Sample records for harbor training walls

  1. 25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING WEST FROM A POINT ABOUT 500 FEET FROM THE MIDDLE HARBOR PARK FISHING PIER. (Panoramic view 1 of 2). - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  2. 22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM THE SAME POINT AS VIEW NO. 21. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  3. 13. THE SAME NORTH TRAINING WALL TOP SURFACE, LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. THE SAME NORTH TRAINING WALL TOP SURFACE, LOOKING EAST FROM ATOP ADJACENT RIPRAP. THE TRAINING WALL IS TO THE RIGHT OF THE JUMBLED, LIGHT TONED RIPRAP. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  4. 15. MASONRY DETAIL NO. 1, NORTH TRAINING WALL, LOOKING DOWN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. MASONRY DETAIL NO. 1, NORTH TRAINING WALL, LOOKING DOWN UPON THE WALL SURFACE FROM THE ADJACENT RIPRAP. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  5. 29. DETAIL, RUINS OF THE NORTH TRAINING WALL AT THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. DETAIL, RUINS OF THE NORTH TRAINING WALL AT THE EAST END, WHERE IT TURNS TO THE NORTH AND IS BURIED. LOOKING WEST FROM THE MIDDLE HARBOR PARK FISHING PIER. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  6. 28. EAST END OF THE NORTH TRAINING WALL AT THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. EAST END OF THE NORTH TRAINING WALL AT THE FISHING PIER, FROM THE WATER, LOOKING NORTH-NORTHEAST. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  7. 16. MASONRY DETAIL NO. 2, NORTH TRAINING WALL, SHOWING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. MASONRY DETAIL NO. 2, NORTH TRAINING WALL, SHOWING THE RUBBLE CORE WHERE THE FACING STONES HAVE BEEN REMOVED. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  8. 14. A CLOSER VIEW OF THE NORTH WALL TOP SURFACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. A CLOSER VIEW OF THE NORTH WALL TOP SURFACE MASONRY, LOOKING EAST FROM A POINT NEAR THE PREVIOUS VIEW. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  9. INTERIOR VIEW OF SOUTHWEST WALL OF SECOND FLOOR SHOWING WINDOWS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF SOUTHWEST WALL OF SECOND FLOOR SHOWING WINDOWS, SLIDING DOORS AND METAL ROOF FRAMING. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  10. Long-term morphological developments of river channels separated by a longitudinal training wall

    NASA Astrophysics Data System (ADS)

    Le, T. B.; Crosato, A.; Uijttewaal, W. S. J.

    2018-03-01

    Rivers have been trained for centuries by channel narrowing and straightening. This caused important damages to their ecosystems, particularly around the bank areas. We analyze here the possibility to train rivers in a new way by subdividing their channel in main and ecological channel with a longitudinal training wall. The effectiveness of longitudinal training walls in achieving this goal and their long-term effects on the river morphology have not been thoroughly investigated yet. In particular, studies that assess the stability of the two parallel channels separated by the training wall are still lacking. This work studies the long-term morphological developments of river channels subdivided by a longitudinal training wall in the presence of steady alternate bars. This type of bars, common in alluvial rivers, alters the flow field and the sediment transport direction and might affect the stability of the bifurcating system. The work comprises both laboratory experiments and numerical simulations (Delft3D). The results show that a system of parallel channels divided by a longitudinal training wall has the tendency to become unstable. An important factor is found to be the location of the upstream termination of the longitudinal wall with respect to a neighboring steady bar. The relative widths of the two parallel channels separated by the wall and variable discharge do not substantially change the final evolution of the system.

  11. Stepped chute training wall height requirements

    USDA-ARS?s Scientific Manuscript database

    Stepped chutes are commonly used for overtopping protection for embankment dams. Aerated flow is commonly associated with stepped chutes if the chute has sufficient length. The aeration and turbulence of the flow can create a significant amount of splash over the training wall if not appropriately...

  12. Local and systemic effects of leg cycling training on arterial wall thickness in healthy humans.

    PubMed

    Thijssen, Dick H J; Dawson, Ellen A; van den Munckhof, Inge C L; Birk, Gurpreet K; Timothy Cable, N; Green, Daniel J

    2013-08-01

    Exercise training is associated with direct effects on conduit artery function and structure. Cross-sectional studies suggest the presence of systemic changes in wall thickness as a result of exercise in healthy subjects, but no previous study has examined this question in humans undertaking exercise training. To examine the change in superficial femoral (SFA, i.e. local effect) and carotid (CA, i.e. systemic effect) artery wall thickness across 8 weeks of lower limb cycle training in healthy young men. Fourteen healthy young male subjects were assigned to an 8-week training study of cycling exercise (n = 9) or a control period (n = 5). Before, during (2, 4 and 6 weeks) and after training, SFA and CA wall thickness was examined using automated edge-detection of high resolution ultrasound images. We also measured resting diameter and calculated the wall:lumen(W:L)-ratio. Exercise training did not alter CA or SFA baseline diameter (P = 0.14), but was associated with gradual, consistent and significant decreases in wall thickness and W:L-ratio in both the CA and SFA (P < 0.001 and 0.002, respectively). Two-way ANOVA revealed a comparable magnitude of decrease in wall thickness and W:L-ratio in both arteries across the 8-week period (interaction-effect; P = 0.29 and 0.12, respectively). No changes in artery diameter, wall thickness or W:L-ratio were apparent in controls (0.82, 0.38 and 0.52, respectively). We found that cycle exercise training in healthy young individuals is associated with modest, but significant, decreases in wall thickness in the superficial femoral and carotid arteries. These findings suggest that exercise training causes systemic adaptation of the arterial wall in healthy young subjects. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. 27. A VIEW TOWARD THE FISHING PIER AT THE EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. A VIEW TOWARD THE FISHING PIER AT THE EAST END OF THE NORTH TRAINING WALL, SHOWING SIDE WALL CONSTRUCTION. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  14. Analysis of role-play in medical communication training using a theatrical device the fourth wall

    PubMed Central

    Jacobsen, Torild; Baerheim, Anders; Lepp, Margret Rose; Schei, Edvin

    2006-01-01

    Background Communication training is a central part of medical education. The aim of this article is to explore the positions and didactic functions of the fourth wall in medical communication training, using a role-play model basically similar to a theatrical performance. Method The empirical data stem from a communication training model demonstrated at an international workshop for medical teachers and course organizers. The model involves an actress playing a patient, students alternating in the role of the doctor, and a teacher who moderates. The workshop was videotaped and analyzed qualitatively. Results The analysis of the empirical material revealed three main locations of the fourth wall as it moved and changed qualities during the learning session: 1) A traditional theatre location, where the wall was transparent for the audience, but opaque for the participants in the fiction. 2) A "timeout/reflection" location, where the wall was doubly opaque, for the patient on the one side and the moderator, the doctor and the audience on the other side and 3) an "interviewing the character" location where the wall enclosed everybody in the room. All three locations may contribute to the learning process. Conclusion The theatrical concept 'the fourth wall' may present an additional tool for new understanding of fiction based communication training. Increased understanding of such an activity may help medical teachers/course organizers in planning and evaluating communication training courses. PMID:17040575

  15. 14. DETAIL OF TRANSITION FROM WING WALL TO CONCRETE RETAINING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL OF TRANSITION FROM WING WALL TO CONCRETE RETAINING WALL AT SOUTHERN END OF DAM - Upper Doughty Dam, 200 feet west of Garden State Parkway, 1.7 miles west of Absecon, Egg Harbor City, Atlantic County, NJ

  16. 6. North wall and east end of air brake shop ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. North wall and east end of air brake shop section of roundhouse at center. East end of boiler shop section of roundhouse to the right of air brake shop. East end of blacksmith shop section of roundhouse at far right. View to southeast. - Duluth & Iron Range Rail Road Company Shops, Roundhouse, Southwest of downtown Two Harbors, northwest of Agate Bay, Two Harbors, Lake County, MN

  17. Numerical study on transient harbor oscillations induced by successive solitary waves

    NASA Astrophysics Data System (ADS)

    Gao, Junliang; Ji, Chunyan; Liu, Yingyi; Ma, Xiaojian; Gaidai, Oleg

    2018-02-01

    Tsunamis are traveling waves which are characterized by long wavelengths and large amplitudes close to the shore. Due to the transformation of tsunamis, undular bores have been frequently observed in the coastal zone and can be viewed as a sequence of solitary waves with different wave heights and different separation distances among them. In this article, transient harbor oscillations induced by incident successive solitary waves are first investigated. The transient oscillations are simulated by a fully nonlinear Boussinesq model, FUNWAVE-TVD. The incident successive solitary waves include double solitary waves and triple solitary waves. This paper mainly focuses on the effects of different waveform parameters of the incident successive solitary waves on the relative wave energy distribution inside the harbor. These wave parameters include the incident wave height, the relative separation distance between adjacent crests, and the number of elementary solitary waves in the incident wave train. The relative separation distance between adjacent crests is defined as the ratio of the distance between adjacent crests in the incident wave train to the effective wavelength of the single solitary wave. Maximum oscillations inside the harbor excited by various incident waves are also discussed. For comparison, the transient oscillation excited by the single solitary wave is also considered. The harbor used in this paper is assumed to be long and narrow and has constant depth; the free surface movement inside the harbor is essentially one-dimensional. This study reveals that, for the given harbor and for the variation ranges of all the waveform parameters of the incident successive solitary waves studied in this paper, the larger incident wave heights and the smaller number of elementary solitary waves in the incident tsunami lead to a more uniform relative wave energy distribution inside the harbor. For the successive solitary waves, the larger relative separation distance

  18. U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  19. Frequency Domain Response at Pacific Coast Harbors to Major Tsunamis of 2005-2011

    NASA Astrophysics Data System (ADS)

    Xing, Xiuying; Kou, Zhiqing; Huang, Ziyi; Lee, Jiin-Jen

    2013-06-01

    Tsunamis waves caused by submarine earthquake or landslide might contain large wave energy, which could cause significant human loss and property damage locally as well as in distant region. The response of three harbors located at the Pacific coast (i.e. Crescent City Harbor, Los Angeles/Long Beach Port, and San Diego Harbor) to six well-known tsunamis events generated (both near-field and far-field) between 2005 and 2011 are examined and simulated using a hybrid finite element numerical model in frequency domain. The model incorporated the effects of wave refraction, wave diffraction, partial wave reflection from boundaries, entrance and bottom energy dissipation. It can be applied to harbor regions with arbitrary shapes and variable water depth. The computed resonant periods or modes of oscillation for three harbors are in good agreement with the energy spectral analysis of the time series of water surface elevations recorded at tide gauge stations inside three harbors during the six tsunamis events. The computed wave induced currents based on the present model are also in qualitative agreement with some of the reported eye-witness accounts absence of reliable current data. The simulated results show that each harbor responded differently and significantly amplified certain wave period(s) of incident wave trains according to the shape, topography, characteristic dimensions and water depth of the harbor basins.

  20. FANS Simulation of Propeller Wash at Navy Harbors (ESTEP Project ER-201031)

    DTIC Science & Technology

    2016-08-01

    this study, the Finite-Analytic Navier–Stokes code was employed to solve the Reynolds-Averaged Navier–Stokes equations in conjunction with advanced...site-specific harbor configurations, it is desirable to perform propeller wash study by solving the Navier–Stokes equations directly in conjunction ...Analytic Navier–Stokes code was employed to solve the Reynolds-Averaged Navier–Stokes equations in conjunction with advanced near-wall turbulence

  1. 33 CFR 100.109 - Winter Harbor Lobster Boat Race, Winter Harbor, ME.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Winter Harbor Lobster Boat Race, Winter Harbor, ME. 100.109 Section 100.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Lobster Boat Race, Winter Harbor, ME. (a) Regulated area. The regulated area includes all waters of Winter...

  2. Impact of Age and Aerobic Exercise Training on Conduit Artery Wall Thickness: Role of the Shear Pattern.

    PubMed

    Tanahashi, Koichiro; Kosaki, Keisei; Sawano, Yuriko; Yoshikawa, Toru; Tagawa, Kaname; Kumagai, Hiroshi; Akazawa, Nobuhiko; Maeda, Seiji

    2017-01-01

    Hemodynamic shear stress is the frictional force of blood on the arterial wall. The shear pattern in the conduit artery affects the endothelium and may participate in the development and progression of atherosclerosis. We investigated the role of the shear pattern in age- and aerobic exercise-induced changes in conduit artery wall thickness via cross-sectional and interventional studies. In a cross-sectional study, we found that brachial shear rate patterns and brachial artery intima-media thickness (IMT) correlated with age. Additionally, brachial artery shear rate patterns were associated with brachial artery IMT in 102 middle-aged and older individuals. In an interventional study, 39 middle-aged and older subjects were divided into 2 groups: control and exercise. The exercise group completed 12 weeks of aerobic exercise training. Aerobic exercise training significantly increased the antegrade shear rate and decreased the retrograde shear rate and brachial artery IMT. Moreover, changes in the brachial artery antegrade shear rate and the retrograde shear rate correlated with the change in brachial artery IMT. The results of the present study indicate that changes in brachial artery shear rate patterns may contribute to age- and aerobic exercise training-induced changes in brachial artery wall thickness. © 2017 S. Karger AG, Basel.

  3. The historical significance of anaesthesia events at Pearl Harbor.

    PubMed

    Crowhurst, Ja

    2014-07-01

    Up to the end of World War II, less than 10% of the general anaesthetics administered was with intravenous barbiturates. The remaining 90% of anaesthetics given in the USA were with diethyl ether. In the United Kingdom and elsewhere, chloroform was also popular. Diethyl ether administration was a relatively safe and simple procedure, often delegated to nurses or junior doctors with little or no specific training in anaesthesia. During the Japanese attack on the US bases at Pearl Harbor, with reduced stocks of diethyl ether available, intravenous Sodium Pentothal(®), a most 'sophisticated and complex' drug, was used with devastating effects in many of those hypovolaemic, anaemic and septic patients. The hazards of spinal anaesthesia too were realised very quickly. These effects were compounded by the dearth of trained anaesthetists. This paper presents the significance of the anaesthesia tragedies at Pearl Harbor, and the discovery in the next few years of many other superior drugs that caused medical and other health professionals to realise that anaesthesia needed to be a specialist medical discipline in its own right. Specialist recognition, aided by the foundation of the National Health Service in the UK, the establishment of Faculties of Anaesthesia and appropriate training in pharmacology, physiology and other sciences soon followed. Modern anaesthesiology, as we understand it today, was born and a century or more of ether anaesthesia finally ceased.

  4. Interior detail of south wall with shed roofs showing steel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior detail of south wall with shed roofs showing steel structure, paint room on lower right, view facing west-southwest - U.S. Naval Base, Pearl Harbor, Boat Shop, Seventh Street near Avenue E, Pearl City, Honolulu County, HI

  5. CFD Modelling of Local Hemodynamics in Intracranial Aneurysms Harboring Arterial Branches.

    PubMed

    Krylov, Vladimir; Grigoryeva, Elena; Dolotova, Daria; Blagosklonova, Evgenia; Gavrilov, Andrey

    2017-01-01

    The main cause of non-traumatic subarachnoid haemorrhage is an intracranial aneurysm's rupture. The choice of treatment approach is exceptionally difficult in cases of aneurysms with additional branches on the aneurysm's dome or neck. The impact of the arterial branches on local hemodynamics is still unclear and controversial question. At the same time, up-to-date methods of image processing and mathematical modeling provide a way to investigate the hemodynamic environment of aneurysms. The paper discusses hemodynamic aspects of aneurysms harboring arterial branch through the use of patient-specific 3D models and computational fluid dynamics (CFD) methods. The analysis showed that the presence of the arterial branches has a great influence on flow streamlines and wall shear stress, particularly for side wall aneurysm.

  6. 77 FR 50916 - Safety Zone; Boston Harbor's Rock Removal Project, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0767] RIN 1625-AA00 Safety Zone; Boston Harbor's Rock Removal Project, Boston Inner Harbor, Boston, MA AGENCY: Coast.... 165.T01-0767 Safety Zone; Boston Harbor's Rock Removal Project, Boston Inner Harbor, Boston, MA. (a...

  7. Surgical Management of Lung Cancer Involving the Chest Wall.

    PubMed

    Lanuti, Michael

    2017-05-01

    The prevalence of chest wall invasion by non-small cell lung cancer is < 10% in published surgical series. The role of radiation or chemotherapy around the complete resection of lung cancer invading the chest wall, excluding the superior sulcus of the chest, is poorly defined. Survival of patients with lung cancer invading the chest wall is dependent on lymph node involvement and completeness of en-bloc resection. In some patients harboring T3N0 disease, 5-year survival in excess of 50% can be achieved. Offering en-bloc resection of lung cancer invading chest wall to patients with T3N1 or T3N2 disease is controversial. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. 33 CFR 125.15 - Access to waterfront facilities, and port and harbor areas, including vessels and harbor craft...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and port and harbor areas, including vessels and harbor craft therein. 125.15 Section 125.15....15 Access to waterfront facilities, and port and harbor areas, including vessels and harbor craft....09 to those waterfront facilities, and port and harbor areas, including vessels and harbor craft...

  9. DETAIL OF THE INTERIOR WALL VENTILATION BAND FROM THE MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE INTERIOR WALL VENTILATION BAND FROM THE MAIN GYMNASIUM AREA TO THE LOCKER ROOM AREA. VIEW FACING WEST - U.S. Naval Base, Pearl Harbor, Gymnasium Building, North Waterfront & Pierce Street near Berth S-13, Pearl City, Honolulu County, HI

  10. VIEW SHOWING THE ENTRY THROUGH THE RETAINING WALL (FOREGROUND) TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SHOWING THE ENTRY THROUGH THE RETAINING WALL (FOREGROUND) TO THE CONCRETE SLAB. NOTE THE 1¾" MOUNTING BOLTS FOR THE STEEL PLATE BASE OF THE 5" GUN, SET IN THE GUN BLOCK. STEEL REINFORCING RODS PROTRUDING FROM THE BROKEN TOPS OF THE RETAINING WALLS ARE ALSO VISIBLE. VIEW FACING EAST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, South Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI

  11. 31. OBLIQUE AERIAL VIEW TO THE NORTHEAST, SHOWING THE FEDERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. OBLIQUE AERIAL VIEW TO THE NORTHEAST, SHOWING THE FEDERAL CHANNEL IN RELATION TO DOWNTOWN OAKLAND AND LAKE MERRITT. Date and time of photography "12-9-98 10:54." - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  12. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Harbor, to the northwest point. (b) Effective times and dates. This safety and security zone will be in... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone...

  13. 32. OBLIQUE AERIAL VIEW TO THE SOUTHWEST, SHOWING THE FEDERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. OBLIQUE AERIAL VIEW TO THE SOUTHWEST, SHOWING THE FEDERAL CHANNEL IN RELATION TO SAN FRANCISCO BAY AND SAN BRUNO MOUNTAIN AT TOP CENTER. Date and time of photography "12-9-98 10:58." - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  14. Commercial sexual exploitation of children and the emergence of safe harbor legislation: implications for policy and practice.

    PubMed

    Shields, Ryan T; Letourneau, Elizabeth J

    2015-03-01

    Commercial sexual exploitation of children is an enduring social problem that has recently become the focus of numerous legislative initiatives. In particular, recent federal- and state-level legislation have sought to reclassify youth involved in commercial sexual exploitation as victims rather than as offenders. So-called Safe Harbor laws have been developed and centered on decriminalization of "juvenile prostitution." In addition to or instead of decriminalization, Safe Harbor policies also include diversion, law enforcement training, and increased penalties for adults seeking sexual contact with minors. The purpose of this paper is to review the underlying rationale of Safe Harbor laws, examine specific policy responses currently enacted by the states, and consider the effects of policy variations. Directions for future research and policy are addressed.

  15. 75 FR 78601 - Drawbridge Operation Regulation; Gulf Intracoastal Waterway, New Orleans Harbor, Inner Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ... Operation Regulation; Gulf Intracoastal Waterway, New Orleans Harbor, Inner Harbor Navigation Canal, New Orleans, Orleans Parish, LA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from... Harvey Lock), at New Orleans, Orleans Parish, Louisiana. This deviation is necessary to adjust the...

  16. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″W and 41°51′11″ N, 087°36′22″ W. (b...

  17. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″ W and 41°51′11″ N, 087°36′22″ W. (b...

  18. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″W and 41°51′11″ N, 087°36′22″ W. (b...

  19. Pearl Harbor Biological Survey

    DTIC Science & Technology

    1974-08-30

    properties, uses, and driving mechanisms affecting the harbor is given. The methods of obtaining current data, salinity profiles, and temperature... salinities were used for each calibration In order to check the salinity computation mechanism of the Instrument. Temperature calibrations were...Water Temperature Contours for Navy Thermal Discharges 3.2-23 3.2-7. General Layout of Pearl Harbor Showing Mean Monthly Salinity (3L) Variation

  20. Sediment toxicity in Savannah Harbor

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.

    1995-01-01

    Savannah Harbor, located near the mouth of the Savannah River, Georgia and South Carolina, is impacted by industrial and municipal effluents. Potential release of contaminants stored in harbor sediments through dredging and shipping operations requires that contaminated areas be identified for proper management of the system and protection of wildlife resources. During 1991, Hyalella azteca were exposed in 10-d static-renewal toxicity tests to pore-water and solid-phase sediment samples collected from 26 sites within Savannah Harbor. Pore-water toxicity was more pronounced than that for solidphase sediment. Toxicity and reduced leaf consumption demonstrated impaired sediment quality at specific sites within Savannah Harbor and Back River. Factors responsible for the decreased sediment quality were ammonia, alkalinity, and metal concentrations (cadmium, chromium, lead, molybdenum, and nickel). Elevated concentrations of metals and toxicities in Back River sediments indicated impacts from adjacent dredge-spoil areas.

  1. Computer-aided detection of bladder wall thickening in CT urography (CTU)

    NASA Astrophysics Data System (ADS)

    Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon Z.; Gordon, Marshall N.; Samala, Ravi K.

    2018-02-01

    We are developing a computer-aided detection system for bladder cancer in CT urography (CTU). Bladder wall thickening is a manifestation of bladder cancer and its detection is more challenging than the detection of bladder masses. We first segmented the inner and outer bladder walls using our method that combined deep-learning convolutional neural network with level sets. The non-contrast-enhanced region was separated from the contrast-enhanced region with a maximum-intensity-projection-based method. The non-contrast region was smoothed and gray level threshold was applied to the contrast and non-contrast regions separately to extract the bladder wall and potential lesions. The bladder wall was transformed into a straightened thickness profile, which was analyzed to identify regions of wall thickening candidates. Volume-based features of the wall thickening candidates were analyzed with linear discriminant analysis (LDA) to differentiate bladder wall thickenings from false positives. A data set of 112 patients, 87 with wall thickening and 25 with normal bladders, was collected retrospectively with IRB approval, and split into independent training and test sets. Of the 57 training cases, 44 had bladder wall thickening and 13 were normal. Of the 55 test cases, 43 had wall thickening and 12 were normal. The LDA classifier was trained with the training set and evaluated with the test set. FROC analysis showed that the system achieved sensitivities of 93.2% and 88.4% for the training and test sets, respectively, at 0.5 FPs/case.

  2. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Channel Islands Harbor, CA. 80...

  3. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Channel Islands Harbor, CA. 80...

  4. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Channel Islands Harbor, CA. 80...

  5. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Channel Islands Harbor, CA. 80...

  6. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Channel Islands Harbor, CA. 80...

  7. The Boston Harbor Project, and large decreases in loadings of eutrophication-related materials to Boston Harbor.

    PubMed

    Taylor, David I

    2010-04-01

    Boston Harbor, a bay-estuary in the north-east USA, has recently been the site of one of the largest wastewater infrastructure projects conducted in the USA, the Boston Harbor Project (BHP). The BHP, which was conducted from 1991 to 2000, ended over a century of direct wastewater treatment facility discharges to the harbor. The BHP caused the loadings of total nitrogen (TN), total phosphorus (TP), total suspended solids (TSS) and particulate organic carbon (POC) to the harbor, to decrease by between 80% and 90%. Approximately one-third of the decreases in TSS and POC loadings occurred between 1991 and 1992; the remaining two-thirds, between 1995 and 2000. For TN and TP, the bulk of the decreases occurred between 1997 or 1998, and 2000. (c) 2009 Elsevier Ltd. All rights reserved.

  8. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  9. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  10. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  11. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  12. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  13. 33 CFR 110.130 - Bar Harbor, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bar Harbor, Maine. 110.130... ANCHORAGE REGULATIONS Anchorage Grounds § 110.130 Bar Harbor, Maine. (a) Anchorage grounds. (1) Anchorage “A” is that portion of Frenchman Bay, Bar Harbor, ME enclosed by a rhumb line connecting the following...

  14. 33 CFR 110.9 - Wells Harbor, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Wells Harbor, Maine. 110.9... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.9 Wells Harbor, Maine. (a) Anchorage “A”. All of the... approximately 5,800 sq. yards, encompassing the central portion of Wells Harbor. (b) Anchorage “B”. All of the...

  15. 33 CFR 110.9 - Wells Harbor, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Wells Harbor, Maine. 110.9... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.9 Wells Harbor, Maine. Link to an amendment published at..., encompassing the central portion of Wells Harbor. (b) Anchorage “B”. All of the waters enclosed by a line...

  16. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor and U.S. breakwater. 207.610 Section 207... NAVIGATION REGULATIONS § 207.610 St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and...

  17. 33 CFR 117.272 - Boot Key Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Boot Key Harbor. 117.272 Section 117.272 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.272 Boot Key Harbor. The draw of the Boot Key Harbor drawbridge, mile 0.13, between...

  18. Defense.gov Special Report: Pearl Harbor Anniversary

    Science.gov Websites

    Department of Defense Submit Search 71th Anniversary of the Attack on Pearl Harbor - World War II News Joint Chiefs of Staff, saluted veterans at the National World War II Memorial in Washington, D.C Attack Video Return To Pearl Harbor Return To Pearl Harbor World War II Timeline The attack on Pearl

  19. Geoscience rediscovers Phoenicia's buried harbors

    NASA Astrophysics Data System (ADS)

    Marriner, Nick; Morhange, Christophe; Doumet-Serhal, Claude; Carbonel, Pierre

    2006-01-01

    After centuries of archaeological debate, the harbors of Phoenicia's two most important city states, Tyre and Sidon, have been rediscovered, and including new geoarcheological results reveal how, where, and when they evolved after their Bronze Age foundations. The early ports lie beneath their present urban centers, and we have indentified four harbor phases. (1) During the Bronze Age, Tyre and Sidon were characterized by semi-open marine coves that served as protoharbors. (2) Biostratigraphic and lithostratigraphic data indicate the presence of early artificial basins after the first millennium B.C. (3) The harbors reached their apogees during the Greco-Roman and Byzantine periods. (4) Silting up and coastal progradation led to burial of the medieval basins, lost until now.

  20. 78 FR 38577 - Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ...-AA08 Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor... waters of the Potomac River on September 21, 2013. These special local regulations are necessary to... temporarily restrict vessel traffic in a portion of the Potomac River during the event. DATES: This rule is...

  1. 78 FR 18274 - Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ...-AA08 Special Local Regulations; Red Bull Flugtag National Harbor Event, Potomac River; National Harbor... event,'' to be held on the waters of the Potomac River on September 21, 2013. These special local... representative. This action is intended to temporarily restrict vessel traffic in a portion of the Potomac River...

  2. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  3. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  4. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  5. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  6. 33 CFR 162.155 - Sandusky and Huron Harbors, Ohio.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Harbors, Ohio. (a) In Sandusky Harbor, no vessel greater than 40 feet in length may exceed 10 miles per hour. (b) In Huron Harbor, no vessel greater than 40 feet in length may exceed 6 miles per hour, except in the outer harbor where no vessel greater than 40 feet in length may exceed 10 miles per hour. Note...

  7. 33 CFR 117.811 - Tonawanda Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tonawanda Harbor. 117.811 Section 117.811 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.811 Tonawanda Harbor. The draw of the...

  8. A smart ROV solution for ship hull and harbor inspection

    NASA Astrophysics Data System (ADS)

    Reed, Scott; Wood, Jon; Vazquez, Jose; Mignotte, Pierre-Yves; Privat, Benjamin

    2010-04-01

    Hull and harbor infrastructure inspections are frequently performed manually and involve quite a bit of risk and human and monetary resources. In any kind of threat and resource constrained environment, this involves unacceptable levels of risk and cost. Modern Remotely Operated Vehicles are highly refined machines that provide features and capabilities previously unavailable. Operations once carried out by divers can now be carried out more quickly, efficiently and safely by smart enabled ROVs. ROVs are rapidly deployable and capable of continuous, reliable operations in adverse conditions. They also provide a stable platform on which multiple sensors may be mounted and utilized to meet the harbor inspection problem. Automated Control software provides ROV's and their pilots with the capability to inspect complex, constrained environments such as those found in a harbor region. This application and the user interface allow the ROV to automatically conduct complex maneuvers relative to the area being inspected and relieves the training requirements and work load for the pilot, allowing he or she to focus on the primary task of survey, inspection and looking for possible threats (such as IEDs, Limpet Mines, signs of sabotage, etc). Real-time sensor processing tools can be integrated into the smart ROV solution to assist the operator. Automatic Target Recognition (ATR) algorithms are used to search through the sensor data collected by the ROV in real time. These algorithms provide immediate feedback on possible threats and notify the operator of regions that may require manual verification. Sensor data (sonar or video) is also mosaiced, providing the operator with real-time situational awareness and a coverage map of the hull or seafloor. Detected objects may also be placed in the context of the large scale characteristics of the hull (or bottom or pilings) and localized. Within the complex areas such as the harbor pier pilings and the running gear of the ship, real

  9. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Moss Landing Harbor, CA. 80.1136... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from the seaward extremity of the pier located 0.3 mile south of Moss Landing Harbor Entrance to the...

  10. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Moss Landing Harbor, CA. 80.1136... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from the seaward extremity of the pier located 0.3 mile south of Moss Landing Harbor Entrance to the...

  11. 77 FR 59551 - Safety Zone, Changes to Original Rule; Boston Harbor's Rock Removal Project, Boston Inner Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0767] RIN 1625-AA00 Safety Zone, Changes to Original Rule; Boston Harbor's Rock Removal Project, Boston Inner Harbor... original provisions of that temporary final rule, but adds two additional safety zones necessary for the...

  12. Teaching about Pearl Harbor. Curriculum Enhancement Series #1.

    ERIC Educational Resources Information Center

    Shields, Anna Marshall

    These materials consist of sample lesson plans for teaching about the Japanese attack on Pearl Harbor on December 7, 1941, in both U.S. and world history classes. The lesson plans challenge students to examine how current attitudes toward the Japanese may be rooted in World War II and Pearl Harbor. Selected bibliographies on Pearl Harbor, World…

  13. [Pearl Harbor.

    ERIC Educational Resources Information Center

    Johnson, Jennifer, Ed.

    1992-01-01

    This issue of "Loblolly Magazine" was written in observance of the 50th anniversary of the U.S. entrance into World War II. The publication features interviews conducted by East Texas high school students with Clarence Otterman, one of the few survivors of the crew of the USS Arizona, which was bombed during the attack on Pearl Harbor,…

  14. Medicare and state health care programs: fraud and abuse; safe harbors for certain electronic prescribing and electronic health records arrangements under the anti-kickback statute. Final rule.

    PubMed

    2006-08-08

    As required by the Medicare Prescription Drug, Improvement, and Modernization Act of 2003 (MMA), Public Law 108-173, this final rule establishes a new safe harbor under the Federal anti-kickback statute for certain arrangements involving the provision of electronic prescribing technology. Specifically, the safe harbor would protect certain arrangements involving hospitals, group practices, and prescription drug plan (PDP) sponsors and Medicare Advantage (MA) organizations that provide to specified recipients certain nonmonetary remuneration in the form of hardware, software, or information technology and training services necessary and used solely to receive and transmit electronic prescription information. In addition, in accordance with section 1128B(b)(3)(E) of the Social Security Act (the Act), this final rule creates a separate new safe harbor for certain arrangements involving the provision of nonmonetary remuneration in the form of electronic health records software or information technology and training services necessary and used predominantly to create, maintain, transmit, or receive electronic health records.

  15. 30. VERTICAL AERIAL VIEW OF THE MOUTH OF THE FEDERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VERTICAL AERIAL VIEW OF THE MOUTH OF THE FEDERAL CHANNEL, SCALE 1:14,400. TO THE SOUTH OF THE CHANNEL ARE THE RUNWAYS OF THE FORMER ALAMEDA NAVAL AIR STATION; TO THE NORTH ARE THE BERTHS AND BUILDINGS OF THE FORMER NAVAL SUPPLY CENTER, OAKLAND. Date and time of photography '12-9-98 10:51." - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  16. 32 CFR 765.6 - Regulations for Pearl Harbor, Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Regulations for Pearl Harbor, Hawaii. 765.6... RULES RULES APPLICABLE TO THE PUBLIC § 765.6 Regulations for Pearl Harbor, Hawaii. The Commander, U.S. Naval Base, Pearl Harbor, Hawaii, is responsible for prescribing and enforcing such rules and...

  17. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  18. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  19. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  20. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  1. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  2. Comprehensive Conservation and Management Plan for Charlotte Harbor

    EPA Pesticide Factsheets

    This 2013 CCMP Update for Charlotte Harbor provides insight on the main priorities that the harbor is facing as well as research needed, restoration activities, legislative changes, and public outreach needs.

  3. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  4. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  5. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  6. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  7. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  8. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  9. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  10. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  11. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  12. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  13. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  14. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  15. 33 CFR 80.1116 - Redondo Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Redondo Harbor, CA. 80.1116 Section 80.1116 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1116 Redondo Harbor, CA. A line drawn from...

  16. 33 CFR 80.1134 - Monterey Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Monterey Harbor, CA. 80.1134 Section 80.1134 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1134 Monterey Harbor, CA. A line drawn from...

  17. 33 CFR 80.1108 - Oceanside Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Oceanside Harbor, CA. 80.1108 Section 80.1108 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1108 Oceanside Harbor, CA. A line drawn from...

  18. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  19. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  20. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  1. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  2. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  3. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  4. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  5. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  6. 33 CFR 110.82 - Charlevoix Harbor, Mich.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Charlevoix Harbor, Mich. 110.82 Section 110.82 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.82 Charlevoix Harbor, Mich. The waters on the north side...

  7. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  8. 33 CFR 110.142 - Nantucket Harbor, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nantucket Harbor, Mass. 110.142 Section 110.142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.142 Nantucket Harbor, Mass. (a) The anchorage grounds. In the...

  9. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Boston Harbor, Mass. 110.138 Section 110.138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.138 Boston Harbor, Mass. (a) The anchorage grounds—(1) Bird...

  10. 33 CFR 110.142 - Nantucket Harbor, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Nantucket Harbor, Mass. 110.142 Section 110.142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.142 Nantucket Harbor, Mass. (a) The anchorage grounds. In the...

  11. 16 CFR 312.11 - Safe harbor programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Safe harbor programs. 312.11 Section 312.11 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE PRIVACY PROTECTION RULE § 312.11 Safe harbor programs. (a) In general. Industry groups or other persons...

  12. Erie Harbor, Pennsylvania, Channel Shoaling Analysis

    DTIC Science & Technology

    2011-07-01

    Presque Isle is located on the southern shore of Lake Erie and shelters the federal harbor at Erie , Pennsylvania . The US Army...the evaluation of the shoaling and dredging of sediment materials from Erie Harbor as part of the Presque Isle , Pennsylvania 204 feasibility study...ERDC TR-11-4 1 1 Introduction Problem statement Presque Isle is located on the southern shore of Lake Erie , Pennsylvania at the city of Erie

  13. Estuarine studies in upper Grays Harbor, Washington

    USGS Publications Warehouse

    Beverage, Joseph P.; Swecker, Milton N.

    1969-01-01

    Improved management of the water resources of Grays Harbor, Wash., requires more data on the water quality of the harbor and a better understanding of the influences of industrial and domestic wastes on the local fisheries resources. To provide a more comprehensive understanding of these influences, the U.S. Geological Survey joined other agencies in a cooperative study of Grays Harbor. This report summarizes the Survey's study of circulation patterns, description of water-quality conditions, and characterization of bottom material in the upper harbor. Salt water was found to intrude at least as far as Montesano, 28.4 nautical miles from the mouth of the harbor. Longitudinal salinity distributions were used to compute dispersion (diffusivity) coefficients ranging from 842 to 3,520 square feet per second. These values were corroborated by half-tidal-cycle dye studies. The waters of the harbor were found to be well mixed after extended periods of low fresh-water flow but stratified at high flows. Salinity data were used lo define the cumulative 'mean age' of the harbor water, which may be used to approximate a mean 'flushing time.' Velocity-time curves for the upper harbor are distorted from simple harmonic functions owing to channel geometry and frictional effects. Surface and bottom velocity data were used to estimate net tidal 'separation' distance, neglecting vertical mixing. Net separation distances between top and bottom water ranged from 1.65 nautical miles when fresh-water inflow was 610 cubic feet per second to 13.4 miles when inflow was 15,900 cubic feet per second. The cumulative mean age from integration of the fresh-water velocity equation was about twice that obtained from the salinity distribution. Excursion distances obtained with dye over half-tidal cycles exceeded those estimated from longitudinal salinity distributions and those obtained by earlier investigators who used floats. Net tidal excursions were as much as twice those obtained with floats

  14. 33 CFR 80.165 - New York Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false New York Harbor. 80.165 Section 80.165 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.165 New York Harbor. A line drawn from East...

  15. 33 CFR 110.9 - Wells Harbor, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 110.9 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.9 Wells Harbor, Maine. (a) Anchorage “A”. All of the... approximately 5,800 sq. yards, encompassing the central portion of Wells Harbor. (b) Anchorage “B”. All of the...

  16. 12 CFR 350.11 - Safe harbor provision.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Safe harbor provision. 350.11 Section 350.11 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY DISCLOSURE OF FINANCIAL AND OTHER INFORMATION BY FDIC-INSURED STATE NONMEMBER BANKS § 350.11 Safe harbor...

  17. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false St. Thomas Harbor, Charlotte... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.250 St. Thomas Harbor, Charlotte Amalie... move promptly upon notification by the Harbor Master. (4) The harbor regulations for the Port of St...

  18. 33 CFR 117.802 - New Rochelle Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.802 New Rochelle Harbor. (a) The draw of the Glen Island Bridge, mile 0.8, at New Rochelle, New York, shall open on signal, except as... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false New Rochelle Harbor. 117.802...

  19. Decadal Changes In Benthic Community Measures In New York Harbor

    EPA Science Inventory

    Monitoring in New York Harbor, NY, as part of the Regional Environmental Monitoring and Assessment Program has spanned a decade, and includes habitat and water quality measures and sediment contaminant levels from four sub-basins (Upper NY Harbor, Lower NY Harbor, Newark Bay, and...

  20. Sediment resuspension characteristics in Baltimore Harbor, Maryland

    USGS Publications Warehouse

    Maa, J.P.-Y.; Sanford, L.; Halka, J.P.

    1998-01-01

    Critical bed shear stress for sediment resuspension and sediment erosion rate were measured in-situ at sites from inner to outer Baltimore Harbor using the VIMS Sea Carousel. Clay mineral contents and biological conditions were almost the same at the four study sites. The experimental results indicated that the erosion rate increased from the outer harbor toward the inner harbor with a maximum difference of about 10 times at an excess bed shear stress of 0.1 Pa. The measured critical bed shear stress strongly depended on the existence of a fluff layer. It was approximately 0.05 Pa if a fluff layer existed, and increases to about 0.1 Pa in the absence of a fluff layer.

  1. Polycyclic aromatic hydrocarbons and trace elements bounded to airborne PM10 in the harbor of Volos, Greece: Implications for the impact of harbor activities

    NASA Astrophysics Data System (ADS)

    Manoli, E.; Chelioti-Chatzidimitriou, A.; Karageorgou, K.; Kouras, A.; Voutsa, D.; Samara, C.; Kampanos, I.

    2017-10-01

    Harbors are often characterized by high levels of air pollutants that are emitted from ship traffic and other harbor activities. In the present study, the concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) and trace elements (As, Cd, Ni, Pb, Cr, Mn, Zn, and Fe) bounded to the inhalable particulate matter PM10 were studied in the harbor of Volos, central Greece, during a 2-year period (2014-2015). Seasonal and daily variations were investigated. Moreover, total carcinogenic and mutagenic activities of PAHs were calculated. The effect of major wind sectors (sea, city, industrial, harbor) was estimated to assess the potential contribution of ship traffic and harbor activities, such as scrap metal handling operations. Results showed that the harbor sector (calm winds ≤ 0.5 m s-1) was associated with the highest concentrations of PM10. The harbor sector was also associated with relatively increased levels of trace elements (As, Fe, Cr, Mn, Ni), however the effect of this sector was lower than the corresponding effect of the industrial wind sector. The sea sector showed only a slight increase in B[a]Py and Σ12PAHs, whereas the highest increasing effect for PAHs and traffic-related elements, such as Pb and Zn, was evidenced for the city sector.

  2. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... line running due north from Old Harbor Buoy 4 to the shore line at City Point. (5) Explosives anchorage... beacon on top of the Boston Custom House tower; and thence to the point of beginning. (2) President Roads... adjacent land; on the east by a line between Castle Rocks Fog Signal Light and Old Harbor Shoal Buoy 2; on...

  3. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... line running due north from Old Harbor Buoy 4 to the shore line at City Point. (5) Explosives anchorage... beacon on top of the Boston Custom House tower; and thence to the point of beginning. (2) President Roads... adjacent land; on the east by a line between Castle Rocks Fog Signal Light and Old Harbor Shoal Buoy 2; on...

  4. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... line running due north from Old Harbor Buoy 4 to the shore line at City Point. (5) Explosives anchorage... beacon on top of the Boston Custom House tower; and thence to the point of beginning. (2) President Roads... adjacent land; on the east by a line between Castle Rocks Fog Signal Light and Old Harbor Shoal Buoy 2; on...

  5. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petoskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  6. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petroskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  7. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petoskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  8. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (a) No vessel greater than 40 feet in length may exceed 8 miles per hour in the harbors of Michigan... Petoskey, Michigan. (b) No vessel greater than 40 feet in length may exceed 4 miles per hour in the harbors...

  9. 33 CFR 162.165 - Buffalo and Rochester Harbors, New York.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Buffalo and Rochester Harbors, New York. 162.165 Section 162.165 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... and Rochester Harbors, New York. In Buffalo and Rochester Harbors, no vessel may exceed 6 miles per...

  10. Satellite Monitoring of Boston Harbor Water Quality: Initial Investigations

    NASA Astrophysics Data System (ADS)

    Sheldon, P.; Chen, R. F.; Schaaf, C.; Pahlevan, N.; Lee, Z.

    2016-02-01

    The transformation of Boston Harbor from the "dirtiest in America" to a National Park Area is one of the most remarkable estuarine recoveries in the world. A long-term water quality dataset from 1991 to present exists in Boston Harbor due to a $3. 8 billion lawsuit requiring the harbor clean-up. This project uses discrete water sampling and underway transects with a towed vehicle coordinated with Landsat 7 and Landsat 8 to create surface maps of chlorophyll a (Chl a), dissolved organic matter (CDOM and DOC), total suspended solids (TSS), diffuse attenuation coefficient (Kd_490), and photic depth in Boston Harbor. In addition, 3 buoys have been designed, constructed, and deployed in Boston Harbor that measure Chl a and CDOM fluorescence, optical backscatter, salinity, temperature, and meteorological parameters. We are initially using summer and fall of 2015 to develop atmospheric corrections for conditions in Boston Harbor and develop algorithms for Landsat 8 data to estimate in water photic depth, TSS, Chl a, Kd_490, and CDOM. We will report on initial buoy and cruise data and show 2015 Landsat-derived distributions of water quality parameters. It is our hope that once algorithms for present Landsat imagery can be developed, historical maps of water quality can be constructed using in water data back to 1991.

  11. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  12. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  13. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  14. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  15. 33 CFR 110.26 - Marblehead Harbor, Marblehead, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Marblehead Harbor, Marblehead, Mass. 110.26 Section 110.26 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.26 Marblehead Harbor, Marblehead...

  16. Defense.gov Special Report: 72nd Anniversary of Pearl Harbor

    Science.gov Websites

    Department of Defense Submit Search 72nd Anniversary of the Attack on Pearl Harbor - World War II News Harbor survivors and World War II veterans gathered at the Pacific National Monument's Pearl Harbor course of world history." Story USS Mesa Verda Crew Conducts Remembrance Ceremony As Americans and

  17. 33 CFR 80.1470 - Kawaihae Harbor, Hawaii, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kawaihae Harbor, Hawaii, HI. 80.1470 Section 80.1470 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1470 Kawaihae Harbor, Hawaii, HI...

  18. 33 CFR 80.1450 - Nawiliwili Harbor, Kauai, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nawiliwili Harbor, Kauai, HI. 80.1450 Section 80.1450 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1450 Nawiliwili Harbor, Kauai, HI...

  19. Force Time History During the Impact of a Barge Train with a Lock Approach Wall Using Impact_Force

    DTIC Science & Technology

    2010-06-01

    anthracite coal and a simply supported, long-span precast impact beam allows for an evaluation of the conserva- tiveness of the simplified Equation...is a precast , prestressed hollow beam (i.e., flexible structure) with a length of 117 feet 7 3/4 inches. A cross-section of the hollow beam is shown...XGlobal mbarge train Flexible Approach wall Flexible Beam deformation at time t time (secs) F n or m al -w al l (k ip s) 0 0.5 1 1.5 2 2.5 3 3.5 4 0

  20. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  1. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  2. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  3. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  4. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  5. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  6. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  7. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  8. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  9. 33 CFR 110.37 - Sesuit Harbor, Dennis, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sesuit Harbor, Dennis, Mass. 110.37 Section 110.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.37 Sesuit Harbor, Dennis, Mass. All the waters...

  10. 33 CFR 110.208 - Buffalo Harbor, N.Y.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Buffalo Harbor, N.Y. 110.208 Section 110.208 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.208 Buffalo Harbor, N.Y. (a) The anchorage grounds—(1...

  11. 33 CFR 110.208 - Buffalo Harbor, N.Y.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Buffalo Harbor, N.Y. 110.208 Section 110.208 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.208 Buffalo Harbor, N.Y. (a) The anchorage grounds—(1...

  12. Tech Talk for Social Studies Teachers Lest We Forget: Remembering Pearl Harbor.

    ERIC Educational Resources Information Center

    Green, Tim

    2001-01-01

    Presents an annotated bibliography that provides Web sites about Pearl Harbor (Hawaii). Includes Web sites that cover Pearl Harbor history, a live view of Pearl Harbor, stories from people who remember where they were during the attack, information on the naval station at Pearl Harbor, and a virtual tour of the USS Arizona. (CMK)

  13. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  14. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Moss Landing Harbor, CA. 80.1136 Section 80.1136 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from...

  15. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Moss Landing Harbor, CA. 80.1136 Section 80.1136 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from...

  16. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Crescent City Harbor, CA. 80.1152 Section 80.1152 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn...

  17. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Moss Landing Harbor, CA. 80.1136 Section 80.1136 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from...

  18. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  19. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  20. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  1. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  2. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  3. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Crescent City Harbor, CA. 80.1152 Section 80.1152 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn...

  4. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  5. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  6. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  7. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  8. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  9. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  10. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  11. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  12. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  13. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  14. 33 CFR 80.1126 - Santa Barbara Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Santa Barbara Harbor, CA. 80.1126 Section 80.1126 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1126 Santa Barbara Harbor, CA. A line drawn...

  15. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  16. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Crescent City Harbor, CA. 80.1152 Section 80.1152 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn...

  17. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  18. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  19. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  20. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  1. 33 CFR 80.1142 - San Francisco Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 San Francisco Harbor, CA. A straight line...

  2. 33 CFR 80.1110 - Dana Point Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Dana Point Harbor, CA. 80.1110 Section 80.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1110 Dana Point Harbor, CA. A line drawn from...

  3. 33 CFR 80.1138 - Santa Cruz Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Santa Cruz Harbor, CA. 80.1138 Section 80.1138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1138 Santa Cruz Harbor, CA. A line drawn from...

  4. 33 CFR 117.722 - Great Egg Harbor Bay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Great Egg Harbor Bay. 117.722 Section 117.722 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.722 Great Egg Harbor Bay. The draw of...

  5. 33 CFR 80.1480 - Hilo Harbor, Hawaii, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hilo Harbor, Hawaii, HI. 80.1480 Section 80.1480 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1480 Hilo Harbor, Hawaii, HI. A line drawn...

  6. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  7. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  8. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  9. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  10. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  11. 33 CFR 80.1460 - Kahului Harbor, Maui, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kahului Harbor, Maui, HI. 80.1460 Section 80.1460 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1460 Kahului Harbor, Maui, HI. A line drawn...

  12. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  13. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  14. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  15. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  16. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  17. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  18. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  19. 33 CFR 80.1104 - San Diego Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 San Diego Harbor, CA. A line drawn from...

  20. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  1. 33 CFR 117.722 - Great Egg Harbor Bay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Great Egg Harbor Bay. 117.722 Section 117.722 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.722 Great Egg Harbor Bay. The draw of...

  2. Madaket Harbor, Nantucket, Massachusetts. Water Resources Improvement.

    DTIC Science & Technology

    1977-07-01

    will continue to be, important increases in the recreational use of land and water. The harbor area is an important arena for commercial shellfishing...an important arena for commercial shell fishing. The past few years have seen a rather rapid increase in residential land use. Construction has...beamc. Tnis material will be re-deposited,, viaj troio it 1-apfro1inr ox prior location. j, MADAKET HARBOR NANTUCKET, MASSACHUSETTS FEASIBILITY

  3. 76 FR 8653 - Drawbridge Operation Regulation; Gulf Intracoastal Waterway, New Orleans Harbor, Inner Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... regulation governing the operation of the SR 39 (Judge Seeber/Claiborne Avenue) vertical lift bridge across... (Judge Seeber/Claiborne Avenue) vertical lift bridge across the Inner Harbor Navigational Canal, mile 0.9...

  4. Women Apprentices in Hawaii: Characteristics of Females Registered with Pearl Harbor Naval Shipyard and the Hawaii Department of Labor and Industrial Relations.

    ERIC Educational Resources Information Center

    White, Barbara

    A study examined the characteristics, educational training, and background experiences of women who entered apprenticeship in Hawaii during the period from July 1, 1974, through June 30, 1982. Survey instruments were completed by 118 of 243 female apprentices originally contacted--58 women registered with Pearl Harbor Naval Shipyard and 60 women…

  5. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Crescent City Harbor, CA. 80.1152... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn from Crescent City Entrance Light to the southeasternmost extremity of Whaler Island. [CGD 84-091, 51...

  6. 33 CFR 80.1152 - Crescent City Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Crescent City Harbor, CA. 80.1152... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1152 Crescent City Harbor, CA. A line drawn from Crescent City Entrance Light to the southeasternmost extremity of Whaler Island. [CGD 84-091, 51...

  7. Structural remodeling of coronary resistance arteries: effects of age and exercise training

    PubMed Central

    Hanna, Mina A.; Taylor, Curtis R.; Chen, Bei; La, Hae-Sun; Maraj, Joshua J.; Kilar, Cody R.; Behnke, Bradley J.; Delp, Michael D.

    2014-01-01

    Age is known to induce remodeling and stiffening of large-conduit arteries; however, little is known of the effects of age on remodeling and mechanical properties of coronary resistance arteries. We employed a rat model of aging to investigate whether 1) age increases wall thickness and stiffness of coronary resistance arteries, and 2) exercise training reverses putative age-induced increases in wall thickness and stiffness of coronary resistance arteries. Young (4 mo) and old (21 mo) Fischer 344 rats remained sedentary or underwent 10 wk of treadmill exercise training. Coronary resistance arteries were isolated for determination of wall-to-lumen ratio, effective elastic modulus, and active and passive responses to changes in intraluminal pressure. Elastin and collagen content of the vascular wall were assessed histologically. Wall-to-lumen ratio increased with age, but this increase was reversed by exercise training. In contrast, age reduced stiffness, and exercise training increased stiffness in coronary resistance arteries from old rats. Myogenic responsiveness was reduced with age and restored by exercise training. Collagen-to-elastin ratio (C/E) of the wall did not change with age and was reduced with exercise training in arteries from old rats. Thus age induces hypertrophic remodeling of the vessel wall and reduces the stiffness and myogenic function of coronary resistance arteries. Exercise training reduces wall-to-lumen ratio, increases wall stiffness, and restores myogenic function in aged coronary resistance arteries. The restorative effect of exercise training on myogenic function of coronary resistance arteries may be due to both changes in vascular smooth muscle phenotype and expression of extracellular matrix proteins. PMID:25059239

  8. 46 CFR 7.30 - New York Harbor, NY.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false New York Harbor, NY. 7.30 Section 7.30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.30 New York Harbor, NY. A line drawn from East Rockaway Inlet Breakwater Light to Ambrose Light...

  9. Resistance training improves aortic structure in Wistar rats.

    PubMed

    Souza, Romeu R; de França, Elias; Madureira, Diana; Pontes, Carla C R; Santana, Jeferson O; Caperuto, Erico C

    Little information is available on the effects of resistance training on the aortic wall. This study aimed to quantify the effects of a resistance-training program on blood pressure and aortic wall structural components. Rats (aged three months) were randomized into sedentary group (control group, CG; n=10) or trained group (TG; n=10). The TG rats performed resistance training by climbing a 1.1-m vertical ladder (80° incline) five times a week for 12 weeks, and the CG remained sedentary. The rats were sacrificed and 5mm of the ascending aorta was submitted to histological sections, which were stained with hematoxylin-eosin, Picrosirius red, and Verhoeff's elastin, and used for morphometric studies. Left ventricle (LV) hypertrophy was determined by measuring LV wall thickness and LV internal diameter. The rats had similar repetition maximum before the resistance training. At the end of the resistance training period, the repetition maximum of the TG was 3.04-fold greater than the body weight. In the twelfth month, the left ventricular weight was 15.3% larger in the TG than in the CG, and the left ventricular internal diameter was reduced by 10% in the TG. Rats exposed to resistance training had a significant increase in aortic wall thickness, in both elastic lamina and collagen fibers, and in the thickness of collagen fibrils. Resistance training induces the development of concentric cardiac hypertrophy and improves the aortic wall components by producing a morphological expression pattern distinct from aortic pathological adaptation. Copyright © 2017. Publicado por Elsevier Editora Ltda.

  10. Underwater noise from three types of offshore wind turbines: estimation of impact zones for harbor porpoises and harbor seals.

    PubMed

    Tougaard, Jakob; Henriksen, Oluf Damsgaard; Miller, Lee A

    2009-06-01

    Underwater noise was recorded from three different types of wind turbines in Denmark and Sweden (Middelgrunden, Vindeby, and Bockstigen-Valar) during normal operation. Wind turbine noise was only measurable above ambient noise at frequencies below 500 Hz. Total sound pressure level was in the range 109-127 dB re 1 microPa rms, measured at distances between 14 and 20 m from the foundations. The 1/3-octave noise levels were compared with audiograms of harbor seals and harbor porpoises. Maximum 1/3-octave levels were in the range 106-126 dB re 1 microPa rms. Maximum range of audibility was estimated under two extreme assumptions on transmission loss (3 and 9 dB per doubling of distance, respectively). Audibility was low for harbor porpoises extending 20-70 m from the foundation, whereas audibility for harbor seals ranged from less than 100 m to several kilometers. Behavioral reactions of porpoises to the noise appear unlikely except if they are very close to the foundations. However, behavioral reactions from seals cannot be excluded up to distances of a few hundred meters. It is unlikely that the noise reaches dangerous levels at any distance from the turbines and the noise is considered incapable of masking acoustic communication by seals and porpoises.

  11. Floating-Harbor syndrome associated with middle ear abnormalities.

    PubMed

    Hendrickx, Jan-Jaap; Keymolen, Kathelijn; Desprechins, Brigitte; Casselman, Jan; Gordts, Frans

    2010-01-01

    Floating-Harbor syndrome is a rare syndrome of unknown etiology, which was first described in 1973. A triad of main features characterizes Floating-Harbor syndrome: short stature, characteristic face, and an expressive speech delay. We present a patient in whom the hearing thresholds improved insufficiently after placement of grommets. High-resolution CT scan of the temporal bone showed a prominent soft-tissue thickening suspected of causing fixation of the malleus, and fusion of the malleus head with the body of the incus. To our knowledge this is the first reported abnormal middle ear anatomy in a patient with Floating-Harbor syndrome. A conservative treatment with hearing aids was preferred as an initial treatment in favor of a surgical exploration.

  12. 33 CFR 110.95 - Newport Bay Harbor, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (Newport Harbor Yacht Club). East of a line bearing 23° from the center of the north end of 8th Street... (Balboa Yacht Club). South of a line parallel to and 150 feet from the south pierhead line off Balboa... Newport Beach Harbor Ordinance No. 543 for pleasure boats and yachts of such sizes and alignments as...

  13. 33 CFR 110.95 - Newport Bay Harbor, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (Newport Harbor Yacht Club). East of a line bearing 23° from the center of the north end of 8th Street... (Balboa Yacht Club). South of a line parallel to and 150 feet from the south pierhead line off Balboa... Newport Beach Harbor Ordinance No. 543 for pleasure boats and yachts of such sizes and alignments as...

  14. 33 CFR 100.113 - Provincetown Harbor Swim for Life, Provincetown, MA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Provincetown Harbor Swim for Life... SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.113 Provincetown Harbor Swim for Life, Provincetown, MA. (a) Regulated Area. All waters of Provincetown Harbor within 200 feet of...

  15. 7. Detail view of mill wall ruins looking E showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail view of mill wall ruins looking E showing arched openings for Jamaican Train and archeological excavations at base of wall. - Hacienda Azucarera La Esperanza, Mill (Ruins), 2.65 miles North of PR Route 2 Bridge Over Manati River, Manati, Manati Municipio, PR

  16. 77 FR 45239 - Amendment of Class E Airspace; Bar Harbor, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ...-1366; Airspace Docket No. 11-ANE-13] Amendment of Class E Airspace; Bar Harbor, ME AGENCY: Federal... area at Bar Harbor, ME, as the Surry Non-Directional Radio Beacon (NDB) has been decommissioned and new... airspace at Bar Harbor, ME (77 FR 27666) Docket No. FAA-2011-1366. Interested parties were invited to...

  17. Project ME: A Report on the Learning Wall System.

    ERIC Educational Resources Information Center

    Heilig, Morton L.

    The learning wall system, which consists primarily of a special wall used instead of a screen for a variety of projection purposes, is described, shown diagrammatically, and pictured. Designed to provide visual perceptual motor training on a level that would fall between gross and fine motor performance for perceptually handicapped children, the…

  18. Planning through Partnerships : Alternative Transportation at Boston Harbor Islands National Park Area

    DOT National Transportation Integrated Search

    2004-07-31

    This case study tells the story of a successful and collaborative transportation planning process at Boston Harbor Islands National Park Area (Boston Harbor Islands). By using an innovative approach to planning, Boston Harbor Islands has been able to...

  19. Geotechnical and Geoacoustic Investigation of Seafloor Sediments on Boston Harbor Approaches

    DTIC Science & Technology

    2017-01-25

    Geoacoustic Investigation of Seafloor Sediments on Boston Harbor Approaches Andrei Abelev Marine Physics Branch Marine Geosciences Division Peter...LIMITATION OF ABSTRACT Geotechnical and Geoacoustic Investigation of Seafloor Sediments on Boston Harbor Approaches Andrei Abelev, Peter Herdic...sampling and analysis series for classification and characterization of the surficial seafloor sediment in the Boston Harbor approaches . 25-01-2017

  20. Ground-water status report, Pearl Harbor area, Hawaii, 1978

    USGS Publications Warehouse

    Soroos, Ronald L.; Ewart, Charles J.

    1979-01-01

    Increasing demand for freshwater in Hawaii has placed heavy stress on many of the State 's basal aquifer systems. The most heavily stressed of these systems is the Pearl Harbor on Oahu. The Pearl Harbor basal aquifer supplies as much as 277 million gallons per day. Since early in this century, spring discharge has been declining while pumpage has been increasing. Total ground-water discharge has remained steady despite short-term fluctuations. Some wells show general increases in chloride concentration while others remain steady. Chloride concentrations throughout the area show no apparent increase since 1970. Basal water head maps of the Pearl Harbor area clearly reflect the natural discharge points, which are the springs located along the shore near the center of Pearl Harbor. Basal-water hydrographs show a general decline of about 0.09 foot per year. This implies depletion of storage at a rate of about 25 million gallons per day. (USGS).

  1. Pollutant Concentrations and Toxic Effects on the Red Alga Ceramium tenuicorne of Sediments from Natural Harbors and Small Boat Harbors on the West Coast of Sweden.

    PubMed

    Eklund, Britta; Hansson, Tomas; Bengtsson, Henrik; Eriksson Wiklund, Ann-Kristin

    2016-04-01

    This investigation set out to analyze the toxicity of surface sediments in a number of natural harbors and small boat harbors on the west coast of Sweden. This was done with the growth inhibition method with Ceramium tenuicorne. Also, concentrations of copper (Cu), lead (Pb), zinc (Zn), irgarol, organotin compounds, and polycyclic aromatic hydrocarbons (PAHs) in the sediments were analyzed. The small boat harbors were heavily polluted by Cu, Zn, butyltins, and PAHs, and to a lesser extent by Pb. The Cu, Pb, Zn, and butyltins probably originated from their past and/or present use in antifouling paints, whereas the PAHs probably had multiple sources, including boat motor exhausts. The measured toxicity of the sediment was generally related to their Cu, Zn, and butyltin content, although other toxic substances than those analyzed here probably contributed to the toxicity in some of the harbors. The natural harbor sediments contained less pollutants and were less toxic than the small boat harbor sediments. Nevertheless, our data indicate that the boating pressure today may be high enough to produce toxic effects even in natural harbors in pristine areas. The strongest relationship between toxicity and the major pollutants was obtained when the sediment toxicity was expressed as gram wet weight per liter compared with gram dry weight per liter and gram total organic carbon per liter. Hence, for pollutants that can be elutriated with natural sea water, sediment toxicity expressed as gram wet weight per liter appears preferable.

  2. Anchoring of LPXTG-Like Proteins to the Gram-Positive Cell Wall Envelope.

    PubMed

    Siegel, Sara D; Reardon, Melissa E; Ton-That, Hung

    2017-01-01

    In Gram-positive bacteria, protein precursors with a signal peptide and a cell wall sorting signal (CWSS)-which begins with an LPXTG motif, followed by a hydrophobic domain and a tail of positively charged residues-are targeted to the cell envelope by a transpeptidase enzyme call sortase. Evolution and selective pressure gave rise to six classes of sortase, i.e., SrtA-F. Only class C sortases are capable of polymerizing substrates harboring the pilin motif and CWSS into protein polymers known as pili or fimbriae, whereas the others perform cell wall anchoring functions. Regardless of the products generated from these sortases, the basic principle of sortase-catalyzed transpeptidation is the same. It begins with the cleavage of the LPXTG motif, followed by the cross-linking of this cleaved product at the threonine residue to a nucleophile, i.e., an active amino group of the peptidoglycan stem peptide or the lysine residue of the pilin motif. This chapter will summarize the efforts to identify and characterize sortases and their associated pathways with emphasis on the cell wall anchoring function.

  3. Modeling tidal exchange and dispersion in Boston Harbor

    USGS Publications Warehouse

    Signell, Richard P.; Butman, Bradford

    1992-01-01

    Tidal dispersion and the horizontal exchange of water between Boston Harbor and the surrounding ocean are examined with a high-resolution (200 m) depth-averaged numerical model. The strongly varying bathymetry and coastline geometry of the harbor generate complex spatial patterns in the modeled tidal currents which are verified by shipboard acoustic Doppler surveys. Lagrangian exchange experiments demonstrate that tidal currents rapidly exchange and mix material near the inlets of the harbor due to asymmetry in the ebb/flood response. This tidal mixing zone extends roughly a tidal excursion from the inlets and plays an important role in the overall flushing of the harbor. Because the tides can only efficiently mix material in this limited region, however, harbor flushing must be considered a two step process: rapid exchange in the tidal mixing zone, followed by flushing of the tidal mixing zone by nontidal residual currents. Estimates of embayment flushing based on tidal calculations alone therefore can significantly overestimate the flushing time that would be expected under typical environmental conditions. Particle-release simulations from point sources also demonstrate that while the tides efficiently exchange material in the vicinity of the inlets, the exact nature of dispersion from point sources is extremely sensitive to the timing and location of the release, and the distribution of particles is streaky and patchlike. This suggests that high-resolution modeling of dispersion from point sources in these regions must be performed explicitly and cannot be parameterized as a plume with Gaussian-spreading in a larger scale flow field.

  4. Operation and Maintence, Vermilion Harbor, Erie County, Ohio.

    DTIC Science & Technology

    1976-03-01

    channel and structural maintenance activities at Vermilion Harbor. Although 6 ...- this alternative would eliminate temporary adverse ecological effects of...of dredging on water quality, aquatic ecology , and harbor recreation and related 4 businesses wbuld be reduced to a level commensurate with reduced...effects on aquatic ecology but would have long- term, beneficial effects on shoreline erosion and beach areas. There have been no specific requests from

  5. Effects of vertical wall and tetrapod weights on wave overtopping in rubble mound breakwaters under irregular wave conditions

    NASA Astrophysics Data System (ADS)

    Park, Sang Kil; Dodaran, Asgar Ahadpour; Han, Chong Soo; Shahmirzadi, Mohammad Ebrahim Meshkati

    2014-12-01

    Rubble mound breakwaters protect the coastal line against severe erosion caused by wave action. This study examined the performance of different sizes and properties (i.e. height of vertical wall and tetrapod size) of rubble mound breakwaters on reducing the overtopping discharge. The physical model used in this study was derived based on an actual rubble mound in Busan Yacht Harbor. This research attempts to fill the gap in practical knowledge on the combined effect of the armor roughness and vertical wall on wave overtopping in rubble mound breakwaters. The main governing parameters used in this study were the vertical wall height, variation of the tetrapod weights, initial water level elevation, and the volume of overtopping under constant wave properties. The experimental results showed that the roughness factor differed according to the tetrapod size. Furthermore, the overtopping discharge with no vertical wall was similar to that with relatively short vertical walls ( 1 γv = 1). Therefore, the experimental results highlight the importance of the height of the vertical wall in reducing overtopping discharge. Moreover, a large tetrapod size may allow coastal engineers to choose a shorter vertical wall to save cost, while obtaining better performance.

  6. 33 CFR 110.80b - Marquette Harbor, Marquette, Mich.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marquette Harbor, Marquette, Mich. 110.80b Section 110.80b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80b Marquette Harbor, Marquette, Mich. The...

  7. 33 CFR 110.80b - Marquette Harbor, Marquette, Mich.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Marquette Harbor, Marquette, Mich. 110.80b Section 110.80b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80b Marquette Harbor, Marquette, Mich. The...

  8. 33 CFR 110.80b - Marquette Harbor, Marquette, Mich.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Marquette Harbor, Marquette, Mich. 110.80b Section 110.80b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80b Marquette Harbor, Marquette, Mich. The...

  9. 33 CFR 110.80b - Marquette Harbor, Marquette, Mich.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Marquette Harbor, Marquette, Mich. 110.80b Section 110.80b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80b Marquette Harbor, Marquette, Mich. The...

  10. 33 CFR 110.80b - Marquette Harbor, Marquette, Mich.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Marquette Harbor, Marquette, Mich. 110.80b Section 110.80b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80b Marquette Harbor, Marquette, Mich. The...

  11. Design for navigation improvements at Nome Harbor, Alaska: Coastal model investigation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bottin, R.R.; Acuff, H.F.

    1998-09-01

    A 1:90-scale (undistorted) three dimensional coastal hydraulic model was used to investigate the design of proposed navigation improvements at Nome Harbor, Alaska, with respect to wave, current, and shoaling conditions at the site. The model reproduced about 3,350 m (11,000 ft) of the Alaskan shoreline, the existing harbor and lower reaches of the Snake River, and sufficient offshore bathymetry in the Norton Sound to permit generation of the required experimental waves. The model was used to determine the impacts of a new entrance channel on wave-induced current patterns and magnitudes, sediment transport patterns, and wave conditions in the new channelmore » and harbor area, as well as to optimize the lengths and alignments of new breakwaters and causeway extensions. A 24.4-m-long (9O-ft-long) unidirectional, spectral wave generator, and automated data acquisition and control system, and a crushed coal tracer material were utilized in model operation. It was concluded from study results that: (a) existing conditions are characterized by rough and turbulent wave conditions in the existing entrance. Very confused wave patterns were observed in the entrance due to wave energy reflected off the vertical walls lining the entrance. Wave heights in excess of 1.5 m (5 ft) were obtained in the entrance for typical storm conditions; and wave heights of almost 3.7 m (12 ft) were obtained in the entrance for 5O-year storm wave conditions with extreme high-water level 4 m (+13 ft); (b) wave conditions along the vertical-faced causeway docks were excessive for existing conditions. Wave heights in excess of 3.7 and 2.7 m (12 and 9 ft) were obtained along the outer and inner docks, respectively, for typical storm conditions; and wave heights of almost 7 and 5.8 m (23 and 19 ft) were recorded along these docks, respectively, for 5-year storm wave conditions with extreme high-water levels.« less

  12. 78 FR 42016 - Safety Zone; Discovery World Fireworks, Milwaukee Harbor, Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ...-AA00 Safety Zone; Discovery World Fireworks, Milwaukee Harbor, Milwaukee, WI AGENCY: Coast Guard, DHS... Milwaukee Harbor due to 4 fireworks displays at Discovery World Pier. This safety zone is necessary to... entitled, ``Safety Zone; Discovery World Fireworks, Milwaukee Harbor, Milwaukee, Wisconsin'' in the Federal...

  13. Metal concentrations in surface sediments of Boston Harbor: Changes with time

    USGS Publications Warehouse

    Bothner, Michael H.; Buchholtz ten Brink, Marilyn R.; Manheim, F.T.

    1998-01-01

    The concentrations of metals in surface sediments of Boston Harbor have decreased during the period 1977–1993. This conclusion is supported by analysis of: (1) surface sediments collected at monitoring stations in the outer harbor between 1977 and 1993; (2) metal concentration profiles in sediment cores from depositional areas of the harbor; and (3) historical data from a contaminated-sediment database, which includes information on metal and organic contaminants and sediment texture. The background and matrix-corrected concentrations of lead (Pb) measured in the surficial layer (0–2 cm) of cores decreased by an average of 46%±12% among four locations in the outer harbor during the 16 y period. Chromium (Cr), copper (Cu), mercury (Hg), silver (Ag), and zinc (Zn) exhibited similar trends. Results from our sediment sampling are supported by historical data that were compiled from diverse sources into a regional sediment database. This sediment database contains approximately 3000 samples; of these, about 460 samples were collected and analyzed for Cu, Hg, or Zn and many other sediment parameters in Boston Harbor surface sediments between 1971–1993. The database indicates that the concentrations of these three metals also decreased with time in Boston’s Inner Harbor. The decreases in metal concentrations that are observed in more recent years parallel a general decrease in the flux of metals to the harbor, implemented by: (1) ending the sewage sludge discharge to the Harbor in December, 1991; (2) greater source reduction (e.g. recovery of silver from photographic processing) and closing or moving of industries; (3) improvements in wastewater handling and sewage treatment; and (4) diminishing use of lead in gasoline beginning about 1973. Despite the general decrease in metal concentrations in Boston Harbor surface sediments, the concentrations of Ag and Hg measured at some outer harbor stations in 1993 were still at, or above, the level associated with

  14. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  15. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  16. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  17. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  18. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  19. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  20. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  1. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  2. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  3. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  4. 76 FR 32071 - Safety Zone; Conneaut Festival Fireworks, Conneaut Harbor, Conneaut, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ...-AA00 Safety Zone; Conneaut Festival Fireworks, Conneaut Harbor, Conneaut, OH AGENCY: Coast Guard, DHS... Conneaut Harbor, Conneaut, OH for the Conneaut Festival Fireworks. This zone is intended to restrict vessels from a portion of Conneaut Harbor, Conneaut, OH during the Conneaut Festival Fireworks on July 3...

  5. 76 FR 34865 - Safety Zone; Rochester Harbor Festival, Genesee River, Rochester, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ...-AA00 Safety Zone; Rochester Harbor Festival, Genesee River, Rochester, NY AGENCY: Coast Guard, DHS... Genesee River, Rochester, NY for the Rochester Harbor Festival fireworks. This zone is intended to restrict vessels from the mouth of the Genesee River in Rochester during the Rochester Harbor Festival...

  6. Wall-to-wall Landsat TM classifications for Georgia in support of SAFIS using FIA plots for training and verification

    Treesearch

    William H. Cooke; Andrew J. Hartsell

    2000-01-01

    Wall-to-wall Landsat TM classification efforts in Georgia require field validation. Validation uslng FIA data was testing by developing a new crown modeling procedure. A methodology is under development at the Southern Research Station to model crown diameter using Forest Health monitoring data. These models are used to simulate the proportion of tree crowns that...

  7. Los Angeles Beach Harbors, Los Angeles County, California.

    DTIC Science & Technology

    1974-10-01

    predicted at this time. The presently proposed project is not dependent upon nor contributory to further navigation development in the V" Los Angeles...as Long Beach and Compton. The Los Angeles Harbor probably exhibited similar intensities ranging from VII to IX depending on the soil conditions...the harbor. The water quality in these aquifers is dependent upon the rates of recharge and extraction (natural and otherwise). The Dominguez Gap

  8. 78 FR 28619 - Boston Harbor Islands Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... DEPARTMENT OF THE INTERIOR [NPS-NER-BOHA-12921: PPMPSPD1Z.YM0000: PPNEBOHAS1] Boston Harbor.... SUMMARY: This notice announces a meeting of the Boston Harbor Islands Advisory Council. The agenda... park update. DATES: Date/Time: June 5, 2013, 4:00 p.m. to 6:00 p.m. (EASTERN). Location: Boston Society...

  9. 26 CFR 1.401(k)-3 - Safe harbor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Safe harbor requirements. 1.401(k)-3 Section 1.401(k)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-3 Safe harbor...

  10. 26 CFR 1.401(m)-3 - Safe harbor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Safe harbor requirements. 1.401(m)-3 Section 1.401(m)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(m)-3 Safe harbor...

  11. Pulmonary inflammatory myofibroblastic tumor harboring EML4-ALK fusion gene.

    PubMed

    Sokai, Akihiko; Enaka, Makiko; Sokai, Risa; Mori, Shoichi; Mori, Shunsuke; Gunji, Masaharu; Fujino, Masahiko; Ito, Masafumi

    2014-01-01

    Inflammatory myofibroblastic tumor is a rare tumor deriving from mesenchymal tissue. Approximately 50% of inflammatory myofibroblastic tumors harbor an anaplastic lymphoma kinase fusion gene. Pulmonary inflammatory myofibroblastic tumors harboring tropomyosin3-anaplastic lymphoma kinase or protein tyrosine phosphatase receptor-type F polypeptide-interacting protein-binding protein 1-anaplastic lymphoma kinase have been reported previously. However, it has not been reported that inflammatory myofibroblastic tumors harbor echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion gene which is considered to be very specific to lung cancers. A few tumors harboring echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion gene other than lung cancers have been reported and the tumors were all carcinomas. A 67-year-old man had been followed up for a benign tumor for approximately 3 years before the tumor demonstrated malignant transformation. Lobectomy and autopsy revealed that an inflammatory myofibroblastic tumor harboring echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion gene had transformed into an undifferentiated sarcoma. This case suggests that echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion is an oncogenic event in not only carcinomas but also sarcomas originating from stromal cells.

  12. Remembering Pearl Harbor at 75 Years.

    PubMed

    Liehr, Patricia; Sopcheck, Janet; Milbrath, Gwyneth

    2016-12-01

    : On December 7, 1941, the Sunday-morning quiet of the U.S. naval base in Pearl Harbor, Hawaii, was shattered by dive-bombing Japanese fighter planes. The planes came in two waves-and when it was all over, more than 2,400 were killed and more than 1,100 were injured.Nurses were stationed at U.S. Naval Hospital Pearl Harbor, Tripler General Hospital (now Tripler Army Medical Center), Hickam Field Hospital, Schofield Barracks Station Hospital, and aboard the USS Solace, and witnessed the devastation. But they also did what nurses do in emergencies-they responded and provided care to those in need. Here are the stories of a few of those nurses.

  13. 77 FR 27666 - Proposed Amendment of Class E Airspace; Bar Harbor, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ...-1366; Airspace Docket No. 11-ANE-13] Proposed Amendment of Class E Airspace; Bar Harbor, ME AGENCY... action proposes to amend Class E Airspace at Bar Harbor, ME, as the Surry Non-Directional Radio Beacon... Airport, Bar Harbor, ME. Airspace reconfiguration is necessary due to the decommissioning of the Surry NDB...

  14. 33 CFR 165.14-1414 - Safety Zones; Hawaiian Islands Commercial Harbors; HI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... harbors, or all of these harbors, dependent upon details in the tsunami warning. These safety zones extend... period. Paragraph (b) of this section will be enforced when a tsunami warning has been issued for the... Coast Guard's Homeport Web site. Following the passage of the tsunami or tsunami threat and harbor...

  15. 78 FR 669 - Safety Zone; Hampton Harbor Channel Obstruction, Hampton Harbor; Hampton, NH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket Number USCG-2012-1055] RIN... docket [USCG-2012-1055]. To view documents mentioned in this preamble as being available in the docket....1. 0 2. Add Sec. 165.T01-1055 to read as follows: Sec. 165.T01-1055 Safety Zone; Hampton Harbor...

  16. Integrated approach to assess ecosystem health in harbor areas.

    PubMed

    Bebianno, M J; Pereira, C G; Rey, F; Cravo, A; Duarte, D; D'Errico, G; Regoli, F

    2015-05-01

    Harbors are critical environments with strategic economic importance but with potential environmental impact: health assessment criteria are a key issue. An ecosystem health status approach was carried out in Portimão harbor as a case-study. Priority and specific chemical levels in sediments along with their bioavailability in mussels, bioassays and a wide array of biomarkers were integrated in a biomarker index (IBR index) and the overall data in a weight of evidence (WOE) model. Metals, PAHs, PCBs and HCB were not particularly high compared with sediment guidelines and standards for dredging. Bioavailability was evident for Cd, Cu and Zn. Biomarkers proved more sensitive namely changes of antioxidant responses, metallothioneins and vittellogenin-like proteins. IBR index indicated that site 4 was the most impacted area. Assessment of the health status by WOE approach highlighted the importance of integrating sediment chemistry, bioaccumulation, biomarkers and bioassays and revealed that despite some disturbance in the harbor area, there was also an impact of urban effluents from upstream. Environmental quality assessment in harbors. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. 77 FR 43513 - Olympia Harbor Days Tug Boat Races, Budd Inlet, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... Harbor Days Tug Boat Races, Budd Inlet, WA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Special Local Regulation, Olympia Harbor Days Tug Boat... Special Local Regulation for Olympia Harbor Days Tug Boat Races, Budd Inlet, WA in 33 CFR 100.1309 on...

  18. Safe harbor: protecting ports with shipboard fuel cells.

    PubMed

    Taylor, David A

    2006-04-01

    With five of the largest harbors in the United States, California is beginning to take steps to manage the large amounts of pollution generated by these bustling centers of transport and commerce. One option for reducing diesel emissions is the use of fuel cells, which run cleaner than diesel and other internal combustion engines. Other technologies being explored by harbor officials are diesel-electric hybrid and gas turbine locomotives for moving freight within port complexes.

  19. 15. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, LOOKING OUT TOWARD ARIZONA MEMORIAL AND FORD ISLAND. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  20. Charleston Harbor Deepening Project. Charleston Harbor and Shipyard River, South Carolina.

    DTIC Science & Technology

    1976-04-01

    between the two basins to 250 feet; enlargement of the 0 anchorage basin near the harbor mouth by deepening to a depth of 40 feet and by extending the...and 0 Wando River; and the relocating of channels near terminals to provide 125-foot clearance between piers and the edge of the channel. * 0 0...materials; localized adverse effects on plankton and primary productivity; minor losses of larval and juvenile fishes near the dredge and disposal areas

  1. 76 FR 50489 - Agency Information Collection Activities: Harbor Maintenance Fee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... Activities: Harbor Maintenance Fee AGENCY: U.S. Customs and Border Protection, Department of Homeland... Security will be submitting the following information collection request to the Office of Management and Budget (OMB) for review and approval in accordance with the Paperwork Reduction Act: Harbor Maintenance...

  2. U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage System, Linear underground system extending from North Road to Icarus Way, Joint Base Pearl Harbor-Hickam, Honolulu, Honolulu County, HI

  3. Inspector's manual for mechanically stabilized earth walls.

    DOT National Transportation Integrated Search

    2010-06-01

    The scope of the project is to develop a condition rating system, creation of an inspector's manual to reference during : inspection or address any training for inspectors at the district level. The research project will develop a MSE wall : conditio...

  4. 33 CFR 110.214 - Los Angeles and Long Beach harbors, California.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following locations: (A) Inner Harbor: The Henry Ford (Badger Avenue) Bridge. (B) Middle Harbor: The Pier... will be given, but not necessarily limited to: the current and anticipated demands for anchorage space...

  5. 33 CFR 110.214 - Los Angeles and Long Beach harbors, California.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following locations: (A) Inner Harbor: The Henry Ford (Badger Avenue) Bridge. (B) Middle Harbor: The Pier... will be given, but not necessarily limited to: the current and anticipated demands for anchorage space...

  6. The New Bedford Harbor Superfund Site Long Term ...

    EPA Pesticide Factsheets

    Background. New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a marine Superfund site in 1983 due to sediment contamination by polychlorinated biphenyls (PCBs). Based on risks to human health and the environment, the first two phases of the site cleanup involved dredging PCB-contaminated sediments from the harbor. Therefore, a long-term monitoring program (LTM) was developed to measure spatial and temporal chemical and biological changes in sediment, water, and biota to assess the effects and effectiveness of the remedial activities. Approach. A systematic, probabilistic sampling design was used to select approximately 70 sediment sampling stations. Sediment was collected at each station and chemical (e.g., PCBs, metals), physical (e.g., grain size), and biological (e.g., benthic community) measurements were conducted on all samples. There have been six sample collections to date: 1993-baseline, 1995-post hot spot removal, 1999-prior to full scale dredging, and then at 5 year intervals: 2004, 2009, and 2014. Mussel (Mytilus edulis) bioaccumulation has also been measured twice yearly. Results. There is a decreasing spatial gradient in sediment PCB concentrations from the northern boundary (upper harbor) to the southern boundary (outer harbor) of the site. Along this same transect, there is an increase in biological condition (e.g., benthic community diversity). Temporally, the contaminant and biological gradients have been

  7. Harbor seal vibrissa morphology suppresses vortex-induced vibrations.

    PubMed

    Hanke, Wolf; Witte, Matthias; Miersch, Lars; Brede, Martin; Oeffner, Johannes; Michael, Mark; Hanke, Frederike; Leder, Alfred; Dehnhardt, Guido

    2010-08-01

    Harbor seals (Phoca vitulina) often live in dark and turbid waters, where their mystacial vibrissae, or whiskers, play an important role in orientation. Besides detecting and discriminating objects by direct touch, harbor seals use their whiskers to analyze water movements, for example those generated by prey fish or by conspecifics. Even the weak water movements left behind by objects that have passed by earlier can be sensed and followed accurately (hydrodynamic trail following). While scanning the water for these hydrodynamic signals at a swimming speed in the order of meters per second, the seal keeps its long and flexible whiskers in an abducted position, largely perpendicular to the swimming direction. Remarkably, the whiskers of harbor seals possess a specialized undulated surface structure, the function of which was, up to now, unknown. Here, we show that this structure effectively changes the vortex street behind the whiskers and reduces the vibrations that would otherwise be induced by the shedding of vortices from the whiskers (vortex-induced vibrations). Using force measurements, flow measurements and numerical simulations, we find that the dynamic forces on harbor seal whiskers are, by at least an order of magnitude, lower than those on sea lion (Zalophus californianus) whiskers, which do not share the undulated structure. The results are discussed in the light of pinniped sensory biology and potential biomimetic applications.

  8. Lorain Harbor, Ohio. Preliminary Feasibility Study (Stage 2). Review of Reports. Volume II. Appendices.

    DTIC Science & Technology

    1980-10-01

    looked all the way from the west to all the way down to Erie , Pennsylvania . We made some initial cuts and got it down to five different ports...Harbor, MN Presque Isle :Two Harbors, MN :Gary, IN 1,721,920 25 (Litton Great Lakes):Two Harbors, MN :Calumet Harbor, IN 178,080 3 :Two Harbors, MN...WI : 2 :11 : 0: 0 : 0: 2: 3 Silver Bay, MN : 82 :67 : 96 :87 : 85 : 88: 89 Taconite, MN : 0 : 0 : 0: 0 : 0: 4: 0 Presque Isle , MI : 6 2 : 1 0.5: 2 1

  9. 33 CFR 110.40 - Silver Beach Harbor, North Falmouth, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Silver Beach Harbor, North Falmouth, Mass. 110.40 Section 110.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.40 Silver Beach Harbor, North...

  10. 33 CFR 110.40 - Silver Beach Harbor, North Falmouth, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Silver Beach Harbor, North Falmouth, Mass. 110.40 Section 110.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.40 Silver Beach Harbor, North...

  11. 33 CFR 110.40 - Silver Beach Harbor, North Falmouth, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Silver Beach Harbor, North Falmouth, Mass. 110.40 Section 110.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.40 Silver Beach Harbor, North...

  12. 33 CFR 110.40 - Silver Beach Harbor, North Falmouth, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Silver Beach Harbor, North Falmouth, Mass. 110.40 Section 110.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.40 Silver Beach Harbor, North...

  13. 33 CFR 110.40 - Silver Beach Harbor, North Falmouth, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Silver Beach Harbor, North Falmouth, Mass. 110.40 Section 110.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.40 Silver Beach Harbor, North...

  14. 16. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, LOOKING OUT AT MAIN CHANNEL ENTRANCE, WITH FORD ISLAND ON THE RIGHT. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  15. 78 FR 18479 - Drawbridge Operation Regulations; Inner Harbor Navigation Canal, New Orleans, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... Operation Regulations; Inner Harbor Navigation Canal, New Orleans, LA AGENCY: Coast Guard, DHS. ACTION... across the Inner Harbor Navigation Canal, mile 4.6, at New Orleans, Louisiana. This deviation is... Seabrook Highway crossing the Inner Harbor Navigation Canal, mile 4.6, in New Orleans, Louisiana. The...

  16. Hydraulic modeling of stream channels and structures in Harbor and Crow Hollow Brooks, Meriden, Connecticut

    USGS Publications Warehouse

    Weiss, Lawrence A.; Sears, Michael P.; Cervione, Michael A.

    1994-01-01

    Effects of urbanization have increased the frequency and size of floods along certain reaches of Harbor Brook and Crow Hollow Brook in Meriden, Conn. A floodprofile-modeling study was conducted to model the effects of selected channel and structural modifications on flood elevations and inundated areas. The study covered the reach of Harbor Brook downstream from Interstate 691 and the reach of Crow Hollow Brook downstream from Johnson Avenue. Proposed modifications, which include changes to bank heights, channel geometry, structural geometry, and streambed armoring on Harbor Brook and changes to bank heights on Crow Hollow Brook, significantly lower flood elevations. Results of the modeling indicate a significant reduction of flood elevations for the 10-year, 25-year, 35-year, 50-year, and 100-year flood frequencies using proposed modifications to (1 ) bank heights between Harbor Brook Towers and Interstate 691 on Harbor Brook, and between Centennial Avenue and Johnson Avenue on Crow Hollow Brook; (2) channel geometry between Coe Avenue and Interstate 69 1 on Harbor Brook; (3) bridge and culvert opening geometry between Harbor Brook Towers and Interstate 691 on Harbor Brook; and (4) channel streambed armoring between Harbor Brook Towers and Interstate 691 on Harbor Brook. The proposed modifications were developed without consideration of cost-benefit ratios.

  17. 78 FR 63381 - Safety Zones; Hawaiian Island Commercial Harbors, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2013-0021] RIN 1625-AA00 Safety Zones; Hawaiian Island Commercial Harbors, HI AGENCY: Coast Guard, DHS. ACTION: Final rule... as follows: Sec. 165. 14-1414 Safety Zones; Hawaiian Islands Commercial Harbors; HI. (a) Location...

  18. 33 CFR 162.110 - Duluth-Superior Harbor, Minnesota and Wisconsin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Duluth-Superior Harbor, Minnesota and Wisconsin. 162.110 Section 162.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Duluth-Superior Harbor, Minnesota and Wisconsin. (a) No vessel greater than 100 feet in length may exceed...

  19. 33 CFR 162.110 - Duluth-Superior Harbor, Minnesota and Wisconsin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Duluth-Superior Harbor, Minnesota and Wisconsin. 162.110 Section 162.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Duluth-Superior Harbor, Minnesota and Wisconsin. (a) No vessel greater than 100 feet in length may exceed...

  20. 33 CFR 162.110 - Duluth-Superior Harbor, Minnesota and Wisconsin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Duluth-Superior Harbor, Minnesota and Wisconsin. 162.110 Section 162.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Duluth-Superior Harbor, Minnesota and Wisconsin. (a) No vessel greater than 100 feet in length may exceed...

  1. 33 CFR 162.110 - Duluth-Superior Harbor, Minnesota and Wisconsin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Duluth-Superior Harbor, Minnesota and Wisconsin. 162.110 Section 162.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Duluth-Superior Harbor, Minnesota and Wisconsin. (a) No vessel greater than 100 feet in length may exceed...

  2. 33 CFR 162.110 - Duluth-Superior Harbor, Minnesota and Wisconsin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Duluth-Superior Harbor, Minnesota and Wisconsin. 162.110 Section 162.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Duluth-Superior Harbor, Minnesota and Wisconsin. (a) No vessel greater than 100 feet in length may exceed...

  3. 33 CFR 110.77a - Duluth-Superior Harbor, Duluth, Minn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Duluth-Superior Harbor, Duluth, Minn. 110.77a Section 110.77a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77a Duluth-Superior Harbor, Duluth...

  4. 33 CFR 110.77a - Duluth-Superior Harbor, Duluth, Minn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Duluth-Superior Harbor, Duluth, Minn. 110.77a Section 110.77a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77a Duluth-Superior Harbor, Duluth...

  5. 33 CFR 110.77a - Duluth-Superior Harbor, Duluth, Minn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Duluth-Superior Harbor, Duluth, Minn. 110.77a Section 110.77a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77a Duluth-Superior Harbor, Duluth...

  6. 33 CFR 110.77a - Duluth-Superior Harbor, Duluth, Minn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Duluth-Superior Harbor, Duluth, Minn. 110.77a Section 110.77a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77a Duluth-Superior Harbor, Duluth...

  7. 33 CFR 110.77a - Duluth-Superior Harbor, Duluth, Minn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Duluth-Superior Harbor, Duluth, Minn. 110.77a Section 110.77a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77a Duluth-Superior Harbor, Duluth...

  8. 19. Photocopy of Blueprint (Original blueprint located in Grays Harbor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of Blueprint (Original blueprint located in Grays Harbor County Bridge File No. 4731/0.5 COAST BRIDGE COMPANY'S CONSTRUCTION BLUEPRINT OF 'FLOOR SYSTEM FOR 120' RIVETED SPAN' DATED JULY 1915 - West Wishkah Bridge, West Wishkah Road Spanning Wishkah River Middle Fork, Aberdeen, Grays Harbor County, WA

  9. LytN, a Murein Hydrolase in the Cross-wall Compartment of Staphylococcus aureus, Is Involved in Proper Bacterial Growth and Envelope Assembly*

    PubMed Central

    Frankel, Matthew B.; Hendrickx, Antoni P. A.; Missiakas, Dominique M.; Schneewind, Olaf

    2011-01-01

    Cell cycle progression for the spherical microbe Staphylococcus aureus requires the coordinated synthesis and remodeling of peptidoglycan. The majority of these rearrangements takes place at the mid-cell, in a compartment designated the cross-wall. Secreted polypeptides endowed with a YSIRK-G/S signal peptide are directly delivered to the cross-wall compartment. One such YSIRK-containing protein is the murein hydrolase LytN. lytN mutations precipitate structural damage to the cross-wall and interfere with staphylococcal growth. Overexpression of lytN also affects growth and triggers rupture of the cross-wall. The lytN phenotype can be reversed by the controlled expression of lytN but not by adding purified LytN to staphylococcal cultures. LytN harbors LysM and CHAP domains, the latter of which functions as both an N-acetylmuramoyl-l-alanine amidase and d-alanyl-glycine endopeptidase. Thus, LytN secretion into the cross-wall promotes peptidoglycan separation and completion of the staphylococcal cell cycle. PMID:21784864

  10. 33 CFR 117.458 - Inner Harbor Navigation Canal, New Orleans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Inner Harbor Navigation Canal, New Orleans. 117.458 Section 117.458 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Harbor Navigation Canal, New Orleans. (a) The draws of the SR 46 (St. Claude Avenue) bridge, mile 0.5...

  11. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  12. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  13. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  14. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  15. 33 CFR 117.1083 - Duluth-Superior Harbor (St. Louis River).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Duluth-Superior Harbor (St. Louis River). 117.1083 Section 117.1083 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...-Superior Harbor (St. Louis River). (a) The draws of the Burlington Northern railroad bridge, mile 5.7 at...

  16. 33 CFR 117.661 - Duluth Ship Canal (Duluth-Superior Harbor).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Duluth Ship Canal (Duluth-Superior Harbor). 117.661 Section 117.661 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Ship Canal (Duluth-Superior Harbor). The draw of the Duluth Ship Canal Aerial bridge, mile 0.25 at...

  17. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  18. Boston Harbor National Park Service sites : alternative transportation systems evaluation report

    DOT National Transportation Integrated Search

    2001-06-01

    This project puts forth a forward looking water-based transportation plan which would serve four NPS units in and around Boston Harbor: Boston Harbor Islands National Recreation Area, Boston National Historical Park, Salem Maritime Historic Site, and...

  19. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., V.I. (a) The anchorage grounds—(1) Inner harbor anchorage. Beginning at a point bearing 85°, 525... shall also be used by vessels having drafts too great to permit them to use the inner harbor anchorage...

  20. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., V.I. (a) The anchorage grounds—(1) Inner harbor anchorage. Beginning at a point bearing 85°, 525... shall also be used by vessels having drafts too great to permit them to use the inner harbor anchorage...

  1. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., V.I. (a) The anchorage grounds—(1) Inner harbor anchorage. Beginning at a point bearing 85°, 525... shall also be used by vessels having drafts too great to permit them to use the inner harbor anchorage...

  2. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., V.I. (a) The anchorage grounds—(1) Inner harbor anchorage. Beginning at a point bearing 85°, 525... shall also be used by vessels having drafts too great to permit them to use the inner harbor anchorage...

  3. Underwater localization of pure tones by harbor seals (Phoca vitulina).

    PubMed

    Bodson, Anaïs; Miersch, Lars; Dehnhardt, Guido

    2007-10-01

    The underwater sound localization acuity of harbor seals (Phoca vitulina) was measured in the horizontal plane. Minimum audible angles (MAAs) of pure tones were determined as a function of frequency from 0.2 to 16 kHz for two seals. Testing was conducted in a 10-m-diam underwater half circle using a right/left psychophysical procedure. The results indicate that for both harbor seals, MAAs were large at high frequencies (13.5 degrees and 17.4 degrees at 16 kHz), transitional at intermediate frequencies (9.6 degrees and 10.1 degrees at 4 kHz), and particularly small at low frequencies (3.2 degrees and 3.1 degrees at 0.2 kHz). Harbor seals seem to be able to utilize both binaural cues, interaural time differences (ITDs) and interaural intensity differences (IIDs), but a significant decrease in the sound localization acuity with increasing frequency suggests that IID cues may not be as robust as ITD cues under water. These results suggest that the harbor seal can be regarded as a low-frequency specialist. Additionally, to obtain a MAA more representative of the species, the horizontal underwater MAA of six adult harbor seals was measured at 2 kHz under identical conditions. The MAAs of the six animals ranged from 8.8 degrees to 11.7 degrees , resulting in a mean MAA of 10.3 degrees .

  4. Genetics Home Reference: Floating-Harbor syndrome

    MedlinePlus

    ... Patton MA, Hurst J, Donnai D, McKeown CM, Cole T, Goodship J. Floating-Harbor syndrome. J Med ... medicine? What is newborn screening? New Pages Lyme disease Fibromyalgia White-Sutton syndrome All New & Updated Pages ...

  5. Underwater detection of tonal signals between 0.125 and 100 kHz by harbor seals (Phoca vitulina).

    PubMed

    Kastelein, Ronald A; Wensveen, Paul J; Hoek, Lean; Verboom, Willem C; Terhune, John M

    2009-02-01

    The underwater hearing sensitivities of two 1-year-old female harbor seals were quantified in a pool built for acoustic research, using a behavioral psychoacoustic technique. The animals were trained to respond when they detected an acoustic signal and not to respond when they did not (go/no-go response). Pure tones (0.125-0.25 kHz) and narrowband frequency modulated (tonal) signals (center frequencies 0.5-100 kHz) of 900 ms duration were tested. Thresholds at each frequency were measured using the up-down staircase method and defined as the stimulus level resulting in a 50% detection rate. The audiograms of the two seals did not differ statistically: both plots showed the typical mammalian U-shape, but with a wide and flat bottom. Maximum sensitivity (54 dB re 1 microPa, rms) occurred at 1 kHz. The frequency range of best hearing (within 10 dB of maximum sensitivity) was from 0.5 to 40 kHz (6(1/3) octaves). Higher hearing thresholds (indicating poorer sensitivity) were observed below 1 and above 40 kHz. Thresholds below 4 kHz were lower than those previously described for harbor seals, which demonstrates the importance of using quiet facilities, built specifically for acoustic research, for hearing studies in marine mammals. The results suggest that under unmasked conditions many anthropogenic noise sources and sounds from conspecifics are audible to harbor seals at greater ranges than formerly believed.

  6. 33 CFR 117.661 - Duluth Ship Canal (Duluth-Superior Harbor).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Duluth Ship Canal (Duluth-Superior Harbor). 117.661 Section 117.661 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.661 Duluth Ship Canal (Duluth-Superior Harbor). The draw o...

  7. 33 CFR 117.753 - Ship Channel, Great Egg Harbor Bay.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Ship Channel, Great Egg Harbor... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.753 Ship Channel, Great Egg Harbor Bay. The draw of the S52 (Ship Channel) bridge, mile 0.5 between Somers Point and Ocean...

  8. 33 CFR 117.753 - Ship Channel, Great Egg Harbor Bay.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Ship Channel, Great Egg Harbor... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.753 Ship Channel, Great Egg Harbor Bay. The draw of the S52 (Ship Channel) bridge, mile 0.5 between Somers Point and Ocean...

  9. 33 CFR 334.870 - San Diego Harbor, Calif.; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false San Diego Harbor, Calif... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.870 San Diego Harbor... the Pacific Ocean in North San Diego Bay in an area extending from the western boundary of North...

  10. 33 CFR 334.870 - San Diego Harbor, Calif.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false San Diego Harbor, Calif... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.870 San Diego Harbor... the Pacific Ocean in North San Diego Bay in an area extending from the western boundary of North...

  11. 77 FR 19573 - Safety Zone; Wedding Fireworks Display, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ...-AA00 Safety Zone; Wedding Fireworks Display, Boston Inner Harbor, Boston, MA AGENCY: Coast Guard, DHS... zone on the navigable waters of the Boston Inner Harbor in the vicinity of Anthony's Pier 4, Boston, MA... Boston Inner Harbor in the vicinity of Anthony's Pier 4, Boston, MA. The Captain of the Port (COTP...

  12. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  13. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  14. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  15. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  16. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  17. APPLICATION OF EMAP METHODS AND INDICATORS TO THE NY/NJ HARBOR

    EPA Science Inventory

    The Comprehensive Conservation and Management Plan (CCMP) for the NY/NJ Harbor requires specific management actions to maintain and restore the Harbor environment. It also specifies that the progress of these management actions on the improvement of sediment quality and biologic...

  18. 33 CFR 117.753 - Ship Channel, Great Egg Harbor Bay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ship Channel, Great Egg Harbor Bay. 117.753 Section 117.753 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND..., Great Egg Harbor Bay. The draw of the S52 (Ship Channel) bridge, mile 0.5 between Somers Point and Ocean...

  19. 33 CFR 117.753 - Ship Channel, Great Egg Harbor Bay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Ship Channel, Great Egg Harbor Bay. 117.753 Section 117.753 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND..., Great Egg Harbor Bay. The draw of the S52 (Ship Channel) bridge, mile 0.5 between Somers Point and Ocean...

  20. The validation of a swimming turn wall-contact-time measurement system: a touchpad application reliability study.

    PubMed

    Brackley, Victoria; Ball, Kevin; Tor, Elaine

    2018-05-12

    The effectiveness of the swimming turn is highly influential to overall performance in competitive swimming. The push-off or wall contact, within the turn phase, is directly involved in determining the speed the swimmer leaves the wall. Therefore, it is paramount to develop reliable methods to measure the wall-contact-time during the turn phase for training and research purposes. The aim of this study was to determine the concurrent validity and reliability of the Pool Pad App to measure wall-contact-time during the freestyle and backstroke tumble turn. The wall-contact-times of nine elite and sub-elite participants were recorded during their regular training sessions. Concurrent validity statistics included the standardised typical error estimate, linear analysis and effect sizes while the intraclass correlating coefficient (ICC) was used for the reliability statistics. The standardised typical error estimate resulted in a moderate Cohen's d effect size with an R 2 value of 0.80 and the ICC between the Pool Pad and 2D video footage was 0.89. Despite these measurement differences, the results from this concurrent validity and reliability analyses demonstrated that the Pool Pad is suitable for measuring wall-contact-time during the freestyle and backstroke tumble turn within a training environment.

  1. 33 CFR 117.699 - Little Harbor.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.699 Little Harbor. The draw of the SR1B bridge, mile 1.0 between New Castle and Rye, shall open on signal from April 1 through October 31...

  2. 33 CFR 117.699 - Little Harbor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.699 Little Harbor. The draw of the SR1B bridge, mile 1.0 between New Castle and Rye, shall open on signal from April 1 through October 31...

  3. 33 CFR 117.699 - Little Harbor.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.699 Little Harbor. The draw of the SR1B bridge, mile 1.0 between New Castle and Rye, shall open on signal from April 1 through October 31...

  4. 33 CFR 117.699 - Little Harbor.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.699 Little Harbor. The draw of the SR1B bridge, mile 1.0 between New Castle and Rye, shall open on signal from April 1 through October 31...

  5. 33 CFR 117.699 - Little Harbor.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.699 Little Harbor. The draw of the SR1B bridge, mile 1.0 between New Castle and Rye, shall open on signal from April 1 through October 31...

  6. Congress Investigates: Pearl Harbor and 9/11 Congressional Hearing Exhibits

    ERIC Educational Resources Information Center

    Blackerby, Christine

    2011-01-01

    On the morning of December 7, 1941, Japanese bombers staged a surprise attack on U.S. military forces at Pearl Harbor in Hawaii. Sixty years after the attack on Pearl Harbor, the United States was attacked again. On the morning of September 11, 2001, four commercial airplanes hijacked by 19 terrorists killed nearly 3,000 people when they crashed…

  7. Administering Safety: Challenge Courses and Climbing Walls.

    ERIC Educational Resources Information Center

    Evans, Will

    1996-01-01

    A camp that is establishing a challenge course or climbing wall must ensure program safety. Discusses financial planning, selecting a contractor, adhering to standards for construction, inspections, staff training, screening of participants, and the administrative challenge of implementing and documenting proper actions. Sidebar discusses a study…

  8. Final Environmental Impact Statement on Debris Removal from Boston Harbor, Massachusetts. Revision.

    DTIC Science & Technology

    1980-05-01

    34Trace Metal Analysis of Boston Harbor Waters and Sediments", July 1972. Storey , D. A., "The Massachusetts Marina Boatyard Industry 1972-1973", Mass...is possible that a feasible re-use alternative will be identified during the final design stage of the project. If this happens, and the method of re...points. Coliform counts in the Outer Harbor routinely exceed the SB standard designated for that area. 2.27 In summary, the Harbor receives a heavy

  9. mecC-Harboring Methicillin-Resistant Staphylococcus aureus: Hiding in Plain Sight.

    PubMed

    Ford, Bradley A

    2018-01-01

    Previously there was scant data on the performance of laboratory testing to detect mecC -mediated beta-lactam resistance in Staphylococcus aureus Kriegeskorte and colleagues (J Clin Microbiol 56:e00826-17, 2018, https://doi.org/10.1128/JCM.00826-17) report the performance of various clinical tests for the detection of mecC -harboring methicillin-resistant S. aureus (MRSA), which failed to identify from 0 to 41% of tested mecC -harboring MRSA isolates. Changes in practice and new test development are necessary to address the challenge of mecC -harboring MRSA. Copyright © 2017 American Society for Microbiology.

  10. 76 FR 37269 - Safety Zone; Charleston Sharkfest Swim, Charleston Harbor, Charleston, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ...-AA00 Safety Zone; Charleston Sharkfest Swim, Charleston Harbor, Charleston, SC AGENCY: Coast Guard, DHS... waters of Charleston Harbor, in Charleston, South Carolina during the Charleston Sharkfest Swim on Sunday, [[Page 37270

  11. Chronic abdominal wall pain misdiagnosed as functional abdominal pain.

    PubMed

    van Assen, Tijmen; de Jager-Kievit, Jenneke W A J; Scheltinga, Marc R; Roumen, Rudi M H

    2013-01-01

    The abdominal wall is often neglected as a cause of chronic abdominal pain. The aim of this study was to identify chronic abdominal wall pain syndromes, such as anterior cutaneous nerve entrapment syndrome (ACNES), in a patient population diagnosed with functional abdominal pain, including irritable bowel syndrome, using a validated 18-item questionnaire as an identification tool. In this cross-sectional analysis, 4 Dutch primary care practices employing physicians who were unaware of the existence of ACNES were selected. A total of 535 patients ≥18 years old who were registered with a functional abdominal pain diagnosis were approached when they were symptomatic to complete the questionnaire (maximum 18 points). Responders who scored at least the 10-point cutoff value (sensitivity, 0.94; specificity, 0.92) underwent a diagnostic evaluation to establish their final diagnosis. The main outcome was the presence and prevalence of ACNES in a group of symptomatic patients diagnosed with functional abdominal pain. Of 535 patients, 304 (57%) responded; 167 subjects (31%) recently reporting symptoms completed the questionnaire. Of 23 patients who scored above the 10-point cutoff value, 18 were available for a diagnostic evaluation. In half of these subjects (n = 9) functional abdominal pain (including IBS) was confirmed. However, the other 9 patients were suffering from abdominal wall pain syndrome, 6 of whom were diagnosed with ACNES (3.6% prevalence rate of symptomatic subjects; 95% confidence interval, 1.7-7.6), whereas the remaining 3 harbored a painful lipoma, an abdominal herniation, and a painful scar. A clinically relevant portion of patients previously diagnosed with functional abdominal pain syndrome in a primary care environment suffers from an abdominal wall pain syndrome such as ACNES.

  12. Sedimentation and chronology of heavy metal pollution in Oslo harbor, Norway.

    PubMed

    Lepland, Aivo; Andersen, Thorbjørn J; Lepland, Aave; Arp, Hans Peter H; Alve, Elisabeth; Breedveld, Gijs D; Rindby, Anders

    2010-09-01

    Stratigraphic profiles of Cu, Cd and Hg in ten sediment cores from the Oslo harbor, Norway, combined with results of radiometric dating demonstrate that pollution by these metals peaked between 1940 and 1970. Dating results indicate that Hg discharges peaked between 1940 and 1950, Cd reached maximum ca. 1955-1960, and Cu has the highest concentration in sediment interval corresponding to ca. 1970. Geochemical profiles and maxima of Cu, Cd and Hg concentrations can be used as chronostratigraphic markers for sediment cores from the Oslo harbor. Acoustic backscatter and sediment core data indicate that propeller wash affects the seabed in the Oslo harbor. The propeller-induced turbulence causes erosion, and in places exposes and remobilizes contaminated sediments that accumulated in the harbor during previous decades. Such re-exposure of contaminated sediments could be detrimental to local ecosystems and offset remediation efforts, warranting further impact studies and potential mitigation strategies to prevent redistribution. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  14. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  15. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  16. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  17. 33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...

  18. Improvement of water quality at Dongbin Harbor with construction of an inland canal, Korea.

    PubMed

    Cho, Yong-Sik

    2014-01-01

    The behaviors of the water body of Dongbin Harbor located at Pohang City, Gyongpook Province, in Korea were numerically simulated in this study. A canal was planned to connect the harbor and the Hyeongsan River to improve water quality inside the harbor. The current system was first simulated by using a commercial program RMA2, with respect to both tidal currents and river flow. The progress inside the harbor from a supply of fresh water from the Hyeongsan River was then predicted by using RMA4. Both the present and future conditions (before and after construction of an inland canal) were taken into consideration in numerical simulations. It is concluded that the water quality inside the harbor can be improved considerably after construction of the canal.

  19. 33 CFR 110.214 - Los Angeles and Long Beach harbors, California.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Angeles Harbor). A circular area with a radius of 400 yards (approximately 366 meters), centered in... 400 Transportation Corridor. (C) Outer Harbor: The western boundary of Commercial Anchorage B. (2... Thence along a line described as an arc, radius of 460 meters (approximately 1509 feet) centered on 33...

  20. 33 CFR 100.118 - Searsport Lobster Boat Races, Searsport Harbor, ME.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Searsport Lobster Boat Races, Searsport Harbor, ME. 100.118 Section 100.118 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Lobster Boat Races, Searsport Harbor, ME. (a) Regulated Area. The regulated area includes all waters of...

  1. [Stem and progenitor cells in biostructure of blood vessel walls].

    PubMed

    Korta, Krzysztof; Kupczyk, Piotr; Skóra, Jan; Pupka, Artur; Zejler, Paweł; Hołysz, Marcin; Gajda, Mariusz; Nowakowska, Beata; Barć, Piotr; Dorobisz, Andrzej T; Dawiskiba, Tomasz; Szyber, Piotr; Bar, Julia

    2013-09-18

    Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, "anchored" in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC). Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as "subendothelial or vasculogenic zones". Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  2. Assessment of Modifications for Improving Navigation at Hilo Harbor, Hawaii

    DTIC Science & Technology

    2016-06-01

    ER D C/ CH L TR -1 6- 9 Coastal Inlets Research Program Assessment of Modifications for Improving Navigation at Hilo Harbor, Hawaii...at http://acwc.sdp.sirsi.net/client/default. Coastal Inlets Research Program ERDC/CHL TR-16-9 June 2016 Assessment of Modifications for Improving...validation with 2013–2014 field data ................................................. 86 4.5.3 Chile tsunami effect on Hilo Harbor

  3. U.S. Coast Guard cutter personnel on Sweetbriar train their fire ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    U.S. Coast Guard cutter personnel on Sweetbriar train their fire hoses on a burning pleasure boat in an Alaskan harbor. A U.S. Coast Guard rigid-hull inflatable helps with the fire-fighting effort - U.S. Coast Guard Cutter SWEETBRIER, Cordova, Valdez-Cordova Census Area, AK

  4. 33 CFR 110.50b - Mystic Harbor, Groton and Stonington, Conn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Mystic Harbor, Groton and Stonington, Conn. 110.50b Section 110.50b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50b Mystic Harbor, Groton and...

  5. 33 CFR 110.50b - Mystic Harbor, Groton and Stonington, Conn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Mystic Harbor, Groton and Stonington, Conn. 110.50b Section 110.50b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50b Mystic Harbor, Groton and...

  6. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  7. 33 CFR 110.50b - Mystic Harbor, Groton and Stonington, Conn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Mystic Harbor, Groton and Stonington, Conn. 110.50b Section 110.50b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50b Mystic Harbor, Groton and...

  8. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  9. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  10. 33 CFR 110.50b - Mystic Harbor, Groton and Stonington, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mystic Harbor, Groton and Stonington, Conn. 110.50b Section 110.50b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50b Mystic Harbor, Groton and...

  11. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  12. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  13. 33 CFR 110.50b - Mystic Harbor, Groton and Stonington, Conn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Mystic Harbor, Groton and Stonington, Conn. 110.50b Section 110.50b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50b Mystic Harbor, Groton and...

  14. 33 CFR 100.113 - Provincetown Harbor Swim for Life, Provincetown, MA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Provincetown Harbor Swim for Life, Provincetown, MA. 100.113 Section 100.113 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... for Life, Provincetown, MA. (a) Regulated Area. All waters of Provincetown Harbor within 200 feet of...

  15. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  16. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  17. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  18. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  19. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  20. 75 FR 53572 - Safety Zone; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ...-AA00 Safety Zone; Olympia Harbor Days Tug Boat Races, Budd Inlet, WA AGENCY: Coast Guard, DHS. ACTION... channel in Budd Inlet, WA during Olympia Harbor Days tug boat races. This safety zone is necessary to... waters of the Budd Inlet, WA during Olympia Harbor Days tug boat races. DATES: This rule is effective...

  1. 33 CFR 209.155 - Expenditure of Federal funds for work shoreward of harbor lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... work shoreward of harbor lines. 209.155 Section 209.155 Navigation and Navigable Waters CORPS OF... Federal funds for work shoreward of harbor lines. (a) Section 5 of the River and Harbor Act of July 13, 1892 (27 Stat. 111; 33 U.S.C. 628), prohibits the expenditure of money appropriated for the improvement...

  2. 31 CFR 50.7 - Special Rules for Interim Guidance Safe Harbors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Special Rules for Interim Guidance Safe Harbors. 50.7 Section 50.7 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM General Provisions § 50.7 Special Rules for Interim Guidance Safe Harbors...

  3. 31 CFR 50.7 - Special Rules for Interim Guidance Safe Harbors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Special Rules for Interim Guidance Safe Harbors. 50.7 Section 50.7 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM General Provisions § 50.7 Special Rules for Interim Guidance Safe Harbors...

  4. 31 CFR 50.7 - Special Rules for Interim Guidance Safe Harbors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Special Rules for Interim Guidance Safe Harbors. 50.7 Section 50.7 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM General Provisions § 50.7 Special Rules for Interim Guidance Safe Harbors...

  5. 31 CFR 50.7 - Special Rules for Interim Guidance Safe Harbors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Special Rules for Interim Guidance Safe Harbors. 50.7 Section 50.7 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM General Provisions § 50.7 Special Rules for Interim Guidance Safe Harbors...

  6. 31 CFR 50.7 - Special Rules for Interim Guidance Safe Harbors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Special Rules for Interim Guidance Safe Harbors. 50.7 Section 50.7 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM General Provisions § 50.7 Special Rules for Interim Guidance Safe Harbors...

  7. Fine-Scale Variability in Harbor Seal Foraging Behavior

    PubMed Central

    Wilson, Kenady; Lance, Monique; Jeffries, Steven; Acevedo-Gutiérrez, Alejandro

    2014-01-01

    Understanding the variability of foraging behavior within a population of predators is important for determining their role in the ecosystem and how they may respond to future ecosystem changes. However, such variability has seldom been studied in harbor seals on a fine spatial scale (<30 km). We used a combination of standard and Bayesian generalized linear mixed models to explore how environmental variables influenced the dive behavior of harbor seals. Time-depth recorders were deployed on harbor seals from two haul-out sites in the Salish Sea in 2007 (n = 18) and 2008 (n = 11). Three behavioral bout types were classified from six dive types within each bout; however, one of these bout types was related to haul-out activity and was excluded from analyses. Deep foraging bouts (Type I) were the predominant type used throughout the study; however, variation in the use of bout types was observed relative to haul-out site, season, sex, and light (day/night). The proportional use of Type I and Type II (shallow foraging/traveling) bouts differed dramatically between haul-out sites, seasons, sexes, and whether it was day or night; individual variability between seals also contributed to the observed differences. We hypothesize that this variation in dive behavior was related to habitat or prey specialization by seals from different haul-out sites, or individual variability between seals in the study area. The results highlight the potential influence of habitat and specialization on the foraging behavior of harbor seals, and may help explain the variability in diet that is observed between different haul-out site groups in this population. PMID:24717815

  8. 16 CFR 312.10 - Safe harbors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Safe harbors. 312.10 Section 312.10 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE..., issued by representatives of the marketing or online industries, or by other persons, that, after notice...

  9. 16 CFR 312.10 - Safe harbors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Safe harbors. 312.10 Section 312.10 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE..., issued by representatives of the marketing or online industries, or by other persons, that, after notice...

  10. 16 CFR 312.10 - Safe harbors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Safe harbors. 312.10 Section 312.10 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE..., issued by representatives of the marketing or online industries, or by other persons, that, after notice...

  11. The dynamics of fine-grain sediment dredged from Santa Cruz Harbor

    USGS Publications Warehouse

    Storlazzi, Curt D.; Conaway, Christopher H.; Presto, M. Katherine; Logan, Joshua B.; Cronin, Katherine; van Ormondt, Maarten; Lescinski, Jamie; Harden, E. Lynne; Lacy, Jessica R.; Tonnon, Pieter K.

    2011-01-01

    In the fall and early winter of 2009, a demonstration project was done at Santa Cruz Harbor, California, to determine if 450 m3/day of predominantly (71 percent) mud-sized sediment could be dredged from the inner portion of the harbor and discharged to the coastal ocean without significant impacts to the beach and inner shelf. During the project, more than 7600 m3 of sediment (~5400 m3 of fine-grain material) was dredged during 17 days and discharged approximately 60 m offshore of the harbor at a depth of 2 m on the inner shelf. The U.S. Geological Survey's Pacific Coastal and Marine Science Center was funded by the U.S. Army Corps of Engineers and the Santa Cruz Port District to do an integrated mapping and process study to investigate the fate of the mud-sized sediment dredged from the inner portion of Santa Cruz Harbor and to determine if any of the fine-grain material settled out on the shoreline and/or inner shelf during the fall and early winter of 2009. This was done by collecting highresolution oceanographic and sediment geochemical measurements along the shoreline and on the continental shelf of northern Monterey Bay to monitor the fine-grain sediment dredged from Santa Cruz Harbor and discharged onto the inner shelf. These in place measurements, in conjunction with beach, water column, and seabed surveys, were used as boundary and calibration information for a three-dimensional numerical circulation and sediment dynamics model to better understand the fate of the fine-grain sediment dredged from Santa Cruz Harbor and the potential consequences of disposing this type of material on the beach and on the northern Monterey Bay continental shelf.

  12. 33 CFR 334.990 - Long Beach Harbor, Calif.; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Long Beach Harbor, Calif.; naval... Harbor, Calif.; naval restricted area. (a) The area. All the waters between the Navy mole and Terminal... for use by naval vessels. Permission for any person or vessel to enter the area must be obtained from...

  13. 33 CFR 334.990 - Long Beach Harbor, Calif.; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Long Beach Harbor, Calif.; naval... Harbor, Calif.; naval restricted area. (a) The area. All the waters between the Navy mole and Terminal... for use by naval vessels. Permission for any person or vessel to enter the area must be obtained from...

  14. Tube wall temperature monitoring technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granton, R.L.

    1985-07-01

    In 1977, Monsanto and Conoco undertook the construction of a new, modern technology ethylene plant at Chocolate Bayou, near Alvin, Texas. This plant included high severity cracking furnaces with potential tube wall temperatures considerably higher than any we had previously experienced. Furnace on-stream time between decokes, a factor in the economics of plant operation, was limited by tube wall temperature, thus requiring its accurate knowledge. Earlier work with other ethylene furnaces had also demonstrated our lack of knowledge concerning high temperature measurements in a furnace firebox environment. This had to change. An outside consultant was called upon to provide amore » threeday workshop on radiant tube temperature sensing. The workshop consisted of two days of formal training in the theory and practice of temperature measurement and one day of field training. This workshop was conducted at a site away from the plant. Approximately 20 engineers (manufacturing and technical groups) attended. The major topics covered by this workshop are as follows: radiant tube temperature sensing, radiation situation of radiant tubes, g.a. method: sample calculations, noncontact sensors: methods of specifying and purchasing, thermal imager strategies, calibration of noncontact sensors, avoiding problems with noncontact sensors, optical aids to radiant tube viewing, tube temperature management and its environmental implications, and contact temperature sensors.« less

  15. 75 FR 52023 - Boston Harbor Islands National Recreation Area Advisory Council; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... DEPARTMENT OF THE INTERIOR National Park Service Boston Harbor Islands National Recreation Area..., Boston Harbor Islands National Recreation Area. ACTION: Notice of meeting. SUMMARY: Notice is hereby given that a meeting of the Boston Harbor Islands National Recreation Area Advisory Council will be held...

  16. A practical weighting function for harbor porpoise underwater sound level measurements.

    PubMed

    Terhune, John M

    2013-09-01

    Harbor porpoise (Phocoena phocoena) are subject to underwater noise disturbance from anthropogenic sources, especially shipping. The underwater audiograms of harbor porpoise were used to create a frequency weighting function, dBht(Phocoena phocoena), to permit estimation of the broadband perceived amplitudes of ambient and shipping noise. An equation was fit to the 0.02-20 kHz range of unmasked detection thresholds and normalizing to 0 dB at 20 kHz; dB = 46.4-35.6 log(kHz). The weighting function de-emphasizes the low frequency components of noise. Harbor porpoise hearing is less sensitive to low frequency shipping noise and, except at high amplitudes, estimating potential noise impacts using linear measurements will be misleading.

  17. The New Bedford Harbor Superfund site long-term monitoring program (1993-2009).

    PubMed

    Nelson, William G; Bergen, Barbara J

    2012-12-01

    New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a marine Superfund site in 1983 due to sediment contamination by polychlorinated biphenyls (PCBs). Based on risks to human health and the environment, the first two phases of the site cleanup involved dredging PCB-contaminated sediments from the harbor. Therefore, a long-term monitoring program (LTM) was developed to measure spatial and temporal chemical and biological changes in sediment, water, and biota to assess the effects and effectiveness of the remedial activities. A systematic, probabilistic sampling design was used to select sediment sampling stations. This unbiased design allowed the three segments of the harbor to be compared spatially and temporally to quantify changes resulting from dredging the contaminated sediments. Sediment was collected at each station, and chemical (e.g., PCBs and metals), physical (e.g., grain size), and biological (e.g., benthic community) measurements were conducted on all samples. This paper describes the overall NBH-LTM approach and the results from the five rounds of sample collections. There is a decreasing spatial gradient in sediment PCB concentrations from the northern boundary (upper harbor) to the southern boundary (outer harbor) of the site. Along this same transect, there is an increase in biological condition (e.g., benthic community diversity). Temporally, the contaminant and biological gradients have been maintained since the 1993 baseline collection; however, since the onset of full-scale remediation, PCB concentrations have decreased throughout the site, and one of the benthic community indices has shown significant improvement in the lower and outer harbor areas.

  18. Reducing Vulnerability of Ports and Harbors to Earthquake and Tsunami Hazards

    USGS Publications Warehouse

    Wood, Nathan J.; Good, James W.; Goodwin, Robert F.

    2002-01-01

    Recent scientific research suggests the Pacific Northwest could experience catastrophic earthquakes in the near future, both from distant and local sources, posing a significant threat to coastal communities. Damage could result from numerous earthquake-related hazards, such as severe ground shaking, soil liquefaction, landslides, land subsidence/uplift, and tsunami inundation. Because of their geographic location, ports and harbors are especially vulnerable to these hazards. Ports and harbors, however, are important components of many coastal communities, supporting numerous activities critical to the local and regional economy and possibly serving as vital post-event, response-recovery transportation links. A collaborative, multi-year initiative is underway to increase the resiliency of Pacific Northwest ports and harbors to earthquake and tsunami hazards, involving Oregon Sea Grant (OSG), Washington Sea Grant (WSG), the National Oceanic and Atmospheric Administration Coastal Services Center (CSC), and the U.S. Geological Survey Center for Science Policy (CSP). Specific products of this research, planning, and outreach initiative include a regional stakeholder issues and needs assessment, a community-based mitigation planning process, a Geographic Information System (GIS) — based vulnerability assessment methodology, an educational web-site and a regional data archive. This paper summarizes these efforts, including results of two pilot port-harbor community projects, one in Yaquina Bay, Oregon and the other in Sinclair Inlet, Washington. Finally, plans are outlined for outreach to other port and harbor communities in the Pacific Northwest and beyond, using "getting started" workshops and a web-based tutorial.

  19. 75 FR 26198 - Foreign-Trade Zone 152 - Burns Harbor, Indiana, Application for Reorganization under Alternative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 32-2010] Foreign-Trade Zone 152 - Burns... six sites in the Burns Harbor/Gary, Indiana area: Site 1: (533,288 sq. ft.) located at 201 Mississippi... of Indiana/Burns International Harbor, Burns Harbor (Porter County); Site 3: (330 acres) within the...

  20. 46 CFR 45.181 - Load line exemption requirements for the Burns Harbor and Milwaukee routes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Load line exemption requirements for the Burns Harbor... line exemption requirements for the Burns Harbor and Milwaukee routes. Barges operating on the Burns... addresses and telephone numbers); (3) Service route (Milwaukee and/or Burns Harbor); (4) Design type...

  1. 46 CFR 45.181 - Load line exemption requirements for the Burns Harbor and Milwaukee routes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Load line exemption requirements for the Burns Harbor... line exemption requirements for the Burns Harbor and Milwaukee routes. Barges operating on the Burns... addresses and telephone numbers); (3) Service route (Milwaukee and/or Burns Harbor); (4) Design type...

  2. 46 CFR 45.181 - Load line exemption requirements for the Burns Harbor and Milwaukee routes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Load line exemption requirements for the Burns Harbor... line exemption requirements for the Burns Harbor and Milwaukee routes. Barges operating on the Burns... addresses and telephone numbers); (3) Service route (Milwaukee and/or Burns Harbor); (4) Design type...

  3. 46 CFR 45.181 - Load line exemption requirements for the Burns Harbor and Milwaukee routes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Load line exemption requirements for the Burns Harbor... line exemption requirements for the Burns Harbor and Milwaukee routes. Barges operating on the Burns... addresses and telephone numbers); (3) Service route (Milwaukee and/or Burns Harbor); (4) Design type...

  4. 46 CFR 45.181 - Load line exemption requirements for the Burns Harbor and Milwaukee routes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Load line exemption requirements for the Burns Harbor... line exemption requirements for the Burns Harbor and Milwaukee routes. Barges operating on the Burns... (Milwaukee and/or Burns Harbor); (4) Design type (covered/uncovered hopper, deck, etc.); (5) External...

  5. Subsidence at the Fairport Harbor Water Level Gauge

    NASA Astrophysics Data System (ADS)

    Conner, D. A.

    2014-12-01

    SUBSIDENCE AT THE FAIRPORT HARBOR WATER LEVEL GAUGE I will provide information on methods being used to monitor Lake Erie water levels and earth movement at Fairport Harbor, Ohio. Glacial Isostatic Adjustment (GIA) is responsible for vertical movement throughout the Great Lakes region. Fairport Harbor is also experiencing vertical movement due to salt mining, so the nearby water level gauge operated by the National Oceanic and Atmospheric Administration (NOAA) is affected by both GIA and mining. NOAA's National Geodetic Survey (NGS) defines and maintains the National Spatial Reference System (NSRS). The NSRS includes a network of permanently marked points; a consistent, accurate, and up-to-date national shoreline; a network of Continuously Operating Reference Stations (CORS) which supports three-dimensional positioning activities; and a set of accurate models describing dynamic, geophysical processes that affect spatial measurements. The NSRS provides the spatial reference foundation for transportation, mapping, charting and a multitude of scientific and engineering applications. Fundamental elements of geodetic infrastructure include GPS CORS (3-D), water level and tide gauges (height) and a system of vertical bench marks (height). When two or more of these elements converge they may provide an independent determination of position and vertical stability as is the case here at the Fairport Harbor water level gauge. Analysis of GPS, leveling and water level data reveal that this gauge is subsiding at about 2-3 mm/year, independent of the effects of GIA. Analysis of data from the nearby OHLA GPS CORS shows it subsiding at about 4 mm/yr, four times faster than expected due to GIA alone. A long history of salt mine activity in the area is known to geologists but it came as a surprise to other scientists.

  6. 78 FR 58882 - Safety Zone; Chelsea River, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ...-AA00 Safety Zone; Chelsea River, Boston Inner Harbor, Boston, MA AGENCY: Coast Guard, DHS. ACTION...: Chelsea River, Boston Inner Harbor, Boston, MA. Since the implementation of the regulation, physical... Chelsea, MA and East Boston, MA. Several petroleum-product transfer facilities are located on the Chelsea...

  7. View of main terrace retaining wall with mature tree on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of main terrace retaining wall with mature tree on left center, camera facing southeast - Naval Training Station, Senior Officers' Quarters District, Naval Station Treasure Island, Yerba Buena Island, San Francisco, San Francisco County, CA

  8. Comparison of benthos and plankton for Waukegan Harbor Area of Concern, Illinois, and Burns Harbor-Port of Indiana non-Area of Concern, Indiana, in 2015

    USGS Publications Warehouse

    Eikenberry, Barbara C. Scudder; Olds, Hayley T.; Burns, Daniel J.; Dobrowolski, Edward G.; Schmude, Kurt L.

    2017-06-06

    During two seasonal sampling events in spring (June) and fall (August) of 2015, the U.S. Geological Survey collected benthos (benthic invertebrates) and plankton (zooplankton and phytoplankton) at three sites each in the Waukegan Harbor Area of Concern (AOC) in Illinois and in Burns Harbor-Port of Indiana, a non-AOC comparison site in Indiana. The study was done in cooperation with the U.S. Environmental Protection Agency and the Illinois Department of Natural Resources. Samples were collected concurrently for physical and chemical parameters (specific conductance, temperature, pH, dissolved oxygen, chlorophyll-a, total and volatile suspended solids in water samples; particle size and volatile-on-ignition solids of sediment in dredge samples). The purpose of the study was to assess whether or not aquatic communities at the AOC were degraded in comparison to communities at the non-AOC, which was presumed to be less impaired than the AOC. Benthos were collected by using Hester-Dendy artificial substrate samplers and a Ponar® dredge sampler to collect composited grabs of bottom sediment; zooplankton were collected by using tows from depth to the surface with a 63-micrometer mesh plankton net; phytoplankton were collected by using whole water samples composited from set depth intervals. Aquatic communities at the AOC and the non-AOC were compared by use of univariate statistical analyses with metrics such as taxa richness (number of unique taxa), diversity, and a multimetric Index of Biotic Integrity (IBI, for artificial-substrate samples only) as well as by use of multivariate statistical analyses of taxa relative abundances.Although benthos communities at Waukegan Harbor AOC were not rated as degraded in comparison to the non-AOC, metrics for zooplankton and phytoplankton communities did show some impairment for the 2015 sampling. Across seasons, benthos richness and diversity were significantly higher and rated as less degraded at the AOC compared to the non

  9. 31 CFR 212.10 - Safe harbor.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PAYMENTS § 212.10 Safe harbor. (a) Protection during examination and pending review. A financial... if the United States or a State child support enforcement agency has attached or included a Notice of Right to Garnish Federal Benefits, as set forth in § 212.4; or (2) The time between the financial...

  10. 31 CFR 212.10 - Safe harbor.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PAYMENTS § 212.10 Safe harbor. (a) Protection during examination and pending review. A financial... if the United States or a State child support enforcement agency has attached or included a Notice of Right to Garnish Federal Benefits, as set forth in § 212.4; or (2) The time between the financial...

  11. 31 CFR 212.10 - Safe harbor.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PAYMENTS § 212.10 Safe harbor. (a) Protection during examination and pending review. A financial... if the United States or a State child support enforcement agency has attached or included a Notice of Right to Garnish Federal Benefits, as set forth in § 212.4; or (2) The time between the financial...

  12. 31 CFR 212.10 - Safe harbor.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PAYMENTS § 212.10 Safe harbor. (a) Protection during examination and pending review. A financial... if the United States or a State child support enforcement agency has attached or included a Notice of Right to Garnish Federal Benefits, as set forth in § 212.4; or (2) The time between the financial...

  13. 78 FR 48085 - Safety Zones; Chelsea River, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ...-AA00 Safety Zones; Chelsea River, Boston Inner Harbor, Boston, MA AGENCY: Coast Guard, DHS. ACTION... for the Chelsea River, Boston Inner Harbor, Boston, MA. Since the implementation of the regulation... spanned the Chelsea River providing a means for vehicles to travel between Chelsea, MA and East Boston, MA...

  14. A geochemical and sedimentological perspective of the life cycle of Neapolis harbor (Naples, southern Italy)

    NASA Astrophysics Data System (ADS)

    Delile, H.; Goiran, J.-P.; Blichert-Toft, J.; Arnaud-Godet, F.; Romano, P.; Bravard, J.-P.

    2016-10-01

    Since the discovery of the ancient harbor of Naples in 2004 during construction work on an underground railway, geoarchaeological studies undertaken on the archaeological excavation have revealed the main stratigraphic and paleo-environmental levels of the harbor site near the Piazza Municipio. However, knowledge of the dynamics and paleo-environmental changes in the water column of the harbor, as well as the processes of transport and deposition of sediments that led to siltation and infilling of the harbor basin, has been lacking due to the absence of high-resolution data. To fill these gaps, we have undertaken a three-dimensional study (longitudinal, transverse and vertical) of the harbor deposits by carrying out geochemical and sedimentological analyses of four stratigraphic sections of the archaeological excavation. The results show that after a phase of relative calm during the first half of the 1st c. AD, siltation of the harbor progressed exponentially up to the 5th c. AD, when dredging operations were carried out to obtain a water level sufficient for the development of maritime and harbor activities. We attribute this acceleration of siltation to a combination of climatic, anthropic and volcanic factors. Volcanic activity was responsible for a high-energy, tsunami-type event during the eruption of Vesuvius in 79 AD. From the 5th c. AD onwards, the harbor basin of Neapolis does not appear to have been functional as evidenced by its transformation into a lagoon following coastal progradation. The last stage of infilling was the development of a flood-dominated fan delta under the combined influences of climatic cooling in the Early Medieval Cool Period and agro-pastoral activities in the catchment area of the harbor. Several generations of paleo-channels, containing flash flood deposits, as well as sheet wash from sheet floods, are indicative of high environmental instability in this period.

  15. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...

  16. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...

  17. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...

  18. 33 CFR 207.610 - St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...

  19. Harbor Seal (Phoca vitulina) Reproductive Advertisement Behavior and the Effects of Vessel Noise

    NASA Astrophysics Data System (ADS)

    Matthews, Leanna P.

    Harbor seals (Phoca vitulina) are a widely distributed pinniped species that mate underwater. Similar to other aquatically mating pinnipeds, male harbor seals produce vocalizations during the breeding season that function in male-male interactions and possibly as an attractant for females. I investigated multiple aspects of these reproductive advertisement displays in a population of harbor seals in Glacier Bay National Park and Preserve, Alaska. First, I looked at vocal production as a function of environmental variables, including season, daylight, and tidal state. Vocalizations were highly seasonal and detection of these vocalizations peaked in June and July, which correspond with the estimated time of breeding. Vocalizations also varied with light, with the lowest probability of detection during the day and the highest probability of detection at night. The high probability of detection corresponded to when females are known to forage. These results are similar to the vocal behavior of previously studied populations. However, unlike previously studied populations, the detection of harbor seal breeding vocalizations did not vary with tidal state. This is likely due to the location of the hydrophone, as it was not near the haul out and depth was therefore not significantly influenced by changes in tidal height. I also investigated the source levels and call parameters of vocalizations, as well as call rate and territoriality. The average source level of harbor seal breeding vocalizations was 144 dB re 1 ?Pa at 1 m and measurements ranged from 129 to 149 dB re 1 ?Pa. Analysis of call parameters indicated that vocalizations of harbor seals in Glacier Bay were similar in duration to other populations, but were much lower in frequency. During the breeding season, there were two discrete calling areas that likely represent two individual males; the average call rate in these display areas was approximately 1 call per minute. The harbor seal breeding season also

  20. Toxic elements and organochlorines in harbor seals (Phoca vitulina richardsi), Kodiak, Alaska, USA

    USGS Publications Warehouse

    Miles, A.K.; Calkins, D.G.; Coon, N.C.

    1992-01-01

    Marine and estuarine habitats near urban or industrialized regions are vulnerable to contaminated runoff. Harbor seals (Phoca vitulina richardsi), which occur throughout much of the northern hemisphere, are useful mammalian biomonitors because they feed, reproduce, and rest near or on shore and are high-level trophic consumers. They have often been monitored for contaminants in Europe (Wagemann and Muir 1984). To date, no studies have been reported on contaminants in harbor seals from industrialized areas of Alaska. In the vicinity of Anchorage, Alaska's largest urban and industrial city, harbor seals are sedentary and limited to coastal waters; some movements have been documented but there is no evidence of extensive migrations. Although some harbor seals in the Kodiak Archipelago move up to 100 km along the shore, strong fidelity to specific haulout sites is more common (Pitcher and Calkins 1979). These seals eat mainly non-migratory fishes and octopi. Harbor seal numbers have declined substantially from unknown causes in the southern part of the Kodiak Archipelago. The Alaska Department of Fish and Game (ADF&G) suggested that the decline is a trend for the entire Kodiak region and other Alaskan waters. Contaminants have been suggested as a possible reason for the precipitous decline of Steller sea lions (Eumetopias jubatus) in the region (Braham et al. 1980), and were suspected in the decline of harbor seals. In this study, harbor seals were sampled from throughout the Kodiak Archipelago to determine concentrations of certain metals, metalloids, polychlorinated biphenyls (PCBs), and organochlorine pesticides, and to determine if these concentrations varied by sex or accumulated with age. All seals were collected within 75 km of Cook Inlet, an estuary next to Anchorage. The targeted elements or compounds were known to be toxic to a wide spectrum of organisms (e.g., MARC 1980; Eisler 1986).

  1. New Bedford Harbor Long Term Monitoring Program

    EPA Science Inventory

    New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a Superfund site in 1983 due to unacceptably high levels of sediment contamination by polychlorinated biphenyls (PCBs). Based on human health and environmental concerns, the decision was made to d...

  2. 33 CFR 110.31 - Hull Bay and Allerton Harbor at Hull, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Hull Bay and Allerton Harbor at Hull, Mass. 110.31 Section 110.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.31 Hull Bay and Allerton Harbor at...

  3. 33 CFR 110.31 - Hull Bay and Allerton Harbor at Hull, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hull Bay and Allerton Harbor at Hull, Mass. 110.31 Section 110.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.31 Hull Bay and Allerton Harbor at...

  4. 33 CFR 207.580 - Buffalo Harbor, N.Y.; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Buffalo Harbor, N.Y.; use, administration, and navigation. 207.580 Section 207.580 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.580 Buffalo Harbor, N.Y.; use...

  5. 75 FR 42069 - Expansion of Foreign-Trade Zone 152, Burns Harbor, Indiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1695] Expansion of Foreign-Trade Zone 152, Burns Harbor, Indiana Pursuant to its authority under the Foreign-Trade Zones (FTZ) Act of June... application to the Board for authority to expand FTZ 152 in the Burns Harbor, Indiana, area, within the...

  6. A bee in the corridor: centering and wall-following

    NASA Astrophysics Data System (ADS)

    Serres, Julien R.; Masson, Guillaume P.; Ruffier, Franck; Franceschini, Nicolas

    2008-12-01

    In an attempt to better understand the mechanism underlying lateral collision avoidance in flying insects, we trained honeybees ( Apis mellifera) to fly through a large (95-cm wide) flight tunnel. We found that, depending on the entrance and feeder positions, honeybees would either center along the corridor midline or fly along one wall. Bees kept following one wall even when a major (150-cm long) part of the opposite wall was removed. These findings cannot be accounted for by the “optic flow balance” hypothesis that has been put forward to explain the typical bees’ “centering response” observed in narrower corridors. Both centering and wall-following behaviors are well accounted for, however, by a control scheme called the lateral optic flow regulator, i.e., a feedback system that strives to maintain the unilateral optic flow constant. The power of this control scheme is that it would allow the bee to guide itself visually in a corridor without having to measure its speed or distance from the walls.

  7. Measurement and visualization of file-to-wall contact during ultrasonically activated irrigation in simulated canals.

    PubMed

    Boutsioukis, C; Verhaagen, B; Walmsley, A D; Versluis, M; van der Sluis, L W M

    2013-11-01

    (i) To quantify in a simulated root canal model the file-to-wall contact during ultrasonic activation of an irrigant and to evaluate the effect of root canal size, file insertion depth, ultrasonic power, root canal level and previous training, (ii) To investigate the effect of file-to-wall contact on file oscillation. File-to-wall contact was measured during ultrasonic activation of the irrigant performed by 15 trained and 15 untrained participants in two metal root canal models. Results were analyzed by two 5-way mixed-design anovas. The level of significance was set at P < 0.05. Additionally, high-speed visualizations, laser-vibrometer measurements and numerical simulations of the file oscillation were conducted. File-to-wall contact occurred in all cases during 20% of the activation time. Contact time was significantly shorter at high power (P < 0.001), when the file was positioned away from working length (P < 0.001), in the larger root canal (P < 0.001) and from coronal towards apical third of the root canal (P < 0.002), in most of the cases studied. Previous training did not show a consistent significant effect. File oscillation was affected by contact during 94% of the activation time. During wall contact, the file bounced back and forth against the wall at audible frequencies (ca. 5 kHz), but still performed the original 30 kHz oscillations. Travelling waves were identified on the file. The file oscillation was not dampened completely due to the contact and hydrodynamic cavitation was detected. Considerable file-to-wall contact occur-red during irrigant activation. Therefore, the term 'Passive Ultrasonic Irrigation' should be amended to 'Ultrasonically Activated Irrigation'. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Developing a Passive Acoustic Monitoring Network for Harbor Porpoise in California

    NASA Astrophysics Data System (ADS)

    Jacobson, Eiren Kate

    Assessing the abundance of and trends in whale, dolphin, and porpoise (cetacean) populations using traditional visual methods can be challenging due primarily to their limited availability at the surface of the ocean. As a result, researchers are increasingly interested in incorporating non-visual and remote observations to improve cetacean population assessments. Passive acoustic monitoring (PAM) can complement or replace visual surveys for cetaceans that produce echolocation clicks, whistles, and other vocalizations. My doctoral dissertation is focused on developing methods to improve PAM of cetaceans. I used the Monterey Bay population of harbor porpoise (Phocoena phocoena ) as a case study for methods development. In Chapter 2, I used passive acoustic data to document that harbor porpoises avoid bottlenose dolphins (Tursiops truncatus) in nearshore Monterey Bay. In Chapter 3, I investigated whether different passive acoustic instruments could be used to monitor harbor porpoise. I recorded harbor porpoise echolocation clicks simultaneously on two different passive acoustic instruments and compared the number and peak frequency of echolocation signals recorded on the two instruments. I found that the number of echolocation clicks was highly correlated between instruments but that the peak frequency of echolocation clicks was not well-correlated, suggesting that some instruments may not be capable of discriminating harbor porpoise echolocation clicks in regions where multiple species with similar echolocation signals are present. In Chapter 4, I used paired visual and passive acoustic surveys to estimate the effective detection area of the passive acoustic sensors in a Bayesian framework. This approach resulted in a posterior distribution of the effective detection area that was consistent with previously published values. In Chapter 5, I used aerial survey and passive acoustic data in a simulation framework to investigate the statistical power of different

  9. Simulation of tidal-flow, circulation, and flushing of the Charlotte Harbor Estuarine System, Florida

    USGS Publications Warehouse

    Goodwin, C.R.

    1996-01-01

    A two-dimensional circulation and constituent- transport model, SIMSYS2D, was used to simulate tidal-flow, circulation, and flushing characteristics in Charlotte Harbor. The model was calibrated and verified against field observations of stage,discharge, and velocity. Standard errors averaged about 3 percent of the range in stage at the tide stations and between 3 and 10 percent of the range in discharge measured in the inlets for the calibration period. Following calibration and verification, the model was applied to three different conditions. The first condition represented the existing physical configuration and typical freshwater inflow. The second condition represented reduced fresh water inflow, and the third represented an alteration of Sanibel Causeway. All three conditions were evaluated through Lagrangian particle tracks and simulated dye injections. Residual circulation patterns were similar for typical and reduced freshwater inflow, but reduced freshwater inflow increased the residence time in the upper harbor by a factor of two or more. Removal of Sanibel Causeway did not significantly affect residual flows in upper and lower Charlotte Harbor, Matlacha Pass, Gasparilla Sound, or the Gulf of Mexico. Analysis of Lagrangian particle tracks indicated changes in residence times in San Carlos Bay as a result of removing Sanibel Causeway, but the changes were not consistent for all particles. The residence time of 8 particles in San Carlos Bay decreased with removal of the causeway, 1 was unchanged, and the residence time of 3 particles increased. Simulated flushing characteristics of the estuarine system were affected more by reduced freshwater inflow than for typical freshwater inflow. After 30 days of simulation of reduced freshwater inflow, 42 percent of the dye injected into the upper harbor remained in the upper harbor, compared to 28 percent for typical freshwater inflow. The upper harbor has a relatively long flushing time because it is not directly

  10. ENVIRONMENTAL MONITORING OF REMEDIAL DREDGING AT THE NEW BEDFORD HARBOR, MA, SUPERFUND SITE

    EPA Science Inventory

    New Bedford Harbor (NBH), MA, is a Superfund site due to high sediment polychlorinated biphenyl (PCB) concentrations. An initial remedial dredging operation removed the most contaminated sediments from the upper harbor ("Hot Spot"). During remediation, a monitoring program assess...

  11. 78 FR 78807 - Solicitation of New Safe Harbors and Special Fraud Alerts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... of New Safe Harbors and Special Fraud Alerts AGENCY: Office of Inspector General (OIG), HHS. ACTION... statute (section 1128B(b) of the Social Security Act), as well as developing new OIG Special Fraud Alerts... revised safe harbors and Special Fraud Alerts. Please assist us by referencing the file code OIG-122-N...

  12. 77 FR 76434 - Solicitation of New Safe Harbors and Special Fraud Alerts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ... of New Safe Harbors and Special Fraud Alerts AGENCY: Office of Inspector General (OIG), HHS. ACTION... statute (section 1128B(b) of the Social Security Act), as well as developing new OIG Special Fraud Alerts... revised safe harbors and Special Fraud Alerts. Please assist us by referencing the file code OIG-121-N...

  13. 33 CFR 80.1470 - Kawaihae Harbor, Hawaii, HI.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1470 Kawaihae Harbor, Hawaii, HI. A line drawn from Kawaihae Light to the seaward extremity of the Kawaihae South Breakwater. ...

  14. 33 CFR 80.1470 - Kawaihae Harbor, Hawaii, HI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1470 Kawaihae Harbor, Hawaii, HI. A line drawn from Kawaihae Light to the seaward extremity of the Kawaihae South Breakwater. ...

  15. 33 CFR 80.1470 - Kawaihae Harbor, Hawaii, HI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1470 Kawaihae Harbor, Hawaii, HI. A line drawn from Kawaihae Light to the seaward extremity of the Kawaihae South Breakwater. ...

  16. 33 CFR 80.1470 - Kawaihae Harbor, Hawaii, HI.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1470 Kawaihae Harbor, Hawaii, HI. A line drawn from Kawaihae Light to the seaward extremity of the Kawaihae South Breakwater. ...

  17. Indiana Harbor Canal Great Lakes Legacy Act Cleanup

    EPA Pesticide Factsheets

    Indiana Department of Environmental Management are investigating an off-site disposal option for the dredged sediments removal and capping of deepe rcontaminated sediment “hot spots” in the Indiana Harbor Canal.

  18. 77 FR 38482 - Safety Zone; Oswego Independence Celebration Fireworks, Oswego Harbor, Oswego, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ...-AA00 Safety Zone; Oswego Independence Celebration Fireworks, Oswego Harbor, Oswego, NY AGENCY: Coast... Oswego Harbor during the Oswego Independence Celebration Fireworks display. This temporary safety zone is necessary to protect spectators and vessels from the hazards associated with a fireworks display. DATES...

  19. 77 FR 42464 - Special Local Regulations for Marine Events; Potomac River, National Harbor Access Channel, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ...--AA08 Special Local Regulations for Marine Events; Potomac River, National Harbor Access Channel, MD... Harbor'' triathlon, a marine event to be held on the waters of the Potomac River in Prince George's...; Potomac River, National Harbor Access Channel, MD'' in the Federal Register (77 FR 20750). The rulemaking...

  20. 6. View of mill wall ruins looking E showing arched ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of mill wall ruins looking E showing arched openings where fuel was fed to fire Jamaican Train. - Hacienda Azucarera La Esperanza, Mill (Ruins), 2.65 miles North of PR Route 2 Bridge Over Manati River, Manati, Manati Municipio, PR

  1. 78 FR 6782 - Safety Zone-Chelsea River, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ...-AA00 Safety Zone--Chelsea River, Boston Inner Harbor, Boston, MA AGENCY: Coast Guard, DHS. ACTION....120, Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA. This advance notice allows the Coast... Commercial Street, Boston, MA 02109: March 6, 2013, from 11:00 a.m. to 12:00 p.m.; April 24, 2013, from 11:00...

  2. 33 CFR 110.80 - Milwaukee Harbor, Milwaukee, Wis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80 Milwaukee Harbor, Milwaukee, Wis. (a... type of moorings placed in these special anchorage areas. [CGD 73-48R, 39 FR 12007, Apr. 2, 1974] ...

  3. 33 CFR 110.80 - Milwaukee Harbor, Milwaukee, Wis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80 Milwaukee Harbor, Milwaukee, Wis. (a... type of moorings placed in these special anchorage areas. [CGD 73-48R, 39 FR 12007, Apr. 2, 1974] ...

  4. 33 CFR 110.80 - Milwaukee Harbor, Milwaukee, Wis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80 Milwaukee Harbor, Milwaukee, Wis. (a... type of moorings placed in these special anchorage areas. [CGD 73-48R, 39 FR 12007, Apr. 2, 1974] ...

  5. 33 CFR 110.80 - Milwaukee Harbor, Milwaukee, Wis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80 Milwaukee Harbor, Milwaukee, Wis. (a... type of moorings placed in these special anchorage areas. [CGD 73-48R, 39 FR 12007, Apr. 2, 1974] ...

  6. 33 CFR 110.80 - Milwaukee Harbor, Milwaukee, Wis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80 Milwaukee Harbor, Milwaukee, Wis. (a... type of moorings placed in these special anchorage areas. [CGD 73-48R, 39 FR 12007, Apr. 2, 1974] ...

  7. A Near-Wall Reynolds-Stress Closure Without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    Turbulent wall-bounded complex flows are commonly encountered in engineering practice and are of considerable interest in a variety of industrial applications. The presence of a wall significantly affects turbulence characteristics. In addition to the wall effects, turbulent wall-bounded flows become more complicated by the presence of additional body forces (e.g. centrifugal force and Coriolis force) and complex geometry. Most near-wall Reynolds stress models are developed from a high-Reynolds-number model which assumes turbulence is homogenous (or quasi-homogenous). Near-wall modifications are proposed to include wall effects in near-wall regions. In this process, wall normals are introduced. Good predictions could be obtained by Reynolds stress models with wall normals. However, ambiguity arises when the models are applied in flows with multiple walls. Many models have been proposed to model turbulent flows. Among them, Reynolds stress models, in which turbulent stresses are obtained by solving the Reynolds stress transport equations, have been proved to be the most successful ones. To apply the Reynolds stress models to wall-bounded flows, near-wall corrections accounting for the wall effects are needed, and the resulting models are called near-wall Reynolds stress models. In most of the existing near-wall models, the near-wall corrections invoke wall normals. These wall-dependent near-wall models are difficult to implement for turbulent flows with complex geometry and may give inaccurate predictions due to the ambiguity of wall normals at corners connecting multiple walls. The objective of this study is to develop a more general and flexible near-wall Reynolds stress model without using any wall-dependent variable for wall-bounded turbulent flows. With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on Speziale et al.'s high-Reynolds-stress model with wall

  8. Army Engineers at Pearl Harbor

    DTIC Science & Technology

    2011-01-01

    siblings, he was the grandson of David Belden Lyman—a Christian missionary from New England who settled in the Hilo , Hawaii area—and the descendent of...of Hawaii appeared over Oahu. Some headed for Ameri- can warships at Pearl Harbor and the planes on the ground at nearby Hickam Field; oth- ers...hit Schofield Barracks, Wheeler Field, and Bellows Field. USACE in Hawaii con- sisted of Soldier-engineers in the Army’s Hawaiian Depart- ment and

  9. Light, Compact Pumper for Harbor Fires

    NASA Technical Reports Server (NTRS)

    Burns, R. A.

    1983-01-01

    Report describes development of new transportable water-pumping unit for fire-fighting. Compact, self-contained unit provides fire protection at coastal and inland ports and is lighter than standard firetruck pumper of same capacity. Used to fight fires in harbors, cities, forests, refineries, chemical plants, and offshore drilling platforms. Other possible applications include cleaning up oilspills, pumping out ships, and flood control pumping.

  10. The Influence of Training Strategy and Physical Condition toward Forehand Drive Ability in Table Tennis

    NASA Astrophysics Data System (ADS)

    Langitan, F. W.

    2018-02-01

    The objective of this research is to find out the influence of training strategy and physical condition toward forehand drive ability in table tennis of student in faculty of sport in university of Manado, department of health and recreation education. The method used in this research was factorial 2x2 design method. The population was taken from the student of Faculty of Sport at Manado State University, Indonesia, in 2017 of 76 students for sample research. The result of this research shows that: In general, this training strategy of wall bounce gives better influence toward forehand drive ability compare with the strategy of pair training in table tennis. For the students who have strong forehand muscle, the wall bounce training strategy give better influence to their ability of forehand drive in table tennis. For the student who have weak forehand muscle, pair training strategy give better influence than wall bound training toward forehand drive ability in table tennis. There is an interaction between training using hand muscle strength to the training result in table tennis using forehand drive.

  11. Effects of Harbor Modification on Crescent City, California's Tsunami Vulnerability

    NASA Astrophysics Data System (ADS)

    Dengler, Lori; Uslu, Burak

    2011-06-01

    More damaging tsunamis have impacted Crescent City, California in historic times than any other location on the West Coast of the USA. Crescent City's harbor has undergone significant modification since the early 20th century, including construction of several breakwaters, dredging, and a 200 × 300 m2 small boat basin. In 2006, a M w 8.3 earthquake in the Kuril Islands generated a moderate Pacific-wide tsunami. Crescent City recorded the highest amplitudes of any tide gauge in the Pacific and was the only location to experience structural damage. Strong currents damaged docks and boats within the small boat basin, causing more than US 20 million in damage and replacement costs. We examine how modifications to Crescent City's harbor may have affected its vulnerability to moderate tsunamis such as the 2006 event. A bathymetric grid of the basin was constructed based on US Army Corps of Engineers soundings in 1964 and 1965 before the construction of the small boat basin. The method of splitting tsunamis was used to estimate tsunami water heights and current velocities at several locations in the harbor using both the 1964-1965 grid and the 2006 bathymetric grid for the 2006 Kuril event and a similar-sized source along the Sanriku coast of Japan. Model velocity outputs are compared for the two different bathymetries at the tide gauge location and at six additional computational sites in the harbor. The largest difference between the two grids is at the small boat basin entrance, where the 2006 bathymetry produces currents over three times the strength of the currents produced by the 1965 bathymetry. Peak currents from a Sanriku event are comparable to those produced by the 2006 event, and within the boat basin may have been higher. The modifications of the harbor, and in particular the addition of the small boat basin, appear to have contributed to the high current velocities and resulting damage in 2006 and help to explain why the 1933 M w 8.4-8.7 Sanriku tsunami

  12. Ecological risk assessment of trace metal accumulation in sediments of Veraval Harbor, Gujarat, Arabian Sea.

    PubMed

    Sundararajan, S; Khadanga, Mukunda Kesari; Kumar, J Prince Prakash Jeba; Raghumaran, S; Vijaya, R; Jena, Basanta Kumar

    2017-01-15

    In this study, different types of indices were used to assess the ecological risk of trace metal contamination in sediments on the basis of sediment quality guidelines at Veraval Fishery Harbor. Sediment samples were collected from three sectors in pre-, post-, and monsoon seasons in 2006. Trace metal concentrations were higher in the inner sector during post-monsoon, and it showed the highest statistical significance (p<0.01) among the stations. Pollution load index was higher than unity, indicating alternation by effluent discharge from industries. Enrichment factor and geo-accumulation index showed that Cd, Pb, and Zn were enriched in the northern part of the harbor and Pb had accumulated in the harbor sediment. The ecological risk assessment index revealed that Ni, Zn, and Pb were higher than the effect range median values, indicating their potential toxicity to the aquatic environment in the Veraval Harbor. Hence, the harbor is dominated by anthropogenic activities rather than natural process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Mesh abdominal wall hernia surgery is safe and effective-the harm New Zealand media has done.

    PubMed

    Kelly, Steven

    2017-10-06

    Patients in New Zealand have now developed a fear of mesh abdominal wall hernia repair due to inaccurate media reporting. This article outlines the extensive literature that confirms abdominal wall mesh hernia repair is safe and effective. The worsening confidence in the transvaginal mesh prolapse repair should not adversely affect the good results of mesh abdominal wall hernia repair. New Zealand general surgeons are well trained in providing modern hernia surgery.

  14. 33 CFR 334.930 - Anaheim Bay Harbor, Calif.; Naval Weapons Station, Seal Beach.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Weapons Station, Seal Beach. 334.930 Section 334.930 Navigation and Navigable Waters CORPS OF ENGINEERS... Bay Harbor, Calif.; Naval Weapons Station, Seal Beach. (a) The restricted area. The water of Anaheim Bay Harbor between the east and west jetties at the United States Naval Weapons Station, Seal Beach...

  15. 33 CFR 334.930 - Anaheim Bay Harbor, Calif.; Naval Weapons Station, Seal Beach.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Weapons Station, Seal Beach. 334.930 Section 334.930 Navigation and Navigable Waters CORPS OF ENGINEERS... Bay Harbor, Calif.; Naval Weapons Station, Seal Beach. (a) The restricted area. The water of Anaheim Bay Harbor between the east and west jetties at the United States Naval Weapons Station, Seal Beach...

  16. 33 CFR 334.930 - Anaheim Bay Harbor, Calif.; Naval Weapons Station, Seal Beach.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Weapons Station, Seal Beach. 334.930 Section 334.930 Navigation and Navigable Waters CORPS OF ENGINEERS... Bay Harbor, Calif.; Naval Weapons Station, Seal Beach. (a) The restricted area. The water of Anaheim Bay Harbor between the east and west jetties at the United States Naval Weapons Station, Seal Beach...

  17. 33 CFR 334.930 - Anaheim Bay Harbor, Calif.; Naval Weapons Station, Seal Beach.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Weapons Station, Seal Beach. 334.930 Section 334.930 Navigation and Navigable Waters CORPS OF ENGINEERS... Bay Harbor, Calif.; Naval Weapons Station, Seal Beach. (a) The restricted area. The water of Anaheim Bay Harbor between the east and west jetties at the United States Naval Weapons Station, Seal Beach...

  18. 33 CFR 334.930 - Anaheim Bay Harbor, Calif.; Naval Weapons Station, Seal Beach.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Weapons Station, Seal Beach. 334.930 Section 334.930 Navigation and Navigable Waters CORPS OF ENGINEERS... Bay Harbor, Calif.; Naval Weapons Station, Seal Beach. (a) The restricted area. The water of Anaheim Bay Harbor between the east and west jetties at the United States Naval Weapons Station, Seal Beach...

  19. 75 FR 4693 - Drawbridge Operation Regulation; Inner Harbor Navigational Canal, New Orleans, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... Operation Regulation; Inner Harbor Navigational Canal, New Orleans, LA AGENCY: Coast Guard, DHS. ACTION... C. Simon) Bascule Bridge across the Inner Harbor Navigational Canal, mile 4.6, at New Orleans, LA... Ochsner Ironman 70.3 New Orleans event. This deviation allows the bridge to remain closed during the event...

  20. Geoarchaeology and geomorphology of Phoenicus ancient harbor, NW coast of Egypt

    NASA Astrophysics Data System (ADS)

    Moustafa, Samah; Torab, Magdy

    2016-04-01

    Phoenicus Greek harbor located in SE coastline of Ras El Hekma area, west of Alexandria city for about 220 km. It is shaped as triangle with its headland extending into the Mediterranean Sea for about 15 km. It is occupied by sedimentary rocks belonging to the Tertiary and Quaternary Eras, the western coastline consists of Pleistocene, Separated polygons of limestone sheets and fossil lime stone, where there are coastal platforms, fluvial forms and solution holes. The location and description of Phoenicus ancient harbor were mentioned by some late writers (Fourtau,1893) & (Muller,1901), some geoarchaeological indicators were discovered by the authors such as fish tanks, well, remains of breakwater and wine press. The present work is mainly devoted to define the geomorphological and geoarchaelological indicators of Phoenicus Greek harbor site, based on detailed geomorphological and geoarchaelogical surveying, sampling, dating and mapping as well as satellite image interpretation and GIS techniques.

  1. Modern sedimentary environments in Boston Harbor, Massachusetts

    USGS Publications Warehouse

    Knebel, H.J.; Rendigs, R. R.; Bothner, Michael H.

    1991-01-01

    Analyses of sidescan-sonar records supplemented by available bathymetric, sedimentary, subbottom, and bottom-current data reveal the distributions of the following three categories of sedimentary environments within the glaciated, topographically complex Boston Harbor estuary in Massachusetts. 1) Environments of erosion appear on the sonographs either as patterns with isolated strong reflections or as uniform patterns of strong reflectivity. These patterns define outcrops of bedrock or till and coarse lag deposits that are being scoured and winnowed by tidal- and wave-induced currents. Erosional areas are located primarily along mainland and insular shores, within large channels that have strong tidal currents, atop submerged ridges and knolls, and across much of the harbor entrance. 2) Environments of deposition are depicted on the sidescan-sonar records as smooth, featureless surfaces that have low to moderate reflectivity. Depositional environments are found predominantly over shallow subtidal flats and in broad bathymetric lows where tidal currents are weak. Sediments within depositional areas are organic-rich sandy and clayey silts that are accumulating at rates ranging from 0.01 to 0.11 g/cm 2 /yr or 4000 to 46,100 metric tons/yr. The cumulative mass of modern mud in harbor depocenters is 24.3 million metric tons. 3) Environments of sediment reworking constitute areas affected by a combination of erosional and depositional processes. They are characterized on the sonographs by mosaics of light and dark patches produced by relatively subtle and gradational changes in reflectivity. Reworked sediments have diverse grain sizes that overlap and are transitional between those of the other two sedimentary environments, and they are indicative of highly variable bottom currents.

  2. Tracing submarine groundwater discharge flux in Tolo Harbor, Hong Kong (China)

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Jiao, Jiu Jimmy; Cheng, Ho Kwan

    2018-02-01

    Submarine groundwater discharge (SGD) is an important pathway for groundwater and associated chemicals to discharge to the sea. Groundwater levels monitored along a transect perpendicular to the shoreline are used to calculate SGD flux from the nearshore aquifer to Tolo Harbor, Hong Kong (China). The calculated SGD flux—recharge/discharge measured with Darcy's Law methods—agrees well with estimates based on geo-tracer techniques and seepage meter in Tolo Harbor during previous studies. The estimated freshwater SGD is 1.69-2.0 m2/d at the study site and 0.3 ± 0.04 cm/d for the whole of Tolo Harbor, which is comparable to the river discharge (0.25 ± 0.07 cm/d) and precipitation (0.45 ± 0.15 cm/d). The tide-driven SGD in the intertidal zone is 13.98-17.59 m2/d at the study site and 2.42 ± 0.56 cm/d for the whole of Tolo Harbor. The SGD occurring in the subtidal zone and the bottom of Tolo Harbor is 3.12 ± 4.63 cm/d. Fresh SGD accounts for 5% of the total SGD, while the rest ( 95%) is contributed by saline SGD driven by various forces. About 96% of the tide-driven SGD in the intertidal zone occurs in the ebbing tide period because the head difference between the groundwater level and sea level is great during this period. Tide-driven SGD in the spring tide is 1.2 times that during neap tide. The tidal fluctuation amplitude and tide-driven SGD in the intertidal zone are positively correlated to each other; thus, a spring neap variation of the tide-driven SGD is observed.

  3. Brown-headed cowbirds (Molothrus ater) harbor Sarcocystis neurona and act as intermediate hosts.

    PubMed

    Mansfield, L S; Mehler, S; Nelson, K; Elsheikha, H M; Murphy, A J; Knust, B; Tanhauser, S M; Gearhart, P M; Rossano, M G; Bowman, D D; Schott, H C; Patterson, J S

    2008-05-06

    We tested the hypothesis that brown-headed cowbirds (Molothrus ater) harbor Sarcocystis neurona, the agent of equine protozoal myeloencephalitis (EPM), and act as intermediate hosts for this parasite. In summer 1999, wild caught brown-headed cowbirds were collected and necropsied to determine infection rate with Sarcocystis spp. by macroscopic inspection. Seven of 381 (1.8%) birds had grossly visible sarcocysts in leg muscles with none in breast muscles. Histopathology revealed two classes of sarcocysts in leg muscles, thin-walled and thick-walled suggesting two species. Electron microscopy showed that thick-walled cysts had characteristics of S. falcatula and thin-walled cysts had characteristics of S. neurona. Thereafter, several experiments were conducted to confirm that cowbirds had viable S. neurona that could be transmitted to an intermediate host and cause disease. Specific-pathogen-free opossums fed cowbird leg muscle that was enriched for muscle either with or without visible sarcocysts all shed high numbers of sporocysts by 4 weeks after infection, while the control opossum fed cowbird breast muscle was negative. These sporocysts were apparently of two size classes, 11.4+/-0.7 microm by 7.6+/-0.4 microm (n=25) and 12.6+/-0.6 microm by 8.0+/-0 microm (n=25). When these sporocysts were excysted and introduced into equine dermal cell tissue culture, schizogony occurred, most merozoites survived and replicated long term and merozoites sampled from the cultures with long-term growth were indistinguishable from known S. neurona isolates. A cowbird Sarcocystis isolate, Michigan Cowbird 1 (MICB1), derived from thin-walled sarcocysts from cowbirds that was passaged in SPF opossums and tissue culture went on to produce neurological disease in IFNgamma knockout mice indistinguishable from that of the positive control inoculated with S. neurona. This, together with the knowledge that S. falcatula does not cause lesions in IFNgamma knockout mice, showed that cowbird

  4. 33 CFR 207.600 - Rochester (Charlotte) Harbor, N.Y.; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Rochester (Charlotte) Harbor, N.Y.; use, administration, and navigation. 207.600 Section 207.600 Navigation and Navigable Waters CORPS OF... (Charlotte) Harbor, N.Y.; use, administration, and navigation. (a)-(b) [Reserved] (c) No vessel shall moor or...

  5. 78 FR 36662 - Safety Zone; Fairport Harbor Mardi Gras, Lake Erie, Fairport, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ...-AA00 Safety Zone; Fairport Harbor Mardi Gras, Lake Erie, Fairport, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Erie, Fairport Harbor, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during...

  6. 33 CFR 110.83 - Chicago Harbor, Ill.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 110.83 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.83 Chicago Harbor, Ill. (a) Grant Park North-A... and type of any moorings placed in the special anchorage areas in this section. [CGD09-83-02, 50 FR...

  7. 33 CFR 110.30 - Boston Harbor, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 110.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.30 Boston Harbor, Mass. (a) Vicinity of South Boston... moorings are to be so placed that no moored vessel will extend beyond the limit of the anchorage area. (i...

  8. 33 CFR 110.30 - Boston Harbor, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 110.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.30 Boston Harbor, Mass. (a) Vicinity of South Boston... moorings are to be so placed that no moored vessel will extend beyond the limit of the anchorage area. (i...

  9. 33 CFR 110.30 - Boston Harbor, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 110.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.30 Boston Harbor, Mass. (a) Vicinity of South Boston... moorings are to be so placed that no moored vessel will extend beyond the limit of the anchorage area. (i...

  10. Towards an ethics safe harbor for global biomedical research

    PubMed Central

    Dove, Edward S.; Knoppers, Bartha M.; Zawati, Ma'n H.

    2014-01-01

    Although increasingly global, data-driven genomics and other ‘omics’-focused research hold great promise for health discoveries, current research ethics review systems around the world challenge potential improvements in human health from such research. To overcome this challenge, we propose a ‘Safe Harbor Framework for International Ethics Equivalency’ that facilitates the harmonization of ethics review of specific types of data-driven international research projects while respecting globally transposable research ethics norms and principles. The Safe Harbor would consist in part of an agency supporting an International Federation for Ethics Review (IFER), formed by a voluntary compact among countries, granting agencies, philanthropies, institutions, and healthcare, patient advocacy, and research organizations. IFER would be both a central ethics review body, and also a forum for review and follow-up of policies concerning ethics norms for international research projects. It would be built on five principle elements: (1) registration, (2) compliance review, (3) recognition, (4) monitoring and enforcement, and (5) public participation. The Safe Harbor would create many benefits for researchers, countries, and the general public, and may eventually have application beyond (gen)omics to other areas of biomedical research that increasingly engage in secondary use of data and present only negligible risks. PMID:27774154

  11. 33 CFR 110.115 - Santa Barbara Harbor, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; excluding a fairway 225 feet wide, 100 feet from each side of and parallel to the Navy pier. Note: Fore and.... 2106 for yachts and small craft of such size and alignment as permitted by the harbor master. ...

  12. 33 CFR 110.115 - Santa Barbara Harbor, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; excluding a fairway 225 feet wide, 100 feet from each side of and parallel to the Navy pier. Note: Fore and.... 2106 for yachts and small craft of such size and alignment as permitted by the harbor master. ...

  13. 33 CFR 165.120 - Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Boston Inner Harbor, Boston, MA. 165.120 Section 165.120 Navigation and Navigable Waters COAST GUARD... § 165.120 Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA. (a) Location. The following area... downstream of the Chelsea Street Bridge on the Chelsea, MA side of the Chelsea River—hereafter referred to as...

  14. 33 CFR 165.120 - Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Boston Inner Harbor, Boston, MA. 165.120 Section 165.120 Navigation and Navigable Waters COAST GUARD... § 165.120 Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA. (a) Location. The following area... downstream of the Chelsea Street Bridge on the Chelsea, MA side of the Chelsea River—hereafter referred to as...

  15. 33 CFR 165.120 - Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Boston Inner Harbor, Boston, MA. 165.120 Section 165.120 Navigation and Navigable Waters COAST GUARD... § 165.120 Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA. (a) Location. The following area... downstream of the Chelsea Street Bridge on the Chelsea, MA side of the Chelsea River—hereafter referred to as...

  16. 33 CFR 165.120 - Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Boston Inner Harbor, Boston, MA. 165.120 Section 165.120 Navigation and Navigable Waters COAST GUARD... § 165.120 Safety Zone: Chelsea River, Boston Inner Harbor, Boston, MA. (a) Location. The following area... downstream of the Chelsea Street Bridge on the Chelsea, MA side of the Chelsea River—hereafter referred to as...

  17. Identifying best practices for "Safe Harbor" legislation to protect child sex trafficking victims: Decriminalization alone is not sufficient.

    PubMed

    Barnert, Elizabeth S; Abrams, Susan; Azzi, Veronica F; Ryan, Gery; Brook, Robert; Chung, Paul J

    2016-01-01

    Several states have recently enacted "Safe Harbor" laws to redirect child victims of commercial sexual exploitation and child sex trafficking from the criminal justice system and into the child welfare system. No comprehensive studies of Safe Harbor law implementation exist. The nine state Safe Harbor laws enacted by 2012 were analyzed to guide state legislators, health professionals, law enforcement agents, child welfare providers, and other responders to the commercial sexual exploitation of children on the development and implementation of state Safe Harbor laws. The authors conducted 32 semi-structured interviews with Safe Harbor experts in these states. Participants conveyed that Safe Harbor legislation signified a critical paradigm shift, treating commercially sexually exploited youth not as criminals but as vulnerable children in need of services. However, Safe Harbor legislation varied widely and significant gaps in laws exist. Such laws alone were considered insufficient without adequate funding for necessary services. As a result, many well-meaning providers were going around the Safe Harbor laws by continuing to incarcerate commercially sexually exploited youth in the juvenile justice system regardless of Safe Harbor laws in place. This was done, to act, in their view, in what was the best interest of the victimized children. With imperfect laws and implementation, these findings suggest an important role for local and state responders to act together to protect victims from unnecessary criminalization and potential further traumatization. Published by Elsevier Ltd.

  18. Summary of oceanographic and water–quality measurements in West Falmouth Harbor and Buzzards Bay, Massachusetts, 2009–2010

    USGS Publications Warehouse

    Ganju, Neil K.; Dickhudt, Patrick J.; Thomas, Jennifer A.; Borden, Jonathan; Sherwood, Christopher R.; Montgomery, Ellyn T.; Twomey, Erin R.; Martini, Marinna A.

    2011-01-01

    This data report presents oceanographic and water-quality observations made at six locations in West Falmouth Harbor and Buzzards Bay, Massachusetts, from August 2009 to September 2010. Both Buzzards Bay and West Falmouth Harbor are estuarine embayments; the input of freshwater on the eastern margin of Buzzards Bay adjacent to Cape Cod and West Falmouth Harbor is largely due to groundwater. In West Falmouth Harbor, the groundwater that seeps into the harbor is characterized by relatively high levels of nitrate. This high nitrate load has modified the ecology of the harbor (Howes and others, 2006) and may be a significant source of nitrate to Buzzards Bay during seasons with low biological nitrate uptake. The U.S. Geological Survey undertook these measurements to improve understanding of circulation, residence time, and water quality in the harbor and bay. We set up and monitored multiple sites in both Buzzards Bay and West Falmouth Harbor, measuring depth, water velocity,salinity, pH, dissolved oxygen, chlorophyll-a, and nitrate concentration. In this report we present the processed time-series data at these locations and provide access to the data and metadata. The results will be used to understand circulation mechanisms and verify numerical models of hydrodynamics and biogeochemistry.

  19. 33 CFR 110.82a - Little Traverse Bay, Lake Michigan, Harbor Springs, Mich.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Little Traverse Bay, Lake Michigan, Harbor Springs, Mich. 110.82a Section 110.82a Navigation and Navigable Waters COAST GUARD... Traverse Bay, Lake Michigan, Harbor Springs, Mich. (a) Area 1. Beginning at latitude 45°25′42.2″ N...

  20. 33 CFR 110.82a - Little Traverse Bay, Lake Michigan, Harbor Springs, Mich.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Little Traverse Bay, Lake Michigan, Harbor Springs, Mich. 110.82a Section 110.82a Navigation and Navigable Waters COAST GUARD... Traverse Bay, Lake Michigan, Harbor Springs, Mich. (a) Area 1. Beginning at latitude 45°25′42.2″ N...

  1. 33 CFR 110.82a - Little Traverse Bay, Lake Michigan, Harbor Springs, Mich.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Little Traverse Bay, Lake Michigan, Harbor Springs, Mich. 110.82a Section 110.82a Navigation and Navigable Waters COAST GUARD... Traverse Bay, Lake Michigan, Harbor Springs, Mich. (a) Area 1. Beginning at latitude 45°25′42.2″ N...

  2. 33 CFR 110.82a - Little Traverse Bay, Lake Michigan, Harbor Springs, Mich.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Little Traverse Bay, Lake Michigan, Harbor Springs, Mich. 110.82a Section 110.82a Navigation and Navigable Waters COAST GUARD... Traverse Bay, Lake Michigan, Harbor Springs, Mich. (a) Area 1. Beginning at latitude 45°25′42.2″ N...

  3. 33 CFR 110.82a - Little Traverse Bay, Lake Michigan, Harbor Springs, Mich.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Little Traverse Bay, Lake Michigan, Harbor Springs, Mich. 110.82a Section 110.82a Navigation and Navigable Waters COAST GUARD... Traverse Bay, Lake Michigan, Harbor Springs, Mich. (a) Area 1. Beginning at latitude 45°25′42.2″ N...

  4. 75 FR 3856 - Drawbridge Operation Regulations; Great Egg Harbor Bay, Between Beesleys Point and Somers Point, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ...-AA09 Drawbridge Operation Regulations; Great Egg Harbor Bay, Between Beesleys Point and Somers Point... that govern the operation of the US Route 9/Beesleys Point Bridge over Great Egg Harbor Bay, at mile 3... Operation Regulations; Great Egg Harbor Bay, between Beesleys Point and Somers Point, NJ, in the Federal...

  5. Kaumalapau Harbor, Hawaii, Breakwater Repair

    DTIC Science & Technology

    2012-05-01

    agricultural economy to an economy based on tourism . Primary use of the harbor changed from the export of pineapple to the import of fuel and goods to...unit. The pulse-velocity measurement apparatus consists of a transmitter and receiver connected to electronic circuitry that generates a pulse sent...performance indices include a ME of -0.43 ft, RMSE of 0.66 ft and SI ERDC/CHL TR-12-7 86 of 0.24. In other words , the Maui SWAN model will perform as good

  6. 78 FR 57319 - Children's Online Privacy Protection Rule Safe Harbor Proposed Self-Regulatory Guidelines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ...-AB20 Children's Online Privacy Protection Rule Safe Harbor Proposed Self-Regulatory Guidelines; kidSAFE... proposed self-regulatory guidelines submitted by the kidSAFE Seal Program (``kidSAFE''), owned and operated... part of the SUPPLEMENTARY INFORMATION section below. Write ``kidSAFE Application for Safe Harbor...

  7. Analysis of Protection Measures for Naval Vessels Berthed at Harbor Against Terrorist Attacks

    DTIC Science & Technology

    2016-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited ANALYSIS OF...2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ANALYSIS OF PROTECTION MEASURES FOR NAVAL VESSELS BERTHED AT HARBOR... ANALYSIS OF PROTECTION MEASURES FOR NAVAL VESSELS BERTHED AT HARBOR AGAINST TERRORIST ATTACKS Raja I. Sikandar Lieutenant Commander, Pakistan Navy

  8. Wall characterization for through-the-wall radar applications

    NASA Astrophysics Data System (ADS)

    Greneker, Gene; Rausch, E. O.

    2008-04-01

    There has been continuing interest in the penetration of multilayer building materials, such as wood walls with air gaps and concrete hollow core block, using through-the-wall (TTW) radar systems. TTW operational techniques and signal propagation paths vary depending on how the TTW system is intended to be operated. For example, the operator of a TTW radar may be required to place the radar against the intervening wall of interest while collecting data. Other operational doctrines allow the radar to be operated in a stand-off mode from the wall. The stand-off distances can vary from feet to hundreds of feet, depending on the type of radar being used. When a signal is propagated through a multilayer wall with air gaps between the material and the wall construction uses materials of radically different dielectric constants, attenuation may not be the only effect that the probing signal experiences passing through the wall. This paper presents measurements of a hollow core concrete block wall and the measurement of a standard wall constructed of siding and wallboard. Both types of walls are typically found in most U.S. homes. These limited measurements demonstrate that the type of wall being penetrated by a wideband signal can modify the probing signal.

  9. 78 FR 13479 - Drawbridge Operation Regulation; New Haven Harbor, Quinnipiac and Mill Rivers, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ...-AA09 Drawbridge Operation Regulation; New Haven Harbor, Quinnipiac and Mill Rivers, CT AGENCY: Coast... regulations that govern the operation of three bridges across the Quinnipiac and Mill Rivers at New Haven...) entitled ``Drawbridge Operation Regulations New Haven Harbor, Quinnipiac and Mill Rivers,'' in the Federal...

  10. A Near-Wall Reynolds-Stress Closure without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on the SSG high-Reynolds-stress model with wall-independent near-wall corrections. Only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls. The model is able to reproduce complicated flow phenomena induced by complex geometry, such as flow recirculation, reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS model predicts less degree of turbulent anisotropy in the near-wall region compared with a wall-dependent near-wall Reynolds Stress model (NWRS) developed by So and colleagues. The comparison of the predictions given by the two models rectifies the misconception that the overshooting of skin friction coefficient in backward-facing step flow prevalent in those near-wall, models with wall normal is caused by he use of wall normal.

  11. 33 CFR 148.215 - What if a port has plans for a deep draft channel and harbor?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... deep draft channel and harbor? 148.215 Section 148.215 Navigation and Navigable Waters COAST GUARD... General § 148.215 What if a port has plans for a deep draft channel and harbor? (a) If a State port will... draft channel and harbor, a representative of the port may request a determination under 33 U.S.C. 1503...

  12. Caffeine in Boston Harbor past and present, assessing its utility as a tracer of wastewater contamination in an urban estuary

    EPA Science Inventory

    Sites throughout Boston Harbor were analyzed for caffeine to assess its utility as a tracer in identifying sources of sanitary wastewater. Caffeine ranged from 15 ng/L in the outer harbor to a high of 185 ng/L in the inner harbor. Inner harbor concentrations were a result of comb...

  13. 33 CFR 110.50d - Mystic Harbor, Noank, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50d Mystic Harbor, Noank, Conn. (a) The area... to the point of beginning. (b) The following requirements shall govern this special anchorage area...

  14. 33 CFR 110.50d - Mystic Harbor, Noank, Conn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50d Mystic Harbor, Noank, Conn. (a) The area... to the point of beginning. (b) The following requirements shall govern this special anchorage area...

  15. 33 CFR 110.50d - Mystic Harbor, Noank, Conn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50d Mystic Harbor, Noank, Conn. (a) The area... to the point of beginning. (b) The following requirements shall govern this special anchorage area...

  16. 33 CFR 110.50d - Mystic Harbor, Noank, Conn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50d Mystic Harbor, Noank, Conn. (a) The area... to the point of beginning. (b) The following requirements shall govern this special anchorage area...

  17. 33 CFR 110.50d - Mystic Harbor, Noank, Conn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50d Mystic Harbor, Noank, Conn. (a) The area... to the point of beginning. (b) The following requirements shall govern this special anchorage area...

  18. 33 CFR 110.83 - Chicago Harbor, Ill.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... South of the South face of the former Naval Armory Dock, and 100 feet East of said bulkhead, that point... parallel to the aforesaid harbor line and is approximately 800 feet South of the South face of the former Naval Armory Dock, said point is 20 feet East of the East face of the Chicago Park District jetty...

  19. 76 FR 38153 - California State Nonroad Engine Pollution Control Standards; Commercial Harbor Craft Regulations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... propulsion and auxiliary engines on new and in-use commercial harbor crafts, with some exceptions.\\6...- 0002. For new harbor crafts, each propulsion and auxiliary diesel engine on the vessel is required to... federal Tier 4 certified propulsion engine. \\8\\ BACT is the diesel emission control strategy (DECS...

  20. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage grounds—(1...

  1. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage grounds—(1...

  2. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage grounds—(1...

  3. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage grounds—(1...

  4. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage grounds—(1...

  5. 33 CFR 165.708 - Safety/Security Zone; Charleston Harbor and Cooper River, Charleston, SC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Harbor and Cooper River, Charleston, SC. 165.708 Section 165.708 Navigation and Navigable Waters COAST... Guard District § 165.708 Safety/Security Zone; Charleston Harbor and Cooper River, Charleston, SC. (a... Cooper River. All coordinates referenced use datum: NAD 1983. (2) All waters within 100 yards of the...

  6. A numerical study on hurricane-induced storm surge and inundation in Charleston Harbor, South Carolina

    NASA Astrophysics Data System (ADS)

    Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.

    2006-08-01

    A storm surge and inundation model is configured in Charleston Harbor and its adjacent coastal region to study the harbor's response to hurricanes. The hydrodynamic component of the modeling system is based on the Princeton Ocean Model, and a scheme with multiple inundation speed options is imbedded in the model for the inundation calculation. Historic observations (Hurricane Hugo and its related storm surge and inundation) in the Charleston Harbor region indicate that among three possible inundation speeds in the model, taking Ct (gd)1/2 (Ct is a terrain-related parameter) as the inundation speed is the best choice. Choosing a different inundation speed in the model has effects not only on inundation area but also on storm surge height. A nesting technique is necessary for the model system to capture the mesoscale feature of a hurricane and meanwhile to maintain a higher horizontal resolution in the harbor region, where details of the storm surge and inundation are required. Hurricane-induced storm surge and inundation are very sensitive to storm tracks. Twelve hurricanes with different tracks are simulated to investigate how Charleston Harbor might respond to tracks that are parallel or perpendicular to the coastline or landfall at Charleston at different angles. Experiments show that large differences of storm surge and inundation may have occurred if Hurricane Hugo had approached Charleston Harbor with a slightly different angle. A hurricane's central pressure, radius of maximum wind, and translation speed have their own complicated effects on surge and inundation when the hurricane approaches the coast on different tracks. Systematic experiments are performed in order to illustrate how each of such factors, or a combination of them, may affect the storm surge height and inundation area in the Charleston Harbor region. Finally, suggestions are given on how this numerical model system may be used for hurricane-induced storm surge and inundation forecasting.

  7. 77 FR 40628 - Draft Safe Harbor Agreement and Application for an Enhancement of Survival Permit for the Tres...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ...-FF02ENEH00] Draft Safe Harbor Agreement and Application for an Enhancement of Survival Permit for the Tres... permit application and the associated draft Safe Harbor Agreement (SHA). DATES: Comment Period: To ensure... . SUPPLEMENTARY INFORMATION: Under a Safe Harbor Agreement, participating property owners voluntarily undertake...

  8. 77 FR 38490 - Safety Zone; Mentor Harbor Yachting Club Fireworks, Lake Erie, Mentor, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ...-AA00 Safety Zone; Mentor Harbor Yachting Club Fireworks, Lake Erie, Mentor, OH AGENCY: Coast Guard, DHS... Erie, Mentor, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during the Mentor Harbor Yachting Club fireworks display. This temporary safety zone is necessary to protect...

  9. 33 CFR 165.T09-0140 - Safety Zone; USA Triathlon, Milwaukee Harbor, Milwaukee, Wisconsin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zone; USA Triathlon, Milwaukee Harbor, Milwaukee, Wisconsin. 165.T09-0140 Section 165.T09-0140 Navigation and Navigable Waters... Guard District § 165.T09-0140 Safety Zone; USA Triathlon, Milwaukee Harbor, Milwaukee, Wisconsin. (a...

  10. 33 CFR 165.T09-0140 - Safety Zone; USA Triathlon, Milwaukee Harbor, Milwaukee, Wisconsin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety Zone; USA Triathlon, Milwaukee Harbor, Milwaukee, Wisconsin. 165.T09-0140 Section 165.T09-0140 Navigation and Navigable Waters... Guard District § 165.T09-0140 Safety Zone; USA Triathlon, Milwaukee Harbor, Milwaukee, Wisconsin. (a...

  11. 77 FR 63732 - Safety Zone; Bridge Demolition Project; Indiana Harbor Canal, East Chicago, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ...-AA00 Safety Zone; Bridge Demolition Project; Indiana Harbor Canal, East Chicago, IN AGENCY: Coast Guard... from a portion of the Indiana Harbor Canal due to the Demolition Project on the Cline Avenue Bridge... vessels from the hazards associated with the demolition project on the Cline Avenue bridge, which are...

  12. 77 FR 72957 - Safety Zone; Bridge Demolition Project; Indiana Harbor Canal, East Chicago, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ...-AA00 Safety Zone; Bridge Demolition Project; Indiana Harbor Canal, East Chicago, IN AGENCY: Coast Guard... from a portion of the Indiana Harbor Canal due to the demolition Project on the Cline Avenue Bridge... associated with the demolition project on the Cline Avenue bridge, which are discussed further below. Under 5...

  13. Effect of harbor modifications on the tsunami vulnerability of Crescent City, California

    NASA Astrophysics Data System (ADS)

    Dengler, L.; Uslu, B.

    2008-12-01

    Crescent City, California has experienced more damaging tsunami events in historic times than any other location on the West Coast of the United States. Thirty-one tsunamis have been observed at Crescent City since a tide gauge was established in 1933, including eleven events with maximum peak to trough wave range exceeding one meter and four that caused damage. The most damaging event occurred in 1964 as a result of the great Alaska earthquake. The ensuing tsunami flooded 29 city blocks and killed 11 in the Crescent City area. As a result of the 1964 tsunami and redevelopment projects, the Crescent City harbor was significantly modified in the early 1970s. A 200 x 300 meter small boat basin was carved into the preexisting shore line, a 123 meter dog leg extension was added to the central breakwater and significant deepening occurred on the eastern side of the harbor. In 2006, a Mw 8.3 earthquake in the Kuril Islands generated a moderate Pacific-wide tsunami. The only location with significant damage was the Crescent City harbor where strong currents damaged docks and boats, causing an estimated 9.2 million (US dollars) in damages. Strong currents estimated by the Harbor Master at 12 knots were observed near the entrance to the small boat basin. Past earthquakes from the northwestern Pacific including the 1933 M 8.3 Sanriku Japan earthquake may have produced similar amplitudes at Crescent City to the 2006 event but caused no damage. We have obtained the pre-modification harbor bathymetry and use the MOST model to compare tsunami water heights and current velocities for the 1933 and 2006 sources using modern and pre- modification bathymetry. We also examine model the 1964 inundation using the actual bathymetry and compare the results to numerical simulations that have only used the modern data.

  14. Expression of a fungal ferulic acid esterase in alfalfa modifies cell wall digestibility

    PubMed Central

    2014-01-01

    Background Alfalfa (Medicago sativa) is an important forage crop in North America owing to its high biomass production, perennial nature and ability to fix nitrogen. Feruloyl esterase (EC 3.1.1.73) hydrolyzes ester linkages in plant cell walls and has the potential to further improve alfalfa as biomass for biofuel production. Results In this study, faeB [GenBank:AJ309807] was synthesized at GenScript and sub-cloned into a novel pEACH vector containing different signaling peptides to target type B ferulic acid esterase (FAEB) proteins to the apoplast, chloroplast, endoplasmic reticulum and vacuole. Four constructs harboring faeB were transiently expressed in Nicotiana leaves, with FAEB accumulating at high levels in all target sites, except chloroplast. Stable transformed lines of alfalfa were subsequently obtained using Agrobacterium tumefaciens (LBA4404). Out of 136 transgenic plants regenerated, 18 independent lines exhibited FAEB activity. Subsequent in vitro digestibility and Fourier transformed infrared spectroscopy (FTIR) analysis of FAEB-expressing lines showed that they possessed modified cell wall morphology and composition with a reduction in ester linkages and elevated lignin content. Consequently, they were more recalcitrant to digestion by mixed ruminal microorganisms. Interestingly, delignification by alkaline peroxide treatment followed by exposure to a commercial cellulase mixture resulted in higher glucose release from transgenic lines as compared to the control line. Conclusion Modifying cell wall crosslinking has the potential to lower recalcitrance of holocellulose, but also exhibited unintended consequences on alfalfa cell wall digestibility due to elevated lignin content. The combination of efficient delignification treatment (alkaline peroxide) and transgenic esterase activity complement each other towards efficient and effective digestion of transgenic lines. PMID:24650274

  15. 33 CFR 110.29 - Boston Inner Harbor, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 110.29 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.29 Boston Inner Harbor, Mass. (a) Vicinity of Pleasant... Anchorage Area is exercised by the Harbormaster, City of Boston, pursuant to local ordinances. The City of...

  16. 33 CFR 110.29 - Boston Inner Harbor, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 110.29 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.29 Boston Inner Harbor, Mass. (a) Vicinity of Pleasant... Anchorage Area is exercised by the Harbormaster, City of Boston, pursuant to local ordinances. The City of...

  17. 33 CFR 110.29 - Boston Inner Harbor, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 110.29 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.29 Boston Inner Harbor, Mass. (a) Vicinity of Pleasant... Anchorage Area is exercised by the Harbormaster, City of Boston, pursuant to local ordinances. The City of...

  18. 18 CFR 1304.404 - Commercial marina harbor limits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... facilities at the dock, navigation and flood control requirements, optimum use of lands and land rights owned... to, changes in the ownership of the land base supporting the marina. ... harbor areas are determined by the extent of land rights held by the dock operator. The lakeward limits...

  19. 76 FR 38302 - Safety Zone; Cape Charles Fireworks, Cape Charles Harbor, Cape Charles, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... the Town of Cape Charles will sponsor a fireworks display on the shoreline of the navigable waters of...-AA00 Safety Zone; Cape Charles Fireworks, Cape Charles Harbor, Cape Charles, VA AGENCY: Coast Guard... navigable waters of Cape Charles City Harbor in Cape Charles, VA in support of the Fourth of July Fireworks...

  20. [Morphological signs of mitochondrial cytopathy in skeletal muscles and micro-vessel walls in a patient with cerebral artery dissection associated with MELAS syndrome].

    PubMed

    Sakharova, A V; Kalashnikova, L A; Chaĭkovskaia, R P; Mir-Kasimov, M F; Nazarova, M A; Pykhtina, T N; Dobrynina, L A; Patrusheva, N L; Patrushev, L I; Protskiĭ, S V

    2012-01-01

    Skin and muscles biopsy specimens of a patient harboring A3243G mutation in mitochondrial DNA, with dissection of internal carotid and vertebral arteries, associated with MELAS were studied using histochemical and electron-microscopy techniques. Ragged red fibers, regional variability of SDH histochemical reaction, two types of morphologically atypical mitochondria and their aggregation were found in muscle. There was correlation between SDH histochemical staining and number of mitochondria revealed by electron microscopy in muscle tissue. Similar mitochondrial abnormality, their distribution and cell lesions followed by extra-cellular matrix mineralization were found in the blood vessel walls. In line with generalization of cytopathy process caused by gene mutation it can be supposed that changes found in skin and muscle microvessels also exist in large cerebral vessels causing the vessel wall "weakness", predisposing them to dissection.