). The most common AEs were skin-related events and diarrhea, but were relatively mild. No grade 3 AEs or occurrences of intolerable toxicity were observed. Icotinib as adjuvant therapy is effective in patients harboring EGFR mutations after complete resection, with an acceptable AE profile. Further trials with larger sample sizes might confirm the efficiency of adjuvant TKI in selected patients. © 2016 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  7. Telomere length and somatic mutations in correlation with response to immunosuppressive treatment in aplastic anaemia.

    PubMed

    Park, Hee S; Park, Si N; Im, Kyongok; Kim, Sung-Min; Kim, Jung-Ah; Hwang, Sang M; Lee, Dong S

    2017-08-01

    We investigated the frequencies of cytogenetic aberrations and somatic mutations of prognostic relevance in 393 patients with aplastic anaemia (AA). Clonality was determined by G-banding/fluorescence in situ hybridization (FISH) (n = 245), and targeted capture sequencing was performed for 88 haematopoiesis-related genes (n = 70). The telomere length (TL) of bone marrow nucleated cells was measured at the single cell level by FISH (n = 135). Eighteen (4·6%) patients showed disease progression, and monosomy 7 (50·0%) was the most predominant cytogenetic evolution at disease transformation. One third of patients (32·9%) presented at least 1 mutation; the most frequently mutated genes were NOTCH1, NF1, SCRIB, BCOR and DNMT3A. The patient group with clonal changes (30·7%) showed an adverse response to immunosuppressive treatment (IST), compared to the non-clonal group, but this finding did not show statistical significance. The TL of AA patients was significantly shorter than normal control and patients with clonal changes showed significantly shorter TLs. Patients with TL>5·9 showed a higher response rate to IST (P = 0·048). In conclusion, the patients with clonal changes or TL attrition showed a poor response to IST. Shorter TL can be used not only as a biomarker, but also as a predictive marker for treatment response to IST. © 2017 John Wiley & Sons Ltd.

  8. Somatic cell mutations at the glycophorin A locus in erythrocytes of atomic bomb survivors: Implications for radiation carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyoizumi, Seishi; Akiyama, Mitoshi; Tanabe, Kazumi

    To clarify the relationship between somatic cell mutations and radiation exposure, the frequency of hemizygous mutant erythrocytes at the glycophorin A (GPA) locus was measured by flow cytometry for 1,226 heterozygous atomic bomb (A-bomb) survivors in HIroshima and Nagasaki. For statistical analysis, both GPA mutant frequency and radiation dose were log-transformed to normalize skewed distributions of these variables. The GPA mutant frequency increased slightly but significantly with age at testing and with the number of cigarettes smoked. Also, mutant frequency was significantly higher in males than in females even with adjustment for smoking and was higher to Hiroshima than inmore » Nagasaki. These characteristics of background GPA mutant frequency are qualitatively similar to those of background solid cancer incidence or mortality obtained from previous epidemiological studies of survivors. An analysis of the mutant frequency dose response using a descriptive model showed that the doubling dose is about 1.20 Sv [95% confidence interval (CI): 0.95-1.56], whereas the minimum dose for detecting a significant increase in mutant frequency is about 0.24 Sv (95% CI: 0.041-0.51). No significant effects of sex, city or age at the time of exposure on the dose response were detected. Interestingly, the doubling dose of the GPA mutant frequency was similar to that of solid cancer incidence in A-bomb survivors. This observation is in line with the hypothesis that radiation-induced somatic cell mutations are the major cause of excess cancer risk after radiation. 49 refs., 6 figs., 2 tabs.« less

  9. Exon skipping and gene transfer restore dystrophin expression in human induced pluripotent stem cells-cardiomyocytes harboring DMD mutations.

    PubMed

    Dick, Emily; Kalra, Spandan; Anderson, David; George, Vinoj; Ritso, Morten; Laval, Steven H; Barresi, Rita; Aartsma-Rus, Annemieke; Lochmüller, Hanns; Denning, Chris

    2013-10-15

    With an incidence of ∼1:3,500 to 5,000 in male children, Duchenne muscular dystrophy (DMD) is an X-linked disorder in which progressive muscle degeneration occurs and affected boys usually die in their twenties or thirties. Cardiac involvement occurs in 90% of patients and heart failure accounts for up to 40% of deaths. To enable new therapeutics such as gene therapy and exon skipping to be tested in human cardiomyocytes, we produced human induced pluripotent stem cells (hiPSC) from seven patients harboring mutations across the DMD gene. Mutations were retained during differentiation and analysis indicated the cardiomyocytes showed a dystrophic gene expression profile. Antisense oligonucleotide-mediated skipping of exon 51 restored dystrophin expression to ∼30% of normal levels in hiPSC-cardiomyocytes carrying exon 47-50 or 48-50 deletions. Alternatively, delivery of a dystrophin minigene to cardiomyocytes with a deletion in exon 35 or a point mutation in exon 70 allowed expression levels similar to those seen in healthy cells. This demonstrates that DMD hiPSC-cardiomyocytes provide a novel tool to evaluate whether new therapeutics can restore dystrophin expression in the heart.

  10. Exon Skipping and Gene Transfer Restore Dystrophin Expression in Human Induced Pluripotent Stem Cells-Cardiomyocytes Harboring DMD Mutations

    PubMed Central

    Dick, Emily; Kalra, Spandan; Anderson, David; George, Vinoj; Ritso, Morten; Laval, Steven H.; Barresi, Rita; Aartsma-Rus, Annemieke; Lochmüller, Hanns

    2013-01-01

    With an incidence of ∼1:3,500 to 5,000 in male children, Duchenne muscular dystrophy (DMD) is an X-linked disorder in which progressive muscle degeneration occurs and affected boys usually die in their twenties or thirties. Cardiac involvement occurs in 90% of patients and heart failure accounts for up to 40% of deaths. To enable new therapeutics such as gene therapy and exon skipping to be tested in human cardiomyocytes, we produced human induced pluripotent stem cells (hiPSC) from seven patients harboring mutations across the DMD gene. Mutations were retained during differentiation and analysis indicated the cardiomyocytes showed a dystrophic gene expression profile. Antisense oligonucleotide-mediated skipping of exon 51 restored dystrophin expression to ∼30% of normal levels in hiPSC-cardiomyocytes carrying exon 47–50 or 48–50 deletions. Alternatively, delivery of a dystrophin minigene to cardiomyocytes with a deletion in exon 35 or a point mutation in exon 70 allowed expression levels similar to those seen in healthy cells. This demonstrates that DMD hiPSC-cardiomyocytes provide a novel tool to evaluate whether new therapeutics can restore dystrophin expression in the heart. PMID:23829870

  11. Mutational Profiling of Non-Small-Cell Lung Cancer Resistant to Osimertinib Using Next-Generation Sequencing in Chinese Patients.

    PubMed

    Nie, Keke; Jiang, Haiping; Zhang, Chunling; Geng, Chuanxin; Xu, Xiajuan; Zhang, Ling; Zhang, Hao; Zhang, Zhongfa; Lan, Ketao; Ji, Youxin

    2018-01-01

    To identify the somatic mutated genes for optimal targets of non-small-cell lung cancer after resistance to osimertinib treatment. Study patients all had advanced lung adenocarcinoma and acquired resistance to osimertinib as a second- or third-line treatment. These patients had harboring EGFR T790M mutation before osimertinib treatment, which was confirmed by Amplification Refractory Mutation System (ARMS) PCR or Next-Generation Sequencing (NGS). After resistance to osimertinib treatment, tumor tissue was collected by core needle biopsy. DNA was extracted from 15 × 5 um sliced section of formalin-fixed paraffin-embedded (FFPE) material and NGS was done. The genetic changes were analyzed. A total of 9 Chinese patients were studied, 5 females and 4 males, age 51-89 years. After progression with osimertinib treatment, core needle biopsy was performed and next-generation sequencing was performed. Nine patients had harboring 62 point mutations, 2 altered gene copies, 2 amplifications, and 1 EML4-ALK gene fusion. No MET or HER2 amplification was found in this cohort study. Nine patients still maintained initial EGFR 19 del or L858R activating mutations, while 7 of them kept EGFR T790M mutations. Among the 7 patients, 5 had secondary EGFR C797S and/or C797G mutations, which all happened in the same allele with T790M mutation. All patients were treated with targets therapies, chemotherapy, or best supportive care (BSC) in accordance with NGS genetic results and patients' performance status; 7 of them are still alive and 2 of them died of disease progression at last follow-up. EGFR C797S/G mutation and the same one presented on the same allele with EGFR T790M mutation were the most common mutation feature and played a key role in resistance to osimertinib in Chinese patients with NSCLC. Tumor cells losing T790M mutation and maintaining EGFR activating mutation might benefit from first-generation EGFR-TKI treatment.

  12. Melorheostosis: Exome sequencing of an associated dermatosis implicates postzygotic mosaicism of mutated KRAS.

    PubMed

    Whyte, Michael P; Griffith, Malachi; Trani, Lee; Mumm, Steven; Gottesman, Gary S; McAlister, William H; Krysiak, Kilannin; Lesurf, Robert; Skidmore, Zachary L; Campbell, Katie M; Rosman, Ilana S; Bayliss, Susan; Bijanki, Vinieth N; Nenninger, Angela; Van Tine, Brian A; Griffith, Obi L; Mardis, Elaine R

    2017-08-01

    Melorheostosis (MEL) is the rare sporadic dysostosis characterized by monostotic or polyostotic osteosclerosis and hyperostosis often distributed in a sclerotomal pattern. The prevailing hypothesis for MEL invokes postzygotic mosaicism. Sometimes scleroderma-like skin changes, considered a representation of the pathogenetic process of MEL, overlie the bony changes, and sometimes MEL becomes malignant. Osteopoikilosis (OPK) is the autosomal dominant skeletal dysplasia that features symmetrically distributed punctate osteosclerosis due to heterozygous loss-of-function mutation within LEMD3. Rarely, radiographic findings of MEL occur in OPK. However, germline mutation of LEMD3 does not explain sporadic MEL. To explore if mosaicism underlies MEL, we studied a boy with polyostotic MEL and characteristic overlying scleroderma-like skin, a few bony lesions consistent with OPK, and a large epidermal nevus known to usually harbor a HRAS, FGFR3, or PIK3CA gene mutation. Exome sequencing was performed to ~100× average read depth for his two dermatoses, two areas of normal skin, and peripheral blood leukocytes. As expected for non-malignant tissues, the patient's mutation burden in his normal skin and leukocytes was low. He, his mother, and his maternal grandfather carried a heterozygous, germline, in-frame, 24-base-pair deletion in LEMD3. Radiographs of the patient and his mother revealed bony foci consistent with OPK, but she showed no MEL. For the patient, somatic variant analysis, using four algorithms to compare all 20 possible pairwise combinations of his five DNA samples, identified only one high-confidence mutation, heterozygous KRAS Q61H (NM_033360.3:c.183A>C, NP_203524.1:p.Gln61His), in both his dermatoses but absent in his normal skin and blood. Thus, sparing our patient biopsy of his MEL bone, we identified a heterozygous somatic KRAS mutation in his scleroderma-like dermatosis considered a surrogate for MEL. This implicates postzygotic mosaicism of mutated KRAS

  13. Global Characterization of Protein Altering Mutations in Prostate Cancer

    DTIC Science & Technology

    2011-08-01

    prevalence of candidate cancer genes observed here in prostate cancer. (3) Perform integrative analyses of somatic mutation with gene expression and copy...analyses of somatic mutation with gene expression and copy number change data collected on the same samples. Body This is a “synergy” project between...However, to perform initial verification/validation studies, we have evaluated the mutation calls for several genes discovered initially by the

  14. New Insight Into the Biology, Risk Stratification, and Targeted Treatment of Myelodysplastic Syndromes.

    PubMed

    Haider, Mintallah; Duncavage, Eric J; Afaneh, Khalid F; Bejar, Rafael; List, Alan F

    2017-01-01

    In myelodysplastic syndromes (MDS), somatic mutations occur in five major categories: RNA splicing, DNA methylation, activated cell signaling, myeloid transcription factors, and chromatin modifiers. Although many MDS cases harbor more than one somatic mutation, in general, there is mutual exclusivity of mutated genes within a class. In addition to the prognostic significance of individual somatic mutations, more somatic mutations in MDS have been associated with poor prognosis. Prognostic assessment remains a critical component of the personalization of care for patient with MDS because treatment is highly risk adapted. Multiple methods for risk stratification are available with the revised International Prognostic Scoring System (IPSS-R), currently considered the gold standard. Increasing access to myeloid gene panels and greater evidence for the diagnostic and predictive value of somatic mutations will soon make sequencing part of the standard evaluation of patients with MDS. In the absence of formal guidelines for their prognostic use, well-validated mutations can still refine estimates of risk made with the IPSS-R. Not only are somatic gene mutations advantageous in understanding the biology of MDS and prognosis, they also offer potential as biomarkers and targets for the treatment of patients with MDS. Examples include deletion 5q, spliceosome complex gene mutations, and TP53 mutations.

  15. Deep sequencing detects very-low-grade somatic mosaicism in the unaffected mother of siblings with nemaline myopathy.

    PubMed

    Miyatake, Satoko; Koshimizu, Eriko; Hayashi, Yukiko K; Miya, Kazushi; Shiina, Masaaki; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Miyake, Noriko; Saitsu, Hirotomo; Ogata, Kazuhiro; Nishino, Ichizo; Matsumoto, Naomichi

    2014-07-01

    When an expected mutation in a particular disease-causing gene is not identified in a suspected carrier, it is usually assumed to be due to germline mosaicism. We report here very-low-grade somatic mosaicism in ACTA1 in an unaffected mother of two siblings affected with a neonatal form of nemaline myopathy. The mosaicism was detected by deep resequencing using a next-generation sequencer. We identified a novel heterozygous mutation in ACTA1, c.448A>G (p.Thr150Ala), in the affected siblings. Three-dimensional structural modeling suggested that this mutation may affect polymerization and/or actin's interactions with other proteins. In this family, we expected autosomal dominant inheritance with either parent demonstrating germline or somatic mosaicism. Sanger sequencing identified no mutation. However, further deep resequencing of this mutation on a next-generation sequencer identified very-low-grade somatic mosaicism in the mother: 0.4%, 1.1%, and 8.3% in the saliva, blood leukocytes, and nails, respectively. Our study demonstrates the possibility of very-low-grade somatic mosaicism in suspected carriers, rather than germline mosaicism. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. AG-221, a First-in-Class Therapy Targeting Acute Myeloid Leukemia Harboring Oncogenic IDH2 Mutations.

    PubMed

    Yen, Katharine; Travins, Jeremy; Wang, Fang; David, Muriel D; Artin, Erin; Straley, Kimberly; Padyana, Anil; Gross, Stefan; DeLaBarre, Byron; Tobin, Erica; Chen, Yue; Nagaraja, Raj; Choe, Sung; Jin, Lei; Konteatis, Zenon; Cianchetta, Giovanni; Saunders, Jeffrey O; Salituro, Francesco G; Quivoron, Cyril; Opolon, Paule; Bawa, Olivia; Saada, Véronique; Paci, Angelo; Broutin, Sophie; Bernard, Olivier A; de Botton, Stéphane; Marteyn, Benoît S; Pilichowska, Monika; Xu, YingXia; Fang, Cheng; Jiang, Fan; Wei, Wentao; Jin, Shengfang; Silverman, Lee; Liu, Wei; Yang, Hua; Dang, Lenny; Dorsch, Marion; Penard-Lacronique, Virginie; Biller, Scott A; Su, Shin-San Michael

    2017-05-01

    Somatic gain-of-function mutations in isocitrate dehydrogenases ( IDH ) 1 and 2 are found in multiple hematologic and solid tumors, leading to accumulation of the oncometabolite ( R )-2-hydroxyglutarate (2HG). 2HG competitively inhibits α-ketoglutarate-dependent dioxygenases, including histone demethylases and methylcytosine dioxygenases of the TET family, causing epigenetic dysregulation and a block in cellular differentiation. In vitro studies have provided proof of concept for mutant IDH inhibition as a therapeutic approach. We report the discovery and characterization of AG-221, an orally available, selective, potent inhibitor of the mutant IDH2 enzyme. AG-221 suppressed 2HG production and induced cellular differentiation in primary human IDH2 mutation-positive acute myeloid leukemia (AML) cells ex vivo and in xenograft mouse models. AG-221 also provided a statistically significant survival benefit in an aggressive IDH2 R140Q -mutant AML xenograft mouse model. These findings supported initiation of the ongoing clinical trials of AG-221 in patients with IDH2 mutation-positive advanced hematologic malignancies. Significance: Mutations in IDH1/2 are identified in approximately 20% of patients with AML and contribute to leukemia via a block in hematopoietic cell differentiation. We have shown that the targeted inhibitor AG-221 suppresses the mutant IDH2 enzyme in multiple preclinical models and induces differentiation of malignant blasts, supporting its clinical development. Cancer Discov; 7(5); 478-93. ©2017 AACR. See related commentary by Thomas and Majeti, p. 459 See related article by Shih et al., p. 494 This article is highlighted in the In This Issue feature, p. 443 . ©2017 American Association for Cancer Research.

  17. Antitumor effects and molecular mechanisms of ponatinib on endometrial cancer cells harboring activating FGFR2 mutations

    PubMed Central

    Kim, Do-Hee; Kwak, Yeonui; Kim, Nam Doo; Sim, Taebo

    2016-01-01

    ABSTRACT Aberrant mutational activation of FGFR2 is associated with endometrial cancers (ECs). AP24534 (ponatinib) currently undergoing clinical trials has been known to be an orally available multi-targeted tyrosine kinase inhibitor. Our biochemical kinase assay showed that AP24534 is potent against wild-type FGFR1-4 and 5 mutant FGFRs (V561M-FGFR1, N549H-FGFR2, K650E-FGFR3, G697C-FGFR3, N535K-FGFR4) and possesses the strongest kinase-inhibitory activity on N549H-FGFR2 (IC50 of 0.5 nM) among all FGFRs tested. We therefore investigated the effects of AP24534 on endometrial cancer cells harboring activating FGFR2 mutations and explored the underlying molecular mechanisms. AP24534 significantly inhibited the proliferation of endometrial cancer cells bearing activating FGFR2 mutations (N549K, K310R/N549K, S252W) and mainly induced G1/S cell cycle arrest leading to apoptosis. AP24534 also diminished the kinase activity of immunoprecipitated FGFR2 derived from MFE-296 and MFE-280 cells and reduced the phosphorylation of FGFR2 and FRS2 on MFE-296 and AN3CA cells. AP24534 caused substantial reductions in ERK phosphorylation, PLCγ signaling and STAT5 signal transduction on ECs bearing FGFR2 activating mutations. Akt signaling pathway was also deactivated by AP24534. AP24534 causes the chemotherapeutic effect through mainly the blockade of ERK, PLCγ and STAT5 signal transduction on ECs. Moreover, AP24534 inhibited migration and invasion of endometrial cancer cells with FGFR2 mutations. In addition, AP24534 significantly blocked anchorage-independent growth of endometrial cancer cells. We, for the first time, report the molecular mechanisms by which AP24534 exerts antitumor effects on ECs with FGFR2 activating mutations, which would provide mechanistic insight into ongoing clinical investigations of AP24534 for ECs. PMID:26574622

  18. Somatic mutations in PIK3CA and activation of AKT in intraductal tubulopapillary neoplasms of the pancreas.

    PubMed

    Yamaguchi, Hiroshi; Kuboki, Yuko; Hatori, Takashi; Yamamoto, Masakazu; Shiratori, Keiko; Kawamura, Shunji; Kobayashi, Makio; Shimizu, Michio; Ban, Shinichi; Koyama, Isamu; Higashi, Morihiro; Shin, Nobuhiro; Ishida, Kazuyuki; Morikawa, Takanori; Motoi, Fuyuhiko; Unno, Michiaki; Kanno, Atsushi; Satoh, Kennichi; Shimosegawa, Tooru; Orikasa, Hideki; Watanabe, Tomoo; Nishimura, Kazuhiko; Harada, Youji; Furukawa, Toru

    2011-12-01

    Intraductal tubulopapillary neoplasm (ITPN) is a recently recognized rare variant of intraductal neoplasms of the pancreas. Molecular aberrations underlying the neoplasm remain unknown. We investigated somatic mutations in PIK3CA, PTEN, AKT1, KRAS, and BRAF. We also investigated aberrant expressions of phosphorylated AKT, phosphatase and tensin homolog (PTEN), tumor protein 53 (TP53), SMAD4, and CTNNB1 in 11 cases of ITPNs and compared these data with those of 50 cases of intraductal papillary mucinous neoplasm (IPMN), another distinct variant of pancreatic intraductal neoplasms. Mutations in PIK3CA were found in 3 of 11 ITPNs but not in IPMNs (P = 0.005; Fisher exact test). In contrast, mutations in KRAS were found in none of the ITPNs but were found in 26 of the 50 IPMNs (P = 0.001; Fisher exact test). PIK3CA mutations were associated with strong expression of phosphorylated AKT (P < 0.001; the Mann-Whitney U test). Moreover, the expression of phosphorylated AKT was apparent in most ITPNs but only in a few IPMNs (P < 0.001; the Mann-Whitney U test). Aberrant expressions of TP53, SMAD4, and CTNNB1 were not statistically different between these neoplasms. Mutations in PIK3CA and the expression of phosphorylated AKT were not associated with age, sex, tissue invasion, and patients' prognosis in ITPNs. These results indicate that activation of the phosphatidylinositol 3-kinase pathway may play a crucial role in ITPNs but not in IPMNs. In contrast, the mutation in KRAS seems to play a major role in IPMNs but not in ITPNs. The activated phosphatidylinositol 3-kinase pathway may be a potential target for molecular diagnosis and therapy of ITPNs.

  19. Functional Analysis of Somatic Mutations in Lung Cancer

    DTIC Science & Technology

    2015-10-01

    antibody cetuximab [11]. Finally, we have developed novel single cell sequencing approaches to uncover EGFR mutational variants in glioblastoma and their...assessed which mutations are epistatic to EGFR or capable of initiating xenograft tumor formation in vivo. Using eVIP, we identified 69% of mutations...analyzed as impactful whereas 31% appear functionally neutral. A subset of the impactful mutations induce xenograft tumor formation in mice and/or

  20. PTT analysis of polyps from FAP patients reveals a great majority of APC truncating mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luijt, R.B. van der; Khan, P.M.; Tops, C.M.J.

    The adenomatous polyposis coli (APC) gene plays an important role in colorectal carcinogenesis. Germline APC mutations are associated with familial adenomatous polyposis (FAP), an autosomal dominantly inherited predisposition to colorectal cancer, characterized by the development of numerous adenomatous polyps in the large intestine. In order to investigate whether somatic inactivation of the remaining APC allele is necessary for adenoma formation, we collected multiple adenomatous polyps from individual FAP patients and investigated the presence of somatic mutations in the APC gene. The analysis of somatic APC mutations in these tumor samples was performed using a rapid and sensitive assay, called themore » protein truncation test (PTT). Chain-terminating somatic APC mutations were detected in the great majority of the tumor samples investigated. As expected, these mutations were mainly located in the mutation cluster region (MCR) in exon 15. Our results confirm that somatic mutation of the second APC allele is required for adenoma formation in FAP. Interestingly, in the polyps investigated in our study, the second APC allele is somatically inactivated through point mutation leading to a stop codon rather than by loss of heterozygosity. The observation that somatic second hits in APC are required for tumor development in FAP is in apparent accordance with the Knudson hypothesis for classical tumor suppressor genes. However, it is yet unknown whether chain-terminating APC mutations lead to a truncated protein exerting a dominant-negative effect or whether these mutations result in a null allele. Further investigation of this important issue will hopefully provide a better understanding of the mechanism of action of the mutated APC alleles in colorectal carcinogenesis.« less

  1. Persistent induction of somatic reversions of the pink-eyed unstable mutation in F1 mice born to fathers irradiated at the spermatozoa stage.

    PubMed

    Shiraishi, Kazunori; Shimura, Tsutomu; Taga, Masataka; Uematsu, Norio; Gondo, Yoichi; Ohtaki, Megu; Kominami, Ryo; Niwa, Ohtsura

    2002-06-01

    Untargeted mutation and delayed mutation are features of radiation-induced genomic instability and have been studied extensively in tissue culture cells. The mouse pink-eyed unstable (p(un)) mutation is due to an intragenic duplication of the pink-eyed dilution locus and frequently reverts back to the wild type in germ cells as well as in somatic cells. The reversion event can be detected in the retinal pigment epithelium as a cluster of pigmented cells (eye spot). We have investigated the reversion p(um) in F1 mice born to irradiated males. Spermatogonia-stage irradiation did not affect the frequency of the reversion in F1 mice. However, 6 Gy irradiation at the spermatozoa stage resulted in an approximately twofold increase in the number of eye spots in the retinal pigment epithelium of F1 mice. Somatic reversion occurred for the paternally derived p(un) alleles. In addition, the reversion also occurred for the maternally derived, unirradiated p(un) alleles at a frequency equal to that for the paternally derived allele. Detailed analyses of the number of pigmented cells per eye spot indicated that the frequency of reversion was persistently elevated during the proliferation cycle of the cells in the retinal pigment epithelium when the male parents were irradiated at the spermatozoa stage. The present study demonstrates the presence of a long-lasting memory of DNA damage and the persistent up-regulation of recombinogenic activity in the retinal pigment epithelium of the developing fetus.

  2. The somatic FAH C.1061C>A change counteracts the frequent FAH c.1062+5G>A mutation and permits U1snRNA-based splicing correction.

    PubMed

    Scalet, Daniela; Sacchetto, Claudia; Bernardi, Francesco; Pinotti, Mirko; van de Graaf, Stan F J; Balestra, Dario

    2018-05-01

    In tyrosinaemia type 1(HT1), a mosaic pattern of fumarylacetoacetase (FAH) immunopositive or immunonegative nodules in liver tissue has been reported in many patients. This aspect is generally explained by a spontaneous reversion of the mutation into a normal genotype. In one HT1 patient carrying the frequent FAH c.1062+5G>A mutation, a second somatic change (c.1061C>A) has been reported in the same allele, and found in immunopositive nodules. Here, we demonstrated that the c.1062+5G>A prevents usage of the exon 12 5' splice site (ss), even when forced by an engineered U1snRNA specifically designed on the FAH 5'ss to strengthen its recognition. Noticeably the new somatic c.1061C>A change, in linkage with the c.1062+5G>A mutation, partially rescues the defective 5'ss and is associated to trace level (~5%) of correct transcripts. Interestingly, this combined genetic condition strongly favored the rescue by the engineered U1snRNA, with correct transcripts reaching up to 60%. Altogether, these findings elucidate the molecular basis of HT1 caused by the frequent FAH c.1062+5G>A mutation, and demonstrate the compensatory effect of the c.1061C>A change in promoting exon definition, thus unraveling a rare mechanism leading to FAH immune-reactive mosaicism.

  3. Emergence of MPLW515 mutation in a patient with CALR deletion: Evidence of secondary acquisition of MPL mutation in the CALR clone.

    PubMed

    Partouche, Nicolas; Conejero, Carole; Barathon, Quentin; Moroch, Julien; Tulliez, Michel; Cordonnier, Catherine; Giraudier, Stephane

    2018-02-01

    Myeloproliferative neoplasms are characterized by transduction pathway recognized as mutually exclusive molecular abnormalities such as BCR-ABL translocation, JAK2V617F or JAK2 exon 12 mutations, MPL w515, and CALR mutations. However, in some rare cases, associations of such mutations are found in 1 patient. This can be related to 2 pathologies (at least 2 different clones harboring 2 mutations) or associated mutations in 1 clone. We describe here such an association of CALR and MPL mutations in a patient harboring the second mutation in a subclone during the phenotypic evolution of the myeloproliferative neoplasms. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Case Report: Osimertinib achieved remarkable and sustained disease control in an advanced non-small-cell lung cancer harboring EGFR H773L/V774M mutation complex.

    PubMed

    Yang, Minglei; Tong, Xiaoling; Xu, Xiang; Zheng, Enkuo; Ni, Junjun; Li, Junfang; Yan, Junrong; Shao, Yang W; Zhao, Guofang

    2018-07-01

    Missense mutations in EGFR exon 20 are rare in non-small-cell lung cancer (NSCLC), and mostly insensitive to the first generation tyrosine kinase inhibitors (TKIs) of EGFR. However, their responses to the third generation TKI are unclear. Here, we reported a patient with advanced NSCLC harboring a rare EGFR H773L/V774M mutation complex. Although he was irresponsive to the first generation TKI gefitinib, he demonstrated sustained disease control to osimertinib, suggesting that this complex is an activating mutation of EGFR and can be suppressed by osimertinib. The follow-up genetic profiling revealed multiple acquired new mutations that might be related to his resistance to osimertinib. This finding would provide valuable experience for future treatment of the same mutations. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A novel splicing site IRP1 somatic mutation in a patient with pheochromocytoma and JAK2V617F positive polycythemia vera: a case report.

    PubMed

    Pang, Ying; Gupta, Garima; Yang, Chunzhang; Wang, Herui; Huynh, Thanh-Truc; Abdullaev, Ziedulla; Pack, Svetlana D; Percy, Melanie J; Lappin, Terence R J; Zhuang, Zhengping; Pacak, Karel

    2018-03-13

    The role of the hypoxia signaling pathway in the pathogenesis of pheochromocytoma/paraganglioma (PPGL)-polycythemia syndrome has been elucidated. Novel somatic mutations in hypoxia-inducible factor type 2A (HIF2A) and germline mutations in prolyl hydroxylase type 1 and type 2 (PHD1 and PHD2) have been identified to cause upregulation of the hypoxia signaling pathway and its target genes including erythropoietin (EPO) and its receptor (EPOR). However, in a minority of patients presenting with this syndrome, the genetics and molecular pathogenesis remain unexplained. The aim of the present study was to uncover novel genetic causes of PPGL-polycythemia syndrome. A female presented with a history of JAK2 V617F positive PV, diagnosed in 2007, and right adrenal pheochromocytoma diagnosed and resected in 2011. Her polycythemia symptoms and hematocrit levels continued to worsen from 2007 to 2011, with an increased frequency of phlebotomies. Postoperatively, until early 2013, her hematocrit levels remained normalized. Following this, the hematocrit levels ranged between 46.4 and 48.9% [35-45%]. Tumor tissue from the patient was further tested for mutations in genes related to upregulation of the hypoxia signaling pathway including iron regulatory protein 1 (IRP1), which is a known regulator of HIF-2α mRNA translation. Functional studies were performed to investigate the consequences of these mutations, especially their effect on the HIF signaling pathway and EPO. Indel mutations (c.267-1_267delGGinsTA) were discovered at the exon 3 splicing site of IRP1. Minigene construct and splicing site analysis showed that the mutation led to a new splicing site and a frameshift mutation of IRP1, which caused a truncated protein. Fluorescence in situ hybridization analysis demonstrated heterozygous IRP1 deletions in tumor cells. Immunohistochemistry results confirmed the truncated IRP1 and overexpressed HIF-2α, EPO and EPOR in tumor cells. This is the first report which provides

  6. Global Characterization of Protein Altering Mutations in Prostate Cancer

    DTIC Science & Technology

    2011-08-01

    integrative analyses of somatic mutation with gene expression and copy number change data collected on the same samples. To date, we have performed...implications for resistance to cancer therapeutics. We have also identified a subset of genes that appear to be recurrently mutated in our discovery set, and...integrative analyses of somatic mutation with gene expression and copy number change data collected on the same samples. Body This is a “synergy” project

  7. Somatic mosaicism due to monoallelic reversion of a mutation in T cells of an ADA-SCID patient and the effects of enzyme replacement therapy on the revertant phenotype

    PubMed Central

    Moncada-Vélez, Marcela; Vélez-Ortega, Alejandra C.; Orrego, Julio C.; Santisteban, Inés; Jagadeesh, Jayashree; Olivares, Margarita; Olaya, Natalia; Hershfield, Michael S.; Candotti, Fabio; Franco, Jose L.

    2011-01-01

    Patients with adenosine deaminase (ADA) deficiency exhibit spontaneous and partial clinical remission associated with somatic reversion of inherited mutations. We report a child with severe combined immunodeficiency (T-B-NK- SCID) due to ADA deficiency diagnosed at the age of 1 month, whose lymphocyte counts including CD4+ and CD8+ T and NK cells began to improve after several months with normalization of ADA activity in PBL, as a result of somatic mosaicism due to monoallelic reversion of the causative mutation in the ADA gene. Our patient was not eligible for hematopoietic stem cell transplantation (HSCT) or gene therapy (GT); therefore enzyme replacement therapy (ERT) with bovine PEG-ADA was initiated. The follow up of metabolic and immunologic responses to ERT included gradual improvement in ADA activity in erythrocytes and transient expansion of most lymphocyte subsets, followed by gradual stabilization of CD4+ and CD8+ T (with naïve phenotype) and NK cells, with sustained expansion of TCRγδ+ T cells. This was accompanied by disappearance of the revertant T cells as shown by DNA sequencing from PBL. Although the patient’s clinical condition improved marginally, he later developed a germinal cell tumor and eventually died at the age of 67 months from sepsis. This case adds to our current knowledge of spontaneous reversion of mutations in ADA deficiency and shows that the effects of the ERT may vary among these patients, suggesting that it could depend on the cell and type in which the somatic mosaicism is established upon reversion. PMID:21671975

  8. The landscape of cancer genes and mutational processes in breast cancer

    PubMed Central

    Stephens, Philip J.; Tarpey, Patrick S.; Davies, Helen; Loo, Peter Van; Greenman, Chris; Wedge, David C.; Nik-Zainal, Serena; Martin, Sancha; Varela, Ignacio; Bignell, Graham R.; Yates, Lucy R.; Papaemmanuil, Elli; Beare, David; Butler, Adam; Cheverton, Angela; Gamble, John; Hinton, Jonathan; Jia, Mingming; Jayakumar, Alagu; Jones, David; Latimer, Calli; Lau, King Wai; McLaren, Stuart; McBride, David J.; Menzies, Andrew; Mudie, Laura; Raine, Keiran; Rad, Roland; Chapman, Michael Spencer; Teague, Jon; Easton, Douglas; Langerød, Anita; OSBREAC; Lee, Ming Ta Michael; Shen, Chen-Yang; Tee, Benita Tan Kiat; Huimin, Bernice Wong; Broeks, Annegien; Vargas, Ana Cristina; Turashvili, Gulisa; Martens, John; Fatima, Aquila; Miron, Penelope; Chin, Suet-Feung; Thomas, Gilles; Boyault, Sandrine; Mariani, Odette; Lakhani, Sunil R.; van de Vijver, Marc; van ’t Veer, Laura; Foekens, John; Desmedt, Christine; Sotiriou, Christos; Tutt, Andrew; Caldas, Carlos; Reis-Filho, Jorge S.; Aparicio, Samuel A. J. R.; Salomon, Anne Vincent; Børresen-Dale, Anne-Lise; Richardson, Andrea L.; Campbell, Peter J.; Futreal, P. Andrew; Stratton, Michael R.

    2012-01-01

    All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis1, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease. PMID:22722201

  9. Characterization of conservative somatic instability of the CAG repeat region in Huntington`s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, F.V.; Calikoglu, A.S.; Whetsell, L.H.

    1994-09-01

    Instability and enlargement of a CAG repeat region at the beginning of the huntingtin gene (IT-15) has been linked with Huntington`s disease. The CAG repeat size shows a highly significant correlation with age-of-onset of clinicial features in individuals with 40 or more repeats who have Huntington disease. The clinical status of nonsymptomatic individuals with 30 to 39 CAG repeats is considered ambiguous. In order to define more carefully the nature of the HD expansion instability, we examined patients in our HD population using a discriminating fluorescence-based PCR approach. The degree of somatic mutation increases with both earlier age of onsetmore » and the size of the inherited allele. A single prominent band one repeat larger than the index peak was typical in individuals with 40-41 CAG repeats. Three to four larger bands are typically discerned in individuals with 50 or more repeats. In an extreme example, an individual with approximately 95 repeats had at least 8 prominent bands. Plotting the degree of somatic mutation relative to the size of the HD allele shows somatic mutation activity increases with size. By this approach 40-60% of the alleles in a 40-41 CAG repeat HD loci is represented in the primary allele. In contrast, the primary allele represents a relatively minor proportion of the total alleles for expansions greater than 50 CAG repeats (10-20%). The limited range of somatic mutation suggest that the instability is restricted to very early stages of embryogenesis before tissue development diverges or that persistent somatic instability occurs at a slow rate. Therefore, the properties of somatic instability in Huntington`s disease have aspects that are both in common but also different from that found in other trinucleotide repeat expanding diseases such as myotonic muscular dystrophy and fragile X syndrome.« less

  10. Spectrum of mutations in RARS-T patients includes TET2 and ASXL1 mutations.

    PubMed

    Szpurka, Hadrian; Jankowska, Anna M; Makishima, Hideki; Bodo, Juraj; Bejanyan, Nelli; Hsi, Eric D; Sekeres, Mikkael A; Maciejewski, Jaroslaw P

    2010-08-01

    While a majority of patients with refractory anemia with ring sideroblasts and thrombocytosis harbor JAK2V617F and rarely MPLW515L, JAK2/MPL-negative cases constitute a diagnostic problem. 23 RARS-T cases were investigated applying immunohistochemical phospho-STAT5, sequencing and SNP-A-based karyotyping. Based on the association of TET2/ASXL1 mutations with MDS/MPN we studied molecular pattern of these genes. Two patients harbored ASXL1 and another 2 TET2 mutations. Phospho-STAT5 activation was present in one mutated TET2 and ASXL1 case. JAK2V617F/MPLW515L mutations were absent in TET2/ASXL1 mutants, indicating that similar clinical phenotype can be produced by various MPN-associated mutations and that additional unifying lesions may be present in RARS-T. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Somatic mutation frequencies in the stamen hairs of Tradescantia grown in soil samples from the Bikini Island.

    PubMed

    Ichikawa, S; Ishii, C

    1991-02-01

    Somatic pink mutation frequencies in the stamen hairs of Tradescantia BNL 02 clone grown for 76 days in two soil samples taken from the Bikini Island (where a hydrogen bomb explosion test had been conducted in 1954) were investigated. A significantly high mutation frequency (2.58 +/- 0.17 pink mutant events per 10(3) hairs or 1.34 +/- 0.09 pink mutant events per 10(4) hair-cell divisions) was observed for the plant grown in one of the two Bikini soil samples, as compared to the control plants (1.70 +/- 0.14 or 0.88 +/- 0.07, respectively) grown in the field soil of Saitama University. The soil sample which caused the significant increase in mutation frequency contained 6,880 +/- 330 mBq/g 137Cs, 62.5 +/- 4.4 mBq/g 60Co, and some other nuclides; a 150 microR/hr exposure rate being measured on the surface of the soil sample. The effective cumulative external exposures measured for the inflorescences of the plant grown in this soil sample averaged at most 60.8 mR, being too small to explain the significant elevation in mutation frequency observed. On the other hand, internal exposure due to uptake of radioactive nuclides was estimated to be 125 mrad (1.25 mGy) as an accumulated effective dose, mainly based on a gamma-spectrometrical analysis. However, it seemed highly likely that this value of internal exposure was a considerable underestimate, and the internal exposure was considered to be more significant than the external exposure.

  12. Targeted Exome Sequencing of Krebs Cycle Genes Reveals Candidate Cancer-Predisposing Mutations in Pheochromocytomas and Paragangliomas.

    PubMed

    Remacha, Laura; Comino-Méndez, Iñaki; Richter, Susan; Contreras, Laura; Currás-Freixes, María; Pita, Guillermo; Letón, Rocío; Galarreta, Antonio; Torres-Pérez, Rafael; Honrado, Emiliano; Jiménez, Scherezade; Maestre, Lorena; Moran, Sebastian; Esteller, Manel; Satrústegui, Jorgina; Eisenhofer, Graeme; Robledo, Mercedes; Cascón, Alberto

    2017-10-15

    Purpose: Mutations in Krebs cycle genes are frequently found in patients with pheochromocytomas/paragangliomas. Disruption of SDH, FH or MDH2 enzymatic activities lead to accumulation of specific metabolites, which give rise to epigenetic changes in the genome that cause a characteristic hypermethylated phenotype. Tumors showing this phenotype, but no alterations in the known predisposing genes, could harbor mutations in other Krebs cycle genes. Experimental Design: We used downregulation and methylation of RBP1, as a marker of a hypermethylation phenotype, to select eleven pheochromocytomas and paragangliomas for targeted exome sequencing of a panel of Krebs cycle-related genes. Methylation profiling, metabolite assessment and additional analyses were also performed in selected cases. Results: One of the 11 tumors was found to carry a known cancer-predisposing somatic mutation in IDH1 A variant in GOT2 , c.357A>T, found in a patient with multiple tumors, was associated with higher tumor mRNA and protein expression levels, increased GOT2 enzymatic activity in lymphoblastic cells, and altered metabolite ratios both in tumors and in GOT2 knockdown HeLa cells transfected with the variant. Array methylation-based analysis uncovered a somatic epigenetic mutation in SDHC in a patient with multiple pheochromocytomas and a gastrointestinal stromal tumor. Finally, a truncating germline IDH3B mutation was found in a patient with a single paraganglioma showing an altered α-ketoglutarate/isocitrate ratio. Conclusions: This study further attests to the relevance of the Krebs cycle in the development of PCC and PGL, and points to a potential role of other metabolic enzymes involved in metabolite exchange between mitochondria and cytosol. Clin Cancer Res; 23(20); 6315-24. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. MutSpec: a Galaxy toolbox for streamlined analyses of somatic mutation spectra in human and mouse cancer genomes.

    PubMed

    Ardin, Maude; Cahais, Vincent; Castells, Xavier; Bouaoun, Liacine; Byrnes, Graham; Herceg, Zdenko; Zavadil, Jiri; Olivier, Magali

    2016-04-18

    The nature of somatic mutations observed in human tumors at single gene or genome-wide levels can reveal information on past carcinogenic exposures and mutational processes contributing to tumor development. While large amounts of sequencing data are being generated, the associated analysis and interpretation of mutation patterns that may reveal clues about the natural history of cancer present complex and challenging tasks that require advanced bioinformatics skills. To make such analyses accessible to a wider community of researchers with no programming expertise, we have developed within the web-based user-friendly platform Galaxy a first-of-its-kind package called MutSpec. MutSpec includes a set of tools that perform variant annotation and use advanced statistics for the identification of mutation signatures present in cancer genomes and for comparing the obtained signatures with those published in the COSMIC database and other sources. MutSpec offers an accessible framework for building reproducible analysis pipelines, integrating existing methods and scripts developed in-house with publicly available R packages. MutSpec may be used to analyse data from whole-exome, whole-genome or targeted sequencing experiments performed on human or mouse genomes. Results are provided in various formats including rich graphical outputs. An example is presented to illustrate the package functionalities, the straightforward workflow analysis and the richness of the statistics and publication-grade graphics produced by the tool. MutSpec offers an easy-to-use graphical interface embedded in the popular Galaxy platform that can be used by researchers with limited programming or bioinformatics expertise to analyse mutation signatures present in cancer genomes. MutSpec can thus effectively assist in the discovery of complex mutational processes resulting from exogenous and endogenous carcinogenic insults.

  14. Somatic mosaicism containing double mutations in PTCH1 revealed by generation of induced pluripotent stem cells from nevoid basal cell carcinoma syndrome.

    PubMed

    Ikemoto, Yu; Takayama, Yoshinaga; Fujii, Katsunori; Masuda, Mokuri; Kato, Chise; Hatsuse, Hiromi; Fujitani, Kazuko; Nagao, Kazuaki; Kameyama, Kohzoh; Ikehara, Hajime; Toyoda, Masashi; Umezawa, Akihiro; Miyashita, Toshiyuki

    2017-08-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterised by developmental defects and tumorigenesis, such as medulloblastomas and basal cell carcinomas, caused by mutations of the patched-1 ( PTCH1 ) gene. In this article, we seek to demonstrate a mosaicism containing double mutations in PTCH1 in an individual with NBCCS. A de novo germline mutation of PTCH1 (c.272delG) was detected in a 31-year-old woman with NBCCS. Gene analysis of two out of four induced pluripotent stem cell (iPSC) clones established from the patient unexpectedly revealed an additional mutation, c.274delT. Deep sequencing confirmed a low-prevalence somatic mutation (5.5%-15.6% depending on the tissue) identical to the one found in iPSC clones. This is the first case of mosaicism unequivocally demonstrated in NBCCS. Furthermore, the mosaicism is unique in that the patient carries one normal and two mutant alleles. Because these mutations are located in close proximity, reversion error is likely to be involved in this event rather than a spontaneous mutation. In addition, this study indicates that gene analysis of iPSC clones can contribute to the detection of mosaicism containing a minor population carrying a second mutation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Analysis of the IgV(H) somatic mutations in splenic marginal zone lymphoma defines a group of unmutated cases with frequent 7q deletion and adverse clinical course.

    PubMed

    Algara, Patricia; Mateo, Marisol S; Sanchez-Beato, Margarita; Mollejo, Manuela; Navas, Immaculada C; Romero, Lourdes; Solé, Francesc; Salido, Marta; Florensa, Lourdes; Martínez, Pedro; Campo, Elias; Piris, Miguel A

    2002-02-15

    This study aimed to correlate the frequency of somatic mutations in the IgV(H) gene and the use of specific segments in the V(H) repertoire with the clinical and characteristic features of a series of 35 cases of splenic marginal zone lymphoma (SMZL). The cases were studied by seminested polymerase chain reaction by using primers from the FR1 and J(H) region. The results showed unexpected molecular heterogeneity in this entity, with 49% unmutated cases (less than 2% somatic mutations). The 7q31 deletions and a shorter overall survival were more frequent in this group. Additionally a high percentage (18 of 40 sequences) of SMZL cases showed usage of the V(H)1-2 segment, thereby emphasizing the singularity of this neoplasia, suggesting that this tumor derives from a highly selected B-cell population and encouraging the search for specific antigens that are pathogenically relevant in the genesis or progression of this tumor.

  16. Activating HER2 mutations in HER2 gene amplification negative breast cancer.

    PubMed

    Bose, Ron; Kavuri, Shyam M; Searleman, Adam C; Shen, Wei; Shen, Dong; Koboldt, Daniel C; Monsey, John; Goel, Nicholas; Aronson, Adam B; Li, Shunqiang; Ma, Cynthia X; Ding, Li; Mardis, Elaine R; Ellis, Matthew J

    2013-02-01

    Data from 8 breast cancer genome-sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized 13 HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture, and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGF receptor (EGFR) exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings show that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. We show that the majority of HER2 somatic mutations in breast cancer patients are activating mutations that likely drive tumorigenesis. Several patients had mutations that are resistant to the reversible HER2 inhibitor lapatinib, but are sensitive to the irreversible HER2 inhibitor, neratinib. Our results suggest that patients with HER2 mutation–positive breast cancers could benefit from existing HER2-targeted drugs.

  17. A systematic profile of clinical inhibitors responsive to EGFR somatic amino acid mutations in lung cancer: implication for the molecular mechanism of drug resistance and sensitivity.

    PubMed

    Ai, Xinghao; Sun, Yingjia; Wang, Haidong; Lu, Shun

    2014-07-01

    Human epidermal growth factor receptor (EGFR) has become a well-established target for the treatment of patients with non-small cell lung cancer (NSCLC). However, a large number of somatic mutations in such protein have been observed to cause drug resistance or sensitivity during pathological progression, limiting the application of reversible EGFR tyrosine kinase inhibitor therapy in NSCLC. In the current work, we describe an integration of in silico analysis and in vitro assay to profile six representative EGFR inhibitors against a panel of 71 observed somatic mutations in EGFR tyrosine kinase domain. In the procedure, the changes in interaction free energy of inhibitors with EGFR upon various mutations were calculated one by one using a rigorous computational scheme, which was preoptimized based on a set of structure-solved, affinity-known samples to improve its performance in characterizing the EGFR-inhibitor system. This method was later demonstrated to be effective in inferring drug response to the classical L858R and G719S mutations that confer constitutive activation for the EGFR kinase. It is found that the Staurosporine, a natural product isolated from the bacterium Streptomyces staurosporeus, exhibits selective inhibitory activity on the T790M and T790M/L858R mutants. This finding was subsequently solidified by in vitro kinase assay experiment; the inhibitory IC50 values of Staurosporine against wild-type, T790M and T790M/L858R mutant EGFR were measured to be 937, 12 and 3 nM, respectively.

  18. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes.

    PubMed

    Rozhok, Andrii I; Salstrom, Jennifer L; DeGregori, James

    2014-12-01

    Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms.

  19. Monitoring humans for somatic mutation in the endogenous PIG-a gene using red blood cells.

    PubMed

    Dobrovolsky, Vasily N; Elespuru, Rosalie K; Bigger, C Anita H; Robison, Timothy W; Heflich, Robert H

    2011-12-01

    The endogenous X-linked PIG-A gene is involved in the synthesis of glycosyl phosphatidyl inositol (GPI) anchors that tether specific protein markers to the exterior of mammalian cell cytoplasmic membranes. Earlier studies in rodent models indicate that Pig-a mutant red blood cells (RBCs) can be induced in animals treated with genotoxic agents, and that flow cytometry can be used to identify rare RBCs deficient in the GPI-anchored protein, CD59, as a marker of Pig-a gene mutation. We investigated if a similar approach could be used for detecting gene mutation in humans. We first determined the frequency of spontaneous CD59-deficient RBCs (presumed PIG-A mutants) in 97 self-identified healthy volunteers. For most subjects, the frequency of CD59-deficient RBCs was low (average of 5.1 ± 4.9 × 10(-6) ; median of 3.8 × 10(-6) and mutant frequency less than 8 × 10(-6) for 75% of subjects), with a statistically significant difference in median mutant frequencies between males and females. PIG-A RBC mutant frequency displayed poor correlation with the age and no correlation with the smoking status of the subjects. Also, two individuals had markedly increased CD59-deficient RBC frequencies of ∼300 × 10(-6) and ∼100 × 10(-6) . We then monitored PIG-A mutation in 10 newly diagnosed cancer patients undergoing chemotherapy with known genotoxic drugs. The frequency of CD59-deficient RBCs in the blood of the patients was measured before the start of chemotherapy and three times over a period of ∼6 months while on/after chemotherapy. Responses were generally weak, most observations being less than the median mutant frequency for both males and females; the greatest response was an approximate three-fold increase in the frequency of CD59-deficient RBCs in one patient treated with a combination of cisplatin and etoposide. These results suggest that the RBC PIG-A assay can be adopted to measuring somatic cell mutation in humans. Further research is necessary to determine

  20. Suppression of Somatic Expansion Delays the Onset of Pathophysiology in a Mouse Model of Huntington’s Disease

    PubMed Central

    Budworth, Helen; Harris, Faye R.; Williams, Paul; Lee, Do Yup; Holt, Amy; Pahnke, Jens; Szczesny, Bartosz; Acevedo-Torres, Karina; Ayala-Peña, Sylvette; McMurray, Cynthia T.

    2015-01-01

    Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motor decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible. PMID:26247199

  1. Suppression of somatic expansion delays the onset of pathophysiology in a mouse model of Huntington’s Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budworth, Helen; Harris, Faye R.; Williams, Paul

    Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motormore » decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible.« less

  2. Suppression of somatic expansion delays the onset of pathophysiology in a mouse model of Huntington’s Disease

    DOE PAGES

    Budworth, Helen; Harris, Faye R.; Williams, Paul; ...

    2015-08-06

    Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motormore » decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible.« less

  3. The Mutational Landscape of Adenoid Cystic Carcinoma

    PubMed Central

    Ho, Allen S.; Kannan, Kasthuri; Roy, David M.; Morris, Luc G.T.; Ganly, Ian; Katabi, Nora; Ramaswami, Deepa; Walsh, Logan A.; Eng, Stephanie; Huse, Jason T.; Zhang, Jianan; Dolgalev, Igor; Huberman, Kety; Heguy, Adriana; Viale, Agnes; Drobnjak, Marija; Leversha, Margaret A.; Rice, Christine E.; Singh, Bhuvanesh; Iyer, N. Gopalakrishna; Leemans, C. Rene; Bloemena, Elisabeth; Ferris, Robert L.; Seethala, Raja R.; Gross, Benjamin E.; Liang, Yupu; Sinha, Rileen; Peng, Luke; Raphael, Benjamin J.; Turcan, Sevin; Gong, Yongxing; Schultz, Nikolaus; Kim, Seungwon; Chiosea, Simion; Shah, Jatin P.; Sander, Chris; Lee, William; Chan, Timothy A.

    2013-01-01

    Adenoid cystic carcinomas (ACCs) are among the most enigmatic of human malignancies. These aggressive salivary cancers frequently recur and metastasize despite definitive treatment, with no known effective chemotherapy regimen. Here, we determined the ACC mutational landscape and report the exome or whole genome sequences of 60 ACC tumor/normal pairs. These analyses revealed a low exonic somatic mutation rate (0.31 non-silent events/megabase) and wide mutational diversity. Interestingly, mutations selectively involved chromatin state regulators, such as SMARCA2, CREBBP, and KDM6A, suggesting aberrant epigenetic regulation in ACC oncogenesis. Mutations in genes central to DNA damage and protein kinase A signaling also implicate these processes. We observed MYB-NFIB translocations and somatic mutations in MYB-associated genes, solidifying these aberrations as critical events. Lastly, we identified recurrent mutations in the FGF/IGF/PI3K pathway that may potentially offer new avenues for therapy (30%). Collectively, our observations establish a molecular foundation for understanding and exploring new treatments for ACC. PMID:23685749

  4. Activating HER2 mutations in HER2 gene amplification negative breast cancer

    PubMed Central

    Bose, Ron; Kavuri, Shyam M.; Searleman, Adam C.; Shen, Wei; Shen, Dong; Koboldt, Daniel C.; Monsey, John; Goel, Nicholas; Aronson, Adam B.; Li, Shunqiang; Ma, Cynthia X.; Ding, Li; Mardis, Elaine R.; Ellis, Matthew J.

    2012-01-01

    Data from eight breast cancer genome sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized thirteen HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGFR exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings demonstrate that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. PMID:23220880

  5. Myeloid neoplasms with germline DDX41 mutation.

    PubMed

    Cheah, Jesse J C; Hahn, Christopher N; Hiwase, Devendra K; Scott, Hamish S; Brown, Anna L

    2017-08-01

    Recently, DDX41 mutations have been identified both as germline and acquired somatic mutations in families with multiple cases of late-onset myelodysplastic syndrome (MDS) and/or acute myeloid leukemia. The majority of germline mutations are frameshift mutations suggesting loss of function with DDX41 acting as a tumor suppressor, and there is a common somatic missense mutation found in a majority of germline mutated tumors. Clinically, DDX41 mutations lead to development of high-risk MDS at an age similar to that observed in sporadic cohorts, presenting a unique challenge to hematologists in recognizing the familial context. Functionally, DDX41 has been shown to contribute to multiple pathways and processes including mRNA splicing, innate immunity and rRNA processing. Mutations in DDX41 result in aberrations to each of these in ways that could potentially impact on tumorigenesis-initiation, maintenance or progression. This review discusses the various molecular, clinical and biological aspects of myeloid malignancy predisposition due to DDX41 mutation and highlights how each of these suggest potential therapeutic opportunities through the use of pathway-specific inhibitors.

  6. Activating cysteinyl leukotriene receptor 2 (CYSLTR2) mutations in blue nevi

    PubMed Central

    Möller, Inga; Murali, Rajmohan; Müller, Hansgeorg; Wiesner, Thomas; Jackett, Louise A; Scholz, Simone L; Cosgarea, Ioana; van de Nes, Johannes AP; Sucker, Antje; Hillen, Uwe; Schilling, Bastian; Paschen, Annette; Kutzner, Heinz; Rütten, Arno; Böckers, Martin; Scolyer, Richard A; Schadendorf, Dirk; Griewank, Klaus G

    2017-01-01

    Blue nevi are common melanocytic tumors arising in the dermal layer of the skin. Similar to uveal melanomas, blue nevi frequently harbor GNAQ and GNA11 mutations. Recently, recurrent CYSLTR2 and PLCB4 mutations were identified in uveal melanomas not harboring GNAQ or GNA11 mutations. All four genes (GNAQ, GNA11, CYSLTR2, and PLCB4) code for proteins involved in the same signaling pathway, which is activated by mutations in these genes. Given the related functional consequences of these mutations and the known genetic similarities between uveal melanoma and blue nevi, we analyzed a cohort of blue nevi to investigate whether CYSLTR2 and PLCB4 mutations occur in tumors lacking GNAQ or GNA11 mutations (as in uveal melanoma). A targeted next-generation sequencing assay covering known activating mutations in GNAQ, GNA11, CYSLTR2, PLCB4, KIT, NRAS, and BRAF was applied to 103 blue nevi. As previously reported, most blue nevi were found to harbor activating mutations in GNAQ (59%, n = 61), followed by less frequent mutations in GNA11 (16%, n = 17). Additionally, one BRAF (1%) and three NRAS (3%) mutations were detected. In three tumors (3%) harboring none of the aforementioned gene alterations, CYSLTR2 mutations were identified. All three CYSLTR2 mutations were the same c.386T > A, L129Q mutation previously identified in uveal melanoma that has been shown to lead to increased receptor activation and signaling. In summary, our study identifies CYSLTR2 L129Q alterations as a previously unrecognized activating mutation in blue nevi, occuring in a mutually exclusive fashion with known GNAQ and GNA11 mutations. Similar to GNAQ and GNA11 mutations, CYSLTR2 mutations, when present, are likely defining pathogenetic events in blue nevi. PMID:27934878

  7. Activating cysteinyl leukotriene receptor 2 (CYSLTR2) mutations in blue nevi.

    PubMed

    Möller, Inga; Murali, Rajmohan; Müller, Hansgeorg; Wiesner, Thomas; Jackett, Louise A; Scholz, Simone L; Cosgarea, Ioana; van de Nes, Johannes Ap; Sucker, Antje; Hillen, Uwe; Schilling, Bastian; Paschen, Annette; Kutzner, Heinz; Rütten, Arno; Böckers, Martin; Scolyer, Richard A; Schadendorf, Dirk; Griewank, Klaus G

    2017-03-01

    Blue nevi are common melanocytic tumors arising in the dermal layer of the skin. Similar to uveal melanomas, blue nevi frequently harbor GNAQ and GNA11 mutations. Recently, recurrent CYSLTR2 and PLCB4 mutations were identified in uveal melanomas not harboring GNAQ or GNA11 mutations. All four genes (GNAQ, GNA11, CYSLTR2, and PLCB4) code for proteins involved in the same signaling pathway, which is activated by mutations in these genes. Given the related functional consequences of these mutations and the known genetic similarities between uveal melanoma and blue nevi, we analyzed a cohort of blue nevi to investigate whether CYSLTR2 and PLCB4 mutations occur in tumors lacking GNAQ or GNA11 mutations (as in uveal melanoma). A targeted next-generation sequencing assay covering known activating mutations in GNAQ, GNA11, CYSLTR2, PLCB4, KIT, NRAS, and BRAF was applied to 103 blue nevi. As previously reported, most blue nevi were found to harbor activating mutations in GNAQ (59%, n=61), followed by less frequent mutations in GNA11 (16%, n=17). Additionally, one BRAF (1%) and three NRAS (3%) mutations were detected. In three tumors (3%) harboring none of the aforementioned gene alterations, CYSLTR2 mutations were identified. All three CYSLTR2 mutations were the same c.386T>A, L129Q mutation previously identified in uveal melanoma that has been shown to lead to increased receptor activation and signaling. In summary, our study identifies CYSLTR2 L129Q alterations as a previously unrecognized activating mutation in blue nevi, occuring in a mutually exclusive fashion with known GNAQ and GNA11 mutations. Similar to GNAQ and GNA11 mutations, CYSLTR2 mutations, when present, are likely defining pathogenetic events in blue nevi.

  8. DNA polymerase η mutational signatures are found in a variety of different types of cancer.

    PubMed

    Rogozin, Igor B; Goncearenco, Alexander; Lada, Artem G; De, Subhajyoti; Yurchenko, Vyacheslav; Nudelman, German; Panchenko, Anna R; Cooper, David N; Pavlov, Youri I

    2018-01-01

    DNA polymerase (pol) η is a specialized error-prone polymerase with at least two quite different and contrasting cellular roles: to mitigate the genetic consequences of solar UV irradiation, and promote somatic hypermutation in the variable regions of immunoglobulin genes. Misregulation and mistargeting of pol η can compromise genome integrity. We explored whether the mutational signature of pol η could be found in datasets of human somatic mutations derived from normal and cancer cells. A substantial excess of single and tandem somatic mutations within known pol η mutable motifs was noted in skin cancer as well as in many other types of human cancer, suggesting that somatic mutations in A:T bases generated by DNA polymerase η are a common feature of tumorigenesis. Another peculiarity of pol ηmutational signatures, mutations in YCG motifs, led us to speculate that error-prone DNA synthesis opposite methylated CpG dinucleotides by misregulated pol η in tumors might constitute an additional mechanism of cytosine demethylation in this hypermutable dinucleotide.

  9. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias.

    PubMed

    Mullighan, C G; Kennedy, A; Zhou, X; Radtke, I; Phillips, L A; Shurtleff, S A; Downing, J R

    2007-09-01

    Somatic mutations in nucleophosmin (NPM1) occur in approximately 35% of adult acute myeloid leukemia (AML). To assess the frequency of NPM1 mutations in pediatric AML, we sequenced NPM1 in the diagnostic blasts from 93 pediatric AML patients. Six cases harbored NPM1 mutations, with each case lacking common cytogenetic abnormalities. To explore the phenotype of the AMLs with NPM1 mutations, gene expression profiles were obtained using Affymetrix U133A microarrays. NPM1 mutations were associated with increased expression of multiple homeobox genes including HOXA9, A10, B2, B6 and MEIS1. As dysregulated homeobox gene expression is also a feature of MLL-rearranged leukemia, the gene expression signatures of NPM1-mutated and MLL-rearranged leukemias were compared. Significant differences were identified between these leukemia subtypes including the expression of different HOX genes, with NPM1-mutated AML showing higher levels of expression of HOXB2, B3, B6 and D4. These results confirm recent reports of perturbed HOX expression in NPM1-mutated adult AML, and provide the first evidence that the NPM1-mutated signature is distinct from MLL-rearranged AML. These findings suggest that mutated NPM1 leads to dysregulated HOX expression via a different mechanism than MLL rearrangement.

  10. Somatic mutations and affinity maturation are impaired by excessive numbers of T follicular helper cells and restored by Treg cells or memory T cells.

    PubMed

    Preite, Silvia; Baumjohann, Dirk; Foglierini, Mathilde; Basso, Camilla; Ronchi, Francesca; Fernandez Rodriguez, Blanca M; Corti, Davide; Lanzavecchia, Antonio; Sallusto, Federica

    2015-11-01

    We previously reported that Cd3e-deficient mice adoptively transferred with CD4(+) T cells generate high numbers of T follicular helper (Tfh) cells, which go on to induce a strong B-cell and germinal center (GC) reaction. Here, we show that in this system, GC B cells display an altered distribution between the dark and light zones, and express low levels of activation-induced cytidine deaminase. Furthermore, GC B cells from Cd3e(-/-) mice accumulate fewer somatic mutations as compared with GC B cells from wild-type mice, and exhibit impaired affinity maturation and reduced differentiation into long-lived plasma cells. Reconstitution of Cd3e(-/-) mice with regulatory T (Treg) cells restored Tfh-cell numbers, GC B-cell numbers and B-cell distribution within dark and light zones, and the rate of antibody somatic mutations. Tfh-cell numbers and GC B-cell numbers and dynamics were also restored by pre-reconstitution of Cd3e(-/-) mice with Cxcr5(-/-) Treg cells or non-regulatory, memory CD4(+) T cells. Taken together, these findings underline the importance of a quantitatively regulated Tfh-cell response for an efficient and long-lasting serological response. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Monoallelic mutation analysis (MAMA) for identifying germline mutations.

    PubMed

    Papadopoulos, N; Leach, F S; Kinzler, K W; Vogelstein, B

    1995-09-01

    Dissection of germline mutations in a sensitive and specific manner presents a continuing challenge. In dominantly inherited diseases, mutations occur in only one allele and are often masked by the normal allele. Here we report the development of a sensitive and specific diagnostic strategy based on somatic cell hybridization termed MAMA (monoallelic mutation analysis). We have demonstrated the utility of this strategy in two different hereditary colorectal cancer syndromes, one caused by a defective tumour suppressor gene on chromosome 5 (familial adenomatous polyposis, FAP) and the other caused by a defective mismatch repair gene on chromosome 2 (hereditary non-polyposis colorectal cancer, HNPCC).

  12. Concordance of somatic mutational profile in multiple primary melanomas.

    PubMed

    Adler, Nikki R; McLean, Catriona A; Wolfe, Rory; Kelly, John W; McArthur, Grant A; Haydon, Andrew; Tra, Thien; Cummings, Nicholas; Mar, Victoria J

    2018-03-30

    This study aimed to determine the frequency and concordance of BRAF and NRAS mutation in tumours arising in patients with multiple primary melanoma (MPM). Patients with MPM managed at one of three tertiary referral centres in Melbourne, Australia, from 2010 to 2015 were included. Incident and subsequent melanomas underwent mutation testing. Cohen's kappa (κ) coefficient assessed agreement between incident and subsequent primary melanomas for both BRAF and NRAS mutation status (mutant versus wild-type). Mutation testing of at least two primary tumours from 64 patients was conducted. There was poor agreement for both BRAF and NRAS mutation status between incident and subsequent melanomas (κ = 0.10, 95% CI -0.10 to 0.42; κ = 0.06, 95% CI -0.10 to 0.57, respectively). In view of the low concordance in BRAF mutation status between incident and subsequent melanomas, mutational analysis of metastatic tissue, rather than of a primary melanoma, in patients with MPM should be used to guide targeted therapy. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Somatic mosaicism caused by monoallelic reversion of a mutation in T cells of a patient with ADA-SCID and the effects of enzyme replacement therapy on the revertant phenotype.

    PubMed

    Moncada-Vélez, M; Vélez-Ortega, A; Orrego, J; Santisteban, I; Jagadeesh, J; Olivares, M; Olaya, N; Hershfield, M; Candotti, F; Franco, J

    2011-11-01

    Patients with adenosine deaminase (ADA) deficiency exhibit spontaneous and partial clinical remission associated with somatic reversion of inherited mutations. We report a child with severe combined immunodeficiency (T-B- SCID) due to ADA deficiency diagnosed at the age of 1 month, whose lymphocyte counts including CD4+ and CD8+ T and NK cells began to improve after several months with normalization of ADA activity in Peripheral blood lymphocytes (PBL), as a result of somatic mosaicism caused by monoallelic reversion of the causative mutation in the ADA gene. He was not eligible for haematopoietic stem cell transplantation (HSCT) or gene therapy (GT); therefore he was placed on enzyme replacement therapy (ERT) with bovine PEG-ADA. The follow-up of metabolic and immunologic responses to ERT included gradual improvement in ADA activity in erythrocytes and transient expansion of most lymphocyte subsets, followed by gradual stabilization of CD4+ and CD8+ T (with naïve phenotype) and NK cells, and sustained expansion of TCRγδ+ T cells. This was accompanied by the disappearance of the revertant T cells as shown by DNA sequencing from PBL. Although the patient's clinical condition improved marginally, he later developed a germinal cell tumour and eventually died at the age of 67 months from sepsis. This case adds to our current knowledge of spontaneous reversion of mutations in ADA deficiency and shows that the effects of the ERT may vary among these patients, suggesting that it could depend on the cell and type in which the somatic mosaicism is established upon reversion. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.

  14. Resolving rates of mutation in the brain using single-neuron genomics

    PubMed Central

    Evrony, Gilad D; Lee, Eunjung; Park, Peter J; Walsh, Christopher A

    2016-01-01

    Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and suggested that these events preferentially impact genes important for neuronal function. We identify aspects of the single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of artifacts being interpreted as somatic mutation events. Our reanalysis supports a mutation frequency of approximately 0.2 events per cell, which is about fifty-fold lower than reported, confirming that L1 elements mobilize in some human neurons but indicating that L1 mosaicism is not ubiquitous. Through consideration of the challenges identified, we provide a foundation and framework for designing single-cell genomics studies. DOI: http://dx.doi.org/10.7554/eLife.12966.001 PMID:26901440

  15. Somatic mosaicism in a case of apparently sporadic Creutzfeldt-Jakob disease carrying a de novo D178N mutation in the PRNP gene.

    PubMed

    Alzualde, A; Moreno, F; Martínez-Lage, P; Ferrer, I; Gorostidi, A; Otaegui, D; Blázquez, L; Atares, B; Cardoso, S; Martínez de Pancorbo, M; Juste, R; Rodríguez-Martínez, A B; Indakoetxea, B; López de Munain, A

    2010-10-05

    Transmissible spongiform encephalopathies (TSEs) are a group of rare fatal neurodegenerative disorders. Creutzfeldt-Jakob disease (CJD) represents the most common form of TSE and can be classified into sporadic, genetic, iatrogenic and variant forms. Genetic cases are related to prion protein gene mutations but they only account for 10-20% of cases. Here we report an apparently sporadic CJD case with negative family history carrying a mutation at codon 178 of prion protein gene. This mutation is a de novo mutation as the parents of the case do not show it. Furthermore the presence of three different alleles (wild type 129M-178D and 129V-178D and mutated 129V-178N), confirmed by different methods, indicates that this de novo mutation is a post-zygotic mutation that produces somatic mosaicism. The proportion of mutated cells in peripheral blood cells and in brain tissue was similar and was estimated at approximately 97%, suggesting that the mutation occurred at an early stage of embryogenesis. Neuropathological examination disclosed spongiform change mainly involving the caudate and putamen, and the cerebral cortex, together with proteinase K-resistant PrP globular deposits in the cerebrum and cerebellum. PrP typing was characterized by a lower band of 21 kDa. This is the first case of mosaicism described in prion diseases and illustrates a potential etiology for apparently sporadic neurodegenerative diseases. In light of this case, genetic counseling for inherited and sporadic forms of transmissible encephalopathies should take into account this possibility for genetic screening procedures.

  16. Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations

    PubMed Central

    Brown, David; Smeets, Dominiek; Székely, Borbála; Larsimont, Denis; Szász, A. Marcell; Adnet, Pierre-Yves; Rothé, Françoise; Rouas, Ghizlane; Nagy, Zsófia I.; Faragó, Zsófia; Tőkés, Anna-Mária; Dank, Magdolna; Szentmártoni, Gyöngyvér; Udvarhelyi, Nóra; Zoppoli, Gabriele; Pusztai, Lajos; Piccart, Martine; Kulka, Janina; Lambrechts, Diether; Sotiriou, Christos; Desmedt, Christine

    2017-01-01

    Several studies using genome-wide molecular techniques have reported various degrees of genetic heterogeneity between primary tumours and their distant metastases. However, it has been difficult to discern patterns of dissemination owing to the limited number of patients and available metastases. Here, we use phylogenetic techniques on data generated using whole-exome sequencing and copy number profiling of primary and multiple-matched metastatic tumours from ten autopsied patients to infer the evolutionary history of breast cancer progression. We observed two modes of disease progression. In some patients, all distant metastases cluster on a branch separate from their primary lesion. Clonal frequency analyses of somatic mutations show that the metastases have a monoclonal origin and descend from a common ‘metastatic precursor’. Alternatively, multiple metastatic lesions are seeded from different clones present within the primary tumour. We further show that a metastasis can be horizontally cross-seeded. These findings provide insights into breast cancer dissemination. PMID:28429735

  17. Germline activating MTOR mutation arising through gonadal mosaicism in two brothers with megalencephaly and neurodevelopmental abnormalities.

    PubMed

    Mroske, Cameron; Rasmussen, Kristen; Shinde, Deepali N; Huether, Robert; Powis, Zoe; Lu, Hsiao-Mei; Baxter, Ruth M; McPherson, Elizabeth; Tang, Sha

    2015-11-05

    In humans, Mammalian Target of Rapamycin (MTOR) encodes a 300 kDa serine/ threonine protein kinase that is ubiquitously expressed, particularly at high levels in brain. MTOR functions as an integrator of multiple cellular processes, and in so doing either directly or indirectly regulates the phosphorylation of at least 800 proteins. While somatic MTOR mutations have been recognized in tumors for many years, and more recently in hemimegalencephaly, germline MTOR mutations have rarely been described. We report the successful application of family-trio Diagnostic Exome Sequencing (DES) to identify the underlying molecular etiology in two brothers with multiple neurological and developmental lesions, and for whom previous testing was non-diagnostic. The affected brothers, who were 6 and 23 years of age at the time of DES, presented symptoms including but not limited to mild Autism Spectrum Disorder (ASD), megalencephaly, gross motor skill delay, cryptorchidism and bilateral iris coloboma. Importantly, we determined that each affected brother harbored the MTOR missense alteration p.E1799K (c.5395G>A). This exact variant has been previously identified in multiple independent human somatic cancer samples and has been shown to result in increased MTOR activation. Further, recent independent reports describe two unrelated families in whom p.E1799K co-segregated with megalencephaly and intellectual disability (ID); in both cases, p.E1799K was shown to have originated due to germline mosaicism. In the case of the family reported herein, the absence of p.E1799K in genomic DNA extracted from the blood of either parent suggests that this alteration most likely arose due to gonadal mosaicism. Further, the p.E1799K variant exerts its effect by a gain-of-function (GOF), autosomal dominant mechanism. Herein, we describe the use of DES to uncover an activating MTOR missense alteration of gonadal mosaic origin that is likely to be the causative mutation in two brothers who present

  18. Evidence that human immunoglobulin M rheumatoid factors can Be derived from the natural autoantibody pool and undergo an antigen driven immune response in which somatically mutated rheumatoid factors have lower affinities for immunoglobulin G Fc than their germline counterparts.

    PubMed

    Carayannopoulos, M O; Potter, K N; Li, Y; Natvig, J B; Capra, J D

    2000-04-01

    The question of whether immunoglobulin (Ig)M rheumatoid factors (RF) arise as the result of an abnormal expansion of already existing clones producing natural autoantibodies or emerge as new clones that are somatically mutated owing to an antigen driven immune response has never been conclusively answered. In this study, an inhibition ELISA was utilized to measure the affinities of recombinant antibodies using VH segments reverted back to their closest germline counterparts (germline revertants). In all cases, the somatically mutated parental RFs had a decreased affinity for immunoglobulin (Ig)G Fc compared to the germline revertant, indicating that the antibodies in the germline configuration had the higher affinities. This demonstrates that somatic mutation is not a prerequisite to generate disease associated antibodies. The presence of mutations in the parental IgM RFS suggests that these cells had been involved in a germinal centre reaction. As the germinal centre is the conventional site of the acquisition of mutations during an antigen driven response, these data suggest a role for germinal centres in the generation of the antibody diversity in addition to the selection of higher affinity antibodies. Assuming that only antigen selected cells survive deletion, these data support the hypothesis that IgM RFS can be derived from the natural autoantibody repertoire and result from an antigen driven response. Mechanisms controlling the survival of B cells based on the affinity/avidity of the immunoglobulin receptor are shown to be functional in patients with rheumatoid arthritis.

  19. Parkin Somatic Mutations Link Melanoma and Parkinson's Disease.

    PubMed

    Levin, Lotan; Srour, Shani; Gartner, Jared; Kapitansky, Oxana; Qutob, Nouar; Dror, Shani; Golan, Tamar; Dayan, Roy; Brener, Ronen; Ziv, Tamar; Khaled, Mehdi; Schueler-Furman, Ora; Samuels, Yardena; Levy, Carmit

    2016-06-20

    Epidemiological studies suggest a direct link between melanoma and Parkinson's disease (PD); however, the underlying molecular basis is unknown. Since mutations in Parkin are the major driver of early-onset PD and Parkin was recently reported to play a role in cancer development, we hypothesized that Parkin links melanoma and PD. By analyzing whole exome/genome sequencing of Parkin from 246 melanoma patients, we identified five non-synonymous mutations, three synonymous mutations, and one splice region variant in Parkin in 3.6% of the samples. In vitro analysis showed that wild-type Parkin plays a tumor suppressive role in melanoma development resulting in cell-cycle arrest, reduction of metabolic activity, and apoptosis. Using a mass spectrometry-based analysis, we identified potential Parkin substrates in melanoma and generated a functional protein association network. The activity of mutated Parkin was assessed by protein structure modeling and examination of Parkin E3 ligase activity. The Parkin-E28K mutation impairs Parkin ubiquitination activity and abolishes its tumor suppressive effect. Taken together, our analysis of genomic sequence and in vitro data indicate that Parkin is a potential link between melanoma and Parkinson's disease. Our findings suggest new approaches for early diagnosis and treatment against both diseases. Copyright © 2016. Published by Elsevier Ltd.

  20. Chromosome microduplication in somatic cells decreases the genetic stability of human reprogrammed somatic cells and results in pluripotent stem cells.

    PubMed

    Yu, Yang; Chang, Liang; Zhao, Hongcui; Li, Rong; Fan, Yong; Qiao, Jie

    2015-05-12

    Human pluripotent stem cells, including cloned embryonic and induced pluripotent stem cells, offer a limitless cellular source for regenerative medicine. However, their derivation efficiency is limited, and a large proportion of cells are arrested during reprogramming. In the current study, we explored chromosome microdeletion/duplication in arrested and established reprogrammed cells. Our results show that aneuploidy induced by somatic cell nuclear transfer technology is a key factor in the developmental failure of cloned human embryos and primary colonies from implanted cloned blastocysts and that expression patterns of apoptosis-related genes are dynamically altered. Overall, ~20%-53% of arrested primary colonies in induced plurpotent stem cells displayed aneuploidy, and upregulation of P53 and Bax occurred in all arrested primary colonies. Interestingly, when somatic cells with pre-existing chromosomal mutations were used as donor cells, no cloned blastocysts were obtained, and additional chromosomal mutations were detected in the resulting iPS cells following long-term culture, which was not observed in the two iPS cell lines with normal karyotypes. In conclusion, aneuploidy induced by the reprogramming process restricts the derivation of pluripotent stem cells, and, more importantly, pre-existing chromosomal mutations enhance the risk of genome instability, which limits the clinical utility of these cells.

  1. The topography of mutational processes in breast cancer genomes

    DOE PAGES

    Morganella, Sandro; Alexandrov, Ludmil B.; Glodzik, Dominik; ...

    2016-01-01

    Somatic mutations in human cancers show unevenness in genomic distribution that correlate with aspects of genome structure and function. These mutations are, however, generated by multiple mutational processes operating through the cellular lineage between the fertilized egg and the cancer cell, each composed of specific DNA damage and repair components and leaving its own characteristic mutational signature on the genome. Using somatic mutation catalogues from 560 breast cancer whole-genome sequences, here we show that each of 12 base substitution, 2 insertion/deletion (indel) and 6 rearrangement mutational signatures present in breast tissue, exhibit distinct relationships with genomic features relating to transcription,more » DNA replication and chromatin organization. This signature-based approach permits visualization of the genomic distribution of mutational processes associated with APOBEC enzymes, mismatch repair deficiency and homologous recombinational repair deficiency, as well as mutational processes of unknown aetiology. Lastly, it highlights mechanistic insights including a putative replication-dependent mechanism of APOBEC-related mutagenesis.« less

  2. The topography of mutational processes in breast cancer genomes.

    PubMed

    Morganella, Sandro; Alexandrov, Ludmil B; Glodzik, Dominik; Zou, Xueqing; Davies, Helen; Staaf, Johan; Sieuwerts, Anieta M; Brinkman, Arie B; Martin, Sancha; Ramakrishna, Manasa; Butler, Adam; Kim, Hyung-Yong; Borg, Åke; Sotiriou, Christos; Futreal, P Andrew; Campbell, Peter J; Span, Paul N; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E; Thompson, Alastair M; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W M; Børresen-Dale, Anne-Lise; Richardson, Andrea L; Kong, Gu; Thomas, Gilles; Sale, Julian; Rada, Cristina; Stratton, Michael R; Birney, Ewan; Nik-Zainal, Serena

    2016-05-02

    Somatic mutations in human cancers show unevenness in genomic distribution that correlate with aspects of genome structure and function. These mutations are, however, generated by multiple mutational processes operating through the cellular lineage between the fertilized egg and the cancer cell, each composed of specific DNA damage and repair components and leaving its own characteristic mutational signature on the genome. Using somatic mutation catalogues from 560 breast cancer whole-genome sequences, here we show that each of 12 base substitution, 2 insertion/deletion (indel) and 6 rearrangement mutational signatures present in breast tissue, exhibit distinct relationships with genomic features relating to transcription, DNA replication and chromatin organization. This signature-based approach permits visualization of the genomic distribution of mutational processes associated with APOBEC enzymes, mismatch repair deficiency and homologous recombinational repair deficiency, as well as mutational processes of unknown aetiology. Furthermore, it highlights mechanistic insights including a putative replication-dependent mechanism of APOBEC-related mutagenesis.

  3. Cytomorphological identification of advanced pulmonary adenocarcinoma harboring KRAS mutation in lymph node fine-needle aspiration specimens: Comparative investigation of adenocarcinoma with KRAS and EGFR mutations.

    PubMed

    Song, Dae Hyun; Lee, Boram; Shin, Yooju; Choi, In Ho; Ha, Sang Yun; Lee, Jae Jun; Hong, Min Eui; Choi, Yoon-La; Han, Joungho; Um, Sang-Won

    2015-07-01

    Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) mutation in pulmonary adenocarcinoma is clinically important due to its association with resistance to EGFR inhibitors and poor prognosis. To our knowledge, there has not been a comparative study focusing on cytological nuclear features of pulmonary adenocarcinoma harboring KRAS mutation (KRAS-AD). Hence, we compared the cytomorphology of metastatic KRAS-AD and EGFR-positive adenocarcinoma (EGFR-AD) in aspiration specimens from lymph nodes. Forty lymph node aspiration specimens from forty KRAS-AD patients were collected at Samsung Medical Center (Seoul, Korea) from 2009 to 2013. As a control group, 40 EBUS-FNA lymph node specimens from 20 EGFR-AD patients were collected. EGFR-AD specimens were evaluated at Samsung Medical Center (Seoul, Korea) from 2012 to 2013. All 80 specimens were histologically confirmed to metastatic adenocarcinoma. Two pathologists performed a blinded review of all specimens. Compared with EGFR-AD, KRAS-AD exhibited more severe nuclear pleomorphism (P < 0.001), coarse chromatin (P = 0.001), cherry-red nucleoli (P < 0.001) and naked tumor cells (P = 0.002) with necrotic (P < 0.001) and neutrophilic (P = 0.008) background. Our study provides the first demonstration of cytomorphologic differentiation between metastatic KRAS-AD and metastatic EGFR-AD in lymph node aspiration specimens. © 2014 Wiley Periodicals, Inc.

  4. Cells Comprising the Prostate Cancer Microenvironment Lack Recurrent Clonal Somatic Genomic Aberrations

    PubMed Central

    Bianchi-Frias, Daniella; Basom, Ryan; Delrow, Jeffrey J; Coleman, Ilsa M; Dakhova, Olga; Qu, Xiaoyu; Fang, Min; Franco, Omar E.; Ericson, Nolan G.; Bielas, Jason H.; Hayward, Simon W.; True, Lawrence; Morrissey, Colm; Brown, Lisha; Bhowmick, Neil A.; Rowley, David; Ittmann, Michael; Nelson, Peter S.

    2017-01-01

    Prostate cancer-associated stroma (CAS) plays an active role in malignant transformation, tumor progression, and metastasis. Molecular analyses of CAS have demonstrated significant changes in gene expression; however, conflicting evidence exists on whether genomic alterations in benign cells comprising the tumor microenvironment (TME) underlie gene expression changes and oncogenic phenotypes. This study evaluates the nuclear and mitochondrial DNA integrity of prostate carcinoma cells, CAS, matched benign epithelium and benign epithelium-associated stroma by whole genome copy number analyses, targeted sequencing of TP53, and fluorescence in situ hybridization. Comparative genomic hybridization (aCGH) of CAS revealed a copy-neutral diploid genome with only rare and small somatic copy number aberrations (SCNAs). In contrast, several expected recurrent SCNAs were evident in the adjacent prostate carcinoma cells, including gains at 3q, 7p, and 8q, and losses at 8p and 10q. No somatic TP53 mutations were observed in CAS. Mitochondrial DNA (mtDNA) extracted from carcinoma cells and stroma identified 23 somatic mtDNA mutations in neoplastic epithelial cells but only one mutation in stroma. Finally, genomic analyses identified no SCNAs, no loss of heterozygosity (LOH) or copy-neutral LOH in cultured cancer-associated fibroblasts (CAFs), which are known to promote prostate cancer progression in vivo. PMID:26753621

  5. Recent advances in the study of somatic mosaicism and diseases other than cancer.

    PubMed

    Erickson, Robert P

    2014-06-01

    Somatic mosaicism is well appreciated as a cause of cancer and, possibly, aging. Somatic mosaicism as the cause of other diseases is becoming more appreciated. It is especially important in the causation of deforming diseases (e.g., Proteus syndrome; Sturge-Weber syndrome) which are not inherited because early developmental expression is lethal. It also known to make an important contribution to neurological, dermatological, hematological and other diseases (and probably all diseases but many in which it is harder to detect). There have been exciting recent advances in the detection of somatic mosaicism. In particular, for many diseases of somatic overgrowth in which somatic mosaicism as the sole cause was predicted, the gene somatically mutated has been found. A limited number of pathways seem involved in these disorders, some of which are also implicated in cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Deep targeted sequencing in pediatric acute lymphoblastic leukemia unveils distinct mutational patterns between genetic subtypes and novel relapse-associated genes.

    PubMed

    Lindqvist, C Mårten; Lundmark, Anders; Nordlund, Jessica; Freyhult, Eva; Ekman, Diana; Carlsson Almlöf, Jonas; Raine, Amanda; Övernäs, Elin; Abrahamsson, Jonas; Frost, Britt-Marie; Grandér, Dan; Heyman, Mats; Palle, Josefine; Forestier, Erik; Lönnerholm, Gudmar; Berglund, Eva C; Syvänen, Ann-Christine

    2016-09-27

    To characterize the mutational patterns of acute lymphoblastic leukemia (ALL) we performed deep next generation sequencing of 872 cancer genes in 172 diagnostic and 24 relapse samples from 172 pediatric ALL patients. We found an overall greater mutational burden and more driver mutations in T-cell ALL (T-ALL) patients compared to B-cell precursor ALL (BCP-ALL) patients. In addition, the majority of the mutations in T-ALL had occurred in the original leukemic clone, while most of the mutations in BCP-ALL were subclonal. BCP-ALL patients carrying any of the recurrent translocations ETV6-RUNX1, BCR-ABL or TCF3-PBX1 harbored few mutations in driver genes compared to other BCP-ALL patients. Specifically in BCP-ALL, we identified ATRX as a novel putative driver gene and uncovered an association between somatic mutations in the Notch signaling pathway at ALL diagnosis and increased risk of relapse. Furthermore, we identified EP300, ARID1A and SH2B3 as relapse-associated genes. The genes highlighted in our study were frequently involved in epigenetic regulation, associated with germline susceptibility to ALL, and present in minor subclones at diagnosis that became dominant at relapse. We observed a high degree of clonal heterogeneity and evolution between diagnosis and relapse in both BCP-ALL and T-ALL, which could have implications for the treatment efficiency.

  7. Reduction of spontaneous somatic mutation frequency by a low-dose X irradiation of Drosophila larvae and possible involvement of DNA single-strand damage repair.

    PubMed

    Koana, Takao; Takahashi, Takashi; Tsujimura, Hidenobu

    2012-03-01

    The third instar larvae of Drosophila were irradiated with X rays, and the somatic mutation frequency in their wings was measured after their eclosion. In the flies with normal DNA repair and apoptosis functions, 0.2 Gy irradiation at 0.05 Gy/min reduced the frequency of the so-called small spot (mutant cell clone with reduced reproductive activity) compared with that in the sham-irradiated flies. When apoptosis was suppressed using the baculovirus p35 gene, the small spot frequency increased four times in the sham-irradiated control group, but the reduction by the 0.2-Gy irradiation was still evident. In a non-homologous end joining-deficient mutant, the small spot frequency was also reduced by 0.2 Gy radiation. In a mutant deficient in single-strand break repair, no reduction in the small spot frequency by 0.2 Gy radiation was observed, and the small spot frequency increased with the radiation dose. Large spot (mutant cell clone with normal reproductive activity) frequency was not affected by suppression of apoptosis and increased monotonically with radiation dose in wild-type larvae and in mutants for single- or double-strand break repair. It is hypothesized that some of the small spots resulted from single-strand damage and, in wild-type larvae, 0.2 Gy radiation activated the normal single-strand break repair gene, which reduced the background somatic mutation frequency.

  8. Dramatic intracranial response to osimertinib in a poor performance status patient with lung adenocarcinoma harboring the epidermal growth factor receptor T790M mutation: A case report.

    PubMed

    Uemura, Takehiro; Oguri, Tetsuya; Okayama, Minami; Furuta, Hiromi; Kanemitsu, Yoshihiro; Takakuwa, Osamu; Ohkubo, Hirotsugu; Takemura, Masaya; Maeno, Ken; Ito, Yutaka; Niimi, Akio

    2017-04-01

    We herein report a case of dramatic intracranial response to osimertinib in a poor performance status patient with lung adenocarcinoma harboring the epidermal growth factor receptor ( EGFR ) T790M mutation encoded in exon 20. The patient was a 59-year-old woman with EGFR exon 19 deletion-positive lung adenocarcinoma, who relapsed with multiple brain metastases. Computed tomography-guided biopsy of the left pleural tumor revealed adenocarcinoma harboring an EGFR exon 19 deletion and an EGFR T790M mutation encoded in exon 20. The patient was treated with osimertinib, a third-generation EGFR tyrosine kinase inhibitor. Two days after treatment initiation, the patient displayed profound disturbance of consciousness, possibly due to carcinomatous meningitis, and treatment had to be discontinued due to difficulty in taking osimertinib. However, the patient gradually started to recover consciousness and, after 3 days, she was again able to take osimertinib. One month after the initiation of osimertinib treatment, magnetic resonance imaging revealed an apparent reduction in brain metastases. The patient is currently under continued treatment with osimertinib. At the last follow-up (February, 2017) she exhibited partial response to the treatment.

  9. Dramatic intracranial response to osimertinib in a poor performance status patient with lung adenocarcinoma harboring the epidermal growth factor receptor T790M mutation: A case report

    PubMed Central

    Uemura, Takehiro; Oguri, Tetsuya; Okayama, Minami; Furuta, Hiromi; Kanemitsu, Yoshihiro; Takakuwa, Osamu; Ohkubo, Hirotsugu; Takemura, Masaya; Maeno, Ken; Ito, Yutaka; Niimi, Akio

    2017-01-01

    We herein report a case of dramatic intracranial response to osimertinib in a poor performance status patient with lung adenocarcinoma harboring the epidermal growth factor receptor (EGFR) T790M mutation encoded in exon 20. The patient was a 59-year-old woman with EGFR exon 19 deletion-positive lung adenocarcinoma, who relapsed with multiple brain metastases. Computed tomography-guided biopsy of the left pleural tumor revealed adenocarcinoma harboring an EGFR exon 19 deletion and an EGFR T790M mutation encoded in exon 20. The patient was treated with osimertinib, a third-generation EGFR tyrosine kinase inhibitor. Two days after treatment initiation, the patient displayed profound disturbance of consciousness, possibly due to carcinomatous meningitis, and treatment had to be discontinued due to difficulty in taking osimertinib. However, the patient gradually started to recover consciousness and, after 3 days, she was again able to take osimertinib. One month after the initiation of osimertinib treatment, magnetic resonance imaging revealed an apparent reduction in brain metastases. The patient is currently under continued treatment with osimertinib. At the last follow-up (February, 2017) she exhibited partial response to the treatment. PMID:28413660

  10. Antimutagenicity of amifostine against the anticancer drug fotemustine in the Drosophila somatic mutation and recombination (SMART) test.

    PubMed

    Aydemir, N; Sevim, N; Celikler, S; Vatan, O; Bilaloglu, R

    2009-01-01

    Amifostine (WR-2721), a phosphorylated aminothiol pro-drug, is a selective cytoprotective agent in normal tissue against the toxicities associated with chemotherapy and irradiation. Fotemustine is a cancer chemotherapeutic agent that belongs to an extremely active class of alkylating compounds. Amifostine was tested for antimutagenicity against fotemustine in the somatic mutation and recombination test (SMART) in Drosophila melanogaster. Third-instar larvae that were trans-heterozygous for the two genetic markers mwh and flr were treated at different concentrations (2, 4, and 8 microg/ml for fotemustine and, 1, 2, and 4 microg/ml for amifostine) of the test compounds; for the antimutagenicity study, 8 microg/ml fotemustine plus 1 and 2 microg/ml amifostine were tested. Fotemustine showed mutagenic and recombinagenic effects in both genotypes in the wing-spot test. Amifostine significantly reduced the mutagenic and recombinagenic effects of fotemustine.

  11. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms

    PubMed Central

    Milosevic Feenstra, Jelena D.; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N.; Cazzola, Mario

    2016-01-01

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed “triple negative.” We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. PMID:26423830

  12. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms.

    PubMed

    Milosevic Feenstra, Jelena D; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N; Cazzola, Mario; Kralovics, Robert

    2016-01-21

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed "triple negative." We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. © 2016 by The American Society of Hematology.

  13. Age-related mutations and chronic myelomonocytic leukemia

    PubMed Central

    Mason, CC; Khorashad, JS; Tantravahi, SK; Kelley, TW; Zabriskie, MS; Yan, D; Pomicter, AD; Reynolds, KR; Eiring, AM; Kronenberg, Z; Sherman, RL; Tyner, JW; Dalley, BK; Dao, K-H; Yandell, M; Druker, BJ; Gotlib, J; O’Hare, T; Deininger, MW

    2016-01-01

    Chronic myelomonocytic leukemia (CMML) is a hematologic malignancy nearly confined to the elderly. Previous studies to determine incidence and prognostic significance of somatic mutations in CMML have relied on candidate gene sequencing, although an unbiased mutational search has not been conducted. As many of the genes commonly mutated in CMML were recently associated with age-related clonal hematopoiesis (ARCH) and aged hematopoiesis is characterized by a myelomonocytic differentiation bias, we hypothesized that CMML and aged hematopoiesis may be closely related. We initially established the somatic mutation landscape of CMML by whole exome sequencing followed by gene-targeted validation. Genes mutated in ⩾ 10% of patients were SRSF2, TET2, ASXL1, RUNX1, SETBP1, KRAS, EZH2, CBL and NRAS, as well as the novel CMML genes FAT4, ARIH1, DNAH2 and CSMD1. Most CMML patients (71%) had mutations in ⩾ 2 ARCH genes and 52% had ⩾ 7 mutations overall. Higher mutation burden was associated with shorter survival. Age-adjusted population incidence and reported ARCH mutation rates are consistent with a model in which clinical CMML ensues when a sufficient number of stochastically acquired age-related mutations has accumulated, suggesting that CMML represents the leukemic conversion of the myelomonocytic-lineage-biased aged hematopoietic system. PMID:26648538

  14. Adjuvant Chemotherapy With FOLFOX for Primary Colorectal Cancer Is Associated With Increased Somatic Gene Mutations and Inferior Survival in Patients Undergoing Hepatectomy for Metachronous Liver Metastases

    PubMed Central

    Andreou, Andreas; Kopetz, Scott; Maru, Dipen M.; Chen, Su S.; Zimmitti, Giuseppe; Brouquet, Antoine; Shindoh, Junichi; Curley, Steven A.; Garrett, Christopher; Overman, Michael J.; Aloia, Thomas A.; Vauthey, Jean-Nicolas

    2013-01-01

    Objective We hypothesized that metachronous colorectal liver metastases (CLM) have different biology after failure of oxaliplatin (FOLFOX) compared to 5-fluorouracil (5-FU) or no chemotherapy for adjuvant treatment of colorectal cancer (CRC). Background It is unclear whether patients treated with liver resection for metachronous CLM after adjuvant FOLFOX for CRC have worse outcomes than those who received 5-FU or no chemotherapy. Methods We identified 341 patients who underwent hepatectomy for metachronous CLM (disease-free interval ≥12 months, 1993–2010). Mass-spectroscopy genotyping for somatic gene mutations in CLM was performed in a subset of 129 patients. Results Adjuvant treatment for primary CRC was FOLFOX in 77 patients, 5-FU in 169 patients, and no chemotherapy in 95 patients. Node-positive primary was comparable between FOLFOX and 5-FU but lower in the no-chemotherapy group (P < 0.0001). Median metastasis size was smaller in the FOLFOX group (2.5 cm) than in the 5-FU (3.0 cm) or no-chemotherapy (3.5 cm) groups, (P = 0.008) although prehepatectomy chemotherapy utilization, metastases number, and carcinoembryonic antigen levels were similar. Disease-free survival (DFS) and overall survival (OS) rates after hepatectomy were worse in patients treated with adjuvant FOLFOX [DFS at 3 years: 14% vs 38% (5-FU) vs 45% (no-chemo), OS at 3 years: 58% vs 70% (5-FU) vs 84% (no-chemo)]. On multivariate analysis, adjuvant FOLFOX was associated with worse DFS (P < 0.0001) and OS (P < 0.0001). Mutation analysis revealed ≥1 mutations in 57% of patients (27/47) after FOLFOX, 29% (12/41) after 5-FU, and 32% (13/41) after no chemotherapy (P = 0.011). Conclusions Adjuvant FOLFOX for primary CRC is associated with a high rate of somatic mutations in liver metastases and inferior outcomes after hepatectomy for metachronous CLM. PMID:22968062

  15. Adjuvant chemotherapy with FOLFOX for primary colorectal cancer is associated with increased somatic gene mutations and inferior survival in patients undergoing hepatectomy for metachronous liver metastases.

    PubMed

    Andreou, Andreas; Kopetz, Scott; Maru, Dipen M; Chen, Su S; Zimmitti, Giuseppe; Brouquet, Antoine; Shindoh, Junichi; Curley, Steven A; Garrett, Christopher; Overman, Michael J; Aloia, Thomas A; Vauthey, Jean-Nicolas

    2012-10-01

    We hypothesized that metachronous colorectal liver metastases (CLM) have different biology after failure of oxaliplatin (FOLFOX) compared to 5-fluorouracil (5-FU) or no chemotherapy for adjuvant treatment of colorectal cancer (CRC). It is unclear whether patients treated with liver resection for metachronous CLM after adjuvant FOLFOX for CRC have worse outcomes than those who received 5-FU or no chemotherapy. We identified 341 patients who underwent hepatectomy for metachronous CLM (disease-free interval ≥12 months, 1993-2010). Mass-spectroscopy genotyping for somatic gene mutations in CLM was performed in a subset of 129 patients. Adjuvant treatment for primary CRC was FOLFOX in 77 patients, 5-FU in 169 patients, and no chemotherapy in 95 patients. Node-positive primary was comparable between FOLFOX and 5-FU but lower in the no-chemotherapy group (P < 0.0001). Median metastasis size was smaller in the FOLFOX group (2.5 cm) than in the 5-FU (3.0 cm) or no-chemotherapy (3.5 cm) groups, (P = 0.008) although prehepatectomy chemotherapy utilization, metastases number, and carcinoembryonic antigen levels were similar. Disease-free survival (DFS) and overall survival (OS) rates after hepatectomy were worse in patients treated with adjuvant FOLFOX [DFS at 3 years: 14% vs 38% (5-FU) vs 45% (no-chemo), OS at 3 years: 58% vs 70% (5-FU) vs 84% (no-chemo)]. On multivariate analysis, adjuvant FOLFOX was associated with worse DFS (P < 0.0001) and OS (P < 0.0001). Mutation analysis revealed ≥1 mutations in 57% of patients (27/47) after FOLFOX, 29% (12/41) after 5-FU, and 32% (13/41) after no chemotherapy (P = 0.011). Adjuvant FOLFOX for primary CRC is associated with a high rate of somatic mutations in liver metastases and inferior outcomes after hepatectomy for metachronous CLM.

  16. Mechanisms of mutations in myeloproliferative neoplasms.

    PubMed

    Levine, Ross L

    2009-12-01

    In recent years, a series of studies have provided genetic insight into the pathogenesis of myeloproliferative neoplasms (MPNs). It is now known that JAK2V617F mutations are present in 90% of patients with polycythaemia vera (PV), 60% of patients with essential thrombocytosis (ET) and 50% of patients with myelofibrosis (MF). Despite the high prevalence of JAK2V617F mutations in these three myeloid malignancies, several questions remain. For example, how does one mutation contribute to the pathogenesis of three clinically distinct diseases, and how do some patients develop these diseases in the absence of a JAK2V617F mutation? Single nucleotide polymorphisms at various loci and somatic mutations, such as those in MPLW515L/K, TET2 and in exon 12 of JAK2, may also contribute to the pathogenesis of these MPNs. There are likely additional germline and somatic genetic factors important to the MPN phenotype. Additional studies of large MPN and control cohorts with new techniques will help identify these factors.

  17. Novel recurrently mutated genes and a prognostic mutation signature in colorectal cancer.

    PubMed

    Yu, Jun; Wu, William K K; Li, Xiangchun; He, Jun; Li, Xiao-Xing; Ng, Simon S M; Yu, Chang; Gao, Zhibo; Yang, Jie; Li, Miao; Wang, Qiaoxiu; Liang, Qiaoyi; Pan, Yi; Tong, Joanna H; To, Ka F; Wong, Nathalie; Zhang, Ning; Chen, Jie; Lu, Youyong; Lai, Paul B S; Chan, Francis K L; Li, Yingrui; Kung, Hsiang-Fu; Yang, Huanming; Wang, Jun; Sung, Joseph J Y

    2015-04-01

    Characterisation of colorectal cancer (CRC) genomes by next-generation sequencing has led to the discovery of novel recurrently mutated genes. Nevertheless, genomic data has not yet been used for CRC prognostication. To identify recurrent somatic mutations with prognostic significance in patients with CRC. Exome sequencing was performed to identify somatic mutations in tumour tissues of 22 patients with CRC, followed by validation of 187 recurrent and pathway-related genes using targeted capture sequencing in additional 160 cases. Seven significantly mutated genes, including four reported (APC, TP53, KRAS and SMAD4) and three novel recurrently mutated genes (CDH10, FAT4 and DOCK2), exhibited high mutation prevalence (6-14% for novel cancer genes) and higher-than-expected number of non-silent mutations in our CRC cohort. For prognostication, a five-gene-signature (CDH10, COL6A3, SMAD4, TMEM132D, VCAN) was devised, in which mutation(s) in one or more of these genes was significantly associated with better overall survival independent of tumor-node-metastasis (TNM) staging. The median survival time was 80.4 months in the mutant group versus 42.4 months in the wild type group (p=0.0051). The prognostic significance of this signature was successfully verified using the data set from the Cancer Genome Atlas study. The application of next-generation sequencing has led to the identification of three novel significantly mutated genes in CRC and a mutation signature that predicts survival outcomes for stratifying patients with CRC independent of TNM staging. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Intratumoral heterogeneity and TERT promoter mutations in progressive/higher-grade meningiomas

    PubMed Central

    Juratli, Tareq A.; Thiede, Christian; Koerner, Mara V.A.; Tummala, Shilpa S.; Daubner, Dirk; Shankar, Ganesh M.; Williams, Erik A.; Martinez-Lage, Maria; Soucek, Silke; Robel, Katja; Penson, Tristan; Krause, Mechthild; Appold, Steffen; Meinhardt, Matthias; Pinzer, Thomas; Miller, Julie J.; Krex, Dietmar; Ely, Heather A.; Silverman, Ian M.; Christiansen, Jason; Schackert, Gabriele; Wakimoto, Hiroaki; Kirsch, Matthias; Brastianos, Priscilla K.; Cahill, Daniel P.

    2017-01-01

    Background Recent studies have reported mutations in the telomerase reverse transcriptase promoter (TERTp) in meningiomas. We sought to determine the frequency, clonality and clinical significance of telomere gene alterations in a cohort of patients with progressive/higher-grade meningiomas. Methods We characterized 64 temporally- and regionally-distinct specimens from 26 WHO grade III meningioma patients. On initial diagnoses, the meningiomas spanned all WHO grades (3 grade I, 13 grade II and 10 grade III). The tumor samples were screened for TERTp and ATRX/DAXX mutations, and TERT rearrangements. Additionally, TERTp was sequenced in a separate cohort of 19 patients with radiation-associated meningiomas. We examined the impact of mutational status on patients’ progression and overall survival. Results Somatic TERTp mutations were detected in six patients (6/26 = 23%). Regional intratumoral heterogeneity in TERTp mutation status was noted. In 4 patients, TERTp mutations were detected in recurrent specimens but not in the available specimens of the first surgery. Additionally, a TERT gene fusion (LPCAT1-TERT) was found in one sample. In contrary, none of the investigated samples harbored an ATRX or DAXX mutation. In the cohort of radiation-induced meningiomas, TERTp mutation was detected in two patients (10.5%). Importantly, we found that patients with emergence of TERTp mutations had a substantially shorter OS than their TERTp wild-type counterparts (2.7 years, 95% CI 0.9 – 4.5 years versus 10.8 years, 95% CI 7.8 -12.8 years, p=0.003). Conclusions In progressive/higher-grade meningiomas,TERTp mutations are associated with poor survival, supporting a model in which selection of this alteration is a harbinger of aggressive tumor development. In addition, we observe spatial intratumoral heterogeneity of TERTp mutation status, consistent with this model of late emergence in tumor evolution. Thus, early detection of TERTp mutations may define patients with more

  19. Prevalence of NRAS, PTEN and AKT1 gene mutations in the central nervous system metastases of non-small cell lung cancer.

    PubMed

    Nicoś, Marcin; Krawczyk, Paweł; Jarosz, Bożena; Sawicki, Marek; Trojanowski, Tomasz; Milanowski, Janusz

    2017-01-01

    Somatic mutations in NRAS, PTEN and AKT1 genes are rarely (~1%) reported in primary NSCLC, but their role in carcinogenesis have been proven. Therefore, we assessed the frequency of them in 145 FFPE tissue samples from CNS metastases of NSCLC using the real-time PCR technique. We identified four (two NRAS and single AKT1 and PTEN) mutations in CNS metastases of NSCLC. All mutations were observed in current male smokers (4% out of the male group; 4/100 and 4.25% out of smokers; 4/94). Three mutations have been detected in patients with SqCC (10.3% out of SqCC patients; 3/29), and only one mutation in the NRAS gene-in a patient with adenocarcinoma (1.25% out of AC patients; 1/80). The examined genes were mutually exclusive in terms of molecular background in KRAS; EGFR; DDR2; PIK3CA; HER2 and MEK1 genes that were evaluated in our previous studies. The OS of the patients who harbored NRAS, AKT1 and PTEN mutations was 10.1, 12.1, 7.3 and 4 months, respectively (vs 13.5 months of the studied group). Our results suggest that the presence of NRAS, PTEN and AKT1 gene mutations may have an influence on the occurrence of CNS metastases in patients with SqCC.

  20. Non-hyperfunctioning nodules from multinodular goiters: a minor role in pathogenesis for somatic activating mutations in the TSH-receptor and Gsalpha subunit genes.

    PubMed

    Derrien, C; Sonnet, E; Gicquel, I; Le Gall, J Y; Poirier, J Y; David, V; Maugendre, D

    2001-05-01

    Constitutive activation of the cAMP pathway stimulates thyrocyte proliferation. Gain-of-function mutations in Gsalpha protein have already been identified in thyroid nodules which have lost the ability to trap iodine. In contrast, most of the studies failed to detect somatic activating mutations in the thyrotropin receptor (TSH-R) in non-hyperfunctioning thyroid tumors. The aim of this study was to screen for mutations TSH-R exon 10, encoding the whole intracytoplasmic area involved in signal transduction, and Gsalpha exons 8 and 9, containing the two hot-spot codons 201 and 227, in a subset of non-hyperfunctioning nodules from multinodular goiter. Identified by matching ultrasonography and scintiscan, 22 eufunctioning (normal 99Tc uptake) and 15 nonfunctioning (decreased 99Tc uptake) nodules from 27 non-toxic multinodular goiters were isolated. After DNA extraction, TSH-R exon 10 was analyzed by direct sequencing of the PCR products and Gsalpha exons 8 and 9 by Denaturing Gradient Gel Electrophoresis. No mutation of TSH-R or Gsalpha was detected in the 37 nodules analyzed. This absence of mutation, despite the use of two sensitive screening methods associated with the analysis of the TSH-R whole intracytoplasmic area and Gsalpha two hot-spot codons, suggests that TSH-R and Gsalpha play a minor role in the pathogenesis of non-toxic nodules from multinodular goiters.

  1. Recurrent ETNK1 mutations in atypical chronic myeloid leukemia.

    PubMed

    Gambacorti-Passerini, Carlo B; Donadoni, Carla; Parmiani, Andrea; Pirola, Alessandra; Redaelli, Sara; Signore, Giovanni; Piazza, Vincenzo; Malcovati, Luca; Fontana, Diletta; Spinelli, Roberta; Magistroni, Vera; Gaipa, Giuseppe; Peronaci, Marco; Morotti, Alessandro; Panuzzo, Cristina; Saglio, Giuseppe; Usala, Emilio; Kim, Dong-Wook; Rea, Delphine; Zervakis, Konstantinos; Viniou, Nora; Symeonidis, Argiris; Becker, Heiko; Boultwood, Jacqueline; Campiotti, Leonardo; Carrabba, Matteo; Elli, Elena; Bignell, Graham R; Papaemmanuil, Elli; Campbell, Peter J; Cazzola, Mario; Piazza, Rocco

    2015-01-15

    Despite the recent identification of recurrent SETBP1 mutations in atypical chronic myeloid leukemia (aCML), a complete description of the somatic lesions responsible for the onset of this disorder is still lacking. To find additional somatic abnormalities in aCML, we performed whole-exome sequencing on 15 aCML cases. In 2 cases (13.3%), we identified somatic missense mutations in the ETNK1 gene. Targeted resequencing on 515 hematological clonal disorders revealed the presence of ETNK1 variants in 6 (8.8%) of 68 aCML and 2 (2.6%) of 77 chronic myelomonocytic leukemia samples. These mutations clustered in a small region of the kinase domain, encoding for H243Y and N244S (1/8 H243Y; 7/8 N244S). They were all heterozygous and present in the dominant clone. The intracellular phosphoethanolamine/phosphocholine ratio was, on average, 5.2-fold lower in ETNK1-mutated samples (P < .05). Similar results were obtained using myeloid TF1 cells transduced with ETNK1 wild type, ETNK1-N244S, and ETNK1-H243Y, where the intracellular phosphoethanolamine/phosphocholine ratio was significantly lower in ETNK1-N244S (0.76 ± 0.07) and ETNK1-H243Y (0.37 ± 0.02) than in ETNK1-WT (1.37 ± 0.32; P = .01 and P = .0008, respectively), suggesting that ETNK1 mutations may inhibit the catalytic activity of the enzyme. In summary, our study shows for the first time the evidence of recurrent somatic ETNK1 mutations in the context of myeloproliferative/myelodysplastic disorders. © 2015 by The American Society of Hematology.

  2. Phenotypic diversity in patients with lipodystrophy associated with LMNA mutations.

    PubMed

    Mory, Patricia B; Crispim, Felipe; Freire, Maria Beatriz S; Salles, João Eduardo N; Valério, Cynthia M; Godoy-Matos, Amelio F; Dib, Sérgio A; Moisés, Regina S

    2012-09-01

    Mutations in LMNA have been linked to diverse disorders called laminopathies, which display heterogeneous phenotypes and include diseases affecting muscles, axonal neurons, progeroid syndromes, and lipodystrophies. Among the lipodystrophies, LMNA mutations have been reported most frequently in patients with familial partial lipodystrophy (FPLD) of the Dunnigan variety; however, phenotypic heterogeneity in the pattern of body fat loss has been observed. In this study, we searched for LMNA mutations in patients with various forms of lipodystrophy. We studied 21 unrelated individuals with lipodystrophy. Subjects underwent a complete clinical evaluation and were classified as typical FPLD (n=12), atypical partial lipodystrophy (n=7), or generalized lipodystrophy (n=2). Molecular analysis of LMNA gene, analysis of body fat by dual-energy X-ray absorptiometry, and biochemical measurements were performed. ALL PATIENTS WITH TYPICAL FPLD WERE FOUND TO CARRY LMNA MUTATIONS: seven patients harbored the heterozygous p.R482W (c.1444C>T), two patients harbored the p.R482Q (c.1445G>A), and two individuals harbored the novel heterozygous variant p.N466D (c.1396A>G), all in exon 8. Also, a homozygous p.R584H (c.1751 G>A) mutation in exon 11 was found. Among patients with atypical partial lipodystrophy, two of them were found to have LMNA mutations: a novel heterozygous p.R582C variation (c.1744 C>T) in exon 11 and a heterozygous substitution p.R349W (c.1045C>T) in exon 6. Among patients with generalized lipodystrophy, only one harbored LMNA mutation, a heterozygous p.T10I (c.29C>T) in exon 1. We have identified LMNA mutations in phenotypically diverse lipodystrophies. Also, our study broadens the spectrum of LMNA mutations in lipodystrophy.

  3. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    PubMed Central

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  4. Gain-of-function somatic mutations contribute to inflammation and blood vessel damage that lead to Alzheimer dementia: a hypothesis.

    PubMed

    Marchesi, Vincent T

    2016-02-01

    Amyloid deposits are a characteristic feature of advanced Alzheimer dementia (AD), but whether they initiate the disease or are a consequence of it remains an unsettled question. To explore an alternative pathogenic mechanism, I propose that the triggering events that begin the pathogenic cascade are not amyloid deposits but damaged blood vessels caused by inflammatory reactions that lead to ischemia, amyloid accumulation, axonal degeneration, synaptic loss, and eventually irreversible neuronal cell death. Inflammation and blood vessel damage are well recognized complications of AD, but what causes them and why the cerebral microvasculature is affected have never been adequately addressed. Because heritable autosomal dominant mutations of NLRP3, APP, TREX1, NOTCH3, and Col4A1 are known to provoke inflammatory reactions and damage the brain in a wide variety of diseases, I propose that one or more low abundant, gain-of-function somatic mutations of the same 5 gene families damage the microvasculature of the brain that leads to dementia. This implies that the pathogenic triggers that lead to AD are derived not from external invaders or amyloid but from oxidative damage of our own genes. © FASEB.

  5. Wide spetcrum mutational analysis of metastatic renal cell cancer: a retrospective next generation sequencing approach

    PubMed Central

    Fiorentino, Michelangelo; Gruppioni, Elisa; Massari, Francesco; Giunchi, Francesca; Altimari, Annalisa; Ciccarese, Chiara; Bimbatti, Davide; Scarpa, Aldo; Iacovelli, Roberto; Porta, Camillo; Virinder, Sarhadi; Tortora, Giampaolo; Artibani, Walter; Schiavina, Riccardo; Ardizzoni, Andrea; Brunelli, Matteo; Knuutila, Sakari; Martignoni, Guido

    2017-01-01

    Renal cell cancer (RCC) is characterized by histological and molecular heterogeneity that may account for variable response to targeted therapies. We evaluated retrospectively with a next generation sequencing (NGS) approach using a pre-designed cancer panel the mutation burden of 32 lesions from 22 metastatic RCC patients treated with at least one tyrosine kinase or mTOR inhibitor. We identified mutations in the VHL, PTEN, JAK3, MET, ERBB4, APC, CDKN2A, FGFR3, EGFR, RB1, TP53 genes. Somatic alterations were correlated with response to therapy. Most mutations hit VHL1 (31,8%) followed by PTEN (13,6%), JAK3, FGFR and TP53 (9% each). Eight (36%) patients were wild-type at least for the genes included in the panel. A genotype concordance between primary RCC and its secondary lesion was found in 3/6 cases. Patients were treated with Sorafenib, Sunitinib and Temsirolimus with partial responses in 4 (18,2%) and disease stabilization in 7 (31,8%). Among the 4 partial responders, 1 (25%) was wild-type and 3 (75%) harbored different VHL1 variants. Among the 7 patients with disease stabilization 2 (29%) were wild-type, 2 (29%) PTEN mutated, and single patients (14% each) displayed mutations in VHL1, JAK3 and APC/CDKN2A. Among the 11 non-responders 7 (64%) were wild-type, 2 (18%) were p53 mutated and 2 (18%) VHL1 mutated. No significant associations were found among RCC histotype, mutation variants and response to therapies. In the absence of predictive biomarkers for metastatic RCC treatment, a NGS approach may address single patients to basket clinical trials according to actionable molecular specific alterations. PMID:27741505

  6. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop.

    PubMed

    Pirker, Robert; Herth, Felix J F; Kerr, Keith M; Filipits, Martin; Taron, Miquel; Gandara, David; Hirsch, Fred R; Grunenwald, Dominique; Popper, Helmut; Smit, Egbert; Dietel, Manfred; Marchetti, Antonio; Manegold, Christian; Schirmacher, Peter; Thomas, Michael; Rosell, Rafael; Cappuzzo, Federico; Stahel, Rolf

    2010-10-01

    Activating somatic mutations of the tyrosine kinase domain of epidermal growth factor receptor (EGFR) have recently been characterized in a subset of patients with advanced non-small cell lung cancer (NSCLC). Patients harboring these mutations in their tumors show excellent response to EGFR tyrosine kinase inhibitors (EGFR-TKIs). The EGFR-TKI gefitinib has been approved in Europe for the treatment of adult patients with locally advanced or metastatic NSCLC with activating mutations of the EGFR TK. Because EGFR mutation testing is not yet well established across Europe, biomarker-directed therapy only slowly emerges for the subset of NSCLC patients most likely to benefit: those with EGFR mutations. The "EGFR testing in NSCLC: from biology to clinical practice" International Association for the Study of Lung Cancer-European Thoracic Oncology Platform multidisciplinary workshop aimed at facilitating the implementation of EGFR mutation testing. Recommendations for high-quality EGFR mutation testing were formulated based on the opinion of the workshop expert group. Co-operation and communication flow between the various disciplines was considered to be of most importance. Participants agreed that the decision to request EGFR mutation testing should be made by the treating physician, and results should be available within 7 working days. There was agreement on the importance of appropriate sampling techniques and the necessity for the standardization of tumor specimen handling including fixation. Although there was no consensus on which laboratory test should be preferred for clinical decision making, all stressed the importance of standardization and validation of these tests. The recommendations of the workshop will help implement EGFR mutation testing in Europe and, thereby, optimize the use of EGFR-TKIs in clinical practice.

  7. Mutational signatures associated with tobacco smoking in human cancer

    DOE PAGES

    Alexandrov, Ludmil B.; Ju, Young Seok; Haase, Kerstin; ...

    2016-11-04

    Tobacco smoking increases the risk of at least 17 classes of cancer. Here, we analyzed somatic mutations and DNA methylation in 5,243 cancers of types for which tobacco smoking confers an elevated risk. Smoking is associated with increased mutation burdens of multiple distinct mutational signatures, which contribute to different extents in different cancers. One of these signatures, mainly found in cancers derived from tissues directly exposed to tobacco smoke, is attributable to misreplication of DNA damage caused by tobacco carcinogens. Others likely reflect indirect activation of DNA edi ting by APOBEC cytidine deaminases and of an endogenous clock-like mutational process.more » Smoking is associated with limited differences in methylation. The results are consistent with the proposition that smoking increases cancer risk by increasing the somatic mutation load, although direct evidence for this mechanism is lacking in some smoking-related cancer types.« less

  8. Mutational signatures associated with tobacco smoking in human cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Ludmil B.; Ju, Young Seok; Haase, Kerstin

    Tobacco smoking increases the risk of at least 17 classes of cancer. Here, we analyzed somatic mutations and DNA methylation in 5,243 cancers of types for which tobacco smoking confers an elevated risk. Smoking is associated with increased mutation burdens of multiple distinct mutational signatures, which contribute to different extents in different cancers. One of these signatures, mainly found in cancers derived from tissues directly exposed to tobacco smoke, is attributable to misreplication of DNA damage caused by tobacco carcinogens. Others likely reflect indirect activation of DNA edi ting by APOBEC cytidine deaminases and of an endogenous clock-like mutational process.more » Smoking is associated with limited differences in methylation. The results are consistent with the proposition that smoking increases cancer risk by increasing the somatic mutation load, although direct evidence for this mechanism is lacking in some smoking-related cancer types.« less

  9. Emergence of fatal avian influenza in New England harbor seals

    USGS Publications Warehouse

    Anthony, S.J.; St. Leger, J. A.; Pugliares, K.; Ip, Hon S.; Chan, J.M.; Carpenter, Z.W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J.T.; Pedersen, J.; Karesh, W.; Daszak, P.; Rabadan, R.; Rowles, T.; Lipkin, W.I.

    2012-01-01

    From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission.

  10. Visualization portal for genetic variation (VizGVar): a tool for interactive visualization of SNPs and somatic mutations in exons, genes and protein domains.

    PubMed

    Solano-Román, Antonio; Alfaro-Arias, Verónica; Cruz-Castillo, Carlos; Orozco-Solano, Allan

    2018-03-15

    VizGVar was designed to meet the growing need of the research community for improved genomic and proteomic data viewers that benefit from better information visualization. We implemented a new information architecture and applied user centered design principles to provide a new improved way of visualizing genetic information and protein data related to human disease. VizGVar connects the entire database of Ensembl protein motifs, domains, genes and exons with annotated SNPs and somatic variations from PharmGKB and COSMIC. VizGVar precisely represents genetic variations and their respective location by colored curves to designate different types of variations. The structured hierarchy of biological data is reflected in aggregated patterns through different levels, integrating several layers of information at once. VizGVar provides a new interactive, web-based JavaScript visualization of somatic mutations and protein variation, enabling fast and easy discovery of clinically relevant variation patterns. VizGVar is accessible at http://vizport.io/vizgvar; http://vizport.io/vizgvar/doc/. asolano@broadinstitute.org or allan.orozcosolano@ucr.ac.cr.

  11. PIK3CA and KRAS mutations in cell free circulating DNA are useful markers for monitoring ovarian clear cell carcinoma

    PubMed Central

    Morikawa, Asuka; Hayashi, Tomoatsu; Shimizu, Naomi; Kobayashi, Mana; Taniue, Kenzui; Takahashi, Akiko; Tachibana, Kota; Saito, Misato; Kawabata, Ayako; Iida, Yasushi; Ueda, Kazu; Saito, Motoaki; Yanaihara, Nozomu; Tanabe, Hiroshi; Yamada, Kyosuke; Takano, Hirokuni; Nureki, Osamu; Okamoto, Aikou; Akiyama, Tetsu

    2018-01-01

    Ovarian clear cell carcinoma (OCCC) exhibits distinct phenotypes, such as resistance to chemotherapy, poor prognosis and an association with endometriosis. Biomarkers and imaging techniques currently in use are not sufficient for reliable diagnosis of this tumor or prediction of therapeutic response. It has recently been reported that analysis of somatic mutations in cell-free circulating DNA (cfDNA) released from tumor tissues can be useful for tumor diagnosis. In the present study, we attempted to detect mutations in PIK3CA and KRAS in cfDNA from OCCC patients using droplet digital PCR (ddPCR). Here we show that we were able to specifically detect PIK3CA-H1047R and KRAS-G12D in cfDNA from OCCC patients and monitor their response to therapy. Furthermore, we found that by cleaving wild-type PIK3CA using the CRISPR/Cas9 system, we were able to improve the sensitivity of the ddPCR method and detect cfDNA harboring PIK3CA-H1047R. Our results suggest that detection of mutations in cfDNA by ddPCR would be useful for the diagnosis of OCCC, and for predicting its recurrence. PMID:29632642

  12. MLH1-deficient Colorectal Carcinoma With Wild-type BRAF and MLH1 Promoter Hypermethylation Harbor KRAS Mutations and Arise From Conventional Adenomas.

    PubMed

    Farchoukh, Lama; Kuan, Shih-Fan; Dudley, Beth; Brand, Randall; Nikiforova, Marina; Pai, Reetesh K

    2016-10-01

    can harbor KRAS mutations and arise from precursor polyps resembling conventional tubular/tubulovillous adenomas.

  13. Vecuum: identification and filtration of false somatic variants caused by recombinant vector contamination.

    PubMed

    Kim, Junho; Maeng, Ju Heon; Lim, Jae Seok; Son, Hyeonju; Lee, Junehawk; Lee, Jeong Ho; Kim, Sangwoo

    2016-10-15

    Advances in sequencing technologies have remarkably lowered the detection limit of somatic variants to a low frequency. However, calling mutations at this range is still confounded by many factors including environmental contamination. Vector contamination is a continuously occurring issue and is especially problematic since vector inserts are hardly distinguishable from the sample sequences. Such inserts, which may harbor polymorphisms and engineered functional mutations, can result in calling false variants at corresponding sites. Numerous vector-screening methods have been developed, but none could handle contamination from inserts because they are focusing on vector backbone sequences alone. We developed a novel method-Vecuum-that identifies vector-originated reads and resultant false variants. Since vector inserts are generally constructed from intron-less cDNAs, Vecuum identifies vector-originated reads by inspecting the clipping patterns at exon junctions. False variant calls are further detected based on the biased distribution of mutant alleles to vector-originated reads. Tests on simulated and spike-in experimental data validated that Vecuum could detect 93% of vector contaminants and could remove up to 87% of variant-like false calls with 100% precision. Application to public sequence datasets demonstrated the utility of Vecuum in detecting false variants resulting from various types of external contamination. Java-based implementation of the method is available at http://vecuum.sourceforge.net/ CONTACT: swkim@yuhs.acSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Mutations of E3 Ubiquitin Ligase Cbl Family Members Constitute a Novel Common Pathogenic Lesion in Myeloid Malignancies

    PubMed Central

    Makishima, Hideki; Cazzolli, Heather; Szpurka, Hadrian; Dunbar, Andrew; Tiu, Ramon; Huh, Jungwon; Muramatsu, Hideki; O'Keefe, Christine; Hsi, Eric; Paquette, Ronald L.; Kojima, Seiji; List, Alan F.; Sekeres, Mikkael A.; McDevitt, Michael A.; Maciejewski, Jaroslaw P.

    2009-01-01

    Purpose Acquired somatic uniparental disomy (UPD) is commonly observed in myelodysplastic syndromes (MDS), myelodysplastic/myeloproliferative neoplasms (MDS/MPN), or secondary acute myelogenous leukemia (sAML) and may point toward genes harboring mutations. Recurrent UPD11q led to identification of homozygous mutations in c-Cbl, an E3 ubiquitin ligase involved in attenuation of proliferative signals transduced by activated receptor tyrosine kinases. We examined the role and frequency of Cbl gene family mutations in MPN and related conditions. Methods We applied high-density SNP-A karyotyping to identify loss of heterozygosity of 11q in 442 patients with MDS, MDS/MPN, MPN, sAML evolved from these conditions, and primary AML. We sequenced c-Cbl, Cbl-b, and Cbl-c in patients with or without corresponding UPD or deletions and correlated mutational status with clinical features and outcomes. Results We identified c-Cbl mutations in 5% and 9% of patients with chronic myelomonocytic leukemia (CMML) and sAML, and also in CML blast crisis and juvenile myelomonocytic leukemia (JMML). Most mutations were homozygous and affected c-Cbl; mutations in Cbl-b were also found in patients with similar clinical features. Patients with Cbl family mutations showed poor prognosis, with a median survival of 5 months. Pathomorphologic features included monocytosis, monocytoid blasts, aberrant expression of phosphoSTAT5, and c-kit overexpression. Serial studies showed acquisition of c-Cbl mutations during malignant evolution. Conclusion Mutations in the Cbl family RING finger domain or linker sequence constitute important pathogenic lesions associated with not only preleukemic CMML, JMML, and other MPN, but also progression to AML, suggesting that impairment of degradation of activated tyrosine kinases constitutes an important cancer mechanism. PMID:19901108

  15. Analysis of EGFR, EML4-ALK, KRAS, and c-MET mutations in Chinese lung adenocarcinoma patients.

    PubMed

    Xia, Ning; An, Jian; Jiang, Qing-qing; Li, Min; Tan, Jun; Hu, Cheng-ping

    2013-10-01

    Mutation analysis of cancer driver genes is helpful for determining an optimal treatment strategy. We evaluated mutations in four driver genes, namely epidermal growth factor receptor (EGFR), Kirsten ras oncogene (KRAS), c-MET, and echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK), in Chinese lung adenocarcinoma patients from Hunan Province. We enrolled 110 lung adenocarcinoma patients in a single institution. EGFR and KRAS mutations were examined by direct sequencing, the EML4-ALK fusion gene was analyzed by fluorescence in situ hybridization, and c-MET amplification and c-Met protein expression were detected by quantitative PCR and immunohistochemistry, respectively. EGFR and KRAS mutations were observed in 52.7% (58/110) and 3.6% (4/106) of patients, respectively. c-MET amplification was detected in 5.5% (6/110) of patients. In addition, 30% (33/110) of the cases expressed c-Met protein, including all of the patients harboring c-MET amplification. Ten percent (11/110) of patients harbored the EML4-ALK fusion gene, and the frequency of ALK rearrangement was higher than that of other cohort analyses involving patients from other regions in China. Almost all of these gene mutations were exclusive except that in two female non-smoking patients, who harbored an EGFR mutation and EML4-ALK rearrangement simultaneously. In total, 70% of patients in the study harbored one of the four gene mutations. Most Chinese lung adenocarcinoma patients harbor driver gene mutations, among which ALK rearrangements were more common in Hunan patients than in previously reported populations. Future clinical trials should be conducted to determine the safety and efficacy of drug combination targeting different driver mutations.

  16. MUFFINN: cancer gene discovery via network analysis of somatic mutation data.

    PubMed

    Cho, Ara; Shim, Jung Eun; Kim, Eiru; Supek, Fran; Lehner, Ben; Lee, Insuk

    2016-06-23

    A major challenge for distinguishing cancer-causing driver mutations from inconsequential passenger mutations is the long-tail of infrequently mutated genes in cancer genomes. Here, we present and evaluate a method for prioritizing cancer genes accounting not only for mutations in individual genes but also in their neighbors in functional networks, MUFFINN (MUtations For Functional Impact on Network Neighbors). This pathway-centric method shows high sensitivity compared with gene-centric analyses of mutation data. Notably, only a marginal decrease in performance is observed when using 10 % of TCGA patient samples, suggesting the method may potentiate cancer genome projects with small patient populations.

  17. Origin of Somatic Mutations in β-Catenin versus Adenomatous Polyposis Coli in Colon Cancer: Random Mutagenesis in Animal Models versus Nonrandom Mutagenesis in Humans.

    PubMed

    Yang, Da; Zhang, Min; Gold, Barry

    2017-07-17

    Wnt signaling is compromised early in the development of human colorectal cancer (CRC) due to truncating nonsense mutations in adenomatous polyposis coli (APC). CRC induced by chemical carcinogens, such as heterocyclic aromatic amines and azoxymethane, in mice also involves dysregulation of Wnt signaling but via activating missense mutations in the β-catenin oncogene despite the fact that genetically modified mice harboring an inactive APC allele efficiently develop CRC. In contrast, activating mutations in β-catenin are rarely observed in human CRC. Dysregulation of the Wnt signaling pathway by the two distinct mechanisms reveals insights into the etiology of human CRC. On the basis of calculations related to DNA adduct levels produced in mouse CRC models using mutagens, and the number of stem cells in the mouse colon, we show that two nonsense mutations required for biallelic disruption of APC are statistically unlikely to produce CRC in experiments using small numbers of mice. We calculate that an activating mutation in one allele near the critical GSK3β phosphorylation site on β-catenin is >10 5 -times more likely to produce CRC by random mutagenesis due to chemicals than inactivating two alleles in APC, yet it does not occur in humans. Therefore, the mutagenesis mechanism in human CRC cannot be random. We explain that nonsense APC mutations predominate in human CRC because of deamination at 5-methylcytosine at CGA and CAG codons, coupled with the number of human colonic stem cells and lifespan. Our analyses, including a comparison of mutation type and age at CRC diagnosis in U.S. and Chinese patients, also indicate that APC mutations in CRC are not due to environmental mutagens that randomly damage DNA.

  18. A systems approach defining constraints of the genome architecture on lineage selection and evolvability during somatic cancer evolution

    PubMed Central

    Rübben, Albert; Nordhoff, Ole

    2013-01-01

    Summary Most clinically distinguishable malignant tumors are characterized by specific mutations, specific patterns of chromosomal rearrangements and a predominant mechanism of genetic instability but it remains unsolved whether modifications of cancer genomes can be explained solely by mutations and selection through the cancer microenvironment. It has been suggested that internal dynamics of genomic modifications as opposed to the external evolutionary forces have a significant and complex impact on Darwinian species evolution. A similar situation can be expected for somatic cancer evolution as molecular key mechanisms encountered in species evolution also constitute prevalent mutation mechanisms in human cancers. This assumption is developed into a systems approach of carcinogenesis which focuses on possible inner constraints of the genome architecture on lineage selection during somatic cancer evolution. The proposed systems approach can be considered an analogy to the concept of evolvability in species evolution. The principal hypothesis is that permissive or restrictive effects of the genome architecture on lineage selection during somatic cancer evolution exist and have a measurable impact. The systems approach postulates three classes of lineage selection effects of the genome architecture on somatic cancer evolution: i) effects mediated by changes of fitness of cells of cancer lineage, ii) effects mediated by changes of mutation probabilities and iii) effects mediated by changes of gene designation and physical and functional genome redundancy. Physical genome redundancy is the copy number of identical genetic sequences. Functional genome redundancy of a gene or a regulatory element is defined as the number of different genetic elements, regardless of copy number, coding for the same specific biological function within a cancer cell. Complex interactions of the genome architecture on lineage selection may be expected when modifications of the genome

  19. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells.

    PubMed

    Ju, Young Seok; Tubio, Jose M C; Mifsud, William; Fu, Beiyuan; Davies, Helen R; Ramakrishna, Manasa; Li, Yilong; Yates, Lucy; Gundem, Gunes; Tarpey, Patrick S; Behjati, Sam; Papaemmanuil, Elli; Martin, Sancha; Fullam, Anthony; Gerstung, Moritz; Nangalia, Jyoti; Green, Anthony R; Caldas, Carlos; Borg, Åke; Tutt, Andrew; Lee, Ming Ta Michael; van't Veer, Laura J; Tan, Benita K T; Aparicio, Samuel; Span, Paul N; Martens, John W M; Knappskog, Stian; Vincent-Salomon, Anne; Børresen-Dale, Anne-Lise; Eyfjörd, Jórunn Erla; Myklebost, Ola; Flanagan, Adrienne M; Foster, Christopher; Neal, David E; Cooper, Colin; Eeles, Rosalind; Bova, Steven G; Lakhani, Sunil R; Desmedt, Christine; Thomas, Gilles; Richardson, Andrea L; Purdie, Colin A; Thompson, Alastair M; McDermott, Ultan; Yang, Fengtang; Nik-Zainal, Serena; Campbell, Peter J; Stratton, Michael R

    2015-06-01

    Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells. © 2015 Ju et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Somatic Mutations and Ancestry Markers in Hispanic Lung Cancer Patients.

    PubMed

    Gimbrone, Nicholas T; Sarcar, Bhaswati; Gordian, Edna R; Rivera, Jason I; Lopez, Christian; Yoder, Sean J; Teer, Jamie K; Welsh, Eric A; Chiappori, Alberto A; Schabath, Matthew B; Reuther, Gary W; Dutil, Julie; Garcia, Miosotis; Ventosilla-Villanueva, Ronald; Vera-Valdivia, Luis; Yabar-Berrocal, Alejandro; Motta-Guerrero, Rodrigo; Santiago-Cardona, Pedro G; Muñoz-Antonia, Teresita; Cress, W Douglas

    2017-12-01

    To address the lack of genomic data from Hispanic/Latino (H/L) patients with lung cancer, the Latino Lung Cancer Registry was established to collect patient data and biospecimens from H/L patients. This retrospective observational study examined lung cancer tumor samples from 163 H/L patients, and tumor-derived DNA was subjected to targeted-exome sequencing (>1000 genes, including EGFR, KRAS, serine/threonine kinase 11 gene [STK11], and tumor protein p53 gene [TP53]) and ancestry analysis. Mutation frequencies in this H/L cohort were compared with those in a similar cohort of non-Hispanic white (NHW) patients and correlated with ancestry, sex, smoking status, and tumor histologic type. Of the adenocarcinomas in the H/L cohort (n = 120), 31% had EGFR mutations, versus 17% in the NHW control group (p < 0.001). KRAS (20% versus 38% [p = 0.002]) and STK11 (8% versus 16% [p = 0.065]) mutations occurred at lower frequency, and mutations in TP53 occurred at similar frequency (46% versus 40% [p = 0.355]) in H/L and NHW patients, respectively. Within the Hispanic cohort, ancestry influenced the rate of TP53 mutations (p = 0.009) and may have influenced the rate of EGFR, KRAS, and STK11 mutations. Driver mutations in H/L patients with lung adenocarcinoma differ in frequency from those in NHW patients associated with their indigenous American ancestry. The spectrum of driver mutations needs to be further assessed in the H/L population. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  1. Germline contamination and leakage in whole genome somatic single nucleotide variant detection.

    PubMed

    Sendorek, Dorota H; Caloian, Cristian; Ellrott, Kyle; Bare, J Christopher; Yamaguchi, Takafumi N; Ewing, Adam D; Houlahan, Kathleen E; Norman, Thea C; Margolin, Adam A; Stuart, Joshua M; Boutros, Paul C

    2018-01-31

    The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the world. However, concerns over patient re-identification from these data lead to questions about how tightly access should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However, somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called "germline leakage". The rate of germline leakage across different somatic variant detection pipelines is not well-understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs) predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. The median somatic SNV prediction set contained 4325 somatic SNVs and leaked one germline polymorphism. The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic SNV databases. The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further reduced, especially for cloud-sharing, using pre-filtering software.

  2. Spectrum of oncogenic driver mutations in lung adenocarcinomas from East Asian never smokers.

    PubMed

    Li, Chenguang; Fang, Rong; Sun, Yihua; Han, Xiangkun; Li, Fei; Gao, Bin; Iafrate, A John; Liu, Xin-Yuan; Pao, William; Chen, Haiquan; Ji, Hongbin

    2011-01-01

    We previously showed that 90% (47 of 52; 95% CI, 0.79 to 0.96) of lung adenocarcinomas from East Asian never-smokers harbored well-known oncogenic mutations in just four genes: EGFR, HER2, ALK, and KRAS. Here, we sought to extend these findings to more samples and identify driver alterations in tumors negative for these mutations. We have collected and analyzed 202 resected lung adenocarcinomas from never smokers seen at Fudan University Shanghai Cancer Center. Since mutations were mutually exclusive in the first 52 examined, we determined the status of EGFR, KRAS, HER2, ALK, and BRAF in stepwise fashion as previously described. Samples negative for mutations in these 5 genes were subsequently examined for known ROS1 fusions by RT-PCR and direct sequencing. 152 tumors (75.3%) harbored EGFR mutations, 12 (6%) had HER2 mutations, 10 (5%) had ALK fusions all involving EML4 as the 5' partner, 4 (2%) had KRAS mutations, and 2 (1%) harbored ROS1 fusions. No BRAF mutation were detected. The vast majority (176 of 202; 87.1%, 95% CI: 0.82 to 0.91) of lung adenocarcinomas from never smokers harbor mutant kinases sensitive to available TKIs. Interestingly, patients with EGFR mutant patients tend to be older than those without EGFR mutations (58.3 Vs 54.3, P = 0.016) and patient without any known oncogenic driver tend to be diagnosed at a younger age (52.3 Vs 57.9, P = 0.013). Collectively, these data indicate that the majority of never smokers with lung adenocarcinoma could benefit from treatment with a specific tyrosine kinase inhibitor.

  3. Spectrum of Oncogenic Driver Mutations in Lung Adenocarcinomas from East Asian Never Smokers

    PubMed Central

    Han, Xiangkun; Li, Fei; Gao, Bin; Iafrate, A. John; Liu, Xin-Yuan; Pao, William; Chen, Haiquan; Ji, Hongbin

    2011-01-01

    Purpose We previously showed that 90% (47 of 52; 95% CI, 0.79 to 0.96) of lung adenocarcinomas from East Asian never-smokers harbored well-known oncogenic mutations in just four genes: EGFR, HER2, ALK, and KRAS. Here, we sought to extend these findings to more samples and identify driver alterations in tumors negative for these mutations. Experimental Design We have collected and analyzed 202 resected lung adenocarcinomas from never smokers seen at Fudan University Shanghai Cancer Center. Since mutations were mutually exclusive in the first 52 examined, we determined the status of EGFR, KRAS, HER2, ALK, and BRAF in stepwise fashion as previously described. Samples negative for mutations in these 5 genes were subsequently examined for known ROS1 fusions by RT-PCR and direct sequencing. Results 152 tumors (75.3%) harbored EGFR mutations, 12 (6%) had HER2 mutations, 10 (5%) had ALK fusions all involving EML4 as the 5′ partner, 4 (2%) had KRAS mutations, and 2 (1%) harbored ROS1 fusions. No BRAF mutation were detected. Conclusion The vast majority (176 of 202; 87.1%, 95% CI: 0.82 to 0.91) of lung adenocarcinomas from never smokers harbor mutant kinases sensitive to available TKIs. Interestingly, patients with EGFR mutant patients tend to be older than those without EGFR mutations (58.3 Vs 54.3, P = 0.016) and patient without any known oncogenic driver tend to be diagnosed at a younger age (52.3 Vs 57.9, P = 0.013). Collectively, these data indicate that the majority of never smokers with lung adenocarcinoma could benefit from treatment with a specific tyrosine kinase inhibitor. PMID:22140546

  4. Acute myeloid leukemia-associated DNMT3A p.Arg882His mutation in a patient with Tatton-Brown-Rahman overgrowth syndrome as a constitutional mutation.

    PubMed

    Kosaki, Rika; Terashima, Hiroshi; Kubota, Masaya; Kosaki, Kenjiro

    2017-01-01

    DNA methylation plays a critical role in both embryonic development and tumorigenesis and is mediated through various DNA methyltransferases. Constitutional mutations in the de novo DNA methyltransferase DNMT3A cause a recently identified Tatton-Brown-Rahman overgrowth syndrome (TBRS). Somatically acquired mutations in DNMT3A are causally associated with acute myeloid leukemia (AML), and p.Arg882His represents the most prevalent hotspot. So far, no patients with TBRS have been reported to have subsequently developed AML. Here, we report a live birth and the survival of a female with the TBRS phenotype who had a heterozygous constitutional DNMT3A mutation at the AML somatic mutation hotspot p.Arg882His in her DNA from peripheral blood and buccal tissue. Her characteristic features at birth included hypotonia, narrow palpebral fissures, ventricular septal defect, umbilical hernia, sacral cyst, Chiari type I anomaly. At the age of 6 years, she exhibited overgrowth (> 3 SD) and round face and intellectual disability. This report represents the first documentation of the same variant (DNMT3A p.Arg882His) as both the constitutional mutation associated with TBRS and the somatic mutation hotspot of AML. The observation neither confirms nor denies the notion that mutations responsible for TBRS and those for AML might share the same mode of action. Larger data sets are required to determine whether TBRS patients with constitutional DNMT3A mutations are at an increased risk for AML. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Unique mutational profile associated with a loss of TDG expression in the rectal cancer of a patient with a constitutional PMS2 deficiency.

    PubMed

    Vasovcak, P; Krepelova, A; Menigatti, M; Puchmajerova, A; Skapa, P; Augustinakova, A; Amann, G; Wernstedt, A; Jiricny, J; Marra, G; Wimmer, K

    2012-07-01

    Cells with DNA repair defects have increased genomic instability and are more likely to acquire secondary mutations that bring about cellular transformation. We describe the frequency and spectrum of somatic mutations involving several tumor suppressor genes in the rectal carcinoma of a 13-year-old girl harboring biallelic, germline mutations in the DNA mismatch repair gene PMS2. Apart from microsatellite instability, the tumor DNA contained a number of C:G→T:A or G:C→A:T transitions in CpG dinucleotides, which often result through spontaneous deamination of cytosine or 5-methylcytosine. Four DNA glycosylases, UNG2, SMUG1, MBD4 and TDG, are involved in the repair of these deamination events. We identified a heterozygous missense mutation in TDG, which was associated with TDG protein loss in the tumor. The CpGs mutated in this patient's tumor are generally methylated in normal colonic mucosa. Thus, it is highly likely that loss of TDG contributed to the supermutator phenotype and that most of the point mutations were caused by deamination of 5-methylcytosine to thymine, which remained uncorrected owing to the TDG deficiency. This case provides the first in vivo evidence of the key role of TDG in protecting the human genome against the deleterious effects of 5-methylcytosine deamination. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Unique mutational profile associated with a loss of TDG expression in the rectal cancer of a patient with a constitutional PMS2 deficiency

    PubMed Central

    Vasovcak, P.; Krepelova, A.; Menigatti, M.; Puchmajerova, A.; Skapa, P.; Augustinakova, A.; Amann, G.; Wernstedt, A.; Jiricny, J.; Marra, G.; Wimmer, K.

    2012-01-01

    Cells with DNA repair defects have increased genomic instability and are more likely to acquire secondary mutations that bring about cellular transformation. We describe the frequency and spectrum of somatic mutations involving several tumor suppressor genes in the rectal carcinoma of a 13-year-old girl harboring biallelic, germline mutations in the DNA mismatch repair gene PMS2. Apart from microsatellite instability, the tumor DNA contained a number of C:G → T:A or G:C → A:T transitions in CpG dinucleotides, which often result through spontaneous deamination of cytosine or 5-methylcytosine. Four DNA glycosylases, UNG2, SMUG1, MBD4 and TDG, are involved in the repair of these deamination events. We identified a heterozygous missense mutation in TDG, which was associated with TDG protein loss in the tumor. The CpGs mutated in this patient's tumor are generally methylated in normal colonic mucosa. Thus, it is highly likely that loss of TDG contributed to the supermutator phenotype and that most of the point mutations were caused by deamination of 5-methylcytosine to thymine, which remained uncorrected owing to the TDG deficiency. This case provides the first in vivo evidence of the key role of TDG in protecting the human genome against the deleterious effects of 5-methylcytosine deamination. PMID:22608206

  7. Relevance of the immunoglobulin VH somatic mutation status in patients with chronic lymphocytic leukemia treated with fludarabine, cyclophosphamide, and rituximab (FCR) or related chemoimmunotherapy regimens.

    PubMed

    Lin, Katherine I; Tam, Constantine S; Keating, Michael J; Wierda, William G; O'Brien, Susan; Lerner, Susan; Coombes, Kevin R; Schlette, Ellen; Ferrajoli, Alessandra; Barron, Lynn L; Kipps, Thomas J; Rassenti, Laura; Faderl, Stefan; Kantarjian, Hagop; Abruzzo, Lynne V

    2009-04-02

    Although immunoglobulin V(H) mutation status (IgV(H) MS) is prognostic in patients with chronic lymphocytic leukemia (CLL) who are treated with alkylating agents or single-agent fludarabine, its significance in the era of chemoimmunotherapy is not known. We determined the IgV(H) somatic mutation status (MS) in 177 patients enrolled in a phase 2 study of fludarabine, cyclophosphamide, and rituximab (FCR) and in 127 patients treated with subsequent chemoimmunotherapy protocols. IgV(H) MS did not impact significantly on the complete remission (CR) rate of patients receiving FCR or related regimens. However, CR duration was significantly shorter in patients with CLL that used unmutated IgV(H) than those whose CLL used mutated IgV(H) (TTP 47% vs 82% at 6 years, P < .001). In a multivariate model considering all baseline characteristics, IgV(H) MS emerged as the only determinant of remission duration (hazard ratio 3.8, P < .001). Our results suggest that postremission interventions should be targeted toward patients with unmutated IgV(H) status.

  8. Pulmonary Neoplasms in Patients with Birt-Hogg-Dubé Syndrome: Histopathological Features and Genetic and Somatic Events.

    PubMed

    Furuya, Mitsuko; Tanaka, Reiko; Okudela, Koji; Nakamura, Satoko; Yoshioka, Hiromu; Tsuzuki, Toyonori; Shibuya, Ryo; Yatera, Kazuhiro; Shirasaki, Hiroki; Sudo, Yoshiko; Kimura, Naoko; Yamada, Kazuaki; Uematsu, Shugo; Kunimura, Toshiaki; Kato, Ikuma; Nakatani, Yukio

    2016-01-01

    Birt-Hogg-Dubé syndrome (BHD) is an inherited disorder caused by genetic mutations in the folliculin (FLCN) gene. Individuals with BHD have multiple pulmonary cysts and are at a high risk for developing renal cell carcinomas (RCCs). Currently, little information is available about whether pulmonary cysts are absolutely benign or if the lungs are at an increased risk for developing neoplasms. Herein, we describe 14 pulmonary neoplastic lesions in 7 patients with BHD. All patients were confirmed to have germline FLCN mutations. Neoplasm histologies included adenocarcinoma in situ (n = 2), minimally invasive adenocarcinoma (n = 1), papillary adenocarcinoma (n = 1), micropapillary adenocarcinoma (n = 1), atypical adenomatous hyperplasia (n = 8), and micronodular pneumocyte hyperplasia (MPH)-like lesion (n = 1). Five of the six adenocarcinoma/MPH-like lesions (83.3%) demonstrated a loss of heterozygosity (LOH) of FLCN. All of these lesions lacked mutant alleles and preserved wild-type alleles. Three invasive adenocarcinomas possessed additional somatic events: 2 had a somatic mutation in the epidermal growth factor receptor gene (EGFR) and another had a somatic mutation in KRAS. Immunohistochemical analysis revealed that most of the lesions were immunostained for phospho-mammalian target of rapamycin (p-mTOR) and phospho-S6. Collective data indicated that pulmonary neoplasms of peripheral adenocarcinomatous lineage in BHD patients frequently exhibit LOH of FLCN with mTOR pathway signaling. Additional driver gene mutations were detected only in invasive cases, suggesting that FLCN LOH may be an underlying abnormality that cooperates with major driver gene mutations in the progression of pulmonary adenocarcinomas in BHD patients.

  9. Ras mutations are rare in solitary cold and toxic thyroid nodules.

    PubMed

    Krohn, K; Reske, A; Ackermann, F; Müller, A; Paschke, R

    2001-08-01

    Activation of ras proto-oncogenes as a result of point mutations is detectable in a significant percentage of most types of tumour. Similar to neoplasms of other organs, mutations of all three ras genes can be found in thyroid tumours. H-, K- and N-ras mutations have been detected in up to 20% of follicular adenomas and adenomatous nodules which were not functionally characterized. This raises the question as to whether ras mutations are specific for hypofunctional nodules and TSH receptor mutations for hyperfunctioning nodules. To investigate ras and TSH receptor mutations with respect to functional differentiation we studied 41 scintigraphically cold nodules and 47 toxic thyroid nodules. To address the likelihood of a somatic mutation we also studied the clonal origin of these tumours. Genomic DNA was extracted from nodular and surrounding tissue. Mutational hot spots in exons 1 and 2 of the H- and K-ras gene were PCR amplified and sequenced using big dye terminator chemistry. Denaturing gradient gel electrophoresis (DGGE) was used to verify sequencing results for the H-ras gene and to analyse the N-ras gene because its greater sensitivity in detecting somatic mutations. Clonality of nodular thyroid tissue was evaluated using X-Chromosome inactivation based on PCR amplification of the human androgen receptor locus. Monoclonal origin was detectable in 14 of 23 informative samples from cold thyroid nodules. In toxic thyroid nodules the frequency of clonal tissue was 20 in 30 informative cases. Only one point mutation could be found in the N-ras gene codon 61 (Gly to Arg) in a cold adenomatous nodule which was monoclonal. In toxic thyroid nodules no ras mutation was detectable. Our study suggests that ras mutations are rare in solitary cold and toxic thyroid nodules and that the frequent monoclonal origin of these tumours implies somatic mutations in genes other than H-, K- and N-ras.

  10. Determination of EGFR and KRAS mutational status in Greek non-small-cell lung cancer patients

    PubMed Central

    PAPADOPOULOU, EIRINI; TSOULOS, NIKOLAOS; TSIRIGOTI, ANGELIKI; APESSOS, ANGELA; AGIANNITOPOULOS, KONSTANTINOS; METAXA-MARIATOU, VASILIKI; ZAROGOULIDIS, KONSTANTINOS; ZAROGOULIDIS, PAVLOS; KASARAKIS, DIMITRIOS; KAKOLYRIS, STYLIANOS; DAHABREH, JUBRAIL; VLASTOS, FOTIS; ZOUBLIOS, CHARALAMPOS; RAPTI, AGGELIKI; PAPAGEORGIOU, NIKI GEORGATOU; VELDEKIS, DIMITRIOS; GAGA, MINA; ARAVANTINOS, GERASIMOS; KARAVASILIS, VASILEIOS; KARAGIANNIDIS, NAPOLEON; NASIOULAS, GEORGE

    2015-01-01

    It has been reported that certain patients with non-small-cell lung cancer (NSCLC) that harbor activating somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene may be effectively treated using targeted therapy. The use of EGFR inhibitors in patient therapy has been demonstrated to improve response and survival rates; therefore, it was suggested that clinical screening for EGFR mutations should be performed for all patients. Numerous clinicopathological factors have been associated with EGFR and Kirsten-rat sarcoma oncogene homolog (KRAS) mutational status including gender, smoking history and histology. In addition, it was reported that EGFR mutation frequency in NSCLC patients was ethnicity-dependent, with an incidence rate of ~30% in Asian populations and ~15% in Caucasian populations. However, limited data has been reported on intra-ethnic differences throughout Europe. The present study aimed to investigate the frequency and spectrum of EGFR mutations in 1,472 Greek NSCLC patients. In addition, KRAS mutation analysis was performed in patients with known smoking history in order to determine the correlation of type and mutation frequency with smoking. High-resolution melting curve (HRM) analysis followed by Sanger sequencing was used to identify mutations in exons 18–21 of the EGFR gene and in exon 2 of the KRAS gene. A sensitive next-generation sequencing (NGS) technology was also employed to classify samples with equivocal results. The use of sensitive mutation detection techniques in a large study population of Greek NSCLC patients in routine diagnostic practice revealed an overall EGFR mutation frequency of 15.83%. This mutation frequency was comparable to that previously reported in other European populations. Of note, there was a 99.8% concordance between the HRM method and Sanger sequencing. NGS was found to be the most sensitive method. In addition, female non-smokers demonstrated a high prevalence of

  11. A human systemic lupus erythematosus-related anti-cardiolipin/single-stranded DNA autoantibody is encoded by a somatically mutated variant of the developmentally restricted 51P1 V[sub H] gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Es, J.H.; Aanstoot, H.; Gmelig-Meyling, F.H.J.

    1992-09-15

    The authors report the Ig H and L chain V region sequences from the cDNAs encoding a monoclonal human IgG anti-cardiolipin/ssDNA autoantibody (R149) derived from a patient with active SLE. Comparison with the germ-line V-gene repertoire of this patient revealed that R149 likely arose as a consequence of an Ag-driven selection process. The Ag-binding portions of the V regions were characterized by a high number of arginine residues, a property that has been associated with anti-dsDNA autoantibodies from lupus-prone mice and patients with SLE. The V[sub H] gene encoding autoantibody R149 was a somatically mutated variant of the 51P1 genemore » segment, which is frequently associated with the restricted fetal B cell repertoire, malignant CD5 B cells, and natural antibodies. These data suggest that in SLE patients a common antigenic stimulus may evoke anti-DNA and anti-cardiolipin autoantibodies and provide further evidence that a small set of developmentally restricted V[sub H] genes can give rise to disease-associated autoantibodies through Ag-selected somatic mutations. 42 refs., 5 figs.« less

  12. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention.

    PubMed

    Tomasetti, Cristian; Li, Lu; Vogelstein, Bert

    2017-03-24

    Cancers are caused by mutations that may be inherited, induced by environmental factors, or result from DNA replication errors (R). We studied the relationship between the number of normal stem cell divisions and the risk of 17 cancer types in 69 countries throughout the world. The data revealed a strong correlation (median = 0.80) between cancer incidence and normal stem cell divisions in all countries, regardless of their environment. The major role of R mutations in cancer etiology was supported by an independent approach, based solely on cancer genome sequencing and epidemiological data, which suggested that R mutations are responsible for two-thirds of the mutations in human cancers. All of these results are consistent with epidemiological estimates of the fraction of cancers that can be prevented by changes in the environment. Moreover, they accentuate the importance of early detection and intervention to reduce deaths from the many cancers arising from unavoidable R mutations. Copyright © 2017, American Association for the Advancement of Science.

  13. Construction of a combinatorial pipeline using two somatic variant  calling  methods  for whole exome sequence data of gastric cancer.

    PubMed

    Kohmoto, Tomohiro; Masuda, Kiyoshi; Naruto, Takuya; Tange, Shoichiro; Shoda, Katsutoshi; Hamada, Junichi; Saito, Masako; Ichikawa, Daisuke; Tajima, Atsushi; Otsuji, Eigo; Imoto, Issei

    2017-01-01

    High-throughput next-generation sequencing is a powerful tool to identify the genotypic landscapes of somatic variants and therapeutic targets in various cancers including gastric cancer, forming the basis for personalized medicine in the clinical setting. Although the advent of many computational algorithms leads to higher accuracy in somatic variant calling, no standard method exists due to the limitations of each method. Here, we constructed a new pipeline. We combined two different somatic variant callers with different algorithms, Strelka and VarScan 2, and evaluated performance using whole exome sequencing data obtained from 19 Japanese cases with gastric cancer (GC); then, we characterized these tumors based on identified driver molecular alterations. More single nucleotide variants (SNVs) and small insertions/deletions were detected by Strelka and VarScan 2, respectively. SNVs detected by both tools showed higher accuracy for estimating somatic variants compared with those detected by only one of the two tools and accurately showed the mutation signature and mutations of driver genes reported for GC. Our combinatorial pipeline may have an advantage in detection of somatic mutations in GC and may be useful for further genomic characterization of Japanese patients with GC to improve the efficacy of GC treatments. J. Med. Invest. 64: 233-240, August, 2017.

  14. The clonal and mutational evolution spectrum of primary triple-negative breast cancers.

    PubMed

    Shah, Sohrab P; Roth, Andrew; Goya, Rodrigo; Oloumi, Arusha; Ha, Gavin; Zhao, Yongjun; Turashvili, Gulisa; Ding, Jiarui; Tse, Kane; Haffari, Gholamreza; Bashashati, Ali; Prentice, Leah M; Khattra, Jaswinder; Burleigh, Angela; Yap, Damian; Bernard, Virginie; McPherson, Andrew; Shumansky, Karey; Crisan, Anamaria; Giuliany, Ryan; Heravi-Moussavi, Alireza; Rosner, Jamie; Lai, Daniel; Birol, Inanc; Varhol, Richard; Tam, Angela; Dhalla, Noreen; Zeng, Thomas; Ma, Kevin; Chan, Simon K; Griffith, Malachi; Moradian, Annie; Cheng, S-W Grace; Morin, Gregg B; Watson, Peter; Gelmon, Karen; Chia, Stephen; Chin, Suet-Feung; Curtis, Christina; Rueda, Oscar M; Pharoah, Paul D; Damaraju, Sambasivarao; Mackey, John; Hoon, Kelly; Harkins, Timothy; Tadigotla, Vasisht; Sigaroudinia, Mahvash; Gascard, Philippe; Tlsty, Thea; Costello, Joseph F; Meyer, Irmtraud M; Eaves, Connie J; Wasserman, Wyeth W; Jones, Steven; Huntsman, David; Hirst, Martin; Caldas, Carlos; Marra, Marco A; Aparicio, Samuel

    2012-04-04

    Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time-to our knowledge-in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.

  15. Targeting mutant fibroblast growth factor receptors in cancer.

    PubMed

    Greulich, Heidi; Pollock, Pamela M

    2011-05-01

    Fibroblast growth factor receptors (FGFRs) play diverse roles in the control of cell proliferation, cell differentiation, angiogenesis and development. Activating the mutations of FGFRs in the germline has long been known to cause a variety of skeletal developmental disorders, but it is only recently that a similar spectrum of somatic FGFR mutations has been associated with human cancers. Many of these somatic mutations are gain-of-function and oncogenic and create dependencies in tumor cell lines harboring such mutations. A combination of knockdown studies and pharmaceutical inhibition in preclinical models has further substantiated genomically altered FGFR as a therapeutic target in cancer, and the oncology community is responding with clinical trials evaluating multikinase inhibitors with anti-FGFR activity and a new generation of specific pan-FGFR inhibitors. Copyright © 2011. Published by Elsevier Ltd.

  16. Finding cancer driver mutations in the era of big data research.

    PubMed

    Poulos, Rebecca C; Wong, Jason W H

    2018-04-02

    In the last decade, the costs of genome sequencing have decreased considerably. The commencement of large-scale cancer sequencing projects has enabled cancer genomics to join the big data revolution. One of the challenges still facing cancer genomics research is determining which are the driver mutations in an individual cancer, as these contribute only a small subset of the overall mutation profile of a tumour. Focusing primarily on somatic single nucleotide mutations in this review, we consider both coding and non-coding driver mutations, and discuss how such mutations might be identified from cancer sequencing datasets. We describe some of the tools and database that are available for the annotation of somatic variants and the identification of cancer driver genes. We also address the use of genome-wide variation in mutation load to establish background mutation rates from which to identify driver mutations under positive selection. Finally, we describe the ways in which mutational signatures can act as clues for the identification of cancer drivers, as these mutations may cause, or arise from, certain mutational processes. By defining the molecular changes responsible for driving cancer development, new cancer treatment strategies may be developed or novel preventative measures proposed.

  17. Cryopyrin-associated Periodic Syndromes in Italian Patients: Evaluation of the Rate of Somatic NLRP3 Mosaicism and Phenotypic Characterization.

    PubMed

    Lasigliè, Denise; Mensa-Vilaro, Anna; Ferrera, Denise; Caorsi, Roberta; Penco, Federica; Santamaria, Giuseppe; Di Duca, Marco; Amico, Giulia; Nakagawa, Kenji; Antonini, Francesca; Tommasini, Alberto; Consolini, Rita; Insalaco, Antonella; Cattalini, Marco; Obici, Laura; Gallizzi, Romina; Santarelli, Francesca; Del Zotto, Genny; Severino, Mariasavina; Rubartelli, Anna; Ravazzolo, Roberto; Martini, Alberto; Ceccherini, Isabella; Nishikomori, Ryuta; Gattorno, Marco; Arostegui, Juan I; Borghini, Silvia

    2017-11-01

    To evaluate the rate of somatic NLRP3 mosaicism in an Italian cohort of mutation-negative patients with cryopyrin-associated periodic syndrome (CAPS). The study enrolled 14 patients with a clinical phenotype consistent with CAPS in whom Sanger sequencing of the NLRP3 gene yielded negative results. Patients' DNA were subjected to amplicon-based NLRP3 deep sequencing. Low-level somatic NLRP3 mosaicism has been detected in 4 patients, 3 affected with chronic infantile neurological cutaneous and articular syndrome and 1 with Muckle-Wells syndrome. Identified nucleotide substitutions encode for 4 different amino acid exchanges, with 2 of them being novel (p.Y563C and p.G564S). In vitro functional studies confirmed the deleterious behavior of the 4 somatic NLRP3 mutations. Among the different neurological manifestations detected, 1 patient displayed mild loss of white matter volume on brain magnetic resonance imaging. The allele frequency of somatic NLRP3 mutations occurs generally under 15%, considered the threshold of detectability using the Sanger method of DNA sequencing. Consequently, routine genetic diagnostic of CAPS should be currently performed by next-generation techniques ensuring high coverage to identify also low-level mosaicism, whose actual frequency is yet unknown and probably underestimated.

  18. Recurrent gain-of-function USP8 mutations in Cushing's disease

    PubMed Central

    Ma, Zeng-Yi; Song, Zhi-Jian; Chen, Jian-Hua; Wang, Yong-Fei; Li, Shi-Qi; Zhou, Liang-Fu; Mao, Ying; Li, Yi-Ming; Hu, Rong-Gui; Zhang, Zhao-Yun; Ye, Hong-Ying; Shen, Ming; Shou, Xue-Fei; Li, Zhi-Qiang; Peng, Hong; Wang, Qing-Zhong; Zhou, Dai-Zhan; Qin, Xiao-Lan; Ji, Jue; Zheng, Jie; Chen, Hong; Wang, Yin; Geng, Dao-Ying; Tang, Wei-Jun; Fu, Chao-Wei; Shi, Zhi-Feng; Zhang, Yi-Chao; Ye, Zhao; He, Wen-Qiang; Zhang, Qi-Lin; Tang, Qi-Sheng; Xie, Rong; Shen, Jia-Wei; Wen, Zu-Jia; Zhou, Juan; Wang, Tao; Huang, Shan; Qiu, Hui-Jia; Qiao, Ni-Dan; Zhang, Yi; Pan, Li; Bao, Wei-Min; Liu, Ying-Chao; Huang, Chuan-Xin; Shi, Yong-Yong; Zhao, Yao

    2015-01-01

    Cushing's disease, also known as adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (PAs) that cause excess cortisol production, accounts for up to 85% of corticotrophin-dependent Cushing's syndrome cases. However, the genetic alterations in this disease are unclear. Here, we performed whole-exome sequencing of DNA derived from 12 ACTH-secreting PAs and matched blood samples, which revealed three types of somatic mutations in a candidate gene, USP8 (encoding ubiquitin-specific protease 8), exclusively in exon 14 in 8 of 12 ACTH-secreting PAs. We further evaluated somatic USP8 mutations in additional 258 PAs by Sanger sequencing. Targeted sequencing further identified a total of 17 types of USP8 variants in 67 of 108 ACTH-secreting PAs (62.04%). However, none of these mutations was detected in other types of PAs (n = 150). These mutations aggregate within the 14-3-3 binding motif of USP8 and disrupt the interaction between USP8 and 14-3-3 protein, resulting in an elevated capacity to protect EGFR from lysosomal degradation. Accordingly, PAs with mutated USP8 display a higher incidence of EGFR expression, elevated EGFR protein abundance and mRNA expression levels of POMC, which encodes the precursor of ACTH. PAs with mutated USP8 are significantly smaller in size and have higher ACTH production than wild-type PAs. In surgically resected primary USP8-mutated tumor cells, USP8 knockdown or blocking EGFR effectively attenuates ACTH secretion. Taken together, somatic gain-of-function USP8 mutations are common and contribute to ACTH overproduction in Cushing's disease. Inhibition of USP8 or EGFR is promising for treating USP8-mutated corticotrophin adenoma. Our study highlights the potentially functional mutated gene in Cushing's disease and provides insights into the therapeutics of this disease. PMID:25675982

  19. Somatic profiling of the epidermal growth factor receptor pathway in tumours from patients with advanced colorectal cancer, treated with chemotherapy ± cetuximab

    PubMed Central

    Smith, Christopher G.; Fisher, David; Claes, Bart; Maughan, Timothy S.; Idziaszczyk, Shelley; Peuteman, Gilian; Harris, Rebecca; James, Michelle D.; Meade, Angela; Jasani, Bharat; Adams, Richard A.; Kenny, Sarah; Kaplan, Richard; Lambrechts, Diether; Cheadle, Jeremy P.

    2013-01-01

    Purpose To study the somatic molecular profile of the epidermal growth factor receptor (EGFR) pathway in advanced CRC (aCRC), its relationship to prognosis, the site of the primary and metastases, and response to cetuximab. Experimental Design We used Sequenom and Pyrosequencing for high-throughput somatic profiling the EGFR pathway in 1,976 tumours from patients with aCRC from the COIN trial (oxaliplatin and fluoropyrimidine chemotherapy ±cetuximab). Correlations between mutations, clinico-pathological, response and survival data were carried out. Results Sequenom and Pyrosequencing had 99.0% (9961/10063) genotype concordance. We identified thirteen different KRAS mutations in 42.3% of aCRCs, two BRAF mutations in 9.0%, four NRAS mutations in 3.6% and five PIK3CA mutations in 12.7%. 4.2% of aCRCs had microsatellite instability (MSI). KRAS and PIK3CA exon 9, but not exon 20, mutations co-occurred (P=8.9×10−4) as did MSI and BRAF mutations (P=5.3×10−10). KRAS mutations were associated with right colon cancers (P=5.2×10−5) and BRAF mutations with right (P=7.2×10−5) and transverse colon (P=9.8×10−6) cancers. KRAS mutations were associated with lung-only metastases (P=2.3×10−4), BRAF mutations with peritoneal (P=9.2×10−4) and nodal-only (P=3.7×10−5) metastases, and MSI (BRAFWT) with nodal-only metastases (P=2.9×10−4). MSI (BRAFWT) was associated with worse survival (HR=1.89, 95% CI 1.30-2.76, P=8.5×10−4). No mutations, subsets of mutations, or MSI-status were associated with response to cetuximab. Conclusions Our data support a functional co-operation between KRAS and PIK3CA in colorectal tumourigenesis and link somatic profiles to the sites of metastases. MSI was associated with poor prognosis in advanced disease, and no individual somatic profile was associated with response to cetuximab in COIN. PMID:23741067

  20. Prognostic role of tumor PIK3CA mutation in colorectal cancer: a systematic review and meta-analysis.

    PubMed

    Mei, Z B; Duan, C Y; Li, C B; Cui, L; Ogino, S

    2016-10-01

    Somatic mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT pathway play a vital role in carcinogenesis. Approximately 15%-20% of colorectal cancers (CRCs) harbor activating mutations in PIK3CA, making it one of the most frequently mutated genes in CRC. We thus carried out a systematic review and meta-analysis investigating the prognostic significance of PIK3CA mutations in CRC. Electronic databases were searched from inception through May 2015. We extracted the study characteristics and prognostic data of each eligible study. The hazard ratio (HR) and 95% confidence interval (CI) were derived and pooled using the random-effects Mantel-Haenszel model. Twenty-eight studies enrolling 12 747 patients were eligible for inclusion. Data on overall survival (OS) and progression-free survival (PFS) were available from 19 and 10 studies, respectively. Comparing PIK3CA-mutated CRC patients with PIK3CA-wild-type CRC patients, the summary HRs for OS and PFS were 0.96 (95% CI 0.83-1.12) and 1.20 (95% CI 0.98-1.46), respectively. The trim-and-fill, Copas model and subgroup analyses stratified by the study characteristics confirmed the robustness of the results. Five studies reported the CRC prognosis for PIK3CA mutations in exons 9 and 20 separately; neither exon 9 mutation nor exon 20 mutation in PIK3CA was significantly associated with patient survival. Our findings suggest that PIK3CA mutation has the neutral prognostic effects on CRC OS and PFS. Evidence was accumulating for the establishment of CRC survival between PIK3CA mutations and patient-specific clinical or molecular profiles. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. A novel molecular diagnostics platform for somatic and germline precision oncology.

    PubMed

    Cabanillas, Rubén; Diñeiro, Marta; Castillo, David; Pruneda, Patricia C; Penas, Cristina; Cifuentes, Guadalupe A; de Vicente, Álvaro; Durán, Noelia S; Álvarez, Rebeca; Ordóñez, Gonzalo R; Cadiñanos, Juan

    2017-07-01

    Next-generation sequencing (NGS) opens new options in clinical oncology, from therapy selection to genetic counseling. However, realization of this potential not only requires succeeding in the bioinformatics and interpretation of the results, but also in their integration into the clinical practice. We have developed a novel NGS diagnostic platform aimed at detecting (1) somatic genomic alterations associated with the response to approved targeted cancer therapies and (2) germline mutations predisposing to hereditary malignancies. Next-generation sequencing libraries enriched in the exons of 215 cancer genes (97 for therapy selection and 148 for predisposition, with 30 informative for both applications), as well as selected introns from 17 genes involved in drug-related rearrangements, were prepared from 39 tumors (paraffin-embedded tissues/cytologies), 36 germline samples (blood) and 10 cell lines using hybrid capture. Analysis of NGS results was performed with specifically developed bioinformatics pipelines. The platform detects single-nucleotide variants (SNVs) and insertions/deletions (indels) with sensitivity and specificity >99.5% (allelic frequency ≥0.1), as well as copy-number variants (CNVs) and rearrangements. Somatic testing identified tailored approved targeted drugs in 35/39 tumors (89.74%), showing a diagnostic yield comparable to that of leading commercial platforms. A somatic EGFR p.E746_S752delinsA mutation in a mediastinal metastasis from a breast cancer prompted its anatomopathologic reassessment, its definite reclassification as a lung cancer and its treatment with gefitinib (partial response sustained for 15 months). Testing of 36 germline samples identified two pathogenic mutations (in CDKN2A and BRCA2 ). We propose a strategy for interpretation and reporting of results adaptable to the aim of the request, the availability of tumor and/or normal samples and the scope of the informed consent. With an adequate methodology, it is possible to

  2. Recurrent SOX9 deletion campomelic dysplasia due to somatic mosaicism in the father.

    PubMed

    Smyk, M; Obersztyn, E; Nowakowska, B; Bocian, E; Cheung, S W; Mazurczak, T; Stankiewicz, P

    2007-04-15

    Haploinsufficiency of SOX9, a master gene in chondrogenesis and testis development, leads to the semi-lethal skeletal malformation syndrome campomelic dysplasia (CD), with or without XY sex reversal. We report on two children with CD and a phenotypically normal father, a carrier of a somatic mosaic SOX9 deletion. This is the first report of a mosaic deletion of SOX9; few familial CD cases with germline and somatic mutation mosaicism have been described. Our findings confirm the utility of aCGH and indicate that for a more accurate estimate of the recurrence risk for a completely penetrant autosomal dominant disorder, parental somatic mosaicism should be considered in healthy parents. Copyright 2007 Wiley-Liss, Inc.

  3. Mutational landscape of yeast mutator strains.

    PubMed

    Serero, Alexandre; Jubin, Claire; Loeillet, Sophie; Legoix-Né, Patricia; Nicolas, Alain G

    2014-02-04

    The acquisition of mutations is relevant to every aspect of genetics, including cancer and evolution of species on Darwinian selection. Genome variations arise from rare stochastic imperfections of cellular metabolism and deficiencies in maintenance genes. Here, we established the genome-wide spectrum of mutations that accumulate in a WT and in nine Saccharomyces cerevisiae mutator strains deficient for distinct genome maintenance processes: pol32Δ and rad27Δ (replication), msh2Δ (mismatch repair), tsa1Δ (oxidative stress), mre11Δ (recombination), mec1Δ tel1Δ (DNA damage/S-phase checkpoints), pif1Δ (maintenance of mitochondrial genome and telomere length), cac1Δ cac3Δ (nucleosome deposition), and clb5Δ (cell cycle progression). This study reveals the diversity, complexity, and ultimate unique nature of each mutational spectrum, composed of punctual mutations, chromosomal structural variations, and/or aneuploidies. The mutations produced in clb5Δ/CCNB1, mec1Δ/ATR, tel1Δ/ATM, and rad27Δ/FEN1 strains extensively reshape the genome, following a trajectory dependent on previous events. It comprises the transmission of unstable genomes that lead to colony mosaicisms. This comprehensive analytical approach of mutator defects provides a model to understand how genome variations might accumulate during clonal evolution of somatic cell populations, including tumor cells.

  4. Screening for somatic mutations of the neurofibromatosis genes in nervous system and other solid tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangaratnam, S.; Narod, S.; Ruttledge, M.

    Von Recklinghausen neurofibromatosis (NF1) and neurofibromatosis type 2 (NF2) are autosomal dominant inherited disorders which predispose carriers to various benign and malignant tumors. Both genes are thought to act as tumor suppressors with inactivation of both alleles resulting in abnormal cell growth. By inference from other hereditary cancer syndromes, it has been hypothesized that somatic mutation at the NF1 and NF2 loci is involved in the development of sporadic tumors of the types found with increased prevalence in these disorders. In addition to other malignancies, individuals with NF1 are at increased risk to develop astrocytomas and rhabdomyosarcomas. We have thereforemore » screened 40 astrocytomas for LOH using three NF1-derived cDNA probes, and have found no abnormalities. Single-strand conformation polymorphism (SSCP) analysis of exons of the NF1 GAP-related domain has also failed to show any variants in a total of 70 astrocytomas and 14 rhabdomyosarcomas (7 each of embryonal and alveolar types). LOH of chromosome 22 markers is known to occur in meningioma, malignant melanoma, breast cancer, and ependymoma. SSCP of all 17 exons of the NF2 gene in 27 melanoma cell lines, 42 breast cancers, and 27 pendymomas revealed no alterations. In a screen of 151 menigiomas, 26 new variants have been found, bringing our total to 50 variants in this sample. These represent inactivating mutations (frameshift, splice-site, and nonsense), determined by direct sequencing. Since the majority of these changes occur in tumors previously shown to have LOH at chromosome 22 markers flanking NF2, our results support a tumor sequence role for this gene in meningiomas. In addition, given that 40% of our tumors do not show LOH over this region, we propose that other genes are involved in the development of this latter subset of meningiomas.« less

  5. Increased co-expression of genes harboring the damaging de novo mutations in Chinese schizophrenic patients during prenatal development.

    PubMed

    Wang, Qiang; Li, Miaoxin; Yang, Zhenxing; Hu, Xun; Wu, Hei-Man; Ni, Peiyan; Ren, Hongyan; Deng, Wei; Li, Mingli; Ma, Xiaohong; Guo, Wanjun; Zhao, Liansheng; Wang, Yingcheng; Xiang, Bo; Lei, Wei; Sham, Pak C; Li, Tao

    2015-12-15

    Schizophrenia is a heritable, heterogeneous common psychiatric disorder. In this study, we evaluated the hypothesis that de novo variants (DNVs) contribute to the pathogenesis of schizophrenia. We performed exome sequencing in Chinese patients (N = 45) with schizophrenia and their unaffected parents (N = 90). Forty genes were found to contain DNVs. These genes had enriched transcriptional co-expression profile in prenatal frontal cortex (Bonferroni corrected p < 9.1 × 10(-3)), and in prenatal temporal and parietal regions (Bonferroni corrected p < 0.03). Also, four prenatal anatomical subregions (VCF, MFC, OFC and ITC) have shown significant enrichment of connectedness in co-expression networks. Moreover, four genes (LRP1, MACF1, DICER1 and ABCA2) harboring the damaging de novo mutations are strongly prioritized as susceptibility genes by multiple evidences. Our findings in Chinese schizophrenic patients indicate the pathogenic role of DNVs, supporting the hypothesis that schizophrenia is a neurodevelopmental disease.

  6. Increased co-expression of genes harboring the damaging de novo mutations in Chinese schizophrenic patients during prenatal development

    PubMed Central

    Wang, Qiang; Li, Miaoxin; Yang, Zhenxing; Hu, Xun; Wu, Hei-Man; Ni, Peiyan; Ren, Hongyan; Deng, Wei; Li, Mingli; Ma, Xiaohong; Guo, Wanjun; Zhao, Liansheng; Wang, Yingcheng; Xiang, Bo; Lei, Wei; Sham, Pak C; Li, Tao

    2015-01-01

    Schizophrenia is a heritable, heterogeneous common psychiatric disorder. In this study, we evaluated the hypothesis that de novo variants (DNVs) contribute to the pathogenesis of schizophrenia. We performed exome sequencing in Chinese patients (N = 45) with schizophrenia and their unaffected parents (N = 90). Forty genes were found to contain DNVs. These genes had enriched transcriptional co-expression profile in prenatal frontal cortex (Bonferroni corrected p < 9.1 × 10−3), and in prenatal temporal and parietal regions (Bonferroni corrected p < 0.03). Also, four prenatal anatomical subregions (VCF, MFC, OFC and ITC) have shown significant enrichment of connectedness in co-expression networks. Moreover, four genes (LRP1, MACF1, DICER1 and ABCA2) harboring the damaging de novo mutations are strongly prioritized as susceptibility genes by multiple evidences. Our findings in Chinese schizophrenic patients indicate the pathogenic role of DNVs, supporting the hypothesis that schizophrenia is a neurodevelopmental disease. PMID:26666178

  7. Neurofibromin Deficiency-Associated Transcriptional Dysregulation Suggests a Novel Therapy for Tibial Pseudoarthrosis in NF1

    PubMed Central

    Paria, Nandina; Cho, Tae-Joon; Choi, In Ho; Kamiya, Nobuhiro; Kayembe, Kay; Mao, Rong; Margraf, Rebecca L.; Obermosser, Gerlinde; Oxendine, Ila; Sant, David W.; Song, Mi Hyun; Stevenson, David A.; Viskochil, David H.; Wise, Carol A.; Kim, Harry K.W.; Rios, Jonathan J

    2014-01-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in NF1. Among the earliest manifestations is tibial pseudoarthrosis and persistent nonunion after fracture. To further understand the pathogenesis of pseudoarthrosis and the underlying bone remodeling defect, pseudoarthrosis tissue and cells cultured from surgically resected pseudoarthrosis tissue from NF1 individuals were analyzed using whole-exome and whole-transcriptome sequencing as well as genomewide microarray analysis. Genomewide analysis identified multiple genetic mechanisms resulting in somatic bi-allelic NF1 inactivation; no other genes with recurring somatic mutations were identified. Gene expression profiling identified dysregulated pathways associated with neurofibromin deficiency, including phosphoinosital-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways. Unlike aggressive NF1-associated malignancies, tibial pseudoarthrosis tissue does not harbor a high frequency of somatic mutations in oncogenes or other tumor-suppressor genes, such as p53. However, gene expression profiling indicates pseudoarthrosis tissue has a tumor-promoting transcriptional pattern, despite lacking tumorigenic somatic mutations. Significant over-expression of specific cancer-associated genes in pseudoarthrosis highlights a potential for receptor tyrosine kinase inhibitors to target neurofibromin-deficient pseudoarthrosis and promote proper bone remodeling and fracture healing. PMID:24932921

  8. Clinical features of Japanese polycythemia vera and essential thrombocythemia patients harboring CALR, JAK2V617F, JAK2Ex12del, and MPLW515L/K mutations.

    PubMed

    Okabe, Masahiro; Yamaguchi, Hiroki; Usuki, Kensuke; Kobayashi, Yutaka; Kawata, Eri; Kuroda, Junya; Kimura, Shinya; Tajika, Kenji; Gomi, Seiji; Arima, Nobuyoshi; Mori, Sinichiro; Ito, Shigeki; Koizumi, Masayuki; Ito, Yoshikazu; Wakita, Satoshi; Arai, Kunihito; Kitano, Tomoaki; Kosaka, Fumiko; Dan, Kazuo; Inokuchi, Koiti

    2016-01-01

    The risk of complication of polycythemia vera (PV) and essential thrombocythemia (ET) by thrombosis in Japanese patients is clearly lower than in western populations, suggesting that genetic background such as race may influence the clinical features. This study aimed to clarify the relationship between genetic mutations and haplotypes and clinical features in Japanese patients with PV and ET. Clinical features were assessed prospectively among 74 PV and 303 ET patients. There were no clinical differences, including JAK2V617F allele burden, between PV patients harboring the various genetic mutations. However, CALR mutation-positive ET patients had a significantly lower WBC count, Hb value, Ht value, and neutrophil alkaline phosphatase score (NAP), and significantly more platelets, relative to JAK2V617F-positive ET patients and ET patients with no mutations. Compared to normal controls, the frequency of the JAK246/1 haplotype was significantly higher among patients with JAK2V617F, JAK2Ex12del, or MPL mutations, whereas no significant difference was found among CALR mutation-positive patients. CALR mutation-positive patients had a lower incidence of thrombosis relative to JAK2V617F-positive patients. Our findings suggest that JAK2V617F-positive ET patients and CALR mutation-positive patients have different mechanisms of occurrence and clinical features of ET, suggesting the potential need for therapy stratification in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. HIV-1 replication in cell lines harboring INI1/hSNF5 mutations.

    PubMed

    Sorin, Masha; Yung, Eric; Wu, Xuhong; Kalpana, Ganjam V

    2006-08-31

    INI1/hSNF5 is a cellular protein that directly interacts with HIV-1 integrase (IN). It is specifically incorporated into HIV-1 virions. A dominant negative mutant derived from INI1 inhibits HIV-1 replication. Recent studies indicate that INI1 is associated with pre-integration and reverse transcription complexes that are formed upon viral entry into the target cells. INI1 also is a tumor suppressor, biallelically deleted/mutated in malignant rhabdoid tumors. We have utilized cell lines derived from the rhabdoid tumors, MON and STA-WT1, that harbor either null or truncating mutations of INI1 respectively, to assess the effect of INI1 on HIV-1 replication. We found that while HIV-1 virions produced in 293T cells efficiently transduced MON and STA-WT1 cells, HIV-1 particle production was severely reduced in both of these cells. Reintroduction of INI1 into MON and STA-WT1 significantly enhanced the particle production in both cell lines. HIV-1 particles produced in MON cells were reduced for infectivity, while those produced in STA-WT1 were not. Further analysis indicated the presence of INI1 in those virions produced from STA-WT1 but not from those produced from MON cells. HIV-1 produced in MON cells were defective for synthesis of early and late reverse transcription products in the target cells. Furthermore, virions produced in MON cells were defective for exogenous reverse transcriptase activity carried out using exogenous template, primer and substrate. Our results suggest that INI1-deficient cells exhibit reduced particle production that can be partly enhanced by re-introduction of INI1. Infectivity of HIV-1 produced in some but not all INI1 defective cells, is affected and this defect may correlate to the lack of INI1 and/or some other proteins in these virions. The block in early events of virion produced from MON cells appears to be at the stage of reverse transcription. These studies suggest that presence of INI1 or some other host factor in virions and

  10. Evaluation of genotoxic and antigenotoxic effects of boron by the somatic mutation and recombination test (SMART) on Drosophila.

    PubMed

    Sarıkaya, Rabia; Erciyas, Kamile; Kara, Muhammed Isa; Sezer, Ufuk; Erciyas, Ali Fuat; Ay, Sinan

    2016-10-01

    In this study, different concentrations of boron have been evaluated for genotoxic and antigenotoxic properties by using the somatic mutation and recombination test (SMART) on Drosophila melanogaster. The treatment concentrations were chosen to a pretest. Third-instar larvae trans-heterozygous for two genetic markers, multiple wing hair (mwh) and flare (flr3), were treated at different concentrations (0.1, 5, 10, 20, and 40 mg/mL) of boron. In addition to investigating antigenotoxic effects, the same boron concentrations were co-administered with 0.1 mM Ethyl Methane Sulfonate (EMS). Distilled water was used as a negative control; 0.1 mM of EMS was used as a positive control. For the chronic feeding study, small plastic vials were prepared with 1.5 g of dry Drosophila Instant Medium and 5 mL of the respective test solution. Hundreds of trans-heterozygous larvae were embedded into this medium. Feeding ended with pupation of the surviving larvae. After metamorphosis, all surviving flies were collected and stored in a 70% ethanol solution. Preparation and microscopic analyses of wing were made after the treatment. Then the observed mutations were classified according to size and type of mutation per wing. Results indicated that there is no significant genotoxic effect with all of the boron concentrations. In addition, the antigenotoxic activities of boron against EMS were tested. Results indicated that all boron concentrations (0.1, 5, 10, 20 and 40 mg/mL) were able to abolish the genotoxic effects induced by the EMS. It is suggested that the observed effects can be linked to the antioxidant properties of boron. Moreover, these in vivo results will contribute to the antigenotoxicity database of boron.

  11. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma.

    PubMed

    Beà, Sílvia; Valdés-Mas, Rafael; Navarro, Alba; Salaverria, Itziar; Martín-Garcia, David; Jares, Pedro; Giné, Eva; Pinyol, Magda; Royo, Cristina; Nadeu, Ferran; Conde, Laura; Juan, Manel; Clot, Guillem; Vizán, Pedro; Di Croce, Luciano; Puente, Diana A; López-Guerra, Mónica; Moros, Alexandra; Roue, Gael; Aymerich, Marta; Villamor, Neus; Colomo, Lluís; Martínez, Antonio; Valera, Alexandra; Martín-Subero, José I; Amador, Virginia; Hernández, Luis; Rozman, Maria; Enjuanes, Anna; Forcada, Pilar; Muntañola, Ana; Hartmann, Elena M; Calasanz, María J; Rosenwald, Andreas; Ott, German; Hernández-Rivas, Jesús M; Klapper, Wolfram; Siebert, Reiner; Wiestner, Adrian; Wilson, Wyndham H; Colomer, Dolors; López-Guillermo, Armando; López-Otín, Carlos; Puente, Xose S; Campo, Elías

    2013-11-05

    Mantle cell lymphoma (MCL) is an aggressive tumor, but a subset of patients may follow an indolent clinical course. To understand the mechanisms underlying this biological heterogeneity, we performed whole-genome and/or whole-exome sequencing on 29 MCL cases and their respective matched normal DNA, as well as 6 MCL cell lines. Recurrently mutated genes were investigated by targeted sequencing in an independent cohort of 172 MCL patients. We identified 25 significantly mutated genes, including known drivers such as ataxia-telangectasia mutated (ATM), cyclin D1 (CCND1), and the tumor suppressor TP53; mutated genes encoding the anti-apoptotic protein BIRC3 and Toll-like receptor 2 (TLR2); and the chromatin modifiers WHSC1, MLL2, and MEF2B. We also found NOTCH2 mutations as an alternative phenomenon to NOTCH1 mutations in aggressive tumors with a dismal prognosis. Analysis of two simultaneous or subsequent MCL samples by whole-genome/whole-exome (n = 8) or targeted (n = 19) sequencing revealed subclonal heterogeneity at diagnosis in samples from different topographic sites and modulation of the initial mutational profile at the progression of the disease. Some mutations were predominantly clonal or subclonal, indicating an early or late event in tumor evolution, respectively. Our study identifies molecular mechanisms contributing to MCL pathogenesis and offers potential targets for therapeutic intervention.

  12. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types

    PubMed Central

    Lin, Chen-Ching; Zhao, Junfei; Jia, Peilin; Li, Wen-Hsiung; Zhao, Zhongming

    2015-01-01

    Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics. PMID:26352260

  13. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types.

    PubMed

    Cheng, Feixiong; Liu, Chuang; Lin, Chen-Ching; Zhao, Junfei; Jia, Peilin; Li, Wen-Hsiung; Zhao, Zhongming

    2015-09-01

    Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics.

  14. First somatic mutation of E2F1 in a critical DNA binding residue discovered in well-differentiated papillary mesothelioma of the peritoneum

    PubMed Central

    2011-01-01

    Background Well differentiated papillary mesothelioma of the peritoneum (WDPMP) is a rare variant of epithelial mesothelioma of low malignancy potential, usually found in women with no history of asbestos exposure. In this study, we perform the first exome sequencing of WDPMP. Results WDPMP exome sequencing reveals the first somatic mutation of E2F1, R166H, to be identified in human cancer. The location is in the evolutionarily conserved DNA binding domain and computationally predicted to be mutated in the critical contact point between E2F1 and its DNA target. We show that the R166H mutation abrogates E2F1's DNA binding ability and is associated with reduced activation of E2F1 downstream target genes. Mutant E2F1 proteins are also observed in higher quantities when compared with wild-type E2F1 protein levels and the mutant protein's resistance to degradation was found to be the cause of its accumulation within mutant over-expressing cells. Cells over-expressing wild-type E2F1 show decreased proliferation compared to mutant over-expressing cells, but cell proliferation rates of mutant over-expressing cells were comparable to cells over-expressing the empty vector. Conclusions The R166H mutation in E2F1 is shown to have a deleterious effect on its DNA binding ability as well as increasing its stability and subsequent accumulation in R166H mutant cells. Based on the results, two compatible theories can be formed: R166H mutation appears to allow for protein over-expression while minimizing the apoptotic consequence and the R166H mutation may behave similarly to SV40 large T antigen, inhibiting tumor suppressive functions of retinoblastoma protein 1. PMID:21955916

  15. Mutational effects of space flight on Zea mays seeds

    NASA Technical Reports Server (NTRS)

    Mei, M.; Qiu, Y.; He, Y.; Bucker, H.; Yang, C. H.

    1994-01-01

    The growth and development of more than 500 Zea mays seeds flown on Long Duration Exposure Facility (LDEF) were studied. Somatic mutations, including white-yellow stripes on leaves, dwarfing, change of leaf sheath color or seedling color were observed in plants developed from these seeds. When the frequency of white-yellow formation was used as the endpoint and compared with data from ground based studies, the dose to which maize seeds might be exposed during the flight was estimated to be equivalent to 635 cGy of gamma rays. Seeds from one particular holder gave a high mutation frequency and a wide mutation spectrum. White-yellow stripes on leaves were also found in some of the inbred progenies from plants displayed somatic mutation. Electron microscopy studies showed that the damage of chloroplast development in the white-yellow stripe on leaves was similar between seeds flown on LDEF and that irradiated by accelerated heavy ions on ground.

  16. Association Between NRAS and BRAF Mutational Status and Melanoma-Specific Survival Among Patients With Higher Risk Primary Melanoma

    PubMed Central

    Thomas, Nancy E.; Edmiston, Sharon N.; Alexander, Audrey; Groben, Pamela A.; Parrish, Eloise; Kricker, Anne; Armstrong, Bruce K.; Anton-Culver, Hoda; Gruber, Stephen B.; From, Lynn; Busam, Klaus J.; Hao, Honglin; Orlow, Irene; Kanetsky, Peter A.; Luo, Li; Reiner, Anne S.; Paine, Susan; Frank, Jill S.; Bramson, Jennifer I.; Marrett, Lorraine D.; Gallagher, Richard P.; Zanetti, Roberto; Rosso, Stefano; Dwyer, Terence; Cust, Anne E.; Ollila, David W.; Begg, Colin B.; Berwick, Marianne; Conway, Kathleen

    2015-01-01

    Importance NRAS and BRAF mutations in melanoma inform current treatment paradigms but their role in survival from primary melanoma has not been established. Identification of patients at high risk of melanoma-related death based on their primary melanoma characteristics before evidence of recurrence could inform recommendations for patient follow-up and eligibility for adjuvant trials. Objective To determine tumor characteristics and survival from primary melanoma by somatic NRAS and BRAF status. Design, Setting, and Participants A population-based study with median follow-up of 7.6 years for 912 patients with first primary cutaneous melanoma analyzed for NRAS and BRAF mutations diagnosed in the year 2000 from the United States and Australia in the Genes, Environment and Melanoma Study and followed through 2007. Main Outcomes and Measures Tumor characteristics and melanoma-specific survival of primary melanoma by NRAS and BRAF mutational status. Results The melanomas were 13% NRAS+, 30% BRAF+, and 57% with neither NRAS nor BRAF mutation (wildtype). In a multivariable model including clinicopathologic characteristics, NRAS+ melanoma was associated (P<.05) with mitoses, lower tumor infiltrating lymphocyte (TIL) grade, and anatomic site other than scalp/neck and BRAF+ melanoma was associated with younger age, superficial spreading subtype, and mitoses, relative to wildtype melanoma. There was no significant difference in melanoma-specific survival for melanoma harboring mutations in NRAS (HR 1.7, 95% CI, 0.8–3.4) or BRAF (HR, 1.5, 95% CI, 0.8–2.9) compared to wildtype melanoma adjusted for age, sex, site, AJCC tumor stage, TIL grade, and study center. However, melanoma-specific survival was significantly poorer for higher risk (T2b or higher stage) tumors with NRAS (HR 2.9; 95% CI 1.1–7.7) or BRAF (HR 3.1; 95% CI 1.2–8.5) mutations but not for lower risk (T2a or lower) tumors (P=.65) adjusted for age, sex, site, AJCC tumor stage, TIL grade, and study center

  17. Comprehensive genomic profiling reveals inactivating SMARCA4 mutations and low tumor mutational burden in small cell carcinoma of the ovary, hypercalcemic-type.

    PubMed

    Lin, Douglas I; Chudnovsky, Yakov; Duggan, Bridget; Zajchowski, Deborah; Greenbowe, Joel; Ross, Jeffrey S; Gay, Laurie M; Ali, Siraj M; Elvin, Julia A

    2017-12-01

    Small cell carcinoma of the ovary, hypercalcemic-type (SCCOHT) is a rare, extremely aggressive neoplasm that usually occurs in young women and is characterized by deleterious germline or somatic SMARCA4 mutations. We performed comprehensive genomic profiling (CGP) to potentially identify additional clinically and pathophysiologically relevant genomic alterations in SCCOHT. CGP assessment of all classes of coding alterations in up to 406 genes commonly altered in cancer and intronic regions for up to 31 genes commonly rearranged in cancer was performed on 18 SCCOHT cases (16 exhibiting classic morphology and 2 cases exhibiting exclusive a large cell variant morphology). In addition, a retrospective database search for clinically advanced ovarian tumors with genomic profiles similar to SCCOHT yielded 3 additional cases originally diagnosed as non-SCCOHT. CGP revealed inactivating SMARCA4 alterations and low tumor mutational burden (TMB) (<6mutations/Mb) in 94% (15/16) of SCCOHT with classic morphology. In contrast, both (2/2) cases exhibiting only large cell variant morphology were hypermutated (TMB scores of 90 and 360mut/Mb) and were wildtype for SMARCA4. In our retrospective search, an index ovarian cancer patient harboring inactivating SMARCA4 alterations, initially diagnosed as endometrioid carcinoma, was re-classified as SCCOHT and responded to an SCCOHT chemotherapy regimen. The vast majority of SCCOHT demonstrate genomic SMARCA4 loss with only rare co-occurring alterations. Our data support a role for CGP in the diagnosis and management of SCCOHT and of other lesions with overlapping histological and clinical features, since identifying the former by genomic profile suggests benefit from an appropriate regimen and treatment decisions, as illustrated by an index patient. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer

    PubMed Central

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L.

    2016-01-01

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. PMID:26590264

  19. Mutations in epigenetic regulators including SETD2 are gained during relapse in paediatric acute lymphoblastic leukaemia.

    PubMed

    Mar, Brenton G; Bullinger, Lars B; McLean, Kathleen M; Grauman, Peter V; Harris, Marian H; Stevenson, Kristen; Neuberg, Donna S; Sinha, Amit U; Sallan, Stephen E; Silverman, Lewis B; Kung, Andrew L; Lo Nigro, Luca; Ebert, Benjamin L; Armstrong, Scott A

    2014-03-24

    Relapsed paediatric acute lymphoblastic leukaemia (ALL) has high rates of treatment failure. Epigenetic regulators have been proposed as modulators of chemoresistance, here, we sequence genes encoding epigenetic regulators in matched diagnosis-remission-relapse ALL samples. We find significant enrichment of mutations in epigenetic regulators at relapse with recurrent somatic mutations in SETD2, CREBBP, MSH6, KDM6A and MLL2, mutations in signalling factors are not enriched. Somatic alterations in SETD2, including frameshift and nonsense mutations, are present at 12% in a large de novo ALL patient cohort. We conclude that the enrichment of mutations in epigenetic regulators at relapse is consistent with a role in mediating therapy resistance.

  20. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis.

    PubMed

    Shidara, Yujiro; Yamagata, Kumi; Kanamori, Takashi; Nakano, Kazutoshi; Kwong, Jennifer Q; Manfredi, Giovanni; Oda, Hideaki; Ohta, Shigeo

    2005-03-01

    The role of mitochondrial dysfunction in cancer has been a subject of great interest and much ongoing investigation. Although most cancer cells harbor somatic mutations in mitochondrial DNA (mtDNA), the question of whether such mutations contribute to the promotion of carcinomas remains unsolved. Here we used trans-mitochondrial hybrids (cybrids) containing a common HeLa nucleus and mtDNA of interest to compare the role of mtDNA against the common nuclear background. We constructed cybrids with or without a homoplasmic pathogenic point mutation at nucleotide position 8,993 or 9,176 in the mtDNA ATP synthase subunit 6 gene (MTATP6) derived from patients with mitochondrial encephalomyopathy. When the cybrids were transplanted into nude mice, the MTATP6 mutations conferred an advantage in the early stage of tumor growth. The mutant cybrids also increased faster than wild type in culture. To complement the mtDNA mutations, we transfected a wild-type nuclear version of MTATP, whose codons were converted to the universal genetic codes containing a mitochondrial target sequence, into the nucleus of cybrids carrying mutant MTATP6. The restoration of MTATP slowed down the growth of tumor in transplantation. Conversely, expression of a mutant nuclear version of MTATP6 in the wild-type cybrids declined respiration and accelerated the tumor growth. These findings showed that the advantage in tumor growth depended upon the MTATP6 function but was not due to secondary nuclear mutations caused by the mutant mitochondria. Because apoptosis occurred less frequently in the mutant versus wild-type cybrids in cultures and tumors, the pathogenic mtDNA mutations seem to promote tumors by preventing apoptosis.

  1. Rapid screening of ASXL1, IDH1, IDH2, and c-CBL mutations in de novo acute myeloid leukemia by high-resolution melting.

    PubMed

    Ibáñez, Mariam; Such, Esperanza; Cervera, José; Luna, Irene; Gómez-Seguí, Inés; López-Pavía, María; Dolz, Sandra; Barragán, Eva; Fuster, Oscar; Llop, Marta; Rodríguez-Veiga, Rebeca; Avaria, Amparo; Oltra, Silvestre; Senent, M Leonor; Moscardó, Federico; Montesinos, Pau; Martínez-Cuadrón, David; Martín, Guillermo; Sanz, Miguel A

    2012-11-01

    Recently, many novel molecular abnormalities were found to be distinctly associated with acute myeloid leukemia (AML). However, their clinical relevance and prognostic implications are not well established. We developed a new combination of high-resolution melting assays on a LightCycler 480 and direct sequencing to detect somatic mutations of ASXL1 (exon 12), IDH1 (exon 4), IDH2 (exon 4), and c-CBL (exons 8 and 9) genes to know their incidence and prognostic effect in a cohort of 175 patients with de novo AML: 16 patients (9%) carried ASXL1 mutations, 16 patients had IDH variations (3% with IDH1(R132) and 6% with IDH2(R140)), and none had c-CBL mutations. Patients with ASXL1 mutations did not harbor IDH1, [corrected] or CEBPA mutations, and a combination of ASXL1 and IDH2 mutations was found only in one patient. In addition, we did not find IDH1 and FLT3 or CEBPA mutations concurrently or IDH2 with CEBPA. IDH1 and IDH2 mutations were mutually exclusive. Alternatively, NPM1 mutations were concurrently found with ASXL1, IDH1, or IDH2 with a variable incidence. Mutations were not significantly correlated with any of the clinical and biological features studied. High-resolution melting is a reliable, rapid, and efficient screening technique for mutation detection in AML. The incidence for the studied genes was in the range of those previously reported. We were unable to find an effect on the outcome. Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  2. Comparison of EGFR signaling pathway somatic DNA mutations derived from peripheral blood and corresponding tumor tissue of patients with advanced non-small-cell lung cancer using liquidchip technology.

    PubMed

    Zhang, Hui; Liu, Deruo; Li, Shanqing; Zheng, Yongqing; Yang, Xinjie; Li, Xi; Zhang, Quan; Qin, Na; Lu, Jialin; Ren-Heidenreich, Lifen; Yang, Huiyi; Wu, Yuhua; Zhang, Xinyong; Nong, Jingying; Sun, Yifen; Zhang, Shucai

    2013-11-01

    Somatic DNA mutations affecting the epidermal growth factor receptor (EGFR) signaling pathway are known to predict responsiveness to EGFR-tyrosine kinase inhibitor drugs in patients with advanced non-small-cell lung cancers. We evaluated a sensitive liquidchip platform for detecting EGFR, KRAS (alias Ki-ras), proto-oncogene B-Raf, and phosphatidylinositol 3-kinase CA mutations in plasma samples, which were highly correlated with matched tumor tissues from 86 patients with advanced non-small-cell lung cancers. Either EGFR exon 19 or 21 mutations were detected in 36 patients: 23 of whom had identical mutations in both their blood and tissue samples; whereas mutations in the remaining 13 were found only in their tumor samples. These EGFR mutations occurred at a significantly higher frequency in females, never-smokers, and in patients with adenocarcinomas (P ≤ 0.001). The EGFR exon 20 T790M mutation was detected in only one of the paired samples [100% (95% CI, 96% to 100%) agreement]. For KRAS, proto-oncogene B-Raf, and phosphatidylinositol 3-kinase CA mutations, the overall agreements were 97% (95% CI, 90% to 99%), 98% (95% CI, 92% to 99%), and 97% (95% CI, 90% to 99%), respectively, and these were not associated with age, sex, smoking history, or histopathologic type. In conclusion, mutations detected in plasma correlated strongly with mutation profiles in each respective tumor sample, suggesting that this liquidchip platform may offer a rapid and noninvasive method for predicting tumor responsiveness to EGFR-tyrosine kinase inhibitor drugs in patients with advanced non-small-cell lung cancers. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  3. Characterization of three new serous epithelial ovarian cancer cell lines

    PubMed Central

    Ouellet, Véronique; Zietarska, Magdalena; Portelance, Lise; Lafontaine, Julie; Madore, Jason; Puiffe, Marie-Line; Arcand, Suzanna L; Shen, Zhen; Hébert, Josée; Tonin, Patricia N; Provencher, Diane M; Mes-Masson, Anne-Marie

    2008-01-01

    Background Cell lines constitute a powerful model to study cancer, and here we describe three new epithelial ovarian cancer (EOC) cell lines derived from poorly differentiated serous solid tumors (TOV-1946, and TOV-2223G), as well as the matched ascites for one case (OV-1946). Methods In addition to growth parameters, the cell lines were characterized for anchorage independent growth, migration and invasion potential, ability to form spheroids and xenografts in SCID mice. Results While all cell lines were capable of anchorage independent growth, only the TOV-1946 and OV-1946 cell lines were able to form spheroid and produce tumors. Profiling of keratins, p53 and Her2 protein expression was assessed by immunohistochemistry and western blot analyses. Somatic TP53 mutations were found in all cell lines, with TOV-1946 and OV-1946 harboring the same mutation, and none harbored the commonly observed somatic mutations in BRAF, KRAS or germline BRCA1/2 mutations found to recur in the French Canadian population. Conventional cytogenetics and spectral karyotype (SKY) analyses revealed complex karyotypes often observed in ovarian disease. Conclusion This is the first report of the establishment of matched EOC cell lines derived from both solid tumor and ascites of the same patient. PMID:18507860

  4. Noncoding somatic and inherited single-nucleotide variants converge to promote ESR1 expression in breast cancer.

    PubMed

    Bailey, Swneke D; Desai, Kinjal; Kron, Ken J; Mazrooei, Parisa; Sinnott-Armstrong, Nicholas A; Treloar, Aislinn E; Dowar, Mark; Thu, Kelsie L; Cescon, David W; Silvester, Jennifer; Yang, S Y Cindy; Wu, Xue; Pezo, Rossanna C; Haibe-Kains, Benjamin; Mak, Tak W; Bedard, Philippe L; Pugh, Trevor J; Sallari, Richard C; Lupien, Mathieu

    2016-10-01

    Sustained expression of the estrogen receptor-α (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon estrogen stimulation to establish an oncogenic expression program. Somatic copy number alterations involving the ESR1 gene occur in approximately 1% of ESR1-positive breast cancers, suggesting that other mechanisms underlie the persistent expression of ESR1. We report significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by rs9383590, a functional inherited single-nucleotide variant (SNV) that accounts for several breast cancer risk-associated loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer.

  5. Somatic mosaicism in plants with special reference to somatic crossing over

    PubMed Central

    Vig, Baldev K.

    1978-01-01

    Plant systems in use for the detection of environmental mutagens appear capable of detecting all types of genetic effects which can be studied in animals. The study of somatic mosaicism, however, is better developed in plants than in higher animals. A case is presented here which shows the ability of plant systems in analyzing a host of genetic end points, including chromosome aberrations like deletions, somatic crossing over, numerical inequality, gene conversion, paramutations and point mutations. The systems in general use utilize certain varieties of Tradescantia, Glycine max, Nicotiana tabacum, Antirrhinum majus, Petunia hybrida, and Arabidopsis thaliana. Heterozygous plants or their homozygous counterparts with gene markers affecting chlorophyll development or anthocyanin in floral parts are exploited in these studies. Mutagens produce different frequencies of different types of spots typical of the mode of action of the agent. Analysis of these parameters may be used to predict, at least qualitatively, the kind of genetic damage that might be produced in man. Besides, one can test the validity of interpretation by traditional progeny tests of plants raised from tissue culture from sectors as in Nicotiana and/or by precursor analysis as done in Antirrhinum. The study of mosaicism in plants offers quite inexpensive, rapid, and reliable tests of mutagenicity at least as a preliminary eukaryotic test system. ImagesFIGURE 1.FIGURE 1.FIGURE 2.FIGURE 9. PMID:367771

  6. Analysis of IgV gene mutations in B cell chronic lymphocytic leukaemia according to antigen-driven selection identifies subgroups with different prognosis and usage of the canonical somatic hypermutation machinery.

    PubMed

    Degan, Massimo; Bomben, Riccardo; Bo, Michele Dal; Zucchetto, Antonella; Nanni, Paola; Rupolo, Maurizio; Steffan, Agostino; Attadia, Vincenza; Ballerini, Pier Ferruccio; Damiani, Daniela; Pucillo, Carlo; Poeta, Giovanni Del; Colombatti, Alfonso; Gattei, Valter

    2004-07-01

    Cases of B-cell chronic lymphocytic leukaemia (B-CLL) with mutated (M) IgV(H) genes have a better prognosis than unmutated (UM) cases. We analysed the IgV(H) mutational status of B-CLL according to the features of a canonical somatic hypermutation (SHM) process, correlating this data with survival. In a series of 141 B-CLLs, 124 cases were examined for IgV(H) gene per cent mutations and skewing of replacement/silent mutations in the framework/complementarity-determining regions as evidence of antigen-driven selection; this identified three B-CLL subsets: significantly mutated (sM), with evidence of antigen-driven selection, not significantly mutated (nsM) and UM, without such evidence and IgV(H) gene per cent mutations above or below the 2% cut-off. sM B-CLL patients had longer survival within the good prognosis subgroup that had more than 2% mutations of IgV(H) genes. sM, nsM and UM B-CLL were also characterized for the biased usage of IgV(H) families, intraclonal IgV(H) gene diversification, preference of mutations to target-specific nucleotides or hotspots, and for the expression of enzymes involved in SHM (translesion DNA polymerase zeta and eta and activation-induced cytidine deaminase). These findings indicate the activation of a canonical SHM process in nsM and sM B-CLLs and underscore the role of the antigen in defining the specific clinical and biological features of B-CLL.

  7. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly

    PubMed Central

    Zink, Florian; Stacey, Simon N.; Norddahl, Gudmundur L.; Frigge, Michael L.; Magnusson, Olafur T.; Jonsdottir, Ingileif; Thorgeirsson, Thorgeir E.; Sigurdsson, Asgeir; Gudjonsson, Sigurjon A.; Gudmundsson, Julius; Jonasson, Jon G.; Tryggvadottir, Laufey; Jonsson, Thorvaldur; Helgason, Agnar; Gylfason, Arnaldur; Sulem, Patrick; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Gudbjartsson, Daniel F.; Masson, Gisli; Kong, Augustine

    2017-01-01

    Clonal hematopoiesis (CH) arises when a substantial proportion of mature blood cells is derived from a single dominant hematopoietic stem cell lineage. Somatic mutations in candidate driver (CD) genes are thought to be responsible for at least some cases of CH. Using whole-genome sequencing of 11 262 Icelanders, we found 1403 cases of CH by using barcodes of mosaic somatic mutations in peripheral blood, whether or not they have a mutation in a CD gene. We find that CH is very common in the elderly, trending toward inevitability. We show that somatic mutations in TET2, DNMT3A, ASXL1, and PPM1D are associated with CH at high significance. However, known CD mutations were evident in only a fraction of CH cases. Nevertheless, the highly prevalent CH we detect associates with increased mortality rates, risk for hematological malignancy, smoking behavior, telomere length, Y-chromosome loss, and other phenotypic characteristics. Modeling suggests some CH cases could arise in the absence of CD mutations as a result of neutral drift acting on a small population of active hematopoietic stem cells. Finally, we find a germline deletion in intron 3 of the telomerase reverse transcriptase (TERT) gene that predisposes to CH (rs34002450; P = 7.4 × 10−12; odds ratio, 1.37). PMID:28483762

  8. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors.

    PubMed

    Shern, Jack F; Chen, Li; Chmielecki, Juliann; Wei, Jun S; Patidar, Rajesh; Rosenberg, Mara; Ambrogio, Lauren; Auclair, Daniel; Wang, Jianjun; Song, Young K; Tolman, Catherine; Hurd, Laura; Liao, Hongling; Zhang, Shile; Bogen, Dominik; Brohl, Andrew S; Sindiri, Sivasish; Catchpoole, Daniel; Badgett, Thomas; Getz, Gad; Mora, Jaume; Anderson, James R; Skapek, Stephen X; Barr, Frederic G; Meyerson, Matthew; Hawkins, Douglas S; Khan, Javed

    2014-02-01

    Despite gains in survival, outcomes for patients with metastatic or recurrent rhabdomyosarcoma remain dismal. In a collaboration between the National Cancer Institute, Children's Oncology Group, and Broad Institute, we performed whole-genome, whole-exome, and transcriptome sequencing to characterize the landscape of somatic alterations in 147 tumor/normal pairs. Two genotypes are evident in rhabdomyosarcoma tumors: those characterized by the PAX3 or PAX7 fusion and those that lack these fusions but harbor mutations in key signaling pathways. The overall burden of somatic mutations in rhabdomyosarcoma is relatively low, especially in tumors that harbor a PAX3/7 gene fusion. In addition to previously reported mutations in NRAS, KRAS, HRAS, FGFR4, PIK3CA, and CTNNB1, we found novel recurrent mutations in FBXW7 and BCOR, providing potential new avenues for therapeutic intervention. Furthermore, alteration of the receptor tyrosine kinase/RAS/PIK3CA axis affects 93% of cases, providing a framework for genomics-directed therapies that might improve outcomes for patients with rhabdomyosarcoma. This is the most comprehensive genomic analysis of rhabdomyosarcoma to date. Despite a relatively low mutation rate, multiple genes were recurrently altered, including NRAS, KRAS, HRAS, FGFR4, PIK3CA, CTNNB1, FBXW7, and BCOR. In addition, a majority of rhabdomyosarcoma tumors alter the receptor tyrosine kinase/RAS/PIK3CA axis, providing an opportunity for genomics-guided intervention. 2014 AACR

  9. Ancient genes establish stress-induced mutation as a hallmark of cancer.

    PubMed

    Cisneros, Luis; Bussey, Kimberly J; Orr, Adam J; Miočević, Milica; Lineweaver, Charles H; Davies, Paul

    2017-01-01

    Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts. We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to

  10. Ancient genes establish stress-induced mutation as a hallmark of cancer

    PubMed Central

    Orr, Adam J.; Miočević, Milica; Lineweaver, Charles H.; Davies, Paul

    2017-01-01

    Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts. We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to

  11. Global Characterization of Protein-Altering Mutations in Prostate Cancer

    DTIC Science & Technology

    2012-08-01

    observed, and assess prevalence; (3) Perform integrative analyses of somatic mutation with gene expression and copy number change data collected on the...v) completed CGH assays on 200 prostate cancers; (vi) initiated the integrated analyses of gene expression, copy number and mutation in prostate...histories of individual mutations within the progression of the cancer in which it was observed, and to assess the prevalence of candidate cancer genes

  12. Mutational Signature Mark Cancer’s Smoking Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Ludmil

    A broad computational study of cancer genome sequences by Los Alamos National Laboratory with the UK’s Wellcome Trust Sanger Institute and other collaborators identifies telltale mutational signatures associated with smoking tobacco. The research demonstrates, for the first time, that smoking increases cancer risk by causing somatic mutations in tissues directly and indirectly exposed to tobacco smoke. The international study was published in the November 4 issue of Science. The analysis shows that tobacco smoking causes mutations leading to cancer by multiple distinct mechanisms, including by damaging DNA in organs and by speeding up a mutational cellular clock.

  13. In situ mutation detection and visualization of intratumor heterogeneity for cancer research and diagnostics

    PubMed Central

    Grundberg, Ida; Kiflemariam, Sara; Mignardi, Marco; Imgenberg-Kreuz, Juliana; Edlund, Karolina; Micke, Patrick; Sundström, Magnus; Sjöblom, Tobias

    2013-01-01

    Current assays for somatic mutation analysis are based on extracts from tissue sections that often contain morphologically heterogeneous neoplastic regions with variable contents of genetically normal stromal and inflammatory cells, obscuring the results of the assays. We have developed an RNA-based in situ mutation assay that targets oncogenic mutations in a multiplex fashion that resolves the heterogeneity of the tissue sample. Activating oncogenic mutations are targets for a new generation of cancer drugs. For anti-EGFR therapy prediction, we demonstrate reliable in situ detection of KRAS mutations in codon 12 and 13 in colon and lung cancers in three different types of routinely processed tissue materials. High-throughput screening of KRAS mutation status was successfully performed on a tissue microarray. Moreover, we show how the patterns of expressed mutated and wild-type alleles can be studied in situ in tumors with complex combinations of mutated EGFR, KRAS and TP53. This in situ method holds great promise as a tool to investigate the role of somatic mutations during tumor progression and for prediction of response to targeted therapy. PMID:24280411

  14. Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies

    PubMed Central

    Steehouwer, Marloes; Gilissen, Christian; Graham, Sarah A.; Hoover-Fong, Julie; Telegrafi, Aida B.; Destree, Anne; Smigiel, Robert; Lambie, Lindsday A.; Kayserili, Hülya; Altunoglu, Umut; Lapi, Elisabetta; Uzielli, Maria Luisa; Aracena, Mariana; Nur, Banu G.; Mihci, Ercan; Moreira, Lilia M. A.; Borges Ferreira, Viviane; Horovitz, Dafne D. G.; da Rocha, Katia M.; Jezela-Stanek, Aleksandra; Brooks, Alice S.; Reutter, Heiko; Cohen, Julie S.; Fatemi, Ali; Smitka, Martin; Grebe, Theresa A.; Di Donato, Nataliya; Deshpande, Charu; Vandersteen, Anthony; Marques Lourenço, Charles; Dufke, Andreas; Rossier, Eva; Andre, Gwenaelle; Baumer, Alessandra; Spencer, Careni; McGaughran, Julie; Franke, Lude; Veltman, Joris A.; De Vries, Bert B. A.; Schinzel, Albert; Fisher, Simon E.; Hoischen, Alexander

    2017-01-01

    Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype. PMID:28346496

  15. Genetic Analysis of Microglandular Adenosis and Acinic Cell Carcinomas of the Breast Provides Evidence for the Existence of a Low-grade Triple-Negative Breast Neoplasia Family

    PubMed Central

    Geyer, Felipe C; Berman, Samuel H.; Marchiò, Caterina; Burke, Kathleen A; Guerini-Rocco, Elena; Piscuoglio, Salvatore; Ng, Charlotte K Y; Pareja, Fresia; Wen, Hannah Y; Hodi, Zoltan; Schnitt, Stuart J; Rakha, Emad A; Ellis, Ian O; Norton, Larry; Weigelt, Britta; Reis-Filho, Jorge S

    2016-01-01

    harboring frequent TP53 somatic mutations, and likely represent low-grade forms of triple-negative disease with no/minimal metastatic potential, of which a subset has the potential to progress to high-grade triple-negative breast cancer. PMID:27713419

  16. Genetic analysis of microglandular adenosis and acinic cell carcinomas of the breast provides evidence for the existence of a low-grade triple-negative breast neoplasia family.

    PubMed

    Geyer, Felipe C; Berman, Samuel H; Marchiò, Caterina; Burke, Kathleen A; Guerini-Rocco, Elena; Piscuoglio, Salvatore; Ng, Charlotte Ky; Pareja, Fresia; Wen, Hannah Y; Hodi, Zoltan; Schnitt, Stuart J; Rakha, Emad A; Ellis, Ian O; Norton, Larry; Weigelt, Britta; Reis-Filho, Jorge S

    2017-01-01

    harboring frequent TP53 somatic mutations, and likely represent low-grade forms of triple-negative disease with no/minimal metastatic potential, of which a subset has the potential to progress to high-grade triple-negative breast cancer.

  17. Mutation-profile-based methods for understanding selection forces in cancer somatic mutations: a comparative analysis.

    PubMed

    Zhou, Zhan; Zou, Yangyun; Liu, Gangbiao; Zhou, Jingqi; Wu, Jingcheng; Zhao, Shimin; Su, Zhixi; Gu, Xun

    2017-08-29

    Human genes exhibit different effects on fitness in cancer and normal cells. Here, we present an evolutionary approach to measure the selection pressure on human genes, using the well-known ratio of the nonsynonymous to synonymous substitution rate in both cancer genomes ( C N / C S ) and normal populations ( p N / p S ). A new mutation-profile-based method that adopts sample-specific mutation rate profiles instead of conventional substitution models was developed. We found that cancer-specific selection pressure is quite different from the selection pressure at the species and population levels. Both the relaxation of purifying selection on passenger mutations and the positive selection of driver mutations may contribute to the increased C N / C S values of human genes in cancer genomes compared with the p N / p S values in human populations. The C N / C S values also contribute to the improved classification of cancer genes and a better understanding of the onco-functionalization of cancer genes during oncogenesis. The use of our computational pipeline to identify cancer-specific positively and negatively selected genes may provide useful information for understanding the evolution of cancers and identifying possible targets for therapeutic intervention.

  18. Somatic and germline TP53 alterations in second malignant neoplasms from pediatric cancer survivors

    PubMed Central

    Sherborne, Amy L.; Lavergne, Vincent; Yu, Katharine; Lee, Leah; Davidson, Philip R.; Mazor, Tali; Smirnoff, Ivan; Horvai, Andrew; Loh, Mignon; DuBois, Steven G.; Goldsby, Robert E.; Neglia, Joseph; Hammond, Sue; Robison, Leslie L.; Wustrack, Rosanna; Costello, Joseph; Nakamura, Alice O.; Shannon, Kevin; Bhatia, Smita; Nakamura, Jean L.

    2016-01-01

    Purpose Second malignant neoplasms (SMNs) are severe late complications that occur in pediatric cancer survivors exposed to radiotherapy and other genotoxic treatments. To characterize the mutational landscape of treatment-induced sarcomas and to identify candidate SMN-predisposing variants we analyzed germline and SMN samples from pediatric cancer survivors. Experimental Design We performed whole exome sequencing (WES) and RNA sequencing on radiation-induced sarcomas arising from two pediatric cancer survivors. To assess the frequency of germline TP53 variants in SMNs, Sanger sequencing was performed to analyze germline TP53 in thirty-seven pediatric cancer survivors from the Childhood Cancer Survivor Study (CCSS) without history of a familial cancer predisposition syndrome but known to have developed SMNs. Results WES revealed TP53 mutations involving p53’s DNA binding domain in both index cases, one of which was also present in the germline. The germline and somatic TP53 mutant variants were enriched in the transcriptomes for both sarcomas. Analysis of TP53 coding exons in germline specimens from the CCSS survivor cohort identified a G215C variant encoding an R72P amino acid substitution in six patients and a synonymous single nucleotide polymorphism A639G in four others, resulting in ten out of 37 evaluable patients (27%) harboring a germline TP53 variant. Conclusions Currently, germline TP53 is not routinely assessed in pediatric cancer patients. These data support the concept that identifying germline TP53 variants at the time a primary cancer is diagnosed may identify patients at high risk for SMN development, who could benefit from modified therapeutic strategies and/or intensive post-treatment monitoring. PMID:27683180

  19. Bone metastasis in prostate cancer: Recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment.

    PubMed

    Arnold, Rebecca S; Fedewa, Stacey A; Goodman, Michael; Osunkoya, Adeboye O; Kissick, Haydn T; Morrissey, Colm; True, Lawrence D; Petros, John A

    2015-09-01

    Cancer progression and metastasis occur such that cells with acquired mutations enhancing growth and survival (or inhibiting cell death) increase in number, a concept that has been recognized as analogous to Darwinian evolution of species since Peter C. Nowell's description in 1976. Selective forces include those intrinsic to the host (including metastatic site) as well as those resulting from anti-cancer therapies. By examining the mutational status of multiple tumor sites within an individual patient some insight may be gained into those genetic variants that enhance site-specific metastasis. By comparing these data across multiple individuals, recurrent patterns may identify alterations that are fundamental to successful site-specific metastasis. We sequenced the mitochondrial genome in 10 prostate cancer patients with bone metastases enrolled in a rapid autopsy program. Patients had late stage disease and received androgen ablation and frequently other systemic therapies. For each of 9 patients, 4 separate tissues were sequenced: the primary prostate cancer, a soft tissue metastasis, a bone metastasis and an uninvolved normal tissue that served as the non-cancerous control. An additional (10th) patient had no primary prostate available for sequencing but had both metastatic sites (and control DNA) sequenced. We then examined the number and location of somatically acquired mitochondrial DNA (mtDNA) mutations in the primary tumor and two metastatic sites in each individual patient. Finally, we compared patients with each other to determine any common patterns of somatic mutation. Somatic mutations were significantly more numerous in the bone compared to either the primary tumor or soft tissue metastases. A missense mutation at nucleotide position (n.p.) 10398 (A10398G; Thr114Ala) in the respiratory complex I gene ND3 was the most common (7 of 10 patients) and was detected only in the bone. Other notable somatic mutations that occurred in more than one patient

  20. Bone Metastasis in Prostate Cancer: Recurring Mitochondrial DNA Mutation Reveals Selective Pressure Exerted by the Bone Microenvironment

    PubMed Central

    Arnold, Rebecca S.; Fedewa, Stacey A.; Goodman, Michael; Osunkoya, Adeboye O.; Kissick, Haydn T.; Morrissey, Colm; True, Lawrence D.; Petros, John A.

    2015-01-01

    Background Cancer progression and metastasis occurs such that cells with acquired mutations enhancing growth and survival (or inhibiting cell death) increase in number, a concept that has been recognized as analogous to Darwinian evolution of species since Peter C. Nowell’s description in 1976. Selective forces include those intrinsic to the host (including metastatic site) as well as those resulting from anti-cancer therapies. By examining the mutational status of multiple tumor sites within an individual patient some insight may be gained into those genetic variants that enhance site-specific metastasis. By comparing these data across multiple individuals, recurrent patterns may identify alterations that are fundamental to successful site-specific metastasis. Methods We sequenced the mitochondrial genome in 10 prostate cancer patients with bone metastases enrolled in a rapid autopsy program. Patients had late stage disease and received androgen ablation and frequently other systemic therapies. For each of 9 patients, 4 separate tissues were sequenced: the primary prostate cancer, a soft tissue metastasis, a bone metastasis and an uninvolved normal tissue that served as the non-cancerous control. An additional (10th) patient had no primary prostate available for sequencing but had both metastatic sites (and control DNA) sequenced. We then examined the number and location of somatically acquired mitochondrial DNA (mtDNA) mutations in the primary and two metastatic sites in each individual patient. Finally, we compared patients with each other to determine any common patterns of somatic mutation. Results Somatic mutations were significantly more numerous in bone compared to either the primary tumor or soft tissue metastases. A missense mutation at nucleotide position (np) 10398 (A10398G; Thr114Ala) in the respiratory complex I gene ND3 was the most common (7 of 10 patients) and was detected only in bone. Other notable somatic mutations that occurred in more than

  1. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer.

    PubMed

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L

    2016-01-04

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: determination of frequency and distribution pattern

    PubMed Central

    Al-Shamsi, Humaid O.; Jones, Jeremy; Fahmawi, Yazan; Dahbour, Ibrahim; Tabash, Aziz; Abdel-Wahab, Reham; Abousamra, Ahmed O. S.; Shaw, Kenna R.; Xiao, Lianchun; Hassan, Manal M.; Kipp, Benjamin R.; Kopetz, Scott; Soliman, Amr S.; McWilliams, Robert R.; Wolff, Robert A.

    2016-01-01

    Background The frequency rates of mutations such as KRAS, NRAS, BRAF, and PIK3CA in colorectal cancer (CRC) differ among populations. The aim of this study was to assess mutation frequencies in the Arab population and determine their correlations with certain clinicopathological features. Methods Arab patients from the Arab Gulf region and a population of age- and sex-matched Western patients with CRC whose tumors were evaluated with next-generation sequencing (NGS) were identified and retrospectively reviewed. The mutation rates of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC were recorded, along with clinicopathological features. Other somatic mutation and their rates were also identified. Fisher’s exact test was used to determine the association between mutation status and clinical features. Results A total of 198 cases were identified; 99 Arab patients and 99 Western patients. Fifty-two point seven percent of Arab patients had stage IV disease at initial presentation, 74.2% had left-sided tumors. Eighty-nine point two percent had tubular adenocarcinoma and 10.8% had mucinous adenocarcinoma. The prevalence rates of KRAS, NRAS, BRAF, PIK3CA, TP53, APC, SMAD, FBXW7 mutations in Arab population were 44.4%, 4%, 4%, 13.1%, 52.5%, 27.3%, 2% and 3% respectively. Compared to 48.4%, 4%, 4%, 12.1%, 47.5%, 24.2%, 11.1% and 0% respectively in matched Western population. Associations between these mutations and patient clinicopathological features were not statistically significant. Conclusions This is the first study to report comprehensive hotspot mutations using NGS in Arab patients with CRC. The frequency of KRAS, NRAS, BRAF, TP53, APC and PIK3CA mutations were similar to reported frequencies in Western population except SMAD4 that had a lower frequency and higher frequency of FBXW7 mutation. PMID:28078112

  3. A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma.

    PubMed

    Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S

    2016-10-01

    Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies.

  4. A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma

    PubMed Central

    Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S

    2016-01-01

    Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies. PMID:27338637

  5. CREBBP mutations in relapsed acute lymphoblastic leukaemia

    PubMed Central

    Mullighan, Charles G.; Zhang, Jinghui; Kasper, Lawryn H.; Lerach, Stephanie; Payne-Turner, Debbie; Phillips, Letha A.; Heatley, Sue L.; Holmfeldt, Linda; Collins-Underwood, J. Racquel; Ma, Jing; Buetow, Kenneth H.; Pui, Ching-Hon; Baker, Sharyn D.; Brindle, Paul K.; Downing, James R.

    2010-01-01

    Relapsed acute lymphoblastic leukaemia (ALL) is a leading cause of death due to disease in young people, but the biologic determinants of treatment failure remain poorly understood. Recent genome-wide profiling of structural DNA alterations in ALL have identified multiple submicroscopic somatic mutations targeting key cellular pathways1,2, and have demonstrated substantial evolution in genetic alterations from diagnosis to relapse3. However, detailed analysis of sequence mutations in ALL has not been performed. To identify novel mutations in relapsed ALL, we resequenced 300 genes in matched diagnosis and relapse samples from 23 patients with ALL. This identified 52 somatic non-synonymous mutations in 32 genes, many of which were novel, including the transcriptional coactivators CREBBP and NCOR1, the transcription factors ERG, SPI1, TCF4 and TCF7L2, components of the Ras signalling pathway, histone genes, genes involved in histone modification (CREBBP and CTCF), and genes previously shown to be targets of recurring DNA copy number alteration in ALL. Analysis of an extended cohort of 71 diagnosis-relapse cases and 270 acute leukaemia cases that did not relapse found that 18.3% of relapse cases had sequence or deletion mutations of CREBBP, which encodes the transcriptional coactivator and histone acetyltransferase (HAT) CREB-binding protein (CBP)4. The mutations were either present at diagnosis or acquired at relapse, and resulted in truncated alleles or deleterious substitutions in conserved residues of the HAT domain. Functionally, the mutations impaired histone acetylation and transcriptional regulation of CREBBP targets, including glucocorticoid responsive genes. Several mutations acquired at relapse were detected in subclones at diagnosis, suggesting that the mutations may confer resistance to therapy. These results extend the landscape of genetic alterations in leukaemia, and identify mutations targeting transcriptional and epigenetic regulation as a mechanism

  6. Polymerase ε (POLE) ultra-mutation in uterine tumors correlates with T lymphocyte infiltration and increased resistance to platinum-based chemotherapy in vitro

    PubMed Central

    Bellone, Stefania; Eliana, Bignotti; Lonardi, Silvia; Ferrari, Francesca; Centritto, Floriana; Masserdotti, Alice; Pettinella, Francesca; Black, Jonathan; Menderes, Gulden; Altwerger, Gary; Hui, Pei; Lopez, Salvatore; de Haydu, Christopher; Bonazzoli, Elena; Predolini, Federica; Zammataro, Luca; Cocco, Emiliano; Ferrari, Federico; Ravaggi, Antonella; Romani, Chiara; Facchettie, Fabio; Sartori, Enrico; Odicino, Franco E.; Silasi, Dan-Arin; Litkouhi, Babak; Ratner, Elena; Azodi, Masoud; Schwartz, Peter E.; Santin, Alessandro D.

    2016-01-01

    Objective Up to 12 % of all endometrial-carcinomas (EC) harbor DNA-polymerase-ε-(POLE) mutations. It is currently unknown whether the favorable prognosis of POLE-mutated EC is derived from their low metastatic capability, extraordinary number of somatic mutations thus imparting immunogenicity, or a high sensitivity to chemotherapy. Methods Polymerase-chain-reaction-amplification and Sanger-sequencing were used to test for POLE exonuclease-domain-mutations (exons 9–14) 131 EC. Infiltration of CD4+ and CD8+ T-lymphocytes (TIL) and PD-1-expression in POLE-mutated vs POLE wild-type EC was studied by immunohistochemistry (IHC) and the correlations between survival and molecular features were investigated. Finally, primary POLE-mutated and POLE-wild-type EC cell lines were established and compared in-vitro for their sensitivity to chemotherapy. Results Eleven POLE-mutated EC (8.5%) were identified. POLE-mutated tumors were associated with improved progression-free-survival (P<0.05) and displayed increased numbers of CD4+ (44.5 vs 21.8; P = .001) and CD8+ (32.8 vs 13.5; P < .001) TILs when compared to wild-type POLE EC. PD-1 receptor was overexpressed in TILs from POLE-mutated vs wild-type-tumors (81% vs 28%; P < .001). Primary POLE tumor cell lines were significantly more resistant to platinum-chemotherapy in-vitro when compared to POLE-wild-type tumors (P < 0.004). Conclusions POLE ultra-mutated EC are heavily infiltrated with CD4+/CD8+ TIL, overexpress PD-1 immune-check-point (i.e., features consistent with chronic antigen-exposure), and have a better prognosis when compared to other molecular subtypes of EC patients. POLE-mutated tumor-cell lines are resistant to platinum-chemotherapy in-vitro suggesting that the better prognosis of POLE-patients is not secondary to a higher sensitivity to chemotherapy but likely linked to enhanced immunogenicity. PMID:27894751

  7. Perthes disease: A new finding in Floating-Harbor syndrome.

    PubMed

    Milani, Donatella; Scuvera, Giulietta; Gatti, Marta; Tolva, Gianluca; Bonarrigo, Francesca; Esposito, Susanna; Gervasini, Cristina

    2018-03-01

    Floating-Harbor Syndrome (FHS; OMIM #136140) is an ultra-rare autosomal dominant genetic condition characterized by expressive language delay, short stature with delayed bone mineralization, a triangular face with a prominent nose, and deep-set eyes, and hand anomalies. First reported in 1973, FHS is associated with mutations in the SRCAP gene, which encodes SNF2-related CREBBP activator protein. Mutations in the CREBBP gene cause Rubinstein-Taybi Syndrome (RSTS; OMIM #180849, #613684), another rare disease characterized by broad thumbs and halluces, facial dysmorphisms, short stature, and intellectual disability, which has a phenotypic overlap with FHS. We describe a case of FHS associated with a novel SRCAP mutation and characterized by Perthes disease, a skeletal anomaly described in approximately 3% of patients with RSTS. Thus Perthes disease can be added to the list of clinical features that overlap between FHS and RSTS. © 2018 Wiley Periodicals, Inc.

  8. Mutation drivers of immunological responses to cancer

    PubMed Central

    Porta-Pardo, Eduard; Godzik, Adam

    2016-01-01

    In cancer immunology, somatic missense mutations have been mostly studied regarding their role in the generation of neoantigens. However, growing evidence suggests that mutations in certain genes, such as CASP8 or TP53, influence the immune response against a tumor by other mechanisms. Identifying these genes and mechanisms is important because, just as the identification of cancer driver genes led to the development of personalized cancer therapies, a comprehensive catalog of such cancer immunity drivers will aid in the development of therapies aimed at restoring antitumor immunity. Here we present an algorithm, domainXplorer, that can be used to identify potential cancer immunity drivers. To demonstrate its potential, we used it to analyze a dataset of 5,164 tumor samples from TCGA and to identify protein domains whose mutation status correlates with the presence of immune cells in cancer tissue (immune infiltrate). We identified 122 such protein regions including several that belong to proteins with known roles in immune response, such as C2, CD163L1, or FCγR2A. In several cases we show that mutations within the same protein can be associated with more or less immune cell infiltration, depending on the specific domain mutated. These results expand the catalog of potential cancer immunity drivers and highlight the importance of taking into account the structural context of somatic mutations when analyzing their potential association with immune phenotypes. PMID:27401919

  9. Cortisol and somatization.

    PubMed

    Rief, W; Auer, C

    2000-05-01

    Somatization symptoms are frequently associated with depression, anxiety, and feelings of distress. These features interact with the activity of the HPA-axis. Therefore we investigated relationships between somatization symptoms and cortisol. Seventy-seven participants were classified into three groups: somatization syndrome (at least eight physical symptoms from the DSM-IV somatization disorder list), somatization syndrome combined with major depression, and healthy controls. The following data were collected: salivary cortisol at three time points (morning, afternoon, evening), nighttime urinary cortisol, serum cortisol after the dexamethasone suppression test (DST), and psychological variables such as depression, anxiety, somatization, and hypochondriasis. Salivary cortisol showed typical diurnal variations. However, the groups did not differ on any of the cortisol variables. A possible explanation may be counteracting effects of somatization and depression. Exploratory correlational analyses revealed that associations between cortisol and psychopathological variables were time-dependent. DST results correlated with psychological aspects of somatization, but not with the number of somatoform symptoms per se.

  10. PAPSS2 Deficiency Causes Androgen Excess via Impaired DHEA Sulfation—In Vitro and in Vivo Studies in a Family Harboring Two Novel PAPSS2 Mutations

    PubMed Central

    Oostdijk, Wilma; Idkowiak, Jan; Mueller, Jonathan W.; House, Philip J.; Taylor, Angela E.; O'Reilly, Michael W.; Hughes, Beverly A.; de Vries, Martine C.; Kant, Sarina G.; Santen, Gijs W. E.; Verkerk, Annemieke J. M. H.; Uitterlinden, André G.; Wit, Jan M.; Losekoot, Monique

    2015-01-01

    Context: PAPSS2 (PAPS synthase 2) provides the universal sulfate donor PAPS (3′-phospho-adenosine-5′-phosphosulfate) to all human sulfotransferases, including SULT2A1, responsible for sulfation of the crucial androgen precursor dehydroepiandrosterone (DHEA). Impaired DHEA sulfation is thought to increase the conversion of DHEA toward active androgens, a proposition supported by the previous report of a girl with inactivating PAPSS2 mutations who presented with low serum DHEA sulfate and androgen excess, clinically manifesting with premature pubarche and early-onset polycystic ovary syndrome. Patients and Methods: We investigated a family harboring two novel PAPSS2 mutations, including two compound heterozygous brothers presenting with disproportionate short stature, low serum DHEA sulfate, but normal serum androgens. Patients and parents underwent a DHEA challenge test comprising frequent blood sampling and urine collection before and after 100 mg DHEA orally, with subsequent analysis of DHEA sulfation and androgen metabolism by mass spectrometry. The functional impact of the mutations was investigated in silico and in vitro. Results: We identified a novel PAPSS2 frameshift mutation, c.1371del, p.W462Cfs*3, resulting in complete disruption, and a novel missense mutation, c.809G>A, p.G270D, causing partial disruption of DHEA sulfation. Both patients and their mother, who was heterozygous for p.W462Cfs*3, showed increased 5α-reductase activity at baseline and significantly increased production of active androgens after DHEA intake. The mother had a history of oligomenorrhea and chronic anovulation that required clomiphene for ovulation induction. Conclusions: We provide direct in vivo evidence for the significant functional impact of mutant PAPSS2 on DHEA sulfation and androgen activation. Heterozygosity for PAPSS2 mutations can be associated with a phenotype resembling polycystic ovary syndrome. PMID:25594860

  11. Clustered Mutation Signatures Reveal that Error-Prone DNA Repair Targets Mutations to Active Genes.

    PubMed

    Supek, Fran; Lehner, Ben

    2017-07-27

    Many processes can cause the same nucleotide change in a genome, making the identification of the mechanisms causing mutations a difficult challenge. Here, we show that clustered mutations provide a more precise fingerprint of mutagenic processes. Of nine clustered mutation signatures identified from >1,000 tumor genomes, three relate to variable APOBEC activity and three are associated with tobacco smoking. An additional signature matches the spectrum of translesion DNA polymerase eta (POLH). In lymphoid cells, these mutations target promoters, consistent with AID-initiated somatic hypermutation. In solid tumors, however, they are associated with UV exposure and alcohol consumption and target the H3K36me3 chromatin of active genes in a mismatch repair (MMR)-dependent manner. These regions normally have a low mutation rate because error-free MMR also targets H3K36me3 chromatin. Carcinogens and error-prone repair therefore redistribute mutations to the more important regions of the genome, contributing a substantial mutation load in many tumors, including driver mutations. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms.

    PubMed

    Pietra, Daniela; Brisci, Angela; Rumi, Elisa; Boggi, Sabrina; Elena, Chiara; Pietrelli, Alessandro; Bordoni, Roberta; Ferrari, Maurizio; Passamonti, Francesco; De Bellis, Gianluca; Cremonesi, Laura; Cazzola, Mario

    2011-04-01

    Somatic mutations of MPL exon 10, mainly involving a W515 substitution, have been described in JAK2 (V617F)-negative patients with essential thrombocythemia and primary myelofibrosis. We used direct sequencing and high-resolution melt analysis to identify mutations of MPL exon 10 in 570 patients with myeloproliferative neoplasms, and allele specific PCR and deep sequencing to further characterize a subset of mutated patients. Somatic mutations were detected in 33 of 221 patients (15%) with JAK2 (V617F)-negative essential thrombocythemia or primary myelofibrosis. Only one patient with essential thrombocythemia carried both JAK2 (V617F) and MPL (W515L). High-resolution melt analysis identified abnormal patterns in all the MPL mutated cases, while direct sequencing did not detect the mutant MPL in one fifth of them. In 3 cases carrying double MPL mutations, deep sequencing analysis showed identical load and location in cis of the paired lesions, indicating their simultaneous occurrence on the same chromosome.

  13. Atypical fibroxanthoma and pleomorphic dermal sarcoma harbor frequent NOTCH1/2 and FAT1 mutations and similar DNA copy number alteration profiles.

    PubMed

    Griewank, Klaus G; Wiesner, Thomas; Murali, Rajmohan; Pischler, Carina; Müller, Hansgeorg; Koelsche, Christian; Möller, Inga; Franklin, Cindy; Cosgarea, Ioana; Sucker, Antje; Schadendorf, Dirk; Schaller, Jörg; Horn, Susanne; Brenn, Thomas; Mentzel, Thomas

    2018-03-01

    Atypical fibroxanthomas and pleomorphic dermal sarcomas are tumors arising in sun-damaged skin of elderly patients. They have differing prognoses and are currently distinguished using histological criteria, such as invasion of deeper tissue structures, necrosis and lymphovascular or perineural invasion. To investigate the as-yet poorly understood genetics of these tumors, 41 atypical fibroxanthomas and 40 pleomorphic dermal sarcomas were subjected to targeted next-generation sequencing approaches as well as DNA copy number analysis by comparative genomic hybridization. In an analysis of the entire coding region of 341 oncogenes and tumor suppressor genes in 13 atypical fibroxanthomas using an established hybridization-based next-generation sequencing approach, we found that these tumors harbor a large number of mutations. Gene alterations were identified in more than half of the analyzed samples in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter. The presence of these alterations was verified in 26 atypical fibroxanthoma and 35 pleomorphic dermal sarcoma samples by targeted amplicon-based next-generation sequencing. Similar mutation profiles in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter were identified in both atypical fibroxanthoma and pleomorphic dermal sarcoma. Activating RAS mutations (G12 and G13) identified in 3 pleomorphic dermal sarcoma were not found in atypical fibroxanthoma. Comprehensive DNA copy number analysis demonstrated a wide array of different copy number gains and losses, with similar profiles in atypical fibroxanthoma and pleomorphic dermal sarcoma. In summary, atypical fibroxanthoma and pleomorphic dermal sarcoma are highly mutated tumors with recurrent mutations in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter, and a range of DNA copy number alterations. These findings suggest that atypical fibroxanthomas and pleomorphic dermal sarcomas are genetically related, potentially representing two ends of a common tumor spectrum

  14. PD-1 (PDCD1) Promoter Methylation Is a Prognostic Factor in Patients With Diffuse Lower-Grade Gliomas Harboring Isocitrate Dehydrogenase (IDH) Mutations.

    PubMed

    Röver, Lea Kristin; Gevensleben, Heidrun; Dietrich, Jörn; Bootz, Friedrich; Landsberg, Jennifer; Goltz, Diane; Dietrich, Dimo

    2018-02-01

    Immune checkpoints are important targets for immunotherapies. However, knowledge on the epigenetic modification of immune checkpoint genes is sparse. In the present study, we investigated promoter methylation of CTLA4, PD-L1, PD-L2, and PD-1 in diffuse lower-grade gliomas (LGG) harboring isocitrate dehydrogenase (IDH) mutations with regard to mRNA expression levels, clinicopathological parameters, previously established methylation subtypes, immune cell infiltrates, and survival in a cohort of 419 patients with IDH-mutated LGG provided by The Cancer Genome Atlas. PD-L1, PD-L2, and CTLA-4 mRNA expression levels showed a significant inverse correlation with promoter methylation (PD-L1: p=0.005; PD-L2: p<0.001; CTLA-4: p<0.001). Furthermore, immune checkpoint methylation was significantly associated with age (PD-L2: p=0.003; PD-1: p=0.015), molecular alterations, i.e. MGMT methylation (PD-L1: p<0.001; PD-L2: p<0.001), ATRX mutations (PD-L2: p<0.001, PD-1: p=0.001), and TERT mutations (PD-L1: p=0.035, PD-L2: p<0.001, PD-1: p<0.001, CTLA4: p<0.001) as well as methylation subgroups and immune cell infiltrates. In multivariate Cox proportional hazard analysis, PD-1 methylation qualified as strong prognostic factor (HR=0.51 [0.34-0.76], p=0.001). Our findings suggest an epigenetic regulation of immune checkpoint genes via DNA methylation in LGG. PD-1 methylation may assist the identification of patients that might benefit from an alternative treatment, particularly in the context of emerging immunotherapies. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Mutations in GNA11 in Uveal Melanoma

    PubMed Central

    Van Raamsdonk, Catherine D.; Griewank, Klaus G.; Crosby, Michelle B.; Garrido, Maria C.; Vemula, Swapna; Wiesner, Thomas; Obenauf, Anna C.; Wackernagel, Werner; Green, Gary; Bouvier, Nancy; Sozen, M. Mert; Baimukanova, Gail; Roy, Ritu; Heguy, Adriana; Dolgalev, Igor; Khanin, Raya; Busam, Klaus; Speicher, Michael R.; O’Brien, Joan; Bastian, Boris C.

    2011-01-01

    BACKGROUND Uveal melanoma is the most common intraocular cancer. There are no effective therapies for metastatic disease. Mutations in GNAQ, the gene encoding an alpha subunit of heterotrimeric G proteins, are found in 40% of uveal melanomas. METHODS We sequenced exon 5 of GNAQ and GNA11, a paralogue of GNAQ, in 713 melanocytic neoplasms of different types (186 uveal melanomas, 139 blue nevi, 106 other nevi, and 282 other melanomas). We sequenced exon 4 of GNAQ and GNA11 in 453 of these samples and in all coding exons of GNAQ and GNA11 in 97 uveal melanomas and 45 blue nevi. RESULTS We found somatic mutations in exon 5 (affecting Q209) and in exon 4 (affecting R183) in both GNA11 and GNAQ, in a mutually exclusive pattern. Mutations affecting Q209 in GNA11 were present in 7% of blue nevi, 32% of primary uveal melanomas, and 57% of uveal melanoma metastases. In contrast, we observed Q209 mutations in GNAQ in 55% of blue nevi, 45% of uveal melanomas, and 22% of uveal melanoma metastases. Mutations affecting R183 in either GNAQ or GNA11 were less prevalent (2% of blue nevi and 6% of uveal melanomas) than the Q209 mutations. Mutations in GNA11 induced spontaneously metastasizing tumors in a mouse model and activated the mitogen-activated protein kinase pathway. CONCLUSIONS Of the uveal melanomas we analyzed, 83% had somatic mutations in GNAQ or GNA11. Constitutive activation of the pathway involving these two genes appears to be a major contributor to the development of uveal melanoma. (Funded by the National Institutes of Health and others.) PMID:21083380

  16. The IMD innate immunity pathway of Drosophila influences somatic sex determination via regulation of the Doa locus.

    PubMed

    Zhao, Yunpo; Cocco, Claudia; Domenichini, Severine; Samson, Marie-Laure; Rabinow, Leonard

    2015-11-15

    The IMD pathway induces the innate immune response to infection by gram-negative bacteria. We demonstrate strong female-to-male sex transformations in double mutants of the IMD pathway in combination with Doa alleles. Doa encodes a protein kinase playing a central role in somatic sex determination through its regulation of alternative splicing of dsx transcripts. Transcripts encoding two specific Doa isoforms are reduced in Rel null mutant females, supporting our genetic observations. A role for the IMD pathway in somatic sex determination is further supported by the induction of female-to-male sex transformations by Dredd mutations in sensitized genetic backgrounds. In contrast, mutations in either dorsal or Dif, the two other NF-κB paralogues of Drosophila, display no effects on sex determination, demonstrating the specificity of IMD signaling. Our results reveal a novel role for the innate immune IMD signaling pathway in the regulation of somatic sex determination in addition to its role in response to microbial infection, demonstrating its effects on alternative splicing through induction of a crucial protein kinase. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Detection of isocitrate dehydrogenase 1 mutation R132H in myelodysplastic syndrome by mutation-specific antibody and direct sequencing.

    PubMed

    Andrulis, Mindaugas; Capper, David; Luft, Thomas; Hartmann, Christian; Zentgraf, Hanswalter; von Deimling, Andreas

    2010-08-01

    Sequencing of the acute myeloid leukemia genome revealed somatic mutations in isocitrate dehydrogenase-1. Acute myeloid leukemia frequently develops from myelodysplastic syndrome. In order to test whether myelodysplastic syndrome also carries isocitrate dehydrogenase-1 mutations, we stained a series of bone marrow samples from patients with myelodysplastic syndrome using an antibody specific for the R132H mutation. Three out of 71 patients exhibited antibody binding to myeloid precursor cells. The presence of the R132H mutation was confirmed by DNA sequencing. We demonstrated that isocitrate dehydrogenase-1 mutations occur in myelodysplasia preceding acute myeloid leukemia and that the R132H alteration can be detected by immunohistochemistry. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development.

    PubMed

    Ross, Jaime M; Stewart, James B; Hagström, Erik; Brené, Stefan; Mourier, Arnaud; Coppotelli, Giuseppe; Freyer, Christoph; Lagouge, Marie; Hoffer, Barry J; Olson, Lars; Larsson, Nils-Göran

    2013-09-19

    Ageing is due to an accumulation of various types of damage, and mitochondrial dysfunction has long been considered to be important in this process. There is substantial sequence variation in mammalian mitochondrial DNA (mtDNA), and the high mutation rate is counteracted by different mechanisms that decrease maternal transmission of mutated mtDNA. Despite these protective mechanisms, it is becoming increasingly clear that low-level mtDNA heteroplasmy is quite common and often inherited in humans. We designed a series of mouse mutants to investigate the extent to which inherited mtDNA mutations can contribute to ageing. Here we report that maternally transmitted mtDNA mutations can induce mild ageing phenotypes in mice with a wild-type nuclear genome. Furthermore, maternally transmitted mtDNA mutations lead to anticipation of reduced fertility in mice that are heterozygous for the mtDNA mutator allele (PolgA(wt/mut)) and aggravate premature ageing phenotypes in mtDNA mutator mice (PolgA(mut/mut)). Unexpectedly, a combination of maternally transmitted and somatic mtDNA mutations also leads to stochastic brain malformations. Our findings show that a pre-existing mutation load will not only allow somatic mutagenesis to create a critically high total mtDNA mutation load sooner but will also increase clonal expansion of mtDNA mutations to enhance the normally occurring mosaic respiratory chain deficiency in ageing tissues. Our findings suggest that maternally transmitted mtDNA mutations may have a similar role in aggravating aspects of normal human ageing.

  19. MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia

    PubMed Central

    Pikman, Yana; Lee, Benjamin H; Mercher, Thomas; McDowell, Elizabeth; Ebert, Benjamin L; Gozo, Maricel; Cuker, Adam; Wernig, Gerlinde; Moore, Sandra; Galinsky, Ilene; DeAngelo, Daniel J; Clark, Jennifer J; Lee, Stephanie J; Golub, Todd R; Wadleigh, Martha; Gilliland, D. Gary; Levine, Ross L

    2006-01-01

    Background The JAK2V617F allele has recently been identified in patients with polycythemia vera (PV), essential thrombocytosis (ET), and myelofibrosis with myeloid metaplasia (MF). Subsequent analysis has shown that constitutive activation of the JAK-STAT signal transduction pathway is an important pathogenetic event in these patients, and that enzymatic inhibition of JAK2V617F may be of therapeutic benefit in this context. However, a significant proportion of patients with ET or MF are JAK2V617F-negative. We hypothesized that activation of the JAK-STAT pathway might also occur as a consequence of activating mutations in certain hematopoietic-specific cytokine receptors, including the erythropoietin receptor (EPOR), the thrombopoietin receptor (MPL), or the granulocyte-colony stimulating factor receptor (GCSFR). Methods and Findings DNA sequence analysis of the exons encoding the transmembrane and juxtamembrane domains of EPOR, MPL, and GCSFR, and comparison with germline DNA derived from buccal swabs, identified a somatic activating mutation in the transmembrane domain of MPL (W515L) in 9% (4/45) of JAKV617F-negative MF. Expression of MPLW515L in 32D, UT7, or Ba/F3 cells conferred cytokine-independent growth and thrombopoietin hypersensitivity, and resulted in constitutive phosphorylation of JAK2, STAT3, STAT5, AKT, and ERK. Furthermore, a small molecule JAK kinase inhibitor inhibited MPLW515L-mediated proliferation and JAK-STAT signaling in vitro. In a murine bone marrow transplant assay, expression of MPLW515L, but not wild-type MPL, resulted in a fully penetrant myeloproliferative disorder characterized by marked thrombocytosis (Plt count 1.9–4.0 × 10 12/L), marked splenomegaly due to extramedullary hematopoiesis, and increased reticulin fibrosis. Conclusions Activation of JAK-STAT signaling via MPLW515L is an important pathogenetic event in patients with JAK2V617F-negative MF. The bone marrow transplant model of MPLW515L-mediated myeloproliferative

  20. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia.

    PubMed

    Pikman, Yana; Lee, Benjamin H; Mercher, Thomas; McDowell, Elizabeth; Ebert, Benjamin L; Gozo, Maricel; Cuker, Adam; Wernig, Gerlinde; Moore, Sandra; Galinsky, Ilene; DeAngelo, Daniel J; Clark, Jennifer J; Lee, Stephanie J; Golub, Todd R; Wadleigh, Martha; Gilliland, D Gary; Levine, Ross L

    2006-07-01

    The JAK2V617F allele has recently been identified in patients with polycythemia vera (PV), essential thrombocytosis (ET), and myelofibrosis with myeloid metaplasia (MF). Subsequent analysis has shown that constitutive activation of the JAK-STAT signal transduction pathway is an important pathogenetic event in these patients, and that enzymatic inhibition of JAK2V617F may be of therapeutic benefit in this context. However, a significant proportion of patients with ET or MF are JAK2V617F-negative. We hypothesized that activation of the JAK-STAT pathway might also occur as a consequence of activating mutations in certain hematopoietic-specific cytokine receptors, including the erythropoietin receptor (EPOR), the thrombopoietin receptor (MPL), or the granulocyte-colony stimulating factor receptor (GCSFR). DNA sequence analysis of the exons encoding the transmembrane and juxtamembrane domains of EPOR, MPL, and GCSFR, and comparison with germline DNA derived from buccal swabs, identified a somatic activating mutation in the transmembrane domain of MPL (W515L) in 9% (4/45) of JAKV617F-negative MF. Expression of MPLW515L in 32D, UT7, or Ba/F3 cells conferred cytokine-independent growth and thrombopoietin hypersensitivity, and resulted in constitutive phosphorylation of JAK2, STAT3, STAT5, AKT, and ERK. Furthermore, a small molecule JAK kinase inhibitor inhibited MPLW515L-mediated proliferation and JAK-STAT signaling in vitro. In a murine bone marrow transplant assay, expression of MPLW515L, but not wild-type MPL, resulted in a fully penetrant myeloproliferative disorder characterized by marked thrombocytosis (Plt count 1.9-4.0 x 10(12)/L), marked splenomegaly due to extramedullary hematopoiesis, and increased reticulin fibrosis. Activation of JAK-STAT signaling via MPLW515L is an important pathogenetic event in patients with JAK2V617F-negative MF. The bone marrow transplant model of MPLW515L-mediated myeloproliferative disorders (MPD) exhibits certain features of human MF

  1. Retigabine, a Kv7.2/Kv7.3-Channel Opener, Attenuates Drug-Induced Seizures in Knock-In Mice Harboring Kcnq2 Mutations.

    PubMed

    Ihara, Yukiko; Tomonoh, Yuko; Deshimaru, Masanobu; Zhang, Bo; Uchida, Taku; Ishii, Atsushi; Hirose, Shinichi

    2016-01-01

    The hetero-tetrameric voltage-gated potassium channel Kv7.2/Kv7.3, which is encoded by KCNQ2 and KCNQ3, plays an important role in limiting network excitability in the neonatal brain. Kv7.2/Kv7.3 dysfunction resulting from KCNQ2 mutations predominantly causes self-limited or benign epilepsy in neonates, but also causes early onset epileptic encephalopathy. Retigabine (RTG), a Kv7.2/ Kv7.3-channel opener, seems to be a rational antiepileptic drug for epilepsies caused by KCNQ2 mutations. We therefore evaluated the effects of RTG on seizures in two strains of knock-in mice harboring different Kcnq2 mutations, in comparison to the effects of phenobarbital (PB), which is the first-line antiepileptic drug for seizures in neonates. The subjects were heterozygous knock-in mice (Kcnq2Y284C/+ and Kcnq2A306T/+) bearing the Y284C or A306T Kcnq2 mutation, respectively, and their wild-type (WT) littermates, at 63-100 days of age. Seizures induced by intraperitoneal injection of kainic acid (KA, 12mg/kg) were recorded using a video-electroencephalography (EEG) monitoring system. Effects of RTG on KA-induced seizures of both strains of knock-in mice were assessed using seizure scores from a modified Racine's scale and compared with those of PB. The number and total duration of spike bursts on EEG and behaviors monitored by video recording were also used to evaluate the effects of RTG and PB. Both Kcnq2Y284C/+ and Kcnq2A306T/+ mice showed significantly more KA-induced seizures than WT mice. RTG significantly attenuated KA-induced seizure activities in both Kcnq2Y284C/+ and Kcnq2A306T/+ mice, and more markedly than PB. This is the first reported evidence of RTG ameliorating KA-induced seizures in knock-in mice bearing mutations of Kcnq2, with more marked effects than those observed with PB. RTG or other Kv7.2-channel openers may be considered as first-line antiepileptic treatments for epilepsies resulting from KCNQ2 mutations.

  2. MAX mutations status in Swedish patients with pheochromocytoma and paraganglioma tumours.

    PubMed

    Crona, Joakim; Maharjan, Rajani; Delgado Verdugo, Alberto; Stålberg, Peter; Granberg, Dan; Hellman, Per; Björklund, Peyman

    2014-03-01

    Pheochromocytoma (PCC) and Paraganglioma are rare tumours originating from neuroendocrine cells. Up to 60% of cases have either germline or somatic mutation in one of eleven described susceptibility loci, SDHA, SDHB, SDHC, SDHD, SDHAF2, VHL, EPAS1, RET, NF1, TMEM127 and MYC associated factor-X (MAX). Recently, germline mutations in MAX were found to confer susceptibility to PCC and paraganglioma (PGL). A subsequent multicentre study found about 1% of PCCs and PGLs to have germline or somatic mutations in MAX. However, there has been no study investigating the frequency of MAX mutations in a Scandinavian cohort. We analysed tumour specimens from 63 patients with PCC and PGL treated at Uppsala University hospital, Sweden, for re-sequencing of MAX using automated Sanger sequencing. Our results show that 0% (0/63) of tumours had mutations in MAX. Allele frequencies of known single nucleotide polymorphisms rs4902359, rs45440292, rs1957948 and rs1957949 corresponded to those available in the Single Nucleotide Polymorphism Database. We conclude that MAX mutations remain unusual events and targeted genetic screening should be considered after more common genetic events have been excluded.

  3. Estimating Exceptionally Rare Germline and Somatic Mutation Frequencies via Next Generation Sequencing

    PubMed Central

    Yoon, Song-Ro; Arnheim, Norman; Calabrese, Peter

    2016-01-01

    We used targeted next generation deep-sequencing (Safe Sequencing System) to measure ultra-rare de novo mutation frequencies in the human male germline by attaching a unique identifier code to each target DNA molecule. Segments from three different human genes (FGFR3, MECP2 and PTPN11) were studied. Regardless of the gene segment, the particular testis donor or the 73 different testis pieces used, the frequencies for any one of the six different mutation types were consistent. Averaging over the C>T/G>A and G>T/C>A mutation types the background mutation frequency was 2.6x10-5 per base pair, while for the four other mutation types the average background frequency was lower at 1.5x10-6 per base pair. These rates far exceed the well documented human genome average frequency per base pair (~10−8) suggesting a non-biological explanation for our data. By computational modeling and a new experimental procedure to distinguish between pre-mutagenic lesion base mismatches and a fully mutated base pair in the original DNA molecule, we argue that most of the base-dependent variation in background frequency is due to a mixture of deamination and oxidation during the first two PCR cycles. Finally, we looked at a previously studied disease mutation in the PTPN11 gene and could easily distinguish true mutations from the SSS background. We also discuss the limits and possibilities of this and other methods to measure exceptionally rare mutation frequencies, and we present calculations for other scientists seeking to design their own such experiments. PMID:27341568

  4. The Somatic Genomic Landscape of Glioblastoma

    PubMed Central

    Brennan, Cameron W.; Verhaak, Roel G.W.; McKenna, Aaron; Campos, Benito; Noushmehr, Houtan; Salama, Sofie R.; Zheng, Siyuan; Chakravarty, Debyani; Sanborn, J. Zachary; Berman, Samuel H.; Beroukhim, Rameen; Bernard, Brady; Wu, Chang-Jiun; Genovese, Giannicola; Shmulevich, Ilya; Barnholtz-Sloan, Jill; Zou, Lihua; Vegesna, Rahulsimham; Shukla, Sachet A.; Ciriello, Giovanni; Yung, WK; Zhang, Wei; Sougnez, Carrie; Mikkelsen, Tom; Aldape, Kenneth; Bigner, Darell D.; Van Meir, Erwin G.; Prados, Michael; Sloan, Andrew; Black, Keith L.; Eschbacher, Jennifer; Finocchiaro, Gaetano; Friedman, William; Andrews, David W.; Guha, Abhijit; Iacocca, Mary; O’Neill, Brian P.; Foltz, Greg; Myers, Jerome; Weisenberger, Daniel J.; Penny, Robert; Kucherlapati, Raju; Perou, Charles M.; Hayes, D. Neil; Gibbs, Richard; Marra, Marco; Mills, Gordon B.; Lander, Eric; Spellman, Paul; Wilson, Richard; Sander, Chris; Weinstein, John; Meyerson, Matthew; Gabriel, Stacey; Laird, Peter W.; Haussler, David; Getz, Gad; Chin, Lynda

    2013-01-01

    We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer. PMID:24120142

  5. The somatic genomic landscape of glioblastoma.

    PubMed

    Brennan, Cameron W; Verhaak, Roel G W; McKenna, Aaron; Campos, Benito; Noushmehr, Houtan; Salama, Sofie R; Zheng, Siyuan; Chakravarty, Debyani; Sanborn, J Zachary; Berman, Samuel H; Beroukhim, Rameen; Bernard, Brady; Wu, Chang-Jiun; Genovese, Giannicola; Shmulevich, Ilya; Barnholtz-Sloan, Jill; Zou, Lihua; Vegesna, Rahulsimham; Shukla, Sachet A; Ciriello, Giovanni; Yung, W K; Zhang, Wei; Sougnez, Carrie; Mikkelsen, Tom; Aldape, Kenneth; Bigner, Darell D; Van Meir, Erwin G; Prados, Michael; Sloan, Andrew; Black, Keith L; Eschbacher, Jennifer; Finocchiaro, Gaetano; Friedman, William; Andrews, David W; Guha, Abhijit; Iacocca, Mary; O'Neill, Brian P; Foltz, Greg; Myers, Jerome; Weisenberger, Daniel J; Penny, Robert; Kucherlapati, Raju; Perou, Charles M; Hayes, D Neil; Gibbs, Richard; Marra, Marco; Mills, Gordon B; Lander, Eric; Spellman, Paul; Wilson, Richard; Sander, Chris; Weinstein, John; Meyerson, Matthew; Gabriel, Stacey; Laird, Peter W; Haussler, David; Getz, Gad; Chin, Lynda

    2013-10-10

    We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Novel Insight into Mutational Landscape of Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Gaykalova, Daria A.; Mambo, Elizabeth; Choudhary, Ashish; Houghton, Jeffery; Buddavarapu, Kalyan; Sanford, Tiffany; Darden, Will; Adai, Alex; Hadd, Andrew; Latham, Gary; Danilova, Ludmila V.; Bishop, Justin; Li, Ryan J.; Westra, William H.; Hennessey, Patrick; Koch, Wayne M.; Ochs, Michael F.; Califano, Joseph A.; Sun, Wenyue

    2014-01-01

    Development of head and neck squamous cell carcinoma (HNSCC) is characterized by accumulation of mutations in several oncogenes and tumor suppressor genes. We have formerly described the mutation pattern of HNSCC and described NOTCH signaling pathway alterations. Given the complexity of the HNSCC, here we extend the previous study to understand the overall HNSCC mutation context and to discover additional genetic alterations. We performed high depth targeted exon sequencing of 51 highly actionable cancer-related genes with a high frequency of mutation across many cancer types, including head and neck. DNA from primary tumor tissues and matched normal tissues was analyzed for 37 HNSCC patients. We identified 26 non-synonymous or stop-gained mutations targeting 11 of 51 selected genes. These genes were mutated in 17 out of 37 (46%) studied HNSCC patients. Smokers harbored 3.2-fold more mutations than non-smokers. Importantly, TP53 was mutated in 30%, NOTCH1 in 8% and FGFR3 in 5% of HNSCC. HPV negative patients harbored 4-fold more TP53 mutations than HPV positive patients. These data confirm prior reports of the HNSCC mutational profile. Additionally, we detected mutations in two new genes, CEBPA and FES, which have not been previously reported in HNSCC. These data extend the spectrum of HNSCC mutations and define novel mutation targets in HNSCC carcinogenesis, especially for smokers and HNSCC without HPV infection. PMID:24667986

  7. Frequency of TERT promoter mutations in primary tumors of the liver.

    PubMed

    Quaas, Alexander; Oldopp, Theresa; Tharun, Lars; Klingenfeld, Catina; Krech, Till; Sauter, Guido; Grob, Tobias J

    2014-12-01

    Transcriptional regulation of the TERT gene is a major cause of the cancer-specific increase in telomerase activity. Recently, frequent somatic mutations in the TERT promoter have been described in several tumor entities such as melanoma, glioblastoma, bladder cancer, and hepatocellular carcinoma. By generating a putative consensus binding site for ETS transcription factors within the TERT promoter, these mutations are predicted to increase promoter activity and TERT transcription. In order to improve the understanding of the role of TERT promoter mutation in liver tumorigenesis, the mutational status of the TERT promoter was analyzed in 78 hepatocellular carcinomas, 15 hepatocellular adenomas, and 52 intrahepatic cholangiocarciomas. The promoter region of TERT was screened for the two hotspot mutations using PCR and restriction fragment length analysis, utilizing the introduction of novel restriction sites by the somatic mutations. TERT promoter mutation was found in 37 of 78 hepatocellular carcinomas (47 %) and was restricted to the -124C>T mutation. Frequency of mutations was associated with grade of differentiation ranging from 39 % in well-differentiated tumors to 73 % in high-grade hepatocellular carcinomas. TERT promoter mutations were not found in 15 hepatocellular adenomas and 52 intrahepatic cholangiocarcinomas. These data show that TERT promoter mutation is the most frequent genetic alteration in hepatocellular carcinoma known at this time. The striking predominance of the -124C>T mutation compared with other tumor entities suggest a biological difference of the two hotspot mutations. Analysis of TERT promoter mutation might become a diagnostic tool distinguishing hepatocellular adenoma from well-differentiated hepatocellular carcinoma.

  8. Noncoding somatic and inherited single-nucleotide variants converge to promote ESR1 expression in breast cancer

    PubMed Central

    Bailey, Swneke D.; Desai, Kinjal; Kron, Ken J.; Mazrooei, Parisa; Sinnott-Armstrong, Nicholas A.; Treloar, Aislinn E.; Dowar, Mark; Thu, Kelsie L.; Cescon, David W.; Silvester, Jennifer; Yang, S. Y. Cindy; Wu, Xue; Pezo, Rossanna C.; Haibe-Kains, Benjamin; Mak, Tak W.; Bedard, Philippe L.; Pugh, Trevor J.; Sallari, Richard C.; Lupien, Mathieu

    2016-01-01

    Sustained expression of the oestrogen receptor alpha (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon oestrogen stimulation to establish an oncogenic expression program1. Somatic copy number alterations involving the ESR1 gene occur in approximately 1% of ESR1-positive breast cancers2–5, implying that other mechanisms underlie the persistent expression of ESR1. We report the significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by a functional inherited single nucleotide variant (SNV) rs9383590 that accounts for several breast cancer risk-loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer. PMID:27571262

  9. Gps mutations in Chilean patients harboring growth hormone-secreting pituitary tumors.

    PubMed

    Johnson, M C; Codner, E; Eggers, M; Mosso, L; Rodriguez, J A; Cassorla, F

    1999-01-01

    Hypersecretion of GH is usually caused by a pituitary adenoma and about 40% of these tumors exhibit missense gsp mutations in Arg201 or Gln227 of the Gs, gene. We studied 20 pituitary tumors obtained from patients with GH hypersecretion. One tumor was resected from an 11 year-old boy with a 3 year history of accelerated growth, associated with increased concentrations of serum GH and IGF-I, which were not suppressed by glucose administration. The remaining 19 tumors were obtained from adult acromegalic patients, who had elevated baseline serum GH levels that did not show evidence of suppression after administration of glucose. The gsp mutations were studied by enzymatic digestion of the amplified PCR fragment of exon 8 (Arg201) and exon 9 (Gln227) with the enzymes NlaIII and NgoAIV, respectively. The tumors obtained from the boy and from nine of the 19 patients with acromegaly exhibited the gsp mutation R201H. None of the tumors had the Gln227 mutation. The gsp positive patients tended to be older, had smaller tumors, and had preoperative basal serum GH levels which were significantly lower (21 +/- 6 vs 56 +/- 16 microg/l, p<0.05) than the gsp negative patients. In this study, we documented the presence of a gsp mutation in Arg201 in a boy with gigantism and in approximately half of 19 Chilean adult patients with acromegaly, similar to other populations.

  10. Effectors of epidermal growth factor receptor pathway: the genetic profiling ofKRAS, BRAF, PIK3CA, NRAS mutations in colorectal cancer characteristics and personalized medicine.

    PubMed

    Shen, Yinchen; Wang, Jianfei; Han, Xiaohong; Yang, Hongying; Wang, Shuai; Lin, Dongmei; Shi, Yuankai

    2013-01-01

    Mutations in KRAS oncogene are recognized biomarkers that predict lack of response to anti- epidermal growth factor receptor (EGFR) antibody therapies. However, some patients with KRAS wild-type tumors still do not respond, so other downstream mutations in BRAF, PIK3CA and NRAS should be investigated. Herein we used direct sequencing to analyze mutation status for 676 patients in KRAS (codons 12, 13 and 61), BRAF (exon 11 and exon 15), PIK3CA (exon 9 and exon 20) and NRAS (codons12, 13 and 61). Clinicopathological characteristics associations were analyzed together with overall survival (OS) of metastatic colorectal cancer patients (mCRC). We found 35.9% (242/674) tumors harbored a KRAS mutation, 6.96% (47/675) harbored a BRAF mutation, 9.9% (62/625) harbored a PIK3CA mutation and 4.19% (26/621) harbored a NRAS mutation. KRAS mutation coexisted with BRAF, PIK3CA and NRAS mutation, PIK3CA exon9 mutation appeared more frequently in KRAS mutant tumors (P = 0.027) while NRAS mutation almost existed in KRAS wild-types (P<0.001). Female patients and older group harbored a higher KRAS mutation (P = 0.018 and P = 0.031, respectively); BRAF (V600E) mutation showed a higher frequency in colon cancer and poor differentiation tumors (P = 0.020 and P = 0.030, respectively); proximal tumors appeared a higher PIK3CA mutation (P<0.001) and distant metastatic tumors shared a higher NRAS mutation (P = 0.010). However, in this study no significant result was found between OS and gene mutation in mCRC group. To our knowledge, the first large-scale retrospective study on comprehensive genetic profile which associated with anti-EGFR MoAbs treatment selection in East Asian CRC population, appeared a specific genotype distribution picture, and the results provided a better understanding between clinicopathological characteristics and gene mutations in CRC patients.

  11. Mutational landscape of antibody variable domains reveals a switch modulating the interdomain conformational dynamics and antigen binding

    PubMed Central

    Koenig, Patrick; Lee, Chingwei V.; Walters, Benjamin T.; Janakiraman, Vasantharajan; Stinson, Jeremy; Patapoff, Thomas W.; Fuh, Germaine

    2017-01-01

    Somatic mutations within the antibody variable domains are critical to the immense capacity of the immune repertoire. Here, via a deep mutational scan, we dissect how mutations at all positions of the variable domains of a high-affinity anti-VEGF antibody G6.31 impact its antigen-binding function. The resulting mutational landscape demonstrates that large portions of antibody variable domain positions are open to mutation, and that beneficial mutations can be found throughout the variable domains. We determine the role of one antigen-distal light chain position 83, demonstrating that mutation at this site optimizes both antigen affinity and thermostability by modulating the interdomain conformational dynamics of the antigen-binding fragment. Furthermore, by analyzing a large number of human antibody sequences and structures, we demonstrate that somatic mutations occur frequently at position 83, with corresponding domain conformations observed for G6.31. Therefore, the modulation of interdomain dynamics represents an important mechanism during antibody maturation in vivo. PMID:28057863

  12. Molecular evaluation of PIK3CA gene mutation in breast cancer: determination of frequency, distribution pattern and its association with clinicopathological findings in Indian patients.

    PubMed

    Ahmad, Firoz; Badwe, Anuya; Verma, Geeta; Bhatia, Simi; Das, Bibhu Ranjan

    2016-07-01

    Somatic mutations in the PIK3CA gene are common in breast cancer and represent a clinically useful marker for prognosis and therapeutic target. Activating mutations in the PI3K p110 catalytic subunit (PIK3CA) have been identified in 18-40 % of breast carcinomas. In this study, we evaluated PIK3CA mutation in 185 Indian breast cancer patients by direct DNA sequencing. PIK3CA mutations were observed in 23.2 % (43/185) of breast tumor samples. PIK3CA mutations were more frequent exon 30 (76.8 %) than in exon 9 (23.2 %). Mutations were mostly clustered within two hotspot region between nucleotides 1624 and 1636 or between 3129 and 3140. Sequencing analysis revealed four different missense mutations at codon 542 and 545 (E542K, E545K, E545A and E545G) in the helical domain and two different amino acid substitutions at codon 1047 (H1047R and H1047L) in the kinase domain. None of the cases harbored concomitant mutations at multiple codons. PIK3CA mutations were more frequent in older patients, smaller size tumors, ductal carcinomas, grade II tumors, lymph node-positive tumors and non-DCIS tumors; however, none of the differences were significant. In addition, PIK3CA mutations were common in ER+, PR+ and HER2+ cases (30 %), and a comparatively low frequency were noted in triple-negative tumors (13.6 %). In conclusion, to our knowledge, this is the largest study to evaluate the PIK3CA mutation in Indian breast cancer patients. The frequency and distribution pattern of PIK3CA mutations is similar to global reports. Furthermore, identification of molecular markers has unique strengths and can provide insights into the pathogenic process of breast carcinomas.

  13. Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas

    PubMed Central

    Piotrowski, Arkadiusz; Xie, Jing; Liu, Ying F; Poplawski, Andrzej B; Gomes, Alicia R; Madanecki, Piotr; Fu, Chuanhua; Crowley, Michael R; Crossman, David K; Armstrong, Linlea; Babovic-Vuksanovic, Dusica; Bergner, Amanda; Blakeley, Jaishri O; Blumenthal, Andrea L; Daniels, Molly S; Feit, Howard; Gardner, Kathy; Hurst, Stephanie; Kobelka, Christine; Lee, Chung; Nagy, Rebecca; Rauen, Katherine A; Slopis, John M; Suwannarat, Pim; Westman, Judith A; Zanko, Andrea; Korf, Bruce R; Messiaen, Ludwine M

    2015-01-01

    Constitutional SMARCB1 mutations at 22q11.23 have been found in ~50% of familial and <10% of sporadic schwannomatosis cases1. We sequenced highly conserved regions along 22q from eight individuals with schwannomatosis whose schwannomas involved somatic loss of one copy of 22q, encompassing SMARCB1 and NF2, with a different somatic mutation of the other NF2 allele in every schwannoma but no mutation of the remaining SMARCB1 allele in blood and tumor samples. LZTR1 germline mutations were identified in seven of the eight cases. LZTR1 sequencing in 12 further cases with the same molecular signature identified 9 additional germline mutations. Loss of heterozygosity with retention of an LZTR1 mutation was present in all 25 schwannomas studied. Mutations segregated with disease in all available affected first-degree relatives, although four asymptomatic parents also carried an LZTR1 mutation. Our findings identify LZTR1 as a gene predisposing to an autosomal dominant inherited disorder of multiple schwannomas in ~80% of 22q-related schwannomatosis cases lacking mutation in SMARCB1. PMID:24362817

  14. The Landscape of Somatic Chromosomal Copy Number Aberrations in GEM Models of Prostate Carcinoma

    PubMed Central

    Bianchi-Frias, Daniella; Hernandez, Susana A.; Coleman, Roger; Wu, Hong; Nelson, Peter S.

    2015-01-01

    Human prostate cancer (PCa) is known to harbor recurrent genomic aberrations consisting of chromosomal losses, gains, rearrangements and mutations that involve oncogenes and tumor suppressors. Genetically engineered mouse (GEM) models have been constructed to assess the causal role of these putative oncogenic events and provide molecular insight into disease pathogenesis. While GEM models generally initiate neoplasia by manipulating a single gene, expression profiles of GEM tumors typically comprise hundreds of transcript alterations. It is unclear whether these transcriptional changes represent the pleiotropic effects of single oncogenes, and/or cooperating genomic or epigenomic events. Therefore, it was determined if structural chromosomal alterations occur in GEM models of PCa and whether the changes are concordant with human carcinomas. Whole genome array-based comparative genomic hybridization (CGH) was used to identify somatic chromosomal copy number aberrations (SCNAs) in the widely used TRAMP, Hi-Myc, Pten-null and LADY GEM models. Interestingly, very few SCNAs were identified and the genomic architecture of Hi-Myc, Pten-null and LADY tumors were essentially identical to the germline. TRAMP neuroendocrine carcinomas contained SCNAs, which comprised three recurrent aberrations including a single copy loss of chromosome 19 (encoding Pten). In contrast, cell lines derived from the TRAMP, Hi-Myc, and Pten-null tumors were notable for numerous SCNAs that included copy gains of chromosome 15 (encoding Myc) and losses of chromosome 11 (encoding p53). PMID:25298407

  15. The somatic genomic landscape of chromophobe renal cell carcinoma

    PubMed Central

    Davis, Caleb F.; Ricketts, Christopher; Wang, Min; Yang, Lixing; Cherniack, Andrew D.; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C.; Hacker, Kathryn E.; Bhanot, Gyan; Gordenin, Dmitry A.; Chu, Andy; Gunaratne, Preethi H.; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A.; Bristow, Christopher A.; Donehower, Lawrence A.; Wallen, Eric M.; Smith, Angela B.; Tickoo, Satish K.; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S.; Hsieh, James J.; Choueiri, Toni K.; Hakimi, A. Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A. Gordon; Laird, Peter W.; Henske, Elizabeth P.; Kwiatkowski, David J.; Park, Peter J.; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A.; Linehan, W. Marston; Gibbs, Richard A.; Rathmell, W. Kimryn; Creighton, Chad J.

    2014-01-01

    Summary We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) based on multidimensional and comprehensive characterization, including mitochondrial DNA (mtDNA) and whole genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared to other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT up-regulation in cancer distinct from previously-observed amplifications and point mutations. PMID:25155756

  16. Network Meta-Analysis of Erlotinib, Gefitinib, Afatinib and Icotinib in Patients with Advanced Non-Small-Cell Lung Cancer Harboring EGFR Mutations

    PubMed Central

    Zhao, Yuanyuan; Yang, Yunpeng; Hu, Zhihuang; Xue, Cong; Zhang, Jing; Zhang, Jianwei; Ma, Yuxiang; Zhou, Ting; Yan, Yue; Hou, Xue; Qin, Tao; Dinglin, Xiaoxiao; Tian, Ying; Huang, Peiyu; Huang, Yan; Zhao, Hongyun; Zhang, Li

    2014-01-01

    Background Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs) including erlotinib, gefitinib, afatinib and icotinib are currently available as treatment for patients with advanced non-small-cell lung cancer (NSCLC) who harbor EGFR mutations. However, no head to head trials between these TKIs in mutated populations have been reported, which provides room for indirect and integrated comparisons. Methods We searched electronic databases for eligible literatures. Pooled data on objective response rate (ORR), progression free survival (PFS), overall survival (OS) were calculated. Appropriate networks for different outcomes were established to incorporate all evidences. Multiple-treatments comparisons (MTCs) based on Bayesian network integrated the efficacy and specific toxicities of all included treatments. Results Twelve phase III RCTs that investigated EGFR-TKIs involving 1821 participants with EGFR mutation were included. For mutant patients, the weighted pooled ORR and 1-year PFS of EGFR-TKIs were significant superior to that of standard chemotherapy (ORR: 66.6% vs. 30.9%, OR 5.46, 95%CI 3.59 to 8.30, P<0.00001; 1-year PFS: 42.9% vs. 9.7%, OR 7.83, 95%CI 4.50 to 13.61; P<0.00001) through direct meta-analysis. In the network meta-analyses, no statistically significant differences in efficacy were found between these four TKIs with respect to all outcome measures. Trend analyses of rank probabilities revealed that the cumulative probabilities of being the most efficacious treatments were (ORR, 1-year PFS, 1-year OS, 2-year OS): erlotinib (51%, 38%, 14%, 19%), gefitinib (1%, 6%, 5%, 16%), afatinib (29%, 27%, 30%, 27%) and icotinib (19%, 29%, NA, NA), respectively. However, afatinib and erlotinib showed significant severer rash and diarrhea compared with gefitinib and icotinib. Conclusions The current study indicated that erlotinib, gefitinib, afatinib and icotinib shared equivalent efficacy but presented different efficacy-toxicity pattern for EGFR-mutated patients

  17. Network meta-analysis of erlotinib, gefitinib, afatinib and icotinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations.

    PubMed

    Liang, Wenhua; Wu, Xuan; Fang, Wenfeng; Zhao, Yuanyuan; Yang, Yunpeng; Hu, Zhihuang; Xue, Cong; Zhang, Jing; Zhang, Jianwei; Ma, Yuxiang; Zhou, Ting; Yan, Yue; Hou, Xue; Qin, Tao; Dinglin, Xiaoxiao; Tian, Ying; Huang, Peiyu; Huang, Yan; Zhao, Hongyun; Zhang, Li

    2014-01-01

    Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs) including erlotinib, gefitinib, afatinib and icotinib are currently available as treatment for patients with advanced non-small-cell lung cancer (NSCLC) who harbor EGFR mutations. However, no head to head trials between these TKIs in mutated populations have been reported, which provides room for indirect and integrated comparisons. We searched electronic databases for eligible literatures. Pooled data on objective response rate (ORR), progression free survival (PFS), overall survival (OS) were calculated. Appropriate networks for different outcomes were established to incorporate all evidences. Multiple-treatments comparisons (MTCs) based on Bayesian network integrated the efficacy and specific toxicities of all included treatments. Twelve phase III RCTs that investigated EGFR-TKIs involving 1821 participants with EGFR mutation were included. For mutant patients, the weighted pooled ORR and 1-year PFS of EGFR-TKIs were significant superior to that of standard chemotherapy (ORR: 66.6% vs. 30.9%, OR 5.46, 95%CI 3.59 to 8.30, P<0.00001; 1-year PFS: 42.9% vs. 9.7%, OR 7.83, 95%CI 4.50 to 13.61; P<0.00001) through direct meta-analysis. In the network meta-analyses, no statistically significant differences in efficacy were found between these four TKIs with respect to all outcome measures. Trend analyses of rank probabilities revealed that the cumulative probabilities of being the most efficacious treatments were (ORR, 1-year PFS, 1-year OS, 2-year OS): erlotinib (51%, 38%, 14%, 19%), gefitinib (1%, 6%, 5%, 16%), afatinib (29%, 27%, 30%, 27%) and icotinib (19%, 29%, NA, NA), respectively. However, afatinib and erlotinib showed significant severer rash and diarrhea compared with gefitinib and icotinib. The current study indicated that erlotinib, gefitinib, afatinib and icotinib shared equivalent efficacy but presented different efficacy-toxicity pattern for EGFR-mutated patients. Erlotinib and afatinib revealed

  18. Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia.

    PubMed

    Trbusek, Martin; Smardova, Jana; Malcikova, Jitka; Sebejova, Ludmila; Dobes, Petr; Svitakova, Miluse; Vranova, Vladimira; Mraz, Marek; Francova, Hana Skuhrova; Doubek, Michael; Brychtova, Yvona; Kuglik, Petr; Pospisilova, Sarka; Mayer, Jiri

    2011-07-01

    There is a distinct connection between TP53 defects and poor prognosis in chronic lymphocytic leukemia (CLL). It remains unclear whether patients harboring TP53 mutations represent a homogenous prognostic group. We evaluated the survival of patients with CLL and p53 defects identified at our institution by p53 yeast functional assay and complementary interphase fluorescence in situ hybridization analysis detecting del(17p) from 2003 to 2010. A defect of the TP53 gene was identified in 100 of 550 patients. p53 mutations were strongly associated with the deletion of 17p and the unmutated IgVH locus (both P < .001). Survival assessed from the time of abnormality detection was significantly reduced in patients with both missense (P < .001) and nonmissense p53 mutations (P = .004). In addition, patients harboring missense mutation located in p53 DNA-binding motifs (DBMs), structurally well-defined parts of the DNA-binding domain, manifested a clearly shorter median survival (12 months) compared with patients having missense mutations outside DBMs (41 months; P = .002) or nonmissense alterations (36 months; P = .005). The difference in survival was similar in the analysis limited to patients harboring mutation accompanied by del(17p) and was also confirmed in a subgroup harboring TP53 defect at diagnosis. The patients with p53 DBMs mutation (at diagnosis) also manifested a short median time to first therapy (TTFT; 1 month). The substantially worse survival and the short TTFT suggest a strong mutated p53 gain-of-function phenotype in patients with CLL with DBMs mutations. The impact of p53 DBMs mutations on prognosis and response to therapy should be analyzed in investigative clinical trials.

  19. Tumor progression: chance and necessity in Darwinian and Lamarckian somatic (mutationless) evolution.

    PubMed

    Huang, Sui

    2012-09-01

    Current investigation of cancer progression towards increasing malignancy focuses on the molecular pathways that produce the various cancerous traits of cells. Their acquisition is explained by the somatic mutation theory: tumor progression is the result of a neo-Darwinian evolution in the tissue. Herein cells are the units of selection. Random genetic mutations permanently affecting these pathways create malignant cell phenotypes that are selected for in the disturbed tissue. However, could it be that the capacity of the genome and its gene regulatory network to generate the vast diversity of cell types during development, i.e., to produce inheritable phenotypic changes without mutations, is harnessed by tumorigenesis to propel a directional change towards malignancy? Here we take an encompassing perspective, transcending the orthodoxy of molecular carcinogenesis and review mechanisms of somatic evolution beyond the Neo-Darwinian scheme. We discuss the central concept of "cancer attractors" - the hidden stable states of gene regulatory networks normally not occupied by cells. Noise-induced transitions into such attractors provide a source for randomness (chance) and regulatory constraints (necessity) in the acquisition of novel expression profiles that can be inherited across cell divisions, and hence, can be selected for. But attractors can also be reached in response to environmental signals - thus offering the possibility for inheriting acquired traits that can also be selected for. Therefore, we face the possibility of non-genetic (mutation-independent) equivalents to both Darwinian and Lamarckian evolution which may jointly explain the arrow of change pointing toward increasing malignancy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Germline and somatic FGFR1 abnormalities in dysembryoplastic neuroepithelial tumors

    PubMed Central

    Rivera, Barbara; Gayden, Tenzin; Carrot-Zhang, Jian; Nadaf, Javad; Boshari, Talia; Faury, Damien; Zeinieh, Michele; Blanc, Romeo; Burk, David L.; Fahiminiya, Somayyeh; Bareke, Eric; Schüller, Ulrich; Monoranu, Camelia M.; Sträter, Ronald; Kerl, Kornelius; Niederstadt, Thomas; Kurlemann, Gerhard; Ellezam, Benjamin; Michalak, Zuzanna; Thom, Maria; Lockhart, Paul J.; Leventer, Richard J.; Ohm, Milou; MacGregor, Duncan; Jones, David; Karamchandani, Jason; Greenwood, Celia MT; Berghuis, Albert M.; Bens, Susanne; Siebert, Reiner; Zakrzewska, Magdalena; Liberski, Pawel P.; Zakrzewski, Krzysztof; Sisodiya, Sanjay M.; Paulus, Werner; Albrecht, Steffen; Hasselblatt, Martin; Jabado, Nada; Foulkes, William D; Majewski, Jacek

    2016-01-01

    Dysembryoplastic neuroepithelial tumor (DNET) is a benign brain tumor associated with intractable drug-resistant epilepsy. In order to identify underlying genetic alterations and molecular mechanisms, we examined three family members affected by multinodular DNETs as well as 100 sporadic tumors from 96 patients, which had been referred to us as DNETs. We performed whole-exome sequencing on 46 tumors and targeted sequencing for hotspot FGFR1 mutations and BRAF p.V600E was used on the remaining samples. FISH, copy number variation assays and Sanger sequencing were used to validate the findings. By whole exome sequencing of the familial cases, we identified a novel germline FGFR1 mutation, p.R661P. Somatic activating FGFR1 mutations (p.N546K or p.K656E) were observed in the tumor samples and further evidence for functional relevance was obtained by in silico modelling. The FGFR1 p.K656E mutation was confirmed to be in cis with the germline p.R661P variant. In 43 sporadic cases, in which the diagnosis of DNET could be confirmed on central blinded neuropathology review, FGFR1 alterations were also frequent and mainly comprised intragenic tyrosine kinase FGFR1 duplication and multiple mutants in cis (25/43; 58.1%) while BRAF p.V600E alterations were absent (0/43). In contrast, in 53 cases, in which the diagnosis of DNET was not confirmed, FGFR1 alterations were less common (10/53; 19%; p<0.0001) and hotspot BRAF p.V600E (12/53; 22.6%) (p<0.001) prevailed. We observed overexpression of phospho-ERK in FGFR1 p.R661P and p.N546K mutant expressing HEK293 cells as well as FGFR1 mutated tumor samples, supporting enhanced MAP kinase pathway activation under these conditions. In conclusion, constitutional and somatic FGFR1 alterations and MAP kinase pathway activation are key events in the pathogenesis of DNET. These findings point the way towards existing targeted therapies. PMID:26920151

  1. Novel synthetic chalcones induce apoptosis in the A549 non-small cell lung cancer cells harboring a KRAS mutation.

    PubMed

    Wang, Yiqiang; Hedblom, Andreas; Koerner, Steffi K; Li, Mailin; Jernigan, Finith E; Wegiel, Barbara; Sun, Lijun

    2016-12-01

    A series of novel chalcones were synthesized by the Claisen-Schmidt condensation reaction of tetralones and 5-/6-indolecarboxaldehydes. Treatment of human lung cancer cell line harboring KRAS mutation (A549) with the chalcones induced dose-dependent apoptosis. Cell cycle analyses and Western blotting suggested the critical role of the chalcones in interrupting G2/M transition of cell cycle. SAR study demonstrated that substituent on the indole N atom significantly affects the anticancer activity of the chalcones, with methyl and ethyl providing the more active compounds (EC 50 : 110-200nM), Compound 1g was found to be >4-fold more active in the A549 cells (EC 50 : 110nM) than in prostate (PC3) or pancreatic cancer (CLR2119, PAN02) cells. Furthermore, compound 1l selectively induced apoptosis of lung cancer cells A549 (EC 50 : 0.55μM) but did not show measurable toxicity in the normal lung bronchial epithelial cells (hBEC) at doses as high as 10μM, indicating specificity towards cancer cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Impact of germline and somatic missense variations on drug binding sites.

    PubMed

    Yan, C; Pattabiraman, N; Goecks, J; Lam, P; Nayak, A; Pan, Y; Torcivia-Rodriguez, J; Voskanian, A; Wan, Q; Mazumder, R

    2017-03-01

    Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and

  3. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Pinsky, L

    1997-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 212 to 272. We have expanded the database: (i) by adding a large amount of new data on somatic mutations in prostatic cancer tissue; (ii) by defining a new constitutional phenotype, mild androgen insensitivity (MAI); (iii) by placing additional relevant information on an internet site (http://www.mcgill.ca/androgendb/ ). The database has allowed us to examine the contribution of CpG sites to the multiplicity of reports of the same mutation in different families. The database is also available from EMBL (ftp.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker Pro or Word file (MC33@musica,mcgill.ca)

  4. The androgen receptor gene mutations database.

    PubMed Central

    Gottlieb, B; Trifiro, M; Lumbroso, R; Pinsky, L

    1997-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 212 to 272. We have expanded the database: (i) by adding a large amount of new data on somatic mutations in prostatic cancer tissue; (ii) by defining a new constitutional phenotype, mild androgen insensitivity (MAI); (iii) by placing additional relevant information on an internet site (http://www.mcgill.ca/androgendb/ ). The database has allowed us to examine the contribution of CpG sites to the multiplicity of reports of the same mutation in different families. The database is also available from EMBL (ftp.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker Pro or Word file (MC33@musica,mcgill.ca) PMID:9016528

  5. Timing, rates and spectra of human germline mutation.

    PubMed

    Rahbari, Raheleh; Wuster, Arthur; Lindsay, Sarah J; Hardwick, Robert J; Alexandrov, Ludmil B; Turki, Saeed Al; Dominiczak, Anna; Morris, Andrew; Porteous, David; Smith, Blair; Stratton, Michael R; Hurles, Matthew E

    2016-02-01

    Germline mutations are a driving force behind genome evolution and genetic disease. We investigated genome-wide mutation rates and spectra in multi-sibling families. The mutation rate increased with paternal age in all families, but the number of additional mutations per year differed by more than twofold between families. Meta-analysis of 6,570 mutations showed that germline methylation influences mutation rates. In contrast to somatic mutations, we found remarkable consistency in germline mutation spectra between the sexes and at different paternal ages. In parental germ line, 3.8% of mutations were mosaic, resulting in 1.3% of mutations being shared by siblings. The number of these shared mutations varied significantly between families. Our data suggest that the mutation rate per cell division is higher during both early embryogenesis and differentiation of primordial germ cells but is reduced substantially during post-pubertal spermatogenesis. These findings have important consequences for the recurrence risks of disorders caused by de novo mutations.

  6. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations.

    PubMed

    Wardell, Christopher P; Fujita, Masashi; Yamada, Toru; Simbolo, Michele; Fassan, Matteo; Karlic, Rosa; Polak, Paz; Kim, Jaegil; Hatanaka, Yutaka; Maejima, Kazuhiro; Lawlor, Rita T; Nakanishi, Yoshitsugu; Mitsuhashi, Tomoko; Fujimoto, Akihiro; Furuta, Mayuko; Ruzzenente, Andrea; Conci, Simone; Oosawa, Ayako; Sasaki-Oku, Aya; Nakano, Kaoru; Tanaka, Hiroko; Yamamoto, Yujiro; Michiaki, Kubo; Kawakami, Yoshiiku; Aikata, Hiroshi; Ueno, Masaki; Hayami, Shinya; Gotoh, Kunihito; Ariizumi, Shun-Ichi; Yamamoto, Masakazu; Yamaue, Hiroki; Chayama, Kazuaki; Miyano, Satoru; Getz, Gad; Scarpa, Aldo; Hirano, Satoshi; Nakamura, Toru; Nakagawa, Hidewaki

    2018-05-01

    Biliary tract cancers (BTCs) are clinically and pathologically heterogeneous and respond poorly to treatment. Genomic profiling can offer a clearer understanding of their carcinogenesis, classification and treatment strategy. We performed large-scale genome sequencing analyses on BTCs to investigate their somatic and germline driver events and characterize their genomic landscape. We analyzed 412 BTC samples from Japanese and Italian populations, 107 by whole-exome sequencing (WES), 39 by whole-genome sequencing (WGS), and a further 266 samples by targeted sequencing. The subtypes were 136 intrahepatic cholangiocarcinomas (ICCs), 101 distal cholangiocarcinomas (DCCs), 109 peri-hilar type cholangiocarcinomas (PHCs), and 66 gallbladder or cystic duct cancers (GBCs/CDCs). We identified somatic alterations and searched for driver genes in BTCs, finding pathogenic germline variants of cancer-predisposing genes. We predicted cell-of-origin for BTCs by combining somatic mutation patterns and epigenetic features. We identified 32 significantly and commonly mutated genes including TP53, KRAS, SMAD4, NF1, ARID1A, PBRM1, and ATR, some of which negatively affected patient prognosis. A novel deletion of MUC17 at 7q22.1 affected patient prognosis. Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes such as BRCA1, BRCA2, RAD51D, MLH1, or MSH2 were detected in 11% (16/146) of BTC patients. BTCs have distinct genetic features including somatic events and germline predisposition. These findings could be useful to establish treatment and diagnostic strategies for BTCs based on genetic information. We here analyzed genomic features of 412 BTC samples from Japanese and Italian populations. A total of 32 significantly and commonly mutated genes were identified, some of which negatively affected patient prognosis, including a novel deletion of MUC17 at 7q22.1. Cell

  7. Identification of somatic mutations in EGFR/KRAS/ALK-negative lung adenocarcinoma in never-smokers

    PubMed Central

    2014-01-01

    Background Lung adenocarcinoma is a highly heterogeneous disease with various etiologies, prognoses, and responses to therapy. Although genome-scale characterization of lung adenocarcinoma has been performed, a comprehensive somatic mutation analysis of EGFR/KRAS/ALK-negative lung adenocarcinoma in never-smokers has not been conducted. Methods We analyzed whole exome sequencing data from 16 EGFR/KRAS/ALK-negative lung adenocarcinomas and additional 54 tumors in two expansion cohort sets. Candidate loci were validated by target capture and Sanger sequencing. Gene set analysis was performed using Ingenuity Pathway Analysis. Results We identified 27 genes potentially implicated in the pathogenesis of lung adenocarcinoma. These included targetable genes involved in PI3K/mTOR signaling (TSC1, PIK3CA, AKT2) and receptor tyrosine kinase signaling (ERBB4) and genes not previously highlighted in lung adenocarcinomas, such as SETD2 and PBRM1 (chromatin remodeling), CHEK2 and CDC27 (cell cycle), CUL3 and SOD2 (oxidative stress), and CSMD3 and TFG (immune response). In the expansion cohort (N = 70), TP53 was the most frequently altered gene (11%), followed by SETD2 (6%), CSMD3 (6%), ERBB2 (6%), and CDH10 (4%). In pathway analysis, the majority of altered genes were involved in cell cycle/DNA repair (P <0.001) and cAMP-dependent protein kinase signaling (P <0.001). Conclusions The genomic makeup of EGFR/KRAS/ALK-negative lung adenocarcinomas in never-smokers is remarkably diverse. Genes involved in cell cycle regulation/DNA repair are implicated in tumorigenesis and represent potential therapeutic targets. PMID:24576404

  8. Is MPP a good prognostic factor in stage III lung adenocarcinoma with EGFR exon 19 mutation?

    PubMed

    Zhang, Tian; Wang, Jing; Su, Yanjun; Chen, Xi; Yan, Qingna; Li, Qi; Sun, Leina; Wang, Yuwen; Er, Puchun; Pang, Qingsong; Wang, Ping

    2017-06-20

    Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein encoded by a gene located in the short arm of chromosome 7. This study aimed to investigate the clinicopathologic characteristics of classic EGFR exon mutation in Chinese patients with TMN stage III lung adenocarcinoma who received radical surgery. A total of 1,801 lung adenocarcinomas were analyzed for mutations in EGFR; 35% exhibited mutation of classic EGFR exons. Clinical and pathologic characteristics of patients with EGFR exon 19 mutation were compared with those who harbored EGFR exon 21 mutation. Patients with EGFR exon 19 mutation had a higher overall survival (OS, p=0.023) than those harboring EGFR exon 21 mutation. Our results demonstrated that patients with a micropapillary pattern (MPP) pathologic type in EGFR exon 19 mutation had a higher OS (p=0.022), and patients with exon 19 mutation were more sensitive to EGFR-tyrosine kinase inhibitors (p=0.032). The results of the current study can be used in decision-making regarding the treatment of patients with classic EGFR exon mutations.

  9. Novel recurrently mutated genes in African American colon cancers.

    PubMed

    Guda, Kishore; Veigl, Martina L; Varadan, Vinay; Nosrati, Arman; Ravi, Lakshmeswari; Lutterbaugh, James; Beard, Lydia; Willson, James K V; Sedwick, W David; Wang, Zhenghe John; Molyneaux, Neil; Miron, Alexander; Adams, Mark D; Elston, Robert C; Markowitz, Sanford D; Willis, Joseph E

    2015-01-27

    We used whole-exome and targeted sequencing to characterize somatic mutations in 103 colorectal cancers (CRC) from African Americans, identifying 20 new genes as significantly mutated in CRC. Resequencing 129 Caucasian derived CRCs confirmed a 15-gene set as a preferential target for mutations in African American CRCs. Two predominant genes, ephrin type A receptor 6 (EPHA6) and folliculin (FLCN), with mutations exclusive to African American CRCs, are by genetic and biological criteria highly likely African American CRC driver genes. These previously unsuspected differences in the mutational landscapes of CRCs arising among individuals of different ethnicities have potential to impact on broader disparities in cancer behaviors.

  10. Somatic mosaicism in Fanconi anemia: Evidence of genotypic reversion in lymphohematopoietic stem cells

    PubMed Central

    Gregory, John J.; Wagner, John E.; Verlander, Peter C.; Levran, Orna; Batish, Sat Dev; Eide, Cindy R.; Steffenhagen, Amy; Hirsch, Betsy; Auerbach, Arleen D.

    2001-01-01

    Somatic mosaicism has been observed previously in the lymphocyte population of patients with Fanconi anemia (FA). To identify the cellular origin of the genotypic reversion, we examined each lymphohematopoietic and stromal cell lineage in an FA patient with a 2815–2816ins19 mutation in FANCA and known lymphocyte somatic mosaicism. DNA extracted from individually plucked peripheral blood T cell colonies and marrow colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells revealed absence of the maternal FANCA exon 29 mutation in 74.0%, 80.3%, and 86.2% of colonies, respectively. These data, together with the absence of the FANCA exon 29 mutation in Epstein–Barr virus-transformed B cells and its presence in fibroblasts, indicate that genotypic reversion, most likely because of back mutation, originated in a lymphohematopoietic stem cell and not solely in a lymphocyte population. Contrary to a predicted increase in marrow cellularity resulting from reversion in a hematopoietic stem cell, pancytopenia was progressive. Additional evaluations revealed a partial deletion of 11q in 3 of 20 bone marrow metaphase cells. By using interphase fluorescence in situ hybridization with an MLL gene probe mapped to band 11q23 to identify colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells with the 11q deletion, the abnormal clone was exclusive to colonies with the FANCA exon 29 mutation. Thus, we demonstrate the spontaneous genotypic reversion in a lymphohematopoietic stem cell. The subsequent development of a clonal cytogenetic abnormality in nonrevertant cells suggests that ex vivo correction of hematopoietic stem cells by gene transfer may not be sufficient for providing life-long stable hematopoiesis in patients with FA. PMID:11226273

  11. Somatic and Germline TP53 Alterations in Second Malignant Neoplasms from Pediatric Cancer Survivors.

    PubMed

    Sherborne, Amy L; Lavergne, Vincent; Yu, Katharine; Lee, Leah; Davidson, Philip R; Mazor, Tali; Smirnoff, Ivan V; Horvai, Andrew E; Loh, Mignon; DuBois, Steven G; Goldsby, Robert E; Neglia, Joseph P; Hammond, Sue; Robison, Leslie L; Wustrack, Rosanna; Costello, Joseph F; Nakamura, Alice O; Shannon, Kevin M; Bhatia, Smita; Nakamura, Jean L

    2017-04-01

    Purpose: Second malignant neoplasms (SMNs) are severe late complications that occur in pediatric cancer survivors exposed to radiotherapy and other genotoxic treatments. To characterize the mutational landscape of treatment-induced sarcomas and to identify candidate SMN-predisposing variants, we analyzed germline and SMN samples from pediatric cancer survivors. Experimental Design: We performed whole-exome sequencing (WES) and RNA sequencing on radiation-induced sarcomas arising from two pediatric cancer survivors. To assess the frequency of germline TP53 variants in SMNs, Sanger sequencing was performed to analyze germline TP53 in 37 pediatric cancer survivors from the Childhood Cancer Survivor Study (CCSS) without any history of a familial cancer predisposition syndrome but known to have developed SMNs. Results: WES revealed TP53 mutations involving p53's DNA-binding domain in both index cases, one of which was also present in the germline. The germline and somatic TP53- mutant variants were enriched in the transcriptomes for both sarcomas. Analysis of TP53- coding exons in germline specimens from the CCSS survivor cohort identified a G215C variant encoding an R72P amino acid substitution in 6 patients and a synonymous SNP A639G in 4 others, resulting in 10 of 37 evaluable patients (27%) harboring a germline TP53 variant. Conclusions: Currently, germline TP53 is not routinely assessed in patients with pediatric cancer. These data support the concept that identifying germline TP53 variants at the time a primary cancer is diagnosed may identify patients at high risk for SMN development, who could benefit from modified therapeutic strategies and/or intensive posttreatment monitoring. Clin Cancer Res; 23(7); 1852-61. ©2016 AACR . ©2016 American Association for Cancer Research.

  12. Somatic GNAQ mutation in the forme fruste of Sturge-Weber syndrome

    PubMed Central

    Harvey, A. Simon; Malone, Stephen; Damiano, John A.; Do, Hongdo; Ye, Zimeng; McQuillan, Lara; Maixner, Wirginia; Kalnins, Renate; Nolan, Bernadette; Wood, Martin; Ozturk, Ezgi; Jones, Nigel C.; Gillies, Greta; Pope, Kate; Lockhart, Paul J.; Dobrovic, Alexander; Leventer, Richard J.; Scheffer, Ingrid E.

    2018-01-01

    Objective To determine whether the GNAQ R183Q mutation is present in the forme fruste cases of Sturge-Weber syndrome (SWS) to establish a definitive molecular diagnosis. Methods We used sensitive droplet digital PCR (ddPCR) to detect and quantify the GNAQ mutation in tissues from epilepsy surgery in 4 patients with leptomeningeal angiomatosis; none had ocular or cutaneous manifestations. Results Low levels of the GNAQ mutation were detected in the brain tissue of all 4 cases—ranging from 0.42% to 7.1% frequency—but not in blood-derived DNA. Molecular evaluation confirmed the diagnosis in 1 case in which the radiologic and pathologic data were equivocal. Conclusions We detected the mutation at low levels, consistent with mosaicism in the brain or skin (1.0%–18.1%) of classic cases. Our data confirm that the forme fruste is part of the spectrum of SWS, with the same molecular mechanism as the classic disease and that ddPCR is helpful where conventional diagnosis is uncertain. PMID:29725622

  13. FDA Benefit-Risk Assessment of Osimertinib for the Treatment of Metastatic Non-Small Cell Lung Cancer Harboring Epidermal Growth Factor Receptor T790M Mutation.

    PubMed

    Odogwu, Lauretta; Mathieu, Luckson; Goldberg, Kirsten B; Blumenthal, Gideon M; Larkins, Erin; Fiero, Mallorie H; Rodriguez, Lisa; Bijwaard, Karen; Lee, Eunice Y; Philip, Reena; Fan, Ingrid; Donoghue, Martha; Keegan, Patricia; McKee, Amy; Pazdur, Richard

    2018-03-01

    On March 30, 2017, the U.S. Food and Drug Administration (FDA) approved osimertinib for the treatment of patients with metastatic, epidermal growth factor receptor (EGFR) T790M mutation-positive, non-small cell lung cancer (NSCLC), as detected by an FDA-approved test, whose disease has progressed following EGFR tyrosine kinase inhibitor (TKI) therapy. Approval was based on demonstration of a statistically significant difference in the primary endpoint of progression-free survival (PFS) when comparing osimertinib with chemotherapy in an international, multicenter, open-label, randomized trial (AURA3). In this confirmatory trial, which enrolled 419 patients, the PFS hazard ratio for osimertinib compared with chemotherapy per investigator assessment was 0.30 (95% confidence interval 0.23-0.41), p  < .001, with median PFS of 10.1 months in the osimertinib arm and 4.4 months in the chemotherapy arm. Supportive efficacy data included PFS per blinded independent review committee demonstrating similar PFS results and an improved confirmed objective response rate per investigator assessment of 65% and 29%, with estimated median durations of response of 11.0 months and 4.2 months, in the osimertinib and chemotherapy arms, respectively. Patients received osimertinib 80 mg once daily and had a median duration of exposure of 8 months. The toxicity profile of osimertinib compared favorably with the profile of other approved EGFR TKIs and chemotherapy. The most common adverse drug reactions (>20%) in patients treated with osimertinib were diarrhea, rash, dry skin, nail toxicity, and fatigue. Herein, we review the benefit-risk assessment of osimertinib that led to regular approval, for patients with metastatic NSCLC harboring EGFR TKI whose disease has progressed on or after EGFR TKI therapy. Osimertinib administered to metastatic non-small cell lung cancer (NSCLC) patients harboring an EGFR T790M mutation, who have progressed on or following EGFR TKI therapy, demonstrated a

  14. SF3B1 and BAP1 mutations in blue nevus-like melanoma.

    PubMed

    Griewank, Klaus G; Müller, Hansgeorg; Jackett, Louise A; Emberger, Michael; Möller, Inga; van de Nes, Johannes Ap; Zimmer, Lisa; Livingstone, Elisabeth; Wiesner, Thomas; Scholz, Simone L; Cosgarea, Ioana; Sucker, Antje; Schimming, Tobias; Hillen, Uwe; Schilling, Bastian; Paschen, Annette; Reis, Henning; Mentzel, Thomas; Kutzner, Heinz; Rütten, Arno; Murali, Rajmohan; Scolyer, Richard A; Schadendorf, Dirk

    2017-07-01

    Blue nevi are melanocytic tumors originating in the cutaneous dermis. Malignant tumors may arise in association with or resembling blue nevi, so called 'blue nevus-like melanoma', which can metastasize and result in patient death. Identifying which tumors will behave in a clinically aggressive manner can be challenging. Identifying genetic alterations in such tumors may assist in their diagnosis and prognostication. Blue nevi are known to be genetically related to uveal melanomas (eg, both harboring GNAQ and GNA11 mutations). In this study, we analyzed a large cohort (n=301) of various morphologic variants of blue nevi and related tumors including tumors diagnosed as atypical blue nevi (n=21), and blue nevus-like melanoma (n=12), screening for all gene mutations known to occur in uveal melanoma. Similar to published reports, we found the majority of blue nevi harbored activating mutations in GNAQ (53%) or GNA11 (15%). In addition, rare CYSLTR2 (1%) and PLCB4 (1%) mutations were identified. EIF1AX, SF3B1, and BAP1 mutations were also detected, with BAP1 and SF3B1 R625 mutations being present only in clearly malignant tumors (17% (n=2) and 25% (n=3) of blue nevus-like melanoma, respectively). In sequencing data from a larger cohort of cutaneous melanomas, this genetic profile was also identified in tumors not originally diagnosed as blue nevus-like melanoma. Our findings suggest that the genetic profile of coexistent GNAQ or GNA11 mutations with BAP1 or SF3B1 mutations can aid the histopathological diagnosis of blue nevus-like melanoma and distinguish blue nevus-like melanoma from conventional epidermal-derived melanomas. Future studies will need to further elucidate the prognostic implications and appropriate clinical management for patients with tumors harboring these mutation profiles.

  15. Whole-Exome Sequencing Study of Thyrotropin-Secreting Pituitary Adenomas.

    PubMed

    Sapkota, Santosh; Horiguchi, Kazuhiko; Tosaka, Masahiko; Yamada, Syozo; Yamada, Masanobu

    2017-02-01

    Thyrotropin (TSH)-secreting pituitary adenomas (TSHomas) are a rare cause of hyperthyroidism, and the genetic aberrations responsible remain unknown. To identify somatic genetic abnormalities in TSHomas. A single-nucleotide polymorphism (SNP) array analysis was performed on 8 TSHomas. Four tumors with no allelic losses or limited loss of heterozygosity were selected, and whole-exome sequencing was performed, including their corresponding blood samples. Somatic variants were confirmed by Sanger sequencing. A set of 8 tumors was also assessed to validate candidate genes. Twelve patients with sporadic TSHomas were examined. The overall performance of whole-exome sequencing was good, with an average coverage of each base in the targeted region of 97.6%. Six DNA variants were confirmed as candidate driver mutations, with an average of 1.5 somatic mutations per tumor. No mutations were recurrent. Two of these mutations were found in genes with an established role in malignant tumorigenesis (SMOX and SYTL3), and 4 had unknown roles (ZSCAN23, ASTN2, R3HDM2, and CWH43). Similarly, an SNP array analysis revealed frequent chromosomal regions of copy number gains, including recurrent gains at loci harboring 4 of these 6 genes. Several candidate somatic mutations and changes in copy numbers for TSHomas were identified. The results showed no recurrence of mutations in the tumors studied but a low number of mutations, thereby highlighting their benign nature. Further studies on a larger cohort of TSHomas, along with the use of epigenetic and transcriptomic approaches, may reveal the underlying genetic lesions. Copyright © 2017 by the Endocrine Society

  16. Hydroxyurea enhances the activity of acyclovir and cidofovir against herpes simplex virus type 1 resistant strains harboring mutations in the thymidine kinase and/or the DNA polymerase genes.

    PubMed

    Sergerie, Yan; Boivin, Guy

    2008-01-01

    Drug-resistant herpes simplex virus type 1 (HSV-1) recombinant strains harboring mutations in the thymidine kinase and/or the DNA polymerase genes were evaluated for their susceptibility to various antivirals in the presence of 25 microg/ml of hydroxyurea (HyU). The latter compound decreased the 50% inhibitory concentrations of acyclovir by 1.5-3.8-fold and that of cidofovir by 2.7-14.4-fold. However, HyU did not affect the susceptibilities of the various recombinant mutants to foscarnet. Hydroxyurea, a ribonucleotide reductase inhibitor, can increase the activity of nucleoside/nucleotide analogues against drug-resistant viruses.

  17. Remarkable difference of somatic mutation patterns between oncogenes and tumor suppressor genes.

    PubMed

    Liu, Haoxuan; Xing, Yuhang; Yang, Sihai; Tian, Dacheng

    2011-12-01

    Cancers arise owing to mutations that confer selective growth advantages on the cells in a subset of tumor suppressor and/or oncogenes. To understand oncogenesis and diagnose cancers, it is crucial to discriminate these two groups of genes by using the difference in their mutation patterns. Here, we investigated>120,000 mutation samples in 66 well-known tumor suppressor genes and oncogenes of the COSMIC database, and found a set of significant differences in mutation patterns (e.g., non-3n-indel, non-sense SNP and mutation hotspot) between them. By screening the best measurement, we developed indices to readily distinguish one from another and predict clearly the unknown oncogenesis genes as tumor suppressors (e.g., ASXL1, HNF1A and KDM6A) or oncogenes (e.g., FOXL2, MYD88 and TSHR). Based on our results, a third gene group can be classified, which has a mutational pattern between tumor suppressors and oncogenes. The concept of the third gene group could help to understand gene function in different cancers or individual patients and to know the exact function of genes in oncogenesis. In conclusion, our study provides further insights into cancer-related genes and identifies several potential therapeutic targets.

  18. Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish.

    PubMed

    Leerberg, Dena M; Sano, Kaori; Draper, Bruce W

    2017-09-01

    The vertebrate ovary and testis develop from a sexually indifferent gonad. During early development of the organism, primordial germ cells (the gamete lineage) and somatic gonad cells coalesce and begin to undergo growth and morphogenesis to form this bipotential gonad. Although this aspect of development is requisite for a fertile adult, little is known about the genetic regulation of early gonadogenesis in any vertebrate. Here, we provide evidence that fibroblast growth factor (Fgf) signaling is required for the early growth phase of a vertebrate bipotential gonad. Based on mutational analysis in zebrafish, we show that the Fgf ligand 24 (Fgf24) is required for proliferation, differentiation, and morphogenesis of the early somatic gonad, and as a result, most fgf24 mutants are sterile as adults. Additionally, we describe the ultrastructural elements of the early zebrafish gonad and show that distinct somatic cell populations can be identified soon after the gonad forms. Specifically, we show that fgf24 is expressed in an epithelial population of early somatic gonad cells that surrounds an inner population of mesenchymal somatic gonad cells that are in direct contact with the germ cells, and that fgf24 is required for stratification of the somatic tissue. Furthermore, based on gene expression analysis, we find that differentiation of the inner mesenchymal somatic gonad cells into functional cell types in the larval and early juvenile-stage gonad is dependent on Fgf24 signaling. Finally, we argue that the role of Fgf24 in zebrafish is functionally analogous to the role of tetrapod FGF9 in early gonad development.

  19. A continuous culture system of direct somatic embryogenesis in microspore-derived embryos of Brassica juncea.

    PubMed

    Prabhudesai, V; Bhaskaran, S

    1993-03-01

    An efficient culture system has been developed for repeated cycles of somatic embryogenesis in microspore-derived embryos of Brassica juncea without a callus phase. Haploid embryos produced through anther culture showed a high propensity for direct production of somatic embryos in response to 2 mgL(-1) BA and 0.1 mgL(-1) NAA. The embryogenic cultures which comprised the elongated embryonal axis of microspore-derived embryos when explanted and grown on the medium of same composition produced a large number of secondary embryos. These somatic embryos in turn underwent axis elongation and produced more somatic embryos when explanted and cultured. This cycle of repetitive somatic embryogenesis continued with undiminished vigour passage after passage and was monitored for more than a year. Somatic embryos from any passage when isolated at cotyledonary stage and grown on auxin-free medium for 5 days and then on a medium containing NAA (0.1 mgL(-1)), developed into complete plants with a profuse root system and were easily established in the soil. The cytology of the root tips of these plants confirmed their haploid nature. The total absence of callus phase makes the system ideal for continuous cloning of androgenic lines, Agrobacterium-mediated transformation and mutation induction studies.

  20. Chronic lymphocytic leukemia with isochromosome 17q: An aggressive subgroup associated with TP53 mutations and complex karyotypes.

    PubMed

    Collado, Rosa; Puiggros, Anna; López-Guerrero, José Antonio; Calasanz, Ma José; Larráyoz, Ma José; Ivars, David; García-Casado, Zaida; Abella, Eugènia; Orero, Ma Teresa; Talavera, Elisabet; Oliveira, Ana Carla; Hernández-Rivas, Jesús Ma; Hernández-Sánchez, María; Luño, Elisa; Valiente, Alberto; Grau, Javier; Portal, Inmaculada; Gardella, Santiago; Salgado, Anna Camino; Giménez, Ma Teresa; Ardanaz, Ma Teresa; Campeny, Andrea; Hernández, José Julio; Álvarez, Sara; Espinet, Blanca; Carbonell, Félix

    2017-11-28

    Although i(17q) [i(17q)] is frequently detected in hematological malignancies, few studies have assessed its clinical role in chronic lymphocytic leukemia (CLL). We recruited a cohort of 22 CLL patients with i(17q) and described their biological characteristics, mutational status of the genes TP53 and IGHV and genomic complexity. Furthermore, we analyzed the impact of the type of cytogenetic anomaly bearing the TP53 defect on the outcome of CLL patients and compared the progression-free survival (PFS) and overall survival (OS) of i(17q) cases with those of a group of 38 CLL patients harboring other 17p aberrations. We detected IGHV somatic hypermutation in all assessed patients, and TP53 mutations were observed in 71.4% of the cases. Patients with i(17q) were more commonly associated with complex karyotypes (CK) and tended to have a poorer OS than patients with other anomalies affecting 17p13 (median OS, 44 vs 120 months, P = 0.084). Regarding chromosomal alterations, significant differences in the median OS were found among groups (P = 0.044). In conclusion, our findings provide new insights regarding i(17q) in CLL and show a subgroup with adverse prognostic features. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Germline mutations of KIT in gastrointestinal stromal tumor (GIST) and mastocytosis.

    PubMed

    Ke, Hengning; Kazi, Julhash U; Zhao, Hui; Sun, Jianmin

    2016-01-01

    Somatic mutations of KIT are frequently found in mastocytosis and gastrointestinal stromal tumor (GIST), while germline mutations of KIT are rare, and only found in few cases of familial GIST and mastocytosis. Although ligand-independent activation is the common feature of KIT mutations, the phenotypes mediated by various germline KIT mutations are different. Germline KIT mutations affect different tissues such as interstitial cells of Cajal (ICC), mast cells or melanocytes, and thereby lead to GIST, mastocytosis, or abnormal pigmentation. In this review, we summarize germline KIT mutations in familial mastocytosis and GIST and discuss the possible cellular context dependent transforming activity of KIT mutations.

  2. Extending Jak2V617F and MplW515 mutation analysis to single hematopoietic colonies and B and T lymphocytes.

    PubMed

    Pardanani, Animesh; Lasho, Terra L; Finke, Christy; Mesa, Ruben A; Hogan, William J; Ketterling, Rhett P; Gilliland, Dwight Gary; Tefferi, Ayalew

    2007-09-01

    JAK2V617F and MPLW515L/K are myeloproliferative disorder (MPD)-associated mutations. We genotyped 552 individual hematopoietic colonies obtained by CD34+ cell culture from 16 affected patients (13 JAK2V617F and 3 MPLW515L/K) to determine (a) the proportion of colonies harboring a particular mutation in the presence or absence of cytokines, (b) the lineage distribution of endogenous colonies for each mutation, and (c) the differences (if any) in the pattern of mutation among the various MPDs, as established by genotyping of individual colonies. Genotyping analysis revealed cohabitation of mutation-negative and mutation-positive endogenous colonies in polycythemia vera as well as other MPDs. Culture of progenitor cells harboring MPLW515L/K yielded virtually no endogenous erythroid colonies in contrast to JAK2V617F-harboring progenitor cells. The mutation pattern (i.e., relative distribution of homozygous, heterozygous, or wild-type colonies) was not a distinguishing feature among the MPDs, and MPLW515 mutations were detected in B and/or T lymphocytes in all three patients tested. These observations suggest that clonal myelopoiesis antedates acquisition of JAK2V617F or MPLW515L/K mutations and that the latter is acquired in a lympho-myeloid progenitor cell.

  3. Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer

    PubMed Central

    Li, Honghui; Wang, Gui; Hao, Zhiqiang; Zhang, Guozhong; Qing, Yubo; Liu, Shuanghui; Qing, Lili; Pan, Weirong; Chen, Lei; Liu, Guichun; Zhao, Ruoping; Jia, Baoyu; Zeng, Luyao; Guo, Jianxiong; Zhao, Lixiao; Zhao, Heng; Lv, Chaoxiang; Xu, Kaixiang; Cheng, Wenmin; Li, Hushan; Zhao, Hong-Ye; Wang, Wen; Wei, Hong-Jiang

    2016-01-01

    Transgenic sheep can be used to achieve genetic improvements in breeds and as an important large-animal model for biomedical research. In this study, we generated a TALEN plasmid specific for ovine MSTN and transfected it into fetal fibroblast cells of STH sheep. MSTN biallelic-KO somatic cells were selected as nuclear donor cells for SCNT. In total, cloned embryos were transferred into 37 recipient gilts, 28 (75.7%) becoming pregnant and 15 delivering, resulting in 23 lambs, 12 of which were alive. Mutations in the lambs were verified via sequencing and T7EI assay, and the gene mutation site was consistent with that in the donor cells. Off-target analysis was performed, and no off-target mutations were detected. MSTN KO affected the mRNA expression of MSTN relative genes. The growth curve for the resulting sheep suggested that MSTN KO caused a remarkable increase in body weight compared with those of wild-type sheep. Histological analyses revealed that MSTN KO resulted in muscle fiber hypertrophy. These findings demonstrate the successful generation of MSTN biallelic-KO STH sheep via gene editing in somatic cells using TALEN technology and SCNT. These MSTN mutant sheep developed and grew normally, and exhibited increased body weight and muscle growth. PMID:27654750

  4. Sequential ALK Inhibitors Can Select for Lorlatinib-Resistant Compound ALK Mutations in ALK-Positive Lung Cancer.

    PubMed

    Yoda, Satoshi; Lin, Jessica J; Lawrence, Michael S; Burke, Benjamin J; Friboulet, Luc; Langenbucher, Adam; Dardaei, Leila; Prutisto-Chang, Kylie; Dagogo-Jack, Ibiayi; Timofeevski, Sergei; Hubbeling, Harper; Gainor, Justin F; Ferris, Lorin A; Riley, Amanda K; Kattermann, Krystina E; Timonina, Daria; Heist, Rebecca S; Iafrate, A John; Benes, Cyril H; Lennerz, Jochen K; Mino-Kenudson, Mari; Engelman, Jeffrey A; Johnson, Ted W; Hata, Aaron N; Shaw, Alice T

    2018-06-01

    The cornerstone of treatment for advanced ALK-positive lung cancer is sequential therapy with increasingly potent and selective ALK inhibitors. The third-generation ALK inhibitor lorlatinib has demonstrated clinical activity in patients who failed previous ALK inhibitors. To define the spectrum of ALK mutations that confer lorlatinib resistance, we performed accelerated mutagenesis screening of Ba/F3 cells expressing EML4-ALK. Under comparable conditions, N -ethyl- N -nitrosourea (ENU) mutagenesis generated numerous crizotinib-resistant but no lorlatinib-resistant clones harboring single ALK mutations. In similar screens with EML4-ALK containing single ALK resistance mutations, numerous lorlatinib-resistant clones emerged harboring compound ALK mutations. To determine the clinical relevance of these mutations, we analyzed repeat biopsies from lorlatinib-resistant patients. Seven of 20 samples (35%) harbored compound ALK mutations, including two identified in the ENU screen. Whole-exome sequencing in three cases confirmed the stepwise accumulation of ALK mutations during sequential treatment. These results suggest that sequential ALK inhibitors can foster the emergence of compound ALK mutations, identification of which is critical to informing drug design and developing effective therapeutic strategies. Significance: Treatment with sequential first-, second-, and third-generation ALK inhibitors can select for compound ALK mutations that confer high-level resistance to ALK-targeted therapies. A more efficacious long-term strategy may be up-front treatment with a third-generation ALK inhibitor to prevent the emergence of on-target resistance. Cancer Discov; 8(6); 714-29. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 663 . ©2018 American Association for Cancer Research.

  5. CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients.

    PubMed

    Pardanani, A; Lasho, T; Smith, G; Burns, C J; Fantino, E; Tefferi, A

    2009-08-01

    Somatic mutations in Janus kinase 2 (JAK2), including JAK2V617F, result in dysregulated JAK-signal transducer and activator transcription (STAT) signaling, which is implicated in myeloproliferative neoplasm (MPN) pathogenesis. CYT387 is an ATP-competitive small molecule that potently inhibits JAK1/JAK2 kinases (IC(50)=11 and 18 nM, respectively), with significantly less activity against other kinases, including JAK3 (IC(50)=155 nM). CYT387 inhibits growth of Ba/F3-JAK2V617F and human erythroleukemia (HEL) cells (IC(50) approximately 1500 nM) or Ba/F3-MPLW515L cells (IC(50)=200 nM), but has considerably less activity against BCR-ABL harboring K562 cells (IC=58 000 nM). Cell lines harboring mutated JAK2 alleles (CHRF-288-11 or Ba/F3-TEL-JAK2) were inhibited more potently than the corresponding pair harboring mutated JAK3 alleles (CMK or Ba/F3-TEL-JAK3), and STAT-5 phosphorylation was inhibited in HEL cells with an IC(50)=400 nM. Furthermore, CYT387 selectively suppressed the in vitro growth of erythroid colonies harboring JAK2V617F from polycythemia vera (PV) patients, an effect that was attenuated by exogenous erythropoietin. Overall, our data indicate that the JAK1/JAK2 selective inhibitor CYT387 has potential for efficacious treatment of MPN harboring mutated JAK2 and MPL alleles.

  6. New mutation in the PTEN gene in a Brazilian patient with Cowden's syndrome.

    PubMed

    Lima, Erika U de; Soares, Iberê C; Danilovic, Debora L S; Marui, Suemi

    2012-11-01

    Cowden syndrome is characterized by hamartomatous polyps, trichilemmomas, increased risk of developing neoplasms, and is associated with germline mutations in the PTEN gene. We searched for germline mutations in PTEN in a 49-year-old female patient who presented trichilemmoma with previous history of breast carcinoma, and thyroidectomy for a thyroid nodule. We also searched for somatic mutations in breast and thyroid tumoral tissues. DNA was extracted from peripheral leukocytes, paraffin samples of breast carcinoma, and cytological smears of thyroid nodule fine-needle aspiration biopsy, whose final histopathological diagnosis was adenomatous goiter. PTEN was amplified and sequenced. We identified a novel mutation, due to a T>A inversion at position 159 and A>T inversion at position 160, leading to valine-to-aspartic acid substitution at position 53. The p.Val53Asp was also found in homozygous state in samples obtained from adenocarcinoma breast and thyroid biopsy, denoting loss of heterozygosity. Here, we demonstrated a novel germline mutation in PTEN, as well as somatic loss of the wild-type PTEN allele in breast and thyroid tumors in a patient with Cowden syndrome.

  7. Mutation of Breast Cancer Cell Genomic DNA by APOBEC3B

    DTIC Science & Technology

    2012-09-01

    down Yes, A3B expression increases the steady-state level of genomic uracil Fig. 2a-2c 2) Can A3B mutate a target gene to escape drug...somatic mutation in human cancer genomes. Nature 446, 153-158 (2007). 10 2 Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in...processes molding the genomes of 21 breast cancers. Cell 149, 979-993 (2012). 9 Stephens, P. J. et al. The landscape of cancer genes and mutational

  8. The somatic genomic landscape of chromophobe renal cell carcinoma.

    PubMed

    Davis, Caleb F; Ricketts, Christopher J; Wang, Min; Yang, Lixing; Cherniack, Andrew D; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C; Hacker, Kathryn E; Bhanot, Gyan; Gordenin, Dmitry A; Chu, Andy; Gunaratne, Preethi H; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A; Bristow, Christopher A; Donehower, Lawrence A; Wallen, Eric M; Smith, Angela B; Tickoo, Satish K; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S; Hsieh, James J; Choueiri, Toni K; Hakimi, A Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A Gordon; Laird, Peter W; Henske, Elizabeth P; Kwiatkowski, David J; Park, Peter J; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A; Linehan, W Marston; Gibbs, Richard A; Rathmell, W Kimryn; Creighton, Chad J

    2014-09-08

    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared with other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT upregulation in cancer distinct from previously observed amplifications and point mutations. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Clinical features and outcome of 6 new patients carrying de novo KCNB1 gene mutations.

    PubMed

    Marini, Carla; Romoli, Michele; Parrini, Elena; Costa, Cinzia; Mei, Davide; Mari, Francesco; Parmeggiani, Lucio; Procopio, Elena; Metitieri, Tiziana; Cellini, Elena; Virdò, Simona; De Vita, Dalila; Gentile, Mattia; Prontera, Paolo; Calabresi, Paolo; Guerrini, Renzo

    2017-12-01

    To describe electroclinical features and outcome of 6 patients harboring KCNB1 mutations. Clinical, EEG, neuropsychological, and brain MRI data analysis. Targeted next-generation sequencing of a 95 epilepsy gene panel. The mean age at seizure onset was 11 months. The mean follow-up of 11.3 years documented that 4 patients following an infantile phase of frequent seizures became seizure free; the mean age at seizure offset was 4.25 years. Epilepsy phenotypes comprised West syndrome in 2 patients, infantile-onset unspecified generalized epilepsy, myoclonic and photosensitive eyelid myoclonia epilepsy resembling Jeavons syndrome, Lennox-Gastaut syndrome, and focal epilepsy with prolonged occipital or clonic seizures in each and every one. Five patients had developmental delay prior to seizure onset evolving into severe intellectual disability with absent speech and autistic traits in one and stereotypic hand movements with impulse control disorder in another. The patient with Jeavons syndrome evolved into moderate intellectual disability. Mutations were de novo, 4 missense and 2 nonsense, 5 were novel, and 1 resulted from somatic mosaicism. KCNB1 -related manifestations include a spectrum of infantile-onset generalized or focal seizures whose combination leads to early infantile epileptic encephalopathy including West, Lennox-Gastaut, and Jeavons syndromes. Long-term follow-up highlights that following a stormy phase, seizures subside or cease and treatment may be eased or withdrawn. Cognitive and motor functions are almost always delayed prior to seizure onset and evolve into severe, persistent impairment. Thus, KCNB1 mutations are associated with diffuse brain dysfunction combining seizures, motor, and cognitive impairment.

  10. MO-DE-207B-01: JACK FOWLER JUNIOR INVESTIGATOR COMPETITION WINNER: Between Somatic Mutations and PET-Based Radiomic Features in Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yip, S; Coroller, T; Rios Velazquez, E

    Purpose: Although PET-based radiomic features have been proposed to quantify tumor heterogeneity and shown promise in outcome prediction, little is known about their relationship with tumor genetics. This study assessed the association of [{sup 18}F]fluorodeoxyglucose (FDG)-PET-based radiomic features with non-small cell lung cancer (NSCLC) mutations. Methods: 348 NSCLC patients underwent FDG-PET/CT scans before treatment and were tested for genetic mutations. 13% (44/348) and 28% (96/348) patients were found to harbor EGFR (EGFR+) and KRAS (KRAS+) mutations, respectively. We evaluated nineteen PET-based radiomic features quantifying phenotypic traits, and compared them with conventional PET features (metabolic tumor volume (MTV) and maximum-SUV). Themore » association between the feature values and mutation status was evaluated using the Wilcoxcon-rank-sum-test. The ability of each measure to predict mutations was assessed by the area under the receiver operating curve (AUC). Noether’s test was used to determine if the AUCs were significantly from random (AUC=0.50). All p-values were corrected for multiple testing by controlling the false discovery rate (FDR{sub Wilcoxon} and FDR{sub Noether}) of 10%. Results: Eight radiomic features, MTV, and maximum-SUV, were significantly associated with the EGFR mutation (FDR{sub Wilcoxon}=0.01–0.10). However, KRAS+ demonstrated no significantly distinctive imaging features compared to KRAS− (FDR{sub Wilcoxon}≥0.92). EGFR+ and EGFR− were significantly discriminated by conventional PET features (AUC=0.61, FDR{sub Noether}=0.04 for MTV and AUC=0.64, FDR{sub Noether}=0.01 for maximum-SUV). Eight radiomic features were significantly predictive for EGFR+ compared to EGFR− (AUC=0.59–0.67, FDR{sub Noether}=0.0032–0.09). Normalized-inverse-difference-moment outperformed all features in predicting EGFR mutation (AUC=0.67, FDR{sub Noether}=0.0032). Moreover, only the radiomic feature normalized

  11. Inhibition of FLT3 Expression by Green Tea Catechins in FLT3 Mutated-AML Cells

    PubMed Central

    Ly, Bui Thi Kim; Chi, Hoang Thanh; Yamagishi, Makoto; Kano, Yasuhiko; Hara, Yukihiko; Nakano, Kazumi; Sato, Yuko; Watanabe, Toshiki

    2013-01-01

    Acute myeloid leukemia (AML) is a heterogeneous disease characterized by a block in differentiation and uncontrolled proliferation. FLT3 is a commonly mutated gene found in AML patients. In clinical trials, the presence of a FLT3-ITD mutation significantly correlates with an increased risk of relapse and dismal overall survival. Therefore, activated FLT3 is a promising molecular target for AML therapies. In this study, we have shown that green tea polyphenols including (−)-epigallocatechin-3-gallate (EGCG), (−)-epigallocatechin (EGC), and (−)-epicatechin-3-gallate (ECG) suppress the proliferation of AML cells. Interestingly, EGCG, EGC and ECG showed the inhibition of FLT3 expression in cell lines harboring FLT3 mutations. In the THP-1 cells harboring FLT3 wild-type, EGCG showed the suppression of cell proliferation but did not suppress the expression of FLT3 even at the concentration that suppress 100% cell proliferation. Moreover, EGCG-, EGC-and ECG-treated cells showed the suppression of MAPK, AKT and STAT5 phosphorylation. Altogether, we suggest that green tea polyphenols could serve as reagents for treatment or prevention of leukemia harboring FLT3 mutations. PMID:23840454

  12. IDH2 Mutations Define a Unique Subtype of Breast Cancer with Altered Nuclear Polarity

    PubMed Central

    Chiang, Sarah; Weigelt, Britta; Wen, Huei-Chi; Pareja, Fresia; Raghavendra, Ashwini; Martelotto, Luciano G.; Burke, Kathleen A.; Basili, Thais; Li, Anqi; Geyer, Felipe C.; Piscuoglio, Salvatore; Ng, Charlotte K.Y.; Jungbluth, Achim A.; Balss, Jörg; Pusch, Stefan; Baker, Gabrielle M.; Cole, Kimberly S.; von Deimling, Andreas; Batten, Julie M.; Marotti, Jonathan D.; Soh, Hwei-Choo; McCalip, Benjamin L.; Serrano, Jonathan; Lim, Raymond S.; Siziopikou, Kalliopi P.; Lu, Song; Liu, Xiaolong; Hammour, Tarek; Brogi, Edi; Snuderl, Matija; Iafrate, A. John; Reis-Filho, Jorge S.; Schnitt, Stuart J.

    2017-01-01

    Solid papillary carcinoma with reverse polarity (SPCRP) is a rare breast cancer subtype with an obscure etiology. In this study, we sought to describe its unique histopathologic features and to identify the genetic alterations that underpin SPCRP using massively parallel whole-exome and targeted sequencing. The morphologic and immunohistochemical features of SPCRP support the invasive nature of this subtype. Ten of 13 (77%) SPCRPs harbored hotspot mutations at R172 of the isocitrate dehydrogenase IDH2, of which 8 of 10 displayed concurrent pathogenic mutations affecting PIK3CA or PIK3R1. One of the IDH2 wild-type SPCRPs harbored a TET2 Q548* truncating mutation coupled with a PIK3CA H1047R mutation. Functional studies demonstrated that IDH2 and PIK3CA hotspot mutations are likely drivers of SPCRP, resulting in its reversed nuclear polarization phenotype. Our results offer a molecular definition of SPCRP as a distinct breast cancer subtype. Concurrent IDH2 and PIK3CA mutations may help diagnose SPCRP and possibly direct effective treatment. PMID:27913435

  13. A Simple Model-Based Approach to Inferring and Visualizing Cancer Mutation Signatures

    PubMed Central

    Shiraishi, Yuichi; Tremmel, Georg; Miyano, Satoru; Stephens, Matthew

    2015-01-01

    Recent advances in sequencing technologies have enabled the production of massive amounts of data on somatic mutations from cancer genomes. These data have led to the detection of characteristic patterns of somatic mutations or “mutation signatures” at an unprecedented resolution, with the potential for new insights into the causes and mechanisms of tumorigenesis. Here we present new methods for modelling, identifying and visualizing such mutation signatures. Our methods greatly simplify mutation signature models compared with existing approaches, reducing the number of parameters by orders of magnitude even while increasing the contextual factors (e.g. the number of flanking bases) that are accounted for. This improves both sensitivity and robustness of inferred signatures. We also provide a new intuitive way to visualize the signatures, analogous to the use of sequence logos to visualize transcription factor binding sites. We illustrate our new method on somatic mutation data from urothelial carcinoma of the upper urinary tract, and a larger dataset from 30 diverse cancer types. The results illustrate several important features of our methods, including the ability of our new visualization tool to clearly highlight the key features of each signature, the improved robustness of signature inferences from small sample sizes, and more detailed inference of signature characteristics such as strand biases and sequence context effects at the base two positions 5′ to the mutated site. The overall framework of our work is based on probabilistic models that are closely connected with “mixed-membership models” which are widely used in population genetic admixture analysis, and in machine learning for document clustering. We argue that recognizing these relationships should help improve understanding of mutation signature extraction problems, and suggests ways to further improve the statistical methods. Our methods are implemented in an R package pmsignature (https

  14. Drug Resistance Missense Mutations in Cancer Are Subject to Evolutionary Constraints

    PubMed Central

    Friedman, Ran

    2013-01-01

    Several tumour types are sensitive to deactivation of just one or very few genes that are constantly active in the cancer cells, a phenomenon that is termed ‘oncogene addiction’. Drugs that target the products of those oncogenes can yield a temporary relief, and even complete remission. Unfortunately, many patients receiving oncogene-targeted therapies relapse on treatment. This often happens due to somatic mutations in the oncogene (‘resistance mutations’). ‘Compound mutations’, which in the context of cancer drug resistance are defined as two or more mutations of the drug target in the same clone may lead to enhanced resistance against the most selective inhibitors. Here, it is shown that the vast majority of the resistance mutations occurring in cancer patients treated with tyrosin kinase inhibitors aimed at three different proteins follow an evolutionary pathway. Using bioinformatic analysis tools, it is found that the drug-resistance mutations in the tyrosine kinase domains of Abl1, ALK and exons 20 and 21 of EGFR favour transformations to residues that can be identified in similar positions in evolutionary related proteins. The results demonstrate that evolutionary pressure shapes the mutational landscape in the case of drug-resistance somatic mutations. The constraints on the mutational landscape suggest that it may be possible to counter single drug-resistance point mutations. The observation of relatively many resistance mutations in Abl1, but not in the other genes, is explained by the fact that mutations in Abl1 tend to be biochemically conservative, whereas mutations in EGFR and ALK tend to be radical. Analysis of Abl1 compound mutations suggests that such mutations are more prevalent than hitherto reported and may be more difficult to counter. This supports the notion that such mutations may provide an escape route for targeted cancer drug resistance. PMID:24376513

  15. Early onset of colorectal cancer in a 13-year-old girl with Lynch syndrome.

    PubMed

    Ahn, Do Hee; Rho, Jung Hee; Tchah, Hann; Jeon, In-Sang

    2016-01-01

    Lynch syndrome is the most common inherited colon cancer syndrome. Patients with Lynch syndrome develop a range of cancers including colorectal cancer (CRC) and carry a mutation on one of the mismatched repair (MMR) genes. Although CRC usually occurs after the fourth decade in patients with Lynch syndrome harboring a heterozygous MMR gene mutation, it can occur in children with Lynch syndrome who have a compound heterozygous or homozygous MMR gene mutation. We report a case of CRC in a 13-year-old patient with Lynch syndrome and congenital heart disease. This patient had a heterozygous mutation in MLH1 (an MMR gene), but no compound MMR gene defects, and a K-RAS somatic mutation in the cancer cells.

  16. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas: Mutational signature associated with MUTYH deficiency in cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilati, Camilla; Shinde, Jayendra; Alexandrov, Ludmil B.

    Germline alterations in DNA repair genes are implicated in cancer predisposition and can result in characteristic mutational signatures. However, specific mutational signatures associated with base excision repair (BER) defects remain to be characterized. Here, by analysing a series of colorectal cancers (CRCs) using exome sequencing, we identified a particular spectrum of somatic mutations characterized by an enrichment of C > A transversions in NpCpA or NpCpT contexts in three tumours from a MUTYH-associated polyposis (MAP) patient and in two cases harbouring pathogenic germline MUTYH mutations. In two series of adrenocortical carcinomas (ACCs), we identified four tumours with a similar signaturemore » also presenting germline MUTYH mutations. Altogether, these findings demonstrate that MUTYH inactivation results in a particular mutational signature, which may serve as a useful marker of BER-related genomic instability in new cancer types.« less

  17. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas: Mutational signature associated with MUTYH deficiency in cancers

    DOE PAGES

    Pilati, Camilla; Shinde, Jayendra; Alexandrov, Ludmil B.; ...

    2017-03-29

    Germline alterations in DNA repair genes are implicated in cancer predisposition and can result in characteristic mutational signatures. However, specific mutational signatures associated with base excision repair (BER) defects remain to be characterized. Here, by analysing a series of colorectal cancers (CRCs) using exome sequencing, we identified a particular spectrum of somatic mutations characterized by an enrichment of C > A transversions in NpCpA or NpCpT contexts in three tumours from a MUTYH-associated polyposis (MAP) patient and in two cases harbouring pathogenic germline MUTYH mutations. In two series of adrenocortical carcinomas (ACCs), we identified four tumours with a similar signaturemore » also presenting germline MUTYH mutations. Altogether, these findings demonstrate that MUTYH inactivation results in a particular mutational signature, which may serve as a useful marker of BER-related genomic instability in new cancer types.« less

  18. Primary cutaneous B-cell lymphoma is associated with somatically hypermutated immunoglobulin variable genes and frequent use of VH1-69 and VH4-59 segments.

    PubMed

    Perez, M; Pacchiarotti, A; Frontani, M; Pescarmona, E; Caprini, E; Lombardo, G A; Russo, G; Faraggiana, T

    2010-03-01

    Accurate assessment of the somatic mutational status of clonal immunoglobulin variable region (IgV) genes is relevant in elucidating tumour cell origin in B-cell lymphoma; virgin B cells bear unmutated IgV genes, while germinal centre and postfollicular B cells carry mutated IgV genes. Furthermore, biases in the IgV repertoire and distribution pattern of somatic mutations indicate a possible antigen role in the pathogenesis of B-cell malignancies. This work investigates the cellular origin and antigenic selection in primary cutaneous B-cell lymphoma (PCBCL). We analysed the nucleotide sequence of clonal IgV heavy-chain gene (IgVH) rearrangements in 51 cases of PCBCL (25 follicle centre, 19 marginal zone and seven diffuse large B-cell lymphoma, leg-type) and compared IgVH sequences with their closest germline segment in the GenBank database. Molecular data were then correlated with histopathological features. We showed that all but one of the 51 IgVH sequences analysed exhibited extensive somatic hypermutations. The detected mutation rate ranged from 1.6% to 21%, with a median rate of 9.8% and was independent of PCBCL histotype. Calculation of antigen-selection pressure showed that 39% of the mutated IgVH genes displayed a number of replacement mutations and silent mutations in a pattern consistent with antigenic selection. Furthermore, two segments, VH1-69 (12%) and VH4-59 (14%), were preferentially used in our case series. Data indicate that neoplastic B cells of PBCBL have experienced germinal centre reaction and also suggest that the involvement of IgVH genes is not entirely random in PCBCL and that common antigen epitopes could be pathologically relevant in cutaneous lymphomagenesis.

  19. Effect of Cryopreservation and Post-Cryopreservation Somatic Embryogenesis on the Epigenetic Fidelity of Cocoa (Theobroma cacao L.).

    PubMed

    Adu-Gyamfi, Raphael; Wetten, Andy; Marcelino Rodríguez López, Carlos

    2016-01-01

    While cocoa plants regenerated from cryopreserved somatic embryos can demonstrate high levels of phenotypic variability, little is known about the sources of the observed variability. Previous studies have shown that the encapsulation-dehydration cryopreservation methodology imposes no significant extra mutational load since embryos carrying high levels of genetic variability are selected against during protracted culture. Also, the use of secondary rather than primary somatic embryos has been shown to further reduce the incidence of genetic somaclonal variation. Here, the effect of in vitro conservation, cryopreservation and post-cryopreservation generation of somatic embryos on the appearance of epigenetic somaclonal variation were comparatively assessed. To achieve this we compared the epigenetic profiles, generated using Methylation Sensitive Amplified Polymorphisms, of leaves collected from the ortet tree and from cocoa somatic embryos derived from three in vitro conditions: somatic embryos, somatic embryos cryopreserved in liquid nitrogen and somatic embryos generated from cryoproserved somatic embryos. Somatic embryos accumulated epigenetic changes but these were less extensive than in those regenerated after storage in LN. Furthermore, the passage of cryopreserved embryos through another embryogenic stage led to further increase in variation. Interestingly, this detected variability appears to be in some measure reversible. The outcome of this study indicates that the cryopreservation induced phenotypic variability could be, at least partially, due to DNA methylation changes. Phenotypic variability observed in cryostored cocoa somatic-embryos is epigenetic in nature. This variability is partially reversible, not stochastic in nature but a directed response to the in-vitro culture and cryopreservation.

  20. Effect of Cryopreservation and Post-Cryopreservation Somatic Embryogenesis on the Epigenetic Fidelity of Cocoa (Theobroma cacao L.)

    PubMed Central

    Adu-Gyamfi, Raphael; Wetten, Andy; Marcelino Rodríguez López, Carlos

    2016-01-01

    While cocoa plants regenerated from cryopreserved somatic embryos can demonstrate high levels of phenotypic variability, little is known about the sources of the observed variability. Previous studies have shown that the encapsulation-dehydration cryopreservation methodology imposes no significant extra mutational load since embryos carrying high levels of genetic variability are selected against during protracted culture. Also, the use of secondary rather than primary somatic embryos has been shown to further reduce the incidence of genetic somaclonal variation. Here, the effect of in vitro conservation, cryopreservation and post-cryopreservation generation of somatic embryos on the appearance of epigenetic somaclonal variation were comparatively assessed. To achieve this we compared the epigenetic profiles, generated using Methylation Sensitive Amplified Polymorphisms, of leaves collected from the ortet tree and from cocoa somatic embryos derived from three in vitro conditions: somatic embryos, somatic embryos cryopreserved in liquid nitrogen and somatic embryos generated from cryoproserved somatic embryos. Somatic embryos accumulated epigenetic changes but these were less extensive than in those regenerated after storage in LN. Furthermore, the passage of cryopreserved embryos through another embryogenic stage led to further increase in variation. Interestingly, this detected variability appears to be in some measure reversible. The outcome of this study indicates that the cryopreservation induced phenotypic variability could be, at least partially, due to DNA methylation changes. Key message: Phenotypic variability observed in cryostored cocoa somatic-embryos is epigenetic in nature. This variability is partially reversible, not stochastic in nature but a directed response to the in-vitro culture and cryopreservation. PMID:27403857