Sample records for harboring mutant p53

  1. Andrographolide induces degradation of mutant p53 via activation of Hsp70.

    PubMed

    Sato, Hirofumi; Hiraki, Masatsugu; Namba, Takushi; Egawa, Noriyuki; Baba, Koichi; Tanaka, Tomokazu; Noshiro, Hirokazu

    2018-05-22

    The tumor suppressor gene p53 encodes a transcription factor that regulates various cellular functions, including DNA repair, apoptosis and cell cycle progression. Approximately half of all human cancers carry mutations in p53 that lead to loss of tumor suppressor function or gain of functions that promote the cancer phenotype. Thus, targeting mutant p53 as an anticancer therapy has attracted considerable attention. In the current study, a small-molecule screen identified andrographlide (ANDRO) as a mutant p53 suppressor. The effects of ANDRO, a small molecule isolated from the Chinese herb Andrographis paniculata, on tumor cells carrying wild-type or mutant p53 were examined. ANDRO suppressed expression of mutant p53, induced expression of the cyclin-dependent kinase inhibitor p21 and pro-apoptotic proteins genes, and inhibited the growth of cancer cells harboring mutant p53. ANDRO also induced expression of the heat-shock protein (Hsp70) and increased binding between Hsp70 and mutant p53 protein, thus promoting proteasomal degradation of p53. These results provide novel insights into the mechanisms regulating the function of mutant p53 and suggest that activation of Hsp70 may be a new strategy for the treatment of cancers harboring mutant p53.

  2. Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo

    PubMed Central

    Jung, Chae Lim; Mun, Hyemin; Jo, Se-Young; Oh, Ju-Hee; Lee, ChuHee; Choi, Eun-Kyung; Jang, Se Jin; Suh, Young-Ah

    2016-01-01

    Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting “oncogene addiction” could be a promising strategy for combatting p53 mutant tumors. PMID:27765910

  3. Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo.

    PubMed

    Jung, Chae Lim; Mun, Hyemin; Jo, Se-Young; Oh, Ju-Hee; Lee, ChuHee; Choi, Eun-Kyung; Jang, Se Jin; Suh, Young-Ah

    2016-11-22

    Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting "oncogene addiction" could be a promising strategy for combatting p53 mutant tumors.

  4. Chaperone-mediated autophagy degrades mutant p53

    PubMed Central

    Vakifahmetoglu-Norberg, Helin; Kim, Minsu; Xia, Hong-guang; Iwanicki, Marcin P.; Ofengeim, Dimitry; Coloff, Jonathan L.; Pan, Lifeng; Ince, Tan A.; Kroemer, Guido; Brugge, Joan S.; Yuan, Junying

    2013-01-01

    Missense mutations in the gene TP53, which encodes p53, one of the most important tumor suppressors, are common in human cancers. Accumulated mutant p53 proteins are known to actively contribute to tumor development and metastasis. Thus, promoting the removal of mutant p53 proteins in cancer cells may have therapeutic significance. Here we investigated the mechanisms that govern the turnover of mutant p53 in nonproliferating tumor cells using a combination of pharmacological and genetic approaches. We show that suppression of macroautophagy by multiple means promotes the degradation of mutant p53 through chaperone-mediated autophagy in a lysosome-dependent fashion. In addition, depletion of mutant p53 expression due to macroautophagy inhibition sensitizes the death of dormant cancer cells under nonproliferating conditions. Taken together, our results delineate a novel strategy for killing tumor cells that depend on mutant p53 expression by the activation of chaperone-mediated autophagy and potential pharmacological means to reduce the levels of accumulated mutant p53 without the restriction of mutant p53 conformation in quiescent tumor cells. PMID:23913924

  5. Effect of Mutant p53 Proteins on Glycolysis and Mitochondrial Metabolism.

    PubMed

    Eriksson, Matilda; Ambroise, Gorbatchev; Ouchida, Amanda Tomie; Lima Queiroz, Andre; Smith, Dominique; Gimenez-Cassina, Alfredo; Iwanicki, Marcin P; Muller, Patricia A; Norberg, Erik; Vakifahmetoglu-Norberg, Helin

    2017-12-15

    TP53 is one of the most commonly mutated genes in human cancers. Unlike other tumor suppressors that are frequently deleted or acquire loss-of-function mutations, the majority of TP53 mutations in tumors are missense substitutions, which lead to the expression of full-length mutant proteins that accumulate in cancer cells and may confer unique gain-of-function (GOF) activities to promote tumorigenic events. Recently, mutant p53 proteins have been shown to mediate metabolic changes as a novel GOF to promote tumor development. There is a strong rationale that the GOF activities, including alterations in cellular metabolism, might vary between the different p53 mutants. Accordingly, the effect of different mutant p53 proteins on cancer cell metabolism is largely unknown. In this study, we have metabolically profiled several individual frequently occurring p53 mutants in cancers, focusing on glycolytic and mitochondrial oxidative phosphorylation pathways. Our investigation highlights the diversity of different p53 mutants in terms of their effect on metabolism, which might provide a foundation for the development of more effective targeted pharmacological approaches toward variants of mutant p53. Copyright © 2017 American Society for Microbiology.

  6. Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF).

    PubMed

    Tan, B S; Tiong, K H; Choo, H L; Chung, F Fei-Lei; Hii, L-W; Tan, S H; Yap, I K S; Pani, S; Khor, N T W; Wong, S F; Rosli, R; Cheong, S-K; Leong, C-O

    2015-07-16

    p53 is the most frequently mutated tumor-suppressor gene in human cancers. Unlike other tumor-suppressor genes, p53 mutations mainly occur as missense mutations within the DNA-binding domain, leading to the expression of full-length mutant p53 protein. Mutant p53 proteins not only lose their tumor-suppressor function, but may also gain new oncogenic functions and promote tumorigenesis. Here, we showed that silencing of endogenous p53-R273H contact mutant, but not p53-R175H conformational mutant, reduced AKT phosphorylation, induced BCL2-modifying factor (BMF) expression, sensitized BIM dissociation from BCL-XL and induced mitochondria-dependent apoptosis in cancer cells. Importantly, cancer cells harboring endogenous p53-R273H mutant were also found to be inherently resistant to anoikis and lack BMF induction following culture in suspension. Underlying these activities is the ability of p53-R273H mutant to suppress BMF expression that is dependent on constitutively active PI3K/AKT signaling. Collectively, these findings suggest that p53-R273H can specifically drive AKT signaling and suppress BMF expression, resulting in enhanced cell survivability and anoikis resistance. These findings open the possibility that blocking of PI3K/AKT will have therapeutic benefit in mutant p53-R273H expressing cancers.

  7. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    PubMed

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  8. The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53.

    PubMed

    Madan, Esha; Parker, Taylor M; Bauer, Matthias R; Dhiman, Alisha; Pelham, Christopher J; Nagane, Masaki; Kuppusamy, M Lakshmi; Holmes, Matti; Holmes, Thomas R; Shaik, Kranti; Shee, Kevin; Kiparoidze, Salome; Smith, Sean D; Park, Yu-Soon A; Gomm, Jennifer J; Jones, Louise J; Tomás, Ana R; Cunha, Ana C; Selvendiran, Karuppaiyah; Hansen, Laura A; Fersht, Alan R; Hideg, Kálmán; Gogna, Rajan; Kuppusamy, Periannan

    2018-03-23

    p53 is an important tumor-suppressor protein that is mutated in more than 50% of cancers. Strategies for restoring normal p53 function are complicated by the oncogenic properties of mutant p53 and have not met with clinical success. To counteract mutant p53 activity, a variety of drugs with the potential to reconvert mutant p53 to an active wildtype form have been developed. However, these drugs are associated with various negative effects such as cellular toxicity, nonspecific binding to other proteins, and inability to induce a wildtype p53 response in cancer tissue. Here, we report on the effects of a curcumin analog, HO-3867, on p53 activity in cancer cells from different origins. We found that HO-3867 covalently binds to mutant p53, initiates a wildtype p53-like anticancer genetic response, is exclusively cytotoxic toward cancer cells, and exhibits high anticancer efficacy in tumor models. In conclusion, HO-3867 is a p53 mutant-reactivating drug with high clinical anticancer potential. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity

    PubMed Central

    Turrell, Frances K.; Kerr, Emma M.; Gao, Meiling; Thorpe, Hannah; Doherty, Gary J.; Cridge, Jake; Shorthouse, David; Speed, Alyson; Samarajiwa, Shamith; Hall, Benjamin A.; Griffiths, Meryl; Martins, Carla P.

    2017-01-01

    Lung adenocarcinoma accounts for ∼40% of lung cancers, the leading cause of cancer-related death worldwide, and current therapies provide only limited survival benefit. Approximately half of lung adenocarcinomas harbor mutations in TP53 (p53), making these mutants appealing targets for lung cancer therapy. As mutant p53 remains untargetable, mutant p53-dependent phenotypes represent alternative targeting opportunities, but the prevalence and therapeutic relevance of such effects (gain of function and dominant-negative activity) in lung adenocarcinoma are unclear. Through transcriptional and functional analysis of murine KrasG12D-p53null, -p53R172H (conformational), and -p53R270H (contact) mutant lung tumors, we identified genotype-independent and genotype-dependent therapeutic sensitivities. Unexpectedly, we found that wild-type p53 exerts a dominant tumor-suppressive effect on mutant tumors, as all genotypes were similarly sensitive to its restoration in vivo. These data show that the potential of p53 targeted therapies is comparable across all p53-deficient genotypes and may explain the high incidence of p53 loss of heterozygosity in mutant tumors. In contrast, mutant p53 gain of function and their associated vulnerabilities can vary according to mutation type. Notably, we identified a p53R270H-specific sensitivity to simvastatin in lung tumors, and the transcriptional signature that underlies this sensitivity was also present in human lung tumors, indicating that this therapeutic approach may be clinically relevant. PMID:28790158

  10. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway

    PubMed Central

    Kravchenko, J. E.; Ilyinskaya, G. V.; Komarov, P. G.; Agapova, L. S.; Kochetkov, D. V.; Strom, E.; Frolova, E. I.; Kovriga, I.; Gudkov, A. V.; Feinstein, E.; Chumakov, P. M.

    2008-01-01

    Identification of unique features of cancer cells is important for defining specific and efficient therapeutic targets. Mutant p53 is present in nearly half of all cancer cases, forming a promising target for pharmacological reactivation. In addition to being defective for the tumor-suppressor function, mutant p53 contributes to malignancy by blocking a p53 family member p73. Here, we describe a small-molecule RETRA that activates a set of p53-regulated genes and specifically suppresses mutant p53-bearing tumor cells in vitro and in mouse xenografts. Although the effect is strictly limited to the cells expressing mutant p53, it is abrogated by inhibition with RNAi to p73. Treatment of mutant p53-expressing cancer cells with RETRA results in a substantial increase in the expression level of p73, and a release of p73 from the blocking complex with mutant p53, which produces tumor-suppressor effects similar to the functional reactivation of p53. RETRA is active against tumor cells expressing a variety of p53 mutants and does not affect normal cells. The results validate the mutant p53p73 complex as a promising and highly specific potential target for cancer therapy. PMID:18424558

  11. Heterozygous inactivation of tsc2 enhances tumorigenesis in p53 mutant zebrafish

    PubMed Central

    Kim, Seok-Hyung; Kowalski, Marie L.; Carson, Robert P.; Bridges, L. Richard; Ess, Kevin C.

    2013-01-01

    SUMMARY Tuberous sclerosis complex (TSC) is a multi-organ disorder caused by mutations of the TSC1 or TSC2 genes. A key function of these genes is to inhibit mTORC1 (mechanistic target of rapamycin complex 1) kinase signaling. Cells deficient for TSC1 or TSC2 have increased mTORC1 signaling and give rise to benign tumors, although, as a rule, true malignancies are rarely seen. In contrast, other disorders with increased mTOR signaling typically have overt malignancies. A better understanding of genetic mechanisms that govern the transformation of benign cells to malignant ones is crucial to understand cancer pathogenesis. We generated a zebrafish model of TSC and cancer progression by placing a heterozygous mutation of the tsc2 gene in a p53 mutant background. Unlike tsc2 heterozygous mutant zebrafish, which never exhibited cancers, compound tsc2;p53 mutants had malignant tumors in multiple organs. Tumorigenesis was enhanced compared with p53 mutant zebrafish. p53 mutants also had increased mTORC1 signaling that was further enhanced in tsc2;p53 compound mutants. We found increased expression of Hif1-α, Hif2-α and Vegf-c in tsc2;p53 compound mutant zebrafish compared with p53 mutant zebrafish. Expression of these proteins probably underlies the increased angiogenesis seen in compound mutant zebrafish compared with p53 mutants and might further drive cancer progression. Treatment of p53 and compound mutant zebrafish with the mTORC1 inhibitor rapamycin caused rapid shrinkage of tumor size and decreased caliber of tumor-associated blood vessels. This is the first report using an animal model to show interactions between tsc2, mTORC1 and p53 during tumorigenesis. These results might explain why individuals with TSC rarely have malignant tumors, but also suggest that cancer arising in individuals without TSC might be influenced by the status of TSC1 and/or TSC2 mutations and be potentially treatable with mTORC1 inhibitors. PMID:23580196

  12. Remote intracranial recurrence of IDH mutant gliomas is associated with TP53 mutations and an 8q gain

    PubMed Central

    Nakae, Shunsuke; Kato, Takema; Murayama, Kazuhiro; Sasaki, Hikaru; Abe, Masato; Kumon, Masanobu; Kumai, Tadashi; Yamashiro, Kei; Inamasu, Joji; Hasegawa, Mitsuhiro; Kurahashi, Hiroki; Hirose, Yuichi

    2017-01-01

    Most IDH mutant gliomas harbor either 1p/19q co-deletions or TP53 mutation; 1p/19q co-deleted tumors have significantly better prognoses than tumors harboring TP53 mutations. To investigate the clinical factors that contribute to differences in tumor progression of IDH mutant gliomas, we classified recurrent tumor patterns based on MRI and correlated these patterns with their genomic characterization. Accordingly, in IDH mutant gliomas (N = 66), 1p/19 co-deleted gliomas only recurred locally, whereas TP53 mutant gliomas recurred both locally and in remote intracranial regions. In addition, diffuse tensor imaging suggested that remote intracranial recurrence in the astrocytomas, IDH-mutant with TP53 mutations may occur along major fiber bundles. Remotely recurrent tumors resulted in a higher mortality and significantly harbored an 8q gain; astrocytomas with an 8q gain resulted in significantly shorter overall survival than those without an 8q gain. OncoScan® arrays and next-generation sequencing revealed specific 8q regions (i.e., between 8q22 and 8q24) show a high copy number. In conclusion, only tumors with TP53 mutations showed patterns of remote recurrence in IDH mutant gliomas. Furthermore, an 8q gain was significantly associated with remote intracranial recurrence and can be considered a poor prognostic factor in astrocytomas, IDH-mutant. PMID:29156679

  13. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallentine, Brad D.; Wang, Ying; Tretyachenko-Ladokhina, Vira

    2013-10-01

    X-ray crystallographic structures of four p53 core-domain variants were determined in order to gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53. To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutationmore » substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol{sup −1} (15.1 kJ mol{sup −1}). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the

  14. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue

    PubMed Central

    Wallentine, Brad D.; Wang, Ying; Tretyachenko-Ladokhina, Vira; Tan, Martha; Senear, Donald F.; Luecke, Hartmut

    2013-01-01

    To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutation substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol−1 (15.1 kJ mol−1). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the β-sandwich scaffold. On the other hand, the substitution N239Y creates an advantageous hydrophobic contact between the aromatic ring of this tyrosine and the adjacent Leu137. Surprisingly, the rescued cancer mutant shows much larger structural deviations than the cancer mutant alone when compared

  15. The roles of p53R2 in cancer progression based on the new function of mutant p53 and cytoplasmic p21.

    PubMed

    Yousefi, Bahman; Rahmati, Mohammad; Ahmadi, Yasin

    2014-03-18

    Although the deregulated expression of p53R2, a p53-inducible protein and homologue of the R2 subunit of ribonucleotide reductase, has been detected in several human cancers, p53R2 roles in cancer progression and malignancy still remains controversial. In this article, we present a viable hypothesis about the roles of p53R2 in cancer progression and therapy resistance based on the roles of cytoplasmic p21 and mutant p53. Since p53R2 can up-regulate p21 and p21, it in turn has a dual role in cell cycle. Hence, p53R2 can play a dual role in cell cycle progression. In addition, because p53 is the main regulator of p53R2, the mutant p53 may induce the expression of p53R2 in some cancer cells based on the "keep of function" phenomenon. Therefore, depending on the locations of p21 and the new abilities of mutant p53, p53R2 has dual role in cell cycle progression. Since the DNA damaging therapies induce p53R2 expression through the induction of p53, p53R2 can be the main therapy resistance mediator in cancers with cytoplasmic p21. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA.

    PubMed

    Zhao, Carolyn Y; Grinkevich, Vera V; Nikulenkov, Fedor; Bao, Wenjie; Selivanova, Galina

    2010-05-01

    Expression of mutant p53 correlates with poor prognosis in many tumors, therefore strategies aimed at reactivation of mutant p53 are likely to provide important benefits for treatment of tumors that are resistant to chemotherapy and radiotherapy. We have previously identified and characterized a small molecule RITA which binds p53 and induces a conformational change which prevents the binding of p53 to several inhibitors, including its own destructor MDM2. In this way, RITA rescues the tumor suppression function of wild type p53. Here, we demonstrate that RITA suppressed the growth and induced apoptosis in human tumor cell lines of a diverse origin carrying mutant p53 proteins. RITA restored transcriptional transactivation and transrepression function of several hot spot p53 mutants. The ability of RITA to rescue the activity of different p53 mutants suggests its generic mechanism of action. Thus, RITA is a promising lead for the development of anti-cancer drugs that reactivate the tumor suppressor function of p53 in cancer cells irrespective whether they express mutant or wild type p53.

  17. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras

    PubMed Central

    Acin, Sergio; Li, Zhongyou; Mejia, Olga; Roop, Dennis R; El-Naggar, Adel K; Caulin, Carlos

    2015-01-01

    Mutations in p53 occur in over 50% of the human head and neck squamous cell carcinomas (SCCHN). The majority of these mutations result in the expression of mutant forms of p53, rather than deletions in the p53 gene. Some p53 mutants are associated with poor prognosis in SCCHN patients. However, the molecular mechanisms that determine the poor outcome of cancers carrying p53 mutations are unknown. Here, we generated a mouse model for SCCHN and found that activation of the endogenous p53 gain-of-function mutation p53R172H, but not deletion of p53, cooperates with oncogenic K-ras during SCCHN initiation, accelerates oral tumour growth, and promotes progression to carcinoma. Mechanistically, expression profiling of the tumours that developed in these mice and studies using cell lines derived from these tumours determined that mutant p53 induces the expression of genes involved in mitosis, including cyclin B1 and cyclin A, and accelerates entry in mitosis. Additionally, we discovered that this oncogenic function of mutant p53 was dependent on K-ras because the expression of cyclin B1 and cyclin A decreased, and entry in mitosis was delayed, after suppressing K-ras expression in oral tumour cells that express p53R172H. The presence of double-strand breaks in the tumours suggests that oncogene-dependent DNA damage resulting from K-ras activation promotes the oncogenic function of mutant p53. Accordingly, DNA damage induced by doxorubicin also induced increased expression of cyclin B1 and cyclin A in cells that express p53R172H. These findings represent strong in vivo evidence for an oncogenic function of endogenous p53 gain-of-function mutations in SCCHN and provide a mechanistic explanation for the genetic interaction between oncogenic K-ras and mutant p53. PMID:21952947

  18. Enhanced radiosensitization of p53 mutant cells by oleamide.

    PubMed

    Lee, Yoon-Jin; Chung, Da Yeon; Lee, Su-Jae; Ja Jhon, Gil; Lee, Yun-Sil

    2006-04-01

    Effect of oleamide, an endogenous fatty-acid primary amide, on tumor cells exposed to ionizing radiation (IR) has never before been explored. NCI H460, human lung cancer cells, and human astrocytoma cell lines, U87 and U251, were used. The cytotoxicity of oleamide alone or in combination with IR was determined by clonogenic survival assay, and induction of apoptosis was estimated by FACS analysis. Protein expressions were confirmed by Western blotting, and immunofluorescence analysis of Bax by use of confocal microscopy was also performed. The combined effect of IR and oleamide to suppress tumor growth was studied by use of xenografts in the thighs of nude mice. Oleamide in combination with IR had a synergistic effect that decreased clonogenic survival of lung-carcinoma cell lines and also sensitized xenografts in nude mice. Enhanced induction of apoptosis of the cells by the combined treatment was mediated by loss of mitochondrial membrane potential, which resulted in the activation of caspase-8, caspase-9, and caspase-3 accompanied by cytochrome c release and Bid cleavage. The synergistic effects of the combined treatment were more enhanced in p53 mutant cells than in p53 wild-type cells. In p53 wild-type cells, both oleamide and radiation induced Bax translocation to mitochondria. On the other hand, in p53 mutant cells, radiation alone slightly induced Bax translocation to mitochondria, whereas oleamide induced a larger translocation. Oleamide may exhibit synergistic radiosensitization in p53 mutant cells through p53-independent Bax translocation to mitochondria.

  19. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation.

    PubMed

    De Smet, Frederik; Saiz Rubio, Mirian; Hompes, Daphne; Naus, Evelyne; De Baets, Greet; Langenberg, Tobias; Hipp, Mark S; Houben, Bert; Claes, Filip; Charbonneau, Sarah; Delgado Blanco, Javier; Plaisance, Stephane; Ramkissoon, Shakti; Ramkissoon, Lori; Simons, Colinda; van den Brandt, Piet; Weijenberg, Matty; Van England, Manon; Lambrechts, Sandrina; Amant, Frederic; D'Hoore, André; Ligon, Keith L; Sagaert, Xavier; Schymkowitz, Joost; Rousseau, Frederic

    2017-05-01

    Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great

  20. Transcriptional specificity in various p53-mutant cells.

    PubMed

    Okaichi, Kumio; Izumi, Nanaka; Takamura, Yuma; Fukui, Shoichi; Kudo, Takashi

    2013-03-01

    Mutation of the tumor suppressor gene p53 is the most common genetic alteration observed in human tumors. However, the relationship between the mutation point of p53 and the transcriptional specificity is not so obvious. We prepared Saos-2 cells with various mutations of p53 that are found in human tumors, and examined the resulting transcriptional alterations in the cells. Loss of function and gain of function were observed in all p53 mutants. Hot-spot mutations of p53 are frequently found in tumor cells. We compared hot-spot mutations and other mutations of p53 and found that a more than 2-fold transcription of CADPS2, PIWIL4 and TRIM9 was induced by hot spot mutations, but not by other mutations. As PIWIL4 suppresses the p16(INK4A) and ARF pathway, restraining cell growth and genomic instability, induction of PIWIL4 expression may be one reason why hot-spot mutations are frequently found in tumor cells.

  1. Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition.

    PubMed

    Cordani, Marco; Oppici, Elisa; Dando, Ilaria; Butturini, Elena; Dalla Pozza, Elisa; Nadal-Serrano, Mercedes; Oliver, Jordi; Roca, Pilar; Mariotto, Sofia; Cellini, Barbara; Blandino, Giovanni; Palmieri, Marta; Di Agostino, Silvia; Donadelli, Massimo

    2016-08-01

    Mutations in TP53 gene play a pivotal role in tumorigenesis and cancer development. Here, we report that gain-of-function mutant p53 proteins inhibit the autophagic pathway favoring antiapoptotic effects as well as proliferation of pancreas and breast cancer cells. We found that mutant p53 significantly counteracts the formation of autophagic vesicles and their fusion with lysosomes throughout the repression of some key autophagy-related proteins and enzymes as BECN1 (and P-BECN1), DRAM1, ATG12, SESN1/2 and P-AMPK with the concomitant stimulation of mTOR signaling. As a paradigm of this mechanism, we show that atg12 gene repression was mediated by the recruitment of the p50 NF-κB/mutant p53 protein complex onto the atg12 promoter. Either mutant p53 or p50 NF-κB depletion downregulates atg12 gene expression. We further correlated the low expression levels of autophagic genes (atg12, becn1, sesn1, and dram1) with a reduced relapse free survival (RFS) and distant metastasis free survival (DMFS) of breast cancer patients carrying TP53 gene mutations conferring a prognostic value to this mutant p53-and autophagy-related signature. Interestingly, the mutant p53-driven mTOR stimulation sensitized cancer cells to the treatment with the mTOR inhibitor everolimus. All these results reveal a novel mechanism through which mutant p53 proteins promote cancer cell proliferation with the concomitant inhibition of autophagy. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Battle against cancer: an everlasting saga of p53.

    PubMed

    Hao, Qian; Cho, William C

    2014-12-01

    Cancer is one of the most life-threatening diseases characterized by uncontrolled growth and spread of malignant cells. The tumor suppressor p53 is the master regulator of tumor cell growth and proliferation. In response to various stress signals, p53 can be activated and transcriptionally induces a myriad of target genes, including both protein-encoding and non-coding genes, controlling cell cycle progression, DNA repair, senescence, apoptosis, autophagy and metabolism of tumor cells. However, around 50% of human cancers harbor mutant p53 and, in the majority of the remaining cancers, p53 is inactivated through multiple mechanisms. Herein, we review the recent progress in understanding the molecular basis of p53 signaling, particularly the newly identified ribosomal stress-p53 pathway, and the development of chemotherapeutics via activating wild-type p53 or restoring mutant p53 functions in cancer. A full understanding of p53 regulation will aid the development of effective cancer treatments.

  3. Ensemble-Based Computational Approach Discriminates Functional Activity of p53 Cancer and Rescue Mutants

    PubMed Central

    Demir, Özlem; Baronio, Roberta; Salehi, Faezeh; Wassman, Christopher D.; Hall, Linda; Hatfield, G. Wesley; Chamberlin, Richard; Kaiser, Peter; Lathrop, Richard H.; Amaro, Rommie E.

    2011-01-01

    The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain (“cancer mutants”). Activity can be restored by second-site suppressor mutations (“rescue mutants”). This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD), without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC) metric was strongly correlated (r2 = 0.77) with reported values of experimentally measured ΔΔG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i) p53 cancer mutants were more flexible than wild-type protein, (ii) second-site rescue mutations decreased the flexibility of cancer mutants, and (iii) negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants. PMID:22028641

  4. A mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis

    PubMed Central

    Subramanian, M; Francis, P; Bilke, S; Li, XL; Hara, T; Lu, X; Jones, MF; Walker, RL; Zhu, Y; Pineda, M; Lee, C; Varanasi, L; Yang, Y; Martinez, LA; Luo, J; Ambs, S; Sharma, S; Wakefield, LM; Meltzer, PS; Lal, A

    2015-01-01

    Most p53 mutations in human cancers are missense mutations resulting in a full-length mutant p53 protein. Besides losing tumor suppressor activity, some hotspot p53 mutants gain oncogenic functions. This effect is mediated in part, through gene expression changes due to inhibition of p63 and p73 by mutant p53 at their target gene promoters. Here, we report that the tumor suppressor microRNA let-7i is downregulated by mutant p53 in multiple cell lines expressing endogenous mutant p53. In breast cancer patients, significantly decreased let-7i levels were associated with missense mutations in p53. Chromatin immunoprecipitation and promoter luciferase assays established let-7i as a transcriptional target of mutant p53 through p63. Introduction of let-7i to mutant p53 cells significantly inhibited migration, invasion and metastasis by repressing a network of oncogenes including E2F5, LIN28B, MYC and NRAS. Our findings demonstrate that repression of let-7i expression by mutant p53 has a key role in enhancing migration, invasion and metastasis. PMID:24662829

  5. Novel siRNA formulation to effectively knockdown mutant p53 in osteosarcoma.

    PubMed

    Kundu, Anup K; Iyer, Swathi V; Chandra, Sruti; Adhikari, Amit S; Iwakuma, Tomoo; Mandal, Tarun K

    2017-01-01

    The tumor suppressor p53 plays a crucial role in the development of osteosarcoma. The primary objective of this study is to develop and optimize lipid based nanoparticle formulations that can carry siRNA and effectively silence mutant p53 in 318-1, a murine osteosarcoma cell line. The nanoparticles were composed of a mixture of two lipids (cholesterol and DOTAP) and either PLGA or PLGA-PEG and prepared by using an EmulsiFlex-B3 high pressure homogenizer. A series of studies that include using different nanoparticles, different amount of siRNAs, cell numbers, incubation time, transfection media volume, and storage temperature was performed to optimize the gene silencing efficiency. Replacement of lipids by PLGA or PLGA-PEG decreased the particle size and overall cytotoxicity. Among all lipid-polymer nanoformulations, nanoparticles with 10% PLGA showed highest mutant p53 knockdown efficiency while maintaining higher cell viability when a nanoparticle to siRNA ratio equal to 6.8:0.66 and 75 nM siRNA was used. With long term storage the mutant p53 knockdown efficiency decreased to a greater extent. This study warrants a future evaluation of this formulation for gene silencing efficiency of mutant p53 in tissue culture and animal models for the treatment of osteosarcoma.

  6. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ming; Wang, Dan, E-mail: danwangwdd@163.com; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatinmore » immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.« less

  7. Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis.

    PubMed

    Arjonen, Antti; Kaukonen, Riina; Mattila, Elina; Rouhi, Pegah; Högnäs, Gunilla; Sihto, Harri; Miller, Bryan W; Morton, Jennifer P; Bucher, Elmar; Taimen, Pekka; Virtakoivu, Reetta; Cao, Yihai; Sansom, Owen J; Joensuu, Heikki; Ivaska, Johanna

    2014-03-01

    Mutations of the tumor suppressor TP53 are present in many forms of human cancer and are associated with increased tumor cell invasion and metastasis. Several mechanisms have been identified for promoting dissemination of cancer cells with TP53 mutations, including increased targeting of integrins to the plasma membrane. Here, we demonstrate a role for the filopodia-inducing motor protein Myosin-X (Myo10) in mutant p53-driven cancer invasion. Analysis of gene expression profiles from 2 breast cancer data sets revealed that MYO10 was highly expressed in aggressive cancer subtypes. Myo10 was required for breast cancer cell invasion and dissemination in multiple cancer cell lines and murine models of cancer metastasis. Evaluation of a Myo10 mutant without the integrin-binding domain revealed that the ability of Myo10 to transport β₁ integrins to the filopodia tip is required for invasion. Introduction of mutant p53 promoted Myo10 expression in cancer cells and pancreatic ductal adenocarcinoma in mice, whereas suppression of endogenous mutant p53 attenuated Myo10 levels and cell invasion. In clinical breast carcinomas, Myo10 was predominantly expressed at the invasive edges and correlated with the presence of TP53 mutations and poor prognosis. These data indicate that Myo10 upregulation in mutant p53-driven cancers is necessary for invasion and that plasma-membrane protrusions, such as filopodia, may serve as specialized metastatic engines.

  8. Inhibition of p53 Mutant Peptide Aggregation In Vitro by Cationic Osmolyte Acetylcholine Chloride.

    PubMed

    Chen, Zhaolin; Kanapathipillai, Mathumai

    2017-01-01

    Mutations of tumor suppressor protein p53 are present in almost about 50% of all cancers. It has been reported that the p53 mutations cause aggregation and subsequent loss of p53 function, leading to cancer progression. Here in this study we focus on the inhibitory effects of cationic osmolyte molecules acetylcholine chloride, and choline on an aggregation prone 10 amino acid p53 mutant peptide WRPILTIITL, and the corresponding wildtype peptide RRPILTIITL in vitro. The characterization tools used for this study include Thioflavin- T (ThT) induced fluorescence, transmission electron microscopy (TEM), congo red binding, turbidity, dynamic light scattering (DLS), and cell viability assays. The results show that acetylcholine chloride in micromolar concentrations significantly inhibit p53 mutant peptide aggregation in vitro, and could be promising candidate for p53 mutant/ misfolded protein aggregation inhibition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Enhanced breast cancer progression by mutant p53 is inhibited by the circular RNA circ-Ccnb1.

    PubMed

    Fang, Ling; Du, William W; Lyu, Juanjuan; Dong, Jun; Zhang, Chao; Yang, Weining; He, Alina; Kwok, Yat Sze Sheila; Ma, Jian; Wu, Nan; Li, Feiya; Awan, Faryal Mehwish; He, Chengyan; Yang, Bing L; Peng, Chun; MacKay, Helen J; Yee, Albert J; Yang, Burton B

    2018-05-23

    TP53 mutations occur in many different types of cancers that produce mutant p53 proteins. The mutant p53 proteins have lost wild-type p53 activity and gained new functions that contribute to malignant tumor progression. Different p53 mutations create distinct profiles in loss of wild-type p53 activity and gain of functions. Targeting the consequences generated by the great number of p53 mutations would be extremely complex. Therefore, in this study we used a workaround and took advantage of the fact that mutant p53 cannot bind H2AX. Using this, we developed a new approach to repress the acquisition of mutant p53 functions. We show here that the delivery of a circular RNA circ-Ccnb1 inhibited the function of three p53 mutations. By microarray analysis and real-time PCR, we detected decreased circ-Ccnb1 expression levels in patients bearing breast carcinoma. Ectopic delivery of circ-Ccnb1 inhibited tumor growth and extended mouse viability. Using proteomics, we found that circ-Ccnb1 precipitated p53 in p53 wild-type cells, but instead precipitated Bclaf1 in p53 mutant cells. Further experiments showed that H2AX serves as a bridge, linking the interaction of circ-Ccnb1 and wild-type p53, thus allowing Bclaf1 to bind Bcl2 resulting in cell survival. In the p53 mutant cells, circ-Ccnb1 formed a complex with H2AX and Bclaf1, resulting in the induction of cell death. We found that this occurred in three p53 mutations. These results shed light on the possible development of new approaches to inhibit the malignancy of p53 mutations.

  10. Molecular Mechanism of Mutant p53 Stabilization: The Role of HSP70 and MDM2

    PubMed Central

    Wiech, Milena; Olszewski, Maciej B.; Tracz-Gaszewska, Zuzanna; Wawrzynow, Bartosz; Zylicz, Maciej; Zylicz, Alicja

    2012-01-01

    Numerous p53 missense mutations possess gain-of-function activities. Studies in mouse models have demonstrated that the stabilization of p53 R172H (R175H in human) mutant protein, by currently unknown factors, is a prerequisite for its oncogenic gain-of-function phenotype such as tumour progression and metastasis. Here we show that MDM2-dependent ubiquitination and degradation of p53 R175H mutant protein in mouse embryonic fibroblasts is partially inhibited by increasing concentration of heat shock protein 70 (HSP70/HSPA1-A). These phenomena correlate well with the appearance of HSP70-dependent folding intermediates in the form of dynamic cytoplasmic spots containing aggregate-prone p53 R175H and several molecular chaperones. We propose that a transient but recurrent interaction with HSP70 may lead to an increase in mutant p53 protein half-life. In the presence of MDM2 these pseudoaggregates can form stable amyloid-like structures, which occasionally merge into an aggresome. Interestingly, formation of folding intermediates is not observed in the presence of HSC70/HSPA8, the dominant-negative K71S variant of HSP70 or HSP70 inhibitor. In cancer cells, where endogenous HSP70 levels are already elevated, mutant p53 protein forms nuclear aggregates without the addition of exogenous HSP70. Aggregates containing p53 are also visible under conditions where p53 is partially unfolded: 37°C for temperature-sensitive variant p53 V143A and 42°C for wild-type p53. Refolding kinetics of p53 indicate that HSP70 causes transient exposure of p53 aggregate-prone domain(s). We propose that formation of HSP70- and MDM2-dependent protein coaggregates in tumours with high levels of these two proteins could be one of the mechanisms by which mutant p53 is stabilized. Moreover, sequestration of p73 tumour suppressor protein by these nuclear aggregates may lead to gain-of-function phenotypes. PMID:23251530

  11. Functional census of mutation sequence spaces: The example of p53 cancer rescue mutants

    PubMed Central

    Danziger, Samuel A.; Swamidass, S. Joshua; Zeng, Jue; Dearth, Lawrence R.; Lu, Qiang; Chen, Jonathan H.; Cheng, Jainlin; Hoang, Vinh P.; Saigo, Hiroto; Luo, Ray; Baldi, Pierre; Brachmann, Rainer K.; Lathrop, Richard H.

    2009-01-01

    Many biomedical problems relate to mutant functional properties across a sequence space of interest, e.g., flu, cancer, and HIV. Detailed knowledge of mutant properties and function improves medical treatment and prevention. A functional census of p53 cancer rescue mutants would aid the search for cancer treatments from p53 rescue. We devised a general methodology for conducting a functional census of a mutation sequence space, and conducted a double-blind predictive test on the functional rescue property of 71 novel putative p53 cancer rescue mutants iteratively predicted in sets of 3. Double-blind predictive accuracy (15-point moving window) rose from 47% to 86% over the trial (r = 0.74). Code and data are available upon request1. PMID:17048398

  12. Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells.

    PubMed

    Jun, Ho Joon; Nguyen, Anh H; Kim, Yeul Hong; Park, Kyong Hwa; Kim, Doyoun; Kim, Kyeong Kyu; Sim, Sang Jun

    2014-07-23

    The scattering of light redirects and resonances when an electromagnetic wave interacts with electrons orbits in the hot spot core protein and oscillated electron of the gold nanoparticles (AuNP). This report demonstrates convincingly that resonant Rayleigh scattering generated from hot spot mutant p53 proteins is correspondence to cancer cells. Hot spot mutants have unique local electron density changes that affect specificity of DNA binding affinity compared with wild types. Rayleigh scattering changes introduced by hot-spot mutations were monitored by localized surface plasmon resonance (LSPR) shift changes. The LSPR λmax shift for hot-spot mutants ranged from 1.7 to 4.2 nm for mouse samples and from 0.64 nm to 2.66 nm for human samples, compared to 9.6 nm and 15 nm for wild type and mouse and human proteins, respectively with a detection sensitivity of p53 concentration at 17.9 nM. It is interesting that hot-spot mutants, which affect only interaction with DNA, launches affinitive changes as considerable as wild types. These changes propose that hot-spot mutants p53 proteins can be easily detected by local electron density alterations that disturbs the specificity of DNA binding of p53 core domain on the surface of the DNA probed-nanoplasmonic sensor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mutant p53 protein in serum could be used as a molecular marker in human breast cancer.

    PubMed

    Balogh, G A; Mailo, D A; Corte, M M; Roncoroni, P; Nardi, H; Vincent, E; Martinez, D; Cafasso, M E; Frizza, A; Ponce, G; Vincent, E; Barutta, E; Lizarraga, P; Lizarraga, G; Monti, C; Paolillo, E; Vincent, R; Quatroquio, R; Grimi, C; Maturi, H; Aimale, M; Spinsanti, C; Montero, H; Santiago, J; Shulman, L; Rivadulla, M; Machiavelli, M; Salum, G; Cuevas, M A; Picolini, J; Gentili, A; Gentili, R; Mordoh, J

    2006-04-01

    p53 wild-type is a tumor suppressor gene involved in DNA gene transcription or DNA repair mechanisms. When damage to DNA is unrepairable, p53 induces programmed cell death (apoptosis). The mutant p53 gene is the most frequent molecular alteration in human cancer, including breast cancer. Here, we analyzed the genetic alterations in p53 oncogene expression in 55 patients with breast cancer at different stages and in 8 normal women. We measured by ELISA assay the serum levels of p53 mutant protein and p53 antibodies. Immunohistochemistry and RT-PCR using specific p53 primers as well as mutation detection by DNA sequencing were also evaluated in breast tumor tissue. Serological p53 antibody analysis detected 0/8 (0%), 0/4 (0%) and 9/55 (16.36%) positive cases in normal women, in patients with benign breast disease and in breast carcinoma, respectively. We found positive p53 mutant in the sera of 0/8 (0.0%) normal women, 0/4 (0%) with benign breast disease and 29/55 (52.72%) with breast carcinoma. Immunohistochemistry evaluation was positive in 29/55 (52.73%) with mammary carcinoma and 0/4 (0%) with benign breast disease. A very good correlation between p53 mutant protein detected in serum and p53 accumulation by immunohistochemistry (83.3% positive in both assays) was found in this study. These data suggest that detection of mutated p53 could be a useful serological marker for diagnostic purposes.

  14. Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication

    PubMed Central

    Singh, Shilpa; Vaughan, Catherine A.; Frum, Rebecca A.; Grossman, Steven R.; Deb, Sumitra

    2017-01-01

    Gain-of-function (GOF) p53 mutations are observed frequently in most intractable human cancers and establish dependency for tumor maintenance and progression. While some of the genes induced by GOF p53 have been implicated in more rapid cell proliferation compared with p53-null cancer cells, the mechanism for dependency of tumor growth on mutant p53 is unknown. This report reveals a therapeutically targetable mechanism for GOF p53 dependency. We have shown that GOF p53 increases DNA replication origin firing, stabilizes replication forks, and promotes micronuclei formation, thus facilitating the proliferation of cells with genomic abnormalities. In contrast, absence or depletion of GOF p53 leads to decreased origin firing and a higher frequency of fork collapse in isogenic cells, explaining their poorer proliferation rate. Following genome-wide analyses utilizing ChIP-Seq and RNA-Seq, GOF p53–induced origin firing, micronuclei formation, and fork protection were traced to the ability of GOF p53 to transactivate cyclin A and CHK1. Highlighting the therapeutic potential of CHK1’s role in GOF p53 dependency, experiments in cell culture and mouse xenografts demonstrated that inhibition of CHK1 selectively blocked proliferation of cells and tumors expressing GOF p53. Our data suggest the possibility that checkpoint inhibitors could efficiently and selectively target cancers expressing GOF p53 alleles. PMID:28394262

  15. Specific interaction of mutant p53 with regions of matrix attachment region DNA elements (MARs) with a high potential for base-unpairing

    PubMed Central

    Will, Katrin; Warnecke, Gabriele; Wiesmüller, Lisa; Deppert, Wolfgang

    1998-01-01

    Mutant, but not wild-type p53 binds with high affinity to a variety of MAR-DNA elements (MARs), suggesting that MAR-binding of mutant p53 relates to the dominant-oncogenic activities proposed for mutant p53. MARs recognized by mutant p53 share AT richness and contain variations of an AATATATTT “DNA-unwinding motif,” which enhances the structural dynamics of chromatin and promotes regional DNA base-unpairing. Mutant p53 specifically interacted with MAR-derived oligonucleotides carrying such unwinding motifs, catalyzing DNA strand separation when this motif was located within a structurally labile sequence environment. Addition of GC-clamps to the respective MAR-oligonucleotides or introducing mutations into the unwinding motif strongly reduced DNA strand separation, but supported the formation of tight complexes between mutant p53 and such oligonucleotides. We conclude that the specific interaction of mutant p53 with regions of MAR-DNA with a high potential for base-unpairing provides the basis for the high-affinity binding of mutant p53 to MAR-DNA. PMID:9811860

  16. Reactivation of wild-type and mutant p53 by tryptophanolderived oxazoloisoindolinone SLMP53-1, a novel anticancer small-molecule

    PubMed Central

    Soares, Joana; Raimundo, Liliana; Pereira, Nuno A.L.; Monteiro, Ângelo; Gomes, Sara; Bessa, Cláudia; Pereira, Clara; Queiroz, Glória; Bisio, Alessandra; Fernandes, João; Gomes, Célia; Reis, Flávio; Gonçalves, Jorge; Inga, Alberto; Santos, Maria M.M.; Saraiva, Lucília

    2016-01-01

    Restoration of the p53 pathway, namely by reactivation of mutant (mut) p53, represents a valuable anticancer strategy. Herein, we report the identification of the enantiopure tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a novel reactivator of wild-type (wt) and mut p53, using a yeast-based screening strategy. SLMP53-1 has a p53-dependent anti-proliferative activity in human wt and mut p53R280K-expressing tumor cells. Additionally, SLMP53-1 enhances p53 transcriptional activity and restores wt-like DNA binding ability to mut p53R280K. In wt/mut p53-expressing tumor cells, SLMP53-1 triggers p53 transcription-dependent and mitochondrial apoptotic pathways involving BAX, and wt/mut p53 mitochondrial translocation. SLMP53-1 inhibits the migration of wt/mut p53-expressing tumor cells, and it shows promising p53-dependent synergistic effects with conventional chemotherapeutics. In xenograft mice models, SLMP53-1 inhibits the growth of wt/mut p53-expressing tumors, but not of p53-null tumors, without apparent toxicity. Collectively, besides the potential use of SLMP53-1 as anticancer drug, the tryptophanol-derived oxazoloisoindolinone scaffold represents a promissing starting point for the development of effective p53-reactivating drugs. PMID:26735173

  17. Human T-Cell Leukemia Virus I Tax Protein Sensitizes p53-Mutant Cells to DNA Damage

    PubMed Central

    Mihaylova, Valia T.; Green, Allison M.; Khurgel, Moshe; Semmes, Oliver J.; Kupfer, Gary M.

    2018-01-01

    Mutations in p53 are a common cause of resistance of cancers to standard chemotherapy and, thus, treatment failure. Reports have shown that Tax, a human T-cell leukemia virus type I encoded protein that has been associated with genomic instability and perturbation of transcription and cell cycle, sensitizes HeLa cells to UV treatment. The extent to which Tax can sensitize cells and the mechanism by which it exerts its effect are unknown. In this study, we show that Tax sensitizes p53-mutant cells to a broad range of DNA-damaging agents, including mitomycin C, a bifunctional alkylator, etoposide, a topoisomerase II drug, and UV light, but not ionizing radiation, a double-strand break agent, or vinblastine, a tubulin poison. Tax caused hypersensitivity in all p53-deleted cell lines and several, but not all, mutant-expressed p53–containing cell lines, while unexpectedly being protective in p53 wild-type (wt) cells. The effect observed in p53-deleted lines could be reversed for this by transfection of wt p53. We also show that Tax activates a p53-independent proapoptotic program through decreased expression of the retinoblastoma protein and subsequent increased E2F1 expression. The expression of several proapoptotic proteins was also induced by Tax, including Puma and Noxa, culminating in a substantial increase in Bax dimerization. Our results show that Tax can sensitize p53-mutant cells to DNA damage while protecting p53 wt cells, a side benefit that might result in reduced toxicity in normal cells. Such studies hold the promise of a novel adjunctive therapy that could make cancer chemotherapy more effective. PMID:18559532

  18. Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53.

    PubMed

    Loging, W T; Reisman, D

    1999-11-01

    The wild-type p53 protein is a DNA-binding transcription factor that activates genes such as p21, MDM2, GADD45, and Bax that are required for the regulation of cell cycle progression or apoptosis in response to DNA damage. Mutant forms of p53, which are transforming oncogenes and are expressed at high levels in tumor cells, generally have a reduced binding affinity for the consensus DNA sequence. Interestingly, some p53 mutants that are no longer effective at binding to the consensus DNA sequence and transactivating promoters containing this target site have acquired the ability to transform cells in culture, in part through their ability to transactivate promoters of a number of genes that are not targets of the wild-type protein. Certain p53 mutants are therefore considered to be gain-of-function mutants and appear to be promoting proliferation or transforming cells through their ability to alter the expression of novel sets of genes. Our goal is to identify genes that have altered expression in the presence of a specific mutant p53 (Arg to Trp mutation at codon 248) protein. Through examining differential gene expression in cells devoid of p53 expression and in cells that express high levels of mutant p53 protein, we have identified three ribosomal protein genes that have elevated expression in response to mutant p53. Consistent with these findings, the overexpression of a number of ribosomal protein genes in human tumors and evidence for their contribution to oncogenic transformation have been reported previously, although the mechanism leading to this overexpression has remained elusive. We show results that indicate that expression of these specific ribosomal protein genes is increased in the presence of the R248W p53 mutant, which provides a mechanism for their overexpression in human tumors.

  19. HPV-18 E6 mutants reveal p53 modulation of viral DNA amplification in organotypic cultures

    PubMed Central

    Kho, Eun-Young; Wang, Hsu-Kun; Banerjee, N. Sanjib; Broker, Thomas R.; Chow, Louise T.

    2013-01-01

    Human papillomaviruses (HPVs) amplify in differentiated strata of a squamous epithelium. The HPV E7 protein destabilizes the p130/retinoblastoma susceptibility protein family of tumor suppressors and reactivates S-phase reentry, thereby facilitating viral DNA amplification. The high-risk HPV E6 protein destabilizes the p53 tumor suppressor and many other host proteins. However, the critical E6 targets relevant to viral DNA amplification have not been identified, because functionally significant E6 mutants are not stably maintained in transfected cells. Using Cre-loxP recombination, which efficiently generates HPV genomic plasmids in transfected primary human keratinocytes, we have recapitulated a highly productive infection of HPV-18 in organotypic epithelial cultures. By using this system, we now report the characterization of four HPV-18 E6 mutations. An E6 null mutant accumulated high levels of p53 and amplified very poorly. p53 siRNA or ectopic WT E6 partially restored amplification, whereas three missense E6 mutations that did not effectively destabilize p53 complemented the null mutant poorly. Unexpectedly, in cis, two of the missense mutants amplified, albeit to a lower extent than the WT and only in cells with undetectable p53. These observations and others implicate p53 and additional host proteins in regulating viral DNA amplification and also suggest an inhibitory effect of E6 overexpression. We show that high levels of viral DNA amplification are critical for late protein expression and report several previously undescribed viral RNAs, including bicistronic transcripts predicted to encode E5 and L2 or an alternative form of E1^E4 and L1. PMID:23572574

  20. A novel p53 mutational hotspot in skin tumors from UV-irradiated Xpc mutant mice alters transactivation functions.

    PubMed

    Inga, Alberto; Nahari, Dorit; Velasco-Miguel, Susana; Friedberg, Errol C; Resnick, Michael A

    2002-08-22

    A mutation in codon 122 of the mouse p53 gene resulting in a T to L amino acid substitution (T122-->L) is frequently associated with skin cancer in UV-irradiated mice that are both homozygous mutant for the nucleotide excision repair (NER) gene Xpc (Xpc(-/-)) and hemizygous mutant for the p53 gene. We investigated the functional consequences of the mouse T122-->L mutation when expressed either in mammalian cells or in the yeast Saccharomyces cerevisiae. Similar to a non-functional allele, high expression of the T122-->L allele in p53(-/-) mouse embryo fibroblasts and human Saos-2 cells failed to suppress growth. However, the T122-->L mutant p53 showed wild-type transactivation levels with Bax and MDM2 promoters when expressed in either cell type and retained transactivation of the p21 and the c-Fos promoters in one cell line. Using a recently developed rheostatable p53 induction system in yeast we assessed the T122-->L transactivation capacity at low levels of protein expression using 12 different p53 response elements (REs). Compared to wild-type p53 the T122-->L protein manifested an unusual transactivation pattern comprising reduced and enhanced activity with specific REs. The high incidence of the T122-->L mutant allele in the Xpc(-/-) background suggests that both genetic and epigenetic conditions may facilitate the emergence of particular functional p53 mutations. Furthermore, the approach that we have taken also provides for the dissection of functions that may be retained in many p53 tumor alleles.

  1. Mutant p53 proteins alter cancer cell secretome and tumour microenvironment: Involvement in cancer invasion and metastasis.

    PubMed

    Cordani, Marco; Pacchiana, Raffaella; Butera, Giovanna; D'Orazi, Gabriella; Scarpa, Aldo; Donadelli, Massimo

    2016-07-01

    An ever-increasing number of studies highlight the role of mutant p53 proteins in the alteration of cancer cell secretome and in the modification of tumour microenvironment, sustaining an invasive phenotype of cancer cell. The knowledge of the molecular mechanisms underlying the interplay between mutant p53 proteins and the microenvironment is becoming fundamental for the identification of both efficient anticancer therapeutic strategies and novel serum biomarkers. In this review, we summarize the novel findings concerning the regulation of secreted molecules by cancer cells bearing mutant TP53 gene. In particular, we highlight data from available literature, suggesting that mutant p53 proteins are able to (i) alter the secretion of enzymes involved in the modulation of extracellular matrix components; (ii) alter the secretion of inflammatory cytokines; (iii) increase the extracellular acidification; and (iv) regulate the crosstalk between cancer and stromal cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Mutant p53-Expressing Cells Undergo Necroptosis via Cell Competition with the Neighboring Normal Epithelial Cells.

    PubMed

    Watanabe, Hirotaka; Ishibashi, Kojiro; Mano, Hiroki; Kitamoto, Sho; Sato, Nanami; Hoshiba, Kazuya; Kato, Mugihiko; Matsuzawa, Fumihiko; Takeuchi, Yasuto; Shirai, Takanobu; Ishikawa, Susumu; Morioka, Yuka; Imagawa, Toshiaki; Sakaguchi, Kazuyasu; Yonezawa, Suguru; Kon, Shunsuke; Fujita, Yasuyuki

    2018-06-26

    p53 is a tumor suppressor protein, and its missense mutations are frequently found in human cancers. During the multi-step progression of cancer, p53 mutations generally accumulate at the mid or late stage, but not in the early stage, and the underlying mechanism is still unclear. In this study, using mammalian cell culture and mouse ex vivo systems, we demonstrate that when p53R273H- or p53R175H-expressing cells are surrounded by normal epithelial cells, mutant p53 cells undergo necroptosis and are basally extruded from the epithelial monolayer. When mutant p53 cells alone are present, cell death does not occur, indicating that necroptosis results from cell competition with the surrounding normal cells. Furthermore, when p53R273H mutation occurs within RasV12-transformed epithelia, cell death is strongly suppressed and most of the p53R273H-expressing cells remain intact. These results suggest that the order of oncogenic mutations in cancer development could be dictated by cell competition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Investigating DNA Binding and Conformational Variation in Temperature Sensitive p53 Cancer Mutants Using QM-MM Simulations

    PubMed Central

    Koulgi, Shruti; Achalere, Archana; Sonavane, Uddhavesh; Joshi, Rajendra

    2015-01-01

    The tp53 gene is found to be mutated in 50% of all the cancers. The p53 protein, a product of tp53 gene, is a multi-domain protein. It consists of a core DNA binding domain (DBD) which is responsible for its binding and transcription of downstream target genes. The mutations in p53 protein are responsible for creating cancerous conditions and are found to be occurring at a high frequency in the DBD region of p53. Some of these mutations are also known to be temperature sensitive (ts) in nature. They are known to exhibit partial or strong binding with DNA in the temperature range (298–306 K). Whereas, at 310 K and above they show complete loss in binding. We have analyzed the changes in binding and conformational behavior at 300 K and 310 K for three of the ts-mutants viz., V143A, R249S and R175H. QM-MM simulations have been performed on the wild type and the above mentioned ts-mutants for 30 ns each. The optimal estimate of free energy of binding for a particular number of interface hydrogen bonds was calculated using the maximum likelihood method as described by Chodera et. al (2007). This parameter has been observed to be able to mimic the binding affinity of the p53 ts-mutants at 300 K and 310 K. Thus the correlation between MM-GBSA free energy of binding and hydrogen bonds formed by the interface residues between p53 and DNA has revealed the temperature dependent nature of these mutants. The role of main chain dihedrals was obtained by performing dihedral principal component analysis (PCA). This analysis, suggests that the conformational variations in the main chain dihedrals (ϕ and ψ) of the p53 ts-mutants may have caused reduction in the overall stability of the protein. The solvent exposure of the side chains of the interface residues were found to hamper the binding of the p53 to the DNA. Solvent Accessible Surface Area (SASA) also proved to be a crucial property in distinguishing the conformers obtained at 300 K and 310 K for the three ts-mutants from

  4. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma.

    PubMed

    Köbel, Martin; Piskorz, Anna M; Lee, Sandra; Lui, Shuhong; LePage, Cecile; Marass, Francesco; Rosenfeld, Nitzan; Mes Masson, Anne-Marie; Brenton, James D

    2016-10-01

    TP53 mutations are ubiquitous in high-grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low-grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged-amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain-of-function (GOF or nonsynonymous), loss-of-function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low-grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of mutation to 96%.

  5. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma

    PubMed Central

    Köbel, Martin; Piskorz, Anna M; Lee, Sandra; Lui, Shuhong; LePage, Cecile; Marass, Francesco; Rosenfeld, Nitzan; Mes Masson, Anne‐Marie

    2016-01-01

    Abstract TP53 mutations are ubiquitous in high‐grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low‐grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged‐amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain‐of‐function (GOF or nonsynonymous), loss‐of‐function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low‐grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of

  6. p53 and its mutants on the slippery road from stemness to carcinogenesis.

    PubMed

    Molchadsky, Alina; Rotter, Varda

    2017-04-01

    Normal development, tissue homeostasis and regeneration following injury rely on the proper functions of wide repertoire of stem cells (SCs) persisting during embryonic period and throughout the adult life. Therefore, SCs employ robust mechanisms to preserve their genomic integrity and avoid heritage of mutations to their daughter cells. Importantly, propagation of SCs with faulty DNA as well as dedifferentiation of genomically altered somatic cells may result in derivation of cancer SCs, which are considered to be the driving force of the tumorigenic process. Multiple experimental evidence suggest that p53, the central tumor suppressor gene, plays a critical regulatory role in determination of SCs destiny, thereby eliminating damaged SCs from the general SC population. Notably, mutant p53 proteins do not only lose the tumor suppressive function, but rather gain new oncogenic function that markedly promotes various aspects of carcinogenesis. In this review, we elaborate on the role of wild type and mutant p53 proteins in the various SCs types that appear under homeostatic conditions as well as in cancer. It is plausible that the growing understanding of the mechanisms underlying cancer SC phenotype and p53 malfunction will allow future optimization of cancer therapeutics in the context of precision medicine. © Crown copyright 2017.

  7. Insights into wild-type and mutant p53 functions provided by genetically engineered mice.

    PubMed

    Donehower, Lawrence A

    2014-06-01

    Recent whole-exome sequencing studies of numerous human cancers have now conclusively shown that the TP53 tumor-suppressor gene is the most frequently mutated gene in human cancers. Despite extensive studies of the TP53 gene and its encoded protein (p53), our understanding of how TP53 mutations contribute to cancer initiation and progression remain incomplete. Genetically engineered mice with germline or inducible Trp53 somatic mutations have provided important insights into the mechanisms by which different types of p53 mutation influence cancer development. Trp53 germline mutations that alter specific p53 structural domains or posttranslation modification sites have benefitted our understanding of wild-type p53 functions in a whole organism context. Moreover, genetic approaches to reestablish functional wild-type p53 to p53-deficient tissues and tumors have increased our understanding of the therapeutic potential of restoring functional p53 signaling to cancers. This review outlines many of the key insights provided by the various categories of Trp53 mutant mice that have been generated by multiple genetic engineering approaches. © 2014 WILEY PERIODICALS, INC.

  8. RITA can induce cell death in p53-defective cells independently of p53 function via activation of JNK/SAPK and p38

    PubMed Central

    Weilbacher, A; Gutekunst, M; Oren, M; Aulitzky, W E; van der Kuip, H

    2014-01-01

    Significant advances have been made in the development of small molecules blocking the p53/MDM2 interaction. The Mdm2 inhibitor Nutlin-3 is restricted to tumors carrying wtp53. In contrast, RITA, a compound that binds p53, has recently been shown also to restore transcriptional functions of mtp53. As more than 50% of solid tumors carry p53 mutations, RITA promises to be a more effective therapeutic strategy than Nutlin-3. We investigated effects of RITA on apoptosis, cell cycle and induction of 45 p53 target genes in a panel of 14 cell lines from different tumor entities with different p53 status as well as primary lymphocytes and fibroblasts. Nine cell strains expressed wtp53, four harbored mtp53, and three were characterized by the loss of p53 protein. A significant induction of cell death upon RITA was observed in 7 of 16 cell lines. The nonmalignant cells in our panel were substantially less sensitive. We found that in contrast to Nultin-3, RITA is capable to induce cell death not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells. Importantly, whereas p53 has a central role for RITA-mediated effects in wtp53 cells, neither p53 nor p63 or p73 were essential for the RITA response in mtp53 or p53-null cells in our panel demonstrating that besides the known p53-dependent action of RITA in wtp53 cells, RITA can induce cell death also independently of p53 in cells harboring defective p53. We identified an important role of both p38 and JNK/SAPK for sensitivity to RITA in these cells leading to a typical caspase- and BAX/BAK-dependent mitochondrial apoptosis. In conclusion, our data demonstrate that RITA can induce apoptosis through p38 and JNK/SAPK not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells, making RITA an interesting tumor-selective drug. PMID:25010984

  9. RITA can induce cell death in p53-defective cells independently of p53 function via activation of JNK/SAPK and p38.

    PubMed

    Weilbacher, A; Gutekunst, M; Oren, M; Aulitzky, W E; van der Kuip, H

    2014-07-10

    Significant advances have been made in the development of small molecules blocking the p53/MDM2 interaction. The Mdm2 inhibitor Nutlin-3 is restricted to tumors carrying wtp53. In contrast, RITA, a compound that binds p53, has recently been shown also to restore transcriptional functions of mtp53. As more than 50% of solid tumors carry p53 mutations, RITA promises to be a more effective therapeutic strategy than Nutlin-3. We investigated effects of RITA on apoptosis, cell cycle and induction of 45 p53 target genes in a panel of 14 cell lines from different tumor entities with different p53 status as well as primary lymphocytes and fibroblasts. Nine cell strains expressed wtp53, four harbored mtp53, and three were characterized by the loss of p53 protein. A significant induction of cell death upon RITA was observed in 7 of 16 cell lines. The nonmalignant cells in our panel were substantially less sensitive. We found that in contrast to Nultin-3, RITA is capable to induce cell death not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells. Importantly, whereas p53 has a central role for RITA-mediated effects in wtp53 cells, neither p53 nor p63 or p73 were essential for the RITA response in mtp53 or p53-null cells in our panel demonstrating that besides the known p53-dependent action of RITA in wtp53 cells, RITA can induce cell death also independently of p53 in cells harboring defective p53. We identified an important role of both p38 and JNK/SAPK for sensitivity to RITA in these cells leading to a typical caspase- and BAX/BAK-dependent mitochondrial apoptosis. In conclusion, our data demonstrate that RITA can induce apoptosis through p38 and JNK/SAPK not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells, making RITA an interesting tumor-selective drug.

  10. Antiproliferative and Apoptotic Effect of Dendrosomal Curcumin Nanoformulation in P53 Mutant and Wide-Type Cancer Cell Lines.

    PubMed

    Montazeri, Maryam; Pilehvar-Soltanahmadi, Younes; Mohaghegh, Mina; Panahi, Alireza; Khodi, Samaneh; Zarghami, Nosratollah; Sadeghizadeh, Majid

    2017-01-01

    The aim of this paper is to investigate the effect of dendrosomal curcumin (DNC) on the expression of p53 in both p53 mutant cell lines SKBR3/SW480 and p53 wild-type MCF7/HCT116 in both RNA and protein levels. Curcumin, derived from Curcumin longa, is recently considered in cancer related researches for its cell growth inhibition properties. p53 is a common tumor-suppressor gene involved in cancers and its mutation not only inhibits tumor suppressor activity but also promotes oncogenic activity. Here, p53 mutant/Wild-type cells were employed to study the toxicity of DNC using MTT assay, Flow cytometry and Annexin-V, Real-time PCR and Western blot were used to analyze p53, BAX, Bcl-2, p21 and Noxa changes after treatment. During the time, DNC increased the SubG1 cells and decreased G1, S and G2/M cells, early apoptosis also indicated the inhibition of cell growth in early phase. Real-Time PCR assay showed an increased mRNA of BAX, Noxa and p21 during the time with decreased Bcl-2. The expression of p53 mutant decreased in SKBR3/SW480, and the expression of p53 wild-type increased in MCF7/HCT116. Consequently, p53 plays an important role in mediating the survival by DNC, which can prevent tumor cell growth by modulating the expression of genes involved in apoptosis and proliferation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53

    PubMed Central

    Saldaña-Meyer, Ricardo; González-Buendía, Edgar; Guerrero, Georgina; Narendra, Varun; Bonasio, Roberto; Recillas-Targa, Félix; Reinberg, Danny

    2014-01-01

    The multifunctional CCCTC-binding factor (CTCF) protein exhibits a broad range of functions, including that of insulator and higher-order chromatin organizer. We found that CTCF comprises a previously unrecognized region that is necessary and sufficient to bind RNA (RNA-binding region [RBR]) and is distinct from its DNA-binding domain. Depletion of cellular CTCF led to a decrease in not only levels of p53 mRNA, as expected, but also those of Wrap53 RNA, an antisense transcript originated from the p53 locus. PAR-CLIP-seq (photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation [PAR-CLIP] combined with deep sequencing) analyses indicate that CTCF binds a multitude of transcripts genome-wide as well as to Wrap53 RNA. Apart from its established role at the p53 promoter, CTCF regulates p53 expression through its physical interaction with Wrap53 RNA. Cells harboring a CTCF mutant in its RBR exhibit a defective p53 response to DNA damage. Moreover, the RBR facilitates CTCF multimerization in an RNA-dependent manner, which may bear directly on its role in establishing higher-order chromatin structures in vivo. PMID:24696455

  12. Mutant p53 Promotes Tumor Cell Malignancy by Both Positive and Negative Regulation of the Transforming Growth Factor β (TGF-β) Pathway*

    PubMed Central

    Ji, Lei; Xu, Jinjin; Liu, Jian; Amjad, Ali; Zhang, Kun; Liu, Qingwu; Zhou, Lei; Xiao, Jianru; Li, Xiaotao

    2015-01-01

    Specific p53 mutations abrogate tumor-suppressive functions by gaining new abilities to promote tumorigenesis. Inactivation of p53 is known to distort TGF-β signaling, which paradoxically displays both tumor-suppressive and pro-oncogenic functions. The molecular mechanisms of how mutant p53 simultaneously antagonizes the tumor-suppressive and synergizes the tumor-promoting function of the TGF-β pathway remain elusive. Here we demonstrate that mutant p53 differentially regulates subsets of TGF-β target genes by enhanced binding to the MH2 domain in Smad3 upon the integration of ERK signaling, therefore disrupting Smad3/Smad4 complex formation. Silencing Smad2, inhibition of ERK, or introducing a phosphorylation-defective mutation at Ser-392 in p53 abrogates the R175H mutant p53-dependent regulation of these TGF-β target genes. Our study shows a mechanism to reconcile the seemingly contradictory observations that mutant p53 can both attenuate and cooperate with the TGF-β pathway to promote cancer cell malignancy in the same cell type. PMID:25767119

  13. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Wenshu; Lee Yijang; Yu Yichu

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of {gamma}-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cellsmore » but not human keratocyte HaCaT cells; it also prolonged radiation-induced G{sub 2}/M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.« less

  14. BclxL changes conformation upon binding to wild-type but not mutant p53 DNA binding domain.

    PubMed

    Hagn, Franz; Klein, Christian; Demmer, Oliver; Marchenko, Natasha; Vaseva, Angelina; Moll, Ute M; Kessler, Horst

    2010-01-29

    p53 can induce apoptosis through mitochondrial membrane permeabilization by interaction of its DNA binding region with the anti-apoptotic proteins BclxL and Bcl2. However, little is known about the action of p53 at the mitochondria in molecular detail. By using NMR spectroscopy and fluorescence polarization we characterized the binding of wild-type and mutant p53 DNA binding domains to BclxL and show that the wild-type p53 DNA binding domain leads to structural changes in the BH3 binding region of BclxL, whereas mutants fail to induce such effects due to reduced affinity. This was probed by induced chemical shift and residual dipolar coupling data. These data imply that p53 partly achieves its pro-apoptotic function at the mitochondria by facilitating interaction between BclxL and BH3-only proteins in an allosteric mode of action. Furthermore, we characterize for the first time the binding behavior of Pifithrin-mu, a specific small molecule inhibitor of the p53-BclxL interaction, and present a structural model of the protein-ligand complex. A rather unusual behavior is revealed whereby Pifithrin-mu binds to both sides of the protein-protein complex. These data should facilitate the rational design of more potent specific BclxL-p53 inhibitors.

  15. Expression of C-terminal deleted p53 isoforms in neuroblastoma

    PubMed Central

    Goldschneider, David; Horvilleur, Emilie; Plassa, Louis-François; Guillaud-Bataille, Marine; Million, Karine; Wittmer-Dupret, Evelyne; Danglot, Gisèle; de Thé, Hughes; Bénard, Jean; May, Evelyne; Douc-Rasy, Sétha

    2006-01-01

    The tumor suppressor gene, p53, is rarely mutated in neuroblastomas (NB) at the time of diagnosis, but its dysfunction could result from a nonfunctional conformation or cytoplasmic sequestration of the wild-type p53 protein. However, p53 mutation, when it occurs, is found in NB tumors with drug resistance acquired over the course of chemotherapy. As yet, no study has been devoted to the function of the specific p53 mutants identified in NB cells. This study includes characterization and functional analysis of p53 expressed in eight cell lines: three wild-type cell lines and five cell lines harboring mutations. We identified two transcription-inactive p53 variants truncated in the C-terminus, one of which corresponded to the p53β isoform recently identified in normal tissue by Bourdon et al. [J. C. Bourdon, K. Fernandes, F. Murray-Zmijewski, G. Liu, A. Diot, D. P. Xirodimas, M. K. Saville and D. P. Lane (2005) Genes Dev., 19, 2122–2137]. Our results show, for the first time, that the p53β isoform is the only p53 species to be endogenously expressed in the human NB cell line SK-N-AS, suggesting that the C-terminus truncated p53 isoforms may play an important role in NB tumor development. PMID:17028100

  16. E2 Ubiquitin-conjugating Enzyme, UBE2C Gene, Is Reciprocally Regulated by Wild-type and Gain-of-Function Mutant p53.

    PubMed

    Bajaj, Swati; Alam, Sk Kayum; Roy, Kumar Singha; Datta, Arindam; Nath, Somsubhra; Roychoudhury, Susanta

    2016-07-01

    Spindle assembly checkpoint governs proper chromosomal segregation during mitosis to ensure genomic stability. At the cellular level, this event is tightly regulated by UBE2C, an E2 ubiquitin-conjugating enzyme that donates ubiquitin to the anaphase-promoting complex/cyclosome. This, in turn, facilitates anaphase-onset by ubiquitin-mediated degradation of mitotic substrates. UBE2C is an important marker of chromosomal instability and has been associated with malignant growth. However, the mechanism of its regulation is largely unexplored. In this study, we report that UBE2C is transcriptionally activated by the gain-of-function (GOF) mutant p53, although it is transcriptionally repressed by wild-type p53. We showed that wild-type p53-mediated inhibition of UBE2C is p21-E2F4-dependent and GOF mutant p53-mediated transactivation of UBE2C is NF-Y-dependent. We further explored that DNA damage-induced wild-type p53 leads to spindle assembly checkpoint arrest by repressing UBE2C, whereas mutant p53 causes premature anaphase exit by increasing UBE2C expression in the presence of 5-fluorouracil. Identification of UBE2C as a target of wild-type and GOF mutant p53 further highlights the contribution of p53 in regulation of spindle assembly checkpoint. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. [6]-Gingerol Induces Cell Cycle Arrest and Cell Death of Mutant p53-expressing Pancreatic Cancer Cells

    PubMed Central

    Park, Yon Jung; Wen, Jing; Bang, Seungmin; Park, Seung Woo

    2006-01-01

    [6]-Gingerol, a major phenolic compound derived from ginger, has anti-bacterial, anti-inflammatory and anti-tumor activities. While several molecular mechanisms have been described to underlie its effects on cells in vitro and in vivo, the underlying mechanisms by which [6]-gingerol exerts anti-tumorigenic effects are largely unknown. The purpose of this study was to investigate the action of [6]-gingerol on two human pancreatic cancer cell lines, HPAC expressing wild-type (wt) p53 and BxPC-3 expressing mutated p53. We found that [6]-gingerol inhibited the cell growth through cell cycle arrest at G1 phase in both cell lines. Western blot analyses indicated that [6]-gingerol decreased both Cyclin A and Cyclin-dependent kinase (Cdk) expression. These events led to reduction in Rb phosphorylation followed by blocking of S phase entry. p53 expression was decreased by [6]-gingerol treatment in both cell lines suggesting that the induction of Cyclin-dependent kinase inhibitor, p21cip1, was p53-independent. [6]-Gingerol induced mostly apoptotic death in the mutant p53-expressing cells, while no signs of early apoptosis were detected in wild type p53-expressing cells and this was related to the increased phosphorylation of AKT. These results suggest that [6]-gingerol can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing apoptotic cell death while it exerts cytostatic effect on wild type p53-expressing cells by inducing temporal growth arrest. PMID:17066513

  18. Mutant p53 expression in kidney tubules adjacent to renal cell carcinoma: evidence of a precursor lesion.

    PubMed

    Lai, R; el Dabbagh, L; Mourad, W A

    1996-06-01

    Neoplastic transformation can be associated with mutations of the p53 gene. This leads to stabilization of its protein product and to its accumulation, which allows immunohistochemical detection. Mutant p53 expression has been seen in many neoplasms, including renal cell carcinoma (RCC). We recently described putative precursor lesions of RCC. The lesions were defined as intratubular epithelial dysplasia (IED) of kidney tubules adjacent to RCC. They were seen in one-third of the cases studied. The findings were based only on light microscopic analysis. We hypothesized that neoplastic transformation would be manifested by mutant p53 expression in the kidney tubules adjacent to RCC and not in nonneoplastic kidneys. Immunohistochemical staining for p53 in 24 cases of RCC with adjacent kidneys was performed. We used the DO-7 monoclonal antibody reactive for the N-terminal of the p53 protein on formalin-fixed paraffin-embedded tissue. Sections from 14 kidneys resected for nonneoplastic conditions were used as controls. Twenty-one (87%) of the 24 cases of RCC had nuclear p53 expression in the tumor cells. This included 14 cases (58%) with intense reactivity and 7 cases (29%) with weaker p53 immunoreactivity. Of the 24 cases of RCC, IED was identified in 13 cases (54%). Immunoreactivity for p53 was focally seen in tubules of all the lesions, as well as in the nonlesional areas. Six of the lesions exhibited intense nuclear staining. The kidneys adjacent to the RCC, with no evidence of IED, showed focally intense positive p53 nuclear staining in four cases. None of the control specimens showed p53 expression. Our findings provide supportive evidence that previously described IED in kidneys adjacent to RCC are most likely precursor lesions of the neoplasm. Aberrant expression of p53 in areas without evidence of IED may suggest that neoplastic transformation manifested by p53 mutation in kidney tubules may be seen before the development of the morphologic features of

  19. Cyclophosphamide dose intensification may circumvent anthracycline resistance of p53 mutant breast cancers.

    PubMed

    Lehmann-Che, Jacqueline; André, Fabrice; Desmedt, Christine; Mazouni, Chafika; Giacchetti, Sylvie; Turpin, Elisabeth; Espié, Marc; Plassa, Louis-François; Marty, Michel; Bertheau, Philippe; Sotiriou, Christos; Piccart, Martine; Symmans, W Fraser; Pusztai, Lajos; de Thé, Hugues

    2010-01-01

    The predictive value of p53 for the efficacy of front-line anthracycline-based chemotherapy regimens has been a matter of significant controversy. Anthracyclines are usually combined with widely different doses of alkylating agents, which may significantly modulate tumor response to these combinations. We analyzed three series of de novo stage II-III breast cancer patients treated front line with anthracycline-based regimens of various cyclophosphamide dose intensities: 65 patients with estrogen receptor (ER)(-) tumors treated with anthracyclines alone (Institut Jules Bordet, Brussels), 51 unselected breast cancer patients treated with intermediate doses of cyclophosphamide (MD Anderson Cancer Center, Houston, TX), and 128 others treated with a dose-dense anthracycline-cyclophosphamide combination (St. Louis, Paris). After chemotherapy and surgery, pathologic complete response (pCR) was evaluated. p53 status was determined by a yeast functional assay on the pretreatment tumor sample. In a multivariate analysis of the pooled results, a lack of ER expression and high-dose cyclophosphamide administration were associated with a higher likelihood of pCR. A sharp statistical interaction was detected between p53 status and cyclophosphamide dose intensity. Indeed, when restricting our analysis to patients with ER(-) tumors, we confirmed that a mutant p53 status was associated with anthracycline resistance, but found that p53 inactivation was required for response to the dose-intense alkylating regimen. The latter allowed very high levels of pCR in triple-negative tumors. Thus, our data strongly suggest that cyclophosphamide dose intensification in ER(-) p53-mutated breast cancer patients could significantly improve their response.

  20. p53 deficiency alters the yield and spectrum of radiation-induced lacZ mutants in the brain of transgenic mice

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Kanazawa, N.; Lutze-Mann, L.; Winegar, R. A.

    2001-01-01

    Exposure to heavy particle radiation in the galacto-cosmic environment poses a significant risk in space exploration and the evaluation of radiation-induced genetic damage in tissues, especially in the central nervous system, is an important consideration in long-term manned space missions. We used a plasmid-based transgenic mouse model system, with the pUR288 lacZ transgene integrated in the genome of every cell of C57Bl/6(lacZ) mice, to evaluate the genetic damage induced by iron particle radiation. In order to examine the importance of genetic background on the radiation sensitivity of individuals, we cross-bred p53 wild-type lacZ transgenic mice with p53 nullizygous mice, producing lacZ transgenic mice that were either hemizygous or nullizygous for the p53 tumor suppressor gene. Animals were exposed to an acute dose of 1 Gy of iron particles and the lacZ mutation frequency (MF) in the brain was measured at time intervals from 1 to 16 weeks post-irradiation. Our results suggest that iron particles induced an increase in lacZ MF (2.4-fold increase in p53+/+ mice, 1.3-fold increase in p53+/- mice and 2.1-fold increase in p53-/- mice) and that this induction is both temporally regulated and p53 genotype dependent. Characterization of mutants based on their restriction patterns showed that the majority of the mutants arising spontaneously are derived from point mutations or small deletions in all three genotypes. Radiation induced alterations in the spectrum of deletion mutants and reorganization of the genome, as evidenced by the selection of mutants containing mouse genomic DNA. These observations are unique in that mutations in brain tissue after particle radiation exposure have never before been reported owing to technical limitations in most other mutation assays.

  1. miR-338-3p confers 5-fluorouracil resistance in p53 mutant colon cancer cells by targeting the mammalian target of rapamycin.

    PubMed

    Han, Jia; Li, Jie; Tang, Kaijie; Zhang, Huahua; Guo, Bo; Hou, Ni; Huang, Chen

    2017-11-15

    Evidence demonstrate that p53 mutations and microRNAs (miRs) are important components of 5-FU resistance in colorectal cancer (CRC). miR-338-3p has been reported associated with cancer prognosis. However whether or not it influences chemotherapy sensitivity and the underlying mechanisms have not been elucidated. Here, three types of human colon cancer cell lines, HT29 (mutant p53), HCT116 (wild-type p53), and HCT116 p53 -/- (deficient p53), were treated with 5-FU. We showed that expression of miR-338-3p was correlated with apoptosis and 5-FU resistance in colon cancer cells. Ectopic expression of miR-338-3p conferred resistance to 5-FU in HCT116 cells. Further experiments indicated that miR-338-3p mediated 5-FU resistance through down-regulation of mTOR expression. Moreover, inhibition of miR-338-3p in HT29 and HCT116 p53 -/- cells increased their sensitivity to 5-FU treatment. Furthermore, we detected autophagy changes in our experiment because mTOR was known prominently regulating autophagy and the competition between autophagy and apoptosis in response to 5-FU was a mechanism influencing 5-FU sensitivity. Our results reveal a critical and novel role of miR-338-3p in the correlation of 5-FU resistance with p53 status. Moreover, the miR-338-3p inhibitor has the potential to overcome 5-FU resistance in p53 mutant colon cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Improving survival by exploiting tumor dependence on stabilized mutant p53 for treatment

    PubMed Central

    Alexandrova, EM; Yallowitz, AR; Li, D; Xu, S; Schulz, R; Proia, DA; Lozano, G; Dobbelstein, M; Moll, UM

    2015-01-01

    SUMMARY Missense mutations in p53 generate aberrant proteins with abrogated tumor suppressor functions that can also acquire oncogenic gain-of-functions (GOF) that promote malignant progression, invasion, metastasis and chemoresistance1–5. Mutant p53 (mutp53) proteins undergo massive constitutive stabilization specifically in tumors, which is the key requisite for GOF6–8. Although currently 11 million patients worldwide live with tumors expressing highly stabilized mutp53, it is unknown whether mutp53 is a therapeutic target in vivo. Here we use a novel mutp53 mouse model expressing an inactivatible R248Q hotspot mutation (floxQ) to show that tumors depend on sustained mutp53 expression. Upon Tamoxifen-induced mutp53 ablation, allo-transplanted and autochthonous tumors curb their growth, thus extending animal survival by 37%, and advanced tumors undergo apoptosis and tumor regression or stagnation. The HSP90/HDAC6 chaperone machinery, which is significantly upregulated in cancer compared to normal tissues, is a major determinant of mutp53 stabilization9–12. We show that long-term HSP90 inhibition significantly extends the survival of mutp53 Q/−2 and H/H (R172H allele3) mice by 59% and 48%, respectively, but not their respective p53−/− littermates. This mutp53-dependent drug effect occurs in H/H mice treated with 17DMAG+SAHA and in H/H and Q/− mice treated with the potent Hsp90 inhibitor ganetespib. Notably, drug activity correlates with induction of mutp53 degradation, tumor apoptosis and prevention of T-lymphomagenesis. These proof-of-principle data identify mutp53 as an actionable cancer-specific drug target. PMID:26009011

  3. Mutant p53 dictates the oncogenic activity of c-Abl in triple-negative breast cancers

    PubMed Central

    Morrison, Chevaun D; Chang, Jenny C; Keri, Ruth A; Schiemann, William P

    2017-01-01

    We recently established c-Abl as a potent suppressor of triple-negative breast cancer (TNBC) progression through its reactivation of a p53:p21 signaling axis coupled to senescence. Moreover, we observed co-expression of p53 and c-Abl to be essential for normal mammary epithelial cell physiology, as this relationship is lost upon breast cancer progression. Cytoplasmic c-Abl activity is markedly increased in some TNBCs and contributes to disease progression; however, the mechanisms underlying these events remain largely unknown. In addressing this question, we show here that c-Abl is predominantly restricted to the cytoplasm of human MDA-MB-231 TNBC cells, and to the nucleus of human MCF-7 luminal A cells. TTK is a mitotic protein kinase that phosphorylates c-Abl on Thr735, thereby creating a recognition binding motif for 14-3-3 adaptor proteins in response to oxidative stress. By interrogating the METABRIC database, we observed a significant correlation between p53 expression and that of c-Abl and TTK in basal-like breast cancers. Moreover, heterologous expression of TTK in MCF-7 cells significantly stimulated their growth in part via a c-Abl-dependent mechanism. Conversely, depleting TTK expression in MDA-MB-231 cells not only inhibited their organoid growth in 3D-cultures, but also sensitized them to the tumor suppressing activities of c-Abl independent of its subcellular localization. Moreover, we show that mutant p53 forms cytoplasmic complexes with c-Abl, thereby dictating the subcellular localization of c-Abl and the sensitivity of MDA-MB-231 cells to Imatinib. In response to nutrient deprivation, c-Abl:p53 complexes readily accumulate in the nucleus, resulting in the hyperactivation of c-Abl and initiation of its anti-tumor activities. Collectively, we identified a novel mutant p53:c-Abl cytoplasmic signaling complex that promotes MDA-MB-231 cell growth and highlights the contextual cues that confer oncogenic activity to c-Abl in breast cancer. PMID:28661474

  4. The In Vivo DNA Binding Properties of Wild-Type and Mutant p53 Proteins in Mammary Cell Lines During the Course of Cell Cycle.

    DTIC Science & Technology

    1996-08-01

    J-4030 TITLE: The In Vivo DNA Binding Properties of Wild-Type and Mutant p53 Proteins in Mammary Cell Lines During the Course of Cell Cycle PRINCIPAL...The In Vivo DNA Binding Properties of 5. FUNDING NUMBERS Wild-Type and Mutant p53 Proteins in Mammary Cell Lines DAMD17-94-J-4030 During the Course of...ABSTRACT (Maximum 200 Using a pair of murine cell lines, one lacking p53 and a derivative cell line containing temperature sensitive p53 val 135

  5. An in silico algorithm for identifying stabilizing pockets in proteins: test case, the Y220C mutant of the p53 tumor suppressor protein

    PubMed Central

    Bromley, Dennis; Bauer, Matthias R.; Fersht, Alan R.; Daggett, Valerie

    2016-01-01

    The p53 tumor suppressor protein performs a critical role in stimulating apoptosis and cell cycle arrest in response to oncogenic stress. The function of p53 can be compromised by mutation, leading to increased risk of cancer; approximately 50% of cancers are associated with mutations in the p53 gene, the majority of which are in the core DNA-binding domain. The Y220C mutation of p53, for example, destabilizes the core domain by 4 kcal/mol, leading to rapid denaturation and aggregation. The associated loss of tumor suppressor functionality is associated with approximately 75 000 new cancer cases every year. Destabilized p53 mutants can be ‘rescued’ and their function restored; binding of a small molecule into a pocket on the surface of mutant p53 can stabilize its wild-type structure and restore its function. Here, we describe an in silico algorithm for identifying potential rescue pockets, including the algorithm's integration with the Dynameomics molecular dynamics data warehouse and the DIVE visual analytics engine. We discuss the results of the application of the method to the Y220C p53 mutant, entailing finding a putative rescue pocket through MD simulations followed by an in silico search for stabilizing ligands that dock into the putative rescue pocket. The top three compounds from this search were tested experimentally and one of them bound in the pocket, as shown by nuclear magnetic resonance, and weakly stabilized the mutant. PMID:27503952

  6. Rosiglitazone enhances the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Shu-Jun, E-mail: chiusj@mail.tcu.edu.tw; Institute of Radiation Sciences, Tzu Chi Technology College, Hualien, Taiwan; Hsaio, Ching-Hui

    2010-04-09

    Combined-modality treatment has improved the outcome in cases of various solid tumors, and radiosensitizers are used to enhance the radiotherapeutic efficiency. Rosiglitazone, a synthetic ligand of peroxisome proliferator-activated receptors {gamma} used in the treatment of type-2 diabetes, has been shown to reduce tumor growth and metastasis in human cancer cells, and may have the potential to be used as a radiosensitizer in radiotherapy for human colorectal cancer cells. In this study, rosiglitazone treatment significantly reduced the cell viability of p53-wild type HCT116 cells but not p53-mutant HT-29 cells. Interestingly, rosiglitazone pretreatment enhanced radiosensitivity in p53-mutant HT-29 cells but not HCT116more » cells, and prolonged radiation-induced G{sub 2}/M arrest and enhanced radiation-induced cell growth inhibition in HT-29 cells. Pretreatment with rosiglitazone also suppressed radiation-induced H2AX phosphorylation in response to DNA damage and AKT activation for cell survival; on the contrary, rosiglitazone pretreatment enhanced radiation-induced caspase-8, -9, and -3 activation and PARP cleavage in HT-29 cells. In addition, pretreatment with a pan-caspase inhibitor, zVAD-fmk, attenuated the levels of caspase-3 activation and PARP cleavage in radiation-exposed cancer cells in combination with rosiglitazone pretreatment. Our results provide proof for the first time that rosiglitazone suppresses radiation-induced survival signals and DNA damage response, and enhances the radiation-induced apoptosis signaling cascade. These findings can assist in the development of rosiglitazone as a novel radiosensitizer.« less

  7. Functional repair of p53 mutation in colorectal cancer cells using trans-splicing.

    PubMed

    He, Xingxing; Liao, Jiazhi; Liu, Fang; Yan, Junwei; Yan, Jingjun; Shang, Haitao; Dou, Qian; Chang, Ying; Lin, Jusheng; Song, Yuhu

    2015-02-10

    Mutation in the p53 gene is arguably the most frequent type of gene-specific alterations in human cancers. Current p53-based gene therapy contains the administration of wt-p53 or the suppression of mutant p53 expression in p53-defective cancer cells. . We hypothesized that trans-splicing could be exploited as a tool for the correction of mutant p53 transcripts in p53-mutated human colorectal cancer (CRC) cells. In this study, the plasmids encoding p53 pre-trans-splicing molecules (PTM) were transfected into human CRC cells carrying p53 mutation. The plasmids carrying p53-PTM repaired mutant p53 transcripts in p53-mutated CRC cells, which resulted in a reduction in mutant p53 transcripts and an induction of wt-p53 simultaneously. Intratumoral administration of adenovirus vectors carrying p53 trans-splicing cassettes suppressed the growth of tumor xenografts. Repair of mutant p53 transcripts by trans-splicing induced cell-cycle arrest and apoptosis in p53-defective colorectal cancer cells in vitro and in vivo. In conclusion, the present study demonstrated for the first time that trans-splicing was exploited as a strategy for the repair of mutant p53 transcripts, which revealed that trans-splicing would be developed as a new therapeutic approach for human colorectal cancers carrying p53 mutation.

  8. Mutant p53 perturbs DNA replication checkpoint control through TopBP1 and Treslin.

    PubMed

    Liu, Kang; Lin, Fang-Tsyr; Graves, Joshua D; Lee, Yu-Ju; Lin, Weei-Chin

    2017-05-09

    Accumulating evidence supports the gain-of-function of mutant forms of p53 (mutp53s). However, whether mutp53 directly perturbs the DNA replication checkpoint remains unclear. Previously, we have demonstrated that TopBP1 forms a complex with mutp53s and mediates their gain-of-function through NF-Y and p63/p73. Akt phosphorylates TopBP1 and induces its oligomerization, which inhibits its ATR-activating function. Here we show that various contact and conformational mutp53s bypass Akt to induce TopBP1 oligomerization and attenuate ATR checkpoint response during replication stress. The effect on ATR response caused by mutp53 can be exploited in a synthetic lethality strategy, as depletion of another ATR activator, DNA2, in mutp53-R273H-expressing cancer cells renders cells hypersensitive to cisplatin. Expression of mutp53-R273H also makes cancer cells more sensitive to DNA2 depletion or DNA2 inhibitors. In addition to ATR-activating function during replication stress, TopBP1 interacts with Treslin in a Cdk-dependent manner to initiate DNA replication during normal growth. We find that mutp53 also interferes with TopBP1 replication function. Several contact, but not conformational, mutp53s enhance the interaction between TopBP1 and Treslin and promote DNA replication despite the presence of a Cdk2 inhibitor. Together, these data uncover two distinct mechanisms by which mutp53 enhances DNA replication: ( i ) Both contact and conformational mutp53s can bind TopBP1 and attenuate the checkpoint response to replication stress, and ( ii ) during normal growth, contact (but not conformational) mutp53s can override the Cdk2 requirement to promote replication by facilitating the TopBP1/Treslin interaction.

  9. MiR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus.

    PubMed

    Godfrey, Jack D; Morton, Jennifer P; Wilczynska, Ania; Sansom, Owen J; Bushell, Martin D

    2018-05-29

    Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive disease with poor prognostic implications. This is partly due to a large proportion of PDACs carrying mutations in TP53, which impart gain-of-function characteristics that promote metastasis. There is evidence that microRNAs (miRNAs) may play a role in both gain-of-function TP53 mutations and metastasis, but this has not been fully explored in PDAC. Here we set out to identify miRNAs which are specifically dysregulated in metastatic PDAC. To achieve this, we utilised established mouse models of PDAC to profile miRNA expression in primary tumours expressing the metastasis-inducing mutant p53 R172H and compared these to two control models carrying mutations, which promote tumour progression but do not induce metastasis. We show that a subset of miRNAs are dysregulated in mouse PDAC tumour tissues expressing mutant p53 R172H , primary cell lines derived from mice with the same mutations and in TP53 null cells with ectopic expression of the orthologous human mutation, p53 R175H . Specifically, miR-142-3p is downregulated in all of these experimental models. We found that DNA methyltransferase 1 (Dnmt1) is upregulated in tumour tissue and cell lines, which express p53 R172H . Inhibition or depletion of Dnmt1 restores miR-142-3p expression. Overexpression of miR-142-3p attenuates the invasive capacity of p53 R172H -expressing tumour cells. MiR-142-3p dysregulation is known to be associated with cancer progression, metastasis and the miRNA is downregulated in patients with PDAC. Here we link TP53 gain-of-function mutations to Dnmt1 expression and in turn miR-142-3p expression. Additionally, we show a correlation between expression of these genes and patient survival, suggesting that they may have potential to be therapeutic targets.

  10. Halogen-Enriched Fragment Libraries as Leads for Drug Rescue of Mutant p53

    PubMed Central

    2012-01-01

    The destabilizing p53 cancer mutation Y220C creates a druggable surface crevice. We developed a strategy exploiting halogen bonding for lead discovery to stabilize the mutant with small molecules. We designed halogen-enriched fragment libraries (HEFLibs) as starting points to complement classical approaches. From screening of HEFLibs and subsequent structure-guided design, we developed substituted 2-(aminomethyl)-4-ethynyl-6-iodophenols as p53-Y220C stabilizers. Crystal structures of their complexes highlight two key features: (i) a central scaffold with a robust binding mode anchored by halogen bonding of an iodine with a main-chain carbonyl and (ii) an acetylene linker, enabling the targeting of an additional subsite in the crevice. The best binders showed induction of apoptosis in a human cancer cell line with homozygous Y220C mutation. Our structural and biophysical data suggest a more widespread applicability of HEFLibs in drug discovery. PMID:22439615

  11. p53 mutations promote proteasomal activity.

    PubMed

    Oren, Moshe; Kotler, Eran

    2016-07-27

    p53 mutations occur very frequently in human cancer. Besides abrogating the tumour suppressive functions of wild-type p53, many of those mutations also acquire oncogenic gain-of-function activities. Augmentation of proteasome activity is now reported as a common gain-of-function mechanism shared by different p53 mutants, which promotes cancer resistance to proteasome inhibitors.

  12. Phosphorylation of p53 modifies sensitivity to ionizing radiation.

    PubMed

    Okaichi, Kumio; Nose, Kanako; Kotake, Takako; Izumi, Nanaka; Kudo, Takashi

    2011-06-01

    Phosphorylation is an important modification involved in the control of p53 activity. We examined the relationship between p53 phosphorylation and cell radiosensitivity. We prepared H1299 cells (p53-null) with various mutations of p53 at three sites (serine 15, 20 and 46) and examined the radiosensitivity of the cells. In three mutant forms of p53--S15A, S20A and S46A--serine was converted to alanine at these sites to prevent phosphorylation, and in two other mutant forms, S15D and S20D, serine was converted to aspartic acid to mimic phosphorylation. H1299 cells were more radioresistant than cells with wild-type p53. Cells with the S15A and S46A mutant forms of p53 were radiosensitive, whereas those with the S15D, S20A and S20D forms showed medium radiosensitivity. Thus the sensitivity of cells to ionizing radiation varies according to the site of phosphorylation of p53.

  13. Friend or Foe: MicroRNAs in the p53 network.

    PubMed

    Luo, Zhenghua; Cui, Ri; Tili, Esmerina; Croce, Carlo

    2018-04-10

    The critical tumor suppressor gene TP53 is either lost or mutated in more than half of human cancers. As an important transcriptional regulator, p53 modulates the expression of many microRNAs. While wild-type p53 uses microRNAs to suppress cancer development, microRNAs that are activated by gain-of-function mutant p53 confer oncogenic properties. On the other hand, the expression of p53 is tightly controlled by a fine-tune machinery including microRNAs. MicroRNAs can target the TP53 gene directly or other factors in the p53 network so that expression and function of either the wild-type or the mutant forms of p53 is downregulated. Therefore, depending on the wild-type or mutant p53 context, microRNAs contribute substantially to suppress or exacerbate tumor development. Copyright © 2018. Published by Elsevier B.V.

  14. Overexpression of p53 mRNA in colorectal cancer and its relationship to p53 gene mutation.

    PubMed Central

    el-Mahdani, N.; Vaillant, J. C.; Guiguet, M.; Prévot, S.; Bertrand, V.; Bernard, C.; Parc, R.; Béréziat, G.; Hermelin, B.

    1997-01-01

    We analysed the frequency of p53 mRNA overexpression in a series of 109 primary colorectal carcinomas and its association with p53 gene mutation, which has been correlated with short survival. Sixty-nine of the 109 cases (63%) demonstrated p53 mRNA overexpression, without any correlation with stage or site of disease. Comparison with p53 gene mutation indicated that, besides cases in which p53 gene mutation and p53 mRNA overexpression were either both present (40 cases) or both absent (36 cases), there were also cases in which p53 mRNA was overexpressed in the absence of any mutation (29 cases) and those with a mutant gene in which the mRNA was not overexpressed (four cases). Moreover, the mutant p53 tumours exhibited an increase of p53 mRNA expression, which was significantly higher in tumours expressing the mutated allele alone than in tumours expressing both wild- and mutated-type alleles. These data (1) show that p53 mRNA overexpression is a frequent event in colorectal tumours and is not predictive of the status of the gene, i.e. whether or not a mutation is present; (2) provide further evidence that p53 protein overexpression does not only result from an increase in the half-life of mutated p53 and suggest that inactivation of the p53 function in colorectal cancers involves at least two distinct mechanisms, including p53 overexpression and/or mutation; and (3) suggest that p53 mRNA overexpression is an early event, since it is not correlated with Dukes stage. PMID:9052405

  15. Functional activation of mutant p53V172F by platinum analogs in cisplatin-resistant human tumor cells is dependent on serine-20 phosphorylation

    PubMed Central

    Xie, Xiaolei; He, Guangan; Siddik, Zahid H.

    2017-01-01

    Dysfunctionality of the p53 tumor suppressor is a major cause of therapeutic drug resistance in cancer. Recently we reported that mutant, but otherwise functional, p53V172F was inactivated in cisplatin-resistant 2780CP/Cl-16 and 2780CP/Cl-24 human ovarian tumor cells by increased recruitment of the inhibitor MDM4. The current study demonstrates that, unlike cisplatin, platinum analogs oxaliplatin and DACH-diacetato-dichloro-Pt(IV) (DAP), strongly stabilize and activate p53V172F in resistant cells, as indicated by prolonged p53 half-life and transactivation of targets p21 (CDKN1A) and MDM2. This increase in MDM2 reduced MDM4 levels in cell lysates as well as the p53 immunocomplex and prevented reversion of p53 to the inactive p53-MDM2-MDM4 bound state. Phosphorylation of p53 at Ser15 was demonstrated by all three drugs in sensitive A2780 and corresponding resistant 2780CP/Cl-16 and 2780CP/Cl-24 cell lines. However, cisplatin induced Ser20 phosphorylation in A2780 cells only, but not in resistant cells; in contrast, both DAP and oxaliplatin induced this phosphorylation in all three cell lines. The inference that Ser20 phosphorylation is more important for p53 activation was confirmed by ectopic expression of a phosphomimetic (S20D) mutant p53 that displayed reduced binding, relative to wild-type p53, to both MDM2 and MDM4 in p53-knockout A2780 cells. In consonance, temporal studies demonstrated drug-induced Ser15 phosphorylation coincided with p53 stabilization, whereas Ser20 phosphorylation coincided with p53 transactivation. Implications Cisplatin fails to activate the pathway involved in phosphorylating mutant p53V172F at Ser20 in resistant cells, but this phosphorylation is restored by oxaliplatin and DAP that reactivates p53 function and circumvents cisplatin resistance. PMID:28031409

  16. Myc, Aurora Kinase-A, and mutant p53R172H co-operate in a mouse model of metastatic skin carcinoma

    PubMed Central

    Torchia, Enrique C.; Caulin, Carlos; Acin, Sergio; Terzian, Tamara; Kubick, Bradley J.; Box, Neil F.; Roop, Dennis R.

    2015-01-01

    Clinical observations, as well as data obtained from the analysis of genetically engineered mouse models, firmly established the gain-of-function (GOF) properties of certain p53 mutations. However, little is known about the underlying mechanisms. We have used two independent microarray platforms to perform a comprehensive and global analysis of tumors arising in a model of metastatic skin cancer progression, which compares the consequences of a GOF p53R172H mutant vs. p53 deficiency. DNA profiling revealed a higher level of genomic instability in GOF vs. loss-of-function (LOF) p53 squamous cell carcinomas (SCCs). Moreover, GOF p53 SCCs showed preferential amplification of Myc with a corresponding increase in its expression and deregulation of Aurora Kinase-A. Fluorescent in situ hybridization confirmed amplification of Myc in primary GOF p53 SCCs and its retention in metastatic tumors. We also identified by RNA profiling distinct gene expression profiles in GOF p53 tumors, which included enriched integrin and Rho signaling, independent of tumor stage. Thus, the progression of GOF p53 papillomas to carcinoma was marked by the acquisition of epithelial to mesenchymal transition and metastatic signatures. In contrast, LOF p53 tumors showed enrichment of genes associated with cancer proliferation and chromosomal instability. Collectively, these observations suggest that genomic instability plays a prominent role in the early stages of GOF p53 tumor progression (i.e., papillomas), while it is implicated at a later stage in LOF p53 tumors (i.e., SCCs). This model will allow us to identify specific targets in mutant p53 SCCs, which may lead to the development of new therapeutic agents for the treatment of metastatic SCCs. PMID:21963848

  17. Scriptaid overcomes hypoxia-induced cisplatin resistance in both wild-type and mutant p53 lung cancer cells

    PubMed Central

    Pradhan, Shrikant; Mahajan, Divyank; Kaur, Prabhjot; Pandey, Namita; Sharma, Chandresh; Srivastava, Tapasya

    2016-01-01

    Non-small cell lung cancer (NSCLC), comprising 85% of lung cancer cases, has been associated with resistance to chemo/radiotherapy. The hypoxic tumor micro-environment, where insufficient vasculature results in poor drug penetrance and sub-optimal chemotherapy in the tumor interiors contributes heavily to this resistance. Additionally, epigenetic changes in tumorigenic cells also change their response to different forms of therapy. In our study, we have investigated the effectiveness of a combination of cisplatin with scriptaid [a pan-Histone Deacetylase inhibitor (HDACi)] in a model that mimics the tumor microenvironment of hypoxia and sub-lethal chemotherapy. Scriptaid synergistically increases the efficacy of cisplatin in normoxia as well as hypoxia, accompanied with reduced metastasis and enhanced DNA damage. Addition of scriptaid also overcomes the cisplatin resistance exhibited in lung cancer cells with stabilized hypoxia inducible factor 1 (HIF1)-α (mutant) and mutant p53. Molecular studies showed that the combination treatment increased apoptotic cell death in both normoxia and hypoxia with a dual role of p38MAPK. Together, our results suggest that the combination of low dose cisplatin and scriptaid is cytotoxic to NSCLC lines, can overcome hypoxia induced resistance and mutant p53- induced instability often associated with this cancer, and has the potential to be an effective therapeutic modality. PMID:27708247

  18. p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage.

    PubMed

    Gong, Lu; Gong, Hongjian; Pan, Xiao; Chang, Changqing; Ou, Zhao; Ye, Shengfan; Yin, Le; Yang, Lina; Tao, Ting; Zhang, Zhenhai; Liu, Cong; Lane, David P; Peng, Jinrong; Chen, Jun

    2015-03-01

    The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.

  19. Mutant human tumor suppressor p53 modulates the activation of mitogen-activated protein kinase and nuclear factor-kappaB, but not c-Jun N-terminal kinase and activated protein-1.

    PubMed

    Gulati, Anthony P; Yang, Yang-Ming; Harter, David; Mukhopadhyay, Asok; Aggarwal, Bharat B; Aggarwal, Bharat A; Benzil, Deborah L; Whysner, John; Albino, Anthony P; Murali, Raj; Jhanwar-Uniyal, Meena

    2006-01-01

    The roles of the mitogen-activated kinase protein (MAPK) pathway, nuclear factor-kappa B (NF-kappaB), and activator protein-1 (AP-1) in cellular responses to growth factors and mitogen are well established. However, the manner by which these proliferative pathways are affected by the tumor suppressor protein p53 is not fully understood. We report here the results of an investigation of the status of p53 on two human melanoma cell lines with wild-type p53 (SK-Mel-186) or mutant p53 (SK-Mel-110). The basal levels of the activated extracellular-signal regulated kinases 1 and 2 (ERK1/2) were high in cells with wild-type p53, but low in cells with mutant p53. The 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced activation of ERK1/2 through the phosphorylation of threonine and tyrosine at 202 and 204, respectively, was demonstrated in both cell lines, however, in a discrete manner. TPA-induced activation of ERK1/2 was sustained in wild-type p53 cells, while only a transient activation was seen in mutant p53 cells. Inhibition of MAPK kinase (MEK), an upstream kinase, by U0126, blocked TPA-induced activation of ERK1/2 in wild-type p53 cells and in mutant p53 cells. Treatment of wild-type p53 (SK-Mel 186) cells with small interfering RNA (siRNA) of p53 displayed a transient induction of activation of ERK1/2 following TPA treatment, indicating that p53 has a role in the regulation of the activation of ERK1/2. NF-kappaB activity decreased significantly in cells with wild-type p53, while enhanced NF-kappaB activity was evident in cells with mutant p53. The expression of either wild-type or mutant p53 had a similar effect on TPA-induced Jun N-terminal kinase (JNK) activation, indicating specificity for the ERK pathway. Similarly, AP-1 binding activity showed a transient variation in both cell lines after TPA treatment but with different kinetics. These observations suggest that both wild-type and mutant p53 can modulate the activation pathways for ERK1/2, and NF

  20. A combination of p53-activating APR-246 and phosphatidylserine-targeting antibody potently inhibits tumor development in hormone-dependent mutant p53-expressing breast cancer xenografts

    PubMed Central

    Liang, Yayun; Mafuvadze, Benford; Besch-Williford, Cynthia; Hyder, Salman M

    2018-01-01

    Background Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53) lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood vessels, which serve as the major route for tumor metastasis, in tumor xenografts compared with either agent alone. Conclusion Based on our findings, we contend that breast tumor growth might effectively be controlled by simultaneous

  1. MicroRNAs as Key Effectors in the p53 Network.

    PubMed

    Goeman, Frauke; Strano, Sabrina; Blandino, Giovanni

    2017-01-01

    The guardian of the genome p53 is embedded in a fine-spun network of MicroRNAs. p53 is able to activate or repress directly the transcription of MicroRNAs that are participating in the tumor-suppressive mission of p53. On the other hand, the expression of p53 is under tight control of MicroRNAs that are either targeting directly p53 or factors that are modifying its protein level or activity. Although the most important function of p53 is suggested to be transcriptional regulation, there are several nontranscriptional functions described. One of those regards the modulation of MicroRNA biogenesis. Wild-type p53 is increasing the maturation of selected MicroRNAs from the primary transcript to the precursor MiRNA by interacting with the Microprocessor complex. Furthermore, p53 is modulating the mRNA accessibility for certain MicroRNAs by association with the RISC complex and transcriptional regulation of RNA-binding proteins. In this way p53 is able to remodel the MiRNA-mRNA interaction network. As wild-type p53 is employing MicroRNAs to suppress cancer development, gain-of-function mutant p53 proteins use MicroRNAs to confer oncogenic properties like chemoresistance and the ability to drive metastasis. Like its wild-type counterpart mutant p53 is able to regulate MicroRNAs transcriptionally and posttranscriptionally. Mutant p53 affects the MiRNA processing at two cleavage steps through interfering with the Microprocessor complex and by downregulating Dicer and KSRP, a modulator of MiRNA biogenesis. Thus, MicroRNAs are essential components in the p53 pathway, contributing substantially to combat or enhance tumor development depending on the wild-type or mutant p53 context. © 2017 Elsevier Inc. All rights reserved.

  2. p53 genes function to restrain mobile elements

    PubMed Central

    Wylie, Annika; Jones, Amanda E.; D'Brot, Alejandro; Lu, Wan-Jin; Kurtz, Paula; Moran, John V.; Rakheja, Dinesh; Chen, Kenneth S.; Hammer, Robert E.; Comerford, Sarah A.; Amatruda, James F.; Abrams, John M.

    2016-01-01

    Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53− germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5′ sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility. PMID:26701264

  3. Preferential Binding of Hot Spot Mutant p53 Proteins to Supercoiled DNA In Vitro and in Cells

    PubMed Central

    Brázdová, Marie; Navrátilová, Lucie; Tichý, Vlastimil; Němcová, Kateřina; Lexa, Matej; Hrstka, Roman; Pečinka, Petr; Adámik, Matej; Vojtesek, Borivoj; Paleček, Emil; Deppert, Wolfgang; Fojta, Miroslav

    2013-01-01

    Hot spot mutant p53 (mutp53) proteins exert oncogenic gain-of-function activities. Binding of mutp53 to DNA is assumed to be involved in mutp53-mediated repression or activation of several mutp53 target genes. To investigate the importance of DNA topology on mutp53-DNA recognition in vitro and in cells, we analyzed the interaction of seven hot spot mutp53 proteins with topologically different DNA substrates (supercoiled, linear and relaxed) containing and/or lacking mutp53 binding sites (mutp53BS) using a variety of electrophoresis and immunoprecipitation based techniques. All seven hot spot mutp53 proteins (R175H, G245S, R248W, R249S, R273C, R273H and R282W) were found to have retained the ability of wild-type p53 to preferentially bind circular DNA at native negative superhelix density, while linear or relaxed circular DNA was a poor substrate. The preference of mutp53 proteins for supercoiled DNA (supercoil-selective binding) was further substantiated by competition experiments with linear DNA or relaxed DNA in vitro and ex vivo. Using chromatin immunoprecipitation, the preferential binding of mutp53 to a sc mutp53BS was detected also in cells. Furthermore, we have shown by luciferase reporter assay that the DNA topology influences p53 regulation of BAX and MSP/MST1 promoters. Possible modes of mutp53 binding to topologically constrained DNA substrates and their biological consequences are discussed. PMID:23555710

  4. Antiangiogenesis and gene aberration-related therapy may improve overall survival in patients with concurrent KRAS and TP53 hotspot mutant cancer

    PubMed Central

    Wang, Zhijie; Piha-Paul, Sarina; Janku, Filip; Subbiah, Vivek; Shi, Naiyi; Gong, Jing; Wathoo, Chetna; Shaw, Kenna; Hess, Kenneth; Broaddus, Russell; Naing, Aung; Hong, David; Tsimberidou, Apostolia M.; Karp, Daniel; Yao, James; Meric-Bernstam, Funda; Fu, Siqing

    2017-01-01

    Purpose Genetic alterations such as activating KRAS and/or inactivating TP53 are thought to be the most common drivers to tumorigenesis. Therefore, we assessed phase I cancer patients with KRAS+/TP53+ mutations. Results Approximately 8% of patients referred to phase I clinical trials harbored concurrent KRAS and TP53 mutations. Patients who received a phase I trial therapy (n = 57) had a median OS of 12 months, compared with 4.6 months in those who were not treated (n = 106; p = 0.003). KRAS G13 and TP53 R273 mutations were associated with poor overall survival (OS), while antiangiogenesis and gene aberration-related therapies were associated with prolonged OS. A prognostic model using neutrophilia, thrombocytosis, hypoalbuminemia, body mass index <30 kg/m2, and the absence of lung metastasis was established and validated. Phase I cancer patients in the low-risk group had a median OS of 16.6 months compared with 5.4 months in the high-risk group (p < 0.001). Untreated patients in the low-risk group had a median OS of 6.7 months compared with 3.6 months in the high-risk group (p = 0.033). Experimental Design We analyzed 163 consecutive patients with advanced KRAS+/TP53+ mutant cancer who were referred to phase I clinical trials, to identify molecular aberrations, clinical characteristics, survivals, and potentially effective treatment regimens. Conclusions This study provided preliminary evidence that besides modulation of the proinflammatory state, antiangiogensis and concomitant gene aberration-related therapies may improve the treatment of KRAS+/TP53+ mutant cancer. PMID:28430579

  5. A protein folding molecular imaging biosensor monitors the effects of drugs that restore mutant p53 structure and its downstream function in glioblastoma cells

    PubMed Central

    Paulmurugan, Ramasamy; Afjei, Rayhaneh; Sekar, Thillai V.; Babikir, Husam A.; Massoud, Tarik F.

    2018-01-01

    Misfolding mutations in the DNA-binding domain of p53 alter its conformation, affecting the efficiency with which it binds to chromatin to regulate target gene expression and cell cycle checkpoint functions in many cancers, including glioblastoma. Small molecule drugs that recover misfolded p53 structure and function may improve chemotherapy by activating p53-mediated senescence. We constructed and optimized a split Renilla luciferase (RLUC) complementation molecular biosensor (NRLUC-p53-CRLUC) to determine small molecule-meditated folding changes in p53 protein. After initial evaluation of the biosensor in three different cells lines, we engineered endogenously p53P98L mutant (i.e. not affecting the DNA-binding domain) Ln229 glioblastoma cells, to express the biosensor containing one of four different p53 proteins: p53wt, p53Y220C, p53G245S and p53R282W. We evaluated the consequent phenotypic changes in these four variant cells as well as the parental cells after exposure to PhiKan083 and SCH529074, drugs previously reported to activate mutant p53 folding. Specifically, we measured induced RLUC complementation and consequent therapeutic response. Upon stable transduction with the p53 biosensors, we demonstrated that these originally p53P98L Ln229 cells had acquired p53 cellular phenotypes representative of each p53 protein expressed within the biosensor fusion protein. In these engineered variants we found a differential drug response when treated with doxorubicin and temozolomide, either independently or in combination with PhiKan083 or SCH529074. We thus developed a molecular imaging complementation biosensor that mimics endogenous p53 function for use in future applications to screen novel or repurposed drugs that counter the effects of misfolding mutations responsible for oncogenic structural changes in p53. PMID:29765555

  6. Smoking, p53 Mutation, and Lung Cancer

    PubMed Central

    Gibbons, Don L.; Byers, Lauren A.; Kurie, Jonathan M.

    2014-01-01

    This issue marks the 50th Anniversary of the release of the U.S. Surgeon General’s Report on Smoking and Health. Perhaps no other singular event has done more to highlight the effects of smoking on the development of cancer. Tobacco exposure is the leading cause of cancers involving the oral cavity, conductive airways and the lung. Owing to the many carcinogens in tobacco smoke, smoking-related malignancies have a high genome-wide burden of mutations, including in the gene encoding for p53. The p53 protein is the most frequently mutated tumor suppressor in cancer, responsible for a range of critical cellular functions that are compromised by the presence of a mutation. Herein we review the epidemiologic connection between tobacco exposure and cancer, the molecular basis of p53 mutation in lung cancer, and the normal molecular and cellular roles of p53 that are abrogated during lung tumor development and progression as defined by in vitro and in vivo studies. We also consider the therapeutic potential of targeting mutant p53 in a clinical setting based upon the cellular role of mutant p53 and data from genetic murine models. PMID:24442106

  7. Recognition of Local DNA Structures by p53 Protein

    PubMed Central

    Brázda, Václav; Coufal, Jan

    2017-01-01

    p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells. PMID:28208646

  8. Okadaic acid mediates p53 hyperphosphorylation and growth arrest in cells with wild-type p53 but increases aberrant mitoses in cells with non-functional p53.

    PubMed

    Milczarek, G J; Chen, W; Gupta, A; Martinez, J D; Bowden, G T

    1999-06-01

    The protein phosphatase inhibitor and tumor promoting agent okadaic acid (OA), has been shown previously to induce hyperphosphorylation of p53 protein, which in turn correlated with increased transactivation or apoptotic function. However, how the tumor promotion effects of OA relate to p53 tumor supressor function (or dysfunction) remain unclear. Rat embryonic fibroblasts harboring a temperature-sensitive mouse p53 transgene were treated with 50 nM doses of OA. At the wild-type permissive temperature this treatment resulted in: (i) the hyperphosphorylation of sites within tryptic peptides of the transactivation domain of p53; (ii) an increase in p53 affinity for a p21(waf1) promotor oligonucleotide; (iii) an increase in cellular steady state levels of p21(waf1) message; (iv) a G2/M cell cycle blockage in addition to the G1/S arrest previously associated with p53; and (v) no increased incidence of apoptosis. On the other hand, OA treatment at the mutated p53 permissive temperature resulted in a relatively high incidence of aberrant mitosis with no upregulation of p21(waf1) message. These results suggest that while wild-type p53 blocks the proliferative effects of OA through p21(waf1)-mediated growth arrest, cells with non-functional p53 cannot arrest and suffer relatively high levels of OA-mediated aberrant mitoses.

  9. p53-independent p21 induction by MELK inhibition.

    PubMed

    Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun

    2017-08-29

    MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated.

  10. p53-independent p21 induction by MELK inhibition

    PubMed Central

    Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun

    2017-01-01

    MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated. PMID:28938528

  11. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    PubMed Central

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-01-01

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance. Images PMID:1631137

  12. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    PubMed

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-07-15

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance.

  13. Ser46 phosphorylation and prolyl-isomerase Pin1-mediated isomerization of p53 are key events in p53-dependent apoptosis induced by mutant huntingtin.

    PubMed

    Grison, Alice; Mantovani, Fiamma; Comel, Anna; Agostoni, Elena; Gustincich, Stefano; Persichetti, Francesca; Del Sal, Giannino

    2011-11-01

    Huntington disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for huntingtin protein. Several mechanisms have been proposed by which mutant huntingtin (mHtt) may trigger striatal neurodegeneration, including mitochondrial dysfunction, oxidative stress, and apoptosis. Furthermore, mHtt induces DNA damage and activates a stress response. In this context, p53 plays a crucial role in mediating mHtt toxic effects. Here we have dissected the pathway of p53 activation by mHtt in human neuronal cells and in HD mice, with the aim of highlighting critical nodes that may be pharmacologically manipulated for therapeutic intervention. We demonstrate that expression of mHtt causes increased phosphorylation of p53 on Ser46, leading to its interaction with phosphorylation-dependent prolyl isomerase Pin1 and consequent dissociation from the apoptosis inhibitor iASPP, thereby inducing the expression of apoptotic target genes. Inhibition of Ser46 phosphorylation by targeting homeodomain-interacting protein kinase 2 (HIPK2), PKCδ, or ataxia telangiectasia mutated kinase, as well as inhibition of the prolyl isomerase Pin1, prevents mHtt-dependent apoptosis of neuronal cells. These results provide a rationale for the use of small-molecule inhibitors of stress-responsive protein kinases and Pin1 as a potential therapeutic strategy for HD treatment.

  14. Mutant p53 expression in fallopian tube epithelium drives cell migration.

    PubMed

    Quartuccio, Suzanne M; Karthikeyan, Subbulakshmi; Eddie, Sharon L; Lantvit, Daniel D; Ó hAinmhire, Eoghainín; Modi, Dimple A; Wei, Jian-Jun; Burdette, Joanna E

    2015-10-01

    Ovarian cancer is the fifth leading cause of cancer death among US women. Evidence supports the hypothesis that high-grade serous ovarian cancers (HGSC) may originate in the distal end of the fallopian tube. Although a heterogeneous disease, 96% of HGSC contain mutations in p53. In addition, the "p53 signature," or overexpression of p53 protein (usually associated with mutation), is a potential precursor lesion of fallopian tube derived HGSC suggesting an essential role for p53 mutation in early serous tumorigenesis. To further clarify p53-mutation dependent effects on cells, murine oviductal epithelial cells (MOE) were stably transfected with a construct encoding for the R273H DNA binding domain mutation in p53, the most common mutation in HGSC. Mutation in p53 was not sufficient to transform MOE cells but did significantly increase cell migration. A similar p53 mutation in murine ovarian surface epithelium (MOSE), another potential progenitor cell for serous cancer, was not sufficient to transform the cells nor change migration suggesting tissue specific effects of p53 mutation. Microarray data confirmed expression changes of pro-migratory genes in p53(R273H) MOE compared to parental cells, which could be reversed by suppressing Slug expression. Combining p53(R273H) with KRAS(G12V) activation caused transformation of MOE into high-grade sarcomatoid carcinoma when xenografted into nude mice. Elucidating the specific role of p53(R273H) in the fallopian tube will improve understanding of changes at the earliest stage of transformation. This information can help develop chemopreventative strategies to prevent the accumulation of additional mutations and reverse progression of the "p53 signature" thereby, improving survival rates. © 2015 UICC.

  15. Distinct tumor protein p53 mutants in breast cancer subgroups.

    PubMed

    Dumay, Anne; Feugeas, Jean-Paul; Wittmer, Evelyne; Lehmann-Che, Jacqueline; Bertheau, Philippe; Espié, Marc; Plassa, Louis-François; Cottu, Paul; Marty, Michel; André, Fabrice; Sotiriou, Christos; Pusztai, Lajos; de Thé, Hugues

    2013-03-01

    Tumor protein p53 (TP53) is mutated in approximately 30% of breast cancers, but this frequency fluctuates widely between subclasses. We investigated the p53 mutation status in 572 breast tumors, classified into luminal, basal and molecular apocrine subgroups. As expected, the lowest mutation frequency was observed in luminal (26%), and the highest in basal (88%) tumors. Luminal tumors showed significantly higher frequency of substitutions (82 vs. 65%), notably A/T to G/C transitions (31 vs. 15%), whereas molecular apocrine and basal tumors presented much higher frequencies of complex mutations (deletions/insertions) (36 and 33%, respectively, vs. 18%). Accordingly, missense mutations were significantly more frequent in luminal tumors (75 vs. 54%), whereas basal tumors displayed significantly increased rates of TP53 truncations (43 vs. 25%), resulting in loss of function and/or expression. Interestingly, as basal tumors, molecular apocrine tumors presented with a high rate of complex mutations, but paradoxically, these were not associated with increased frequency of p53 truncation. As in luminal tumors, this could reflect a selective pressure for p53 gain of function, possibly through P63/P73 inactivation. Collectively, these observations point not only to different mechanisms of TP53 alterations, but also to different functional consequences in the different breast cancer subtypes. Copyright © 2012 UICC.

  16. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation.

    PubMed

    Zeng, Kaixuan; Chen, Xiaoxiang; Hu, Xiuxiu; Liu, Xiangxiang; Xu, Tao; Sun, Huiling; Pan, Yuqin; He, Bangshun; Wang, Shukui

    2018-06-13

    Colorectal cancer (CRC) is one of the most common aggressive malignancies. Like other solid tumors, inactivation of tumor suppressor genes and activation of oncogenes occur during CRC development and progression. Recently, a novel tumor suppressor, LACTB, was proposed to inhibit tumor progression, but the functional and clinical significance of this tumor suppressor in CRC remains unexplored. Herein, we found LACTB was significantly downregulated in CRC due to promoter methylation and histone deacetylation, which was associated with metastasis and advanced clinical stage. CRC patients with low LACTB expression had poorer overall survival and LACTB also determined to be an independent prognostic factor for poorer outcome. Ectopic expression of LACTB suppressed CRC cells proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and inhibited CRC growth and metastasis in vivo, while knockout of LACTB by CRISPR/Cas9 gene editing technique resulted in an opposite phenotype. Interestingly, LACTB could exert antitumorigenic effect only in HCT116 and HCT8 cells harboring wild-type TP53, but not in HT29 and SW480 cells harboring mutant TP53 or HCT116 p53 -/- cells. Mechanistic studies demonstrated that LACTB could directly bind to the C terminus of p53 to inhibit p53 degradation by preventing MDM2 from interacting with p53. Moreover, ablation of p53 attenuated the antitumorigenic effects of LACTB overexpression in CRC. Collectively, our findings successfully demonstrate for the first time that LACTB is a novel epigenetic silenced tumor suppressor through modulating the stability of p53, supporting the pursuit of LACTB as a potential therapeutic target for CRC.

  17. Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively.

    PubMed

    Porta, Chiara; Hadj-Slimane, Reda; Nejmeddine, Mohamed; Pampin, Mathieu; Tovey, Michael G; Espert, Lucile; Alvarez, Sandra; Chelbi-Alix, Mounira K

    2005-01-20

    Type I interferon (IFN) enhances the transcription of the tumor suppressor gene p53. To elucidate the molecular mechanism mediating IFN-induced apoptosis, we analysed programmed cell death in response to type I (IFNalpha) or type II (IFNgamma) treatment in relation to p53 status. In two cell lines (MCF-7, SKNSH), IFNalpha, but not IFNgamma, enhanced apoptosis in a p53-dependent manner. Furthermore, only IFNalpha upregulated p53 as well as p53 target genes (Noxa, Mdm2 and CD95). The apoptotic response to IFNalpha decreased in the presence of ZB4, an anti-CD95 antibody, suggesting that CD95 is involved in this process. When p53 was inactivated by the E6 viral protein or the expression of a p53 mutant, IFNalpha-induced apoptosis and p53 target genes upregulation were abrogated. Altogether these results demonstrate that p53 plays a pivotal role in the IFNalpha-induced apoptotic response. IFNalpha-induced PML was unable to recruit p53 into nuclear bodies and its downregulation by siRNA did not alter CD95 expression. In contrast, IFNgamma-induced apoptosis is p53-independent. CD95 and IFN-regulatory factor 1 (IRF1) are directly upregulated by this cytokine. Apoptotic response to IFNgamma is decreased in the presence of ZB4 and strongly diminished by IRF1 siRNA, implicating both CD95 and IRF1 in IFNgamma-induced apoptotic response. Taken together, these results show that in two different cell lines, IFNalpha and IFNgamma, induce p53-dependent -independent apoptosis, respectively.

  18. [The Expression of Pokemon in Endometrial Carcinoma Tissue and the Correlation with Mutant p53].

    PubMed

    Yi, Tian-jin; Wang, Ping

    2016-05-01

    To detect the expression of Pokemon in endometrial carcinoma (EC), to provide preliminary theoretical basis for clarifying pathogenesis and searching for effective targets. Ninety-eight cases of endometrial tissue paraffin specimens form July 2012 to July 2014 in West China Second University Hospital, Sichuan University, were collected, including: EC group, consisting of adenocarcinoma 23 cases, adenosquamous 12 cases, serous 3 cases, mucinous 11 cases and clear cell 9 cases, and control group, consisting of atypical hyperplasia endometrium 20 cases and normal endometrium 20 cases (secretory 10 cases, hyperplasia 10 cases). Immunohistochemistry was used to detect the expression of Pokemonin each section, analyzing the correlation of Pokemon expression with clinicopathologic characteristics and p53 expression. The positive rate of Pokemon in normal endometrium was 25% (5/20), significantly lower than that in atypical hyperplasia endometrium (60.0%, 12/20) and EC (93.1%, 54/58) (P < 0.05); the rate in type II was 97. 12% (34/35), significantly higher than that in type I (86.96%, 20/23) (P = 0.018). The positive rate of Pokemon in III-IV stage, type II and Ki-67 ≥ 50 EC tissue was much higher (P = 0.012, 0.023, 0.029). In type II EC tissue, the correlation index between Pokemon and p53 is 0.669 (P = 0.000). The over expression of Pokemon upregulates the expression of mutant p53, which may be one of the carcinogenesis modes in type II EC.

  19. Roles of HAUSP-mediated p53 regulation in central nervous system development.

    PubMed

    Kon, N; Zhong, J; Kobayashi, Y; Li, M; Szabolcs, M; Ludwig, T; Canoll, P D; Gu, W

    2011-08-01

    The deubiquitinase HAUSP (herpesvirus-associated ubiquitin-specific protease; also called USP7) has a critical role in regulating the p53-Mdm2 (murine double minute 2) pathway. By using the conventional knockout approach, we previously showed that hausp inactivation leads to early embryonic lethality. To fully understand the physiological functions of hausp, we have generated mice lacking hausp specifically in the brain and examined the impacts of this manipulation on brain development. We found that deletion of hausp in neural cells resulted in neonatal lethality. The brains from these mice displayed hypoplasia and deficiencies in development, which were mainly caused by p53-mediated apoptosis. Detailed analysis also showed an increase of both p53 levels and p53-dependent transcriptional activation in hausp knockout brains. Notably, neural cell survival and brain development of hausp-mutant mice can largely be restored in the p53-null background. Nevertheless, in contrast to the case of mdm2- and mdm4 (murine double minute 4)-mutant mice, inactivation of p53 failed to completely rescue the neonatal lethality of these hausp-mutant mice. These results indicate that HAUSP-mediated p53 regulation is crucial for brain development, and also suggest that both the p53-dependent and the p53-independent functions of HAUSP contribute to the neonatal lethality of hausp-mutant mice.

  20. Inability of p53-reactivating compounds Nutlin-3 and RITA to overcome p53 resistance in tumor cells deficient in p53Ser46 phosphorylation.

    PubMed

    Ma, Teng; Yamada, Shumpei; Ichwan, Solachuddin J A; Iseki, Sachiko; Ohtani, Kiyoshi; Otsu, Megumi; Ikeda, Masa-Aki

    2012-01-20

    The p53 tumor suppressor protein plays key roles in protecting cells from tumorigenesis. Phosphorylation of p53 at Ser46 (p53Ser46) is considered to be a crucial modification regulating p53-mediated apoptosis. Because the activity of p53 is impaired in most human cancers, restoration of wild-type p53 (wt-p53) function by its gene transfer or by p53-reactivating small molecules has been extensively investigated. The p53-reactivating compounds Nutlin-3 and RITA activate p53 in the absence of genotoxic stress by antagonizing the action of its negative regulator Mdm2. Although controversial, Nutlin-3 was shown to induce p53-mediated apoptosis in a manner independent of p53 phosphorylation. Recently, RITA was shown to induce apoptosis by promoting p53Ser46 phosphorylation. Here we examined whether Nutlin-3 or RITA can overcome resistance to p53-mediated apoptosis in p53-resistant tumor cell lines lacking the ability to phosphorylate p53Ser46. We show that Nutlin-3 did not rescue the apoptotic defect of a Ser46 phosphorylation-defective p53 mutant in p53-sensitive tumor cells, and that RITA neither restored p53Ser46 phosphorylation nor induced apoptosis in p53Ser46 phosphorylation-deficient cells retaining wt-p53. Furthermore, treatment with Nutlin-3 or RITA together with adenoviral p53 gene transfer also failed to induce apoptosis in p53Ser46 phosphorylation-deficient cells either expressing or lacking wt-p53. These results indicate that neither Nutlin-3 nor RITA in able to induce p53-mediated apoptosis in the absence of p53Ser46 phosphorylation. Thus, the dysregulation of this phosphorylation in tumor cells may be a critical factor that limits the efficacy of these p53-based cancer therapies. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Ser46 phosphorylation and prolyl-isomerase Pin1-mediated isomerization of p53 are key events in p53-dependent apoptosis induced by mutant huntingtin

    PubMed Central

    Grison, Alice; Mantovani, Fiamma; Comel, Anna; Agostoni, Elena; Gustincich, Stefano; Persichetti, Francesca; Del Sal, Giannino

    2011-01-01

    Huntington disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for huntingtin protein. Several mechanisms have been proposed by which mutant huntingtin (mHtt) may trigger striatal neurodegeneration, including mitochondrial dysfunction, oxidative stress, and apoptosis. Furthermore, mHtt induces DNA damage and activates a stress response. In this context, p53 plays a crucial role in mediating mHtt toxic effects. Here we have dissected the pathway of p53 activation by mHtt in human neuronal cells and in HD mice, with the aim of highlighting critical nodes that may be pharmacologically manipulated for therapeutic intervention. We demonstrate that expression of mHtt causes increased phosphorylation of p53 on Ser46, leading to its interaction with phosphorylation-dependent prolyl isomerase Pin1 and consequent dissociation from the apoptosis inhibitor iASPP, thereby inducing the expression of apoptotic target genes. Inhibition of Ser46 phosphorylation by targeting homeodomain-interacting protein kinase 2 (HIPK2), PKCδ, or ataxia telangiectasia mutated kinase, as well as inhibition of the prolyl isomerase Pin1, prevents mHtt-dependent apoptosis of neuronal cells. These results provide a rationale for the use of small-molecule inhibitors of stress-responsive protein kinases and Pin1 as a potential therapeutic strategy for HD treatment. PMID:22011578

  2. A dual role of p53 in the control of autophagy.

    PubMed

    Tasdemir, Ezgi; Chiara Maiuri, M; Morselli, Eugenia; Criollo, Alfredo; D'Amelio, Marcello; Djavaheri-Mergny, Mojgan; Cecconi, Francesco; Tavernarakis, Nektarios; Kroemer, Guido

    2008-08-01

    Genotoxic stress can induce autophagy in a p53-dependent fashion and p53 can transactivate autophagy-inducing genes. We have observed recently that inactivation of p53 by deletion, depletion or inhibition can trigger autophagy. Thus, human and mouse cells subjected to knockout, knockdown or pharmacological inhibition of p53 manifest signs of autophagy such as depletion of p62/SQSTM1, LC3 lipidation, redistribution of GFP-LC3 in cytoplasmic puncta, and accumulation of autophagosomes and autolysosomes, both in vitro and in vivo. Inhibition of p53 causes autophagy in enucleated cells, indicating that the cytoplasmic, non-nuclear pool of p53 can regulate autophagy. Accordingly, retransfection of p53(-/-) cells with wild-type p53 as well as a p53 mutant that is excluded from the nucleus (due to the deletion of the nuclear localization sequence) can inhibit autophagy, whereas retransfection with a nucleus-restricted p53 mutant (in which the nuclear localization sequence has been deleted) does not inhibit autophagy. Several distinct autophagy inducers (e.g., starvation, rapamycin, lithium, tunicamycin and thapsigargin) stimulate the rapid degradation of p53. In these conditions, inhibition of the p53-specific E3 ubiquitin ligase HDM2 can avoid p53 depletion and simultaneously prevent the activation of autophagy. Moreover, a p53 mutant that lacks the HDM2 ubiquitinylation site and hence is more stable than wild-type p53 is particularly efficient in suppressing autophagy. In conclusion, p53 plays a dual role in the control of autophagy. On the one hand, nuclear p53 can induce autophagy through transcriptional effects. On the other hand, cytoplasmic p53 may act as a master repressor of autophagy.

  3. Reactivation of mutant p53: Constraints on mechanism highlighted by principal component analysis of the DNA binding domain.

    PubMed

    Ouaray, Zahra; ElSawy, Karim M; Lane, David P; Essex, Jonathan W; Verma, Chandra

    2016-10-01

    Most p53 mutations associated with cancer are located in its DNA binding domain (DBD). Many structures (X-ray and NMR) of this domain are available in the protein data bank (PDB) and a vast conformational heterogeneity characterizes the various free and complexed states. The major difference between the apo and the holo-complexed states appears to lie in the L1 loop. In particular, the conformations of this loop appear to depend intimately on the sequence of DNA to which it binds. This conclusion builds upon recent observations that implicate the tetramerization and the C-terminal domains (respectively TD and Cter) in DNA binding specificity. Detailed PCA analysis of the most recent collection of DBD structures from the PDB have been carried out. In contrast to recommendations that small molecules/drugs stabilize the flexible L1 loop to rescue mutant p53, our study highlights a need to retain the flexibility of the p53 DNA binding surface (DBS). It is the adaptability of this region that enables p53 to engage in the diverse interactions responsible for its functionality. Proteins 2016; 84:1443-1461. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. p53 as an Effector or Inhibitor of Therapy Response.

    PubMed

    Ablain, Julien; Poirot, Brigitte; Esnault, Cécile; Lehmann-Che, Jacqueline; de Thé, Hugues

    2015-12-04

    Although integrity of the p53 signaling pathway in a given tumor was expected to be a critical determinant of response to therapies, most clinical studies failed to link p53 status and treatment outcome. Here, we present two opposite situations: one in which p53 is an essential effector of cure by targeted leukemia therapies and another one in advanced breast cancers in which p53 inactivation is required for the clinical efficacy of dose-dense chemotherapy. If p53 promotes or blocks therapy response, therapies must be tailored on its status in individual tumors. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Zn(II)-curc targets p53 in thyroid cancer cells.

    PubMed

    Garufi, Alessia; D'Orazi, Valerio; Crispini, Alessandra; D'Orazi, Gabriella

    2015-10-01

    TP53 mutation is a common event in many cancers, including thyroid carcinoma. Defective p53 activity promotes cancer resistance to therapies and a more malignant phenotype, acquiring oncogenic functions. Rescuing the function of mutant p53 (mutp53) protein is an attractive anticancer therapeutic strategy. Zn(II)-curc is a novel small molecule that has been shown to target mutp53 protein in several cancer cells, but its effect in thyroid cancer cells remains unclear. Here, we investigated whether Zn(II)-curc could affect p53 in thyroid cancer cells with both p53 mutation (R273H) and wild-type p53. Zn(II)-curc induced mutp53H273 downregulation and reactivation of wild-type functions, such as binding to canonical target promoters and target gene transactivation. This latter effect was similar to that induced by PRIMA-1. In addition, Zn(II)-curc triggered p53 target gene expression in wild-type p53-carrying cells. In combination treatments, Zn(II)-curc enhanced the antitumor activity of chemotherapeutic drugs, in both mutant and wild-type-carrying cancer cells. Taken together, our data indicate that Zn(II)-curc promotes the reactivation of p53 in thyroid cancer cells, providing in vitro evidence for a potential therapeutic approach in thyroid cancers.

  6. p53 Mutation suppresses adult neurogenesis in medaka fish (Oryzias latipes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isoe, Yasuko; Okuyama, Teruhiro; Taniguchi, Yoshihito

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Progenitor migration is accompanied by an increase in their numbers in the adult brain. Black-Right-Pointing-Pointer p53 Mutation suppressed an increase in the number of the migrated progenitors. Black-Right-Pointing-Pointer The decreased progenitor number is not due to enhanced cell death. Black-Right-Pointing-Pointer p53 Mutation did not affect proliferation of stem cells. -- Abstract: Tumor suppressor p53 negatively regulates self-renewal of neural stem cells in the adult murine brain. Here, we report that the p53 null mutation in medaka fish (Oryzias latipes) suppressed neurogenesis in the telencephalon, independent of cell death. By using 5-bromo-29-deoxyuridine (BrdU) immunohistochemistry, we identified 18 proliferation zonesmore » in the brains of young medaka fish; in situ hybridization showed that p53 was expressed selectively in at least 12 proliferation zones. We also compared the number of BrdU-positive cells present in the whole telencephalon of wild-type (WT) and p53 mutant fish. Immediately after BrdU exposure, the number of BrdU-positive cells did not differ significantly between them. One week after BrdU-exposure, the BrdU-positive cells migrated from the proliferation zone, which was accompanied by an increased number in the WT brain. In contrast, no significant increase was observed in the p53 mutant brain. Terminal deoxynucleotidyl transferase (dUTP) nick end-labeling revealed that there was no significant difference in the number of apoptotic cells in the telencephalon of p53 mutant and WT medaka, suggesting that the decreased number of BrdU-positive cells in the mutant may be due to the suppression of proliferation rather than the enhancement of neural cell death. These results suggest that p53 positively regulates neurogenesis via cell proliferation.« less

  7. Controlling aggregation propensity in A53T mutant of alpha-synuclein causing Parkinson's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sonu; Sarkar, Anita; Sundar, Durai, E-mail: sundar@dbeb.iitd.ac.in

    2009-09-18

    Understanding {alpha}-synuclein in terms of fibrillization, aggregation, solubility and stability is fundamental in Parkinson's disease (PD). The three familial mutations, namely, A30P, E46K and A53T cause PD because the hydrophobic regions in {alpha}-synuclein acquire {beta}-sheet configuration, and have a propensity to fibrillize and form amyloids that cause cytotoxicity and neurodegeneration. On simulating the native form and mutants (A30P, E46K and A53T) of {alpha}-synuclein in water solvent, clear deviations are observed in comparison to the all-helical 1XQ8 PDB structure. We have identified two crucial residues, {sup 40}Val and {sup 74}Val, which play key roles in {beta}-sheet aggregation in the hydrophobic regionsmore » 36-41 and 68-78, respectively, leading to fibrillization and amyloidosis in familial (A53T) PD. We have also identified V40D{sub V}74D, a double mutant of A53T (the most amyloidogenic mutant). The simultaneous introduction of these two mutations in A53T nearly ends its aggregation propensity, increases its solubility and positively enhances its thermodynamic stability.« less

  8. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    PubMed Central

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  9. Development of an adenoviral vector with robust expression driven by p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajgelman, Marcio C.; Biotechnology Program, Biomedical Sciences Institute, University of Sao Paulo; Millennium Institute-Gene Therapy Network, Ministry of Science and Technology

    2008-02-05

    Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx{beta}, containing a p53-responsive element, a minimal promoter and the first intron of the rabbit {beta}-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG servedmore » as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities.« less

  10. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhendong, E-mail: zdyu@hotmail.com; Wang, Hao; Zhang, Libin

    CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrugmore » system.« less

  11. Self-aggregation and coaggregation of the p53 core fragment with its aggregation gatekeeper variant.

    PubMed

    Lei, Jiangtao; Qi, Ruxi; Wei, Guanghong; Nussinov, Ruth; Ma, Buyong

    2016-03-21

    Recent studies suggested that p53 aggregation can lead to loss-of-function (LoF), dominant-negative (DN) and gain-of-function (GoF) effects, with adverse cancer consequences. The p53 aggregation-nucleating (251)ILTIITL(257) fragment is a key segment in wild-type p53 aggregation; however, an I254R mutation can prevent it. It was suggested that self-assembly of wild-type p53 and its cross-interaction with mutants differ from the classical amyloid nucleation-growth mechanism. Here, using replica exchange molecular dynamics (REMD) simulations, we studied the cross-interactions of this p53 core fragment and its aggregation rescue I254R mutant. We found that the core fragment displays strong aggregation propensity, whereas the gatekeeper I254R mutant tends to be disordered, consistent with experiments. Our cross-interaction results reveal that the wild-type p53 fragment promotes β-sheet formation of the I254R mutant by shifting the disordered mutant peptides into aggregating states. As a result, the system has similar oligomeric structures, inter-peptide interactions and free energy landscape as the wild type fragment does, revealing a prion-like process. We also found that in the cross-interaction system, the wild-type species has higher tendency to interact with the mutant than with itself. This phenomenon illustrates synergistic effects between the p53 (251)ILTIITL(257) fragment and the mutant resembling prion cross-species propagation, cautioning against exploiting it in drug discovery.

  12. Modeling the Etiology of p53-mutated Cancer Cells*

    PubMed Central

    Perez, Ricardo E.; Shen, Hong; Duan, Lei; Kim, Reuben H.; Kim, Terresa; Park, No-Hee; Maki, Carl G.

    2016-01-01

    p53 gene mutations are among the most common alterations in cancer. In most cases, missense mutations in one TP53 allele are followed by loss-of-heterozygosity (LOH), so tumors express only mutant p53. TP53 mutations and LOH have been linked, in many cases, with poor therapy response and worse outcome. Despite this, remarkably little is known about how TP53 point mutations are acquired, how LOH occurs, or the cells involved. Nutlin-3a occupies the p53-binding site in MDM2 and blocks p53-MDM2 interaction, resulting in the stabilization and activation of p53 and subsequent growth arrest or apoptosis. We leveraged the powerful growth inhibitory activity of Nutlin-3a to select p53-mutated cells and examined how TP53 mutations arise and how the remaining wild-type allele is lost or inactivated. Mismatch repair (MMR)-deficient colorectal cancer cells formed heterozygote (p53 wild-type/mutant) colonies when cultured in low doses of Nutlin-3a, whereas MMR-corrected counterparts did not. Placing these heterozygotes in higher Nutlin-3a doses selected clones in which the remaining wild-type TP53 was silenced. Our data suggest silencing occurred through a novel mechanism that does not involve DNA methylation, histone methylation, or histone deacetylation. These data indicate MMR deficiency in colorectal cancer can give rise to initiating TP53 mutations and that TP53 silencing occurs via a copy-neutral mechanism. Moreover, the data highlight the use of MDM2 antagonists as tools to study mechanisms of TP53 mutation acquisition and wild-type allele loss or silencing in cells with defined genetic backgrounds. PMID:27022024

  13. Harnessing Fluorine–Sulfur Contacts and Multipolar Interactions for the Design of p53 Mutant Y220C Rescue Drugs

    PubMed Central

    2016-01-01

    Many oncogenic mutants of the tumor suppressor p53 are conformationally unstable, including the frequently occurring Y220C mutant. We have previously developed several small-molecule stabilizers of this mutant. One of these molecules, PhiKan083, 1-(9-ethyl-9H-carbazole-3-yl)-N-methylmethanamine, binds to a mutation-induced surface crevice with a KD = 150 μM, thereby increasing the melting temperature of the protein and slowing its rate of aggregation. Incorporation of fluorine atoms into small molecule ligands can substantially improve binding affinity to their protein targets. We have, therefore, harnessed fluorine–protein interactions to improve the affinity of this ligand. Step-wise introduction of fluorines at the carbazole ethyl anchor, which is deeply buried within the binding site in the Y220C–PhiKan083 complex, led to a 5-fold increase in affinity for a 2,2,2-trifluoroethyl anchor (ligand efficiency of 0.3 kcal mol–1 atom–1). High-resolution crystal structures of the Y220C–ligand complexes combined with quantum chemical calculations revealed favorable interactions of the fluorines with protein backbone carbonyl groups (Leu145 and Trp146) and the sulfur of Cys220 at the mutation site. Affinity gains were, however, only achieved upon trifluorination, despite favorable interactions of the mono- and difluorinated anchors with the binding pocket, indicating a trade-off between energetically favorable protein–fluorine interactions and increased desolvation penalties. Taken together, the optimized carbazole scaffold provides a promising starting point for the development of high-affinity ligands to reactivate the tumor suppressor function of the p53 mutant Y220C in cancer cells. PMID:27267810

  14. Impact of low-frequency hotspot mutation R282Q on the structure of p53 DNA-binding domain as revealed by crystallography at 1.54 Å resolution

    PubMed Central

    Tu, Chao; Tan, Yu-Hong; Shaw, Gary; Zhou, Zheng; Bai, Yawen; Luo, Ray; Ji, Xinhua

    2008-01-01

    Tumor suppressor p53 is a sequence-specific DNA-binding protein and its central DNA-binding domain (DBD) harbors six hotspots (Arg175, Gly245, Arg248, Arg249, Arg273 and Arg282) for human cancers. Here, the crystal structure of a low-frequency hotspot mutant, p53DBD(R282Q), is reported at 1.54 Å resolution together with the results of molecular-dynamics simulations on the basis of the structure. In addition to eliminating a salt bridge, the R282Q mutation has a significant impact on the properties of two DNA-binding loops (L1 and L3). The L1 loop is flexible in the wild type, but it is not flexible in the mutant. The L3 loop of the wild type is not flexible, whereas it assumes two conformations in the mutant. Molecular-dynamics simulations indicated that both conformations of the L3 loop are accessible under biological conditions. It is predicted that the elimination of the salt bridge and the inversion of the flexibility of L1 and L3 are directly or indirectly responsible for deactivating the tumor suppressor p53. PMID:18453682

  15. A Sensitive and Specific Diagnostic Panel to Distinguish Diffuse Astrocytoma from Astrocytosis: Chromosome 7 Gain with Mutant Isocitrate Dehydrogenase 1 and p53

    PubMed Central

    Camelo-Piragua, Sandra; Jansen, Michael; Ganguly, Aniruddha; Kim, J. ChulMin; Cosper, Arjola K.; Dias-Santagata, Dora; Nutt, Catherine L.; Iafrate, A. John; Louis, David N.

    2011-01-01

    One of the major challenges of surgical neuropathology is the distinction of diffuse astrocytoma (World Health Organization [WHO] grade II) from astrocytosis. The most commonly used ancillary tool to solve this problem is p53 immunohistochemistry (IHC), but this is neither sensitive nor specific. Isocitrate dehydrogenase 1 (IDH1) mutations are common in lower grade gliomas, with most causing a specific amino acid change (R132H) that can be detected with a monoclonal antibody. IDH2 mutations are rare, but also occur in gliomas. In addition, gains of chromosome 7 are common in gliomas. In this study we assessed the status of p53, IDH1/2 and chromosome 7 to determine the most useful panel to distinguish astrocytoma from astrocytosis. We studied biopsy specimens from 21 WHO grade II diffuse astrocytomas and 20 reactive conditions. The single most sensitive test to identify astrocytoma is fluorescence in situ hybridization (FISH) for chromosome 7 gain (76.2%). The combination of p53 and mutant IDH1 IHC provides a higher sensitivity (71.4%) than either test alone (47.8%); this combination offers a practical initial approach for the surgical pathologist. The best overall sensitivity (95%) is achieved when FISH for chromosome 7 gain is added to the p53-mutant IDH1 IHC panel. PMID:21343879

  16. Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo

    PubMed Central

    Bazzi, Hisham; Anderson, Kathryn V.

    2014-01-01

    Centrosomes are the microtubule-organizing centers of animal cells that organize interphase microtubules and mitotic spindles. Centrioles are the microtubule-based structures that organize centrosomes, and a defined set of proteins, including spindle assembly defective-4 (SAS4) (CPAP/CENPJ), is required for centriole biogenesis. The biological functions of centrioles and centrosomes vary among animals, and the functions of mammalian centrosomes have not been genetically defined. Here we use a null mutation in mouse Sas4 to define the cellular and developmental functions of mammalian centrioles in vivo. Sas4-null embryos lack centrosomes but survive until midgestation. As expected, Sas4−/− mutants lack primary cilia and therefore cannot respond to Hedgehog signals, but other developmental signaling pathways are normal in the mutants. Unlike mutants that lack cilia, Sas4−/− embryos show widespread apoptosis associated with global elevated expression of p53. Cell death is rescued in Sas4−/− p53−/− double-mutant embryos, demonstrating that mammalian centrioles prevent activation of a p53-dependent apoptotic pathway. Expression of p53 is not activated by abnormalities in bipolar spindle organization, chromosome segregation, cell-cycle profile, or DNA damage response, which are normal in Sas4−/− mutants. Instead, live imaging shows that the duration of prometaphase is prolonged in the mutants while two acentriolar spindle poles are assembled. Independent experiments show that prolonging spindle assembly is sufficient to trigger p53-dependent apoptosis. We conclude that a short delay in the prometaphase caused by the absence of centrioles activates a previously undescribed p53-dependent cell death pathway in the rapidly dividing cells of the mouse embryo. PMID:24706806

  17. Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia.

    PubMed

    Trbusek, Martin; Smardova, Jana; Malcikova, Jitka; Sebejova, Ludmila; Dobes, Petr; Svitakova, Miluse; Vranova, Vladimira; Mraz, Marek; Francova, Hana Skuhrova; Doubek, Michael; Brychtova, Yvona; Kuglik, Petr; Pospisilova, Sarka; Mayer, Jiri

    2011-07-01

    There is a distinct connection between TP53 defects and poor prognosis in chronic lymphocytic leukemia (CLL). It remains unclear whether patients harboring TP53 mutations represent a homogenous prognostic group. We evaluated the survival of patients with CLL and p53 defects identified at our institution by p53 yeast functional assay and complementary interphase fluorescence in situ hybridization analysis detecting del(17p) from 2003 to 2010. A defect of the TP53 gene was identified in 100 of 550 patients. p53 mutations were strongly associated with the deletion of 17p and the unmutated IgVH locus (both P < .001). Survival assessed from the time of abnormality detection was significantly reduced in patients with both missense (P < .001) and nonmissense p53 mutations (P = .004). In addition, patients harboring missense mutation located in p53 DNA-binding motifs (DBMs), structurally well-defined parts of the DNA-binding domain, manifested a clearly shorter median survival (12 months) compared with patients having missense mutations outside DBMs (41 months; P = .002) or nonmissense alterations (36 months; P = .005). The difference in survival was similar in the analysis limited to patients harboring mutation accompanied by del(17p) and was also confirmed in a subgroup harboring TP53 defect at diagnosis. The patients with p53 DBMs mutation (at diagnosis) also manifested a short median time to first therapy (TTFT; 1 month). The substantially worse survival and the short TTFT suggest a strong mutated p53 gain-of-function phenotype in patients with CLL with DBMs mutations. The impact of p53 DBMs mutations on prognosis and response to therapy should be analyzed in investigative clinical trials.

  18. p53 inactivation decreases dependence on estrogen/ERK signalling for proliferation but promotes EMT and susceptility to 3-bromopyruvate in ERα+ breast cancer MCF-7 cells.

    PubMed

    Rieber, Manuel; Strasberg-Rieber, Mary

    2014-03-15

    Most breast cancers express the estrogen receptor alpha (ERα(+)), harbor wt TP53, depend on estrogen/ERK signalling for proliferation, and respond to anti-estrogens. However, concomittant activation of the epidermal growth factor receptor (EGFR)/MEK pathway promotes resistance by decreasing estrogen dependence. Previously, we showed that retroviral transduction of mutant p53 R175H into wt TP53 ERα(+) MCF-7 cells induces epidermal growth factor (EGF)-independent proliferation, activation of the EGF receptor (p-EGFR) and some characteristics of epithelial-mesenchymal transition (EMT). To investigate whether p53 inactivation augments ERα(+) cell proliferation in response to restrictive estradiol, chemical MEK inhibition or metabolic inhibitors. Introduction of mutant p53 R175H lowered expression of p53-dependent PUMA and p21WAF1, decreased E-cadherin and cytokeratin 18 associated with EMT, but increased the % of proliferating ERα(+)/Ki67 cells, diminishing estrogen dependence. These cells also exhibited higher proliferation in the presence of MEK-inhibitor UO126, reciprocally correlating with preferential susceptibility to the pyruvate analog 3-bromopyruvate (3-BrPA) without a comparable response to 2-deoxyglucose. p53 siRNA silencing by electroporation in wt TP53 MCF-7 cells also decreased estrogen dependence and response to MEK inhibition, while also conferring susceptibility to 3-BrPA. (a) ERα(+) breast cancer cells dysfunctional for TP53 which proliferate irrespective of low estrogen and chemical MEK inhibition are likely to increase metabolic consumption becoming increasingly susceptible to 3-BrPA; (b) targeting the pyruvate pathway may improve response to endocrine therapy in ERα(+) breast cancer with p53 dysfunction. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. R248Q mutation--Beyond p53-DNA binding.

    PubMed

    Ng, Jeremy W K; Lama, Dilraj; Lukman, Suryani; Lane, David P; Verma, Chandra S; Sim, Adelene Y L

    2015-12-01

    R248 in the DNA binding domain (DBD) of p53 interacts directly with the minor groove of DNA. Earlier nuclear magnetic resonance (NMR) studies indicated that the R248Q mutation resulted in conformation changes in parts of DBD far from the mutation site. However, how information propagates from the mutation site to the rest of the DBD is still not well understood. We performed a series of all-atom molecular dynamics (MD) simulations to dissect sterics and charge effects of R248 on p53-DBD conformation: (i) wild-type p53 DBD; (ii) p53 DBD with an electrically neutral arginine side-chain; (iii) p53 DBD with R248A; (iv) p53 DBD with R248W; and (v) p53 DBD with R248Q. Our results agree well with experimental observations of global conformational changes induced by the R248Q mutation. Our simulations suggest that both charge- and sterics are important in the dynamics of the loop (L3) where the mutation resides. We show that helix 2 (H2) dynamics is altered as a result of a change in the hydrogen bonding partner of D281. In turn, neighboring L1 dynamics is altered: in mutants, L1 predominantly adopts the recessed conformation and is unable to interact with the major groove of DNA. We focused our attention the R248Q mutant that is commonly found in a wide range of cancer and observed changes at the zinc-binding pocket that might account for the dominant negative effects of R248Q. Furthermore, in our simulations, the S6/S7 turn was more frequently solvent exposed in R248Q, suggesting that there is a greater tendency of R248Q to partially unfold and possibly lead to an increased aggregation propensity. Finally, based on the observations made in our simulations, we propose strategies for the rescue of R248Q mutants. © 2015 Wiley Periodicals, Inc.

  20. Curcumin causes superoxide anion production and p53-independent apoptosis in human colon cancer cells.

    PubMed

    Watson, Jane L; Hill, Richard; Yaffe, Paul B; Greenshields, Anna; Walsh, Mark; Lee, Patrick W; Giacomantonio, Carman A; Hoskin, David W

    2010-11-01

    Curcumin from the rhizome of theCurcuma longa plant has chemopreventative activity and inhibits the growth of neoplastic cells. Since p53 has been suggested to be important for anticancer activity by curcumin, we investigated curcumin-induced cytotoxicity in cultures of p53(+/+) and p53(-/-) HCT-116 colon cancer cells, as well as mutant p53 HT-29 colon cancer cells. Curcumin killed wild-type p53 HCT-116 cells and mutant p53 HT-29 cells in a dose- and time-dependent manner. In addition, curcumin-treated p53(+/+) HCT-116 cells and mutant p53 HT-29 cells showed upregulation of total and activated p53, as well as increased expression of p53-regulated p21, PUMA (p53 upregulated modulator of apoptosis), and Bax; however, an equivalent cytotoxic effect by curcumin was observed in p53(+/+) and p53(-/-) HCT-116 cells, demonstrating that curcumin-induced cytotoxicity was independent of p53 status. Similar results were obtained when the cytotoxic effect of curcumin was assessed in wild-type p53 HCT-116 cells after siRNA-mediated p53 knockdown. Chromatin condensation, poly (ADP-ribose) polymerase-1 cleavage and reduced pro-caspase-3 levels in curcumin-treated p53(+/+) and p53(-/-) HCT-116 cells suggested that curcumin caused apoptosis. In addition, exposure to curcumin resulted in superoxide anion production and phosphorylation of oxidative stress proteins in p53(+/+) and p53(-/-) HCT-116 cells. Collectively, our results indicate that, despite p53 upregulation and activation, curcumin-induced apoptosis in colon cancer cells was independent of p53 status and involved oxidative stress. Curcumin may therefore have therapeutic potential in the management of colon cancer, especially in tumorsthatare resistant to conventional chemotherapydue todefects inp53 expression or function. 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Effects of the Kava Chalcone Flavokawain A Differ in Bladder Cancer Cells with Wild-type versus Mutant p53

    PubMed Central

    Tang, Yaxiong; Simoneau, Anne R.; Xie, Jun; Shahandeh, Babbak; Zi, Xiaolin

    2010-01-01

    Flavokawain A is the predominant chalcone from kava extract. We have assessed the mechanisms of flavokawain A's action on cell cycle regulation. In a p53 wild-type, low-grade, and papillary bladder cancer cell line (RT4), flavokawain A increased p21/WAF1 and p27/KIP1, which resulted in a decrease in cyclin-dependent kinase-2 (CDK2) kinase activity and subsequent G1 arrest. The increase of p21/WAF1 protein corresponded to an increased mRNA level, whereas p27/KIP1 accumulation was associated with the down-regulation of SKP2 and then increased the stability of the p27/KIP1 protein. The accumulation of p21/WAF1 and p27/KIP1 was independent of cell cycle position and thus not a result of the cell cycle arrest. In contrast, flavokawain A induced a G2-M arrest in six p53 mutant-type, high-grade bladder cancer cell lines (T24, UMUC3, TCCSUP, 5637, HT1376, and HT1197). Flavokawain A significantly reduced the expression of CDK1-inhibitory kinases, Myt1 and Wee1, and caused cyclin B1 protein accumulation leading to CDK1 activation in T24 cells. Suppression of p53 expression by small interfering RNA in RT4 cells restored Cdc25C expression and down-regulated p21/WAF1 expression, which allowed Cdc25C and CDK1 activation and then led to a G2-M arrest and an enhanced growth-inhibitory effect by flavokawain A. Consistently, flavokawain A also caused a pronounced CDK1 activation and G2-M arrest in p53 knockout but not in p53 wild-type HCT116 cells. This selectivity of flavokawain A for inducing a G2-M arrest in p53-defective cells deserves further investigation as a new mechanism for the prevention and treatment of bladder cancer. PMID:19138991

  2. Augmented BMP signaling in the neural crest inhibits nasal cartilage morphogenesis by inducing p53-mediated apoptosis.

    PubMed

    Hayano, Satoru; Komatsu, Yoshihiro; Pan, Haichun; Mishina, Yuji

    2015-04-01

    Bone morphogenetic protein (BMP) signaling plays many roles in skull morphogenesis. We have previously reported that enhanced BMP signaling through the BMP type IA receptor (BMPR1A) in cranial neural crest cells causes craniosynostosis during postnatal development. Additionally, we observed that 55% of Bmpr1a mutant mice show neonatal lethality characterized by a distended gastrointestinal tract. Here, we show that severely affected mutants exhibit defective nasal cartilage, failure of fusion between the nasal septum and the secondary palate, and higher levels of phosphorylated SMAD1 and SMAD5 in the nasal tissue. TUNEL demonstrated an increase in apoptosis in both condensing mesenchymal tissues and cartilage of the nasal region in mutants. The levels of p53 (TRP53) tumor suppressor protein were also increased in the same tissue. Injection of pifithrin-α, a chemical inhibitor of p53, into pregnant mice prevented neonatal lethality while concomitantly reducing apoptosis in nasal cartilage primordia, suggesting that enhanced BMP signaling induces p53-mediated apoptosis in the nasal cartilage. The expression of Bax and caspase 3, downstream targets of p53, was increased in the mutants; however, the p53 expression level was unchanged. It has been reported that MDM2 interacts with p53 to promote degradation. We found that the amount of MDM2-p53 complex was decreased in all mutants, and the most severely affected mutants had the largest decrease. Our previous finding that the BMP signaling component SMAD1 prevents MDM2-mediated p53 degradation coupled with our new data indicate that augmented BMP signaling induces p53-mediated apoptosis by prevention of p53 degradation in developing nasal cartilage. Thus, an appropriate level of BMP signaling is required for proper craniofacial morphogenesis. © 2015. Published by The Company of Biologists Ltd.

  3. p53 downregulates the Fanconi anaemia DNA repair pathway.

    PubMed

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-04-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53(Δ31), a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53(Δ31/Δ31) fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53(Δ31/Δ31) fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop.

  4. Inactivation of p53 by Human T-Cell Lymphotropic Virus Type 1 Tax Requires Activation of the NF-κB Pathway and Is Dependent on p53 Phosphorylation

    PubMed Central

    Pise-Masison, Cynthia A.; Mahieux, Renaud; Jiang, Hua; Ashcroft, Margaret; Radonovich, Michael; Duvall, Janet; Guillerm, Claire; Brady, John N.

    2000-01-01

    p53 plays a key role in guarding cells against DNA damage and transformation. We previously demonstrated that the human T-cell lymphotropic virus type 1 (HTLV-1) Tax can inactivate p53 transactivation function in lymphocytes. The present study demonstrates that in T cells, Tax-induced p53 inactivation is dependent upon NF-κB activation. Analysis of Tax mutants demonstrated that Tax inactivation of p53 function correlates with the ability of Tax to induce NF-κB but not p300 binding or CREB transactivation. The Tax-induced p53 inactivation can be overcome by overexpression of a dominant IκB mutant. Tax-NF-κB-induced p53 inactivation is not due to p300 squelching, since overexpression of p300 does not recover p53 activity in the presence of Tax. Further, using wild-type and p65 knockout mouse embryo fibroblasts (MEFs), we demonstrate that the p65 subunit of NF-κB is critical for Tax-induced p53 inactivation. While Tax can inactivate endogenous p53 function in wild-type MEFs, it fails to inactivate p53 function in p65 knockout MEFs. Importantly, Tax-induced p53 inactivation can be restored by expression of p65 in the knockout MEFs. Finally, we present evidence that phosphorylation of serines 15 and 392 correlates with inactivation of p53 by Tax in T cells. This study provides evidence that the divergent NF-κB proliferative and p53 cell cycle arrest pathways may be cross-regulated at several levels, including posttranslational modification of p53. PMID:10779327

  5. Reactivating p53 and Inducing Tumor Apoptosis (RITA) Enhances the Response of RITA-Sensitive Colorectal Cancer Cells to Chemotherapeutic Agents 5-Fluorouracil and Oxaliplatin.

    PubMed

    Wiegering, Armin; Matthes, Niels; Mühling, Bettina; Koospal, Monika; Quenzer, Anne; Peter, Stephanie; Germer, Christoph-Thomas; Linnebacher, Michael; Otto, Christoph

    2017-04-01

    Colorectal carcinoma (CRC) is the most common cancer of the gastrointestinal tract with frequently dysregulated intracellular signaling pathways, including p53 signaling. The mainstay of chemotherapy treatment of CRC is 5-fluorouracil (5FU) and oxaliplatin. The two anticancer drugs mediate their therapeutic effect via DNA damage-triggered signaling. The small molecule reactivating p53 and inducing tumor apoptosis (RITA) is described as an activator of wild-type and reactivator of mutant p53 function, resulting in elevated levels of p53 protein, cell growth arrest, and cell death. Additionally, it has been shown that RITA can induce DNA damage signaling. It is expected that the therapeutic benefits of 5FU and oxaliplatin can be increased by enhancing DNA damage signaling pathways. Therefore, we highlighted the antiproliferative response of RITA alone and in combination with 5FU or oxaliplatin in human CRC cells. A panel of long-term established CRC cell lines (n=9) including p53 wild-type, p53 mutant, and p53 null and primary patient-derived, low-passage cell lines (n=5) with different p53 protein status were used for this study. A substantial number of CRC cells with pronounced sensitivity to RITA (IC 50 <3.0 μmol/l) were identified within established (4/9) and primary patient-derived (2/5) CRC cell lines harboring wild-type or mutant p53 protein. Sensitivity to RITA appeared independent of p53 status and was associated with an increase in antiproliferative response to 5FU and oxaliplatin, a transcriptional increase of p53 targets p21 and NOXA, and a decrease in MYC mRNA. The effect of RITA as an inducer of DNA damage was shown by a strong elevation of phosphorylated histone variant H2A.X, which was restricted to RITA-sensitive cells. Our data underline the primary effect of RITA, inducing DNA damage, and demonstrate the differential antiproliferative effect of RITA to CRC cells independent of p53 protein status. We found a substantial number of RITA-sensitive CRC

  6. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    PubMed

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-06

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  7. Synergy between Prkdc and Trp53 regulates stem cell proliferation and GI-ARS after irradiation.

    PubMed

    Gurley, Kay E; Ashley, Amanda K; Moser, Russell D; Kemp, Christopher J

    2017-11-01

    Ionizing radiation (IR) is one of the most widely used treatments for cancer. However, acute damage to the gastrointestinal tract or gastrointestinal acute radiation syndrome (GI-ARS) is a major dose-limiting side effect, and the mechanisms that underlie this remain unclear. Here we use mouse models to explore the relative roles of DNA repair, apoptosis, and cell cycle arrest in radiation response. IR induces DNA double strand breaks and DNA-PK mutant Prkdc scid/scid mice are sensitive to GI-ARS due to an inability to repair these breaks. IR also activates the tumor suppressor p53 to trigger apoptotic cell death within intestinal crypt cells and p53 deficient mice are resistant to apoptosis. To determine if DNA-PK and p53 interact to govern radiosensitivity, we compared the response of single and compound mutant mice to 8 Gy IR. Compound mutant Prkdc scid/scid /Trp53 -/- mice died earliest due to severe GI-ARS. While both Prkdc scid/scid and Prkdc scid/scid /Trp53 -/- mutant mice had higher levels of IR-induced DNA damage, particularly within the stem cell compartment of the intestinal crypt, in Prkdc scid/scid /Trp53 -/- mice these damaged cells abnormally progressed through the cell cycle resulting in mitotic cell death. This led to a loss of Paneth cells and a failure to regenerate the differentiated epithelial cells required for intestinal function. IR-induced apoptosis did not correlate with radiosensitivity. Overall, these data reveal that DNA repair, mediated by DNA-PK, and cell cycle arrest, mediated by p53, cooperate to protect the stem cell niche after DNA damage, suggesting combination approaches to modulate both pathways may be beneficial to reduce GI-ARS. As many cancers harbor p53 mutations, this also suggests targeting DNA-PK may be effective to enhance sensitivity of p53 mutant tumors to radiation.

  8. Interaction of the Tumor Suppressor p53 with Replication Protein A.

    DTIC Science & Technology

    1996-08-01

    The DNA replication factor RPA physically associates with the tumor suppressor protein p53, an interaction that could be important for the function...binding single-stranded DNA, this mutant of RPA fails to support DNA replication . Therefore the region of RPA which interacts with p53 is essential for...of p53, p21/WAFl/CIPl, inhibits the cell-cycle by associating with cyclin-cdk kinases. It also inhibits DNA replication by interacting with a

  9. p53 downregulates the Fanconi anaemia DNA repair pathway

    PubMed Central

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-01-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53Δ31, a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53Δ31/Δ31 fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53Δ31/Δ31 fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop. PMID:27033104

  10. Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships.

    PubMed

    Mantovani, Fiamma; Zannini, Alessandro; Rustighi, Alessandra; Del Sal, Giannino

    2015-10-01

    The p53 protein family, comprising p53, p63 and p73, is primarily involved in preserving genome integrity and preventing tumor onset, and also affects a range of physiological processes. Signal-dependent modifications of its members and of other pathway components provide cells with a sophisticated code to transduce a variety of stress signaling into appropriate responses. TP53 mutations are highly frequent in cancer and lead to the expression of mutant p53 proteins that are endowed with oncogenic activities and sensitive to stress signaling. p53 family proteins have unique structural and functional plasticity, and here we discuss the relevance of prolyl-isomerization to actively shape these features. The anti-proliferative functions of the p53 family are carefully activated upon severe stress and this involves the interaction with prolyl-isomerases. In particular, stress-induced stabilization of p53, activation of its transcriptional control over arrest- and cell death-related target genes and of its mitochondrial apoptotic function, as well as certain p63 and p73 functions, all require phosphorylation of specific S/T-P motifs and their subsequent isomerization by the prolyl-isomerase Pin1. While these functions of p53 counteract tumorigenesis, under some circumstances their activation by prolyl-isomerases may have negative repercussions (e.g. tissue damage induced by anticancer therapies and ischemia-reperfusion, neurodegeneration). Moreover, elevated Pin1 levels in tumor cells may transduce deregulated phosphorylation signaling into activation of mutant p53 oncogenic functions. The complex repertoire of biological outcomes induced by p53 finds mechanistic explanations, at least in part, in the association between prolyl-isomerases and the p53 pathway. This article is part of a Special Issue entitled Proline-directed foldases: Cell signaling catalysts and drug targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Mitotic Arrest and Apoptosis in Breast Cancer Cells Induced by Origanum majorana Extract: Upregulation of TNF-α and Downregulation of Survivin and Mutant p53

    PubMed Central

    Al Dhaheri, Yusra; Eid, Ali; AbuQamar, Synan; Attoub, Samir; Khasawneh, Mohammad; Aiche, Ghenima; Hisaindee, Soleiman; Iratni, Rabah

    2013-01-01

    Background In the present study, we investigated the effect of Origanum majorana ethanolic extract on the survival of the highly proliferative and invasive triple-negative p53 mutant breast cancer cell line MDA-MB-231. Results We found that O. majorana extract (OME) was able to inhibit the viability of the MDA-MB-231 cells in a time- and concentration-dependent manner. The effect of OME on cellular viability was further confirmed by the inhibition of colony growth. We showed, depending on the concentration used, that OME elicited different effects on the MDA-MB 231 cells. Concentrations of 150 and 300 µg/mL induced an accumulation of apoptotic–resistant population of cells arrested in mitotis and overexpressing the cyclin-dependent kinase inhibitor, p21 and the inhibitor of apoptosis, survivin. On the other hand, higher concentrations of OME (450 and 600 µg/mL) triggered a massive apoptosis through the extrinsic pathway, including the activation of tumor necrosis factor-α (TNF-α), caspase 8, caspase 3, and cleavage of PARP, downregulation of survivin as well as depletion of the mutant p53 in MDA-MB-231 cells. Furthermore, OME induced an upregulation of γ-H2AX, a marker of double strand DNA breaks and an overall histone H3 and H4 hyperacetylation. Conclusion Our findings provide strong evidence that O. majorana may be a promising chemopreventive and therapeutic candidate against cancer especially for highly invasive triple negative p53 mutant breast cancer; thus validating its complementary and alternative medicinal use. PMID:23451065

  12. Negative feedback regulation of wild-type p53 biosynthesis.

    PubMed Central

    Mosner, J; Mummenbrauer, T; Bauer, C; Sczakiel, G; Grosse, F; Deppert, W

    1995-01-01

    When growth-arrested mouse fibroblasts re-entered the cell-cycle, the rise in tumour suppressor p53 mRNA level markedly preceded the rise in expression of the p53 protein. Furthermore, gamma-irradiation of such cells led to a rapid increase in p53 protein biosynthesis even in the presence of the transcription inhibitor actinomycin D. Both findings strongly suggest that p53 biosynthesis in these cells is regulated at the translational level. We present evidence for an autoregulatory control of p53 expression by a negative feed-back loop: p53 mRNA has a predicted tendency to form a stable stem-loop structure that involves the 5'-untranslated region (5'-UTR) plus some 280 nucleotides of the coding sequence. p53 binds tightly to the 5'-UTR region and inhibits the translation of its own mRNA, most likely mediated by the p53-intrinsic RNA re-annealing activity. The inhibition of p53 biosynthesis requires wild-type p53, as it is not observed with MethA mutant p53, p53-catalysed translational inhibition is selective; it might be restricted to p53 mRNA and a few other mRNAs that are able to form extensive stem-loop structures. Release from negative feed-back regulation of p53 biosynthesis, e.g. after damage-induced nuclear transport of p53, might provide a means for rapidly increasing p53 protein levels when p53 is required to act as a cell-cycle checkpoint determinant after DNA damage. Images PMID:7556087

  13. Exquisite Sensitivity of TP53 Mutant and Basal Breast Cancers to a Dose-Dense Epirubicin−Cyclophosphamide Regimen

    PubMed Central

    Espié, Marc; de Reyniès, Aurélien; Feugeas, Jean-Paul; Plassa, Louis-François; Soliman, Hany; Varna, Mariana; de Roquancourt, Anne; Lehmann-Che, Jacqueline; Beuzard, Yves; Marty, Michel; Misset, Jean-Louis; Janin, Anne; de Thé, Hugues

    2007-01-01

    Background In breast cancers, only a minority of patients fully benefit from the different chemotherapy regimens currently in use. Identification of markers that could predict the response to a particular regimen would thus be critically important for patient care. In cell lines or animal models, tumor protein p53 (TP53) plays a critical role in modulating the response to genotoxic drugs. TP53 is activated in response to DNA damage and triggers either apoptosis or cell-cycle arrest, which have opposite effects on cell fate. Yet, studies linking TP53 status and chemotherapy response have so far failed to unambiguously establish this paradigm in patients. Breast cancers with a TP53 mutation were repeatedly shown to have a poor outcome, but whether this reflects poor response to treatment or greater intrinsic aggressiveness of the tumor is unknown. Methods and Findings In this study we analyzed 80 noninflammatory breast cancers treated by frontline (neoadjuvant) chemotherapy. Tumor diagnoses were performed on pretreatment biopsies, and the patients then received six cycles of a dose-dense regimen of 75 mg/m2 epirubicin and 1,200 mg/m2 cyclophosphamide, given every 14 days. After completion of chemotherapy, all patients underwent mastectomies, thus allowing for a reliable assessment of chemotherapy response. The pretreatment biopsy samples were used to determine the TP53 status through a highly efficient yeast functional assay and to perform RNA profiling. All 15 complete responses occurred among the 28 TP53-mutant tumors. Furthermore, among the TP53-mutant tumors, nine out of ten of the highly aggressive basal subtypes (defined by basal cytokeratin [KRT] immunohistochemical staining) experienced complete pathological responses, and only TP53 status and basal subtype were independent predictors of a complete response. Expression analysis identified many mutant TP53-associated genes, including CDC20, TTK, CDKN2A, and the stem cell gene PROM1, but failed to identify a

  14. Exquisite sensitivity of TP53 mutant and basal breast cancers to a dose-dense epirubicin-cyclophosphamide regimen.

    PubMed

    Bertheau, Philippe; Turpin, Elisabeth; Rickman, David S; Espié, Marc; de Reyniès, Aurélien; Feugeas, Jean-Paul; Plassa, Louis-François; Soliman, Hany; Varna, Mariana; de Roquancourt, Anne; Lehmann-Che, Jacqueline; Beuzard, Yves; Marty, Michel; Misset, Jean-Louis; Janin, Anne; de Thé, Hugues

    2007-03-01

    In breast cancers, only a minority of patients fully benefit from the different chemotherapy regimens currently in use. Identification of markers that could predict the response to a particular regimen would thus be critically important for patient care. In cell lines or animal models, tumor protein p53 (TP53) plays a critical role in modulating the response to genotoxic drugs. TP53 is activated in response to DNA damage and triggers either apoptosis or cell-cycle arrest, which have opposite effects on cell fate. Yet, studies linking TP53 status and chemotherapy response have so far failed to unambiguously establish this paradigm in patients. Breast cancers with a TP53 mutation were repeatedly shown to have a poor outcome, but whether this reflects poor response to treatment or greater intrinsic aggressiveness of the tumor is unknown. In this study we analyzed 80 noninflammatory breast cancers treated by frontline (neoadjuvant) chemotherapy. Tumor diagnoses were performed on pretreatment biopsies, and the patients then received six cycles of a dose-dense regimen of 75 mg/m(2) epirubicin and 1,200 mg/m(2) cyclophosphamide, given every 14 days. After completion of chemotherapy, all patients underwent mastectomies, thus allowing for a reliable assessment of chemotherapy response. The pretreatment biopsy samples were used to determine the TP53 status through a highly efficient yeast functional assay and to perform RNA profiling. All 15 complete responses occurred among the 28 TP53-mutant tumors. Furthermore, among the TP53-mutant tumors, nine out of ten of the highly aggressive basal subtypes (defined by basal cytokeratin [KRT] immunohistochemical staining) experienced complete pathological responses, and only TP53 status and basal subtype were independent predictors of a complete response. Expression analysis identified many mutant TP53-associated genes, including CDC20, TTK, CDKN2A, and the stem cell gene PROM1, but failed to identify a transcriptional profile

  15. p53: traffic cop at the crossroads of DNA repair and recombination.

    PubMed

    Sengupta, Sagar; Harris, Curtis C

    2005-01-01

    p53 mutants that lack DNA-binding activities, and therefore, transcriptional activities, are among the most common mutations in human cancer. Recently, a new role for p53 has come to light, as the tumour suppressor also functions in DNA repair and recombination. In cooperation with its function in transcription, the transcription-independent roles of p53 contribute to the control and efficiency of DNA repair and recombination.

  16. p53 as a retrovirus-induced oxidative stress modulator.

    PubMed

    Kim, Soo Jin; Wong, Paul K Y

    2015-01-01

    Infection of astrocytes by the neuropathogenic mutant of Moloney murine leukemia virus, ts1, exhibits increased levels of reactive oxygen species (ROS) and signs of oxidative stress compared with uninfected astrocytes. Previously, we have demonstrated that ts1 infection caused two separate events of ROS upregulation. The first upregulation occurs during early viral establishment in host cells and the second during the virus-mediated apoptotic process. In this study, we show that virus-mediated ROS upregulation activates the protein kinase, ataxia telangiectasia mutated, which in turn phosphorylates serine 15 on p53. This activation of p53 however, is unlikely associated with ts1-induced cell death. Rather p53 appears to be involved in suppressing intracellular ROS levels in astrocytes under oxidative stress. The activated p53 appears to delay retroviral gene expression by suppressing NADPH oxidase, a superoxide-producing enzyme. These results suggest that p53 plays a role as a retrovirus-mediated oxidative stress modulator. © 2015 The Authors.

  17. Dual targeting of wild-type and mutant p53 by small molecule RITA results in the inhibition of N-Myc and key survival oncogenes and kills neuroblastoma cells in vivo and in vitro.

    PubMed

    Burmakin, Mikhail; Shi, Yao; Hedström, Elisabeth; Kogner, Per; Selivanova, Galina

    2013-09-15

    Restoration of the p53 function in tumors is a promising therapeutic strategy due to the high potential of p53 as tumor suppressor and the fact that established tumors depend on p53 inactivation for their survival. Here, we addressed the question whether small molecule RITA can reactivate p53 in neuroblastoma and suppress the growth of neuroblastoma cells in vitro and in vivo. The ability of RITA to inhibit growth and to induce apoptosis was shown in seven neuroblastoma cell lines. Mechanistic studies were carried out to determine the p53 dependence and the molecular mechanism of RITA-induced apoptosis in neuroblastoma, using cell viability assays, RNAi silencing, co-immunoprecipitation, qPCR, and Western blotting analysis. In vivo experiments were conducted to study the effect of RITA on human neuroblastoma xenografts in mice. RITA induced p53-dependent apoptosis in a set of seven neuroblastoma cell lines, carrying wild-type or mutant p53; it activated p53 and triggered the expression of proapoptotic p53 target genes. Importantly, p53 activated by RITA inhibited several key oncogenes that are high-priority targets for pharmacologic anticancer strategies in neuroblastoma, including N-Myc, Aurora kinase, Mcl-1, Bcl-2, Wip-1, MDM2, and MDMX. Moreover, RITA had a strong antitumor effect in vivo. Reactivation of wild-type and mutant p53 resulting in the induction of proapoptotic factors along with ablation of key oncogenes by compounds such as RITA may be a highly effective strategy to treat neuroblastoma. ©2013 AACR.

  18. Interactions between the otitis media gene, Fbxo11, and p53 in the mouse embryonic lung.

    PubMed

    Tateossian, Hilda; Morse, Susan; Simon, Michelle M; Dean, Charlotte H; Brown, Steve D M

    2015-12-01

    Otitis media with effusion (OME) is the most common cause of hearing loss in children, and tympanostomy (ear tube insertion) to alleviate the condition remains the commonest surgical intervention in children in the developed world. Chronic and recurrent forms of otitis media (OM) are known to have a very substantial genetic component; however, until recently, little was known of the underlying genes involved. The Jeff mouse mutant carries a mutation in the Fbxo11 gene, a member of the F-box family, and develops deafness due to a chronic proliferative OM. We previously reported that Fbxo11 is involved in the regulation of transforming growth factor beta (TGF-β) signalling by regulating the levels of phospho-Smad2 in the epithelial cells of palatal shelves, eyelids and airways of the lungs. It has been proposed that FBXO11 regulates the cell's response to TGF-β through the ubiquitination of CDT2. Additional substrates for FBXO11 have been identified, including p53. Here, we have studied both the genetic and biochemical interactions between FBXO11 and p53 in order to better understand the function of FBXO11 in epithelial development and its potential role in OM. In mice, we show that p53 (also known as Tp53) homozygous mutants and double heterozygous mutants (Jf/+ p53/+) exhibit similar epithelial developmental defects to Fbxo11 homozygotes. FBXO11 and p53 interact in the embryonic lung, and mutation in Fbxo11 prevents the interaction with p53. Both p53 and double mutants show raised levels of pSMAD2, recapitulating that seen in Fbxo11 homozygotes. Overall, our results support the conclusion that FBXO11 regulates the TGF-β pathway in the embryonic lung via cross-talk with p53. © 2015. Published by The Company of Biologists Ltd.

  19. Inhibition of autophagy exerts anti-colon cancer effects via apoptosis induced by p53 activation and ER stress.

    PubMed

    Sakitani, Kosuke; Hirata, Yoshihiro; Hikiba, Yohko; Hayakawa, Yoku; Ihara, Sozaburo; Suzuki, Hirobumi; Suzuki, Nobumi; Serizawa, Takako; Kinoshita, Hiroto; Sakamoto, Kei; Nakagawa, Hayato; Tateishi, Keisuke; Maeda, Shin; Ikenoue, Tsuneo; Kawazu, Shoji; Koike, Kazuhiko

    2015-10-24

    Although some molecularly targeted drugs for colorectal cancer are used clinically and contribute to a better prognosis, the current median survival of advanced colorectal cancer patients is not sufficient. Autophagy, a basic cell survival mechanism mediated by recycling of cellular amino acids, plays an important role in cancer. Recently, autophagy has been highlighted as a promising new molecular target. The unfolded protein response (UPR) reportedly act in complementary fashion with autophagy in intestinal homeostasis. However, the roles of UPR in colon cancer under autophagic inhibition remain to be elucidated. We aim to clarify the inhibitory effect of autophagy on colon cancer. We crossed K19 (CreERT) and Atg5 (flox/flox) mice to generate Atg5 (flox/flox)/K19 (CreERT) mice. Atg5 (flox/flox)/K19 (CreERT) mice were first treated with azoxymethane/dextran sodium sulfate and then injected with tamoxifen to inhibit autophagy in CK19-positive epithelial cells. To examine the anti-cancer mechanisms of autophagic inhibition, we used colon cancer cell lines harboring different p53 gene statuses, as well as small interfering RNAs (siRNAs) targeting Atg5 and immunoglobulin heavy-chain binding protein (BiP), a chaperone to aid folding of unfolded proteins. Colon tumors in Atg5 (flox/flox)/K19 (CreERT) mice showed loss of autophagic activity and decreased tumor size (the total tumor diameter was 28.1 mm in the control and 20.7 mm in Atg5 (flox/flox)/K19 (CreERT) mice, p = 0.036). We found that p53 and UPR/endoplasmic reticulum (ER) stress-related proteins, such as cleaved caspase 3, and CAAT/enhancer-binding protein homologous protein, are up-regulated in colon tumors of Atg5 (flox/flox)/K19 (CreERT) mice. Although Atg5 and BiP silencing, respectively, increased apoptosis in p53 wild type cells, Atg5 silencing alone did not show the same effect on apoptosis in p53 mutant cells. However, co-transfection of Atg5 and BiP siRNAs led to increased apoptosis in p53 mutant cells

  20. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer

    PubMed Central

    McFadden, David G.; Vernon, Amanda; Santiago, Philip M.; Martinez-McFaline, Raul; Bhutkar, Arjun; Crowley, Denise M.; McMahon, Martin; Sadow, Peter M.; Jacks, Tyler

    2014-01-01

    Anaplastic thyroid carcinoma (ATC) has among the worst prognoses of any solid malignancy. The low incidence of the disease has in part precluded systematic clinical trials and tissue collection, and there has been little progress in developing effective therapies. v-raf murine sarcoma viral oncogene homolog B (BRAF) and tumor protein p53 (TP53) mutations cooccur in a high proportion of ATCs, particularly those associated with a precursor papillary thyroid carcinoma (PTC). To develop an adult-onset model of BRAF-mutant ATC, we generated a thyroid-specific CreER transgenic mouse. We used a Cre-regulated BrafV600E mouse and a conditional Trp53 allelic series to demonstrate that p53 constrains progression from PTC to ATC. Gene expression and immunohistochemical analyses of murine tumors identified the cardinal features of human ATC including loss of differentiation, local invasion, distant metastasis, and rapid lethality. We used small-animal ultrasound imaging to monitor autochthonous tumors and showed that treatment with the selective BRAF inhibitor PLX4720 improved survival but did not lead to tumor regression or suppress signaling through the MAPK pathway. The combination of PLX4720 and the mapk/Erk kinase (MEK) inhibitor PD0325901 more completely suppressed MAPK pathway activation in mouse and human ATC cell lines and improved the structural response and survival of ATC-bearing animals. This model expands the limited repertoire of autochthonous models of clinically aggressive thyroid cancer, and these data suggest that small-molecule MAPK pathway inhibitors hold clinical promise in the treatment of advanced thyroid carcinoma. PMID:24711431

  1. TP53 Mutation Status of Tubo-ovarian and Peritoneal High-grade Serous Carcinoma with a Wild-type p53 Immunostaining Pattern.

    PubMed

    Na, Kiyong; Sung, Ji-Youn; Kim, Hyun-Soo

    2017-12-01

    Diffuse and strong nuclear p53 immunoreactivity and a complete lack of p53 expression are regarded as indicative of missense and nonsense mutations, respectively, of the TP53 gene. Tubo-ovarian and peritoneal high-grade serous carcinoma (HGSC) is characterized by aberrant p53 expression induced by a TP53 mutation. However, our experience with some HGSC cases with a wild-type p53 immunostaining pattern led us to comprehensively review previous cases and investigate the TP53 mutational status of the exceptional cases. We analyzed the immunophenotype of 153 cases of HGSC and performed TP53 gene sequencing analysis in those with a wild-type p53 immunostaining pattern. Immunostaining revealed that 109 (71.3%) cases displayed diffuse and strong p53 expression (missense mutation pattern), while 39 (25.5%) had no p53 expression (nonsense mutation pattern). The remaining five cases of HGSC showed a wild-type p53 immunostaining pattern. Direct sequencing analysis revealed that three of these cases harbored nonsense TP53 mutations and two had novel splice site deletions. TP53 mutation is almost invariably present in HGSC, and p53 immunostaining can be used as a surrogate marker of TP53 mutation. In cases with a wild-type p53 immunostaining pattern, direct sequencing for TP53 mutational status can be helpful to confirm the presence of a TP53 mutation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT.

    PubMed

    Leszczynska, Katarzyna B; Foskolou, Iosifina P; Abraham, Aswin G; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N; O'Neill, Eric E; Buffa, Francesca M; Hammond, Ester M

    2015-06-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage-induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain-containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors.

  3. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    PubMed Central

    Leszczynska, Katarzyna B.; Foskolou, Iosifina P.; Abraham, Aswin G.; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N.; O’Neill, Eric E.; Buffa, Francesca M.; Hammond, Ester M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage–induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain–containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors. PMID:25961455

  4. Roles of p53 and p27 Kip1 in the regulation of neurogenesis in the murine adult subventricular zone

    PubMed Central

    Gil-Perotin, Sara; Haines, Jeffery D.; Kaur, Jasbir; Marin-Husstege, Mireya; Spinetta, Michael J.; Kim, Kwi-Hye; Duran-Moreno, Maria; Schallert, Timothy; Zindy, Frederique; Roussel, Martine F.; Garcia-Verdugo, Jose M.; Casaccia, Patrizia

    2011-01-01

    The tumor suppressor protein p53 (Trp53) and the cell cycle inhibitor p27 Kip1 (Cdknb1) have both been implicated in regulating proliferation of adult subventricular zone (aSVZ) cells. We previously reported that genetic ablation of Trp53 (Trp53 −/−) or Cdknb1 (p27 Kip1−/−) increased proliferation of cells in the aSVZ, but differentially affected the number of adult born neuroblasts. We therefore hypothesized that these molecules might play non-redundant roles. To test this hypothesis we generated mice lacking both genes (Trp53 −/−;p27 Kip1−/−) and analysed the consequences on aSVZ cells and adult neuroblasts. Proliferation and self-renewal of cultured aSVZ cells were increased in the double mutants compared with control, but the mice did not develop spontaneous brain tumors. In contrast, the number of adult-born neuroblasts in the double mutants was similar to wild-type animals and suggested a complementation of the p27 Kip1−/− phenotype due to loss of Trp53. Cellular differences detected in the aSVZ correlated with cellular changes in the olfactory bulb and behavioral data on novel odor recognition. The exploration time for new odors was reduced in p27 Kip1−/− mice, increased in Trp53 −/− mice and normalized in the double Trp53−/−;p27 Kip1−/− mutants. At the molecular level, Trp53 −/− aSVZ cells were characterized by higher levels of NeuroD and Math3 and by the ability to generate neurons more readily. In contrast, p27 Kip1−/− cells generated fewer neurons, due to enhanced proteasomal degradation of pro-neural transcription factors. Together, these results suggest that p27 Kip1 and p53 function non-redundantly to modulate proliferation and self-renewal of aSVZ cells and antagonistically in regulating adult neurogenesis. PMID:21899604

  5. Topical grape seed proanthocyandin extract reduces sunburn cells and mutant p53 positive epidermal cell formation, and prevents depletion of Langerhans cells in an acute sunburn model.

    PubMed

    Yuan, Xiao-Ying; Liu, Wei; Hao, Jian-Chun; Gu, Wei-Jie; Zhao, Yan-Shuang

    2012-01-01

    The purpose of this study was to investigate whether grape seed proanthocyanidin extract (GSPE) can provide photoprotection against ultraviolet (UV) irradiation. Study has shown that GSPE is a natural oxidant, and is used in many fields such as ischemia-reperfusion injury, chronic pancreatitis, and even cancer. However, the effect of GSPE on UV irradiation is as yet unknown. Cutaneous areas on the backs of normal volunteers were untreated or treated with GSPE solutions or vehicles 30 min before exposure to two minimal erythema doses (MED) of solar simulated radiation. Cutaneous areas at different sites were examined histologically for the number of sunburn cells, or immunohistochemically for Langerhans cells and mutant p53 epidermal cells. On histological and immunohistochemical examination, skin treated with GSPE before UV radiation showed fewer sunburn cells and mutant p53-positive epidermal cells and more Langerhans cells compared with skin treated with 2-MED UV radiation only (p<0.001, p<0.001, and p<0.01, respectively). GSPE may be a possible preventive agent for photoprotection.

  6. CP-31398 prevents the growth of p53-mutated colorectal cancer cells in vitro and in vivo.

    PubMed

    He, Xingxing; Kong, Xinjuan; Yan, Junwei; Yan, Jingjun; Zhang, Yunan; Wu, Qian; Chang, Ying; Shang, Haitao; Dou, Qian; Song, Yuhu; Liu, Fang

    2015-03-01

    Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Small molecule CP-31398 was shown to restore mutant p53 tumor suppressor functions in cancer cells. Here, we determined the effects of CP-31398 on the growth of p53-mutated colorectal cancer (CRC) cells in vitro and in vivo. CRC cells which carry p53 mutation in codon 273 were treated with CP-31398 and the control, and the effects of CP-31398 on cell cycle, cell apoptosis, and proliferation were determined. The expression of p53-responsive downstream genes was evaluated by quantitative reverse transcriptase PCR (RT-PCR) and Western blot. CP-31398 was administrated into xenograft tumors created by the inoculation of HT-29 cells, and then the effect of CP-31398 on the growth of xenograft tumors was examined. CP-31398 induced p53 downstream target molecules in cultured HT-29 cells, which resulted in the inhibition of CRC cell growth assessed by the determination of cell cycle, apoptosis, and cell proliferation. In xenograft tumors, CP-31398 modulated the expression of Bax, Bcl-2, caspase 3, cyclin D, and Mdm2 and then blocked the growth of xenograft tumors. CP-31398 would be developed as a therapeutic candidate for p53-mutated CRC due to the restoration of mutant p53 tumor suppressor functions.

  7. Stimulation of autophagy by the p53 target gene Sestrin2.

    PubMed

    Maiuri, Maria Chiara; Malik, Shoaib Ahmad; Morselli, Eugenia; Kepp, Oliver; Criollo, Alfredo; Mouchel, Pierre-Luc; Carnuccio, Rosa; Kroemer, Guido

    2009-05-15

    The oncosuppressor protein p53 regulates autophagy in a dual fashion. The pool of cytoplasmic p53 protein represses autophagy in a transcription-independent fashion, while the pool of nuclear p53 stimulates autophagy through the transactivation of specific genes. Here we report the discovery that Sestrin2, a novel p53 target gene, is involved in the induction of autophagy. Depletion of Sestrin2 by RNA interference reduced the level of autophagy in a panel of p53-sufficient human cancer cell lines responding to distinct autophagy inducers. In quantitative terms, Sestrin2 depletion was as efficient in preventing autophagy induction as was the depletion of Dram, another p53 target gene. Knockout of either Sestrin2 or Dram reduced autophagy elicited by nutrient depletion, rapamycin, lithium or thapsigargin. Moreover, autophagy induction by nutrient depletion or pharmacological stimuli led to an increase in Sestrin2 expression levels in p53-proficient cells. In strict contrast, the depletion of Sestrin2 or Dram failed to affect autophagy in p53-deficient cells and did not modulate the inhibition of baseline autophagy by a cytoplasmic p53 mutant that was reintroduced into p53-deficient cells. We conclude that Sestrin2 acts as a positive regulator of autophagy in p53-proficient cells.

  8. Relationships between p53 mutation, HPV status and outcome in oropharyngeal squamous cell carcinoma.

    PubMed

    Hong, Angela; Zhang, Xiaoying; Jones, Deanna; Veillard, Anne-Sophie; Zhang, Mei; Martin, Andrew; Lyons, J Guy; Lee, C Soon; Rose, Barbara

    2016-02-01

    This study aimed to examine the rate and type of p53 mutation in oropharyngeal cancer (OSCC). Relationships were sought between human papillomavirus (HPV) status and p53 mutation. The role of p53 mutation as a prognostic factor independent of HPV status and as a modifier of the effect of HPV on outcomes was also examined. The HPV status of 202 cases was determined by HPV DNA by RT-PCR and p16 immunohistochemistry. P53 mutation in exon 5-8 was determined by pyrosequencing. Findings were correlated with known clinicopathological factors and outcomes. 48% of the cases were HPV positive and they were significantly less likely to have a p53 mutation than HPV-negative OSCCs (25.8% vs 46.7%, p=0.0021). Mutation was most common in exon 5. Among patients with HPV-positive OSCC, there was no significant difference in p53 mutation by smoking status (22.2% for never smokers and 30.8% for current or ex-smokers). Patients with p53 mutant OSCC had significantly worse overall survival (p=0.01). There was no statistical evidence that p53 mutation modified the effect of HPV status on outcomes. In the multivariate analysis, positive HPV status remained the strongest predictor of outcomes. p53 mutation status was not a significant predictor of outcome after adjusting for age, gender, T stage, N stage and HPV status. In summary, HPV-positive OSCC are less likely to have mutant p53 than HPV-negative OSCC. Our study did not show any evidence that p53 mutation could modify the effect of HPV status on outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. p53 Enables metabolic fitness and self-renewal of nephron progenitor cells.

    PubMed

    Li, Yuwen; Liu, Jiao; Li, Wencheng; Brown, Aaron; Baddoo, Melody; Li, Marilyn; Carroll, Thomas; Oxburgh, Leif; Feng, Yumei; Saifudeen, Zubaida

    2015-04-01

    Contrary to its classic role in restraining cell proliferation, we demonstrate here a divergent function of p53 in the maintenance of self-renewal of the nephron progenitor pool in the embryonic mouse kidney. Nephron endowment is regulated by progenitor availability and differentiation potential. Conditional deletion of p53 in nephron progenitor cells (Six2Cre(+);p53(fl/fl)) induces progressive depletion of Cited1(+)/Six2(+) self-renewing progenitors and loss of cap mesenchyme (CM) integrity. The Six2(p53-null) CM is disorganized, with interspersed stromal cells and an absence of a distinct CM-epithelia and CM-stroma interface. Impaired cell adhesion and epithelialization are indicated by decreased E-cadherin and NCAM expression and by ineffective differentiation in response to Wnt induction. The Six2Cre(+);p53(fl/fl) cap has 30% fewer Six2(GFP(+)) cells. Apoptotic index is unchanged, whereas proliferation index is significantly reduced in accordance with cell cycle analysis showing disproportionately fewer Six2Cre(+);p53(fl/fl) cells in the S and G2/M phases compared with Six2Cre(+);p53(+/+) cells. Mutant kidneys are hypoplastic with fewer generations of nascent nephrons. A significant increase in mean arterial pressure is observed in early adulthood in both germline and conditional Six2(p53-null) mice, linking p53-mediated defects in kidney development to hypertension. RNA-Seq analyses of FACS-isolated wild-type and Six2(GFP(+)) CM cells revealed that the top downregulated genes in Six2Cre(+);p53(fl/fl) CM belong to glucose metabolism and adhesion and/or migration pathways. Mutant cells exhibit a ∼ 50% decrease in ATP levels and a 30% decrease in levels of reactive oxygen species, indicating energy metabolism dysfunction. In summary, our data indicate a novel role for p53 in enabling the metabolic fitness and self-renewal of nephron progenitors. © 2015. Published by The Company of Biologists Ltd.

  10. Exclusive Association of p53 Mutation with Super-High Methylation of Tumor Suppressor Genes in the p53 Pathway in a Unique Gastric Cancer Phenotype.

    PubMed

    Waraya, Mina; Yamashita, Keishi; Ema, Akira; Katada, Natsuya; Kikuchi, Shiro; Watanabe, Masahiko

    2015-01-01

    A comprehensive search for DNA methylated genes identified candidate tumor suppressor genes that have been proven to be involved in the apoptotic process of the p53 pathway. In this study, we investigated p53 mutation in relation to such epigenetic alteration in primary gastric cancer. The methylation profiles of the 3 genes: PGP9.5, NMDAR2B, and CCNA1, which are involved in the p53 tumor suppressor pathway in combination with p53 mutation were examined in 163 primary gastric cancers. The effect of epigenetic reversion in combination with chemotherapeutic drugs on apoptosis was also assessed according to the tumor p53 mutation status. p53 gene mutations were found in 44 primary gastric tumors (27%), and super-high methylation of any of the 3 genes was only found in cases with wild type p53. Higher p53 pathway aberration was found in cases with male gender (p = 0.003), intestinal type (p = 0.005), and non-infiltrating type (p = 0.001). The p53 pathway aberration group exhibited less recurrence in lymph nodes, distant organs, and peritoneum than the p53 non-aberration group. In the NUGC4 gastric cancer cell line (p53 wild type), epigenetic treatment augmented apoptosis by chemotherapeutic drugs, partially through p53 transcription activity. On the other hand, in the KATO III cancer cell line (p53 mutant), epigenetic treatment alone induced robust apoptosis, with no trans-activation of p53. In gastric cancer, p53 relevant and non-relevant pathways exist, and tumors with either pathway type exhibited unique clinical features. Epigenetic treatments can induce apoptosis partially through p53 activation, however their apoptotic effects may be explained largely by mechanism other than through p53 pathways.

  11. p53 mediates bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway.

    PubMed

    Thomas, A; Giesler, T; White, E

    2000-11-02

    A member of the small G protein family, cdc42, was isolated from a screen undertaken to identify p53-inducible genes during apoptosis in primary baby rat kidney (BRK) cells transformed with E1A and a temperature-sensitive mutant p53 using a PCR-based subtractive hybridization method. Cdc42 is a GTPase that belongs to the Rho/Rac subfamily of Ras-like GTPases. In response to external stimuli, Cdc42 is known to transduce signals to regulate the organization of the actin cytoskeleton, induce DNA synthesis in quiescent fibroblasts, and promote apoptosis in neuronal and immune cells. In this study, we have demonstrated that cdc42 mRNA and protein were up-regulated in the presence of wild-type p53 in BRK cells, followed by cytoplasmic to plasma membrane translocation of Cdc42. Overexpression of Cdc42 in the presence of a dominant-negative mutant p53 induced apoptosis rapidly, indicating that Cdc42 functions downstream of p53. Furthermore, stable expression of a dominant-negative mutant of Cdc42 partially inhibited p53-mediated apoptosis. The Bcl-2 family members Bcl-xL, and the adenovirus protein E1B 19K, inhibited Cdc42-mediated apoptosis, whereas Bcl-2 did not. We provide evidence that PAK1 and JNK1 may play a role downstream of Cdc42 to transduce its apoptotic signal. Cdc42/PAK1 activates JNK1-induced phosphorylation of Bcl-2, thereby inactivating its function, and that a phosphorylation resistant mutant (Bcl-2S70,87A,T56,74A) gains the ability to inhibit Cdc42- and p53-mediated apoptosis. Thus, one mechanism by which p53 promotes apoptosis is through activation of Cdc42 and inactivation of Bcl-2.

  12. Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells.

    PubMed

    Oh, Eun-Taex; Park, Moon-Taek; Choi, Bo-Hwa; Ro, Seonggu; Choi, Eun-Kyung; Jeong, Seong-Yun; Park, Heon Joo

    2012-04-01

    Histone deacetylase (HDAC) plays an important role in cancer onset and progression. Therefore, inhibition of HDAC offers potential as an effective cancer treatment regimen. CG200745, (E)-N(1)-(3-(dimethylamino)propyl)-N(8)-hydroxy-2-((naphthalene-1-loxy)methyl)oct-2-enediamide, is a novel HDAC inhibitor presently undergoing a phase I clinical trial. Enhancement of p53 acetylation by HDAC inhibitors induces cell cycle arrest, differentiation, and apoptosis in cancer cells. The purpose of the present study was to investigate the role of p53 acetylation in the cancer cell death caused by CG200745. CG200745-induced clonogenic cell death was 2-fold greater in RKO cells expressing wild-type p53 than in p53-deficient RC10.1 cells. CG200745 treatment was also cytotoxic to PC-3 human prostate cancer cells, which express wild-type p53. CG200745 increased acetylation of p53 lysine residues K320, K373, and K382. CG200745 induced the accumulation of p53, promoted p53-dependent transactivation, and enhanced the expression of MDM2 and p21(Waf1/Cip1) proteins, which are encoded by p53 target genes. An examination of CG200745 effects on p53 acetylation using cells transfected with various p53 mutants showed that cells expressing p53 K382R mutants were significantly resistant to CG200745-induced clonogenic cell death compared with wild-type p53 cells. Moreover, p53 transactivation in response to CG200745 was suppressed in all cells carrying mutant forms of p53, especially K382R. Taken together, these results suggest that acetylation of p53 at K382 plays an important role in CG200745-induced p53 transactivation and clonogenic cell death.

  13. Using a preclinical mouse model of high-grade astrocytoma to optimize p53 restoration therapy.

    PubMed

    Shchors, Ksenya; Persson, Anders I; Rostker, Fanya; Tihan, Tarik; Lyubynska, Natalya; Li, Nan; Swigart, Lamorna Brown; Berger, Mitchel S; Hanahan, Douglas; Weiss, William A; Evan, Gerard I

    2013-04-16

    Based on clinical presentation, glioblastoma (GBM) is stratified into primary and secondary types. The protein 53 (p53) pathway is functionally incapacitated in most GBMs by distinctive type-specific mechanisms. To model human gliomagenesis, we used a GFAP-HRas(V12) mouse model crossed into the p53ER(TAM) background, such that either one or both copies of endogenous p53 is replaced by a conditional p53ER(TAM) allele. The p53ER(TAM) protein can be toggled reversibly in vivo between wild-type and inactive conformations by administration or withdrawal of 4-hydroxytamoxifen (4-OHT), respectively. Surprisingly, gliomas that develop in GFAP-HRas(V12);p53(+/KI) mice abrogate the p53 pathway by mutating p19(ARF)/MDM2 while retaining wild-type p53 allele. Consequently, such tumors are unaffected by restoration of their p53ER(TAM) allele. By contrast, gliomas arising in GFAP-HRas(V12);p53(KI/KI) mice develop in the absence of functional p53. Such tumors retain a functional p19(ARF)/MDM2-signaling pathway, and restoration of p53ER(TAM) allele triggers p53-tumor-suppressor activity. Congruently, growth inhibition upon normalization of mutant p53 by a small molecule, Prima-1, in human GBM cultures also requires p14(ARF)/MDM2 functionality. Notably, the antitumoral efficacy of p53 restoration in tumor-bearing GFAP-HRas(V12);p53(KI/KI) animals depends on the duration and frequency of p53 restoration. Thus, intermittent exposure to p53ER(TAM) activity mitigated the selective pressure to inactivate the p19(ARF)/MDM2/p53 pathway as a means of resistance, extending progression-free survival. Our results suggest that intermittent dosing regimes of drugs that restore wild-type tumor-suppressor function onto mutant, inactive p53 proteins will prove to be more efficacious than traditional chronic dosing by similarly reducing adaptive resistance.

  14. Using a preclinical mouse model of high-grade astrocytoma to optimize p53 restoration therapy

    PubMed Central

    Shchors, Ksenya; Persson, Anders I.; Rostker, Fanya; Tihan, Tarik; Lyubynska, Natalya; Li, Nan; Swigart, Lamorna Brown; Berger, Mitchel S.; Hanahan, Douglas; Weiss, William A.; Evan, Gerard I.

    2013-01-01

    Based on clinical presentation, glioblastoma (GBM) is stratified into primary and secondary types. The protein 53 (p53) pathway is functionally incapacitated in most GBMs by distinctive type-specific mechanisms. To model human gliomagenesis, we used a GFAP-HRasV12 mouse model crossed into the p53ERTAM background, such that either one or both copies of endogenous p53 is replaced by a conditional p53ERTAM allele. The p53ERTAM protein can be toggled reversibly in vivo between wild-type and inactive conformations by administration or withdrawal of 4-hydroxytamoxifen (4-OHT), respectively. Surprisingly, gliomas that develop in GFAP-HRasV12;p53+/KI mice abrogate the p53 pathway by mutating p19ARF/MDM2 while retaining wild-type p53 allele. Consequently, such tumors are unaffected by restoration of their p53ERTAM allele. By contrast, gliomas arising in GFAP-HRasV12;p53KI/KI mice develop in the absence of functional p53. Such tumors retain a functional p19ARF/MDM2-signaling pathway, and restoration of p53ERTAM allele triggers p53-tumor–suppressor activity. Congruently, growth inhibition upon normalization of mutant p53 by a small molecule, Prima-1, in human GBM cultures also requires p14ARF/MDM2 functionality. Notably, the antitumoral efficacy of p53 restoration in tumor-bearing GFAP-HRasV12;p53KI/KI animals depends on the duration and frequency of p53 restoration. Thus, intermittent exposure to p53ERTAM activity mitigated the selective pressure to inactivate the p19ARF/MDM2/p53 pathway as a means of resistance, extending progression-free survival. Our results suggest that intermittent dosing regimes of drugs that restore wild-type tumor-suppressor function onto mutant, inactive p53 proteins will prove to be more efficacious than traditional chronic dosing by similarly reducing adaptive resistance. PMID:23542378

  15. Sex Reversal in Zebrafish fancl Mutants Is Caused by Tp53-Mediated Germ Cell Apoptosis

    PubMed Central

    Rodríguez-Marí, Adriana; Cañestro, Cristian; BreMiller, Ruth A.; Nguyen-Johnson, Alexandria; Asakawa, Kazuhide; Kawakami, Koichi; Postlethwait, John H.

    2010-01-01

    The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA–repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination. PMID:20661450

  16. Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finlay, C.A.; Hinds, P.W.; Tan, T.H.

    1988-02-01

    The 11-4 p53 cDNA clone failed to transform primary rat fibroblasts when cotransfected with the ras oncogene. Two linker insertion mutations at amino acid 158 or 215 (of 390 amino acids) activated this p53 cDNA for transformation with ras. These mutant cDNAs produced a p53 protein that lacked an epitope, recognized by monoclonal antibody PAb246 (localized at amino acids 88 to 110 in the protein) and preferentially bound to a heat shock protein, hsc70. In rat cells transformed by a genomic p53 clone plus ras, two populations of p53 proteins were detected, PAb246/sup +/ and PAb246/sup -/, which did ormore » did not bind to this monoclonal antibody, respectively. The PAb246/sup -/ p53 preferentially associated with hsc70, and this protein has a half-life 4- to 20-fold longer than free p53 (PAb246/sup +/). These data suggest a possible functional role for hsc70 in the transformation process. cDNAs for p53 derived from methylcholanthrene-transformed cells transform rat cells in cooperation with the ras oncogene and produce a protein that bound with the heat shock proteins. Recombinant clones produced between a Meth A cDNA and 11-4 were tested for the ability to transform rat cells. A single amino acid substitution at residue 132 was sufficient to activate the 11-4 p53 cDNA for transformation. These studies have identified a region between amino acids 132 and 215 in the p53 protein which, when mutated, can activate the p53 cDNA. These results also call into question what the correct p53 wild-type sequence is and whether a wild-type p53 gene can transform cells in culture.« less

  17. Cross Talk between PML and p53 during Poliovirus Infection: Implications for Antiviral Defense

    PubMed Central

    Pampin, Mathieu; Simonin, Yannick; Blondel, Bruno; Percherancier, Yann; Chelbi-Alix, Mounira K.

    2006-01-01

    PML nuclear bodies (NBs) are dynamic intranuclear structures harboring numerous transiently or permanently localized proteins. PML, the NBs' organizer, is directly induced by interferon, and its expression is critical for antiviral host defense. We describe herein the molecular events following poliovirus infection that lead to PML-dependent p53 activation and protection against virus infection. Poliovirus infection induces PML phosphorylation through the extracellular signal-regulated kinase pathway, increases PML SUMOylation, and induces its transfer from the nucleoplasm to the nuclear matrix. These events result in the recruitment of p53 to PML NBs, p53 phosphorylation on Ser15, and activation of p53 target genes leading to the induction of apoptosis. Moreover, the knock-down of p53 by small interfering RNA results in higher poliovirus replication, suggesting that p53 participates in antiviral defense. This effect, which requires the presence of PML, is transient since poliovirus targets p53 by inducing its degradation in a proteasome- and MDM2-dependent manner. Our results provide evidence of how poliovirus counteracts p53 antiviral activity by regulating PML and NBs, thus leading to p53 degradation. PMID:16912307

  18. Cross talk between PML and p53 during poliovirus infection: implications for antiviral defense.

    PubMed

    Pampin, Mathieu; Simonin, Yannick; Blondel, Bruno; Percherancier, Yann; Chelbi-Alix, Mounira K

    2006-09-01

    PML nuclear bodies (NBs) are dynamic intranuclear structures harboring numerous transiently or permanently localized proteins. PML, the NBs' organizer, is directly induced by interferon, and its expression is critical for antiviral host defense. We describe herein the molecular events following poliovirus infection that lead to PML-dependent p53 activation and protection against virus infection. Poliovirus infection induces PML phosphorylation through the extracellular signal-regulated kinase pathway, increases PML SUMOylation, and induces its transfer from the nucleoplasm to the nuclear matrix. These events result in the recruitment of p53 to PML NBs, p53 phosphorylation on Ser15, and activation of p53 target genes leading to the induction of apoptosis. Moreover, the knock-down of p53 by small interfering RNA results in higher poliovirus replication, suggesting that p53 participates in antiviral defense. This effect, which requires the presence of PML, is transient since poliovirus targets p53 by inducing its degradation in a proteasome- and MDM2-dependent manner. Our results provide evidence of how poliovirus counteracts p53 antiviral activity by regulating PML and NBs, thus leading to p53 degradation.

  19. p53 regulates cytoskeleton remodeling to suppress tumor progression.

    PubMed

    Araki, Keigo; Ebata, Takahiro; Guo, Alvin Kunyao; Tobiume, Kei; Wolf, Steven John; Kawauchi, Keiko

    2015-11-01

    Cancer cells possess unique characteristics such as invasiveness, the ability to undergo epithelial-mesenchymal transition, and an inherent stemness. Cell morphology is altered during these processes and this is highly dependent on actin cytoskeleton remodeling. Regulation of the actin cytoskeleton is, therefore, important for determination of cell fate. Mutations within the TP53 (tumor suppressor p53) gene leading to loss or gain of function (GOF) of the protein are often observed in aggressive cancer cells. Here, we highlight the roles of p53 and its GOF mutants in cancer cell invasion from the perspective of the actin cytoskeleton; in particular its reorganization and regulation by cell adhesion molecules such as integrins and cadherins. We emphasize the multiple functions of p53 in the regulation of actin cytoskeleton remodeling in response to the extracellular microenvironment, and oncogene activation. Such an approach provides a new perspective in the consideration of novel targets for anti-cancer therapy.

  20. Rapid colorimetric detection of p53 protein function using DNA-gold nanoconjugates with applications for drug discovery and cancer diagnostics.

    PubMed

    Assah, Enock; Goh, Walter; Zheng, Xin Ting; Lim, Ting Xiang; Li, Jun; Lane, David; Ghadessy, Farid; Tan, Yen Nee

    2018-05-05

    The tumor suppressor protein p53 plays a central role in preventing cancer through interaction with DNA response elements (REs) to regulate target gene expression in cells. Due to its significance in cancer biology, relentless efforts have been directed toward understanding p53-DNA interactions for the development of cancer therapeutics and diagnostics. In this paper, we report a rapid, label-free and versatile colorimetric assay to detect wildtype p53 DNA-binding function in complex solutions. The assay design is based on a concept that alters interparticle-distances between RE-AuNPs from a crosslinking effect induced through tetramerization of wildtype p53 protein (p53-WT) upon binding to canonical DNA motifs modified on gold nanoparticles (RE-AuNPs). This leads to a visible solution color change from red to blue, which is quantifiable by the UV- visible absorption spectra with a detection limit of 5 nM. Contrastingly, no color change was observed for the binding-deficient p53 mutants and non-specific proteins due to their inability to crosslink RE-AuNPs. Based on this sensing principle, we further demonstrate its utility for fast detection of drug-induced DNA binding function to cancer-associated Y220C mutant p53 protein using well-established reactivating compounds. By exploiting the dominant-negative property of mutant p53 over p53-WT and interactions with RE-AuNPs, this assay is configurable to detect low numbers of mutant p53 expressing cells in miniscule sample fractions obtained from typical core needle biopsy-sized tissues without signal attrition, alluding to the potential for biopsy sampling in cancer diagnostics or for defining cancer margins. This nanogold enabled colorimetric assay provides a facile yet robust method for studying important parameters influencing p53-DNA interactions with great promises for clinically pertinent applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. p53 and metabolism: from mechanism to therapeutics

    PubMed Central

    Simabuco, Fernando M.; Morale, Mirian G.; Pavan, Isadora C.B.; Morelli, Ana P.; Silva, Fernando R.; Tamura, Rodrigo E.

    2018-01-01

    The tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics. PMID:29805774

  2. P53 nuclear stabilization is associated with FHIT loss and younger age of onset in squamous cell carcinoma of oral tongue

    PubMed Central

    2014-01-01

    Background Squamous cell carcinoma of tongue (SCCT) is expected to harbor unique clinico-pathological and molecular genetic features since a significant proportion of patients are young and exhibit no association with tobacco or alcohol. Methods We determined P53, epidermal growth factor receptor, microsatellite instability, human papilloma virus infection and loss of heterozygosity status at several tumor suppressor loci in one hundred and twenty one oral SCCT (SSCOT) samples and analyzed their association with clinico-pathological features and patient survival. Results Our results revealed a significantly higher incidence of p53 nuclear stabilization in early (as against late) onset SCCOT. FHIT loss was significantly associated with p53 nuclear stabilization and the association was stronger in patients with no history of tobacco use. Samples harboring mutation in p53 DNA binding domain or exhibiting p53 nuclear stabilization, were significantly associated with poor survival. Conclusion Our study has therefore identified distinct features in SCCOT tumorigenesis with respect to age and tobacco exposure and revealed possible prognostic utility of p53. PMID:25152695

  3. The antagonism between MCT-1 and p53 affects the tumorigenic outcomes

    PubMed Central

    2010-01-01

    Background MCT-1 oncoprotein accelerates p53 protein degradation via a proteosome pathway. Synergistic promotion of the xenograft tumorigenicity has been demonstrated in circumstance of p53 loss alongside MCT-1 overexpression. However, the molecular regulation between MCT-1 and p53 in tumor development remains ambiguous. We speculate that MCT-1 may counteract p53 through the diverse mechanisms that determine the tumorigenic outcomes. Results MCT-1 has now identified as a novel target gene of p53 transcriptional regulation. MCT-1 promoter region contains the response elements reactive with wild-type p53 but not mutant p53. Functional p53 suppresses MCT-1 promoter activity and MCT-1 mRNA stability. In a negative feedback regulation, constitutively expressed MCT-1 decreases p53 promoter function and p53 mRNA stability. The apoptotic events are also significantly prevented by oncogenic MCT-1 in a p53-dependent or a p53-independent fashion, according to the genotoxic mechanism. Moreover, oncogenic MCT-1 promotes the tumorigenicity in mice xenografts of p53-null and p53-positive lung cancer cells. In support of the tumor growth are irrepressible by p53 reactivation in vivo, the inhibitors of p53 (MDM2, Pirh2, and Cop1) are constantly stimulated by MCT-1 oncoprotein. Conclusions The oppositions between MCT-1 and p53 are firstly confirmed at multistage processes that include transcription control, mRNA metabolism, and protein expression. MCT-1 oncogenicity can overcome p53 function that persistently advances the tumor development. PMID:21138557

  4. Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanam, U.; Ray, A.; Sehgal, P.B.

    1991-09-01

    The aberrant overexpression of interleukin 6 (IL-6) is implicated as an autocrine mechanism in the enhanced proliferation of the neoplastic cell elements in various B- and T-cell malignancies and in some carcinomas and sarcomas; many of these neoplasms have been shown to be associated with a mutated p53 gene. The possibility that wild-type (wt) p53, a nuclear tumor-suppressor protein, but not its transforming mutants might serve to repress IL-6 gene expression was investigated in HeLa cells. The authors transiently cotransfected these cells with constitutive cytomegalovirus (CMV) enhancer/promoter expression plasmids overproducing wt or mutant human or murine p53 and with appropriatemore » chloramphenicol acetyltransferase (CAT) reporter plasmids containing the promoter elements of human IL-6, c-fos, or {beta}-actin genes or of porcine major histocompatibility complex (MHC) class I gene in pN-38 to evaluate the effect of the various p53 species on these promoters. These observations identify transcriptional repression as a property of p53 and suggest that p53 and RB may be involved as transcriptional repressors in modulating IL-6 gene expression during cellular differentiation and oncogenesis.« less

  5. Integration of Genomic, Biologic, and Chemical Approaches to Target p53 Loss and Gain-of-Function in Triple Negative Breast Cancer

    DTIC Science & Technology

    2016-09-01

    in this progress report: p53 triple-negative breast cancer subtypes gene expression somatic cell genetics CRISPR /Cas 3. ACCOMPLISHMENTS Major...report, we described the creation of an isogenic p53 mutant TNBC cell line panel using CRISPR /Cas-mediated genome editing8 and the resultant...LOF null state. To validate that mutant p53 is directly responsible for this altered transcription, we will use the same CRISPR -mediated genome

  6. Heterozygous loss of TSC2 alters p53 signaling and human stem cell reprogramming.

    PubMed

    Armstrong, Laura C; Westlake, Grant; Snow, John P; Cawthon, Bryan; Armour, Eric; Bowman, Aaron B; Ess, Kevin C

    2017-12-01

    Tuberous sclerosis complex (TSC) is a pediatric disorder of dysregulated growth and differentiation caused by loss of function mutations in either the TSC1 or TSC2 genes, which regulate mTOR kinase activity. To study aberrations of early development in TSC, we generated induced pluripotent stem cells using dermal fibroblasts obtained from patients with TSC. During validation, we found that stem cells generated from TSC patients had a very high rate of integration of the reprogramming plasmid containing a shRNA against TP53. We also found that loss of one allele of TSC2 in human fibroblasts is sufficient to increase p53 levels and impair stem cell reprogramming. Increased p53 was also observed in TSC2 heterozygous and homozygous mutant human stem cells, suggesting that the interactions between TSC2 and p53 are consistent across cell types and gene dosage. These results support important contributions of TSC2 heterozygous and homozygous mutant cells to the pathogenesis of TSC and the important role of p53 during reprogramming. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Radiation-Induced Salivary Gland Dysfunction Results From p53-Dependent Apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, Jennifer L.; Grundmann, Oliver; Burd, Randy

    2009-02-01

    Purpose: Radiotherapy for head-and-neck cancer causes adverse secondary side effects in the salivary glands and results in diminished quality of life for the patient. A previous in vivo study in parotid salivary glands demonstrated that targeted head-and-neck irradiation resulted in marked increases in phosphorylated p53 (serine{sup 18}) and apoptosis, which was suppressed in transgenic mice expressing a constitutively active mutant of Akt1 (myr-Akt1). Methods and Materials: Transgenic and knockout mouse models were exposed to irradiation, and p53-mediated transcription, apoptosis, and salivary gland dysfunction were analyzed. Results: The proapoptotic p53 target genes PUMA and Bax were induced in parotid salivary glandsmore » of mice at early time points after therapeutic radiation. This dose-dependent induction requires expression of p53 because no radiation-induced expression of PUMA and Bax was observed in p53-/- mice. Radiation also induced apoptosis in the parotid gland in a dose-dependent manner, which was p53 dependent. Furthermore, expression of p53 was required for the acute and chronic loss of salivary function after irradiation. In contrast, apoptosis was not induced in p53-/- mice, and their salivary function was preserved after radiation exposure. Conclusions: Apoptosis in the salivary glands after therapeutic head-and-neck irradiation is mediated by p53 and corresponds to salivary gland dysfunction in vivo.« less

  8. Identification of a small molecule that overcomes HdmX-mediated suppression of p53

    PubMed Central

    Chakrabarti, Amit; Karan, Sukanya; Liu, Zhigang; Xia, Zhiqiang; Gundluru, Mahesh; Moreton, Stephen; Saunthararajah, Yogen; Jackson, Mark W; Agarwal, Mukesh K; Wald, David N

    2016-01-01

    Inactivation of the p53 tumor suppressor by mutation or overexpression of negative regulators occurs frequently in cancer. Since p53 plays a key role in regulating proliferation or apoptosis in response to DNA damaging chemotherapies, strategies aimed at reactivating p53 are increasingly being sought. Strategies to reactivate wild-type p53 include the use of small molecules capable of releasing wild-type p53 from key, cellular negative regulators, such as Hdm2 and HdmX. Derivatives of the Hdm2 antagonist Nutlin-3 are in clinical trials. However, Nutlin-3 specifically disrupts Hdm2-p53, leaving tumors harboring high levels of HdmX resistant to Nutlin-3 treatment. Here we identify CTX1, a novel small molecule that overcomes HdmX-mediated p53 repression. CTX1 binds directly to HdmX to prevent p53-HdmX complex formation, resulting in the rapidly induction of p53 in a DNA damage-independent manner. Treatment of a panel of cancer cells with CTX1 induced apoptosis or suppressed proliferation and importantly, CTX1 demonstrates promising activity as a single agent in a mouse model of circulating primary human leukemia. CTX1 is a small molecule HdmX inhibitor that demonstrates promise as a cancer therapeutic candidate. PMID:26883273

  9. HMGB1-mediated DNA bending: Distinct roles in increasing p53 binding to DNA and the transactivation of p53-responsive gene promoters.

    PubMed

    Štros, Michal; Kučírek, Martin; Sani, Soodabeh Abbasi; Polanská, Eva

    2018-03-01

    HMGB1 is a chromatin-associated protein that has been implicated in many important biological processes such as transcription, recombination, DNA repair, and genome stability. These functions include the enhancement of binding of a number of transcription factors, including the tumor suppressor protein p53, to their specific DNA-binding sites. HMGB1 is composed of two highly conserved HMG boxes, linked to an intrinsically disordered acidic C-terminal tail. Previous reports have suggested that the ability of HMGB1 to bend DNA may explain the in vitro HMGB1-mediated increase in sequence-specific DNA binding by p53. The aim of this study was to reinvestigate the importance of HMGB1-induced DNA bending in relationship to the ability of the protein to promote the specific binding of p53 to short DNA duplexes in vitro, and to transactivate two major p53-regulated human genes: Mdm2 and p21/WAF1. Using a number of HMGB1 mutants, we report that the HMGB1-mediated increase in sequence-specific p53 binding to DNA duplexes in vitro depends very little on HMGB1-mediated DNA bending. The presence of the acidic C-terminal tail of HMGB1 and/or the oxidation of the protein can reduce the HMGB1-mediated p53 binding. Interestingly, the induction of transactivation of p53-responsive gene promoters by HMGB1 requires both the ability of the protein to bend DNA and the acidic C-terminal tail, and is promoter-specific. We propose that the efficient transactivation of p53-responsive gene promoters by HMGB1 depends on complex events, rather than solely on the promotion of p53 binding to its DNA cognate sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Characterisation of the p53 pathway in cell lines established from TH-MYCN transgenic mouse tumours.

    PubMed

    Chen, Lindi; Esfandiari, Arman; Reaves, William; Vu, Annette; Hogarty, Michael D; Lunec, John; Tweddle, Deborah A

    2018-03-01

    Cell lines established from the TH-MYCN transgenic murine model of neuroblastoma are a valuable preclinical, immunocompetent, syngeneic model of neuroblastoma, for which knowledge of their p53 pathway status is important. In this study, the Trp53 status and functional response to Nutlin-3 and ionising radiation (IR) were determined in 6 adherent TH-MYCN transgenic cell lines using Sanger sequencing, western blot analysis and flow cytometry. Sensitivity to structurally diverse MDM2 inhibitors (Nutlin-3, MI-63, RG7388 and NDD0005) was determined using XTT proliferation assays. In total, 2/6 cell lines were Trp53 homozygous mutant (NHO2A and 844MYCN+/+) and 1/6 (282MYCN+/-) was Trp53 heterozygous mutant. For 1/6 cell lines (NHO2A), DNA from the corresponding primary tumour was found to be Trp53 wt. In all cases, the presence of a mutation was consistent with aberrant p53 signalling in response to Nutlin-3 and IR. In comparison to TP53 wt human neuroblastoma cells, Trp53 wt murine control and TH-MYCN cell lines were significantly less sensitive to growth inhibition mediated by MI-63 and RG7388. These murine Trp53 wt and mutant TH-MYCN cell lines are useful syngeneic, immunocompetent neuroblastoma models, the former to test p53-dependent therapies in combination with immunotherapies, such as anti-GD2, and the latter as models of chemoresistant relapsed neuroblastoma when aberrations in the p53 pathway are more common. The spontaneous development of Trp53 mutations in 3 cell lines from TH-MYCN mice may have arisen from MYCN oncogenic driven and/or ex vivo selection. The identified species-dependent selectivity of MI-63 and RG7388 should be considered when interpreting in vivo toxicity studies of MDM2 inhibitors.

  11. Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies.

    PubMed

    Signorelli, Sara; Santini, Simona; Yamada, Tohru; Bizzarri, Anna Rita; Beattie, Craig W; Cannistraro, Salvatore

    2017-04-01

    Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest.

    PubMed

    Shamseddine, A A; Clarke, C J; Carroll, B; Airola, M V; Mohammed, S; Rella, A; Obeid, L M; Hannun, Y A

    2015-10-29

    Neutral sphingomyelinase-2 (nSMase2) is a ceramide-generating enzyme that has been implicated in growth arrest, apoptosis and exosome secretion. Although previous studies have reported transcriptional upregulation of nSMase2 in response to daunorubicin, through Sp1 and Sp3 transcription factors, the role of the DNA damage pathway in regulating nSMase2 remains unclear. In this study, we show that doxorubicin induces a dose-dependent induction of nSMase2 mRNA and protein with concomitant increases in nSMase activity and ceramide levels. Upregulation of nSMase2 was dependent on ATR, Chk1 and p53, thus placing it downstream of the DNA damage pathway. Moreover, overexpression of p53 was sufficient to transcriptionally induce nSMase2, without the need for DNA damage. DNA-binding mutants as well as acetylation mutants of p53 were unable to induce nSMase2, suggesting a role of nSMase2 in growth arrest. Moreover, knockdown of nSMase2 prevented doxorubicin-induced growth arrest. Finally, p53-induced nSMase2 upregulation appears to occur via a novel transcription start site upstream of exon 3. These results identify nSMase2 as a novel p53 target gene, regulated by the DNA damage pathway to induce cell growth arrest.

  13. Wee-1 Kinase Inhibition Overcomes Cisplatin Resistance Associated with High-Risk TP53 Mutations in Head and Neck Cancer through Mitotic Arrest Followed by Senescence

    PubMed Central

    Osman, Abdullah A.; Monroe, Marcus M.; Ortega Alves, Marcus V.; Patel, Ameeta A.; Katsonis, Panagiotis; Fitzgerald, Alison L.; Neskey, David M.; Frederick, Mitchell J.; Woo, Sang Hyeok; Caulin, Carlos; Hsu, Teng-Kuei; McDonald, Thomas O.; Kimmel, Marek; Meyn, Raymond E.; Lichtarge, Olivier; Myers, Jeffrey N.

    2015-01-01

    Although cisplatin has played a role in “standard-of-care” multimodality therapy for patients with advanced squamous cell carcinoma of the head and neck (HNSCC), the rate of treatment failure remains particularly high for patients receiving cisplatin whose tumors have mutations in the TP53 gene. We found that cisplatin treatment of HNSCC cells with mutant TP53 leads to arrest of cells in the G2 phase of the cell cycle, leading us to hypothesize that the wee-1 kinase inhibitor MK-1775 would abrogate the cisplatin-induced G2 block and thereby sensitize isogenic HNSCC cells with mutant TP53 or lacking p53 expression to cisplatin. We tested this hypothesis using clonogenic survival assays, flow cytometry, and in vivo tumor growth delay experiments with an orthotopic nude mouse model of oral tongue cancer. We also used a novel TP53 mutation classification scheme to identify which TP53 mutations are associated with limited tumor responses to cisplatin treatment. Clonogenic survival analyses indicate that nanomolar concentration of MK-1775 sensitizes HNSCC cells with high-risk mutant p53 to cisplatin. Consistent with its ability to chemosensitize, MK-1775 abrogated the cisplatin-induced G2 block in p53-defective cells leading to mitotic arrest associated with a senescence-like phenotype. Furthermore, MK-1775 enhanced the efficacy of cisplatin in vivo in tumors harboring TP53 mutations. These results indicate that HNSCC cells expressing high-risk p53 mutations are significantly sensitized to cisplatin therapy by the selective wee-1 kinase inhibitor, supporting the clinical evaluation of MK-1775 in combination with cisplatin for the treatment of patients with TP53 mutant HNSCC. PMID:25504633

  14. Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction.

    PubMed

    Broaddus, W C; Liu, Y; Steele, L L; Gillies, G T; Lin, P S; Loudon, W G; Valerie, K; Schmidt-Ullrich, R K; Fillmore, H L

    1999-12-01

    , not only in human gliomas that express mutant p53, but also in those that express wild-type p53.

  15. A stapled p53 helix overcomes HDMX-mediated suppression of p53.

    PubMed

    Bernal, Federico; Wade, Mark; Godes, Marina; Davis, Tina N; Whitehead, David G; Kung, Andrew L; Wahl, Geoffrey M; Walensky, Loren D

    2010-11-16

    Cancer cells neutralize p53 by deletion, mutation, proteasomal degradation, or sequestration to achieve a pathologic survival advantage. Targeting the E3 ubiquitin ligase HDM2 can lead to a therapeutic surge in p53 levels. However, the efficacy of HDM2 inhibition can be compromised by overexpression of HDMX, an HDM2 homolog that binds and sequesters p53. Here, we report that a stapled p53 helix preferentially targets HDMX, blocks the formation of inhibitory p53-HDMX complexes, induces p53-dependent transcriptional upregulation, and thereby overcomes HDMX-mediated cancer resistance in vitro and in vivo. Importantly, our analysis of p53 interaction dynamics provides a blueprint for reactivating the p53 pathway in cancer by matching HDM2, HDMX, or dual inhibitors to the appropriate cellular context. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. p53 Specifically Binds Triplex DNA In Vitro and in Cells

    PubMed Central

    Brázdová, Marie; Tichý, Vlastimil; Helma, Robert; Bažantová, Pavla; Polášková, Alena; Krejčí, Aneta; Petr, Marek; Navrátilová, Lucie; Tichá, Olga; Nejedlý, Karel; Bennink, Martin L.; Subramaniam, Vinod; Bábková, Zuzana; Martínek, Tomáš; Lexa, Matej; Adámik, Matej

    2016-01-01

    Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed. PMID:27907175

  17. In vivo and in vitro cloning and phenotype characterization of tellurite resistance determinant conferred by plasmid pTE53 of a clinical isolate of Escherichia coli.

    PubMed

    Burian, J; Tu, N; Kl'ucár, L; Guller, L; Lloyd-Jones, G; Stuchlík, S; Fejdi, P; Siekel, P; Turna, J

    1998-01-01

    A determinant encoding resistance against potassium tellurite (Te(r)) was discovered in a clinical isolate of Escherichia coli strain KL53. The strain formed typical black colonies on solid LB medium with tellurite. The determinant was located on a large conjugative plasmid designated pTE53. Electron-dense particles were observed in cells harboring pTE53 by electron microscopy. X-Ray identification analysis identified these deposits as elemental tellurium and X-ray diffraction analysis showed patterns typical of crystalline structures. Comparison with JCPDS 4-0554 (Joint Committee on Powder Diffraction Standards) reference data confirmed that these crystals were pure tellurium crystals. In common with other characterized Te(r) determinants, accumulation studies with radioactively labeled tellurite showed that reduced uptake of tellurite did not contribute to the resistance mechanism. Tellurite accumulation rates for E. coli strain AB1157 harboring pTE53 were twice higher than for the plasmid-free host strain. In addition, no efflux mechanism was detected. The potassium tellurite resistance determinant of plasmid pTE53 was cloned using both in vitro and in vivo techniques in low-copy-number vectors pACYC184 and mini-Mu derivative pPR46. Cloning of the functional Te(r) determinant into high-copy cloning vectors pTZ19R and mini-Mu derivatives pBEf and pJT2 was not successful. During in vivo cloning experiments, clones with unusual "white colony" phenotypes were found on solid LB with tellurite. All these clones were Mucts62 lysogens. Their tellurite resistance levels were in the same order as the wild type strains. Clones with the "white" phenotype had a 3.6 times lower content of tellurium than the tellurite-reducing strain. Transformation of a "white" mutant with a recombinant pACYC184 based Te(r) plasmid did not change the phenotype. However, when one clone was cured from Mucts62 the "white" phenotype reverted to the wild-type "black" phenotype. It was suggested

  18. P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest

    PubMed Central

    Shamseddine, A A; Clarke, C J; Carroll, B; Airola, M V; Mohammed, S; Rella, A; Obeid, L M; Hannun, Y A

    2015-01-01

    Neutral sphingomyelinase-2 (nSMase2) is a ceramide-generating enzyme that has been implicated in growth arrest, apoptosis and exosome secretion. Although previous studies have reported transcriptional upregulation of nSMase2 in response to daunorubicin, through Sp1 and Sp3 transcription factors, the role of the DNA damage pathway in regulating nSMase2 remains unclear. In this study, we show that doxorubicin induces a dose-dependent induction of nSMase2 mRNA and protein with concomitant increases in nSMase activity and ceramide levels. Upregulation of nSMase2 was dependent on ATR, Chk1 and p53, thus placing it downstream of the DNA damage pathway. Moreover, overexpression of p53 was sufficient to transcriptionally induce nSMase2, without the need for DNA damage. DNA-binding mutants as well as acetylation mutants of p53 were unable to induce nSMase2, suggesting a role of nSMase2 in growth arrest. Moreover, knockdown of nSMase2 prevented doxorubicin-induced growth arrest. Finally, p53-induced nSMase2 upregulation appears to occur via a novel transcription start site upstream of exon 3. These results identify nSMase2 as a novel p53 target gene, regulated by the DNA damage pathway to induce cell growth arrest. PMID:26512957

  19. Cyclophilin B Supports Myc and Mutant p53 Dependent Survival of Glioblastoma Multiforme Cells

    PubMed Central

    Choi, Jae Won; Schroeder, Mark A.; Sarkaria, Jann N.; Bram, Richard J.

    2014-01-01

    Glioblastoma multiforme (GBM) is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in GBM cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human GBM cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of GBM cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-MAPK pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1 and JAK/STAT3 signaling. Elevated reactive oxygen species, ER expansion and abnormal unfolded protein responses in CypB-depleted GBM cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of GBM tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for GBM therapy. PMID:24272483

  20. Combined radiation and p53 gene therapy of malignant glioma cells.

    PubMed

    Badie, B; Goh, C S; Klaver, J; Herweijer, H; Boothman, D A

    1999-01-01

    More than half of malignant gliomas reportedly have alterations in the p53 tumor suppressor gene. Because p53 plays a key role in the cellular response to DNA-damaging agents, we investigated the role of p53 gene therapy before ionizing radiation in cultured human glioma cells containing normal or mutated p53. Three established human glioma cell lines expressing the wild-type (U87 MG, p53wt) or mutant (A172 and U373 MG, p53mut) p53 gene were transduced by recombinant adenoviral vectors bearing human p53 (Adp53) and Escherichia coli beta-galactosidase genes (AdLacZ, control virus) before radiation (0-20 Gy). Changes in p53, p21, and Bax expression were studied by Western immunoblotting, whereas cell cycle alterations and apoptosis were investigated by flow cytometry and nuclear staining. Survival was assessed by clonogenic assays. Within 48 hours of Adp53 exposure, all three cell lines demonstrated p53 expression at a viral multiplicity of infection of 100. p21, which is a p53-inducible downstream effector gene, was overexpressed, and cells were arrested in the G1 phase. Bax expression, which is thought to play a role in p53-induced apoptosis, did not change with either radiation or Adp53. Apoptosis and survival after p53 gene therapy varied. U87 MG (p53wt) cells showed minimal apoptosis after Adp53, irradiation, or combined treatments. U373 MG (p53mut) cells underwent massive apoptosis and died within 48 hours of Adp53 treatment, independent of irradiation. Surprisingly, A172 (p53mut) cells demonstrated minimal apoptosis after Adp53 exposure; however, unlike U373 MG cells, apoptosis increased with radiation dose. Survival of all three cell lines was reduced dramatically after >10 Gy. Although Adp53 transduction significantly reduced the survival of U373 MG cells and inhibited A172 growth, it had no effect on the U87 MG cell line. Transduction with AdLacZ did not affect apoptosis or cell cycle progression and only minimally affected survival in all cell lines. We

  1. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  2. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  3. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  4. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  5. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  6. Restoration of Wild-Type Activity to Mutant p53 in Prostate Cancer: A Novel Therapeutic Approach

    DTIC Science & Technology

    2006-01-01

    B) Cells were transfected with 1 mg of the indicated luciferase reporter constructs and 50 ng of pRL- Renilla . 24 hrs post transfections p53 was...induced by removal of tetracyline. Cells were lysed and assayed for luciferase and Renilla activities 24 hrs after induction of p53. The indicated

  7. Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells

    PubMed Central

    Kim, Ella L.; Wüstenberg, Robin; Rübsam, Anne; Schmitz-Salue, Christoph; Warnecke, Gabriele; Bücker, Eva-Maria; Pettkus, Nadine; Speidel, Daniel; Rohde, Veit; Schulz-Schaeffer, Walter; Deppert, Wolfgang; Giese, Alf

    2010-01-01

    Glioblastoma is the most common malignant brain tumor in adults. The currently available treatments offer only a palliative survival advantage and the need for effective treatments remains an urgent priority. Activation of the p53 growth suppression/apoptotic pathway is one of the promising strategies in targeting glioma cells. We show that the quinoline derivative chloroquine activates the p53 pathway and suppresses growth of glioma cells in vitro and in vivo in an orthotopic (U87MG) human glioblastoma mouse model. Induction of apoptosis is one of the mechanisms underlying the effects of chloroquine on suppressing glioma cell growth and viability. siRNA-mediated downregulation of p53 in wild-type but not mutant p53 glioblastoma cells substantially impaired chloroquine-induced apoptosis. In addition to its p53-activating effects, chloroquine may also inhibit glioma cell growth via p53-independent mechanisms. Our results clarify the mechanistic basis underlying the antineoplastic effect of chloroquine and reveal its therapeutic potential as an adjunct to glioma chemotherapy. PMID:20308316

  8. Essential role of caspase-8 in p53/p73-dependent apoptosis induced by etoposide in head and neck carcinoma cells

    PubMed Central

    2011-01-01

    Background Caspase-8 is a key upstream mediator in death receptor-mediated apoptosis and also participates in mitochondria-mediated apoptosis via cleavage of proapoptotic Bid. However, the role of caspase-8 in p53- and p73-dependent apoptosis induced by genotoxic drugs remains unclear. We recently reported that the reconstitution of procaspase-8 is sufficient for sensitizing cisplatin- but not etoposide-induced apoptosis, in chemoresistant and caspase-8 deficient HOC313 head and neck squamous cell carcinoma (HNSCC) cells. Results We show that p53/p73-dependent caspase-8 activation is required for sensitizing etoposide-induced apoptosis by utilizing HOC313 cells carrying a temperature-sensitive p53G285K mutant. Restoration of wild-type p53 function under the permissive conditions, together with etoposide treatment, led to substantial transcriptional activation of proapoptotic Noxa and PUMA, but failed to induce apoptosis. In addition to p53 restoration, caspase-8 reconstitution was needed for sensitization to etoposide-induced apoptosis, mitochondria depolarization, and cleavage of the procaspases-3, and -9. In etoposide-sensitive Ca9-22 cells carrying a temperature-insensitive mutant p53, siRNA-based p73 knockdown blocked etoposide-induced apoptosis and procaspase-8 cleavage. However, induction of p73 protein and up-regulation of Noxa and PUMA, although observed in Ca9-22 cells, were hardly detected in etoposide-treated HOC313 cells under non-permissive conditions, suggesting a contribution of p73 reduction to etoposide resistance in HOC313 cells. Finally, the caspase-9 inhibitor Ac-LEHD-CHO or caspase-9 siRNA blocked etoposide-induced caspase-8 activation, Bid cleavage, and apoptosis in both cell lines, indicating that p53/p73-dependent caspase-8 activation lies downstream of mitochondria. Conclusions we conclude that p53 and p73 can act as upstream regulators of caspase-8, and that caspase-8 is an essential mediator of the p53/p73-dependent apoptosis induced by

  9. Essential role of caspase-8 in p53/p73-dependent apoptosis induced by etoposide in head and neck carcinoma cells.

    PubMed

    Liu, Juan; Uematsu, Hiroshi; Tsuchida, Nobuo; Ikeda, Masa-Aki

    2011-07-31

    Caspase-8 is a key upstream mediator in death receptor-mediated apoptosis and also participates in mitochondria-mediated apoptosis via cleavage of proapoptotic Bid. However, the role of caspase-8 in p53- and p73-dependent apoptosis induced by genotoxic drugs remains unclear. We recently reported that the reconstitution of procaspase-8 is sufficient for sensitizing cisplatin- but not etoposide-induced apoptosis, in chemoresistant and caspase-8 deficient HOC313 head and neck squamous cell carcinoma (HNSCC) cells. We show that p53/p73-dependent caspase-8 activation is required for sensitizing etoposide-induced apoptosis by utilizing HOC313 cells carrying a temperature-sensitive p53G285K mutant. Restoration of wild-type p53 function under the permissive conditions, together with etoposide treatment, led to substantial transcriptional activation of proapoptotic Noxa and PUMA, but failed to induce apoptosis. In addition to p53 restoration, caspase-8 reconstitution was needed for sensitization to etoposide-induced apoptosis, mitochondria depolarization, and cleavage of the procaspases-3, and -9. In etoposide-sensitive Ca9-22 cells carrying a temperature-insensitive mutant p53, siRNA-based p73 knockdown blocked etoposide-induced apoptosis and procaspase-8 cleavage. However, induction of p73 protein and up-regulation of Noxa and PUMA, although observed in Ca9-22 cells, were hardly detected in etoposide-treated HOC313 cells under non-permissive conditions, suggesting a contribution of p73 reduction to etoposide resistance in HOC313 cells. Finally, the caspase-9 inhibitor Ac-LEHD-CHO or caspase-9 siRNA blocked etoposide-induced caspase-8 activation, Bid cleavage, and apoptosis in both cell lines, indicating that p53/p73-dependent caspase-8 activation lies downstream of mitochondria. we conclude that p53 and p73 can act as upstream regulators of caspase-8, and that caspase-8 is an essential mediator of the p53/p73-dependent apoptosis induced by etoposide in HNSCC cells. Our

  10. The Inherited p53 Mutation in the Brazilian Population.

    PubMed

    Achatz, Maria Isabel; Zambetti, Gerard P

    2016-12-01

    A common criticism of studying rare diseases is the often-limited relevance of the findings to human health. Here, we review ∼15 years of research into an unusual germline TP53 mutation (p.R337H) that began with its detection in children with adrenocortical carcinoma (ACC), a remarkably rare childhood cancer that is associated with poor prognosis. We have come to learn that the p.R337H mutation exists at a very high frequency in Southern and Southeastern Brazil, occurring in one of 375 individuals within a total population of ∼100 million. Moreover, it has been determined that carriers of this founder mutation display variable tumor susceptibility, ranging from isolated cases of pediatric ACC to Li-Fraumeni or Li-Fraumeni-like (LFL) syndromes, thus representing a significant medical issue for this country. Studying the biochemical and molecular consequences of this mutation on p53 tumor-suppressor activity, as well as the putative additional genetic alterations that cooperate with this mutation, is advancing our understanding of how p53 functions in tumor suppression in general. These studies, which originated with a rare childhood tumor, are providing important information for guiding genetic counselors and physicians in treating their patients and are already providing clinical benefit. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. HZE particle radiation induces tissue-specific and p53-dependent mutagenesis in transgenic animals

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Kanazawa, N.; Lutze-Mann, L.; Winegar, R.

    2001-01-01

    Transgenic animals, with the integrated target gene, provide a unique approach for measuring and characterizing mutations in any tissue of the animal. We are using the plasmid-based lacZ transgenic mice with different p53 genetic background to examine radiation-induced genetic damage resulting from exposure to heavy particle radiation. We measured lacZ mutation frequencies (MF) in the brain and spleen tissues at various times after exposing animals to an acute dose of 1 Gy of 1GeV/amu iron particles. MF in the spleen of p53+/+ animals increased up to 2.6-fold above spontaneous levels at 8 weeks post irradiation. In contrast, brain MF from the same animals increased 1.7-fold above controls in the same period. In the p53-/- animals, brain MF increased to 2.2-fold above spontaneous levels at 1 week after treatment, but returned to control levels thereafter. Radiation also induced alterations in the spectrum of mutants in both tissues, accompanied by changes in the frequency of mutants with deletions extending past the transgene into mouse genomic DNA. Our results indicate that the accumulation of transgene MF after radiation exposure is dependant on the tissue examined as well as the p53 genetic background of the animals.

  12. Impact of the p53 status of tumor cells on extrinsic and intrinsic apoptosis signaling.

    PubMed

    Wachter, Franziska; Grunert, Michaela; Blaj, Cristina; Weinstock, David M; Jeremias, Irmela; Ehrhardt, Harald

    2013-04-17

    The p53 protein is the best studied target in human cancer. For decades, p53 has been believed to act mainly as a tumor suppressor and by transcriptional regulation. Only recently, the complex and diverse function of p53 has attracted more attention. Using several molecular approaches, we studied the impact of different p53 variants on extrinsic and intrinsic apoptosis signaling. We reproduced the previously published results within intrinsic apoptosis induction: while wild-type p53 promoted cell death, different p53 mutations reduced apoptosis sensitivity. The prediction of the impact of the p53 status on the extrinsic cell death induction was much more complex. The presence of p53 in tumor cell lines and primary xenograft tumor cells resulted in either augmented, unchanged or reduced cell death. The substitution of wild-type p53 by mutant p53 did not affect the extrinsic apoptosis inducing capacity. In summary, we have identified a non-expected impact of p53 on extrinsic cell death induction. We suggest that the impact of the p53 status of tumor cells on extrinsic apoptosis signaling should be studied in detail especially in the context of therapeutic approaches that aim to restore p53 function to facilitate cell death via the extrinsic apoptosis pathway.

  13. Jmjd5 functions as a regulator of p53 signaling during mouse embryogenesis.

    PubMed

    Ishimura, Akihiko; Terashima, Minoru; Tange, Shoichiro; Suzuki, Takeshi

    2016-03-01

    Genetic studies have shown that aberrant activation of p53 signaling leads to embryonic lethality. Maintenance of a fine balance of the p53 protein level is critical for normal development. Previously, we have reported that Jmjd5, a member of the Jumonji C (JmjC) family, regulates embryonic cell proliferation through the control of Cdkn1a expression. Since Cdkn1a is the representative p53-regulated gene, we have examined whether the expression of other p53 target genes is coincidentally upregulated with Cdkn1a in Jmjd5-deficient embryos. The expression of a subset of p53-regulated genes was increased in both Jmjd5 hypomorphic mouse embryonic fibroblasts (MEFs) and Jmjd5-deficient embryos at embryonic day 8.25 without the induced expression of Trp53. Intercrossing of Jmjd5-deficient mice with Trp53 knockout mice showed that the growth defect of Jmjd5 mutant cells was significantly recovered under a Trp53 null genetic background. Chromatin immunoprecipitation analysis in Jmjd5 hypomorphic MEFs indicated the increased recruitment of p53 at several p53 target gene loci, such as Cdkn1a, Pmaip1, and Mdm2. These results suggest that Jmjd5 is involved in the transcriptional regulation of a subset of p53-regulated genes, possibly through the control of p53 recruitment at the gene loci. In Jmjd5-deficient embryos, the enhanced recruitment of p53 might result in the abnormal activation of p53 signaling leading to embryonic lethality.

  14. Depression of p53-independent Akt survival signals in human oral cancer cells bearing mutated p53 gene after exposure to high-LET radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakagawa, Yosuke; Takahashi, Akihisa; Kajihara, Atsuhisa

    Highlights: Black-Right-Pointing-Pointer High-LET radiation induces efficiently apoptosis regardless of p53 gene status. Black-Right-Pointing-Pointer We examined whether high-LET radiation depresses the Akt-survival signals. Black-Right-Pointing-Pointer High-LET radiation depresses of survival signals even in the mp53 cancer cells. Black-Right-Pointing-Pointer High-LET radiation activates Caspase-9 through depression of survival signals. Black-Right-Pointing-Pointer High-LET radiation suppresses cell growth through depression of survival signals. -- Abstract: Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggestedmore » that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G{sub 2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling

  15. Usp5 links suppression of p53 and FAS levels in melanoma to the BRAF pathway

    PubMed Central

    Potu, Harish; Peterson, Luke F.; Pal, Anupama; Verhaegen, Monique; Cao, Juxiang; Talpaz, Moshe; Donato, Nicholas J.

    2014-01-01

    Usp5 is a deubiquitinase (DUB) previously shown to regulate unanchored polyubiquitin (Ub) chains, p53 transcriptional activity and double-strand DNA repair. In BRAF mutant melanoma cells, Usp5 activity was suppressed by BRAF inhibitor (vemurafenib) in sensitive but not in acquired or intrinsically resistant cells. Usp5 knockdown overcame acquired vemurafenib resistance and sensitized BRAF and NRAS mutant melanoma cells to apoptosis initiated by MEK inhibitor, cytokines or DNA-damaging agents. Knockdown and overexpression studies demonstrated that Usp5 regulates p53 (and p73) levels and alters cell growth and cell cycle distribution associated with p21 induction. Usp5 also regulates the intrinsic apoptotic pathway by modulating p53-dependent FAS expression. A small molecule DUB inhibitor (EOAI3402143) phenocopied the FAS induction and apoptotic sensitization of Usp5 knockdown and fully blocked melanoma tumor growth in mice. Overall, our results demonstrate that BRAF activates Usp5 to suppress cell cycle checkpoint control and apoptosis by blocking p53 and FAS induction; all of which can be restored by small molecule-mediated Usp5 inhibition. These results suggest that Usp5 inhibition can provide an alternate approach in recovery of diminished p53 (or p73) function in melanoma and can add to the targeted therapies already used in the treatment of melanoma. PMID:24980819

  16. Pharmacological targeting of p53 through RITA is an effective antitumoral strategy for malignant pleural mesothelioma.

    PubMed

    Di Marzo, Domenico; Forte, Iris Maria; Indovina, Paola; Di Gennaro, Elena; Rizzo, Valeria; Giorgi, Francesca; Mattioli, Eliseo; Iannuzzi, Carmelina Antonella; Budillon, Alfredo; Giordano, Antonio; Pentimalli, Francesca

    2014-01-01

    Malignant mesothelioma, a very aggressive tumor associated to asbestos exposure, is expected to increase in incidence, and unfortunately, no curative modality exists. Reactivation of p53 is a new attractive antitumoral strategy. p53 is rarely mutated in mesothelioma, but it is inactivated in most tumors by the lack of p14(ARF). Here, we evaluated the feasibility of this approach in pleural mesothelioma by testing RITA and nutlin-3, two molecules able to restore p53 function through a different mechanism, on a panel of mesothelioma cell lines representing the epithelioid (NCI-H28, NCI-H2452, IST-MES 2), biphasic (MSTO-211H), and sarcomatoid (NCI-H2052) histotypes compared with the normal mesothelial HMC-hTERT. RITA triggered robust caspase-dependent apoptosis specifically in epithelioid and biphasic mesothelioma cell lines, both through wild-type and mutant p53, concomitant to p21 downregulation. Conversely, nutlin-3 induced a p21-dependent growth arrest, rather than apoptosis, and was slightly toxic on HMC-hTERT.   Interestingly, we identified a previously undetected point mutation of p53 (p.Arg249Ser) in IST-MES 2, and showed that RITA is also able to reactivate this p53 mutant protein and its apoptotic function. RITA reduced tumor growth in a MSTO-211H-derived xenograft model of mesothelioma and synergized with cisplatin, which is the mainstay of treatment for this tumor. Our data indicate that reactivation of p53 and concomitant p21 downregulation effectively induce cell death in mesothelioma, a tumor characterized by a high intrinsic resistance to apoptosis. Altogether, our findings provide the preclinical framework supporting the use of p53-reactivating agents alone, or in combination regimens, to improve the outcome of patients with mesothelioma.

  17. Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization.

    PubMed

    Alexandrova, A; Ivanov, A; Chumakov, P; Kopnin, B; Vasiliev, J

    2000-11-23

    Effects of p53 expression on cell morphology and motility were studied using the derivatives of p53-null 10(1) mouse fibroblasts with tetracycline-regulated expression of exogenous human p53. Induction of p53 expression was accompanied by significant decrease in extracellular matrix (fibronectin) and reduction of matrix fibrils, diminution of the number and size of focal contacts, decrease of cell areas, establishment of more elongated cell shape and alterations of actin cytoskeleton (actin bundles became thinner, their number and size decreased). Expression of His175 and Gln22/ Ser23 p53 mutants caused no such effects. To study the influence of p53 expression on cell motility we used wound technique and videomicroscopy observation of single living cells. It was found that induction of p53 expression led to increase of lamellar activity of cell edge. However, in spite of enhanced lamellar activity p53-expressing cells migrated to shorter distance and filled the narrow wound in longer time as compared with their p53-null counterparts. Possible mechanisms of the influence of p53 expression on cell morphology and motility are discussed.

  18. Neoplasia of the ampulla of Vater. Ki-ras and p53 mutations.

    PubMed Central

    Scarpa, A.; Capelli, P.; Zamboni, G.; Oda, T.; Mukai, K.; Bonetti, F.; Martignoni, G.; Iacono, C.; Serio, G.; Hirohashi, S.

    1993-01-01

    Eleven tumors of the ampulla of Vater (5 stage IV and 2 stage II adenocarcinomas, 1 stage II papillary carcinoma, 1 neuroendocrine carcinoma, and 2 adenomas, one with foci of carcinoma) were examined for Ki-ras and p53 gene mutations by single-strand conformation polymorphism analysis and direct sequencing of polymerase chain reaction-amplified DNA fragments. Ki-ras mutations were found in one adenocarcinoma and in the adenoma with foci of carcinoma, both involving mainly the intraduodenal bile duct component of the ampulla. Seven cases showed p53 gene mutations: four advanced-stage adenocarcinomas, the papillary carcinoma, the neuroendocrine carcinoma, and the adenoma with foci of carcinoma. Nuclear accumulation of p53 protein was immunohistochemically detected in the morphologically high-grade areas of the five cancers harboring a p53 gene missense point mutation. The adenomas, the two frame shift-mutated cancers, and the adenomatous and low-grade cancer areas of mutated carcinomas were immunohistochemically negative. Our data suggest that in ampullary neoplasia 1) p53 mutations are common abnormalities associated with the transformation of adenomas and low-grade cancers into morphologically high-grade carcinomas, and 2) Ki-ras mutations are relatively less frequent and might be restricted to tumors originating from the bile duct component of the ampulla. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8475992

  19. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.

    PubMed

    Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N; Bram, Richard J

    2014-01-15

    Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.

  20. An analysis of microvessel density, androgen receptor, p53 and HER-2/neu expression and Gleason score in prostate cancer . preliminary results and therapeutic implications.

    PubMed

    Mydlo, J H; Kral, J G; Volpe, M; Axotis, C; Macchia, R J; Pertschuk, L P

    1998-01-01

    To investigate relationships between microvessel density (MVD), androgen receptors (AR), mutant p53 and HER-2/neu expression and Gleason score (GS) to further understand the tumor biology of prostate cancer (CAP). Slides of CAP from patients who underwent radical prostatectomy or channel transurethral resection of the prostate (TURP) were tested for androgen receptors by immunocytochemical assay and MVD was analyzed by staining with antibodies to the endothelial cell membrane molecule PECAM-1/CD-31. The p53 monoclonal antibody D07 and HER-2 9G6 mouse monoclonal antibody were used to assess p53 and HER-2/neu expression, respectively. The results were correlated with GS and clinical stage by multivariate analysis. We found a fourfold greater expression of MVD in prostate cancer specimens compared to neighboring normal prostate tissue. We observed a greater concentration of MVD in the higher Gleason scores (r = 0.40, p = 0. 06), and a correlation of Gleason score with mutant p53 expression (r = 0.57, p <0.05). We did not observe any associations between AR or HER-2/neu to Gleason score. More than half of the patients with specimens with 50% or greater expression of mutant p53 were in stage D2 (T4NxM1b) at the time of biopsy. We observed a correlation between mutant p53 and GS, and a greater concentration of MVD in the higher GS. Since the neovascularity of prostate tumors can be attenuated by radiation and hormones, while mutant p53 may confer resistance to such treatment, it appears that p53 expression may also play an important role in addition to angiogenesis in the virulence of prostate cancer. These data may aid in allocating patients to different treatment modalities.

  1. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    PubMed Central

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus lacking the dsRNA binding protein E3L can also induce this effect, indicating that dsRNA formed during viral infection is likely the trigger for down-regulation of p53. The mechanism of down-regulation of p53 by dsRNA relies on translation inhibition mediated by the PKR and RNase L pathways. In the absence of p53, the replication of both EMCV and HPIV3 was retarded, whereas, conversely, VSV replication was enhanced. Cell cycle analysis indicated that wild-type (WT) but not p53 knockout (KO) fibroblasts undergo an early-G1 arrest following dsRNA treatment. Moreover, in WT cells the onset of dsRNA-induced apoptosis begins after p53 levels are down-regulated, whereas p53 KO cells, which lack the early-G1 arrest, rapidly undergo apoptosis. Hence, our data suggest that the down-regulation of p53 facilitates apoptosis, thereby limiting viral replication. PMID:16103161

  2. Drug Resistance to Inhibitors of the Human Double Minute-2 E3 Ligase is Mediated by Point Mutations of p53, but can be Overcome with the p53 Targeting Agent RITA

    PubMed Central

    Jones, Richard J.; Bjorklund, Chad C.; Baladandayuthapani, Veerabhadran; Kuhn, Deborah J.; Orlowski, Robert Z.

    2012-01-01

    The human double minute (HDM)-2 E3 ubiquitin ligase plays a key role in p53 turnover, and has been validated pre-clinically as a target in multiple myeloma (MM) and mantle cell lymphoma (MCL). HDM-2 inhibitors are entering clinical trials, and we therefore sought to understand potential mechanisms of resistance in lymphoid models. Wild-type p53 H929 MM and Granta-519 MCL cells resistant to MI-63 or Nutlin were generated by exposing them to increasing drug concentrations. MI-63-resistant H929 and Granta-519 cells were resistant to Nutlin, while Nutlin-resistant cells displayed cross-resistance to MI-63. These cells also showed cross-resistance to bortezomib, doxorubicin, cisplatin, and melphalan, but remained sensitive to the small molecule inhibitor RITA. HDM-2 inhibitor-resistant cells harbored increased p53 levels, but neither genotoxic nor non-genotoxic approaches to activate p53 induced HDM-2 or p21. Resequencing revealed wild-type HDM-2, but mutations were found in the p53 DNA binding and dimerization domains. In resistant cells, RITA induced a G2/M arrest, up-regulation of p53 targets HDM-2, PUMA, and NOXA, and PARP cleavage. Combination regimens with RITA and MI-63 resulted in enhanced cell death compared to RITA alone. These findings support the possibility that p53 mutation could be a primary mechanism of acquired resistance to HDM-2 inhibitors in MCL and MM. Furthermore, they suggest that simultaneous restoration of p53 function and HDM-2 inhibition is a rational strategy for clinical translation. PMID:22933706

  3. p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development

    PubMed Central

    Contreras, Esteban G.; Sierralta, Jimena

    2018-01-01

    Background Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called ‘brain sparing’. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. Results Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. Conclusions Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals. PMID:29621246

  4. p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development.

    PubMed

    Contreras, Esteban G; Sierralta, Jimena; Glavic, Alvaro

    2018-01-01

    Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called 'brain sparing'. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals.

  5. Drug resistance to inhibitors of the human double minute-2 E3 ligase is mediated by point mutations of p53, but can be overcome with the p53 targeting agent RITA.

    PubMed

    Jones, Richard J; Bjorklund, Chad C; Baladandayuthapani, Veerabhadran; Kuhn, Deborah J; Orlowski, Robert Z

    2012-10-01

    The human double minute (HDM)-2 E3 ubiquitin ligase plays a key role in p53 turnover and has been validated preclinically as a target in multiple myeloma (MM) and mantle cell lymphoma (MCL). HDM-2 inhibitors are entering clinical trials, and we therefore sought to understand potential mechanisms of resistance in lymphoid models. Wild-type p53 H929 MM and Granta-519 MCL cells resistant to MI-63 or Nutlin were generated by exposing them to increasing drug concentrations. MI-63-resistant H929 and Granta-519 cells were resistant to Nutlin, whereas Nutlin-resistant cells displayed cross-resistance to MI-63. These cells also showed cross-resistance to bortezomib, doxorubicin, cisplatin, and melphalan, but remained sensitive to the small molecule inhibitor RITA (reactivation of p53 and induction of tumor cell apoptosis). HDM-2 inhibitor-resistant cells harbored increased p53 levels, but neither genotoxic nor nongenotoxic approaches to activate p53 induced HDM-2 or p21. Resequencing revealed wild-type HDM-2, but mutations were found in the p53 DNA binding and dimerization domains. In resistant cells, RITA induced a G(2)-M arrest, upregulation of p53 targets HDM-2, PUMA, and NOXA, and PARP cleavage. Combination regimens with RITA and MI-63 resulted in enhanced cell death compared with RITA alone. These findings support the possibility that p53 mutation could be a primary mechanism of acquired resistance to HDM-2 inhibitors in MCL and MM. Furthermore, they suggest that simultaneous restoration of p53 function and HDM-2 inhibition is a rational strategy for clinical translation.

  6. IKK is a therapeutic target in KRAS-Induced lung cancer with disrupted p53 activity.

    PubMed

    Bassères, Daniela S; Ebbs, Aaron; Cogswell, Patricia C; Baldwin, Albert S

    2014-04-01

    Activating mutations in KRAS are prevalent in cancer, but therapies targeted to oncogenic RAS have been ineffective to date. These results argue that targeting downstream effectors of RAS will be an alternative route for blocking RAS-driven oncogenic pathways. We and others have shown that oncogenic RAS activates the NF-κB transcription factor pathway and that KRAS-induced lung tumorigenesis is suppressed by expression of a degradation-resistant form of the IκBα inhibitor or by genetic deletion of IKKβ or the RELA/p65 subunit of NF-κB. Here, genetic and pharmacological approaches were utilized to inactivate IKK in human primary lung epithelial cells transformed by KRAS, as well as KRAS mutant lung cancer cell lines. Administration of the highly specific IKKβ inhibitor Compound A (CmpdA) led to NF-κB inhibition in different KRAS mutant lung cells and siRNA-mediated knockdown of IKKα or IKKβ reduced activity of the NF-κB canonical pathway. Next, we determined that both IKKα and IKKβ contribute to oncogenic properties of KRAS mutant lung cells, particularly when p53 activity is disrupted. Based on these results, CmpdA was tested for potential therapeutic intervention in the Kras-induced lung cancer mouse model (LSL-Kras (G12D)) combined with loss of p53 (LSL-Kras (G12D)/p53 (fl/fl)). CmpdA treatment was well tolerated and mice treated with this IKKβ inhibitor presented smaller and lower grade tumors than mice treated with placebo. Additionally, IKKβ inhibition reduced inflammation and angiogenesis. These results support the concept of targeting IKK as a therapeutic approach for oncogenic RAS-driven tumors with altered p53 activity.

  7. Targeting the p53 signaling pathway in cancer therapy - The promises, challenges, and perils

    PubMed Central

    Stegh, Alexander H.

    2012-01-01

    Introduction Research over the past three decades has identified p53 as a multifunctional transcription factor, which regulates the expression of >2,500 target genes. p53 impacts myriad, highly diverse cellular processes, including the maintenance of genomic stability and fidelity, metabolism, longevity, and represents one of the most important and extensively studied tumor suppressors. Activated by various stresses, foremost genotoxic damage, hypoxia, heat shock and oncogenic assault, p53 blocks cancer progression by provoking transient or permanent growth arrest, by enabling DNA repair or by advancing cellular death programs. This potent and versatile anti-cancer activity profile, together with genomic and mutational analyses documenting inactivation of p53 in more than 50% of human cancers, motivated drug development efforts to (re-) activate p53 in established tumors. Areas covered In this review the complexities of p53 signaling in cancer are summarized. Current strategies and challenges to restore p53’s tumor suppressive function in established tumors, i.e. adenoviral gene transfer and small molecules to activate p53, to inactivate p53 inhibitors and to restore wild type function of p53 mutant proteins are discussed. Expert opinion It is indubitable that p53 represents an attractive target for the development of anti-cancer therapies. Whether p53 is ‘druggable’, however, remains an area of active research and discussion, as p53 has pro-survival functions and chronic p53 activation accelerates aging, which may compromise the long-term homeostasis of an organism. Thus, the complex biology and dual functions of p53 in cancer prevention and age-related cellular responses pose significant challenges on the development of p53-targeting cancer therapies. PMID:22239435

  8. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations

    PubMed Central

    Kamitaki, Nolan; Mitchell, Jana; Avior, Yishai; Mello, Curtis; Kashin, Seva; Mekhoubad, Shila; Ilic, Dusko; Charlton, Maura; Saphier, Genevieve; Handsaker, Robert E.; Genovese, Giulio; Bar, Shiran; Benvenisty, Nissim; McCarroll, Steven A.; Eggan, Kevin

    2017-01-01

    Human pluripotent stem cells (hPSCs) can self-renew indefinitely, making them an attractive source for regenerative therapies. This expansion potential has been linked with acquisition of large copy number variants (CNVs) that provide mutant cells with a growth advantage in culture1–3. However, the nature, extent, and functional impact of other acquired genome sequence mutations in cultured hPSCs is not known. Here, we sequenced the protein-coding genes (exomes) of 140 independent human embryonic stem cell (hESC) lines, including 26 lines prepared for potential clinical use4. We then applied computational strategies for identifying mutations present in a subset of cells5. Though such mosaic mutations were generally rare, we identified five unrelated hESC lines that carried six mutations in the TP53 gene that encodes the tumor suppressor P53. Notably, the TP53 mutations we observed are dominant negative and are the mutations most commonly seen in human cancers. We used droplet digital PCR to demonstrate that the TP53 mutant allelic fraction increased with passage number under standard culture conditions, suggesting that P53 mutation confers selective advantage. When we then mined published RNA sequencing data from 117 hPSC lines, we observed another nine TP53 mutations, all resulting in coding changes in the DNA binding domain of P53. Strikingly, in three lines, the allelic fraction exceeded 50%, suggesting additional selective advantage resulting from loss of heterozygosity at the TP53 locus. As the acquisition and favored expansion of cancer-associated mutations in hPSCs may go unnoticed during most applications, we suggest that careful genetic characterization of hPSCs and their differentiated derivatives should be carried out prior to clinical use. PMID:28445466

  9. INGN 201: Ad-p53, Ad5CMV-p53, adenoviral p53, p53 gene therapy--introgen, RPR/INGN 201.

    PubMed

    2007-01-01

    Introgen and its wholly owned European subsidiary Gendux AB are developing an adenoviral p53 gene therapy as a treatment for cancer in the US and Europe, respectively. Phase III trials in patients with head and neck cancer are ongoing, and a number of clinical trials in other cancer indications have been completed. INGN 201 is being reviewed by the EMEA for approval in Li-Fraumeni syndrome (LFS) under the provisions of exceptional circumstance; the therapy is available on a compassionate use basis to eligible LFS cancer patients under a protocol authorised by the US FDA. The p53 tumour suppressor gene is deleted or mutated in many tumour cells and is one of the most frequently mutated genes in human tumours. The p53 protein is one of the most intricate elements in the apoptotic signalling cascade, and a mutation in the gene encoding it is believed to result in a decreased ability of a cell to apoptose. Thus replacing this gene via adenovirally-mediated p53 gene therapy is hoped to result in increased apoptosis where it is administered.INGN 201 is available for licensing, although Introgen favours retaining partial or full rights to the therapy in the US. Introgen entered into a license agreement with The University of Texas System and MD Anderson Cancer Center in 1994. The technologies licenced include p53 and fus1 (INGN 401). The collaboration has yielded exclusive patent and licensing rights to numerous technologies. Introgen entered into a collaboration with Rhône-Poulenc Rorer Pharmaceuticals (now sanofi-aventis) to develop therapeutics based on p53 inhibition in October 1994. However, in June 2001 this relationship was restructured and Introgen assumed responsibility for the worldwide development of all p53 products including INGN 201, and acquired all marketing and commercialisation rights with respect to those products. Introgen initiated two phase III trials in head and neck cancer (in June 2000 and May 2001) at about 80 sites in the US, Canada and Europe

  10. P53 alters the cytotoxicity and genotoxicity for oxidized graphene in human B-lymphoblastoid cells

    NASA Astrophysics Data System (ADS)

    Petibone, Dayton Matthew

    Widespread use of oxidized graphene nanomaterials in industry, medicine, and consumer products raises concern about potential adverse impacts on human health. The p53 tumor suppressor protein is crucial to maintaining cellular and genetic stability to prevent carcinogenesis. Here, we show that oxygen functionalized graphene (f-G) absorption and p53 functional status correlate with cytotoxicity and genotoxicity in human B-lymphoblastoid cells. Trends in f-G absorption by were dose-dependent. Cells with functional p53 exposed to f-G arrested in G0/G1 phase of the cell cycle, suppressed f-G induced reactive oxygen species (ROS), and had elevated apoptosis. While compared to p53 competent cells, the p53 deficient cells exposed to f-G accumulated in S-phase of the cell cycle, had elevated ROS levels, and evaded apoptosis. The f-G genotoxicity was evident as increased loss-of-heterozygosity mutants independent of p53 status, and structural chromosome damage in p53 deficient cells. These findings have broad implications for the safety and efficacy of oxidized graphene nanomaterials in industrial, consumer products and biomedical applications.

  11. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  12. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  13. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  14. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  15. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  16. p53-dependent cell death/apoptosis is required for a productive adenovirus infection.

    PubMed

    Hall, A R; Dix, B R; O'Carroll, S J; Braithwaite, A W

    1998-09-01

    The p53 tumor suppressor protein binds to both cellular and viral proteins, which influence its biological activity. One such protein is the large E1b tumor antigen (E1b58kDa) from adenoviruses (Ads), which abrogates the ability of p53 to transactivate various promoters. This inactivation of p53 function is believed to be the mechanism by which E1b58kDa contributes to the cell transformation process. Although the p53-E1b58kDa complex occurs during infection and is conserved among different serotypes, there are limited data demonstrating that it has a role in virus replication. However, loss of p53 expression occurs after adenovirus infection of human cells and an E1b58kDa deletion mutant (Onyx-015, also called dl 1520) selectively replicates in p53-defective cells. These (and other) data indicate a plausible hypothesis is that loss of p53 function may be conducive to efficient adenovirus replication. However, wild-type (wt) Ad5 grows more efficiently in cells expressing a wt p53 protein. These studies indicate that the hypothesis may be an oversimplification. Here, we show that cells expressing wt p53, as well as p53-defective cells, allow adenovirus replication, but only cells expressing wt p53 show evidence of virus-induced cytopathic effect. This correlates with the ability of adenovirus to induce cell death. Our data indicate that p53 plays a necessary part in mediating cellular destruction to allow a productive adenovirus infection. In contrast, p53-deficient cells are less sensitive to the cytolytic effects of adenovirus and as such raise questions about the use of E1b58kDa-deficient adenoviruses in tumor therapy.

  17. Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response

    PubMed Central

    Marcel, V; Fernandes, K; Terrier, O; Lane, D P; Bourdon, J-C

    2014-01-01

    In addition to the tumor suppressor p53 protein, also termed p53α, the TP53 gene produces p53β and p53γ through alternative splicing of exons 9β and 9γ located within TP53 intron 9. Here we report that both TG003, a specific inhibitor of Cdc2-like kinases (Clk) that regulates the alternative splicing pre-mRNA pathway, and knockdown of SFRS1 increase expression of endogenous p53β and p53γ at mRNA and protein levels. Development of a TP53 intron 9 minigene shows that TG003 treatment and knockdown of SFRS1 promote inclusion of TP53 exons 9β/9γ. In a series of 85 primary breast tumors, a significant association was observed between expression of SFRS1 and α variant, supporting our experimental data. Using siRNA specifically targeting exons 9β/9γ, we demonstrate that cell growth can be driven by modulating p53β and p53γ expression in an opposite manner, depending on the cellular context. In MCF7 cells, p53β and p53γ promote apoptosis, thus inhibiting cell growth. By transient transfection, we show that p53β enhanced p53α transcriptional activity on the p21 and Bax promoters, while p53γ increased p53α transcriptional activity on the Bax promoter only. Moreover, p53β and p53γ co-immunoprecipitate with p53α only in the presence of p53-responsive promoter. Interestingly, although p53β and p53γ promote apoptosis in MCF7 cells, p53β and p53γ maintain cell growth in response to TG003 in a p53α-dependent manner. The dual activities of p53β and p53γ isoforms observed in non-treated and TG003-treated cells may result from the impact of TG003 on both expression and activities of p53 isoforms. Overall, our data suggest that p53β and p53γ regulate cellular response to modulation of alternative splicing pre-mRNA pathway by a small drug inhibitor. The development of novel drugs targeting alternative splicing process could be used as a novel therapeutic approach in human cancers. PMID:24926616

  18. Bcl-2/Bax protein ratio predicts 5-fluorouracil sensitivity independently of p53 status

    PubMed Central

    Mirjolet, J-F; Barberi-Heyob, M; Didelot, C; Peyrat, J-P; Abecassis, J; Millon, R; Merlin, J-L

    2000-01-01

    p53 tumour-suppressor gene is involved in cell growth control, arrest and apoptosis. Nevertheless cell cycle arrest and apoptosis induction can be observed in p53-defective cells after exposure to DNA-damaging agents such as 5-fluorouracil (5-FU) suggesting the importance of alternative pathways via p53-independent mechanisms. In order to establish relationship between p53 status, cell cycle arrest, Bcl-2/Bax regulation and 5-FU sensitivity, we examined p53 mRNA and protein expression and p53 protein functionality in wild-type (wt) and mutant (mt) p53 cell lines. p53 mRNA and p53 protein expression were determined before and after exposure to equitoxic 5-FU concentration in six human carcinoma cell lines differing in p53 status and displaying marked differences in 5-FU sensitivity, with IC 50 values ranging from 0.2–22.6 mM. 5-FU induced a rise in p53 mRNA expression in mt p53 cell lines and in human papilloma virus positive wt p53 cell line, whereas significant decrease in p53 mRNA expression was found in wt p53 cell line. Whatever p53 status, 5-FU altered p53 transcriptional and translational regulation leading to up-regulation of p53 protein. In relation with p53 functionality, but independently of p53 mutational status, after exposure to 5-FU equitoxic concentration, all cell lines were able to arrest in G1. No relationship was evidenced between G1 accumulation ability and 5-FU sensitivity. Moreover, after 5-FU exposure, Bax and Bcl-2 proteins regulation was under p53 protein control and a statistically significant relationship (r= 0.880,P= 0.0097) was observed between Bcl-2/Bax ratio and 5-FU sensitivity. In conclusion, whatever p53 status, Bcl-2 or Bax induction and Bcl-2/Bax protein ratio were correlated to 5-FU sensitivity. © 2000 Cancer Research Campaign PMID:11044365

  19. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6

    PubMed Central

    2010-01-01

    Background Reactivation of p53 by either gene transfer or pharmacologic approaches may compensate for loss of p19Arf or excess mdm2 expression, common events in melanoma and glioma. In our previous work, we constructed the pCLPG retroviral vector where transgene expression is controlled by p53 through a p53-responsive promoter. The use of this vector to introduce p19Arf into tumor cells that harbor p53wt should yield viral expression of p19Arf which, in turn, would activate the endogenous p53 and result in enhanced vector expression and tumor suppression. Since nutlin-3 can activate p53 by blocking its interaction with mdm2, we explored the possibility that the combination of p19Arf gene transfer and nutlin-3 drug treatment may provide an additive benefit in stimulating p53 function. Methods B16 (mouse melanoma) and C6 (rat glioma) cell lines, which harbor p53wt, were transduced with pCLPGp19 and these were additionally treated with nutlin-3 or the DNA damaging agent, doxorubicin. Viral expression was confirmed by Western, Northern and immunofluorescence assays. p53 function was assessed by reporter gene activity provided by a p53-responsive construct. Alterations in proliferation and viability were measured by colony formation, growth curve, cell cycle and MTT assays. In an animal model, B16 cells were treated with the pCLPGp19 virus and/or drugs before subcutaneous injection in C57BL/6 mice, observation of tumor progression and histopathologic analyses. Results Here we show that the functional activation of endogenous p53wt in B16 was particularly challenging, but accomplished when combined gene transfer and drug treatments were applied, resulting in increased transactivation by p53, marked cell cycle alteration and reduced viability in culture. In an animal model, B16 cells treated with both p19Arf and nutlin-3 yielded increased necrosis and decreased BrdU marking. In comparison, C6 cells were quite susceptible to either treatment, yet p53 was further activated

  20. XRCC4 suppresses medulloblastomas with recurrent translocations in p53-deficient mice

    PubMed Central

    Yan, Catherine T.; Kaushal, Dhruv; Murphy, Michael; Zhang, Yu; Datta, Abhishek; Chen, Changzhong; Monroe, Brianna; Mostoslavsky, Gustavo; Coakley, Kristen; Gao, Yijie; Mills, Kevin D.; Fazeli, Alex P.; Tepsuporn, Suprawee; Hall, Giles; Mulligan, Richard; Fox, Edward; Bronson, Roderick; De Girolami, Umberto; Lee, Charles; Alt, Frederick W.

    2006-01-01

    Inactivation of the XRCC4 nonhomologous end-joining factor in the mouse germ line leads to embryonic lethality, in association with apoptosis of newly generated, postmitotic neurons. We now show that conditional inactivation of the XRCC4 in nestin-expressing neuronal progenitor cells, although leading to no obvious phenotype in a WT background, leads to early onset of neuronally differentiated medulloblastomas (MBs) in a p53-deficient background. A substantial proportion of the XRCC4/p53-deficient MBs have high-level N-myc gene amplification, often intrachromosomally in the context of complex translocations or other alterations of chromosome 12, on which N-myc resides, or extrachromosomally within double minutes. In addition, most XRCC4/p53-deficient MBs harbor clonal translocations of chromosome 13, which frequently involve chromosome 6 as a partner. One copy of the patched gene (Ptc), which lies on chromosome 13, was deleted in all tested XRCC4/p53-deficient MBs in the context of translocations or interstitial deletions. In addition, Cyclin D2, a chromosome 6 gene, was amplified in a subset of tumors. Notably, amplification of Myc-family or Cyclin D2 genes and deletion of Ptc also have been observed in human MBs. We therefore conclude that, in neuronal cells of mice, the nonhomologous end-joining pathway plays a critical role in suppressing genomic instability that, in a p53-deficient background, routinely contributes to genesis of MBs with recurrent chromosomal alterations. PMID:16670198

  1. Influence of p53 status on the effects of boron neutron capture therapy in glioblastoma.

    PubMed

    Seki, Keiko; Kinashi, Yuko; Takahashi, Sentaro

    2015-01-01

    The tumor suppressor gene p53 is mutated in glioblastoma. We studied the relationship between the p53 gene and the biological effects of boron neutron capture therapy (BNCT). The human glioblastoma cells; A172, expressing wild-type p53, and T98G, with mutant p53, were irradiated by the Kyoto University Research Reactor (KUR). The biological effects after neutron irradiation were evaluated by the cell killing effect, 53BP1 foci assay and apoptosis induction. The survival-fraction data revealed that A172 was more radiosensitive than T98G, but the difference was reduced when boronophenylalanine (BPA) was present. Both cell lines exhibited similar numbers of foci, suggesting that the initial levels of DNA damage did not depend on p53 function. Detection of apoptosis revealed a lower rate of apoptosis in the T98G. BNCT causes cell death in glioblastoma cells, regardless of p53 mutation status. In T98G cells, cell killing and apoptosis occurred effectively following BNCT. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Direct observations of conformational distributions of intrinsically disordered p53 peptides using UV Raman and explicit solvent simulations

    PubMed Central

    Xiong, Kan; Zwier, Matthew C.; Myshakina, Nataliya S.; Burger, Virginia M.; Asher, Sanford A.; Chong, Lillian T.

    2011-01-01

    We report the first experimental measurements of Ramachandran Ψ-angle distributions for intrinsically disordered peptides: the N-terminal peptide fragment of tumor suppressor p53 and its P27 mutant form. To provide atomically detailed views of the conformational distributions, we performed classical, explicit-solvent molecular dynamics simulations on the microsecond timescale. Upon binding its partner protein, MDM2, wild-type p53 peptide adopts an α-helical conformation. Mutation of Pro27 to serine results in the highest affinity yet observed for MDM2-binding of the p53 peptide. Both UV resonance Raman spectroscopy (UVRR) and simulations reveal that the P27S mutation decreases the extent of PPII helical content and increases the probability for conformations that are similar to the α-helical MDM2-bound conformation. In addition, UVRR measurements were performed on peptides that were isotopically labeled at the Leu26 residue preceding the Pro27 in order to determine the conformational distributions of Leu26 in the wild-type and mutant peptides. The UVRR and simulation results are in quantitative agreement in terms of the change in the population of non-PPII conformations involving Leu26 upon mutation of Pro27 to serine. Finally, our simulations reveal that the MDM2-bound conformation of the peptide is significantly populated in both the wild-type and mutant isolated peptide ensembles in their unbound states, suggesting that MDM2 binding of the p53 peptides may involve conformational selection. PMID:21528875

  3. [Interaction between p53 and MDM2 in human lung cancer cells].

    PubMed

    Rybárová, S; Hodorová, I; Vecanová, J; Muri, J; Mihalik, J

    2014-01-01

    The oncoprotein p53 protein induces cell growth arrest (apoptosis) in response to endo  or exogenous stimuli. Mutation of TP53 (gene encoding the p53 protein) is common in human malignancies and alters the conformation of p53. The result is a more stable protein which accumulates in nuclei of tumor cells with loss of function. Mutant p53 is stabilized, and it is possible to detect this form very clearly by immunohistochemistry (IHC). Expression of the MDM2 protein is used as a potential marker of p53 function. P53 levels in normal cells are highly determined by the MDM2 protein (murine double minute 2) -  mediated degradation of p53. MDM2 overexpression represents at least one mechanism by which p53 function can be abrogated during tumorigenesis. Lung carcinoma samples were obtained from patients, who underwent radical resection (lobectomy or pulmonectomy and lymphadectomy). Pathological dia-gnosis was based on the WHO criteria. In our study, we investigated the expression of p53 and MDM2 protein that might improve IHC as a marker for p53 status. Proteins were IHC detected in 136 samples of primary lung carcinoma. Immunostaining results of p53 positive samples were compared to IHC expression of MDM2 positive and MDM2 negative samples. Strong brown nuclear staining was visible in p53 and MDM2 positive cells. The most p53 positive cases were samples of squamocellular carcinoma (55%), then samples of large cell carcinoma (53%) and 26% adenocarcinoma samples showed the p53 immunoreactivity. No one sample of different types was p53 positive. When we compared the p53 expression and grade of tumor, we found that the p53 expression increased with the grade of tumor. For statistical evaluation, the chi square test was used. The relationship between p53 expression and type of tumor, also the p53 expression and grade of tumor was statistically significant (p = 0.000425; p = 0.00157). Regarding p53 and MDM2 expression, only nine samples (7%) were simultaneously p53 and

  4. Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity

    PubMed Central

    Kim, Ji-Young; Lee, Kyu-Sun; Seol, Jin-Ee; Yu, Kweon; Chakravarti, Debabrata; Seo, Sang-Beom

    2012-01-01

    The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iβ inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iβ interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iβ blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iβ induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iβ. PMID:21911363

  5. Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity.

    PubMed

    Kim, Ji-Young; Lee, Kyu-Sun; Seol, Jin-Ee; Yu, Kweon; Chakravarti, Debabrata; Seo, Sang-Beom

    2012-01-01

    The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iβ inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iβ interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iβ blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iβ induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iβ.

  6. p53 coordinates decidual sestrin 2/AMPK/mTORC1 signaling to govern parturition timing.

    PubMed

    Deng, Wenbo; Cha, Jeeyeon; Yuan, Jia; Haraguchi, Hirofumi; Bartos, Amanda; Leishman, Emma; Viollet, Benoit; Bradshaw, Heather B; Hirota, Yasushi; Dey, Sudhansu K

    2016-08-01

    Inflammation and oxidative stress are known risk factors for preterm birth (PTB); however, the mechanisms and pathways that influence this condition are not fully described. Previously, we showed that mTORC1 signaling is increased in mice harboring a uterine-specific deletion of transformation-related protein 53 (p53d/d mice), which exhibit premature decidual senescence that triggers spontaneous and inflammation-induced PTB. Treatment with the mTORC1 inhibitor rapamycin reduced the incidence of PTB in the p53d/d mice. Decidual senescence with heightened mTORC1 signaling is also a signature of human PTB. Here, we have identified an underlying mechanism for PTB and a potential therapeutic strategy for treating the condition. Treatment of pregnant p53d/d mice with either the antidiabetic drug metformin or the antioxidant resveratrol activated AMPK signaling and inhibited mTORC1 signaling in decidual cells. Both metformin and resveratrol protected against spontaneous and inflammation-induced PTB in p53d/d females. Using multiple approaches, we determined that p53 interacts with sestrins to coordinate an inverse relationship between AMPK and mTORC1 signaling that determines parturition timing. This signature was also observed in human decidual cells. Together, these results reveal that p53-dependent coordination of AMPK and mTORC1 signaling controls parturition timing and suggest that metformin and resveratrol have therapeutic potential to prevent PTB.

  7. p53 and TAp63 Promote Keratinocyte Proliferation and Differentiation in Breeding Tubercles of the Zebrafish

    PubMed Central

    Fischer, Boris; Metzger, Manuel; Richardson, Rebecca; Knyphausen, Philipp; Ramezani, Thomas; Franzen, Rainer; Schmelzer, Elmon; Bloch, Wilhelm; Carney, Thomas J.; Hammerschmidt, Matthias

    2014-01-01

    p63 is a multi-isoform member of the p53 family of transcription factors. There is compelling genetic evidence that ΔNp63 isoforms are needed for keratinocyte proliferation and stemness in the developing vertebrate epidermis. However, the role of TAp63 isoforms is not fully understood, and TAp63 knockout mice display normal epidermal development. Here, we show that zebrafish mutants specifically lacking TAp63 isoforms, or p53, display compromised development of breeding tubercles, epidermal appendages which according to our analyses display more advanced stratification and keratinization than regular epidermis, including continuous desquamation and renewal of superficial cells by derivatives of basal keratinocytes. Defects are further enhanced in TAp63/p53 double mutants, pointing to partially redundant roles of the two related factors. Molecular analyses, treatments with chemical inhibitors and epistasis studies further reveal the existence of a linear TAp63/p53->Notch->caspase 3 pathway required both for enhanced proliferation of keratinocytes at the base of the tubercles and their subsequent differentiation in upper layers. Together, these studies identify the zebrafish breeding tubercles as specific epidermal structures sharing crucial features with the cornified mammalian epidermis. In addition, they unravel essential roles of TAp63 and p53 to promote both keratinocyte proliferation and their terminal differentiation by promoting Notch signalling and caspase 3 activity, ensuring formation and proper homeostasis of this self-renewing stratified epithelium. PMID:24415949

  8. Lack of dependence on p53 for DNA double strand break repair of episomal vectors in human lymphoblasts

    NASA Technical Reports Server (NTRS)

    Kohli, M.; Jorgensen, T. J.

    1999-01-01

    The p53 tumor suppressor gene has been shown to be involved in a variety of repair processes, and recent findings have suggested that p53 may be involved in DNA double strand break repair in irradiated cells. The role of p53 in DNA double strand break repair, however, has not been fully investigated. In this study, we have constructed a novel Epstein-Barr virus (EBV)-based shuttle vector, designated as pZEBNA, to explore the influence of p53 on DNA strand break repair in human lymphoblasts, since EBV-based vectors do not inactivate the p53 pathway. We have compared plasmid survival of irradiated, restriction enzyme linearized, and calf intestinal alkaline phosphatase (CIP)-treated pZEBNA with a Simian virus 40 (SV40)-based shuttle vector, pZ189, in TK6 (wild-type p53) and WTK1 (mutant p53) lymphoblasts and determined that p53 does not modulate DNA double strand break repair in these cell lines. Copyright 1999 Academic Press.

  9. Enrofloxacin enhances the effects of chemotherapy in canine osteosarcoma cells with mutant and wild-type p53

    PubMed Central

    York, D.; Withers, S. S.; Watson, K. D.; Seo, K. W.; Rebhun, R. B.

    2016-01-01

    Adjuvant chemotherapy improves survival time in dogs receiving adequate local control for appendicular osteosarcoma, but most dogs ultimately succumb to metastatic disease. The fluoroquinolone antibiotic enrofloxacin has been shown to inhibit survival and proliferation of canine osteosarcoma cells in vitro. Others have reported that fluoroquinolones may modulate cellular responses to DNA damaging agents and that these effects may be differentially mediated by p53 activity. We therefore determined p53 status and activity in three canine osteosarcoma cell lines and examined the effects of enrofloxacin when used alone or in combination with doxorubicin or carboplatin chemotherapy. Moresco and Abrams canine osteosarcoma cell lines contained mutations in p53, while no mutations were identified in the D17 cells or in a normal canine osteoblast cell line. The addition of enrofloxacin to either doxorubicin or carboplatin resulted in further reductions in osteosarcoma cell viability; this effect was apparent regardless of p53 mutational status or downstream activity. PMID:27333821

  10. Enrofloxacin enhances the effects of chemotherapy in canine osteosarcoma cells with mutant and wild-type p53.

    PubMed

    York, D; Withers, S S; Watson, K D; Seo, K W; Rebhun, R B

    2017-09-01

    Adjuvant chemotherapy improves survival time in dogs receiving adequate local control for appendicular osteosarcoma, but most dogs ultimately succumb to metastatic disease. The fluoroquinolone antibiotic enrofloxacin has been shown to inhibit survival and proliferation of canine osteosarcoma cells in vitro. Others have reported that fluoroquinolones may modulate cellular responses to DNA damaging agents and that these effects may be differentially mediated by p53 activity. We therefore determined p53 status and activity in three canine osteosarcoma cell lines and examined the effects of enrofloxacin when used alone or in combination with doxorubicin or carboplatin chemotherapy. Moresco and Abrams canine osteosarcoma cell lines contained mutations in p53, while no mutations were identified in the D17 cells or in a normal canine osteoblast cell line. The addition of enrofloxacin to either doxorubicin or carboplatin resulted in further reductions in osteosarcoma cell viability; this effect was apparent regardless of p53 mutational status or downstream activity. © 2016 John Wiley & Sons Ltd.

  11. The p53 Isoform Δ133p53β Promotes Cancer Stem Cell Potential

    PubMed Central

    Arsic, Nikola; Gadea, Gilles; Lagerqvist, E. Louise; Busson, Muriel; Cahuzac, Nathalie; Brock, Carsten; Hollande, Frederic; Gire, Veronique; Pannequin, Julie; Roux, Pierre

    2015-01-01

    Summary Cancer stem cells (CSC) are responsible for cancer chemoresistance and metastasis formation. Here we report that Δ133p53β, a TP53 splice variant, enhanced cancer cell stemness in MCF-7 breast cancer cells, while its depletion reduced it. Δ133p53β stimulated the expression of the key pluripotency factors SOX2, OCT3/4, and NANOG. Similarly, in highly metastatic breast cancer cells, aggressiveness was coupled with enhanced CSC potential and Δ133p53β expression. Like in MCF-7 cells, SOX2, OCT3/4, and NANOG expression were positively regulated by Δ133p53β in these cells. Finally, treatment of MCF-7 cells with etoposide, a cytotoxic anti-cancer drug, increased CSC formation and SOX2, OCT3/4, and NANOG expression via Δ133p53, thus potentially increasing the risk of cancer recurrence. Our findings show that Δ133p53β supports CSC potential. Moreover, they indicate that the TP53 gene, which is considered a major tumor suppressor gene, also acts as an oncogene via the Δ133p53β isoform. PMID:25754205

  12. Rpl27a mutation in the sooty foot ataxia mouse phenocopies high p53 mouse models

    PubMed Central

    Terzian, Tamara; Dumble, Melissa; Arbab, Farinaz; Thaller, Christina; Donehower, Lawrence A; Lozano, Guillermina; Justice, Monica J; Roop, Dennis R; Box, Neil F

    2013-01-01

    Ribosomal stress is an important, yet poorly understood, mechanism that results in activation of the p53 tumour suppressor. We present a mutation in the ribosomal protein Rpl27a gene (sooty foot ataxia mice), isolated through a sensitized N-ethyl-N-nitrosourea (ENU) mutagenesis screen for p53 pathway defects, that shares striking phenotypic similarities with high p53 mouse models, including cerebellar ataxia, pancytopenia and epidermal hyperpigmentation. This phenocopy is rescued in a haploinsufficient p53 background. A detailed examination of the bone marrow in these mice identified reduced numbers of haematopoietic stem cells and a p53-dependent c-Kit down-regulation. These studies suggest that reduced Rpl27a increases p53 activity in vivo, further evident with a delay in tumorigenesis in mutant mice. Taken together, these data demonstrate that Rpl27a plays a crucial role in multiple tissues and that disruption of this ribosomal protein affects both development and transformation. PMID:21674502

  13. Apoptotic cell death in erythrocytes of p53-deficient medaka (Oryzias latipes) after γ-irradiation.

    PubMed

    Sayed, Alaa El-Din Hamid; Watanabe-Asaka, Tomomi; Oda, Shoji; Mitani, Hiroshi

    2016-10-01

    Previous studies have examined the effects of γ-irradiation (γ-IR) on wild-type and p53 mutant Medaka (Oryzias latipes) 24 hours after irradiation and in the present work, apoptosis and alterations in erythrocytes of 4, 8 and 24 h and 14 days after gamma-ray irradiation were reported as genotoxic biomarkers of γ-irradiation. Sexually mature wild-type, WT (Hd-rR) and p53(-/-) adult female medaka (O. latipes) were exposed to 4 Gy dose of γ-IR and sampling were collected after 4, 8 and 24 h and 14 days. Apoptosis and morphological alterations were observed from 4 h after irradiation and remarkably increased 8 h after irradiation in the wild-type. Apoptotic cell death has been observed 8 h after irradiation most prominently but subtle in p53 mutant medaka. All these phenotypes were recovered 14 days after irradiation in both strains. Although no micronuclei were seen in any group, nuclear abnormalities were observed in red blood cells. Both apoptosis and morphological alterations in erythrocytes were decreased after 24 and 14 days after γ-irradiation. We conclude that apoptosis and malformations caused by 4 Gy γ-irradiation in the erythrocytes of medaka fish occurs from 4-24 h and the initial response until 8 h was p53-dependent.

  14. Insight into a novel p53 single point mutation (G389E) by Molecular Dynamics Simulations.

    PubMed

    Pirolli, Davide; Carelli Alinovi, Cristiana; Capoluongo, Ettore; Satta, Maria Antonia; Concolino, Paola; Giardina, Bruno; De Rosa, Maria Cristina

    2010-12-30

    The majority of inactivating mutations of p53 reside in the central core DNA binding domain of the protein. In this computational study, we investigated the structural effects of a novel p53 mutation (G389E), identified in a patient with congenital adrenal hyperplasia, which is located within the extreme C-terminal domain (CTD) of p53, an unstructured, flexible region (residues 367-393) of major importance for the regulation of the protein. Based on the three-dimensional structure of a carboxyl-terminal peptide of p53 in complex with the S100B protein, which is involved in regulation of the tumor suppressor activity, a model of wild type (WT) and mutant extreme CTD was developed by molecular modeling and molecular dynamics simulation. It was found that the G389E amino acid replacement has negligible effects on free p53 in solution whereas it significantly affects the interactions of p53 with the S100B protein. The results suggest that the observed mutation may interfere with p53 transcription activation and provide useful information for site-directed mutagenesis experiments.

  15. Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins

    PubMed Central

    Kotnala, Abhay; Gordon, Reuven

    2014-01-01

    Here we report on the use of double-nanohole (DNH) optical tweezers as a label-free and free-solution single-molecule probe for protein–DNA interactions. Using this approach, we demonstrate the unzipping of individual 10 base pair DNA-hairpins, and quantify how tumor suppressor p53 protein delays the unzipping. From the Arrhenius behavior, we find the energy barrier to unzipping introduced by p53 to be 2 × 10−20 J, whereas cys135ser mutant p53 does not show suppression of unzipping, which gives clues to its functional inability to suppress tumor growth. This transformative approach to single molecule analysis allows for ultra-sensitive detection and quantification of protein–DNA interactions to revolutionize the fight against genetic diseases. PMID:24940547

  16. Mdm-2 binding and TAF(II)31 recruitment is regulated by hydrogen bond disruption between the p53 residues Thr18 and Asp21.

    PubMed

    Jabbur, James R; Tabor, Amy D; Cheng, Xiaodong; Wang, Hua; Uesugi, Motonari; Lozano, Guillermina; Zhang, Wei

    2002-10-10

    Analyses of five wild-type p53 containing cell lines revealed lineage specific differences in phosphorylation of Thr18 after treatment with ionizing (IR) or ultraviolet (UV) radiation. Importantly, Thr18 phosphorylation correlated with induction of the p53 downstream targets p21(Waf1/Cip1) (p21) and Mdm-2, suggesting a transactivation enhancing role. Thr18 phosphorylation has been shown to abolish side-chain hydrogen bonding between Thr18 and Asp21, an interaction necessary for stabilizing alpha-helical conformation within the transactivation domain. Mutagenesis-derived hydrogen bond disruption attenuated the interaction of p53 with the transactivation repressor Mdm-2 but had no direct effect on the interaction of p53 with the basal transcription factor TAF(II)31. However, prior incubation of p53 mutants with Mdm-2 modulated TAF(II)31 interaction with p53, suggesting Mdm-2 blocks the accessibility of p53 to TAF(II)31. Consistently, p53-null cells transfected with hydrogen bond disrupting p53 mutants demonstrated enhanced endogenous p21 expression, whereas p53/Mdm-2-double null cells exhibited no discernible differences in p21 expression. We conclude disruption of intramolecular hydrogen bonding between Thr18 and Asp21 enhances p53 transactivation by modulating Mdm-2 binding, facilitating TAF(II)31 recruitment.

  17. p53 coordinates decidual sestrin 2/AMPK/mTORC1 signaling to govern parturition timing

    PubMed Central

    Cha, Jeeyeon; Yuan, Jia; Haraguchi, Hirofumi; Bartos, Amanda; Bradshaw, Heather B.; Hirota, Yasushi; Dey, Sudhansu K.

    2016-01-01

    Inflammation and oxidative stress are known risk factors for preterm birth (PTB); however, the mechanisms and pathways that influence this condition are not fully described. Previously, we showed that mTORC1 signaling is increased in mice harboring a uterine-specific deletion of transformation-related protein 53 (p53d/d mice), which exhibit premature decidual senescence that triggers spontaneous and inflammation-induced PTB. Treatment with the mTORC1 inhibitor rapamycin reduced the incidence of PTB in the p53d/d mice. Decidual senescence with heightened mTORC1 signaling is also a signature of human PTB. Here, we have identified an underlying mechanism for PTB and a potential therapeutic strategy for treating the condition. Treatment of pregnant p53d/d mice with either the antidiabetic drug metformin or the antioxidant resveratrol activated AMPK signaling and inhibited mTORC1 signaling in decidual cells. Both metformin and resveratrol protected against spontaneous and inflammation-induced PTB in p53d/d females. Using multiple approaches, we determined that p53 interacts with sestrins to coordinate an inverse relationship between AMPK and mTORC1 signaling that determines parturition timing. This signature was also observed in human decidual cells. Together, these results reveal that p53-dependent coordination of AMPK and mTORC1 signaling controls parturition timing and suggest that metformin and resveratrol have therapeutic potential to prevent PTB. PMID:27454290

  18. TP53INP1 is a novel p73 target gene that induces cell cycle arrest and cell death by modulating p73 transcriptional activity.

    PubMed

    Tomasini, Richard; Seux, Mylène; Nowak, Jonathan; Bontemps, Caroline; Carrier, Alice; Dagorn, Jean-Charles; Pébusque, Marie-Josèphe; Iovanna, Juan L; Dusetti, Nelson J

    2005-12-08

    TP53INP1 is an alternatively spliced gene encoding two nuclear protein isoforms (TP53INP1alpha and TP53INP1beta), whose transcription is activated by p53. When overexpressed, both isoforms induce cell cycle arrest in G1 and enhance p53-mediated apoptosis. TP53INP1s also interact with the p53 gene and regulate p53 transcriptional activity. We report here that TP53INP1 expression is induced during experimental acute pancreatitis in p53-/- mice and in cisplatin-treated p53-/- mouse embryo fibroblasts (MEFs). We demonstrate that ectopic expression of p73, a p53 homologue, leads to TP53INP1 induction in p53-deficient cells. In turn, TP53INP1s alters the transactivation capacity of p73 on several p53-target genes, including TP53INP1 itself, demonstrating a functional association between p73 and TP53INP1s. Also, when overexpressed in p53-deficient cells, TP53INP1s inhibit cell growth and promote cell death as assessed by cell cycle analysis and colony formation assays. Finally, we show that TP53INP1s potentiate the capacity of p73 to inhibit cell growth, that effect being prevented when the p53 mutant R175H is expressed or when p73 expression is blocked by a siRNA. These results suggest that TP53INP1s are functionally associated with p73 to regulate cell cycle progression and apoptosis, independently from p53.

  19. p53-Regulated Apoptosis Is Differentiation Dependent in Ultraviolet B-Irradiated Mouse Keratinocytes

    PubMed Central

    Tron, Victor A.; Trotter, Martin J.; Tang, Liren; Krajewska, Maryla; Reed, John C.; Ho, Vincent C.; Li, Gang

    1998-01-01

    Previous studies from our laboratory, using p53 transgenic mice, have suggested that ultraviolet (UV) light-induced keratinocyte apoptosis in the skin is not affected by overexpression of mutant p53 protein. To further elucidate a possible role for p53 in UV-induced keratinocyte cell death, we now examine apoptosis in skin and isolated keratinocytes from p53 null (−/−) mice and assess the influence of cell differentiation on this process. In vivo, using this knockout model, epidermal keratinocytes in p53−/− mice exhibited only a 5.2-fold increase in apoptosis after 2000 J/m2 UVB irradiation compared with a 26.3-fold increase in normal control animals. If this p53-dependent apoptosis is important in elimination of precancerous, UV-damaged keratinocytes, then it should be active in the undifferentiated cells of the epidermal basal layer. To test this hypothesis, we examined the effect of differentiation on UV-induced apoptosis in primary cultures of murine and human keratinocytes. Apoptosis was p53-independent in undifferentiated murine keratinocytes, which exhibited relative resistance to UVB-induced killing with only a 1.5-fold increase in apoptosis in p53+/+ cells and a 1.4-fold increase in p53−/− cells. Differentiated keratinocytes, in contrast, showed a 9.4-fold UVB induction of apoptosis in p53+/+ cells, almost three times the induction observed in p53−/− cells. This UV-induced difference in apoptosis was observed when keratinocytes were cultured on type IV collagen substrate, but not on plastic alone. Western blotting of UV-irradiated, differentiated keratinocytes did not support a role for either Bax or Bcl-2 in this process. In support of these findings in mice, cell death in human cultured keratinocytes also occurred in a differentiation-associated fashion. We conclude that p53-induced apoptosis eliminates damaged keratinocytes in the differentiated cell compartment, but this mechanism is not active in the basal, undifferentiated cells and

  20. Mechanisms involved in p53 downregulation by leptin in trophoblastic cells.

    PubMed

    Toro, Ayelén Rayen; Pérez-Pérez, Antonio; Corrales Gutiérrez, Isabel; Sánchez-Margalet, Víctor; Varone, Cecilia Laura

    2015-11-01

    Leptin, a 16-kDa polypeptide hormone, is produced by the adipocyte and can also be synthesized by placenta. We previously demonstrated that leptin promotes proliferation and survival in placenta, in part mediated by the p53 pathway. In this work, we investigated the mechanisms involved in leptin down-regulation of p53 level. The human first trimester cytotrophoblastic Swan-71 cell line and human placental explants at term were used. In order to study the late phase of apoptosis, triggered by serum deprivation, experiments of DNA fragmentation were carried out. Exogenous leptin added to human placental explants, showed a decrease on DNA ladder formation and MAPK pathway is involved in this leptin effect. We also found that under serum deprivation condition, leptin decreases p53 levels and the inhibitory leptin effect is lost when cells were pretreated with 50 μM PD98059 or 10 μM LY29004; or were transfected with dominant negative mutants of intermediates of these pathways, suggesting that MAPK and PI3K signaling pathways are necessaries for leptin action. Additionally, leptin diminished Ser-46 p53 phosphorylation and this effect in placental explants was mediated by the activation of MAPK and PI3K pathways. Finally, in order to assess leptin effect on p53 half-life experiments with cycloheximide were performed and MDM-2 expression was analyzed. Leptin diminished p53 half-life and up-regulated MDM-2 expression. In summary, we provided evidence suggesting that leptin anti-apoptotic effect is mediated by MAPK and PI3K pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. p53 death signal is mainly mediated by Nuc1(EndoG) in the yeast Saccharomyces cerevisiae.

    PubMed

    Palermo, Vanessa; Mangiapelo, Eleonora; Piloto, Cristina; Pieri, Luisa; Muscolini, Michela; Tuosto, Loretta; Mazzoni, Cristina

    2013-11-01

    The tumor suppressor p53 plays a central role in the regulation of cellular growth and apoptosis. In the yeast Saccharomyces cerevisiae, the overexpression of the human p53 leads to growth inhibition and apoptotic cell death on minimal medium. In the present work, we show that p53-expressing cells are more susceptible to cell death after an apoptotic stimulus such as H2O2. The analysis of mutants involved in yeast apoptosis-like death suggests that the observed cell death is Yca1 independent and mainly mediated through Nuc1p. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia

    PubMed Central

    Folkerts, Hendrik; Hilgendorf, Susan; Wierenga, Albertus T J; Jaques, Jennifer; Mulder, André B; Coffer, Paul J; Schuringa, Jan Jacob; Vellenga, Edo

    2017-01-01

    Here we have explored whether inhibition of autophagy can be used as a treatment strategy for acute myeloid leukemia (AML). Steady-state autophagy was measured in leukemic cell lines and primary human CD34+ AML cells with a large variability in basal autophagy between AMLs observed. The autophagy flux was higher in AMLs classified as poor risk, which are frequently associated with TP53 mutations (TP53mut), compared with favorable- and intermediate-risk AMLs. In addition, the higher flux was associated with a higher expression level of several autophagy genes, but was not affected by alterations in p53 expression by knocking down p53 or overexpression of wild-type p53 or p53R273H. AML CD34+ cells were more sensitive to the autophagy inhibitor hydroxychloroquine (HCQ) than normal bone marrow CD34+ cells. Similar, inhibition of autophagy by knockdown of ATG5 or ATG7 triggered apoptosis, which coincided with increased expression of p53. In contrast to wild-type p53 AML (TP53wt), HCQ treatment did not trigger a BAX and PUMA-dependent apoptotic response in AMLs harboring TP53mut. To further characterize autophagy in the leukemic stem cell-enriched cell fraction AML CD34+ cells were separated into ROSlow and ROShigh subfractions. The immature AML CD34+-enriched ROSlow cells maintained higher basal autophagy and showed reduced survival upon HCQ treatment compared with ROShigh cells. Finally, knockdown of ATG5 inhibits in vivo maintenance of AML CD34+ cells in NSG mice. These results indicate that targeting autophagy might provide new therapeutic options for treatment of AML since it affects the immature AML subfraction. PMID:28703806

  3. RITA (Reactivating p53 and Inducing Tumor Apoptosis) is efficient against TP53abnormal myeloma cells independently of the p53 pathway.

    PubMed

    Surget, Sylvanie; Descamps, Géraldine; Brosseau, Carole; Normant, Vincent; Maïga, Sophie; Gomez-Bougie, Patricia; Gouy-Colin, Nadège; Godon, Catherine; Béné, Marie C; Moreau, Philippe; Le Gouill, Steven; Amiot, Martine; Pellat-Deceunynck, Catherine

    2014-06-14

    The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53(mutated) cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥ 1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤ 19%). These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a

  4. RITA (Reactivating p53 and Inducing Tumor Apoptosis) is efficient against TP53abnormal myeloma cells independently of the p53 pathway

    PubMed Central

    2014-01-01

    Background The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. Methods A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. Results Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53mutated cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤19%). Conclusion These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be

  5. WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma.

    PubMed

    Zhukova, Nataliya; Ramaswamy, Vijay; Remke, Marc; Martin, Dianna C; Castelo-Branco, Pedro; Zhang, Cindy H; Fraser, Michael; Tse, Ken; Poon, Raymond; Shih, David J H; Baskin, Berivan; Ray, Peter N; Bouffet, Eric; Dirks, Peter; von Bueren, Andre O; Pfaff, Elke; Korshunov, Andrey; Jones, David T W; Northcott, Paul A; Kool, Marcel; Pugh, Trevor J; Pomeroy, Scott L; Cho, Yoon-Jae; Pietsch, Torsten; Gessi, Marco; Rutkowski, Stefan; Bognár, Laszlo; Cho, Byung-Kyu; Eberhart, Charles G; Conter, Cecile Faure; Fouladi, Maryam; French, Pim J; Grajkowska, Wieslawa A; Gupta, Nalin; Hauser, Peter; Jabado, Nada; Vasiljevic, Alexandre; Jung, Shin; Kim, Seung-Ki; Klekner, Almos; Kumabe, Toshihiro; Lach, Boleslaw; Leonard, Jeffrey R; Liau, Linda M; Massimi, Luca; Pollack, Ian F; Ra, Young Shin; Rubin, Joshua B; Van Meir, Erwin G; Wang, Kyu-Chang; Weiss, William A; Zitterbart, Karel; Bristow, Robert G; Alman, Benjamin; Hawkins, Cynthia E; Malkin, David; Clifford, Steven C; Pfister, Stefan M; Taylor, Michael D; Tabori, Uri

    2014-12-24

    TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6%±8.7%, respectively (p<0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89%±2% vs. 57.4%±1.8% (p<0.01)). In contrast, β-catenin mutation sensitized TP53 mutant cells to radiation (p<0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5%±1.5% in lithium treated cells vs. 56.6±3% (p<0.01)) accompanied by increased number of γH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33%±8% for lithium treated cells vs. 27%±3% for untreated controls (p=0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.

  6. P53-miR-191-SOX4 regulatory loop affects apoptosis in breast cancer.

    PubMed

    Sharma, Shivani; Nagpal, Neha; Ghosh, Prahlad C; Kulshreshtha, Ritu

    2017-08-01

    miRNAs have emerged as key participants of p53 signaling pathways because they regulate or are regulated by p53. Here, we provide the first study demonstrating direct regulation of an oncogenic miRNA, miR-191-5p, by p53 and existence of a regulatory feedback loop. Using a combination of qRT-PCR, promoter-luciferase, and chromatin-immunoprecipitation assays, we show that p53 brings about down-regulation of miR-191-5p in breast cancer. miR-191-5p overexpression brought about inhibition of apoptosis in breast cancer cell lines (MCF7 and ZR-75) as demonstrated by reduction in annexin-V stained cells and caspase 3/7 activity, whereas miR-191-5p down-regulation showed the opposite. We further unveiled that SOX4 was a direct target of miR-191-5p. SOX4 overexpression was shown to increase p53 protein levels in MCF7 cells. miR-191-5p overexpression brought about down-regulation of SOX4 and thus p53 levels, suggesting the existence of a regulatory feedback loop. Breast cancer treatment by doxorubicin, an anti-cancer drug, involves induction of apoptosis by p53; we thus wanted to check whether miR-191-5p affects doxorubicin sensitivity. Interestingly, Anti-miR-191 treatment significantly decreased the IC50 of the doxorubicin drug and thus sensitized breast cancer cells to doxorubicin treatment by promoting apoptosis. Overall, this work highlights the importance of the p53-miR-191- SOX4 axis in the regulation of apoptosis and drug resistance in breast cancer and offers a preclinical proof-of-concept for use of an Anti-miR-191 and doxorubicin combination as a rational approach to pursue for better breast cancer treatment. © 2017 Sharma et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. Phosphorylation of Tip60 by GSK-3 determines the induction of PUMA and apoptosis by p53

    PubMed Central

    Charvet, Céline; Wissler, Manuela; Brauns-Schubert, Prisca; Wang, Shang-Jui; Tang, Yi; Sigloch, Florian C.; Mellert, Hestia; Brandenburg, Martin; Lindner, Silke E.; Breit, Bernhard; Green, Douglas R.; McMahon, Steven B.; Borner, Christoph; Gu, Wei; Maurer, Ulrich

    2011-01-01

    Summary Activation of p53 by DNA damage results in either cell cycle arrest, allowing DNA repair and cell survival, or induction of apoptosis. As these opposite outcomes are both mediated by p53 stabilization, additional mechanisms to determine this decision must exist. Here we show that glycogen synthase kinase-3 (GSK-3) is required for the p53-mediated induction of the pro-apoptotic BH3 only-protein PUMA, an essential mediator of p53-induced apoptosis. Inhibition of GSK-3 protected from cell death induced by DNA damage and promoted increased long-term cell survival. We demonstrate that GSK-3 phosphorylates serine 86 of the p53-acetyltransferase Tip60. A Tip60S86A mutant was less active to induce p53 K120 acetylation, Histone 4 acetylation and expression of PUMA. Our data suggest that GSK-3 mediated Tip60S86-phosphorylation provides a link between PI3K signaling and the choice for or against apoptosis induction by p53. PMID:21658600

  8. Wt-p53 action in human leukaemia cell lines corresponding to different stages of differentiation.

    PubMed

    Rizzo, M G; Zepparoni, A; Cristofanelli, B; Scardigli, R; Crescenzi, M; Blandino, G; Giuliacci, S; Ferrari, S; Soddu, S; Sacchi, A

    1998-05-01

    Recent studies support the potential application of the wt-p53 gene in cancer therapy. Expression of exogenous wt-p53 suppresses a variety of leukaemia phenotypes by acting on cell survival, proliferation and/or differentiation. As for tumour gene therapy, the final fate of the neoplastic cells is one of the most relevant points. We examined the effects of exogenous wt-p53 gene expression in several leukaemia cell lines to identify p53-responsive leukaemia. The temperature-sensitive p53Val135 mutant or the human wt-p53 cDNA was transduced in leukaemia cell lines representative of different acute leukaemia FAB subtypes, including M1 (KG1), M2 (HL-60), M3 (NB4), M5 (U937) and M6 (HEL 92.1.7), as well as blast crisis of chronic myelogenous leukaemia (BC-CML: K562, BV173) showing diverse differentiation features. By morphological, molecular and biochemical analyses, we have shown that exogenous wt-p53 gene expression induces apoptosis only in cells corresponding to M1, M2 and M3 of the FAB classification and in BC-CML showing morphological and cytochemical features of undifferentiated blast cells. In contrast, it promotes differentiation in the others. Interestingly, cell responsiveness was independent of the vector used and the status of the endogenous p53 gene.

  9. Effects of mutations within the SV40 large T antigen ATPase/p53 binding domain on viral replication and transformation.

    PubMed

    Peden, K W; Srinivasan, A; Vartikar, J V; Pipas, J M

    1998-01-01

    The simian virus 40 (SV40) large T antigen is a 708 amino-acid protein possessing multiple biochemical activities that play distinct roles in productive infection or virus-induced cell transformation. The carboxy-terminal portion of T antigen includes a domain that carries the nucleotide binding and ATPase activities of the protein, as well as sequences required for T antigen to associate with the cellular tumor suppressor p53. Consequently this domain functions both in viral DNA replication and cellular transformation. We have generated a collection of SV40 mutants with amino-acid deletions, insertions or substitutions in specific domains of the protein. Here we report the properties of nine mutants with single or multiple substitutions between amino acids 402 and 430, a region thought to be important for both the p53 binding and ATPase functions. The mutants were examined for the ability to produce infectious progeny virions, replicate viral DNA in vivo, perform in trans complementation tests, and transform established cell lines. Two of the mutants exhibited a wild-type phenotype in all these tests. The remaining seven mutants were defective for plaque formation and viral DNA replication, but in each case these defects could be complemented by a wild-type T antigen supplied in trans. One of these replication-defective mutants efficiently transformed the REF52 and C3H10T1/2 cell lines as assessed by the dense-focus assay. The remaining six mutants were defective for transforming REF52 cells and transformed the C3H10T1/2 line with a reduced efficiency. The ability of mutant T antigen to transform REF52 cells correlated with their ability to induce increased levels of p53.

  10. The p53–Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity

    PubMed Central

    Pant, Vinod; Xiong, Shunbin; Jackson, James G.; Post, Sean M.; Abbas, Hussein A.; Quintás-Cardama, Alfonso; Hamir, Amirali N.; Lozano, Guillermina

    2013-01-01

    The p53–Mdm2 feedback loop is perceived to be critical for regulating stress-induced p53 activity and levels. However, this has never been tested in vivo. Using a genetically engineered mouse with mutated p53 response elements in the Mdm2 P2 promoter, we show that feedback loop-deficient Mdm2P2/P2 mice are viable and aphenotypic and age normally. p53 degradation kinetics after DNA damage in radiosensitive tissues remains similar to wild-type controls. Nonetheless, DNA damage response is elevated in Mdm2P2/P2 mice. Enhanced p53-dependent apoptosis sensitizes hematopoietic stem cells (HSCs), causing drastic myeloablation and lethality. These results suggest that while basal Mdm2 levels are sufficient to regulate p53 in most tissues under homeostatic conditions, the p53–Mdm2 feedback loop is critical for regulating p53 activity and sustaining HSC function after DNA damage. Therefore, transient disruption of p53–Mdm2 interaction could be explored as a potential adjuvant/therapeutic strategy for targeting stem cells in hematological malignancies. PMID:23973961

  11. Chemoprevention by Elimination of Cancer-Prone, Mutant p53-Containing Breast Cells

    DTIC Science & Technology

    2009-09-01

    Briefly, 50 AL reaction mixture were used for each reaction, which contained 2 QuantiTect SYBR Green RT-PCR Master Mix, 0.5 AL QuantiTect RT mix, 0.5 Amol ...cysteine-free DMEM, containing 5% dialyzed FCS and 50 Amol /L MG132. Cells were then labeled with 100 ACi/mL of [35S]-methionine (MP Biochemicals) for 5 min...with much high drug doses up to 10 Amol /L to achieve a moderate effect. Interestingly, digoxin or ouabain failed to reduce the endogenous wt p53

  12. Protective role of p53 in skin cancer: Carcinogenesis studies in mice lacking epidermal p53.

    PubMed

    Page, Angustias; Navarro, Manuel; Suarez-Cabrera, Cristian; Alameda, Josefa P; Casanova, M Llanos; Paramio, Jesús M; Bravo, Ana; Ramirez, Angel

    2016-04-12

    p53 is a protein that causes cell cycle arrest, apoptosis or senescence, being crucial in the process of tumor suppression in several cell types. Different in vitro and animal models have been designed for the study of p53 role in skin cancer. These models have revealed opposing results, as in some experimental settings it appears that p53 protects against skin cancer, but in others, the opposite conclusion emerges. We have generated cohorts of mice with efficient p53 deletion restricted to stratified epithelia and control littermates expressing wild type p53 and studied their sensitivity to both chemically-induced and spontaneous tumoral transformation, as well as the tumor types originated in each experimental group. Our results indicate that the absence of p53 in stratified epithelia leads to the appearance, in two-stage skin carcinogenesis experiments, of a higher number of tumors that grow faster and become malignant more frequently than tumors arisen in mice with wild type p53 genotype. In addition, the histological diversity of the tumor type is greater in mice with epidermal p53 loss, indicating the tumor suppressive role of p53 in different epidermal cell types. Aging mice with p53 inactivation in stratified epithelia developed spontaneous carcinomas in skin and other epithelia. Overall, these results highlight the truly protective nature of p53 functions in the development of cancer in skin and in other stratified epithelia.

  13. Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors.

    PubMed

    Boidot, Romain; Végran, Frédérique; Meulle, Aline; Le Breton, Aude; Dessy, Chantal; Sonveaux, Pierre; Lizard-Nacol, Sarab; Feron, Olivier

    2012-02-15

    The monocarboxylate transporter (MCT) family member MCT1 can transport lactate into and out of tumor cells. Whereas most oxidative cancer cells import lactate through MCT1 to fuel mitochondrial respiration, the role of MCT1 in glycolysis-derived lactate efflux remains less clear. In this study, we identified a direct link between p53 function and MCT1 expression. Under hypoxic conditions, p53 loss promoted MCT1 expression and lactate export produced by elevated glycolytic flux, both in vitro and in vivo. p53 interacted directly with the MCT1 gene promoter and altered MCT1 mRNA stabilization. In hypoxic p53(-/-) tumor cells, NF-κB further supported expression of MCT1 to elevate its levels. Following glucose deprivation, upregulated MCT1 in p53(-/-) cells promoted lactate import and favored cell proliferation by fuelling mitochondrial respiration. We also found that MCT1 expression was increased in human breast tumors harboring p53 mutations and coincident features of hypoxia, with higher MCT1 levels associated with poorer clinical outcomes. Together, our findings identify MCT1 as a target for p53 repression and they suggest that MCT1 elevation in p53-deficient tumors allows them to adapt to metabolic needs by facilitating lactate export or import depending on the glucose availability.

  14. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.

    PubMed

    Huang, Shi-Wei; Chang, Shu-Hao; Mu, Szu-Wei; Jiang, Hsin-Yi; Wang, Sin-Ting; Kao, Jun-Kai; Huang, Jau-Ling; Wu, Chun-Ying; Chen, Yi-Ju; Shieh, Jeng-Jer

    2016-03-01

    The tumor suppressor p53 controls DNA repair, cell cycle, apoptosis, autophagy and numerous other cellular processes. Imiquimod (IMQ), a synthetic toll-like receptor (TLR) 7 ligand for the treatment of superficial basal cell carcinoma (BCC), eliminates cancer cells by activating cell-mediated immunity and directly inducing apoptosis and autophagy in cancer cells. To evaluate the role of p53 in IMQ-induced cell death in skin cancer cells. The expression, phosphorylation and subcellular localization of p53 were detected by real-time PCR, luciferase reporter assay, cycloheximide chase analysis, immunoblotting and immunocytochemistry. Using BCC/KMC1 cell line as a model, the upstream signaling of p53 activation was dissected by over-expression of TLR7/8, the addition of ROS scavenger, ATM/ATR inhibitors and pan-caspase inhibitor. The role of p53 in IMQ-induced apoptosis and autophagy was assessed by genetically silencing p53 and evaluated by a DNA content assay, immunoblotting, LC3 puncta detection and acridine orange staining. IMQ induced p53 mRNA expression and protein accumulation, increased Ser15 phosphorylation, promoted nuclear translocation and up-regulated its target genes in skin cancer cells in a TLR7/8-independent manner. In BCC/KMC1 cells, the induction of p53 by IMQ was achieved through increased ROS production to stimulate the ATM/ATR-Chk1/Chk2 axis but was not mediated by inducing DNA damage. The pharmacological inhibition of ATM/ATR significantly suppressed IMQ-induced p53 activation and apoptosis. Silencing of p53 significantly decreased the IMQ-induced caspase cascade activation and apoptosis but enhanced autophagy. Mutant p53 skin cancer cell lines were more resistant to IMQ-induced apoptosis than wildtype p53 skin cancer cell lines. IMQ induced ROS production to stimulate ATM/ATR pathways and contributed to p53-dependent apoptosis in a skin basal cell carcinoma cell line BCC/KMC1. Copyright © 2015 Japanese Society for Investigative Dermatology

  15. Expression of p53, p21 and cyclin D1 in penile cancer: p53 predicts poor prognosis.

    PubMed

    Gunia, Sven; Kakies, Christoph; Erbersdobler, Andreas; Hakenberg, Oliver W; Koch, Stefan; May, Matthias

    2012-03-01

    To evaluate the role of p53, p21 and cyclin D1 expression in patients with penile cancer (PC). Paraffin-embedded tissues from PC specimens from six pathology departments were subjected to a central histopathological review performed by one pathologist. The tissue microarray technique was used for immunostaining which was evaluated by two independent pathologists and correlated with cancer-specific survival (CSS). κ-statistics were used to assess interobserver variability. Uni- and multivariable Cox proportional hazards analysis was applied to assess the independent effects of several prognostic factors on CSS over a median of 32 months (IQR 6-66 months). Specimens and clinical data from 110 men treated surgically for primary PC were collected. p53 staining was positive in 30 and negative in 62 specimens. κ-statistics showed substantial interobserver reproducibility of p53 staining evaluation (κ=0.73; p<0.001). The 5-year CSS rate for the entire study cohort was 74%. Five-year CSS was 84% in p53-negative and 51% in p53-positive PC patients (p=0.003). Multivariable analysis showed p53 (HR=3.20; p=0.041) and pT-stage (HR=4.29; p<0.001) as independent significant prognostic factors for CSS. Cyclin D1 and p21 expression were not correlated with survival. However, incorporating p21 into a multivariable Cox model did contribute to improved model quality for predicting CSS. In patients with PC, the expression of p53 in the primary tumour specimen can be reproducibly assessed and is negatively associated with cancer specific survival.

  16. Antitumor Activity of Osimertinib, an Irreversible Mutant-Selective EGFR Tyrosine Kinase Inhibitor, in NSCLC Harboring EGFR Exon 20 Insertions.

    PubMed

    Floc'h, Nicolas; Martin, Matthew J; Riess, Jonathan W; Orme, Jonathan P; Staniszewska, Anna D; Ménard, Ludovic; Cuomo, Maria Emanuela; O'Neill, Daniel J; Ward, Richard A; Finlay, M Raymond V; McKerrecher, Darren; Cheng, Mingshan; Vang, Daniel P; Burich, Rebekah A; Keck, James G; Gandara, David R; Mack, Philip C; Cross, Darren A E

    2018-05-01

    EGFR exon 20 insertions (Ex20Ins) account for 4% to 10% of EGFR activating mutations in non-small cell lung cancer (NSCLC). EGFR Ex20Ins tumors are generally unresponsive to first- and second-generation EGFR inhibitors, and current standard of care for NSCLC patients with EGFR Ex20Ins is conventional cytotoxic chemotherapy. Therefore, the development of an EGFR TKI that can more effectively target NSCLC with EGFR Ex20Ins mutations represents a major advance for this patient subset. Osimertinib is a third-generation EGFR TKI approved for the treatment of advanced NSCLC harboring EGFR T790M; however, the activity of osimertinib in EGFR Ex20Ins NSCLC has yet to be fully assessed. Using CRISPR-Cas 9 engineered cell lines carrying the most prevalent Ex20Ins mutations, namely Ex20Ins D770_N771InsSVD (22%) or Ex20Ins V769_D770InsASV (17%), and a series of patient-derived xenografts, we have characterized osimertinib and AZ5104 (a circulating metabolite of osimertinib) activities against NSCLC harboring Ex20Ins. We report that osimertinib and AZ5104 inhibit signaling pathways and cellular growth in Ex20Ins mutant cell lines in vitro and demonstrate sustained tumor growth inhibition of EGFR-mutant tumor xenograft harboring the most prevalent Ex20Ins in vivo The antitumor activity of osimertinib and AZ5104 in NSCLC harboring EGFR Ex20Ins is further described herein using a series of patient-derived xenograft models. Together these data support clinical testing of osimertinib in patients with EGFR Ex20Ins NSCLC. Mol Cancer Ther; 17(5); 885-96. ©2018 AACR . ©2018 American Association for Cancer Research.

  17. CP-31398 inhibits the growth of p53-mutated liver cancer cells in vitro and in vivo.

    PubMed

    He, Xing-Xing; Zhang, Yu-Nan; Yan, Jun-Wei; Yan, Jing-Jun; Wu, Qian; Song, Yu-Hu

    2016-01-01

    The tumor suppressor p53 is one of the most frequently mutated genes in hepatocellular carcinoma (HCC). Previous studies demonstrated that CP-31398 restored the native conformation of mutant p53 and trans-activated p53 downstream genes in tumor cells. However, the research on the application of CP-31398 to liver cancer has not been reported. Here, we investigated the effects of CP-31398 on the phenotype of HCC cells carrying p53 mutation. The effects of CP-31398 on the characteristic of p53-mutated HCC cells were evaluated through analyzing cell cycle, cell apoptosis, cell proliferation, and the expression of p53 downstream genes. In tumor xenografts developed by PLC/PRF/5 cells, the inhibition of tumor growth by CP-31398 was analyzed through gross morphology, growth curve, and the expression of p53-related genes. Firstly, we demonstrated that CP-31398 inhibited the growth of p53-mutated liver cancer cells in a dose-dependent and p53-dependent manner. Then, further study showed that CP-31398 re-activated wild-type p53 function in p53-mutated HCC cells, which resulted in inhibitive response of cell proliferation and an induction of cell-cycle arrest and apoptosis. Finally, in vivo data confirmed that CP-31398 blocked the growth of xenografts tumors through transactivation of p53-responsive downstream molecules. Our results demonstrated that CP-31398 induced desired phenotypic change of p53-mutated HCC cells in vitro and in vivo, which revealed that CP-31398 would be developed as a therapeutic candidate for HCC carrying p53 mutation.

  18. Transduction of Recombinant M3-p53-R12 Protein Enhances Human Leukemia Cell Apoptosis

    PubMed Central

    Lu, Tsung Chi; Zhao, Guan- Hao; Chen, Yao Yun; Chien, Chia-Ying; Huang, Chi-Hung; Lin, Kwang Hui; Chen, Shen Liang

    2016-01-01

    Tumor suppressor protein p53 plays important roles in initiating cell cycle arrest and promoting tumor cell apoptosis. Previous studies have shown that p53 is either mutated or defective in approximately 50% of human cancers; therefore restoring normal p53 activity in cancer cells might be an effective anticancer therapeutic approach. Herein, we designed a chimeric p53 protein flanked with the MyoD N-terminal transcriptional activation domain (amino acids 1-62, called M3) and a poly-arginine (R12) cell penetrating signal in its N-and C-termini respectively. This chimeric protein, M3-p53-R12, can be expressed in E. coli and purified using immobilized metal ion chromatography followed by serial refolding dialysis. The purified M3-p53-R12 protein retains DNA-binding activity and gains of cell penetrating ability. Using MTT assay, we demonstrated that M3-p53-R12 inhibited the growth of K562, Jurkat as well as HL-60 leukemia cells carrying mutant p53 genes. Results from FACS analysis also demonstrated that transduction of M3-p53-R12 protein induced cell cycle arrest of these leukemia cells. Of special note, M3-p53-R12 has no apoptotic effect on normal mesenchymal stem cells (MSC) and leukocytes, highlighting its differential effects on normal and tumor cells. To sum up, our results reveal that purified recombinant M3-p53-R12 protein has functions of suppressing the leukemia cell lines' proliferation and launching cell apoptosis, suggesting the feasibility of using M3-p53-R12 protein as an anticancer drug. In the future we will test whether this chimeric protein can preferentially trigger the death of malignant cancer cells without affecting normal cells in animals carrying endogenous or xenographic tumors. PMID:27390612

  19. Adenovirus-mediated p53 gene delivery potentiates the radiation-induced growth inhibition of experimental brain tumors.

    PubMed

    Badie, B; Kramar, M H; Lau, R; Boothman, D A; Economou, J S; Black, K L

    1998-05-01

    Patients with malignant gliomas continue to have very poor prognosis even after surgical resection, radiation and chemotherapy. Because these tumors often have alterations in the p53 tumor suppressor gene, which plays a key role in the cellular response to DNA damaging agents, we investigated the role of p53 gene therapy in conjunction with ionizing radiation in a rat brain tumor model. Exposure of cultured rat 9L gliosarcoma cells, which contain a mutant p53 gene, to a recombinant adenovirus-vector bearing the wild-type p53 gene (Adp53), induced apoptosis within 24 hours. Although ionizing radiation had no additional effect on apoptosis within this time frame, it caused G1 arrest in non-apoptotic cells after Adp53 therapy. In contrast, wild-type 9L cells demonstrated little G1 arrest after X-irradiation. When animals bearing brain tumors were irradiated after intratumoral Adp53 injections, more than 85% reduction in tumor size was noted. Moreover, the group of rats receiving both radiation and Adp53 therapy had a significant increase in survival as compared to animals receiving either therapy alone. These results support the use of p53 gene therapy as an adjunct to radiation in treatment of malignant brain tumors.

  20. Human papillomavirus type 16 E6 inhibits p21{sup WAF1} transcription independently of p53 by inactivating p150{sup Sal2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parroche, Peggy; Institut Federatif de Recherche 128 BioSciences Gerland-Lyon Sud; Touka, Majid

    2011-09-01

    HPV16 E6 deregulates G1/S cell cycle progression through p53 degradation preventing transcription of the CDK inhibitor p21{sup WAF1}. However, additional mechanisms independent of p53 inactivation appear to exist. Here, we report that HPV16 E6 targets the cellular factor p150{sup Sal2}, which positively regulates p21{sup WAF1} transcription. HPV16 E6 associates with p150{sup Sal2}, inducing its functional inhibition by preventing its binding to cis elements on the p21{sup WAF1} promoter. A HPV16 E6 mutant, L110Q, which was unable to bind p150{sup Sal2}, did not affect the ability of the cellular protein to bind p21{sup WAF1} promoter, underlining the linkage between these events.more » These data describe a novel mechanism by which HPV16 E6 induces cell cycle deregulation with a p53-independent pathway. The viral oncoprotein targets p150{sup Sal2}, a positive transcription regulator of p21{sup WAF1} gene, preventing G1/S arrest and allowing cellular proliferation and efficient viral DNA replication.« less

  1. Altered S-nitrosylation of p53 is responsible for impaired antioxidant response in skeletal muscle during aging.

    PubMed

    Baldelli, Sara; Ciriolo, Maria Rosa

    2016-12-20

    p53 transcriptional activity has been proposed to regulate both homeostasis and sarcopenia of skeletal muscle during aging. However, the exact molecular function of p53 remains to be clearly defined. We demonstrated a requirement of nuclear p53 S-nitrosylation in inducing a nitric oxide/PGC-1α-mediated antioxidant pathway in skeletal muscle. Importantly, mutant form of p53-DNA binding domain (C124S) did not undergo nuclear S-nitrosylation and failed in inducing the expression of antioxidant genes (i.e. SOD2 and GCLC). Moreover, we found that during aging the nuclear S-nitrosylation of p53 significantly declines in gastrocnemius/soleus leading to an impairment of redox homeostasis of skeletal muscle. We suggested that decreased level of nuclear neuronal nitric oxide synthase (nNOS)/Syntrophin complex, which we observed during aging, could be responsible for impaired nuclear S-nitrosylation. Taken together, our data indicate that altered S-nitrosylation of p53 during aging could be a contributing factor of sarcopenia condition and of other skeletal muscle pathologies associated with oxidative/nitrosative stress.

  2. Altered S-nitrosylation of p53 is responsible for impaired antioxidant response in skeletal muscle during aging

    PubMed Central

    Baldelli, Sara; Ciriolo, Maria Rosa

    2016-01-01

    p53 transcriptional activity has been proposed to regulate both homeostasis and sarcopenia of skeletal muscle during aging. However, the exact molecular function of p53 remains to be clearly defined. We demonstrated a requirement of nuclear p53 S-nitrosylation in inducing a nitric oxide/PGC-1α-mediated antioxidant pathway in skeletal muscle. Importantly, mutant form of p53-DNA binding domain (C124S) did not undergo nuclear S-nitrosylation and failed in inducing the expression of antioxidant genes (i.e. SOD2 and GCLC). Moreover, we found that during aging the nuclear S-nitrosylation of p53 significantly declines in gastrocnemius/soleus leading to an impairment of redox homeostasis of skeletal muscle. We suggested that decreased level of nuclear neuronal nitric oxide synthase (nNOS)/Syntrophin complex, which we observed during aging, could be responsible for impaired nuclear S-nitrosylation. Taken together, our data indicate that altered S-nitrosylation of p53 during aging could be a contributing factor of sarcopenia condition and of other skeletal muscle pathologies associated with oxidative/nitrosative stress. PMID:28025407

  3. Clinical significance of serum p53 and epidermal growth factor receptor in patients with acute leukemia.

    PubMed

    Abdel-Aziz, Mohamed Mohamed

    2013-01-01

    Pretreatment serum p53 and epidermal growth factor receptor (EGFR) were assessed using enzyme-linked immunosorbent assay (ELISA) in patients with acute leukemia to analysis their roles in characterization of different subtypes of the disease. Serum samples from thirty two patients with acute myeloid leukemia (AML) and fourteen patients with acute lymphoid leukemia (ALL) were analysed, along with 24 from healthy individuals used as a control group. The results demonstrated a significant increase of serum p53 and EGFR in patients with AML (p<0.0001) compared to the control group. Also, the results showed a significant increase of both markers in patients with ALL (p<0.05, p<0.0001 respectively). Sensitivities and specificities for these variables were 52% and 100% for p53, and 73.9%, 95.8% for EGFR. Serum p53 and EGFR could successfully differentiate between M4 and other AML subtypes, while these variables failed to discriminate among ALL subtypes. A positive significant correlation was noted between p53 and EGFR. Negative significant correlations were observed between these variables and both of hemoglobin (Hg) content and RBC count. Mutant p53 and EGFR are helpful serological markers for diagnosis of patients with AML or ALL and can aid in characterization of disease. Moreover, these markers may reflect carcinogenesis mechanisms.

  4. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms.

    PubMed

    Malkin, D; Li, F P; Strong, L C; Fraumeni, J F; Nelson, C E; Kim, D H; Kassel, J; Gryka, M A; Bischoff, F Z; Tainsky, M A

    1990-11-30

    Familial cancer syndromes have helped to define the role of tumor suppressor genes in the development of cancer. The dominantly inherited Li-Fraumeni syndrome (LFS) is of particular interest because of the diversity of childhood and adult tumors that occur in affected individuals. The rarity and high mortality of LFS precluded formal linkage analysis. The alternative approach was to select the most plausible candidate gene. The tumor suppressor gene, p53, was studied because of previous indications that this gene is inactivated in the sporadic (nonfamilial) forms of most cancers that are associated with LFS. Germ line p53 mutations have been detected in all five LFS families analyzed. These mutations do not produce amounts of mutant p53 protein expected to exert a trans-dominant loss of function effect on wild-type p53 protein. The frequency of germ line p53 mutations can now be examined in additional families with LFS, and in other cancer patients and families with clinical features that might be attributed to the mutation.

  5. Induction of MDM2-P2 Transcripts Correlates with Stabilized Wild-Type p53 in Betel- and Tobacco-Related Human Oral Cancer

    PubMed Central

    Ralhan, Ranju; Sandhya, Agarwal; Meera, Mathur; Bohdan, Wasylyk; Nootan, Shukla K.

    2000-01-01

    MDM2, a critical element of cellular homeostasis mechanisms, is involved in complex interactions with important cell-cycle and stress-response regulators including p53. The mdm2-P2 promoter is a transcriptional target of p53. The aim of this study was to determine the association between mdm2-P2 transcripts and the status of the p53 gene in betel- and tobacco-related oral squamous cell carcinomas (SCCs) to understand the mechanism of deregulation of MDM2 and p53 expression and their prognostic implications in oral tumorigenesis. Elevated levels of MDM2 proteins were observed in 11 of 25 (44%) oral hyperplastic lesions, nine of 15 (60%) dysplastic lesions, and 71 of 100 (71%) SCCs. The intriguing feature of the study was the identification and different subcellular localization of three isoforms of MDM2 (ie, 90 kd, 76 kd, and 57 kd) in oral SCCs and their correlation with p53 overexpression in each tumor. The hallmark of the study was the detection of mdm2-P2 transcripts in 12 of 20 oral SCCs overexpressing both MDM2 and p53 proteins while harboring wild-type p53 alleles. Furthermore, mdm2 amplification was an infrequent event in betel- and tobacco-associated oral tumorigenesis. The differential compartmentalization of the three isoforms of MDM2 suggests that each has a distinct function, potentially in the regulation of p53 and other gene products implicated in oral tumorigenesis. In conclusion, we report herein the first evidence suggesting that enhanced translation of mdm2-P2 transcripts (S-mdm2) may represent an important mechanism of overexpression and consequent stabilization and functional inactivation of wild-type p53 serving as an adverse prognosticator in betel- and tobacco-related oral cancer. The clinical significance of the functional inactivation of wild-type p53 by MDM2 is underscored by the significantly shorter median disease-free survival time (16 months) observed in p53/MDM2-positive cases as compared to those which did not show co-expression of

  6. CK1α ablation in keratinocytes induces p53-dependent, sunburn-protective skin hyperpigmentation.

    PubMed

    Chang, Chung-Hsing; Kuo, Che-Jung; Ito, Takamichi; Su, Yu-Ya; Jiang, Si-Tse; Chiu, Min-Hsi; Lin, Yi-Hsiung; Nist, Andrea; Mernberger, Marco; Stiewe, Thorsten; Ito, Shosuke; Wakamatsu, Kazumasa; Hsueh, Yi-An; Shieh, Sheau-Yann; Snir-Alkalay, Irit; Ben-Neriah, Yinon

    2017-09-19

    Casein kinase 1α (CK1α), a component of the β-catenin destruction complex, is a critical regulator of Wnt signaling; its ablation induces both Wnt and p53 activation. To characterize the role of CK1α (encoded by Csnk1a1 ) in skin physiology, we crossed mice harboring floxed Csnk1a1 with mice expressing K14-Cre-ER T2 to generate mice in which tamoxifen induces the deletion of Csnk1a1 exclusively in keratinocytes [single-knockout (SKO) mice]. As expected, CK1α loss was accompanied by β-catenin and p53 stabilization, with the preferential induction of p53 target genes, but phenotypically most striking was hyperpigmentation of the skin, importantly without tumorigenesis, for at least 9 mo after Csnk1a1 ablation. The number of epidermal melanocytes and eumelanin levels were dramatically increased in SKO mice. To clarify the putative role of p53 in epidermal hyperpigmentation, we established K14-Cre-ER T2 CK1α/p53 double-knockout (DKO) mice and found that coablation failed to induce epidermal hyperpigmentation, demonstrating that it was p53-dependent. Transcriptome analysis of the epidermis revealed p53-dependent up-regulation of Kit ligand (KitL). SKO mice treated with ACK2 (a Kit-neutralizing antibody) or imatinib (a Kit inhibitor) abrogated the CK1α ablation-induced hyperpigmentation, demonstrating that it requires the KitL/Kit pathway. Pro-opiomelanocortin (POMC), a precursor of α-melanocyte-stimulating hormone (α-MSH), was not activated in the CK1α ablation-induced hyperpigmentation, which is in contrast to the mechanism of p53-dependent UV tanning. Nevertheless, acute sunburn effects were successfully prevented in the hyperpigmented skin of SKO mice. CK1α inhibition induces skin-protective eumelanin but no carcinogenic pheomelanin and may therefore constitute an effective strategy for safely increasing eumelanin via UV-independent pathways, protecting against acute sunburn.

  7. CK1α ablation in keratinocytes induces p53-dependent, sunburn-protective skin hyperpigmentation

    PubMed Central

    Chang, Chung-Hsing; Kuo, Che-Jung; Ito, Takamichi; Su, Yu-Ya; Jiang, Si-Tse; Chiu, Min-Hsi; Lin, Yi-Hsiung; Nist, Andrea; Mernberger, Marco; Stiewe, Thorsten; Ito, Shosuke; Wakamatsu, Kazumasa; Hsueh, Yi-An; Shieh, Sheau-Yann; Snir-Alkalay, Irit; Ben-Neriah, Yinon

    2017-01-01

    Casein kinase 1α (CK1α), a component of the β-catenin destruction complex, is a critical regulator of Wnt signaling; its ablation induces both Wnt and p53 activation. To characterize the role of CK1α (encoded by Csnk1a1) in skin physiology, we crossed mice harboring floxed Csnk1a1 with mice expressing K14–Cre–ERT2 to generate mice in which tamoxifen induces the deletion of Csnk1a1 exclusively in keratinocytes [single-knockout (SKO) mice]. As expected, CK1α loss was accompanied by β-catenin and p53 stabilization, with the preferential induction of p53 target genes, but phenotypically most striking was hyperpigmentation of the skin, importantly without tumorigenesis, for at least 9 mo after Csnk1a1 ablation. The number of epidermal melanocytes and eumelanin levels were dramatically increased in SKO mice. To clarify the putative role of p53 in epidermal hyperpigmentation, we established K14–Cre–ERT2 CK1α/p53 double-knockout (DKO) mice and found that coablation failed to induce epidermal hyperpigmentation, demonstrating that it was p53-dependent. Transcriptome analysis of the epidermis revealed p53-dependent up-regulation of Kit ligand (KitL). SKO mice treated with ACK2 (a Kit-neutralizing antibody) or imatinib (a Kit inhibitor) abrogated the CK1α ablation-induced hyperpigmentation, demonstrating that it requires the KitL/Kit pathway. Pro-opiomelanocortin (POMC), a precursor of α-melanocyte–stimulating hormone (α-MSH), was not activated in the CK1α ablation-induced hyperpigmentation, which is in contrast to the mechanism of p53-dependent UV tanning. Nevertheless, acute sunburn effects were successfully prevented in the hyperpigmented skin of SKO mice. CK1α inhibition induces skin-protective eumelanin but no carcinogenic pheomelanin and may therefore constitute an effective strategy for safely increasing eumelanin via UV-independent pathways, protecting against acute sunburn. PMID:28878021

  8. Synthesis of cytochrome C oxidase 2: a p53-dependent metabolic regulator that promotes respiratory function and protects glioma and colon cancer cells from hypoxia-induced cell death.

    PubMed

    Wanka, C; Brucker, D P; Bähr, O; Ronellenfitsch, M; Weller, M; Steinbach, J P; Rieger, J

    2012-08-16

    P53 has an important role in the processing of starvation signals. P53-dependent molecular mediators of the Warburg effect reduce glucose consumption and promote mitochondrial function. We therefore hypothesized that the retention of wild-type p53 characteristic of primary glioblastomas limits metabolic demands induced by deregulated signal transduction in the presence of hypoxia and nutrient depletion. Here we report that short hairpin RNA-mediated gene suppression of wild-type p53 or ectopic expression of mutant temperature-sensitive dominant-negative p53(V135A) increased glucose consumption and lactate production, decreased oxygen consumption and enhanced hypoxia-induced cell death in p53 wild-type human glioblastoma cells. Similarly, genetic knockout of p53 in HCT116 colon carcinoma cells resulted in reduced respiration and hypersensitivity towards hypoxia-induced cell death. Further, wild-type p53 gene silencing reduced the expression of synthesis of cytochrome c oxidase 2 (SCO2), an effector necessary for respiratory chain function. An SCO2 transgene reverted the metabolic phenotype and restored resistance towards hypoxia in p53-depleted and p53 mutant glioma cells in a rotenone-sensitive manner, demonstrating that this effect was dependent on intact oxidative phosphorylation. Supplementation with methyl-pyruvate, a mitochondrial substrate, rescued p53 wild-type but not p53 mutant cells from hypoxic cell death, demonstrating a p53-mediated selective aptitude to metabolize mitochondrial substrates. Further, SCO2 gene silencing in p53 wild-type glioma cells sensitized these cells towards hypoxia. Finally, lentiviral gene suppression of SCO2 significantly enhanced tumor necrosis in a subcutaneous HCT116 xenograft tumor model, compatible with impaired energy metabolism in these cells. These findings demonstrate that glioma and colon cancer cells with p53 wild-type status can skew the Warburg effect and thereby reduce their vulnerability towards tumor hypoxia in

  9. S100A4 interacts with p53 in the nucleus and promotes p53 degradation.

    PubMed

    Orre, L M; Panizza, E; Kaminskyy, V O; Vernet, E; Gräslund, T; Zhivotovsky, B; Lehtiö, J

    2013-12-05

    S100A4 is a small calcium-binding protein that is commonly overexpressed in a range of different tumor types, and it is widely accepted that S100A4 has an important role in the process of cancer metastasis. In vitro binding assays has shown that S100A4 interacts with the tumor suppressor protein p53, indicating that S100A4 may have additional roles in tumor development. In the present study, we show that endogenous S100A4 and p53 interact in complex samples, and that the interaction increases after inhibition of MDM2-dependent p53 degradation using Nutlin-3A. Further, using proximity ligation assay, we show that the interaction takes place in the cell nucleus. S100A4 knockdown experiments in two p53 wild-type cell lines, A549 and HeLa, resulted in stabilization of p53 protein, indicating that S100A4 is promoting p53 degradation. Finally, we demonstrate that S100A4 knockdown leads to p53-dependent cell cycle arrest and increased cisplatin-induced apoptosis. Thus, our data add a new layer to the oncogenic properties of S100A4 through its inhibition of p53-dependent processes.

  10. The Isoforms of the p53 Protein

    PubMed Central

    Khoury, Marie P.; Bourdon, Jean-Christophe

    2010-01-01

    p53 is a transcription factor with a key role in the maintenance of genetic stability and therefore preventing cancer formation. It belongs to a family of genes composed of p53, p63, and p73. The p63 and p73 genes have a dual gene structure with an internal promoter in intron-3 and together with alternative splicing, can express 6 and 29 mRNA variants, respectively. Such a complex expression pattern had not been previously described for the p53 gene, which was not consistent with our understanding of the evolution of the p53 gene family. Consequently, we revisited the human p53 gene structure and established that it encodes nine different p53 protein isoforms because of alternative splicing, alternative promoter usage, and alternative initiation sites of translation. Therefore, the human p53 gene family (p53, p63, and p73) has a dual gene structure. We determined that the dual gene structure is conserved in Drosophila and in zebrafish p53 genes. The conservation through evolution of the dual gene structure suggests that the p53 isoforms play an important role in p53 tumor-suppressor activity. We and others have established that the p53 isoforms can regulate cell-fate outcome in response to stress, by modulating p53 transcriptional activity in a promoter and stress-dependent manner. We have also shown that the p53 isoforms are abnormally expressed in several types of human cancers, suggesting that they play an important role in cancer formation. The determination of p53 isoforms' expression may help to link clinical outcome to p53 status and to improve cancer patient treatment. PMID:20300206

  11. Characterization and Molecular Mechanism of Peptide-Conjugated Gold Nanoparticle Inhibiting p53-HDM2 Interaction in Retinoblastoma.

    PubMed

    Kalmodia, Sushma; Parameswaran, Sowmya; Ganapathy, Kalaivani; Yang, Wenrong; Barrow, Colin J; Kanwar, Jagat R; Roy, Kislay; Vasudevan, Madavan; Kulkarni, Kirti; Elchuri, Sailaja V; Krishnakumar, Subramanian

    2017-12-15

    Inhibition of the interaction between p53 and HDM2 is an effective therapeutic strategy in cancers that harbor a wild-type p53 protein such as retinoblastoma (RB). Nanoparticle-based delivery of therapeutic molecules has been shown to be advantageous in localized delivery, including to the eye, by overcoming ocular barriers. In this study, we utilized biocompatible gold nanoparticles (GNPs) to deliver anti-HDM2 peptide to RB cells. Characterization studies suggested that GNP-HDM2 was stable in biologically relevant solvents and had optimal cellular internalization capability, the primary requirement of any therapeutic molecule. GNP-HDM2 treatment in RB cells in vitro suggested that they function by arresting RB cells at the G2M phase of the cell cycle and initiating apoptosis. Analysis of molecular changes in GNP-HDM2-treated cells by qRT-PCR and western blotting revealed that the p53 protein was upregulated; however, transactivation of its downstream targets was minimal, except for the PUMA-BCl2 and Bax axis. Global gene expression and in silico bioinformatic analysis of GNP-HDM2-treated cells suggested that upregulation of p53 might presumptively mediate apoptosis through the induction of p53-inducible miRNAs. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines.

    PubMed Central

    Cheng, J; Haas, M

    1990-01-01

    Human T-cell leukemia and T-cell acute lymphoblastic leukemia cell lines were studied for alterations in the p53 tumor suppressor gene. Southern blot analysis of 10 leukemic T-cell lines revealed no gross genomic deletions or rearrangements. Reverse transcription-polymerase chain reaction analysis of p53 mRNA indicated that all 10 lines produced p53 mRNA of normal size. By direct sequencing of polymerase chain reaction-amplified cDNA, we detected 11 missense and nonsense point mutations in 5 of the 10 leukemic T-cell lines studied. The mutations are primarily located in the evolutionarily highly conserved regions of the p53 gene. One of the five cell lines in which a mutation was detected possesses a homozygous point mutation in both p53 alleles, while the other four cell lines harbor from two to four different point mutations. An allelic study of two of the lines (CEM, A3/Kawa) shows that the two missense mutations found in each line are located on separate alleles, thus both alleles of the p53 gene may have been functionally inactivated by two different point mutations. Since cultured leukemic T-cell lines represent a late, fully tumorigenic stage of leukemic T cells, mutation of both (or more) alleles of the p53 gene may reflect the selection of cells possessing an increasingly tumorigenic phenotype, whether the selection took place in vivo or in vitro. Previously, we have shown that the HSB-2 T-cell acute lymphoblastic leukemia cell line had lost both alleles of the retinoblastoma tumor suppressor gene. Taken together, our data show that at least 6 of 10 leukemic T-cell lines examined may have lost the normal function of a known tumor suppressor gene, suggesting that this class of genes serves a critical role in the generation of fully tumorigenic leukemic T cells. Images PMID:2144611

  13. Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline.

    PubMed

    Fan, S; Smith, M L; Rivet, D J; Duba, D; Zhan, Q; Kohn, K W; Fornace, A J; O'Connor, P M

    1995-04-15

    The possibility that appropriately designed chemotherapy could act selectively against p53-defective tumor cells was explored in MCF-7 human breast cancer cells. These cells were chosen because they have normal p53 function but are representative of a tumor cell type that does not readily undergo p53-dependent apoptosis. Two sublines (MCF-7/E6 and MCF-7/mu-p53) were established in which p53 function was disrupted by transfection with either the human papillomavirus type-16 E6 gene or a dominant-negative mutant p53 gene. p53 function in MCF-7/E6 and MCF-7/mu-p53 cells was defective relative to control cells in that there were no increases in p53 or p21Waf1/Cip1 protein levels and no G1 arrest following exposure to ionizing radiation. Survival assays showed that p53 disruption sensitized MCF-7 cells to cisplatin (CDDP) but not to several other DNA-damaging agents. CDDP sensitization was not limited to MCF-7 cells since p53 disruption in human colon carcinoma RKO cells also enhanced sensitivity to CDDP. Contrary to the other DNA-damaging agents tested, CDDP-induced DNA lesions are repaired extensively by nucleotide excision, and in agreement with a defect in this process, MCF-7/E6 and MCF-7/mu-p53 cells exhibited a reduced ability to repair a CDDP-damaged chloramphenicol acetyltransferase-reporter plasmid transfected into the cells. Therefore, we attributed the increased CDDP sensitivity of MCF-7 cells with disrupted p53 to defects in G1 checkpoint control, nucleotide excision repair, or both. The G2 checkpoint inhibitor pentoxifylline exhibited synergism with CDDP in killing MCF-7/E6 cells but did not affect sensitivity of the control cells. Moreover, pentoxifylline inhibited G2 checkpoint function to a greater extent in MCF-7/E6 than in the parental cells. These results suggested that, in the absence of p53 function, cancer cells are more vulnerable to G2 checkpoint abrogators. Our results show that a combination of CDDP and pentoxifylline is capable of synergistic

  14. Expressions of p53 and p21 in primary gastric lymphomas.

    PubMed Central

    Go, J. H.; Yang, W. I.

    2001-01-01

    The p21 overexpression is thought to be a consequence of the p53 induced activation of the p21 gene. The immunohistochemical evaluation of p53 and p21 can be a valuable means of assessing the functional status of the p53 gene product. We examined the overexpression of p21 and p53 proteins in primary gastric lymphomas and the correlation with prognosis. A total of 32 cases of gastric lymphomas was classified into low-grade lymphomas of mucosa-associated lymphoid tissue type (n=16) and high-grade B-cell lymphomas (n=16). In low-grade lymphomas, only one case showed p53 positivity and all cases were p21-negative. In high-grade lymphomas, seven cases were p53+/p21- (44%), one case was p53+/p21+ (6%), and eight cases were p53-/p21- (50%). The p53+/p21- cases had a much lower percentage of patients sustaining a continuous complete remission state (3/7, 43%) compared with other cases (6/7, 86%). From these results, we concluded that p21 expression is rare in primary gastric lymphomas. Therefore, p53-positive lymphomas can be assumed as having p53 mutation. And combined studies of p53 and p21 may be used as a prognostic indicator in primary gastric high-grade lymphomas. PMID:11748353

  15. Chk1/2 inhibition overcomes the cisplatin resistance of head and neck cancer cells secondary to the loss of functional p53

    PubMed Central

    Gadhikar, Mayur A.; Sciuto, Maria Rita; Alves, Marcus Vinicius Ortega; Pickering, Curtis R.; Osman, Abdullah A.; Neskey, David M.; Zhao, Mei; Fitzgerald, Alison L.; Myers, Jeffrey N.; Frederick, Mitchell J

    2014-01-01

    Despite the use of multimodality therapy employing cisplatin to treat patients with advanced stage head and neck squamous cell carcinoma (HNSCC), there is an unacceptably high rate of treatment failure. TP53 is the most commonly mutated gene in HNSCC, and the impact of p53 mutation on response to cisplatin treatment is poorly understood. Here we show unambiguously that wild type TP53 (wtp53) is associated with sensitivity of HNSCC cells to cisplatin treatment while mutation or loss of TP53 is associated with cisplatin resistance. We also demonstrate that senescence is the major cellular response to cisplatin in wtp53 HNSCC cells and that cisplatin resistance in p53 null or mutant TP53 cells is due to their lack of senescence. Given the dependence on Chk1/2 kinases to mediate the DNA damage response in p53 deficient cells, there is potential to exploit this to therapeutic advantage through targeted inhibition of the Chk1/2 kinases. Treatment of p53 deficient HNSCC cells with the Chk inhibitor AZD7762 sensitizes them to cisplatin through induction of mitotic cell death. This is the first report demonstrating the ability of a Chk kinase inhibitor to sensitize TP53-deficient HNSCC to cisplatin in a synthetic lethal manner, which has significance given the frequency of TP53 mutations in this disease and because cisplatin has become part of standard therapy for aggressive HNSCC tumors. These pre-clinical data provide evidence that a personalized approach to the treatment of HNSCC based on Chk inhibition in p53 mutant tumors may be feasible. PMID:23839309

  16. Human neuroblastoma cells with acquired resistance to the p53 activator RITA retain functional p53 and sensitivity to other p53 activating agents

    PubMed Central

    Michaelis, M; Rothweiler, F; Agha, B; Barth, S; Voges, Y; Löschmann, N; von Deimling, A; Breitling, R; Wilhelm Doerr, H; Rödel, F; Speidel, D; Cinatl, J

    2012-01-01

    Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3, also disrupts the p53/Mdm2 interaction. All of the 11 UKF-NB-3 sub-lines adapted to RITA that we established retained functional wild-type p53 although RITA induced a substantial p53 response. Moreover, all RITA-adapted cell lines remained sensitive to nutlin-3, whereas only five out of 10 nutlin-3-adapted cell lines retained their sensitivity to RITA. In addition, repeated adaptation of the RITA-adapted sub-line UKF-NB-3rRITA10 μM to nutlin-3 resulted in p53 mutations. The RITA-adapted UKF-NB-3 sub-lines displayed no or less pronounced resistance to vincristine, cisplatin, and irradiation than nutlin-3-adapted UKF-NB-3 sub-lines. Furthermore, adaptation to RITA was associated with fewer changes at the expression level of antiapoptotic factors than observed with adaptation to nutlin-3. Transcriptomic analyses indicated the RITA-adapted sub-lines to be more similar at the gene expression level to the parental UKF-NB-3 cells than nutlin-3-adapted UKF-NB-3 sub-lines, which correlates with the observed chemotherapy and irradiation sensitivity phenotypes. In conclusion, RITA-adapted cells retain functional p53, remain sensitive to nutlin-3, and display a less pronounced resistance phenotype than nutlin-3-adapted cells. PMID:22476102

  17. Human neuroblastoma cells with acquired resistance to the p53 activator RITA retain functional p53 and sensitivity to other p53 activating agents.

    PubMed

    Michaelis, M; Rothweiler, F; Agha, B; Barth, S; Voges, Y; Löschmann, N; von Deimling, A; Breitling, R; Doerr, H Wilhelm; Rödel, F; Speidel, D; Cinatl, J

    2012-04-05

    Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3, also disrupts the p53/Mdm2 interaction. All of the 11 UKF-NB-3 sub-lines adapted to RITA that we established retained functional wild-type p53 although RITA induced a substantial p53 response. Moreover, all RITA-adapted cell lines remained sensitive to nutlin-3, whereas only five out of 10 nutlin-3-adapted cell lines retained their sensitivity to RITA. In addition, repeated adaptation of the RITA-adapted sub-line UKF-NB-3(r)RITA(10 μM) to nutlin-3 resulted in p53 mutations. The RITA-adapted UKF-NB-3 sub-lines displayed no or less pronounced resistance to vincristine, cisplatin, and irradiation than nutlin-3-adapted UKF-NB-3 sub-lines. Furthermore, adaptation to RITA was associated with fewer changes at the expression level of antiapoptotic factors than observed with adaptation to nutlin-3. Transcriptomic analyses indicated the RITA-adapted sub-lines to be more similar at the gene expression level to the parental UKF-NB-3 cells than nutlin-3-adapted UKF-NB-3 sub-lines, which correlates with the observed chemotherapy and irradiation sensitivity phenotypes. In conclusion, RITA-adapted cells retain functional p53, remain sensitive to nutlin-3, and display a less pronounced resistance phenotype than nutlin-3-adapted cells.

  18. Using yeast to determine the functional consequences of mutations in the human p53 tumor suppressor gene: An introductory course‐based undergraduate research experience in molecular and cell biology

    PubMed Central

    Brownell, Sara E.; Seawell, Patricia Chandler; Malladi, Shyamala; Imam, Jamie F. Conklin; Singla, Veena; Bradon, Nicole; Cyert, Martha S.; Stearns, Tim

    2016-01-01

    Abstract The opportunity to engage in scientific research is an important, but often neglected, component of undergraduate training in biology. We describe the curriculum for an innovative, course‐based undergraduate research experience (CURE) appropriate for a large, introductory cell and molecular biology laboratory class that leverages students′ high level of interest in cancer. The course is highly collaborative and emphasizes the analysis and interpretation of original scientific data. During the course, students work in teams to characterize a collection of mutations in the human p53 tumor suppressor gene via expression and analysis in yeast. Initially, student pairs use both qualitative and quantitative assays to assess the ability of their p53 mutant to activate expression of reporter genes, and they localize their mutation within the p53 structure. Through facilitated discussion, students suggest possible molecular explanations for the transactivation defects displayed by their p53 mutants and propose experiments to test these hypotheses that they execute during the second part of the course. They use a western blot to determine whether mutant p53 levels are reduced, a DNA‐binding assay to test whether recognition of any of three p53 target sequences is compromised, and fluorescence microscopy to assay nuclear localization. Students studying the same p53 mutant periodically convene to discuss and interpret their combined data. The course culminates in a poster session during which students present their findings to peers, instructors, and the greater biosciences community. Based on our experience, we provide recommendations for the development of similar large introductory lab courses. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):161–178, 2017. PMID:27873457

  19. Regulation of autophagy by cytoplasmic p53.

    PubMed

    Tasdemir, Ezgi; Maiuri, M Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2008-06-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53(-/-) cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.

  20. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer

    PubMed Central

    Suh, Seong O.; Chen, Yi; Zaman, Mohd Saif; Hirata, Hiroshi; Yamamura, Soichiro; Shahryari, Varahram; Liu, Jan; Tabatabai, Z.Laura; Kakar, Sanjay; Deng, Guoren; Tanaka, Yuichiro; Dahiya, Rajvir

    2011-01-01

    MiR-145 is downregulated in various cancers including prostate cancer. However, the underlying mechanisms of miR-145 downregulation are not fully understood. Here, we reported that miR-145 was silenced through DNA hypermethylation and p53 mutation status in laser capture microdissected (LCM) prostate cancer and matched adjacent normal tissues. In 22 of 27 (81%) prostate tissues, miR-145 was significantly downregulated in the cancer compared with the normal tissues. Further studies on miR-145 downregulation mechanism showed that miR-145 is methylated at the promoter region in both prostate cancer tissues and 50 different types of cancer cell lines. In seven cancer cell lines with miR-145 hypermethylation, 5-aza-2′-deoxycytidine treatment dramatically induced miR-145 expression. Interestingly, we also found a significant correlation between miR-145 expression and the status of p53 gene in both LCM prostate tissues and 47 cancer cell lines. In 29 cell lines with mutant p53, miR-145 levels were downregulated in 28 lines (97%), whereas in 18 cell lines with wild-type p53 (WT p53), miR-145 levels were downregulated in only 6 lines (33%, P < 0.001). Electrophoretic mobility shift assay showed that p53 binds to the p53 response element upstream of miR-145, but the binding was inhibited by hypermethylation. To further confirm that p53 binding to miR-145 could regulate miR-145 expression, we transfected WT p53 and MUT p53 into PC-3 cells and found that miR-145 is upregulated by WT p53 but not with MUTp53. The apoptotic cells are increased after WT p53 transfection. In summary, this is the first report documenting that downregulation of miR-145 is through DNA methylation and p53 mutation pathways in prostate cancer. PMID:21349819

  1. Regulation of autophagy by cytoplasmic p53

    PubMed Central

    Tasdemir, Ezgi; Maiuri, M. Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M.; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2009-01-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that knockout, knockdown or pharmacological inhibition of p53 can induce autophagy in human, mouse and nematode cells. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53-/- cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53. PMID:18454141

  2. The Neuron-specific Chromatin Regulatory Subunit BAF53b is Necessary for Synaptic Plasticity and Memory

    PubMed Central

    Vogel-Ciernia, Annie; Matheos, Dina P.; Barrett, Ruth M.; Kramár, Enikö; Azzawi, Soraya; Chen, Yuncai; Magnan, Christophe N.; Zeller, Michael; Sylvain, Angelina; Haettig, Jakob; Jia, Yousheng; Tran, Anthony; Dang, Richard; Post, Rebecca J.; Chabrier, Meredith; Babayan, Alex; Wu, Jiang I.; Crabtree, Gerald R.; Baldi, Pierre; Baram, Tallie Z.; Lynch, Gary; Wood, Marcelo A.

    2013-01-01

    Recent exome sequencing studies have implicated polymorphic BAF complexes (mammalian SWI/SNF chromatin remodeling complexes) in several human intellectual disabilities and cognitive disorders. However, it is currently unknown how mutations in BAF complexes result in impaired cognitive function. Post mitotic neurons express a neuron specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Mice harboring selective genetic manipulations of BAF53b have severe defects in longterm memory and long-lasting forms of hippocampal synaptic plasticity. We rescued memory impairments in BAF53b mutant mice by reintroducing BAF53b in the adult hippocampus, indicating a role for BAF53b beyond neuronal development. The defects in BAF53b mutant mice appear to derive from alterations in gene expression that produce abnormal postsynaptic components, such as spine structure and function, and ultimately lead to deficits in synaptic plasticity. Our studies provide new insight into the role of dominant mutations in subunits of BAF complexes in human intellectual and cognitive disorders. PMID:23525042

  3. Undecylprodigiosin selectively induces apoptosis in human breast carcinoma cells independent of p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, T.-F.; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; Department of Medical Technology, Central Taiwan University of Science and Technology, Taichung 40605, Taiwan

    2007-12-15

    Undecylprodigiosin (UP) is a bacterial bioactive metabolite produced by Streptomyces and Serratia. In this study, we explored the anticancer effect of UP. Human breast carcinoma cell lines BT-20, MCF-7, MDA-MB-231 and T47D and one nonmalignant human breast epithelial cell line, MCF-10A, were tested in this study. We found that UP exerted a potent cytotoxicity against all breast carcinoma cell lines in a dose- and time-dependent manner. In contrast, UP showed limited toxicity to MCF-10A cells, indicating UP's cytotoxic effect is selective for malignant cells. UP's cytotoxic effect was due to apoptosis, as confirmed by positive TUNEL signals, annexin V-binding, caspasemore » 9 activation and PARP cleavage. Notably, UP-induced apoptosis was blocked by the pan-caspase inhibitor z-VAD.fmk, further indicating the involvement of caspase activity. Moreover, UP caused a marked decrease of the levels of antiapoptotic BCL-X{sub L}, Survivin and XIAP while enhancing the levels of proapoptotic BIK, BIM, MCL-1S and NOXA, consequently favoring induction of apoptosis. Additionally, we found that cells with functional p53 (MCF-7, T47D) or mutant p53 (BT-20, MDA-MB-231) were both susceptible to UP's cytotoxicity. Importantly, UP was able to induce apoptosis in MCF-7 cells with p53 knockdown by RNA interference, confirming the dispensability of p53 in UP-induced apoptosis. Overall, our results establish that UP induces p53-independent apoptosis in breast carcinoma cells with no marked toxicity to nonmalignant cells, raising the possibility of its use as a new chemotherapeutic drug for breast cancer irrespective of p53 status.« less

  4. DRAGO (KIAA0247), a New DNA Damage–Responsive, p53-Inducible Gene That Cooperates With p53 as Oncosupprossor

    PubMed Central

    Polato, Federica; Rusconi, Paolo

    2014-01-01

    Background p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. Methods DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53−/− and 107 p53+/− mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan–Meier curves and the Mantel–Haenszel test. All statistical tests were two-sided. Results We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO−/− mice are viable without macroscopic alterations. However, in p53−/− or p53+/− mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53−/− or p53+/− mice bearing wild-type DRAGO alleles (p53−/−, DRAGO−/− mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53+/−, DRAGO−/− mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO+/+ counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional—through p53 (and p73) and methylation-dependent control—and post-transcriptional levels by miRNAs. Conclusions DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions. PMID:24652652

  5. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53

    PubMed Central

    Martinez-Zapien, Denise; Ruiz, Francesc Xavier; Poirson, Juline; Mitschler, André; Ramirez-Ramos, Juan; Forster, Anne; Cousido-Siah, Alexandra; Masson, Murielle; Pol, Scott Vande; Podjarny, Alberto; Travé, Gilles; Zanier, Katia

    2015-01-01

    Summary The p53 pro-apoptotic tumor suppressor is mutated or functionally altered in most cancers. In epithelial tumors induced by “high-risk” mucosal Human Papillomaviruses (hrm-HPVs), including human cervical carcinoma and a growing number of head-and-neck cancers 1, p53 is degraded by the viral oncoprotein E6 2. In this process, E6 binds to a short LxxLL consensus sequence within the cellular ubiquitin ligase E6AP 3. Subsequently, the E6/E6AP heterodimer recruits and degrades p53 4. Neither E6 nor E6AP are separately able to recruit p53 3,5, and the precise mode of assembly of E6, E6AP and p53 is unknown. Here, we solved the crystal structure of a ternary complex comprising full-length HPV16 E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumor suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against HPV-mediated oncogenesis. PMID:26789255

  6. Mutation at p53 serine 389 does not rescue the embryonic lethality in mdm2 or mdm4 null mice.

    PubMed

    Iwakuma, Tomoo; Parant, John M; Fasulo, Mark; Zwart, Edwin; Jacks, Tyler; de Vries, Annemieke; Lozano, Guillermina

    2004-10-07

    Mdm2 and its homolog Mdm4 inhibit the function of the tumor suppressor p53. Targeted disruption of either mdm2 or mdm4 genes in mice results in embryonic lethality that is completely rescued by concomitant deletion of p53, suggesting that deletion of negative regulators of p53 results in a constitutively active p53. Thus, these mouse models offer a unique in vivo system to assay the functional significance of different p53 modifications. Phosphorylation of serine 389 in murine p53 occurs specifically after ultraviolet-light-induced DNA damage, and phosphorylation of this site enhances p53 activity both in vitro and in vivo. Recently, mice with a serine to alanine substitution at serine 389 (p53S389A) in the endogenous p53 locus were generated. To examine the in vivo significance of serine 389 phosphorylation during embryogenesis, we crossed these mutant mice to mice lacking mdm2 or mdm4. The p53S389A allele did not alter the embryonic lethality of mdm2 or mdm4. Additional crosses to assay the effect of one p53S389A allele with a p53 null allele also did not rescue the lethal phenotypes. In conclusion, the phenotypes due to loss of mdm2 or mdm4 were not even partially rescued by p53S389A, suggesting that p53S389A is functionally wild type during embryogenesis.

  7. Initial characterization of 17 viruses harboring mutant forms of the immediate-early gene of equine herpesvirus 1.

    PubMed

    Buczynski, Kimberly A; Kim, Seong K; O'Callaghan, Dennis J

    2005-10-01

    The sole immediate-early (IE) gene of equine herpesvirus 1 (EHV-1) encodes a major regulatory protein of 1487 amino acids (aa) capable of modulating gene expression from both early and late promoters and also of trans-repressing its own promoter. Using a specially designed recombination system and a library of IE linker-insertion, deletion, point, and nonsense mutant constructs that encode forms of the IE protein (IEP) harboring mutations within all five regions, 17 mutant viruses were generated and characterized. Ribonuclease protection analyses revealed that all 17 mutants synthesize the IE mRNA in RK-13 cells, whereas those that failed to replicate on non-complementing RK-13 cells displayed a defect in the transcription of either an important early gene (EICP0) and/or an essential late gene (glycoprotein D). Western blot analyses showed that the IEP was synthesized and detectable in cells infected with each mutant virus, including those mutants that failed to replicate on non-complementing RK-13 cells. Eleven of the 17 mutants were capable of growth on non-complementing RK-13 cells, whereas mutant viruses with deletions within the serine-rich tract (SRT), nucleus localization signal (NLS), or DNA-binding domain (DBD) were capable of growth only on the IEP-producing cell line (IE13.1). Lastly, temperature shift experiments revealed that mutant viruses containing deletions within the C-terminus (KyAn1029 and KyAn1411) or within the SRT (KyADeltaSRT2) of the IEP exhibited a temperature-sensitive phenotype in that these viruses, in contrast to the parent KyA, failed to replicate at 39 degrees C. Overall, these results indicate that the C-terminus of the IEP is not essential for IEP function in cell culture, but this region contains elements that enhance the function(s) of the IEP. The initial characterization of these 17 EHV-1 mutants has shown that sequences totaling at least 43% of the IEP are not essential for virus replication in cell culture.

  8. Using yeast to determine the functional consequences of mutations in the human p53 tumor suppressor gene: An introductory course-based undergraduate research experience in molecular and cell biology.

    PubMed

    Hekmat-Scafe, Daria S; Brownell, Sara E; Seawell, Patricia Chandler; Malladi, Shyamala; Imam, Jamie F Conklin; Singla, Veena; Bradon, Nicole; Cyert, Martha S; Stearns, Tim

    2017-03-04

    The opportunity to engage in scientific research is an important, but often neglected, component of undergraduate training in biology. We describe the curriculum for an innovative, course-based undergraduate research experience (CURE) appropriate for a large, introductory cell and molecular biology laboratory class that leverages students' high level of interest in cancer. The course is highly collaborative and emphasizes the analysis and interpretation of original scientific data. During the course, students work in teams to characterize a collection of mutations in the human p53 tumor suppressor gene via expression and analysis in yeast. Initially, student pairs use both qualitative and quantitative assays to assess the ability of their p53 mutant to activate expression of reporter genes, and they localize their mutation within the p53 structure. Through facilitated discussion, students suggest possible molecular explanations for the transactivation defects displayed by their p53 mutants and propose experiments to test these hypotheses that they execute during the second part of the course. They use a western blot to determine whether mutant p53 levels are reduced, a DNA-binding assay to test whether recognition of any of three p53 target sequences is compromised, and fluorescence microscopy to assay nuclear localization. Students studying the same p53 mutant periodically convene to discuss and interpret their combined data. The course culminates in a poster session during which students present their findings to peers, instructors, and the greater biosciences community. Based on our experience, we provide recommendations for the development of similar large introductory lab courses. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):161-178, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  9. Activation of p53 Transcriptional Activity by SMRT: a Histone Deacetylase 3-Independent Function of a Transcriptional Corepressor

    PubMed Central

    Adikesavan, Anbu Karani; Karmakar, Sudipan; Pardo, Patricia; Wang, Liguo; Liu, Shuang; Li, Wei

    2014-01-01

    The silencing mediator of retinoic acid and thyroid hormone receptors (SMRT) is an established histone deacetylase 3 (HDAC3)-dependent transcriptional corepressor. Microarray analyses of MCF-7 cells transfected with control or SMRT small interfering RNA revealed SMRT regulation of genes involved in DNA damage responses, and the levels of the DNA damage marker γH2AX as well as poly(ADP-ribose) polymerase cleavage were elevated in SMRT-depleted cells treated with doxorubicin. A number of these genes are established p53 targets. SMRT knockdown decreased the activity of two p53-dependent reporter genes as well as the expression of p53 target genes, such as CDKN1A (which encodes p21). SMRT bound directly to p53 and was recruited to p53 binding sites within the p21 promoter. Depletion of GPS2 and TBL1, components of the SMRT corepressor complex, but not histone deacetylase 3 (HDAC3) decreased p21-luciferase activity. p53 bound to the SMRT deacetylase activation domain (DAD), which mediates HDAC3 binding and activation, and HDAC3 could attenuate p53 binding to the DAD region of SMRT. Moreover, an HDAC3 binding-deficient SMRT DAD mutant coactivated p53 transcriptional activity. Collectively, these data highlight a biological role for SMRT in mediating DNA damage responses and suggest a model where p53 binding to the DAD limits HDAC3 interaction with this coregulator, thereby facilitating SMRT coactivation of p53-dependent gene expression. PMID:24449765

  10. Screening of medicinal plant phytochemicals as natural antagonists of p53-MDM2 interaction to reactivate p53 functioning.

    PubMed

    Riaz, Muhammad; Ashfaq, Usman A; Qasim, Muhammad; Yasmeen, Erum; Ul Qamar, Muhammad T; Anwar, Farooq

    2017-10-01

    In most types of cancer, overexpression of murine double minute 2 (MDM2) often leads to inactivation of p53. The crystal structure of MDM2, with a 109-residue amino-terminal domain, reveals that MDM2 has a core hydrophobic region to which p53 binds as an amphipathic α helix. The interface depends on the steric complementarity between MDM2 and the hydrophobic region of p53. Especially, on p53's triad, amino acids Phe19, Trp23 and Leu26 bind to the MDM2 core. Results from studies suggest that the structural motif of both p53 and MDM2 can be attributed to similarities in the amphipathic α helix. Thus, in the current investigation it is hypothesized that the similarity in the structural motif might be the cause of p53 inactivation by MDM2. Hence, molecular docking and phytochemical screening approaches are appraised to inhibit the hydrophobic cleft of MDM2 and to stop p53-MDM2 interaction, resulting in reactivation of p53 activity. For this purpose, a library of 2295 phytochemicals were screened against p53-MDM2 to find potential candidates. Of these, four phytochemicals including epigallocatechin gallate, alvaradoin M, alvaradoin E and nordihydroguaiaretic acid were found to be potential inhibitors of p53-MDM2 interaction. The screened phytochemicals, derived from natural extracts, may have negligible side effects and can be explored as potent antagonists of p53-MDM2 interactions, resulting in reactivation of the normal transcription of p53.

  11. Interplay between PTB and miR-1285 at the p53 3'UTR modulates the levels of p53 and its isoform Δ40p53α.

    PubMed

    Katoch, Aanchal; George, Biju; Iyyappan, Amrutha; Khan, Debjit; Das, Saumitra

    2017-09-29

    p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3'UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3'UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3'UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3'UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3'UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3'UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3'UTR can play pivotal role in fine tuning the expression of the two p53 isoforms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. DRAGO (KIAA0247), a new DNA damage-responsive, p53-inducible gene that cooperates with p53 as oncosuppressor. [Corrected].

    PubMed

    Polato, Federica; Rusconi, Paolo; Zangrossi, Stefano; Morelli, Federica; Boeri, Mattia; Musi, Alberto; Marchini, Sergio; Castiglioni, Vittoria; Scanziani, Eugenio; Torri, Valter; Broggini, Massimo

    2014-04-01

    p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53(-/-) and 107 p53(+/-) mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan-Meier curves and the Mantel-Haenszel test. All statistical tests were two-sided. We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO(-/-) mice are viable without macroscopic alterations. However, in p53(-/-) or p53(+/-) mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53(-/-) or p53(+/-) mice bearing wild-type DRAGO alleles (p53(-/-), DRAGO(-/-) mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53(+/-), DRAGO(-/-) mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO(+/+) counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional-through p53 (and p73) and methylation-dependent control-and post-transcriptional levels by miRNAs. DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions.

  13. Integration of Genomic, Biologic, and Chemical Approaches to Target p53 Loss and Gain-of-Function in Triple Negative Breast Cancer

    DTIC Science & Technology

    2015-09-01

    dissertation research is determining the mechanism and “targetability” of a mutant p53-adapted state in triple-negative breast cancer . Tim’s...Negative Breast Cancer PRINCIPAL INVESTIGATOR: Jennifer A. Pietenpol, Ph.D. CONTRACTING ORGANIZATION: The Vanderbilt University Nashville, TN...Loss and Gain-of-Function in Triple Negative Breast Cancer 5a. CONTRACT NUMBER W81XWH-13-1-0287 p53 Loss and Gain-of-Function in Triple Negative

  14. Culturing on Wharton's jelly extract delays mesenchymal stem cell senescence through p53 and p16INK4a/pRb pathways.

    PubMed

    Hao, Haojie; Chen, Guanghui; Liu, Jiejie; Ti, Dongdong; Zhao, Yali; Xu, Shenjun; Fu, Xiaobing; Han, Weidong

    2013-01-01

    Mesenchymal stem cells (MSCs) hold great therapeutic potential. However, MSCs undergo replication senescence during the in vitro expansion process. Wharton's jelly from the human umbilical cord harbors a large number of MSCs. In this study, we hypothesized that Wharton's jelly would be beneficial for in vitro expansion of MSCs. Wharton's jelly extract (WJEs), which is mainly composed of extracellular matrix and cytokines, was prepared as coating substrate. Human MSCs were isolated and cultured on WJE-coated plates. Although the proliferation capacity of cells was not augmented by WJE in early phase culture, adynamic growth in late-phase culture was clearly reduced, suggesting that the replicative senescence of MSCs was efficiently slowed by WJE. This was confirmed by β-galactosidase staining and telomere length measurements of MSCs in late-phase culture. In addition, the decreased differentiation ability of MSCs after long-term culture was largely ameliorated by WJE. Reactive oxygen species (ROS), p53, and p16INK4a/pRb expression increased with passaging. Analysis at the molecular level revealed that WJE-based culture efficiently suppressed the enhancement of intracellular ROS, p53, and p16INK4a/pRb in MSCs. These data demonstrated that WJE provided an ideal microenvironment for MSCs culture expansion in vitro preserved MSC properties by delaying MSCs senescence, and allowed large numbers of MSCs to be obtained for basic research and clinical therapies.

  15. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression.

    PubMed

    Hampp, Stephanie; Kiessling, Tina; Buechle, Kerstin; Mansilla, Sabrina F; Thomale, Jürgen; Rall, Melanie; Ahn, Jinwoo; Pospiech, Helmut; Gottifredi, Vanesa; Wiesmüller, Lisa

    2016-07-26

    DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress.

  16. p53 in breast cancer subtypes and new insights into response to chemotherapy.

    PubMed

    Bertheau, Philippe; Lehmann-Che, Jacqueline; Varna, Mariana; Dumay, Anne; Poirot, Brigitte; Porcher, Raphaël; Turpin, Elisabeth; Plassa, Louis-François; de Roquancourt, Anne; Bourstyn, Edwige; de Cremoux, Patricia; Janin, Anne; Giacchetti, Sylvie; Espié, Marc; de Thé, Hugues

    2013-08-01

    Despite an obvious central role of p53 in the hallmarks of cancer, TP53 status is not yet used for the management of breast cancer. Recent findings may lead to reconsider the role of p53 in breast cancer. TP53 mutations are the most frequent genetic alterations in breast cancer, observed in 30% of breast carcinomas. Their distribution is highly linked to molecular tumor subtypes found in 26% of luminal tumors (17% of luminal A, 41% of luminal B), in 50% of HER2 amplified tumors, in 69% of molecular apocrine breast carcinomas and in 88% of basal-like carcinomas. The type of mutation is linked to the tumor subtype with higher frequency of base-pair substitutions in luminal tumors, whereas molecular apocrine and basal-like tumors present much higher frequency of complex mutations (deletions/insertions). The timing of TP53 mutation also depends on the tumor subtype, being the first important event in luminal tumors but occurring after PTEN loss in basal-like tumors. Regarding response to cytotoxic chemotherapy, the situation is far from the p53-dependent apoptosis paradigm with subsequent clinical response. We reported that TP53 mutated non inflammatory locally advanced breast carcinomas had a high rate of complete pathological response to dose-dense doxorubicin-cyclophosphamide chemotherapy, while TP53 wild-type (WT) tumors never achieved complete response. Using human breast cancer xenograft models, we suggested that this could be due to the induction of senescence in TP53 WT tumor cells. A recent work confirmed these findings in MMTV-Wnt1 mammary tumors, showing that growth arrest and senescent phenotype, not apoptosis, were induced in TP53 WT tumors following doxorubicin treatment, while lack of arrest in mutant tumors resulted in aberrant mitoses, cell death and a superior clinical response. Furthermore, in ER positive (ER(+)) breast tumors, it has been recently reported that ER represses the p53-mediated apoptotic response induced by DNA damage. Taken together

  17. The evolutionarily conserved interaction between LC3 and p62 selectively mediates autophagy-dependent degradation of mutant huntingtin.

    PubMed

    Tung, Ying-Tsen; Hsu, Wen-Ming; Lee, Hsinyu; Huang, Wei-Pang; Liao, Yung-Feng

    2010-07-01

    Mammalian p62/sequestosome-1 protein binds to both LC3, the mammalian homologue of yeast Atg8, and polyubiquitinated cargo proteins destined to undergo autophagy-mediated degradation. We previously identified a cargo receptor-binding domain in Atg8 that is essential for its interaction with the cargo receptor Atg19 in selective autophagic processes in yeast. We, thus, sought to determine whether this interaction is evolutionally conserved from yeast to mammals. Using an amino acid replacement approach, we demonstrate that cells expressing mutant LC3 (LC3-K30D, LC3-K51A, or LC3-L53A) all exhibit defective lipidation of LC3, a disrupted LC3-p62 interaction, and impaired autophagic degradation of p62, suggesting that the p62-binding site of LC3 is localized within an evolutionarily conserved domain. Importantly, whereas cells expressing these LC3 mutants exhibited similar overall autophagic activity comparable to that of cells expressing wild-type LC3, autophagy-mediated clearance of the aggregation-prone mutant Huntingtin was defective in the mutant-expressing cells. Together, these results suggest that p62 directly binds to the evolutionarily conserved cargo receptor-binding domain of Atg8/LC3 and selectively mediates the clearance of mutant Huntingtin.

  18. Evolutionary Action score of TP53 (EAp53) identifies high risk mutations associated with decreased survival and increased distant metastases in head and neck cancer

    PubMed Central

    Neskey, David M.; Osman, Abdullah A.; Ow, Thomas J.; Katsonis, Panagiotis; McDonald, Thomas; Hicks, Stephanie C.; Hsu, Teng-Kuei; Pickering, Curtis R.; Ward, Alexandra; Patel, Ameeta; Yordy, John S.; Skinner, Heath D.; Giri, Uma; Sano, Daisuke; Story, Michael D.; Beadle, Beth M.; El-Naggar, Adel K.; Kies, Merrill S.; William, William N.; Caulin, Carlos; Frederick, Mitchell; Kimmel, Marek; Myers, Jeffrey N.; Lichtarge, Olivier

    2015-01-01

    TP53 is the most frequently altered gene in head and neck squamous cell carcinoma (HNSCC) with mutations occurring in over two third of cases, but the prognostic significance of these mutations remains elusive. In the current study, we evaluated a novel computational approach termed Evolutionary Action (EAp53) to stratify patients with tumors harboring TP53 mutations as high or low risk, and validated this system in both in vivo and in vitro models. Patients with high risk TP53 mutations had the poorest survival outcomes and the shortest time to the development of distant metastases. Tumor cells expressing high risk TP53 mutations were more invasive and tumorigenic and they exhibited a higher incidence of lung metastases. We also documented an association between the presence of high risk mutations and decreased expression of TP53 target genes, highlighting key cellular pathways that are likely to be dysregulated by this subset of p53 mutations which confer particularly aggressive tumor behavior. Overall, our work validated EAp53 as a novel computational tool that may be useful in clinical prognosis of tumors harboring p53 mutations. PMID:25634208

  19. The putative oncotarget CSN5 controls a transcription-uncorrelated p53-mediated autophagy implicated in cancer cell survival under curcumin treatment

    PubMed Central

    Sheng, Ji-Po; Yu, Fang; Tan, Ren-Xiang; Pan, Ying; Huang, Jun-Jian; Kong, Ling-Dong

    2016-01-01

    Curcumin has shown promise as a safe and specific anticancer agent. The COP9 signalosome (CSN) component CSN5, a known specific target for curcumin, can control p53 stability by increasing its degradation through ubiquitin system. But the correlation of CSN5-controlled p53 to anticancer therapeutic effect of curcumin is currently unknown. Here we showed that CSN5-controlled p53 was transcriptional inactive and responsible for autophagy in human normal BJ cells and cancer HepG2 cells under curcumin treatment. Of note, CSN5-initiated cellular autophagy by curcumin treatment was abolished in p53-null HCT116p53−/− cancer cells, which could be rescued by reconstitution with wild-type p53 or transcription inactive p53 mutant p53R273H. Furthermore, CSN5-controlled p53 conferred a pro-survival autophagy in diverse cancer cells response to curcumin. Genetic p53 deletion, as well as autophagy pharmacological inhibition by chloroquine, significantly enhanced the therapeutic effect of curcumin on cancer cells in vitro and in vivo, but not normal cells. This study identifies a novel CSN5-controlled p53 in autophagy of human cells. The p53 expression state is a useful biomarker for predicting the anticancer therapeutic effect of curcumin. Therefore, the pharmacologic autophagy manipulation may benefit the ongoing anticancer clinical trials of curcumin. PMID:27626169

  20. The putative oncotarget CSN5 controls a transcription-uncorrelated p53-mediated autophagy implicated in cancer cell survival under curcumin treatment.

    PubMed

    Zhang, Qing-Yu; Jin, Rui; Zhang, Xian; Sheng, Ji-Po; Yu, Fang; Tan, Ren-Xiang; Pan, Ying; Huang, Jun-Jian; Kong, Ling-Dong

    2016-10-25

    Curcumin has shown promise as a safe and specific anticancer agent. The COP9 signalosome (CSN) component CSN5, a known specific target for curcumin, can control p53 stability by increasing its degradation through ubiquitin system. But the correlation of CSN5-controlled p53 to anticancer therapeutic effect of curcumin is currently unknown. Here we showed that CSN5-controlled p53 was transcriptional inactive and responsible for autophagy in human normal BJ cells and cancer HepG2 cells under curcumin treatment. Of note, CSN5-initiated cellular autophagy by curcumin treatment was abolished in p53-null HCT116p53-/- cancer cells, which could be rescued by reconstitution with wild-type p53 or transcription inactive p53 mutant p53R273H. Furthermore, CSN5-controlled p53 conferred a pro-survival autophagy in diverse cancer cells response to curcumin. Genetic p53 deletion, as well as autophagy pharmacological inhibition by chloroquine, significantly enhanced the therapeutic effect of curcumin on cancer cells in vitro and in vivo, but not normal cells. This study identifies a novel CSN5-controlled p53 in autophagy of human cells. The p53 expression state is a useful biomarker for predicting the anticancer therapeutic effect of curcumin. Therefore, the pharmacologic autophagy manipulation may benefit the ongoing anticancer clinical trials of curcumin.

  1. The expanding universe of p53 targets.

    PubMed

    Menendez, Daniel; Inga, Alberto; Resnick, Michael A

    2009-10-01

    The p53 tumour suppressor is modified through mutation or changes in expression in most cancers, leading to the altered regulation of hundreds of genes that are directly influenced by this sequence-specific transcription factor. Central to the p53 master regulatory network are the target response element (RE) sequences. The extent of p53 transactivation and transcriptional repression is influenced by many factors, including p53 levels, cofactors and the specific RE sequences, all of which contribute to the role that p53 has in the aetiology of cancer. This Review describes the identification and functionality of REs and highlights the inclusion of non-canonical REs that expand the universe of genes and regulation mechanisms in the p53 tumour suppressor network.

  2. Stabilisation of p53 enhances reovirus-induced apoptosis and virus spread through p53-dependent NF-κB activation.

    PubMed

    Pan, D; Pan, L-Z; Hill, R; Marcato, P; Shmulevitz, M; Vassilev, L T; Lee, P W K

    2011-09-27

    Naturally oncolytic reovirus preferentially kills cancer cells, making it a promising cancer therapeutic. Mutations in tumour suppressor p53 are prevalent in cancers, yet the role of p53 in reovirus oncolysis is relatively unexplored. Human cancer cell lines were exposed to Nutlin-3a, reovirus or a combination of the two and cells were processed for reovirus titration, western blot, real-time PCR and apoptosis assay using Annexin V and 7-AAD staining. Confocal microscopy was used to determine translocation of the NF-κB p65 subunit. We show that despite similar reovirus replication in p53(+/+) and p53(-/-) cells, stabilisation of p53 by Nutlin-3a significantly enhanced reovirus-induced apoptosis and hence virus release and dissemination while having no direct effect on virus replication. Enhanced apoptosis by Nutlin-3a was not observed in p53(-/-) or p53 knockdown cells; however, increased expression of Bax and p21 are required. Moreover, elevated NF-κB activation in reovirus-infected cells following Nutlin-3a treatment was necessary for enhanced reovirus-induced apoptosis, as synergistic cytotoxicity was overcome by specific NF-κB inhibitors. Nutlin-3a treatment enhances reovirus-induced apoptosis and virus spread through p53-dependent NF-κB activation, and combination of reovirus and Nutlin-3a might represent an improved therapy against cancers harbouring wild-type p53.

  3. Mechanisms that enhance sustainability of p53 pulses.

    PubMed

    Kim, Jae Kyoung; Jackson, Trachette L

    2013-01-01

    The tumor suppressor p53 protein shows various dynamic responses depending on the types and extent of cellular stresses. In particular, in response to DNA damage induced by γ-irradiation, cells generate a series of p53 pulses. Recent research has shown the importance of sustaining repeated p53 pulses for recovery from DNA damage. However, far too little attention has been paid to understanding how cells can sustain p53 pulses given the complexities of genetic heterogeneity and intrinsic noise. Here, we explore potential molecular mechanisms that enhance the sustainability of p53 pulses by developing a new mathematical model of the p53 regulatory system. This model can reproduce many experimental results that describe the dynamics of p53 pulses. By simulating the model both deterministically and stochastically, we found three potential mechanisms that improve the sustainability of p53 pulses: 1) the recently identified positive feedback loop between p53 and Rorα allows cells to sustain p53 pulses with high amplitude over a wide range of conditions, 2) intrinsic noise can often prevent the dampening of p53 pulses even after mutations, and 3) coupling of p53 pulses in neighboring cells via cytochrome-c significantly reduces the chance of failure in sustaining p53 pulses in the presence of heterogeneity among cells. Finally, in light of these results, we propose testable experiments that can reveal important mechanisms underlying p53 dynamics.

  4. p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappadone, C., E-mail: concettina.cappadone@unibo.it; Stefanelli, C.; Malucelli, E.

    2015-11-13

    Osteosarcoma (OS) is the most common primary malignant tumor of bone, occurring most frequently in children and adolescents. The mechanism of formation and development of OS have been studied for a long time. Tumor suppressor pathway governed by p53 gene are known to be involved in the pathogenesis of osteosarcoma. Moreover, loss of wild-type p53 activity is thought to be a major predictor of failure to respond to chemotherapy in various human cancers. In previous studies, we described the activity of a new indole derivative, NSC743420, belonging to the tubulin inhibitors family, capable to induce apoptosis and arrest of themore » cell cycle in the G2/M phase of various cancer cell lines. However, this molecule has never been tested on OS cell line. Here we address the activity of NSC743420 by examine whether differences in the p53 status could influence its effects on cell proliferation and death of OS cells. In particular, we compared the effect of the tested molecule on p53-wild type and p53-silenced U2OS cells, and on SaOS2 cell line, which is null for p53. Our results demonstrated that NSC743420 reduces OS cell proliferation by p53-dependent and p53-independent mechanisms. In particular, the molecule induces proliferative arrest that culminate to apoptosis in SaOS2 p53-null cells, while it brings a cytostatic and differentiating effect in U2OS cells, characterized by the cell cycle arrest in G0/G1 phase and increased alkaline phosphatase activity. - Highlights: • The indole derivative NSC743420 induces antitumor effects on osteosarcoma cells. • p53 status could drive the activity of antitumor agents on osteosarcoma cells. • NSC743420 induces cytostatic and differentiating effects on U2OS cells. • NSC743420 causes apoptosis on p53-null SaOS2 cells.« less

  5. SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression

    DOE PAGES

    Wang, Shaomeng; Sun, Wei; Zhao, Yujun; ...

    2014-08-21

    Blocking the MDM2-p53 protein-protein interaction has long been considered to offer a broad cancer therapeutic strategy, despite the potential risks of selecting tumors harboring p53 mutations that escape MDM2 control. In this study, we report a novel small molecule inhibitor of the MDM2-p53 interaction, SAR405838 (MI-77301) that has been advanced into Phase I clinical trials. SAR405838 binds to MDM2 with K i = 0.88 nM and has high specificity over other proteins. A co-crystal structure of the SAR405838:MDM2 complex shows that in addition to mimicking three key p53 amino acid residues, the inhibitor captures additional interactions not observed in themore » p53-MDM2 complex and induces refolding of the short, unstructured MDM2 N-terminal region to achieve its high affinity. SAR405838 effectively activates wild-type p53 in vitro and in xenograft tumor tissue of leukemia and solid tumors, leading to p53-dependent cell cycle arrest and/or apoptosis. At well-tolerated dose schedules, SAR405838 achieves either durable tumor regression or complete tumor growth inhibition in mouse xenograft models of SJSA-1 osteosarcoma, RS4;11 acute leukemia, LNCaP prostate cancer and HCT-116 colon cancer. Remarkably, a single oral dose of SAR405838 is sufficient to achieve complete tumor regression in the SJSA-1 model. Mechanistically, robust transcriptional up-regulation of PUMA induced by SAR405838 results in strong apoptosis in tumor tissue, leading to complete tumor regression. Lastly, our findings provide a preclinical basis upon which to evaluate SAR405838 as a therapeutic agent in patients whose tumors retain wild-type p53.« less

  6. Transcriptional inhibition of p21{sup WAF1/CIP1} gene (CDKN1) expression by survivin is at least partially p53-dependent: Evidence for survivin acting as a transcription factor or co-factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lei; Pre-Doctoral Chinese Fellowship Student, Second West China Hospital, Sichuan University, Sichuan; Ling, Xiang

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Survivin inhibits the expression of p21 protein, mRNA and promoter activity. Black-Right-Pointing-Pointer Survivin neutralizes p53-induced p21 expression and promoter activity. Black-Right-Pointing-Pointer Survivin physically interacts with p53 in cancer cells. Black-Right-Pointing-Pointer Genetic silencing of endogenous survivin upregulates p21 in p53 wild type cancer cells. Black-Right-Pointing-Pointer Both p53 and survivin interacts on the two p53-binding sites in the p21 promoter. -- Abstract: Growing evidence suggests a role for the antiapoptotic protein survivin in promotion of cancer cell G1/S transition and proliferation. However, the underlying mechanism is unclear. Further, although upregulation of p21{sup WAF1/CIP1} by p53 plays an important role inmore » p53-mediated cell G1 arrests in response to various distresses, it is unknown whether survivin plays a role in the regulation of p21{sup WAF1/CIP1} expression. Here, we report that exogenous expression of survivin in p53-wild type MCF-7 breast cancer cells inhibits the expression of p21{sup WAF1/CIP1} protein, mRNA and promoter activity, while the survivin C84A mutant and antisense failed to do so. Cotransfection experiments in the p53 mutant H1650 lung cancer cell line showed that survivin neutralizes p53-induced p21{sup WAF1/CIP1} expression and promoter activity. Importantly, genetically silencing of endogenous survivin using lentiviral survivin shRNA also enhances endogenous p21 in p53 wild type cancer cells, suggesting the physiological relevance of the fining. We further demonstrated that both p53 and survivin interacts on the two p53-binding sites in the p21{sup WAF1/CIP1} promoter (-2313 to -2212; -1452 to -1310), and survivin physically interacts with p53 in cancer cells. Together, we propose that survivin may act as a transcription factor or cofactor to interact with p53 on the p21{sup WAF1/CIP1} promoter leading to the inhibition of p21{sup WAF1/CIP1

  7. Interplay between PTB and miR-1285 at the p53 3′UTR modulates the levels of p53 and its isoform Δ40p53α

    PubMed Central

    Katoch, Aanchal; George, Biju; Iyyappan, Amrutha; Khan, Debjit

    2017-01-01

    Abstract p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3′UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3′UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3′UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3′UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3′UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3′UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3′UTR can play pivotal role in fine tuning the expression of the two p53 isoforms. PMID:28973454

  8. Downregulation of VRK1 by p53 in Response to DNA Damage Is Mediated by the Autophagic Pathway

    PubMed Central

    Valbuena, Alberto; Castro-Obregón, Susana; Lazo, Pedro A.

    2011-01-01

    Human VRK1 induces a stabilization and accumulation of p53 by specific phosphorylation in Thr18. This p53 accumulation is reversed by its downregulation mediated by Hdm2, requiring a dephosphorylated p53 and therefore also needs the removal of VRK1 as stabilizer. This process requires export of VRK1 to the cytosol and is inhibited by leptomycin B. We have identified that downregulation of VRK1 protein levels requires DRAM expression, a p53-induced gene. DRAM is located in the endosomal-lysosomal compartment. Induction of DNA damage by UV, IR, etoposide and doxorubicin stabilizes p53 and induces DRAM expression, followed by VRK1 downregulation and a reduction in p53 Thr18 phosphorylation. DRAM expression is induced by wild-type p53, but not by common human p53 mutants, R175H, R248W and R273H. Overexpression of DRAM induces VRK1 downregulation and the opposite effect was observed by its knockdown. LC3 and p62 were also downregulated, like VRK1, in response to UV-induced DNA damage. The implication of the autophagic pathway was confirmed by its requirement for Beclin1. We propose a model with a double regulatory loop in response to DNA damage, the accumulated p53 is removed by induction of Hdm2 and degradation in the proteasome, and the p53-stabilizer VRK1 is eliminated by the induction of DRAM that leads to its lysosomal degradation in the autophagic pathway, and thus permitting p53 degradation by Hdm2. This VRK1 downregulation is necessary to modulate the block in cell cycle progression induced by p53 as part of its DNA damage response. PMID:21386980

  9. Therapeutic inhibition of the MDM2-p53 interaction prevents recurrence of adenoid cystic carcinomas

    PubMed Central

    Nör, Felipe; Warner, Kristy A.; Zhang, Zhaocheng; Acasigua, Gerson A.; Pearson, Alexander T.; Kerk, Samuel A.; Helman, Joseph; Filho, Manoel Sant’Ana; Wang, Shaomeng; Nör, Jacques E.

    2016-01-01

    Purpose Conventional chemotherapy has modest efficacy in advanced adenoid cystic carcinomas (ACC). Tumor recurrence is a major challenge in the management of ACC patients. Here, we evaluated the anti-tumor effect of a novel small molecule inhibitor of the MDM2-p53 interaction (MI-773) combined with Cisplatin in patient-derived xenograft (PDX) ACC tumors. Experimental design Therapeutic strategies with MI-773 and/or Cisplatin were evaluated in SCID mice harboring PDX ACC tumors (UM-PDX-HACC-5) and in low passage primary human ACC cells (UM-HACC-2A, -2B, -5, -6) in vitro. The effect of therapy on the fraction of cancer stem cells was determined by flow cytometry for ALDH activity and CD44 expression. Results Combined therapy with MI-773 with Cisplatin caused p53 activation, induction of apoptosis, and regression of ACC PDX tumors. Western blots revealed induction of MDM2, p53 and downstream p21 expression, and regulation of apoptosis-related proteins PUMA, BAX, Bcl-2, Bcl-xL and active Caspase-9 upon MI-773 treatment. Both, single-agent MI-773, and MI-773 combined with Cisplatin, decreased the fraction of cancer stem cells in PDX ACC tumors. Notably, neoadjuvant MI-773 and surgery eliminated tumor recurrences during a post-surgical follow-up of more than 300 days. In contrast, 62.5% of mice that received vehicle control presented with palpable tumor recurrences within this time period (p=0.0097). Conclusions Collectively, these data demonstrate that therapeutic inhibition of MDM2-p53 interaction by MI-773 decreased the cancer stem cell fraction, sensitized ACC xenograft tumors to Cisplatin, and eliminated tumor recurrence. These results suggest that patients with ACC might benefit from the therapeutic inhibition of the MDM2-p53 interaction. PMID:27550999

  10. Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis

    PubMed Central

    Kovács, Dávid; Igaz, Nóra; Keskeny, Csilla; Bélteky, Péter; Tóth, Tímea; Gáspár, Renáta; Madarász, Dániel; Rázga, Zsolt; Kónya, Zoltán; Boros, Imre M.; Kiricsi, Mónika

    2016-01-01

    Loss of function of the tumour suppressor p53 observed frequently in human cancers challenges the drug-induced apoptotic elimination of cancer cells from the body. This phenomenon is a major concern and provides much of the impetus for current attempts to develop a new generation of anticancer drugs capable of provoking apoptosis in a p53-independent manner. Since silver nanoparticles (AgNPs) possess unique cytotoxic features, we examined, whether their activity could be exploited to kill tumour suppressor-deficient cancer cells. Therefore, we investigated the effects of AgNPs on osteosarcoma cells of different p53 genetic backgrounds. As particle diameters might influence the molecular mechanisms leading to AgNP-induced cell death we applied 5 nm and 35 nm sized citrate-coated AgNPs. We found that both sized AgNPs targeted mitochondria and induced apoptosis in wild-type p53-containing U2Os and p53-deficient Saos-2 cells. According to our findings AgNPs are able to kill osteosarcoma cells independently from their actual p53 status and induce p53-independent cancer cell apoptosis. This feature renders AgNPs attractive candidates for novel chemotherapeutic approaches. PMID:27291325

  11. Rigor of cell fate decision by variable p53 pulses and roles of cooperative gene expression by p53

    PubMed Central

    Murakami, Yohei; Takada, Shoji

    2012-01-01

    Upon DNA damage, the cell fate decision between survival and apoptosis is largely regulated by p53-related networks. Recent experiments found a series of discrete p53 pulses in individual cells, which led to the hypothesis that the cell fate decision upon DNA damage is controlled by counting the number of p53 pulses. Under this hypothesis, Sun et al. (2009) modeled the Bax activation switch in the apoptosis signal transduction pathway that can rigorously “count” the number of uniform p53 pulses. Based on experimental evidence, here we use variable p53 pulses with Sun et al.’s model to investigate how the variability in p53 pulses affects the rigor of the cell fate decision by the pulse number. Our calculations showed that the experimentally anticipated variability in the pulse sizes reduces the rigor of the cell fate decision. In addition, we tested the roles of the cooperativity in PUMA expression by p53, finding that lower cooperativity is plausible for more rigorous cell fate decision. This is because the variability in the p53 pulse height is more amplified in PUMA expressions with more cooperative cases. PMID:27857606

  12. Wide-line NMR and DSC studies on intrinsically disordered p53 transactivation domain and its helically pre-structured segment

    PubMed Central

    Tompa, Peter; Han, Kyou-Hoon; Bokor, Mónika; Kamasa, Pawel; Tantos, Ágnes; Fritz, Beáta; Kim, Do-Hyoung; Lee, Chewook; Verebélyi, Tamás; Tompa, Kálmán

    2016-01-01

    Wide-line 1H NMR intensity and differential scanning calorimetry measurements were carried out on the intrinsically disordered 73-residue full transactivation domain (TAD) of the p53 tumor suppressor protein and two peptides: one a wild type p53 TAD peptide with a helix pre-structuring property, and a mutant peptide with a disabled helix-forming propensity. Measurements were carried out in order to characterize their water and ion binding characteristics. By quantifying the number of hydrate water molecules, we provide a microscopic description for the interactions of water with a wild-type p53 TAD and two p53 TAD peptides. The results provide direct evidence that intrinsically disordered proteins (IDPs) and a less structured peptide not only have a higher hydration capacity than globular proteins, but are also able to bind a larger amount of charged solute ions. [BMB Reports 2016; 49(9): 497-501] PMID:27418282

  13. p53 mutation and expression in lymphoma.

    PubMed Central

    Adamson, D. J.; Thompson, W. D.; Dawson, A. A.; Bennett, B.; Haites, N. E.

    1995-01-01

    Mutation and abnormal expression of p53 was studied in 38 lymphomas [five Hodgkin's disease and 33 non-Hodgkin's lymphoma (NHL)]. CM1 polyclonal antibody was used to detect overexpression of p53. Three missense mutations were characterised in three cases of NHL after screening exons 5-8 of p53 of all the tumours with single-strand conformation polymorphism (SSCP) analysis. Only two out of three tumours with a missense mutation showed abnormal expression of p53 as measured by CM1. Conversely, seven out of nine tumours with positive CM1 staining had no point mutation demonstrated. Overexpression of p53 in the cases of NHL occurred in three out of twenty four low-grade tumours and five out of nine high-grade tumours (Kiel classification). The results suggest that abnormalities of p53 are commoner in high-grade than low-grade NHL, and that positive immunocytochemistry cannot be used to determine which tumours have mutations of p53. Images Figure 1 Figure 2 PMID:7599045

  14. Accumulation of p53 in infectious mononucleosis tissues.

    PubMed

    Ehsan, A; Fan, H; Eagan, P A; Siddiqui, H A; Gulley, M L

    2000-11-01

    Epstein-Barr virus (EBV) infects lymphocytes, where it persists indefinitely for the life of the host; whether the virus interacts with p53 to maintain itself in these cells is unknown. Lymphoid biopsy samples from 10 patients with infectious mononucleosis (IM) were examined for expression of p53 by immunohistochemistry. Accumulation of p53 was detected in all 10 cases, primarily in large lymphocytes of the expanded paracortex. The presence of EBV was confirmed in all 10 cases by EBER1 (EBV-encoded RNA) in situ hybridization, whereas 11 non-IM control samples lacked significant EBER1 and did not express p53 in paracortical lymphocytes. Interestingly, EBV infection alone does not cause accumulation of intracellular p53, because many more cells expressed EBER1 than p53 in the IM tissues. To determine whether p53 was confined to the subset of infected cells in which viral replication was occurring, BZLF1 immunostains were performed. Viral BZLF1 was detected in 8 of 10 IM tissues; however, the paucity and small size of the BZLF1-expressing lymphocytes suggests that they are not the same cells overexpressing p53. To further examine the relationship between p53 and EBV gene expression, the tissues were studied for latent membrane protein 1 (LMP1) expression by immunohistochemistry. Viral LMP1 was observed in the large paracortical lymphocytes of all 10 cases of IM, indicating co-localization of p53 and LMP1 in these cells. Our findings confirm that p53 overexpression is not specific for nodal malignancy and that p53 accumulation is characteristic of IM. Because p53 was not coexpressed in the same cells as BZLF1, it appears that BZLF1 is not directly responsible for p53 accumulation. Nevertheless, co-localization of p53 and LMP1 in activated-appearing lymphocytes suggests that EBV infection is responsible for p53 accumulation. HUM PATHOL 31:1397-1403. Copyright 2000 by W.B. Saunders Company

  15. Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos.

    PubMed

    Hu, Zhilian; Holzschuh, Jochen; Driever, Wolfgang

    2015-01-01

    DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the β-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes

  16. Modulation of interaction of mutant TP53 and wild type BRCA1 by alkaloids: a computational approach towards targeting protein-protein interaction as a futuristic therapeutic intervention strategy for breast cancer impediment.

    PubMed

    Tiwari, Sameeksha; Awasthi, Manika; Singh, Swati; Pandey, Veda P; Dwivedi, Upendra N

    2017-10-23

    Protein-protein interactions (PPI) are a new emerging class of novel therapeutic targets. In order to probe these interactions, computational tools provide a convenient and quick method towards the development of therapeutics. Keeping this in view the present study was initiated to analyse interaction of tumour suppressor protein p53 (TP53) and breast cancer associated protein (BRCA1) as promising target against breast cancer. Using computational approaches such as protein-protein docking, hot spot analyses, molecular docking and molecular dynamics simulation (MDS), stepwise analyses of the interactions of the wild type and mutant TP53 with that of wild type BRCA1 and their modulation by alkaloids were done. Protein-protein docking method was used to generate both wild type and mutant complexes of TP53-BRCA1. Subsequently, the complexes were docked using sixteen different alkaloids, fulfilling ADMET and Lipinski's rule of five criteria, and were compared with that of a well-known inhibitor of PPI, namely nutlin. The alkaloid dicentrine was found to be the best docked alkaloid among all the docked alklaloids as well as that of nutlin. Furthermore, MDS analyses of both wild type and mutant complexes with the best docked alkaloid i.e. dicentrine, revealed higher stability of mutant complex than that of the wild one, in terms of average RMSD, RMSF and binding free energy, corroborating the results of docking. Results suggested more pronounced interaction of BRCA1 with mutant TP53 leading to increased expression of mutated TP53 thus showing a dominant negative gain of function and hampering wild type TP53 function leading to tumour progression.

  17. Alterations of p53 in tumorigenic human bronchial epithelial cells correlate with metastatic potential

    NASA Technical Reports Server (NTRS)

    Piao, C. Q.; Willey, J. C.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    1999-01-01

    The cellular and molecular mechanisms of radiation-induced lung cancer are not known. In the present study, alterations of p53 in tumorigenic human papillomavirus-immortalized human bronchial epithelial (BEP2D) cells induced by a single low dose of either alpha-particles or 1 GeV/nucleon (56)Fe were analyzed by PCR-single-stranded conformation polymorphism (SSCP) coupled with sequencing analysis and immunoprecipitation assay. A total of nine primary and four secondary tumor cell lines, three of which were metastatic, together with the parental BEP2D and primary human bronchial epithelial (NHBE) cells were studied. The immunoprecipitation assay showed overexpression of mutant p53 proteins in all the tumor lines but not in NHBE and BEP2D cells. PCR-SSCP and sequencing analysis found band shifts and gene mutations in all four of the secondary tumors. A G-->T transversion in codon 139 in exon 5 that replaced Lys with Asn was detected in two tumor lines. One mutation each, involving a G-->T transversion in codon 215 in exon 6 (Ser-->lle) and a G-->A transition in codon 373 in exon 8 (Arg-->His), was identified in the remaining two secondary tumors. These results suggest that p53 alterations correlate with tumorigenesis in the BEP2D cell model and that mutations in the p53 gene may be indicative of metastatic potential.

  18. p53 Mediates Vast Gene Expression Changes That Contribute to Poor Chemotherapeutic Response in a Mouse Model of Breast Cancer.

    PubMed

    Tonnessen-Murray, Crystal; Ungerleider, Nathan A; Rao, Sonia G; Wasylishen, Amanda R; Frey, Wesley D; Jackson, James G

    2018-05-28

    p53 is a transcription factor that regulates expression of genes involved in cell cycle arrest, senescence, and apoptosis. TP53 harbors mutations that inactivate its transcriptional activity in roughly 30% of breast cancers, and these tumors are much more likely to undergo a pathological complete response to chemotherapy. Thus, the gene expression program activated by wild-type p53 contributes to a poor response. We used an in vivo genetic model system to comprehensively define the p53- and p21-dependent genes and pathways modulated in tumors following doxorubicin treatment. We identified genes differentially expressed in spontaneous mammary tumors harvested from treated MMTV-Wnt1 mice that respond poorly (Trp53+/+) or favorably (Trp53-null) and those that lack the critical senescence/arrest p53 target gene Cdkn1a. Trp53 wild-type tumors differentially expressed nearly 10-fold more genes than Trp53-null tumors after treatment. Pathway analyses showed that genes involved in cell cycle, senescence, and inflammation were enriched in treated Trp53 wild-type tumors; however, no genes/pathways were identified that adequately explain the superior cell death/tumor regression observed in Trp53-null tumors. Cdkn1a-null tumors that retained arrest capacity (responded poorly) and those that proliferated (responded well) after treatment had remarkably different gene regulation. For instance, Cdkn1a-null tumors that arrested upregulated Cdkn2a (p16), suggesting an alternative, p21-independent route to arrest. Live animal imaging of longitudinal gene expression of a senescence/inflammation gene reporter in Trp53+/+ tumors showed induction during and after chemotherapy treatment, while tumors were arrested, but expression rapidly diminished immediately upon relapse. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Selective sensitization to DNA-damaging agents in a human rhabdomyosarcoma cell line with inducible wild-type p53 overexpression.

    PubMed

    Gibson, A A; Harwood, F G; Tillman, D M; Houghton, J A

    1998-01-01

    Drug-induced cytotoxicity or apoptosis may be influenced by the expression of the p53 tumor suppressor gene and by the specific oncogene expressed, which may dictate the threshold at which a cytotoxic response may by induced. The objective of the study was to elucidate how DNA-damaging agents with different mechanisms of action were sensitized in the context of expression of the Pax3/FKHR fusion protein, a transformation event unique to alveolar rhabdomyosarcomas (ARMSs), and wild-type p53 (wtp53). A wtp53 cDNA was subcloned into the pGRE5-2/EBV vector with dexamethasone-inducible overexpression and transfected into Rh30 ARMS cells that express Pax3/FKHR and a mutant p53 phenotype. Following dexamethasone induction of wtp53 overexpression in a derived clone (Cl.#27), growth was slowed, and cells accumulated in G1. Functional wtp53 activity was demonstrated by selective transactivation of p50-2, a wtp53 chloramphenicol acetyltransferase reporter construct, and by up-regulated expression of endogenous p21Waf1. Data demonstrated p53-dependent sensitization (> or = 4-fold) to bleomycin, actinomycin D, and 5-fluorouracil and considerably less p53-dependence (< or = 2-fold) for doxorubicin, topotecan, etoposide, and cisplatin in Cl.#27 compared to an equivalent clone containing the pGRE5-EBV vector alone (VC#3). Data demonstrate that ARMS cells show a selective sensitization to DNA-damaging agents when wtp53 is overexpressed. The cytotoxic activity of agents that are not potentiated substantially must, therefore, depend upon p53-independent factors that relate to the mechanism of drug action.

  20. Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein–DNA interactions

    PubMed Central

    Eldar, Amir; Rozenberg, Haim; Diskin-Posner, Yael; Rohs, Remo; Shakked, Zippora

    2013-01-01

    A p53 hot-spot mutation found frequently in human cancer is the replacement of R273 by histidine or cysteine residues resulting in p53 loss of function as a tumor suppressor. These mutants can be reactivated by the incorporation of second-site suppressor mutations. Here, we present high-resolution crystal structures of the p53 core domains of the cancer-related proteins, the rescued proteins and their complexes with DNA. The structures show that inactivation of p53 results from the incapacity of the mutated residues to form stabilizing interactions with the DNA backbone, and that reactivation is achieved through alternative interactions formed by the suppressor mutations. Detailed structural and computational analysis demonstrates that the rescued p53 complexes are not fully restored in terms of DNA structure and its interface with p53. Contrary to our previously studied wild-type (wt) p53-DNA complexes showing non-canonical Hoogsteen A/T base pairs of the DNA helix that lead to local minor-groove narrowing and enhanced electrostatic interactions with p53, the current structures display Watson–Crick base pairs associated with direct or water-mediated hydrogen bonds with p53 at the minor groove. These findings highlight the pivotal role played by R273 residues in supporting the unique geometry of the DNA target and its sequence-specific complex with p53. PMID:23863845

  1. p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation

    PubMed Central

    Brosh, Ran; Shalgi, Reut; Liran, Atar; Landan, Gilad; Korotayev, Katya; Nguyen, Giang Huong; Enerly, Espen; Johnsen, Hilde; Buganim, Yosef; Solomon, Hilla; Goldstein, Ido; Madar, Shalom; Goldfinger, Naomi; Børresen-Dale, Anne-Lise; Ginsberg, Doron; Harris, Curtis C; Pilpel, Yitzhak; Oren, Moshe; Rotter, Varda

    2008-01-01

    Normal cell growth is governed by a complicated biological system, featuring multiple levels of control, often deregulated in cancers. The role of microRNAs (miRNAs) in the control of gene expression is now increasingly appreciated, yet their involvement in controlling cell proliferation is still not well understood. Here we investigated the mammalian cell proliferation control network consisting of transcriptional regulators, E2F and p53, their targets and a family of 15 miRNAs. Indicative of their significance, expression of these miRNAs is downregulated in senescent cells and in breast cancers harboring wild-type p53. These miRNAs are repressed by p53 in an E2F1-mediated manner. Furthermore, we show that these miRNAs silence antiproliferative genes, which themselves are E2F1 targets. Thus, miRNAs and transcriptional regulators appear to cooperate in the framework of a multi-gene transcriptional and post-transcriptional feed-forward loop. Finally, we show that, similarly to p53 inactivation, overexpression of representative miRNAs promotes proliferation and delays senescence, manifesting the detrimental phenotypic consequence of perturbations in this circuit. Taken together, these findings position miRNAs as novel key players in the mammalian cellular proliferation network. PMID:19034270

  2. Heterogeneous distribution of P53 immunoreactivity in human lung adenocarcinoma correlates with MDM2 protein expression, rather than with P53 gene mutation.

    PubMed

    Koga, T; Hashimoto, S; Sugio, K; Yoshino, I; Nakagawa, K; Yonemitsu, Y; Sugimachi, K; Sueishi, K

    2001-07-20

    Although the tumor suppressor p53 protein (P53) immunoreactivity and its gene (p53) mutation were reported to be significant prognostic indicators for human lung adenocarcinomas, little is known regarding the relationship between the heterogeneous distribution of P53 and its genetic status in each tumor focus and the clinicopathological significance. To determine how P53 is heterogeneously stabilized in patients, we compared P53 expression to both the p53 allelic mutation in exon 2 approximately 9 by polymerase chain reaction-single strand conformation polymorphism using microdissected DNA fractions, and the immunohistochemical MDM2 expression. Of the 48 positive to P53 in 118 lung adenocarcinomas examined, 10 with heterogeneous P53 expression were closely examined. The higher P53 expression foci in 7 of 10 cases were less differentiated, histologically in respective cases, and were frequently associated with fibrous stroma. Two had genetic mutations in exon 7 of the p53 gene in both the high and low P53 expression foci of cancer tissue indicating no apparent correlation between heterogeneous P53 expression and the occurrence of gene mutation. Immunohistochemical expression of MDM2 was significantly lower in high P53 expression areas (p < 0.05, the mean labeling indices of high and low P53 expression areas being 4.2 +/- 5.4% and 13.6 +/- 12.2%, respectively). In addition, among all the 118 cases examined, MDM2 expression was significantly suppressed in cases of p53 gene mutation, simultaneously with P53 overexpression, as compared with cases without both the p53 mutation and expression (p < 0.001). These findings suggest that the heterogeneous stabilization of P53 in human lung adenocarcinomas could be partly due to suppressed MDM2 expression. The overexpression of non-mutated P53 may afford a protective mechanism in human lung adenocarcinomas. Copyright 2001 Wiley-Liss, Inc.

  3. p53 isoform Δ133p53 promotes efficiency of induced pluripotent stem cells and ensures genomic integrity during reprogramming.

    PubMed

    Gong, Lu; Pan, Xiao; Chen, Haide; Rao, Lingjun; Zeng, Yelin; Hang, Honghui; Peng, Jinrong; Xiao, Lei; Chen, Jun

    2016-11-22

    Human induced pluripotent stem (iPS) cells have great potential in regenerative medicine, but this depends on the integrity of their genomes. iPS cells have been found to contain a large number of de novo genetic alterations due to DNA damage response during reprogramming. Thus, to maintain the genetic stability of iPS cells is an important goal in iPS cell technology. DNA damage response can trigger tumor suppressor p53 activation, which ensures genome integrity of reprogramming cells by inducing apoptosis and senescence. p53 isoform Δ133p53 is a p53 target gene and functions to not only antagonize p53 mediated apoptosis, but also promote DNA double-strand break (DSB) repair. Here we report that Δ133p53 is induced in reprogramming. Knockdown of Δ133p53 results 2-fold decrease in reprogramming efficiency, 4-fold increase in chromosomal aberrations, whereas overexpression of Δ133p53 with 4 Yamanaka factors showes 4-fold increase in reprogamming efficiency and 2-fold decrease in chromosomal aberrations, compared to those in iPS cells induced only with 4 Yamanaka factors. Overexpression of Δ133p53 can inhibit cell apoptosis and promote DNA DSB repair foci formation during reprogramming. Our finding demonstrates that the overexpression of Δ133p53 not only enhances reprogramming efficiency, but also results better genetic quality in iPS cells.

  4. Histone deacetylase inhibitors prevent p53-dependent and p53-independent Bax-mediated neuronal apoptosis through two distinct mechanisms.

    PubMed

    Uo, Takuma; Veenstra, Timothy D; Morrison, Richard S

    2009-03-04

    Pharmacological manipulation of protein acetylation levels by histone deacetylase (HDAC) inhibitors represents a novel therapeutic strategy to treat neurodegeneration as well as cancer. However, the molecular mechanisms that determine how HDAC inhibition exerts a protective effect in neurons as opposed to a cytotoxic action in tumor cells has not been elucidated. We addressed this issue in cultured postnatal mouse cortical neurons whose p53-dependent and p53-independent intrinsic apoptotic programs require the proapoptotic multidomain protein, Bax. Despite promoting nuclear p53 accumulation, Class I/II HDAC inhibitors (HDACIs) protected neurons from p53-dependent cell death induced by camptothecin, etoposide, heterologous p53 expression or the MDM2 inhibitor, nutlin-3a. HDACIs suppressed p53-dependent PUMA expression, a critical signaling intermediate linking p53 to Bax activation, thus preventing postmitochondrial events including cleavage of caspase-9 and caspase-3. In human SH-SY5Y neuroblastoma cells, however, HDACIs were not able to prevent p53-dependent cell death. Moreover, HDACIs also prevented caspase-3 cleavage in postnatal cortical neurons treated with staurosporine, 3-nitropropionic acid and a Bcl-2 inhibitor, all of which require the presence of Bax but not p53 to promote apoptosis. Although these three toxic agents displayed a requirement for Bax, they did not promote PUMA induction. These results demonstrate that HDACIs block Bax-dependent cell death by two distinct mechanisms to prevent neuronal apoptosis, thus identifying for the first time a defined molecular target for their neuroprotective actions.

  5. Proton induces apoptosis of hypoxic tumor cells by the p53-dependent and p38/JNK MAPK signaling pathways.

    PubMed

    Lee, Kheun Byeol; Kim, Kye-Ryung; Huh, Tae-Lin; Lee, You Mie

    2008-12-01

    Tumor hypoxia is a main obstacle for radiation therapy. To investigate whether exposure to a proton beam can overcome radioresistance in hypoxic tumor cells, three kinds of cancer cells, Lewis lung carcinoma (LLC) cells, hepatoma HepG2 and Molt-4 leukemia cells, were treated with a proton beam (35 MeV, 1, 2, 5, 10 Gy) in the presence or absence of hypoxia. Cell death rates were determined 72 h after irradiation. Hypoxic cells exposed to the proton beam underwent a typical apoptotic program, showing condensed nuclei, fragmented DNA ladders, and poly-ADP-ribose polymerase (PARP) cleavage. Fluorescence-activated cell sorter analysis revealed a significant increase in Annexin-V-positive cells. Cells treated with the proton beam and hypoxia displayed increased expression of p53, p21 and Bax, but decreased levels of phospho-Rb, Bcl-2 and XIAP, as well as activated caspase-9 and -3. The proton beam with hypoxia induced cell death in wild-type HCT116 cells, but not in a p53 knockout cell line, demonstrating a requirement for p53. As reactive oxygen species (ROS) were also significantly increased, apoptosis could also be abolished by treatment with the anti-oxidant N-acetyl cysteine (NAC). P38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) were activated by the treatment, and their respective DN mutants restored the cell death induced by either proton therapy alone or with hypoxia. In conclusion, proton beam treatment did not differently regulate cancer cell apoptosis either in normoxic or hypoxic conditions via a p53-dependent mechanism and by the activation of p38/JNK MAPK pathways through ROS.

  6. Combined RAF1 protein expression and p53 mutational status provides a strong predictor of cellular radiosensitivity

    PubMed Central

    Warenius, H M; Jones, M; Gorman, T; McLeish, R; Seabra, L; Barraclough, R; Rudland, P

    2000-01-01

    The tumour suppressor gene, p53, and genes coding for positive signal transduction factors can influence transit through cell-cycle checkpoints and modulate radiosensitivity. Here we examine the effects of RAF1 protein on the rate of exit from a G2/M block induced by γ-irradiation in relation to intrinsic cellular radiosensitivity in human cell lines expressing wild-type p53 (wtp53) protein as compared to mutant p53 (mutp53) protein. Cell lines which expressed mutp53 protein were all relatively radioresistant and exhibited no relationship between RAF1 protein and cellular radiosensitivity. Cell lines expressing wtp53 protein, however, showed a strong relationship between RAF1 protein levels and the radiosensitivity parameter SF2. In addition, when post-irradiation perturbation of G2/M transit was compared using the parameter T50 (time after the peak of G2/M delay at which 50% of the cells had exited from a block induced by 2 Gy of irradiation), RAF1 was related to T50 in wtp53, but not mutp53, cell lines. Cell lines which expressed wtp53 protein and high levels of RAF1 had shorter T50s and were also more radiosensitive. These results suggest a cooperative role for wtp53 and RAF1 protein in determining cellular radiosensitivity in human cells, which involves control of the G2/M checkpoint. © 2000 Cancer Research Campaign PMID:10993658

  7. Activation of the AMP-activated protein kinase-p38 MAP kinase pathway mediates apoptosis induced by conjugated linoleic acid in p53-mutant mouse mammary tumor cells.

    PubMed

    Hsu, Yung-Chung; Meng, Xiaojing; Ou, Lihui; Ip, Margot M

    2010-04-01

    Conjugated linoleic acid (CLA) inhibits tumorigenesis and tumor growth in most model systems, an effect mediated in part by its pro-apoptotic activity. We previously showed that trans-10,cis-12 CLA induced apoptosis of p53-mutant TM4t mouse mammary tumor cells through both mitochondrial and endoplasmic reticulum stress pathways. In the current study, we investigated the role of AMP-activated protein kinase (AMPK), a key player in fatty acid metabolism, in CLA-induced apoptosis in TM4t cells. We found that t10,c12-CLA increased phosphorylation of AMPK, and that CLA-induced apoptosis was enhanced by the AMPK agonist 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and inhibited by the AMPK inhibitor compound C. The increased AMPK activity was not due to nutrient/energy depletion since ATP levels did not change in CLA-treated cells, and knockdown of the upstream kinase LKB1 did not affect its activity. Furthermore, our data do not demonstrate a role for the AMPK-modulated mTOR pathway in CLA-induced apoptosis. Although CLA decreased mTOR levels, activity was only modestly decreased. Moreover, rapamycin, which completely blocked the activity of mTORC1 and mTORC2, did not induce apoptosis, and attenuated rather than enhanced CLA-induced apoptosis. Instead, the data suggest that CLA-induced apoptosis is mediated by the AMPK-p38 MAPK-Bim pathway: CLA-induced phosphorylation of AMPK and p38 MAPK, and increased expression of Bim, occurred with a similar time course as apoptosis; phosphorylation of p38 MAPK was blocked by compound C; the increased Bim expression was blocked by p38 MAPK siRNA; CLA-induced apoptosis was attenuated by the p38 inhibitor SB-203580 and by siRNAs directed against p38 MAPK or Bim. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Establishment of a dog model for the p53 family pathway and identification of a novel isoform of p21 cyclin-dependent kinase inhibitor

    PubMed Central

    Zhang, Jin; Chen, Xiangling; Kent, Michael S.; Rodriguez, Carlos O.; Chen, Xinbin

    2009-01-01

    Spontaneous tumors in the dog offer a unique opportunity as models to study human cancer etiology and therapy. p53, the most commonly mutated gene in human cancers, is found to be altered in dog cancers. However, little is known about the role of p53 in dog tumorigenesis. Here, we found that upon exposure to DNA damage agents or Mdm2 inhibitor nutlin-3, canine p53 is accumulated and capable of inducing its target genes, MDM2 and p21. We also found that upon DNA damage, canine p53 is accumulated in the nucleus, followed by MDM2 nuclear translocation and increased 53BP1 foci formation. In addition, we found that canine p63 and p73 are up-regulated by DNA damage agents. Furthermore, colony formation assay showed that canine tumor cells are sensitive to DNA damage agents and nutlin-3 in a p53-dependent manner. Surprisingly, canine p21 is expressed as two isoforms. Thus, we generated multiple canine p21 mutants and found that aa 129 to 142 is required, whereas aa 139 is one of the key determinants, for two p21 isoform expression. Finally, we showed that although the full-length human p21 cDNA expresses one polypeptide, aa 139 appears to play a similar role as that in canine p21 for various migration patterns. Taken together, our results indicate that canine p53 family proteins have biological activities similar to human counterparts. These similarities make the dog as an excellent out-bred spontaneous tumor model and the dog can serve as a translation model from bench-top to cage-side and then to bed-side. PMID:19147538

  9. TRIM65 negatively regulates p53 through ubiquitination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Ma, Chengyuan; Zhou, Tong

    2016-04-22

    Tripartite-motif protein family member 65 (TRIM65) is an important protein involved in white matter lesion. However, the role of TRIM65 in human cancer remains less understood. Through the Cancer Genome Atlas (TCGA) gene alteration database, we found that TRIM65 is upregulated in a significant portion of non-small cell lung carcinoma (NSCLC) patients. Our cell growth assay revealed that TRIM65 overexpression promotes cell proliferation, while knockdown of TRIM65 displays opposite effect. Mechanistically, TRIM65 binds to p53, one of the most critical tumor suppressors, and serves as an E3 ligase toward p53. Consequently, TRIM65 inactivates p53 through facilitating p53 poly-ubiquitination and proteasome-mediatedmore » degradation. Notably, chemotherapeutic reagent cisplatin induction of p53 is markedly attenuated in response to ectopic expression of TRIM65. Cell growth inhibition by TRIM65 knockdown is more significant in p53 positive H460 than p53 negative H1299 cells, and knockdown of p53 in H460 cells also shows compromised cell growth inhibition by TRIM65 knockdown, indicating that p53 is required, at least in part, for TRIM65 function. Our findings demonstrate TRIM65 as a potential oncogenic protein, highly likely through p53 inactivation, and provide insight into development of novel approaches targeting TRIM65 for NSCLC treatment, and also overcoming chemotherapy resistance. - Highlights: • TRIM65 expression is elevated in NSCLC. • TRIM65 inactivates p53 through mediating p53 ubiquitination and degradation. • TRIM65 attenuates the response of NSCLC cells to cisplatin.« less

  10. Three-dimensional Structure and Enzymatic Function of Proapoptotic Human p53-inducible Quinone Oxidoreductase PIG3*

    PubMed Central

    Porté, Sergio; Valencia, Eva; Yakovtseva, Evgenia A.; Borràs, Emma; Shafqat, Naeem; Debreczeny, Judit É.; Pike, Ashley C. W.; Oppermann, Udo; Farrés, Jaume; Fita, Ignacio; Parés, Xavier

    2009-01-01

    Tumor suppressor p53 regulates the expression of p53-induced genes (PIG) that trigger apoptosis. PIG3 or TP53I3 is the only known member of the medium chain dehydrogenase/reductase superfamily induced by p53 and is used as a proapoptotic marker. Although the participation of PIG3 in the apoptotic pathway is proven, the protein and its mechanism of action were never characterized. We analyzed human PIG3 enzymatic function and found NADPH-dependent reductase activity with ortho-quinones, which is consistent with the classification of PIG3 in the quinone oxidoreductase family. However, the activity is much lower than that of ζ-crystallin, a better known quinone oxidoreductase. In addition, we report the crystallographic structure of PIG3, which allowed the identification of substrate- and cofactor-binding sites, with residues fully conserved from bacteria to human. Tyr-59 in ζ-crystallin (Tyr-51 in PIG3) was suggested to participate in the catalysis of quinone reduction. However, kinetics of Tyr/Phe and Tyr/Ala mutants of both enzymes demonstrated that the active site Tyr is not catalytic but may participate in substrate binding, consistent with a mechanism based on propinquity effects. It has been proposed that PIG3 contribution to apoptosis would be through oxidative stress generation. We found that in vitro activity and in vivo overexpression of PIG3 accumulate reactive oxygen species. Accordingly, an inactive PIG3 mutant (S151V) did not produce reactive oxygen species in cells, indicating that enzymatically active protein is necessary for this function. This supports that PIG3 action is through oxidative stress produced by its enzymatic activity and provides essential knowledge for eventual control of apoptosis. PMID:19349281

  11. Somatic and germline TP53 alterations in second malignant neoplasms from pediatric cancer survivors

    PubMed Central

    Sherborne, Amy L.; Lavergne, Vincent; Yu, Katharine; Lee, Leah; Davidson, Philip R.; Mazor, Tali; Smirnoff, Ivan; Horvai, Andrew; Loh, Mignon; DuBois, Steven G.; Goldsby, Robert E.; Neglia, Joseph; Hammond, Sue; Robison, Leslie L.; Wustrack, Rosanna; Costello, Joseph; Nakamura, Alice O.; Shannon, Kevin; Bhatia, Smita; Nakamura, Jean L.

    2016-01-01

    Purpose Second malignant neoplasms (SMNs) are severe late complications that occur in pediatric cancer survivors exposed to radiotherapy and other genotoxic treatments. To characterize the mutational landscape of treatment-induced sarcomas and to identify candidate SMN-predisposing variants we analyzed germline and SMN samples from pediatric cancer survivors. Experimental Design We performed whole exome sequencing (WES) and RNA sequencing on radiation-induced sarcomas arising from two pediatric cancer survivors. To assess the frequency of germline TP53 variants in SMNs, Sanger sequencing was performed to analyze germline TP53 in thirty-seven pediatric cancer survivors from the Childhood Cancer Survivor Study (CCSS) without history of a familial cancer predisposition syndrome but known to have developed SMNs. Results WES revealed TP53 mutations involving p53’s DNA binding domain in both index cases, one of which was also present in the germline. The germline and somatic TP53 mutant variants were enriched in the transcriptomes for both sarcomas. Analysis of TP53 coding exons in germline specimens from the CCSS survivor cohort identified a G215C variant encoding an R72P amino acid substitution in six patients and a synonymous single nucleotide polymorphism A639G in four others, resulting in ten out of 37 evaluable patients (27%) harboring a germline TP53 variant. Conclusions Currently, germline TP53 is not routinely assessed in pediatric cancer patients. These data support the concept that identifying germline TP53 variants at the time a primary cancer is diagnosed may identify patients at high risk for SMN development, who could benefit from modified therapeutic strategies and/or intensive post-treatment monitoring. PMID:27683180

  12. The maternal genes Ci-p53/p73-a and Ci-p53/p73-b regulate zygotic ZicL expression and notochord differentiation in Ciona intestinalis embryos.

    PubMed

    Noda, Takeshi

    2011-12-01

    I isolated a Ciona intestinalis homolog of p53, Ci-p53/p73-a, in a microarray screen of rapidly degraded maternal mRNA by comparing the transcriptomes of unfertilized eggs and 32-cell stage embryos. Higher expression of the gene in eggs and lower expression in later embryonic stages were confirmed by whole-mount in situ hybridization (WISH) and quantitative reverse transcription-PCR (qRT-PCR); expression was ubiquitous in eggs and early embryos. Knockdown of Ci-p53/p73-a by injection of antisense morpholino oligonucleotides (MOs) severely perturbed gastrulation cell movements and expression of notochord marker genes. A key regulator of notochord differentiation in Ciona embryos is Brachyury (Ci-Bra), which is directly activated by a zic-like gene (Ci-ZicL). The expression of Ci-ZicL and Ci-Bra in A-line notochord precursors was downregulated in Ci-p53/p73-a knockdown embryos. Maternal expression of Ci-p53/p73-b, a homolog of Ci-p53/p73-a, was also detected. In Ci-p53/p73-b knockdown embryos, gastrulation cell movements, expression of Ci-ZicL and Ci-Bra in A-line notochord precursors, and expression of notochord marker gene at later stages were perturbed. The upstream region of Ci-ZicL contains putative p53-binding sites. Cis-regulatory analysis of Ci-ZicL showed that these sites are involved in expression of Ci-ZicL in A-line notochord precursors at the 32-cell and early gastrula stages. These results suggest that p53 genes are maternal factors that play a crucial role in A-line notochord differentiation in C. intestinalis embryos by regulating Ci-ZicL expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Two co-existing germline mutations P53 V157D and PMS2 R20Q promote tumorigenesis in a familial cancer syndrome

    PubMed Central

    Wang, Zuoyun; Sun, Yihua; Gao, Bin; Lu, Yi; Fang, Rong; Gao, Yijun; Xiao, Tian; Liu, Xin-Yuan; Pao, William; Zhao, Yun; Chen, Haiquan; Ji, Hongbin

    2014-01-01

    Germline mutations are responsible for familial cancer syndromes which account for approximately 5–10% of all types of cancers. These mutations mainly occur at tumor suppressor genes or genome stability genes, such as DNA repair genes. Here we have identified a cancer predisposition family, in which eight members were inflicted with a wide spectrum of cancer including one diagnosed with lung cancer at 22 years old. Sequencing analysis of tumor samples as well as histologically normal specimens identified two germline mutations co-existing in the familial cancer syndrome, the mutation of tumor suppressor gene P53 V157D and mismatch repair gene PMS2 R20Q. We further demonstrate that P53 V157D and/or PMS2 R20Q mutant promotes lung cancer cell proliferation. These two mutants are capable of promoting colony formation in soft agar as well as tumor formation in transgenic drosophila system. Collectively, these data have uncovered the important role of co-existing germline P53 and PMS2 mutations in the familial cancer syndrome development. PMID:23981578

  14. Increased sensitivity of p53-deficient cells to anticancer agents due to loss of Pms2

    PubMed Central

    Fedier, A; Ruefenacht, U B; Schwarz, V A; Haller, U; Fink, D

    2002-01-01

    A large fraction of human tumours carries mutations in the p53 gene. p53 plays a central role in controlling cell cycle checkpoint regulation, DNA repair, transcription, and apoptosis upon genotoxic stress. Lack of p53 function impairs these cellular processes, and this may be the basis of resistance to chemotherapeutic regimens. By virtue of the involvement of DNA mismatch repair in modulating cytotoxic pathways in response to DNA damaging agents, we investigated the effects of loss of Pms2 on the sensitivity to a panel of widely used anticancer agents in E1A/Ha-Ras-transformed p53-null mouse fibroblasts either proficient or deficient in Pms2. We report that lack of the Pms2 gene is associated with an increased sensitivity, ranging from 2–6-fold, to some types of anticancer agents including the topoisomerase II poisons doxorubicin, etoposide and mitoxantrone, the platinum compounds cisplatin and oxaliplatin, the taxanes docetaxel and paclitaxel, and the antimetabolite gemcitabine. In contrast, no change in sensitivity was found after treatment with 5-fluorouracil. Cell cycle analysis revealed that both, Pms2-deficient and -proficient cells, retain the ability to arrest at the G2/M upon cisplatin treatment. The data indicate that the concomitant loss of Pms2 function chemosensitises p53-deficient cells to some types of anticancer agents, that Pms2 positively modulates cell survival by mechanisms independent of p53, and that increased cytotoxicity is paralleled by increased apoptosis. Tumour-targeted functional inhibition of Pms2 may be a valuable strategy for increasing the efficacy of anticancer agents in the treatment of p53-mutant cancers. British Journal of Cancer (2002) 87, 1027–1033. doi:10.1038/sj.bjc.6600599 www.bjcancer.com © 2002 Cancer Research UK PMID:12434296

  15. Initiation of autoimmunity to the p53 tumor suppressor protein by complexes of p53 and SV40 large T antigen

    PubMed Central

    1994-01-01

    Antinuclear antibodies (ANAs) reactive with a limited spectrum of nuclear antigens are characteristic of systemic lupus erythematosus (SLE) and other collagen vascular diseases, and are also associated with certain viral infections. The factors that initiate ANA production and determine ANA specificity are not well understood. In this study, high titer ANAs specific for the p53 tumor suppressor protein were induced in mice immunized with purified complexes of murine p53 and the Simian virus 40 large T antigen (SVT), but not in mice immunized with either protein separately. The autoantibodies to p53 in these mice were primarily of the IgG1 isotype, were not cross-reactive with SVT, and were produced at titers up to 1:25,000, without the appearance of other autoantibodies. The high levels of autoantibodies to p53 in mice immunized with p53/SVT complexes were transient, but low levels of the autoantibodies persisted. The latter may have been maintained by self antigen, since the anti-p53, but not the SVT, response in these mice could be boosted by immunizing with murine p53. Thus, once autoimmunity to p53 was established by immunizing with p53/SVT complexes, it could be maintained without a requirement for SVT. These data may be explained in at least two ways. First, altered antigen processing resulting from the formation of p53/SVT complexes might activate autoreactive T helper cells specific for cryptic epitopes of murine p53, driving anti-p53 autoantibody production. Alternatively, SVT- responsive T cells may provide intermolecular-intrastructural help to B cells specific for murine p53. In a second stage, these activated B cells might themselves process self p53, generating p53-responsive autoreactive T cells. The induction of autoantibodies during the course of an immune response directed against this naturally occurring complex of self and nonself antigens may be relevant to the generation of specific autoantibodies in viral infections, and may also have

  16. Transactivation of bad by vorinostat-induced acetylated p53 enhances doxorubicin-induced cytotoxicity in cervical cancer cells.

    PubMed

    Lee, Sook-Jeong; Hwang, Sung-Ook; Noh, Eun Joo; Kim, Dong-Uk; Nam, Miyoung; Kim, Jong Hyeok; Nam, Joo Hyun; Hoe, Kwang-Lae

    2014-02-14

    Vorinostat (VOR) has been reported to enhance the cytotoxic effects of doxorubicin (DOX) with fewer side effects because of the lower DOX dosage in breast cancer cells. In this study, we investigated the novel mechanism underlying the synergistic cytotoxic effects of VOR and DOX co-treatment in cervical cancer cells HeLa, CaSki and SiHa cells. Co-treatment with VOR and DOX at marginal doses led to the induction of apoptosis through caspase-3 activation, poly (ADP-ribose) polymerase cleavage and DNA micronuclei. Notably, the synergistic growth inhibition induced by the co-treatment was attributed to the upregulation of the pro-apoptotic protein Bad, as the silencing of Bad expression using small interfering RNA (siRNA) abolished the phenomenon. As siRNA against p53 did not result in an increase in acetylated p53 and the consequent upregulation of Bad, the observed Bad upregulation was mediated by acetylated p53. Moreover, a chromatin immunoprecipitation analysis showed that the co-treatment of HeLa cells with VOR and DOX increased the recruitment of acetylated p53 to the bad promoter, with consequent bad transactivation. Conversely, C33A cervical cancer cells containing mutant p53 co-treated with VOR and DOX did not exhibit Bad upregulation, acetylated p53 induction or consequent synergistic growth inhibition. Together, the synergistic growth inhibition of cervical cancer cell lines induced by co-treatment with VOR and DOX can be attributed to the upregulation of Bad, which is induced by acetylated p53. These results show for the first time that the acetylation of p53, rather than histones, is a mechanism for the synergistic growth inhibition induced by VOR and DOX co-treatments.

  17. Loss of p53 enhances the function of the endoplasmic reticulum through activation of the IRE1α/XBP1 pathway.

    PubMed

    Namba, Takushi; Chu, Kiki; Kodama, Rika; Byun, Sanguine; Yoon, Kyoung Wan; Hiraki, Masatsugu; Mandinova, Anna; Lee, Sam W

    2015-08-21

    Altered regulation of ER stress response has been implicated in a variety of human diseases, such as cancer and metabolic diseases. Excessive ER function contributes to malignant phenotypes, such as chemoresistance and metastasis. Here we report that the tumor suppressor p53 regulates ER function in response to stress. We found that loss of p53 function activates the IRE1α/XBP1 pathway to enhance protein folding and secretion through upregulation of IRE1α and subsequent activation of its target XBP1. We also show that wild-type p53 interacts with synoviolin (SYVN1)/HRD1/DER3, a transmembrane E3 ubiquitin ligase localized to ER during ER stress and removes unfolded proteins by reversing transport to the cytosol from the ER, and its interaction stimulates IRE1α degradation. Moreover, IRE1α inhibitor suppressed protein secretion, induced cell death in p53-deficient cells, and strongly suppressed the formation of tumors by p53-deficient human tumor cells in vivo compared with those that expressed wild-type p53. Therefore, our data imply that the IRE1α/XBP1 pathway serves as a target for therapy of chemoresistant tumors that express mutant p53.

  18. Loss of p53 enhances the function of the endoplasmic reticulum through activation of the IRE1α/XBP1 pathway

    PubMed Central

    Kodama, Rika; Byun, Sanguine; Yoon, Kyoung Wan; Hiraki, Masatsugu; Mandinova, Anna; Lee, Sam W.

    2015-01-01

    Altered regulation of ER stress response has been implicated in a variety of human diseases, such as cancer and metabolic diseases. Excessive ER function contributes to malignant phenotypes, such as chemoresistance and metastasis. Here we report that the tumor suppressor p53 regulates ER function in response to stress. We found that loss of p53 function activates the IRE1α/XBP1 pathway to enhance protein folding and secretion through upregulation of IRE1α and subsequent activation of its target XBP1. We also show that wild-type p53 interacts with synoviolin (SYVN1)/HRD1/DER3, a transmembrane E3 ubiquitin ligase localized to ER during ER stress and removes unfolded proteins by reversing transport to the cytosol from the ER, and its interaction stimulates IRE1α degradation. Moreover, IRE1α inhibitor suppressed protein secretion, induced cell death in p53-deficient cells, and strongly suppressed the formation of tumors by p53-deficient human tumor cells in vivo compared with those that expressed wild-type p53. Therefore, our data imply that the IRE1α/XBP1 pathway serves as a target for therapy of chemoresistant tumors that express mutant p53. PMID:26254280

  19. System-based strategies for p53 recovery.

    PubMed

    Azam, Muhammad Rizwan; Fazal, Sahar; Ullah, Mukhtar; Bhatti, Aamer I

    2018-06-01

    The authors have proposed a systems theory-based novel drug design approach for the p53 pathway. The pathway is taken as a dynamic system represented by ordinary differential equations-based mathematical model. Using control engineering practices, the system analysis and subsequent controller design is performed for the re-activation of wild-type p53. p53 revival is discussed for both modes of operation, i.e. the sustained and oscillatory. To define the problem in control system paradigm, modification in the existing mathematical model is performed to incorporate the effect of Nutlin. Attractor point analysis is carried out to select the suitable domain of attraction. A two-loop negative feedback control strategy is devised to drag the system trajectories to the attractor point and to regulate cellular concentration of Nutlin, respectively. An integrated framework is constituted to incorporate the pharmacokinetic effects of Nutlin in the cancerous cells. Bifurcation analysis is also performed on the p53 model to see the conditions for p53 oscillation.

  20. N-Myc down regulation induced differentiation, early cell cycle exit, and apoptosis in human malignant neuroblastoma cells having wild type or mutant p53.

    PubMed

    Janardhanan, Rajiv; Banik, Naren L; Ray, Swapan K

    2009-11-01

    Neuroblastomas, which mostly occur in children, are aggressive metastatic tumors of the sympathetic nervous system. The failure of the previous therapeutic regimens to target multiple components of N-Myc pathway resulted in poor prognosis. The present study investigated the efficacy of the combination of N-(4-hydroxyphenyl) retinamide (4-HPR, 0.5 microM) and genistein (GST, 25 microM) to control the growth of human neuroblastoma cells (SH-SY5Y and SK-N-BE2) harboring divergent molecular attributes. Combination of 4-HPR and GST down regulated N-Myc, Notch-1, and Id2 to induce neuronal differentiation. Transition to neuronal phenotype was accompanied by increase in expression of e-cadherin. Induction of neuronal differentiation was associated with decreased expression of hTERT, PCNA, survivin, and fibronectin. This is the first report that combination of 4-HPR and GST mediated reactivation of multiple tumor suppressors (p53, p21, Rb, and PTEN) for early cell cycle exit (due to G1/S phase arrest) in neuroblastoma cells. Reactivation of tumor suppressor(s) repressed N-Myc driven growth factor mediated angiogenic and invasive pathways (VEGF, b-FGF, MMP-2, and MMP-9) in neuroblastoma. Repression of angiogenic factors led to the blockade of components of mitogenic pathways [phospho-Akt (Thr 308), p65 NF-kappaB, and p42/44 Erk 1/2]. Taken together, the combination of 4-HPR and GST effectively blocked survival, mitogenic, and angiogenic pathways and activated proteases for apoptosis in neuroblastoma cells. These results suggested that combination of 4-HPR and GST could be effective for controlling the growth of heterogeneous human neuroblastoma cell populations.

  1. Decreased Virus Population Diversity in p53-Null Mice Infected with Weakly Oncogenic Abelson Virus

    PubMed Central

    Marchlik, Erica; Kalman, Richard; Rosenberg, Naomi

    2005-01-01

    The Abelson murine leukemia virus (Ab-MLV), like other retroviruses that contain v-onc genes, arose following a recombination event between a replicating retrovirus and a cellular oncogene. Although experimentally validated models have been presented to address the mechanism by which oncogene capture occurs, very little is known about the events that influence emerging viruses following the recombination event that incorporates the cellular sequences. One feature that may play a role is the genetic makeup of the host in which the virus arises; a number of host genes, including oncogenes and tumor suppressor genes, have been shown to affect the pathogenesis of many murine leukemia viruses. To examine how a host gene might affect an emerging v-onc gene-containing retrovirus, we studied the weakly oncogenic Ab-MLV-P90A strain, a mutant that generates highly oncogenic variants in vivo, and compared the viral populations in normal mice and mice lacking the p53 tumor suppressor gene. While variants arose in both p53+/+ and p53−/− tumors, the samples from the wild-type animals contained a more diverse virus population. Differences in virus population diversity were not observed when wild-type and null animals were infected with a highly oncogenic wild-type strain of Ab-MLV. These results indicate that p53, and presumably other host genes, affects the selective forces that operate on virus populations in vivo and likely influences the evolution of oncogenic retroviruses such as Ab-MLV. PMID:16140739

  2. Aggregation-primed molten globule conformers of the p53 core domain provide potential tools for studying p53C aggregation in cancer.

    PubMed

    Pedrote, Murilo M; de Oliveira, Guilherme A P; Felix, Adriani L; Mota, Michelle F; Marques, Mayra de A; Soares, Iaci N; Iqbal, Anwar; Norberto, Douglas R; Gomes, Andre M O; Gratton, Enrico; Cino, Elio A; Silva, Jerson L

    2018-05-31

    The functionality of the tumor suppressor p53 is altered in more than 50% of human cancers, and many individuals with cancer exhibit amyloid-like buildups of aggregated p53. An understanding of what triggers the pathogenic amyloid conversion of p53 is required for the further development of cancer therapies. Here, perturbation of the p53 core domain (p53C) with sub-denaturing concentrations of guanidine hydrochloride and high hydrostatic pressure revealed native-like molten globule (MG) states, a subset of which were highly prone to amyloidogenic aggregation. We found that MG conformers of p53C, likely representing population-weighted averages of multiple states, have different volumetric properties, as determined by pressure perturbation and size-exclusion chromatography. We also found that they bind the fluorescent dye 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) and have a native-like tertiary structure that occludes the single Trp residue in p53. Fluorescence experiments revealed conformational changes of the single Trp and Tyr residues before p53 unfolding and the presence of MG conformers, some of which were highly prone to aggregation. P53C exhibited marginal unfolding cooperativity, which could be modulated from unfolding to aggregation pathways with chemical or physical forces. We conclude that trapping amyloid precursor states in solution is a promising approach for understanding p53 aggregation in cancer. Our findings support the use of single-Trp fluorescence as a probe for evaluating p53 stability, effects of mutations, and the efficacy of therapeutics designed to stabilize p53. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  3. p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase/Akt/GSK3 signaling.

    PubMed

    Nayak, G; Cooper, G M

    2012-10-11

    The phosphatidylinositol (PI) 3-kinase/Akt signaling pathway has a prominent role in cell survival and proliferation, in part, by regulating gene expression at the transcriptional level. Previous work using global expression profiling identified FOXOs and the E-box-binding transcription factors MITF and USF1 as key targets of PI 3-kinase signaling that lead to the induction of proapoptotic and cell cycle arrest genes in response to inhibition of PI 3-kinase. In this study, we investigated the role of p53 downstream of PI 3-kinase signaling by analyzing the effects of inhibition of PI 3-kinase in Rat-1 cells, which have wild-type p53, compared with Rat-1 cells expressing a dominant-negative p53 mutant. Expression of dominant-negative p53 conferred partial resistance to apoptosis induced by inhibition of PI 3-kinase. Global gene expression profiling combined with computational and experimental analysis of transcription factor binding sites demonstrated that p53, along with FOXO, MITF and USF1, contributed to gene induction in response to PI 3-kinase inhibition. Activation of p53 was mediated by phosphorylation of the histone acetyltransferase Tip60 by glycogen synthase kinase (GSK) 3, leading to activation of p53 by acetylation. Many of the genes targeted by p53 were also targeted by FOXO and E-box-binding transcription factors, indicating that p53 functions coordinately with these factors to regulate gene expression downstream of PI 3-kinase/Akt/GSK3 signaling.

  4. A homozygous p53 R282W mutant human embryonic stem cell line generated using TALEN-mediated precise gene editing.

    PubMed

    Zhou, Ruoji; Xu, An; Wang, Donghui; Zhu, Dandan; Mata, Helen; Huo, Zijun; Tu, Jian; Liu, Mo; Mohamed, Alaa M T; Jewell, Brittany E; Gingold, Julian; Xia, Weiya; Rao, Pulivarthi H; Hung, Mien-Chie; Zhao, Ruiying; Lee, Dung-Fang

    2018-03-01

    The tumor suppressor gene TP53 is the most frequently mutated gene in human cancers. Many hot-spot mutations of TP53 confer novel functions not found in wild-type p53 and contribute to tumor development and progression. We report on the generation of a H1 human embryonic stem cell line carrying a homozygous TP53 R282W mutation using TALEN-mediated genome editing. The generated cell line demonstrates normal karyotype, maintains a pluripotent state, and is capable of generating a teratoma in vivo containing tissues from all three germ layers. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. The nucleolus directly regulates p53 export and degradation.

    PubMed

    Boyd, Mark T; Vlatkovic, Nikolina; Rubbi, Carlos P

    2011-09-05

    The correlation between stress-induced nucleolar disruption and abrogation of p53 degradation is evident after a wide variety of cellular stresses. This link may be caused by steps in p53 regulation occurring in nucleoli, as suggested by some biochemical evidence. Alternatively, nucleolar disruption also causes redistribution of nucleolar proteins, potentially altering their interactions with p53 and/or MDM2. This raises the fundamental question of whether the nucleolus controls p53 directly, i.e., as a site where p53 regulatory processes occur, or indirectly, i.e., by determining the cellular localization of p53/MDM2-interacting factors. In this work, transport experiments based on heterokaryons, photobleaching, and micronucleation demonstrate that p53 regulatory events are directly regulated by nucleoli and are dependent on intact nucleolar structure and function. Subcellular fractionation and nucleolar isolation revealed a distribution of ubiquitylated p53 that supports these findings. In addition, our results indicate that p53 is exported by two pathways: one stress sensitive and one stress insensitive, the latter being regulated by activities present in the nucleolus.

  6. Comparative study of the mutant prevention concentrations of moxifloxacin, levofloxacin, and gemifloxacin against pneumococci.

    PubMed

    Credito, Kim; Kosowska-Shick, Klaudia; McGhee, Pamela; Pankuch, Glenn A; Appelbaum, Peter C

    2010-02-01

    We tested the propensity of three quinolones to select for resistant Streptococcus pneumoniae mutants by determining the mutant prevention concentration (MPC) against 100 clinical strains, some of which harbored mutations in type II topoisomerases. Compared with levofloxacin and gemifloxacin, moxifloxacin had the lowest number of strains with MPCs above the susceptibility breakpoint (P<0.001), thus representing a lower selective pressure for proliferation of resistant mutants. Only moxifloxacin gave a 50% MPC (MPC50) value (1 microg/ml) within the susceptible range.

  7. Immunohistochemical analysis of P53 protein in odontogenic cysts

    PubMed Central

    Gaballah, Essam Taher M.A.; Tawfik, Mohamed A.

    2010-01-01

    The p53 is a well-known tumor suppressor gene, the mutations of which are closely related to the decreased differentiation of cells. Findings of studies on immunohistochemical P53 expression in odontogenic cysts are controversial. The present study was carried-out to investigate the immunohistochemical expression of P53 protein in odontogenic cysts. Thirty paraffin blocks of diagnosed odontogenic cysts were processed to determine the immunohistochemical expression of P53 protein. Nine of the 11 odontogenic keratocysts (81.8%) expressed P53, one of three dentigerous cyst cases expressed P53, while none of the 16 radicular cysts expressed P53 protein. The findings of the present work supported the reclassification of OKC as keratocystic odontogenic tumor. PMID:23960493

  8. The Role of JMY in p53 Regulation.

    PubMed

    Adighibe, Omanma; Pezzella, Francesco

    2018-05-31

    Following the event of DNA damage, the level of tumour suppressor protein p53 increases inducing either cell cycle arrest or apoptosis. Junctional Mediating and Regulating Y protein (JMY) is a transcription co-factor involved in p53 regulation. In event of DNA damage, JMY levels also upregulate in the nucleus where JMY forms a co-activator complex with p300/CREB-binding protein (p300/CBP), Apoptosis-stimulating protein of p53 (ASPP) and Stress responsive activator of p53 (Strap). This co-activator complex then binds to and increases the ability of p53 to induce transcription of proteins triggering apoptosis but not cell cycle arrest. This then suggests that the increase of JMY levels due to DNA damage putatively "directs" p53 activity toward triggering apoptosis. JMY expression is also linked to increased cell motility as it: (1) downregulates the expression of adhesion molecules of the Cadherin family and (2) induces actin nucleation, making cells less adhesive and more mobile, favouring metastasis. All these characteristics taken together imply that JMY possesses both tumour suppressive and tumour metastasis promoting capabilities.

  9. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf–Mdm2–p53 and RP–Mdm2–p53 pathways

    PubMed Central

    Meng, X; Carlson, NR; Dong, J; Zhang, Y

    2016-01-01

    The multifaceted oncogene c-Myc plays important roles in the development and progression of human cancer. Recent in vitro and in vivo studies have shown that the p19Arf–Mdm2–p53 and the ribosomal protein (RP)–Mdm2–p53 pathways are both essential in preventing oncogenic c-Myc-induced tumorigenesis. Disruption of each pathway individually by p19Arf deletion or by Mdm2C305F mutation, which disrupts RP-Mdm2 binding, accelerates Eμ-myc transgene-induced pre-B/B-cell lymphoma in mice at seemingly similar paces with median survival around 10 and 11 weeks, respectively, compared to 20 weeks for Eμ-myc transgenic mice. Because p19Arf can inhibit ribosomal biogenesis through its interaction with nucleophosmin (NPM/B23), RNA helicase DDX5 and RNA polymerase I transcription termination factor (TTF-I), it has been speculated that the p19Arf–Mdm2–p53 and the RP–Mdm2–p53 pathways might be a single p19Arf–RP–Mdm2–p53 pathway, in which p19Arf activates p53 by inhibiting RP biosynthesis; thus, p19Arf deletion or Mdm2C305F mutation would result in similar consequences. Here, we generated mice with concurrent p19Arf deletion and Mdm2C305F mutation and investigated the compound mice for tumorigenesis in the absence and the presence of oncogenic c-Myc overexpression. In the absence of Eμ-myc transgene, the Mdm2C305F mutation did not elicit spontaneous tumors in mice, nor did it accelerate spontaneous tumors in mice with p19Arf deletion. In the presence of Eμ-myc transgene, however, Mdm2C305F mutation significantly accelerated p19Arf deletion-induced lymphomagenesis and promoted rapid metastasis. We found that when p19Arf–Mdm2–p53 and RP–Mdm2–p53 pathways are independently disrupted, oncogenic c-Myc-induced p53 stabilization and activation is only partially attenuated. When both pathways are concurrently disrupted, however, c-Myc-induced p53 stabilization and activation are essentially obliterated. Thus, the p19Arf–Mdm2–p53 and the RP–Mdm2–p53

  10. Identification and Characterization of Four Azole-Resistant erg3 Mutants of Candida albicans▿

    PubMed Central

    Martel, Claire M.; Parker, Josie E.; Bader, Oliver; Weig, Michael; Gross, Uwe; Warrilow, Andrew G. S.; Rolley, Nicola; Kelly, Diane E.; Kelly, Steven L.

    2010-01-01

    Sterol analysis identified four Candida albicans erg3 mutants in which ergosta 7,22-dienol, indicative of perturbations in sterol Δ5,6-desaturase (Erg3p) activity, comprised >5% of the total sterol fraction. The erg3 mutants (CA12, CA488, CA490, and CA1008) were all resistant to fluconazole, voriconazole, itraconazole, ketoconazole, and clotrimazole under standard CLSI assay conditions (MIC values, ≥256, 16, 16, 8, and 1 μg ml−1, respectively). Importantly, CA12 and CA1008 retained an azole-resistant phenotype even when assayed in the presence of FK506, a multidrug efflux inhibitor. Conversely, CA488, CA490, and three comparator isolates (CA6, CA14, and CA177, in which ergosterol comprised >80% of the total sterol fraction and ergosta 7,22-dienol was undetectable) all displayed azole-sensitive phenotypes under efflux-inhibited assay conditions. Owing to their ergosterol content, CA6, CA14, and CA177 were highly sensitive to amphotericin B (MIC values, <0.25 μg ml−1); CA1008, in which ergosterol comprised <2% of the total sterol fraction, was less sensitive (MIC, 1 μg ml−1). CA1008 harbored multiple amino acid substitutions in Erg3p but only a single conserved polymorphism (E266D) in sterol 14α-demethylase (Erg11p). CA12 harbored one substitution (W332R) in Erg3p and no residue changes in Erg11p. CA488 and CA490 were found to harbor multiple residue changes in both Erg3p and Erg11p. The results suggest that missense mutations in ERG3 might arise in C. albicans more frequently than currently supposed and that the clinical significance of erg3 mutants, including those in which additional mechanisms also contribute to resistance, should not be discounted. PMID:20733039

  11. Functional consequences of inducible genetic elements from the p53 SOS response in a mammalian organ system.

    PubMed

    Guthrie, O'neil W

    2017-10-01

    In response to DNA damage from ultraviolet (UV) radiation, bacteria deploy the SOS response in order to limit cell death. This bacterial SOS response is characterized by an increase in the recA gene that transactivates expression of multiple DNA repair genes. The current series of experiments demonstrate that a mammalian organ system (the cochlea) that is not evolutionarily conditioned to UV radiation can elicit SOS responses that are reminiscent of that of bacteria. This mammalian SOS response is characterized by an increase in the p53 gene with activation of multiple DNA repair genes that harbor p53 response elements in their promoters. Furthermore, the experimental results provide support for the notion of a convergent trigger paradox, where independent SOS triggers facilitate disparate physiologic sequelae (loss vs. recovery of function). Therefore, it is proposed that the mammalian SOS response is multifunctional and manipulation of this endogenous response could be exploited in future biomedical interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Involvement of stromal p53 in tumor-stroma interactions

    PubMed Central

    Bar, Jair; Moskovits, Neta; Oren, Moshe

    2009-01-01

    p53 is a major tumor-suppressor gene, inactivated by mutations in about half of all human cancer cases, and probably incapacitated by other means in most other cases. Most research regarding the role of p53 in cancer has focused on its ability to elicit apoptosis or growth arrest of cells that are prone to become malignant owing to DNA damage or oncogene activation, i.e. cell-autonomous activities of p53. However, p53 activation within a cell can also exert a variety of effects upon neighboring cells, through secreted factors and paracrine and endocrine mechanisms. Of note, p53 within cancer stromal cells can inhibit tumor growth and malignant progression. Cancer cells that evolve under this inhibitory influence acquire mechanisms to silence stromal p53, either by direct inhibition of p53 within stromal cells, or through pressure for selection of stromal cells with compromised p53 function. Hence, activation of stromal p53 by chemotherapy or radiotherapy might be part of the mechanisms by which these treatments cause cancer regression. However, in certain circumstances, activation of stromal p53 by cytotoxic anti-cancer agents might actually promote treatment resistance, probably through stromal p53-mediated growth arrest of the cancer cells or through protection of the tumor vasculature. Better understanding of the underlying molecular mechanisms is thus required. Hopefully, this will allow their manipulation towards better inhibition of cancer initiation, progression and metastasis. PMID:19914385

  13. N-methylpurine DNA glycosylase inhibits p53-mediated cell cycle arrest and coordinates with p53 to determine sensitivity to alkylating agents.

    PubMed

    Song, Shanshan; Xing, Guichun; Yuan, Lin; Wang, Jian; Wang, Shan; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang

    2012-08-01

    Alkylating agents induce genome-wide base damage, which is repaired mainly by N-methylpurine DNA glycosylase (MPG). An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks. However, the determinant of drug sensitivity or insensitivity still remains unclear. Here, we report that the p53 status coordinates with MPG to play a pivotal role in such process. MPG expression is positive in breast, lung and colon cancers (38.7%, 43.4% and 25.3%, respectively) but negative in all adjacent normal tissues. MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells. The overexpression of MPG reduced, whereas depletion of MPG increased, the expression levels of pro-arrest gene downstream of p53 including p21, 14-3-3σ and Gadd45 but not proapoptotic ones. The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53. Upon DNA alkylation stress, in p53 wild-type tumor cells, p53 dissociated from MPG and induced cell growth arrest. Then, AP sites were repaired efficiently, which led to insensitivity to alkylating agents. By contrast, in p53-mutated cells, the AP sites were repaired with low efficacy. To our knowledge, this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53, and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy.

  14. P53 Suppression of Homologous Recombination and Tumorigenesis

    DTIC Science & Technology

    2013-01-01

    absence or mutation of p53 and the mechanism of p53 control of HR in an in vivo system. p53 is often a targeted therapy and further insight into the...function of p53 in DNA repair pathways can be vital to finding novel points of targeted therapy . Our data will add insight to the important paradigm...cancers. Cisplatin works by the aquation of a chloride ligand that results in the formation of a DNA adduct, usually crosslinking the DNA, which impedes

  15. Somatic and Germline TP53 Alterations in Second Malignant Neoplasms from Pediatric Cancer Survivors.

    PubMed

    Sherborne, Amy L; Lavergne, Vincent; Yu, Katharine; Lee, Leah; Davidson, Philip R; Mazor, Tali; Smirnoff, Ivan V; Horvai, Andrew E; Loh, Mignon; DuBois, Steven G; Goldsby, Robert E; Neglia, Joseph P; Hammond, Sue; Robison, Leslie L; Wustrack, Rosanna; Costello, Joseph F; Nakamura, Alice O; Shannon, Kevin M; Bhatia, Smita; Nakamura, Jean L

    2017-04-01

    Purpose: Second malignant neoplasms (SMNs) are severe late complications that occur in pediatric cancer survivors exposed to radiotherapy and other genotoxic treatments. To characterize the mutational landscape of treatment-induced sarcomas and to identify candidate SMN-predisposing variants, we analyzed germline and SMN samples from pediatric cancer survivors. Experimental Design: We performed whole-exome sequencing (WES) and RNA sequencing on radiation-induced sarcomas arising from two pediatric cancer survivors. To assess the frequency of germline TP53 variants in SMNs, Sanger sequencing was performed to analyze germline TP53 in 37 pediatric cancer survivors from the Childhood Cancer Survivor Study (CCSS) without any history of a familial cancer predisposition syndrome but known to have developed SMNs. Results: WES revealed TP53 mutations involving p53's DNA-binding domain in both index cases, one of which was also present in the germline. The germline and somatic TP53- mutant variants were enriched in the transcriptomes for both sarcomas. Analysis of TP53- coding exons in germline specimens from the CCSS survivor cohort identified a G215C variant encoding an R72P amino acid substitution in 6 patients and a synonymous SNP A639G in 4 others, resulting in 10 of 37 evaluable patients (27%) harboring a germline TP53 variant. Conclusions: Currently, germline TP53 is not routinely assessed in patients with pediatric cancer. These data support the concept that identifying germline TP53 variants at the time a primary cancer is diagnosed may identify patients at high risk for SMN development, who could benefit from modified therapeutic strategies and/or intensive posttreatment monitoring. Clin Cancer Res; 23(7); 1852-61. ©2016 AACR . ©2016 American Association for Cancer Research.

  16. The Transcription Factor p53 Influences Microglial Activation Phenotype

    PubMed Central

    Jayadev, Suman; Nesser, Nicole K.; Hopkins, Stephanie; Myers, Scott J.; Case, Amanda; Lee, Rona J.; Seaburg, Luke A.; Uo, Takuma; Murphy, Sean P.; Morrison, Richard S.; Garden, Gwenn A.

    2011-01-01

    Several neurodegenerative diseases are influenced by the innate immune response in the central nervous system (CNS). Microglia, have pro-inflammatory and subsequently neurotoxic actions as well as anti-inflammatory functions that promote recovery and repair. Very little is known about the transcriptional control of these specific microglial behaviors. We have previously shown that in HIV associated neurocognitive disorders (HAND), the transcription factor p53 accumulates in microglia and that microglial p53 expression is required for the in vitro neurotoxicity of the HIV coat glycoprotein gp120. These findings suggested a novel function for p53 in regulating microglial activation. Here we report that in the absence of p53, microglia demonstrate a blunted response to interferon-γ, failing to increase expression of genes associated with classical macrophage activation or secrete pro-inflammatory cytokines. Microarray analysis of global gene expression profiles revealed increased expression of genes associated with anti-inflammatory functions, phagocytosis and tissue repair in p53 knockout (p53−/−) microglia compared with those cultured from strain matched p53 expressing (p53+/+) mice. We further observed that p53−/− microglia demonstrate increased phagocytic activity in vitro and expression of markers for alternative macrophage activation both in vitro and in vivo. In HAND brain tissue, the alternative activation marker CD163 was expressed in a separate subset of microglia than those demonstrating p53 accumulation. These data suggest that p53 influences microglial behavior, supporting the adoption of a pro-inflammatory phenotype, while p53 deficiency promotes phagocytosis and gene expression associated with alternative activation and anti-inflammatory functions. PMID:21598312

  17. p53 adenoviral vector (Ad-CMV-p53) induced prostatic growth inhibition of primary cultures of human prostate and an experimental rat model.

    PubMed

    Shirakawa, T; Gotoh, A; Gardner, T A; Kao, C; Zhang, Z J; Matsubara, S; Wada, Y; Hinata, N; Fujisawa, M; Hanioka, K; Matsuo, M; Kamidono, S

    2000-01-01

    Benign prostatic hyperplasia (BPH) is the most common proliferative disease affecting men. Numerous minimally invasive technologies are being developed or are currently in use to obviate the need for transurethral surgery. The goal of the present study was to develop a novel molecular based approach for the treatment of BPH using recombinant p53 adenoviral vector. The over-expression of wt-p53 can cause cell apoptosis or cell growth arrest, thus preventing the uncontrolled cell proliferation underlying BPH pathophysiology. Ad-CMV-p53, a replication-deficient recombinant adenovirus containing cytomegalovirus promoter driving p53 gene, was used. Human prostate stromal (PS) cells were evaluated for apoptosis (TUNEL assay), mRNA levels of key cell cycle regulators influencing apoptosis (p-53, Bax and Bcl-2) using quantitative RT-PCR and cytotoxicity after Ad-CMV-p53. Ad-CMV-p53 was unilaterally injected into rat ventral prostates and growth inhibition was measured by prostate weight 3 weeks after injection. In vitro exposure to Ad-CMV-p53 significantly inhibited the proliferation of PS cells, induced mRNA over-expression of both wt-p53 and Bax, and increased the proportion of apoptotic cells. A 30% decrease in average prostate weight was demonstrated in rodents after Ad-CMV-p53 injection. The results suggest that further investigation of molecular gene therapy with recombinant wt-p53 adenovirus for the treatment of BPH is warranted.

  18. Distinguishing Low-Risk Luminal A Breast Cancer Subtypes with Ki-67 and p53 Is More Predictive of Long-Term Survival

    PubMed Central

    Lee, Se Kyung; Bae, Soo Youn; Lee, Jun Ho; Lee, Hyun-Chul; Yi, Hawoo; Kil, Won Ho; Lee, Jeong Eon; Kim, Seok Won; Nam, Seok Jin

    2015-01-01

    Overexpression of p53 is the most frequent genetic alteration in breast cancer. Recently, many studies have shown that the expression of mutant p53 differs for each subtype of breast cancer and is associated with different prognoses. In this study, we aimed to determine the suitable cut-off value to predict the clinical outcome of p53 overexpression and its usefulness as a prognostic factor in each subtype of breast cancer, especially in luminal A breast cancer. Approval was granted by the Institutional Review Board of Samsung Medical Center. We analyzed a total of 7,739 patients who were surgically treated for invasive breast cancer at Samsung Medical Center between Dec 1995 and Apr 2013. Luminal A subtype was defined as ER&PR + and HER2- and was further subclassified according to Ki-67 and p53 expression as follows: luminal A (Ki-67-,p53-), luminal A (Ki-67+, p53-), luminal A (Ki-67 -, p53+) and luminal A (Ki-67+, p53+). Low-risk luminal A subtype was defined as negative for both Ki-67 and p53 (luminal A [ki-67-, p53-]), and others subtypes were considered to be high-risk luminal A breast cancer. A cut-off value of 10% for p53 was a good predictor of clinical outcome in all patients and luminal A breast cancer patients. The prognostic role of p53 overexpression for OS and DFS was only significant in luminal A subtype. The combination of p53 and Ki-67 has been shown to have the best predictive power as calculated by the area under curve (AUC), especially for long-term overall survival. In this study, we have shown that overexpression of p53 and Ki-67 could be used to discriminate low-risk luminal A subtype in breast cancer. Therefore, using the combination of p53 and Ki-67 expression in discriminating low-risk luminal A breast cancer may improve the prognostic power and provide the greatest clinical utility. PMID:26241661

  19. Distinguishing Low-Risk Luminal A Breast Cancer Subtypes with Ki-67 and p53 Is More Predictive of Long-Term Survival.

    PubMed

    Lee, Se Kyung; Bae, Soo Youn; Lee, Jun Ho; Lee, Hyun-Chul; Yi, Hawoo; Kil, Won Ho; Lee, Jeong Eon; Kim, Seok Won; Nam, Seok Jin

    2015-01-01

    Overexpression of p53 is the most frequent genetic alteration in breast cancer. Recently, many studies have shown that the expression of mutant p53 differs for each subtype of breast cancer and is associated with different prognoses. In this study, we aimed to determine the suitable cut-off value to predict the clinical outcome of p53 overexpression and its usefulness as a prognostic factor in each subtype of breast cancer, especially in luminal A breast cancer. Approval was granted by the Institutional Review Board of Samsung Medical Center. We analyzed a total of 7,739 patients who were surgically treated for invasive breast cancer at Samsung Medical Center between Dec 1995 and Apr 2013. Luminal A subtype was defined as ER&PR + and HER2- and was further subclassified according to Ki-67 and p53 expression as follows: luminal A (Ki-67-,p53-), luminal A (Ki-67+, p53-), luminal A (Ki-67 -, p53+) and luminal A (Ki-67+, p53+). Low-risk luminal A subtype was defined as negative for both Ki-67 and p53 (luminal A [ki-67-, p53-]), and others subtypes were considered to be high-risk luminal A breast cancer. A cut-off value of 10% for p53 was a good predictor of clinical outcome in all patients and luminal A breast cancer patients. The prognostic role of p53 overexpression for OS and DFS was only significant in luminal A subtype. The combination of p53 and Ki-67 has been shown to have the best predictive power as calculated by the area under curve (AUC), especially for long-term overall survival. In this study, we have shown that overexpression of p53 and Ki-67 could be used to discriminate low-risk luminal A subtype in breast cancer. Therefore, using the combination of p53 and Ki-67 expression in discriminating low-risk luminal A breast cancer may improve the prognostic power and provide the greatest clinical utility.

  20. Poly(beta-amino ester) nanoparticle-delivery of p53 has activity against small cell lung cancer in vitro and in vivo

    PubMed Central

    Kamat, Chandrashekhar D.; Shmueli, Ron B.; Connis, Nick; Rudin, Charles M.; Green, Jordan J.; Hann, Christine L.

    2013-01-01

    Small cell lung cancer (SCLC) is an aggressive disease with one of the highest case-fatality rates among cancer. The recommended therapy for SCLC has not changed significantly over the past 30 years; new therapeutic approaches are a critical need. TP53 is mutated in the majority of SCLC cases and its loss is required in transgenic mouse models of the disease. We synthesized an array of biodegradable poly(beta-amino ester) (PBAE) polymers which self-assemble with DNA and assayed for transfection efficiency in the p53-mutant H446 SCLC cell line using high-throughput methodologies. Two of the top candidates were selected for further characterization and TP53 delivery in vitro and in vivo. Nanoparticle delivery of TP53 resulted in expression of exogenous p53, induction of p21, induction of apoptosis and accumulation of cells in sub-G1 consistent with functional p53 activity. Intratumoral injection of subcutaneous H446 xenografts with polymers carrying TP53 caused marked tumor growth inhibition. This is the first demonstration of TP53 gene therapy in SCLC using non-viral polymeric nanoparticles. This technology may have general applicability as a novel anti-cancer strategy based on restoration of tumor suppressor gene function. PMID:23364678

  1. p53-competent cells and p53-deficient cells display different susceptibility to oxygen functionalized graphene cytotoxicity and genotoxicity.

    PubMed

    Petibone, Dayton M; Mustafa, Thikra; Bourdo, Shawn E; Lafont, Andersen; Ding, Wei; Karmakar, Alokita; Nima, Zeid A; Watanabe, Fumiya; Casciano, Daniel; Morris, Suzanne M; Dobrovolsky, Vasily N; Biris, Alexandru S

    2017-11-01

    Due to the distinctive physical, electrical, and chemical properties of graphene nanomaterials, numerous efforts pursuing graphene-based biomedical and industrial applications are underway. Oxidation of pristine graphene surfaces mitigates its otherwise hydrophobic characteristic thereby improving its biocompatibility and functionality. Yet, the potential widespread use of oxidized graphene derivatives raises concern about adverse impacts on human health. The p53 tumor suppressor protein maintains cellular and genetic stability after toxic exposures. Here, we show that p53 functional status correlates with oxygen functionalized graphene (f-G) cytotoxicity and genotoxicity in vitro. The f-G exposed p53-competent cells, but not p53-deficient cells, initiated G 0 /G 1 phase cell cycle arrest, suppressed reactive oxygen species, and entered apoptosis. There was p53-dependent f-G genotoxicity evident as increased structural chromosome damage, but not increased gene mutation or chromatin loss. In conclusion, the cytotoxic and genotoxic potential for f-G in exposed cells was dependent on the p53 functional status. These findings have broad implications for the safe and effective implementation of oxidized graphene derivatives into biomedical and industrial applications. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  2. DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo.

    PubMed

    Wallace, Lindsay M; Garwick, Sara E; Mei, Wenyan; Belayew, Alexandra; Coppee, Frederique; Ladner, Katherine J; Guttridge, Denis; Yang, Jing; Harper, Scott Q

    2011-03-01

    Facioscapulohumeral muscular dystrophy (FSHD) is associated with D4Z4 repeat contraction on human chromosome 4q35. This genetic lesion does not result in complete loss or mutation of any gene. Consequently, the pathogenic mechanisms underlying FSHD have been difficult to discern. In leading FSHD pathogenesis models, D4Z4 contractions are proposed to cause epigenetic changes, which ultimately increase expression of genes with myopathic potential. Although no gene has been conclusively linked to FSHD development, recent evidence supports a role for the D4Z4-encoded DUX4 gene in FSHD. In this study, our objective was to test the in vivo myopathic potential of DUX4. We delivered DUX4 to zebrafish and mouse muscle by transposon-mediated transgenesis and adeno-associated viral vectors, respectively. Overexpression of DUX4, which encodes a transcription factor, caused abnormalities associated with muscular dystrophy in zebrafish and mice. This toxicity required DNA binding, because a DUX4 DNA binding domain mutant produced no abnormalities. Importantly, we found the myopathic effects of DUX4 were p53 dependent, as p53 inhibition mitigated DUX4 toxicity in vitro, and muscles from p53 null mice were resistant to DUX4-induced damage. Our work demonstrates the myopathic potential of DUX4 in animal muscle. Considering previous studies showed DUX4 was elevated in FSHD patient muscles, our data support the hypothesis that DUX4 overexpression contributes to FSHD development. Moreover, we provide a p53-dependent mechanism for DUX4 toxicity that is consistent with previous studies showing p53 pathway activation in FSHD muscles. Our work justifies further investigation of DUX4 and the p53 pathway in FSHD pathogenesis. Copyright © 2010 American Neurological Association.

  3. DUX4, a Candidate Gene for Facioscapulohumeral Muscular Dystrophy, Causes p53-Dependent Myopathy In Vivo

    PubMed Central

    Wallace, Lindsay M.; Garwick, Sara E.; Mei, Wenyan; Belayew, Alexandra; Coppee, Frederique; Ladner, Katherine J.; Guttridge, Denis; Yang, Jing; Harper, Scott Q.

    2014-01-01

    Objective Facioscapulohumeral muscular dystrophy (FSHD) is associated with D4Z4 repeat contraction on human chromosome 4q35. This genetic lesion does not result in complete loss or mutation of any gene. Consequently, the pathogenic mechanisms underlying FSHD have been difficult to discern. In leading FSHD pathogenesis models, D4Z4 contractions are proposed to cause epigenetic changes, which ultimately increase expression of genes with myopathic potential. Although no gene has been conclusively linked to FSHD development, recent evidence supports a role for the D4Z4-encoded DUX4 gene in FSHD. In this study, our objective was to test the in vivo myopathic potential of DUX4. Methods We delivered DUX4 to zebrafish and mouse muscle by transposon-mediated transgenesis and adeno-associated viral vectors, respectively. Results Overexpression of DUX4, which encodes a transcription factor, caused abnormalities associated with muscular dystrophy in zebrafish and mice. This toxicity required DNA binding, because a DUX4 DNA binding domain mutant produced no abnormalities. Importantly, we found the myopathic effects of DUX4 were p53 dependent, as p53 inhibition mitigated DUX4 toxicity in vitro, and muscles from p53 null mice were resistant to DUX4-induced damage. Interpretation Our work demonstrates the myopathic potential of DUX4 in animal muscle. Considering previous studies showed DUX4 was elevated in FSHD patient muscles, our data support the hypothesis that DUX4 overexpression contributes to FSHD development. Moreover, we provide a p53-dependent mechanism for DUX4 toxicity that is consistent with previous studies showing p53 pathway activation in FSHD muscles. Our work justifies further investigation of DUX4 and the p53 pathway in FSHD pathogenesis. PMID:21446026

  4. Two co-existing germline mutations P53 V157D and PMS2 R20Q promote tumorigenesis in a familial cancer syndrome.

    PubMed

    Wang, Zuoyun; Sun, Yihua; Gao, Bin; Lu, Yi; Fang, Rong; Gao, Yijun; Xiao, Tian; Liu, Xin-Yuan; Pao, William; Zhao, Yun; Chen, Haiquan; Ji, Hongbin

    2014-01-01

    Germline mutations are responsible for familial cancer syndromes which account for approximately 5-10% of all types of cancers. These mutations mainly occur at tumor suppressor genes or genome stability genes, such as DNA repair genes. Here we have identified a cancer predisposition family, in which eight members were inflicted with a wide spectrum of cancer including one diagnosed with lung cancer at 22years old. Sequencing analysis of tumor samples as well as histologically normal specimens identified two germline mutations co-existing in the familial cancer syndrome, the mutation of tumor suppressor gene P53 V157D and mismatch repair gene PMS2 R20Q. We further demonstrate that P53 V157D and/or PMS2 R20Q mutant promotes lung cancer cell proliferation. These two mutants are capable of promoting colony formation in soft agar as well as tumor formation in transgenic drosophila system. Collectively, these data have uncovered the important role of co-existing germline P53 and PMS2 mutations in the familial cancer syndrome development. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. N-methylpurine DNA glycosylase inhibits p53-mediated cell cycle arrest and coordinates with p53 to determine sensitivity to alkylating agents

    PubMed Central

    Song, Shanshan; Xing, Guichun; Yuan, Lin; Wang, Jian; Wang, Shan; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang

    2012-01-01

    Alkylating agents induce genome-wide base damage, which is repaired mainly by N-methylpurine DNA glycosylase (MPG). An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks. However, the determinant of drug sensitivity or insensitivity still remains unclear. Here, we report that the p53 status coordinates with MPG to play a pivotal role in such process. MPG expression is positive in breast, lung and colon cancers (38.7%, 43.4% and 25.3%, respectively) but negative in all adjacent normal tissues. MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells. The overexpression of MPG reduced, whereas depletion of MPG increased, the expression levels of pro-arrest gene downstream of p53 including p21, 14-3-3σ and Gadd45 but not proapoptotic ones. The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53. Upon DNA alkylation stress, in p53 wild-type tumor cells, p53 dissociated from MPG and induced cell growth arrest. Then, AP sites were repaired efficiently, which led to insensitivity to alkylating agents. By contrast, in p53-mutated cells, the AP sites were repaired with low efficacy. To our knowledge, this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53, and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy. PMID:22801474

  6. HIPK2 modulates p53 activity towards pro-apoptotic transcription.

    PubMed

    Puca, Rosa; Nardinocchi, Lavinia; Sacchi, Ada; Rechavi, Gideon; Givol, David; D'Orazi, Gabriella

    2009-10-14

    Activation of p53-mediated gene transcription is a critical cellular response to DNA damage and involves a phosphorylation-acetylation cascade of p53. The discovery of differences in the response to different agents raises the question whether some of the p53 oncosuppressor functions might be exerted by different posttranslational modifications. Stress-induced homeodomain-interacting protein kinase-2 (HIPK2) phosphorylates p53 at serine-46 (Ser46) for p53 apoptotic activity; p53 acetylation at different C-terminus lysines including p300-mediated lysine-382 (Lys382) is also required for full activation of p53 transcriptional activity. The purpose of the current study was to evaluate the interplay among HIPK2, p300, and p53 in p53 acetylation and apoptotic transcriptional activity in response to drug by using siRNA interference, p300 overexpression or deacetylase inhibitors, in cancer cells. Knockdown of HIPK2 inhibited both adriamycin-induced Ser46 phosphorylation and Lys382 acetylation in p53 protein; however, while combination of ADR and zinc restored Ser46 phosphorylation it did not recover Lys382 acetylation. Chromatin immunoprecipitation studies showed that HIPK2 was required in vivo for efficient p300/p53 co-recruitment onto apoptotic promoters and that both p53 modifications at Ser46 and Lys382 were necessary for p53 apoptotic transcription. Thus, p53Lys382 acetylation in HIPK2 knockdown as well as p53 apoptotic activity in response to drug could be rescued by p300 overexpression. Similar effect was obtained with the Sirt1-inhibitor nicotinamide. Interestingly trichostatin A (TSA), the inhibitor of histone deacetylase complexes (HDAC) did not have effect, suggesting that Sirt1 was the deacetylase involved in p53 deacetylation in HIPK2 knockdown. These results reveal a novel role for HIPK2 in activating p53 apoptotic transcription. Our results indicate that HIPK2 may regulate the balance between p53 acetylation and deacetylation, by stimulating on one hand co

  7. Addition of interferon-α to the p53-SLP® vaccine results in increased production of interferon-γ in vaccinated colorectal cancer patients: a phase I/II clinical trial.

    PubMed

    Zeestraten, Eliane C M; Speetjens, Frank M; Welters, Marij J P; Saadatmand, Sepideh; Stynenbosch, Linda F M; Jongen, Rogier; Kapiteijn, Ellen; Gelderblom, Hans; Nijman, Hans W; Valentijn, A Rob P M; Oostendorp, Jaap; Fathers, Lorraine M; Drijfhout, Jan W; van de Velde, Cornelis J H; Kuppen, Peter J K; van der Burg, Sjoerd H; Melief, Cornelis J M

    2013-04-01

    We previously established safety and immunogenicity of a p53 synthetic long peptides (p53-SLP®) vaccine. In the current trial, we investigated whether combination of interferon-alpha (IFN-α) with p53-SLP® is both safe and able to improve the induced p53-specific IFN-γ response. Eleven colorectal cancer patients successfully treated for metastatic disease were enrolled in this study. Of these, nine patients completed follow-up after two injections with p53-SLP® together with IFN-α. Safety and p53-specific immune responses were determined before and after vaccination. Furthermore, cryopreserved PBMCs were compared head-to-head to cryopreserved PBMCs obtained in our previous trial with p53-SLP® only. Toxicity of p53-SLP® vaccination in combination with IFN-α was limited to Grade 1 or 2, with predominantly small ongoing swellings at the vaccination site. All patients harbored p53-specific T cells after vaccination and most patients showed p53-specific antibodies. Compared to the previous trial, addition of IFN-α significantly improved the frequency of p53-specific T cells in IFN-γ ELISPOT. Moreover, in this trial, p53-specific T cells were detectable in blood samples of all patients in a direct ex vivo multiparameter flowcytometric assay, opposed to only 2 of 10 patients vaccinated with p53-SLP® only. Finally, patients in this trial displayed a broader p53-specific immunoglobulin-G response, indicating an overall better p53-specific T-helper response. Our study shows that p53-SLP® vaccination combined with IFN-α injection is safe and capable of inducing p53-specific immunity. When compared to a similar trial with p53-SLP® vaccination alone the combination was found to induce significantly more IFN-γ producing p53-specific T cells. Copyright © 2012 UICC.

  8. Nitric oxide prodrug JS-K inhibits ubiquitin E1 and kills tumor cells retaining wild-type p53.

    PubMed

    Kitagaki, J; Yang, Y; Saavedra, J E; Colburn, N H; Keefer, L K; Perantoni, A O

    2009-01-29

    Nitric oxide (NO) is a major effector molecule in cancer prevention. A number of studies have shown that NO prodrug JS-K (O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) induces apoptotic cell death in vitro and in vivo, indicating that it is a promising new therapeutic for cancer. However, the mechanism of its tumor-killing activity remains unclear. Ubiquitin plays an important role in the regulation of tumorigenesis and cell apoptosis. Our earlier report has shown that inactivation of the ubiquitin system through blocking E1 (ubiquitin-activating enzyme) activity preferentially induces apoptosis in p53-expressing transformed cells. As E1 has an active cysteine residue that could potentially interact with NO, we hypothesized that JS-K could inactivate E1 activity. E1 activity was evaluated by detecting ubiquitin-E1 conjugates through immunoblotting. JS-K strikingly inhibits the ubiquitin-E1 thioester formation in cells in a dose-dependent manner with an IC(50) of approximately 2 microM, whereas a JS-K analog that cannot release NO did not affect these levels in cells. Moreover, JS-K decreases total ubiquitylated proteins and increases p53 levels, which is mainly regulated by ubiquitin and proteasomal degradation. Furthermore, JS-K preferentially induces cell apoptosis in p53-expressing transformed cells. These findings indicate that JS-K inhibits E1 activity and kills transformed cells harboring wild-type p53.

  9. Super p53 for Treatment of Ovarian Cancer

    DTIC Science & Technology

    2016-07-01

    WSLP ( polymer ) has been successfully synthesized, and a subset of adenoviral constructs have been cloned (p53, p53-CC, EGFP control). Major results...therapy, carboplatin, paclitaxel, polymeric drug delivery, polymer -adenovirus hybrid 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...modified p53, tumor suppressor, high grade serous carcinoma, combination therapy, carboplatin, paclitaxel, polymeric drug delivery, polymer

  10. Protective mechanisms of p53-p21-pRb proteins against DNA damage-induced cell death.

    PubMed

    Garner, Elizabeth; Raj, Kenneth

    2008-02-01

    There have been innumerate demonstrations of p53's activity as a tumour suppressor protein with the ability to stimulate cell signalling that can lead to cell cycle arrest and cell death in the event of DNA damage. Despite the solid body of evidence to support these properties of p53, reports have emerged that suggest a role for p53 in protecting cells from cell death. Our recent report highlighted a mechanism by which p53 activity can promote cell survival in the event of DNA damage. Here we present the various mechanisms that are activated by p53 signalling that can confer protection to cells with damaged DNA and emphasise the practical and clinical implications of a more balanced and context-dependent understanding of p53's pro-apoptotic and pro-survival activities.

  11. Oxidation of p53 through DNA Charge Transport Involves a Network of Disulfides within the DNA-Binding Domain

    PubMed Central

    2016-01-01

    Transcription factor p53 plays a critical role in the cellular response to stress stimuli. We have seen that p53 dissociates selectively from various promoter sites as a result of oxidation at long-range through DNA-mediated charge transport (CT). Here, we examine this chemical oxidation and determine the residues in p53 that are essential for oxidative dissociation, focusing on the network of cysteine residues adjacent to the DNA-binding site. Of the eight mutants studied, only the C275S mutation shows decreased affinity for the Gadd45 promoter site. However, both mutations C275S and C277S result in substantial attenuation of oxidative dissociation, with C275S causing the most severe attenuation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide-labeled, whereas oxidized cysteines participating in disulfide bonds were 13C2D2-iodoacetamide-labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed by mass spectrometry. A distinct shift in peptide labeling toward 13C2D2-iodoacetamide-labeled cysteines is observed in oxidized samples, confirming that chemical oxidation of p53 occurs at long range. All observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds among the cysteine network. On the basis of these data, it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA. PMID:25584637

  12. p73 coordinates with Δ133p53 to promote DNA double-strand break repair.

    PubMed

    Gong, Hongjian; Zhang, Yuxi; Jiang, Kunpeng; Ye, Shengfan; Chen, Shuming; Zhang, Qinghe; Peng, Jinrong; Chen, Jun

    2018-03-06

    Tumour repressor p53 isoform Δ133p53 is a target gene of p53 and an antagonist of p53-mediated apoptotic activity. We recently demonstrated that Δ133p53 promotes DNA double-strand break (DSB) repair by upregulating transcription of the repair genes RAD51, LIG4 and RAD52 in a p53-independent manner. However, Δ133p53 lacks the transactivation domain of full-length p53, and the mechanism by which it exerts transcriptional activity independently of full-length p53 remains unclear. In this report, we describe the accumulation of high levels of both Δ133p53 and p73 (a p53 family member) at 24 h post γ-irradiation (hpi). Δ133p53 can form a complex with p73 upon γ-irradiation. The co-expression of Δ133p53 and p73, but not either protein alone, can significantly promote DNA DSB repair mechanisms, including homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA). p73 and Δ133p53 act synergistically to promote the expression of RAD51, LIG4 and RAD52 by joining together to bind to region containing a Δ133p53-responsive element (RE) and a p73-RE in the promoters of all three repair genes. In addition to its accumulation at 24 hpi, p73 protein expression also peaks at 4 hpi. The depletion of p73 not only reduces early-stage apoptotic frequency (4-6 hpi), but also significantly increases later-stage DNA DSB accumulation (48 hpi), leading to cell cycle arrest in the G2 phase and, ultimately, cell senescence. In summary, the apoptotic regulator p73 also coordinates with Δ133p53 to promote DNA DSB repair, and the loss of function of p73 in DNA DSB repair may underlie spontaneous and carcinogen-induced tumorigenesis in p73 knockout mice.

  13. Nutlin-3 plus tanshinone IIA exhibits synergetic anti-leukemia effect with imatinib by reactivating p53 and inhibiting the AKT/mTOR pathway in Ph+ ALL.

    PubMed

    Guo, Yong; Li, Yi; Xiang, Bing; Huang, Xiao-Ou; Ma, Hong-Bing; Wang, Fang-Fang; Gong, Yu-Ping

    2017-12-06

    Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is triggered by BCR/ABL kinase. Recent efforts focused on the development of more potent tyrosine kinase inhibitors (TKIs) that also inhibit mutant tyrosine kinases such as nilotinib and dasatinib. Although major advances in the treatment of this aggressive disease with potent inhibitors of the BCR/ABL kinases, patients in remission frequently relapse due to drug resistance possibly mediated, at least in part, by compensatory activation of growth-signaling pathways and protective feedback signaling of leukemia cells in response to TKI treatment. Continuous activation of AKT/mTOR signaling and inactivation of p53 pathway were two mechanisms of TKI resistance. Here, we reported that nutlin-3 plus tanshinone IIA significantly potentiated the cytotoxic and apoptotic induction effects of imatinib by down-regulation of the AKT/mTOR pathway and reactivating the p53 pathway deeply in Ph+ ALL cell line. In primary samples from Ph+ ALL patients, nutlin-3 plus tanshinone IIA also exhibited synergetic cytotoxic effects with imatinib. Of note, three samples from Ph+ ALL patients harboring T315I mutation also showed sensitivity to the combined treatment of imatinib, nutlin-3 plus tanshinone IIA. In Ph+ ALL mouse models, imatinib combined with nutlin-3 plus tanshinone IIA also exhibited synergetic effects on reduction in leukemia burden. These results demonstrated that nutlin-3 plus tanshinone IIA combined TKI might be a promising treatment strategy for Ph+ ALL patients. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Combined use of nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 for hepatocellular carcinoma detection in high-risk chronic hepatitis C patients.

    PubMed

    Attallah, A M; El-Far, M; Abdelrazek, M A; Omran, M M; Attallah, A A; Elkhouly, A A; Elkenawy, H M; Farid, K

    2017-10-01

    Hepatocellular carcinoma (HCC) is a multistage process resulting from various genetic changes. We aimed to determine nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 expression and to evaluate their importance in HCC diagnosis. One hundred and twenty chronic hepatitis C (CHC) patients (60 non-HCC CHC patients and 60 HCC patients who had a single small (<5 cm) tumour) were recruited. The gene products of c-Myc and p53 were identified in liver tissues and serum samples using immunostaining, western blot and ELISA. Immunohistochemical detection of c-Myc and p53 with monospecific antibodies revealed intense and diffuse cytoplasmic staining patterns. Accumulated mutant proteins, released from tumour cells into the extracellular serum, were detected at 62 KDa, for c-Myc, and 53 KDa, for p53, using western blotting. In contrast to alpha feto-protein, there was a significant increase (p < 0.0001) in the positivity rate of c-Myc (86.7% vs. 6.7%) and p53 (78.3% vs. 8.3%) in the malignant vs. non-malignant patients. The parallel combination of c-Myc and p53 reach the absolute sensitivity (100%), for more accurate and reliable HCC detection (specificity was 87%). c-Myc and p53 are potential HCC diagnostic biomarkers, and convenient combinations of them could improve diagnostic accuracy of HCC.

  15. Inactivation of p53 Rescues the Maintenance of High Risk HPV DNA Genomes Deficient in Expression of E6

    PubMed Central

    Lorenz, Laurel D.; Rivera Cardona, Jessenia; Lambert, Paul F.

    2013-01-01

    The human papillomavirus DNA genome undergoes three distinct stages of replication: establishment, maintenance and amplification. We show that the HPV16 E6 protein is required for the maintenance of the HPV16 DNA genome as an extrachromosomal, nuclear plasmid in its natural host cell, the human keratinocyte. Based upon mutational analyses, inactivation of p53 by E6, but not necessarily E6-mediated degradation of p53, was found to correlate with the ability of E6 to support maintenance of the HPV16 genome as a nuclear plasmid. Inactivation of p53 with dominant negative p53 rescued the ability of HPV16 E6STOP and E6SAT mutant genomes to replicate as extrachromosomal genomes, though not to the same degree as observed for the HPV16 E6 wild-type (WT) genome. Inactivation of p53 also rescued the ability of HPV18 and HPV31 E6-deficient genomes to be maintained at copy numbers comparable to that of HPV18 and HPV31 E6WT genomes at early passages, though upon further passaging copy numbers for the HPV18 and 31 E6-deficient genomes lessened compared to that of the WT genomes. We conclude that inactivation of p53 is necessary for maintenance of HPV16 and for HPV18 and 31 to replicate at WT copy number, but that additional functions of E6 independent of inactivating p53 must also contribute to the maintenance of these genomes. Together these results suggest that re-activation of p53 may be a possible means for eradicating extrachromosomal HPV16, 18 or 31 genomes in the context of persistent infections. PMID:24204267

  16. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines

    PubMed Central

    Kubota, Eiji; Williamson, Christopher T; Ye, Ruiqiong; Elegbede, Anifat; Peterson, Lars; Lees-Miller, Susan P; Bebb, D Gwyn

    2014-01-01

    Small-molecule inhibitors of poly (ADP-ribose) polymerase (PARP) have shown considerable promise in the treatment of homologous recombination (HR)-defective tumors, such as BRCA1- and BRCA2-deficient breast and ovarian cancers. We previously reported that mantle cell lymphoma cells with deficiency in ataxia telangiectasia mutated (ATM) are sensitive to PARP-1 inhibitors in vitro and in vivo. Here, we report that PARP inhibitors can potentially target ATM deficiency arising in a solid malignancy. We show that ATM protein expression varies between gastric cancer cell lines, with NUGC4 having significantly reduced protein levels. Significant correlation was found between ATM protein expression and sensitivity to the PARP inhibitor olaparib, with NUGC4 being the most sensitive. Moreover, reducing ATM kinase activity using a small-molecule inhibitor (KU55933) or shRNA-mediated depletion of ATM protein enhanced olaparib sensitivity in gastric cancer cell lines with depletion or inactivation of p53. Our results demonstrate that ATM is a potential predictive biomarker for PARP-1 inhibitor activity in gastric cancer harboring disruption of p53, and that combined inhibition of ATM and PARP-1 is a rational strategy for expanding the utility of PARP-1 inhibitors to gastric cancer with p53 disruption. PMID:24841718

  17. Blinded histopathological characterisation of POLE exonuclease domain-mutant endometrial cancers: sheep in wolf's clothing.

    PubMed

    Van Gool, Inge C; Ubachs, Jef E H; Stelloo, Ellen; de Kroon, Cor D; Goeman, Jelle J; Smit, Vincent T H B M; Creutzberg, Carien L; Bosse, Tjalling

    2018-01-01

    POLE exonuclease domain mutations identify a subset of endometrial cancer (EC) patients with an excellent prognosis. The use of this biomarker has been suggested to refine adjuvant treatment decisions, but the necessary sequencing is not widely performed and is relatively expensive. Therefore, we aimed to identify histopathological and immunohistochemical characteristics to aid in the detection of POLE-mutant ECs. Fifty-one POLE-mutant endometrioid, 67 POLE-wild-type endometrioid and 15 POLE-wild-type serous ECs were included (total N = 133). An expert gynaecopathologist, blinded to molecular features, evaluated each case (two or more slides) for 16 morphological characteristics. Immunohistochemistry was performed for p53, p16, MLH1, MSH2, MSH6, and PMS2. POLE-mutant ECs were characterised by a prominent immune infiltrate: 80% showed peritumoral lymphocytes and 59% showed tumour-infiltrating lymphocytes, as compared with 43% and 28% of POLE-wild-type endometrioid ECs, and 27% and 13% of their serous counterparts (P < 0.01, all comparisons). Of POLE-mutant ECs, 33% contained tumour giant cells; this proportion was significantly higher than that in POLE-wild-type endometrioid ECs (10%; P = 0.003), but not significantly different from that in serous ECs (53%). Serous-like features were as often (focally) present in POLE-mutant as in POLE-wild-type endometrioid ECs (6-24%, depending on the feature). The majority of POLE-mutant ECs showed wild-type p53 (86%), negative/focal p16 (82%) and normal mismatch repair protein expression (90%). A simple combination of morphological and immunohistochemical characteristics (tumour type, grade, peritumoral lymphocytes, MLH1, and p53 expression) can assist in prescreening for POLE exonuclease domain mutations in EC, increasing the probability of a mutation being detected from 7% to 33%. This facilitates the use of this important prognostic biomarker in routine pathology. © 2017 John Wiley & Sons Ltd.

  18. Quercetin Enhances the Antitumor Activity of Trichostatin A through Upregulation of p53 Protein Expression In Vitro and In Vivo

    PubMed Central

    Chan, Shu-Ting; Yang, Nae-Cherng; Huang, Chin-Shiu; Liao, Jiunn-Wang; Yeh, Shu-Lan

    2013-01-01

    This study investigated the effects of quercetin on the anti-tumor effect of trichostatin A (TSA), a novel anticancer drug, in vitro and in vivo and the possible mechanisms of these effects in human lung cancer cells. We first showed that quercetin (5 µM) significantly increased the growth arrest and apoptosis in A549 cells (expressing wild-type p53) induced by 25 ng/mL of (82.5 nM) TSA at 48 h by about 25% and 101%, respectively. However, such enhancing effects of quercetin (5 µM) were not significant in TSA-exposed H1299 cells (a p53 null mutant) or were much lower than in A549 cells. In addition, quercetin significantly increased TSA-induced p53 expression in A549 cells. Transfection of p53 siRNA into A549 cells significantly but not completely diminished the enhancing effects of quercetin on TSA-induced apoptosis. Furthermore, we demonstrated that quercetin enhanced TSA-induced apoptosis through the mitochondrial pathway. Transfection of p53 siRNA abolished such enhancing effects of quercetin. However, quercetin increased the acetylation of histones H3 and H4 induced by TSA in A549 cells, even with p53 siRNA transfection as well as in H1299 cells. In a xenograft mouse model of lung cancer, quercetin enhanced the antitumor effect of TSA. Tumors from mice treated with TSA in combination with quercetin had higher p53 and apoptosis levels than did those from control and TSA-treated mice. These data indicate that regulation of the expression of p53 by quercetin plays an important role in enhancing TSA-induced apoptosis in A549 cells. However, p53-independent mechanisms may also contribute to the enhancing effect of quercetin. PMID:23342112

  19. Analysis of p53 gene mutations in human gliomas by polymerase chain reaction-based single-strand conformation polymorphism and DNA sequencing.

    PubMed

    Sarkar, F H; Kupsky, W J; Li, Y W; Sreepathi, P

    1994-03-01

    Mutations in the p53 gene have been recognized in brain tumors, and clonal expansion of p53 mutant cells has been shown to be associated with glioma progression. However, studies on the p53 gene have been limited by the need for frozen tissues. We have developed a method utilizing polymerase chain reaction (PCR) for the direct analysis of p53 mutation by single-strand conformation polymorphism (SSCP) and by direct DNA sequencing of the p53 gene using a single 10-microns paraffin-embedded tissue section. We applied this method to screen for p53 gene mutations in exons 5-8 in human gliomas utilizing paraffin-embedded tissues. Twenty paraffin blocks containing tumor were selected from surgical specimens from 17 different adult patients. Tumors included six anaplastic astrocytomas (AAs), nine glioblastomas (GBs), and two mixed malignant gliomas (MMGs). The tissue section on the stained glass slide was used to guide microdissection of an unstained adjacent tissue section to ensure > 90% of the tumor cell population for p53 mutational analysis. Simultaneously, microdissection of the tissue was also carried out to obtain normal tissue from adjacent areas as a control. Mutations in the p53 gene were identified in 3 of 17 (18%) patients by PCR-SSCP analysis and subsequently confirmed by PCR-based DNA sequencing. Mutations in exon 5 resulting in amino acid substitution were found in one thalamic AA (codon 158, CGC > CTT: Arg > Leu) and one cerebral hemispheric GB (codon 151, CCG > CTG: Pro > Leu).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Comparative Study of the Mutant Prevention Concentrations of Moxifloxacin, Levofloxacin, and Gemifloxacin against Pneumococci▿ †

    PubMed Central

    Credito, Kim; Kosowska-Shick, Klaudia; McGhee, Pamela; Pankuch, Glenn A.; Appelbaum, Peter C.

    2010-01-01

    We tested the propensity of three quinolones to select for resistant Streptococcus pneumoniae mutants by determining the mutant prevention concentration (MPC) against 100 clinical strains, some of which harbored mutations in type II topoisomerases. Compared with levofloxacin and gemifloxacin, moxifloxacin had the lowest number of strains with MPCs above the susceptibility breakpoint (P < 0.001), thus representing a lower selective pressure for proliferation of resistant mutants. Only moxifloxacin gave a 50% MPC (MPC50) value (1 μg/ml) within the susceptible range. PMID:20008781

  1. Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63.

    PubMed

    Ozaki, Toshinori; Nakamura, Mizuyo; Ogata, Takehiro; Sang, Meijie; Yoda, Hiroyuki; Hiraoka, Kiriko; Sang, Meixiang; Shimozato, Osamu

    2016-11-01

    Recently, we have described that siRNA-mediated silencing of runt-related transcription factor 2 (RUNX2) improves anti-cancer drug gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the augmentation of p53 family TAp63-dependent cell death pathway. In this manuscript, we have extended our study to p53-mutated human pancreatic cancer Panc-1 cells. According to our present results, knockdown of mutant p53 alone had a marginal effect on GEM-mediated cell death of Panc-1 cells. We then sought to deplete RUNX2 using siRNA in Panc-1 cells and examined its effect on GEM sensitivity. Under our experimental conditions, RUNX2 knockdown caused a significant enhancement of GEM sensitivity of Panc-1 cells. Notably, GEM-mediated induction of TAp63 but not of TAp73 was further stimulated in RUNX2-depleted Panc-1 cells, indicating that, like AsPC-1 cells, TAp63 might play a pivotal role in the regulation of GEM sensitivity of Panc-1 cells. Consistent with this notion, forced expression of TAp63α in Panc-1 cells promoted cell cycle arrest and/or cell death, and massively increased luciferase activities driven by TAp63-target gene promoters such as p21WAF1 and NOXA. In addition, immunoprecipitation experiments indicated that RUNX2 forms a complex with TAp63 in Panc-1 cells. Taken together, our current observations strongly suggest that depletion of RUNX2 enhances the cytotoxic effect of GEM on p53-mutated Panc-1 cells through the stimulation of TAp63-dependent cell death pathway even in the presence of a large amount of pro-oncogenic mutant p53, and might provide an attractive strategy to treat pancreatic cancer patients with p53 mutations.

  2. Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63

    PubMed Central

    Ozaki, Toshinori; Nakamura, Mizuyo; Ogata, Takehiro; Sang, Meijie; Yoda, Hiroyuki; Hiraoka, Kiriko; Sang, Meixiang; Shimozato, Osamu

    2016-01-01

    Recently, we have described that siRNA-mediated silencing of runt-related transcription factor 2 (RUNX2) improves anti-cancer drug gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the augmentation of p53 family TAp63-dependent cell death pathway. In this manuscript, we have extended our study to p53-mutated human pancreatic cancer Panc-1 cells. According to our present results, knockdown of mutant p53 alone had a marginal effect on GEM-mediated cell death of Panc-1 cells. We then sought to deplete RUNX2 using siRNA in Panc-1 cells and examined its effect on GEM sensitivity. Under our experimental conditions, RUNX2 knockdown caused a significant enhancement of GEM sensitivity of Panc-1 cells. Notably, GEM-mediated induction of TAp63 but not of TAp73 was further stimulated in RUNX2-depleted Panc-1 cells, indicating that, like AsPC-1 cells, TAp63 might play a pivotal role in the regulation of GEM sensitivity of Panc-1 cells. Consistent with this notion, forced expression of TAp63α in Panc-1 cells promoted cell cycle arrest and/or cell death, and massively increased luciferase activities driven by TAp63-target gene promoters such as p21WAF1 and NOXA. In addition, immunoprecipitation experiments indicated that RUNX2 forms a complex with TAp63 in Panc-1 cells. Taken together, our current observations strongly suggest that depletion of RUNX2 enhances the cytotoxic effect of GEM on p53-mutated Panc-1 cells through the stimulation of TAp63-dependent cell death pathway even in the presence of a large amount of pro-oncogenic mutant p53, and might provide an attractive strategy to treat pancreatic cancer patients with p53 mutations. PMID:27713122

  3. Tight regulation of p53 activity by Mdm2 is required for ureteric bud growth and branching

    PubMed Central

    Hilliard, Sylvia; Aboudehen, Karam; Yao, Xiao; El-Dahr, Samir S.

    2011-01-01

    Mdm2 (Murine Double Minute-2) is required to control cellular p53 activity and protein levels. Mdm2 null embryos die of p53-mediated growth arrest and apoptosis at the peri-implantation stage. Thus, the absolute requirement for Mdm2 in organogenesis is unknown. This study examined the role of Mdm2 in kidney development, an organ which develops via epithelial-mesenchymal interactions and branching morphogenesis. Mdm2 mRNA and protein are expressed in the ureteric bud (UB) epithelium and metanephric mesenchyme (MM) lineages. We report here the results of conditional deletion of Mdm2 from the UB epithelium. UBmdm2−/− mice die soon after birth and uniformly display severe renal hypodysplasia due to defective UB branching and underdeveloped nephrogenic zone. Ex vivo cultured UBmdm2−/− explants exhibit arrested development of the UB and its branches and consequently develop few nephron progenitors. UBmdm2−/− cells have reduced proliferation rate and enhanced apoptosis. Although markedly reduced in number, the UB tips of UBmdm2−/− metanephroi continue to express c-ret and Wnt11; however, there was a notable reduction in Wnt9b, Lhx-1 and Pax-2 expression levels. We further show that the UBmdm2−/− mutant phenotype is mediated by aberrant p53 activity because it is rescued by UB-specific deletion of the p53 gene. These results demonstrate a critical and cell autonomous role for Mdm2 in the UB lineage. Mdm2-mediated inhibition of p53 activity is a prerequisite for renal organogenesis. PMID:21420949

  4. P53 Suppression of Homologous Recombination and Tumorigenesis

    DTIC Science & Technology

    2011-01-01

    huge strides have been made in the numbers of mice breed and relevant cells collected for the purposes of experiments outlined in the aims below. The PI... breeding colony of R172P, R172H, Wild type and p53 null mice in order to have sufficient numbers of animals to perform the in vivo pun assay. Mouse...Strains and Breeding Cohorts Mice heterozygous for the point mutations p53R172P and p53R172H both on a C57BL/6 genetic background were kindly

  5. Immunohistochemical detection of p53 protein in ameloblastoma types.

    PubMed

    el-Sissy, N A

    1999-05-01

    Overexpression of p53 protein in unicystic ameloblastoma (uAB) is denser than in the conventional ameloblastoma (cAB) type, indicating increased wild type p53--suppressing the growth potential of uAB and denoting the early event of neoplastic transformation, probably of a previous odontogenic cyst. Overexpression of p53 in borderline cAB and malignant ameloblastoma (mAB) types might reflect a mutational p53 protein playing an oncogenic role, promoting tumour growth. Overexpression of p53 protein could be a valid screening method for predicting underlying malignant genetic changes in AB types, through increased frequency of immunoreactive cells or increased staining density.

  6. 33 CFR 162.260 - Channel leading to San Juan Harbor, P.R.; use, administration, and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Channel leading to San Juan Harbor, P.R.; use, administration, and navigation. 162.260 Section 162.260 Navigation and Navigable... WATERWAYS NAVIGATION REGULATIONS § 162.260 Channel leading to San Juan Harbor, P.R.; use, administration...

  7. 33 CFR 162.260 - Channel leading to San Juan Harbor, P.R.; use, administration, and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Channel leading to San Juan Harbor, P.R.; use, administration, and navigation. 162.260 Section 162.260 Navigation and Navigable... WATERWAYS NAVIGATION REGULATIONS § 162.260 Channel leading to San Juan Harbor, P.R.; use, administration...

  8. p53 Mutagenesis by Benzo[a]pyrene derived Radical Cations

    PubMed Central

    Sen, Sushmita; Bhojnagarwala, Pratik; Francey, Lauren; Lu, Ding; Jeffrey Field, Trevor M. Penning

    2013-01-01

    Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9, 10-epoxide pathway (P450/ epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. Based on the B[a]P-1,6 and 3,6-dione formation, approximately 4µM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 µM to 10 µM B[a]P with no significant increase seen with further escalation to 50 µM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7–8 dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones. PMID:22768918

  9. P01.29 Mutant (R132H) IDH1-driven cellular transformation makes cells dependent on continued wild type IDH1 expression in a model of in vitro gliomagenesis

    PubMed Central

    Johannessen, T.; Mukherjee, J.; Wood, M.; Viswanath, P.; Ohba, S.; Ronen, S.; Berkvig, R.; Pieper, R.

    2017-01-01

    Abstract Introduction: Missense R132H mutations in the active site of isocitrate dehydrogenase 1 (IDH1) biologically and diagnostically distinguish low-grade gliomas and secondary glioblastomas from primary glioblastomas. IDH1 mutations lead to the formation of the oncometabolite 2-hydroxyglutarate (2-HG) from the reduction of α-ketoglutarate (α-KG), which in turn facilitates tumorigenesis by modifying DNA and histone methylation as well blocking differentiation processes. We recently showed (Mol Cancer Res 14: 976–983, 2016) that although mutant IDH1 expression in hTERT-immortalized, p53/pRb-deficient astrocytes can drive cellular transformation and gliomagenesis, selective pharmacologic inhibition and elimination of 2-HG by the mutant IDH1 inhibitor AGI-5198 has little effect on the growth or clonagenicity of these transformed cells. To address the possible role of WT IDH1 in the growth of mutant IDH-driven tumor cells, we used a slightly different gliomagenesis model in which the transformation of TERT-deficient, p53/pRb-deficient astrocytes (pre-crisis cells) occurs only after prolonged expression of mutant IDH and passage through cellular crisis (post-crisis cells, Cancer Res 76:6680–6689, 2016). METHODS AND MATERIALS: Using this system we introduced AGI-5198, or siRNA targeting both WT and mutant forms of IDH1 into p53/pRb-deficient, mutant IDH1-expressing human astrocytes prior to or following their transformation, and compared the effects on cell growth and clonagenicity. Results: AGI-5198 exposure decreased levels of 2HG by greater than 90%, and as previously reported had no effect on the growth of either the pre-or post-crisis cell populations. A one-day exposure to a pan IDH1 siRNA resulted in a similar, prolonged (greater than 6 day), 80% inhibition of both WT and mutant IDH1 protein levels and 2HG in both cell groups. While the growth of the mutant IDH-expressing, non-transformed cells was similar to that of scramble siRNA controls, the growth

  10. Heterogeneous Biomedical Database Integration Using a Hybrid Strategy: A p53 Cantcer Research Database

    PubMed Central

    Bichutskiy, Vadim Y.; Colman, Richard; Brachmann, Rainer K.; Lathrop, Richard H.

    2006-01-01

    Complex problems in life science research give rise to multidisciplinary collaboration, and hence, to the need for heterogeneous database integration. The tumor suppressor p53 is mutated in close to 50% of human cancers, and a small drug-like molecule with the ability to restore native function to cancerous p53 mutants is a long-held medical goal of cancer treatment. The Cancer Research DataBase (CRDB) was designed in support of a project to find such small molecules. As a cancer informatics project, the CRDB involved small molecule data, computational docking results, functional assays, and protein structure data. As an example of the hybrid strategy for data integration, it combined the mediation and data warehousing approaches. This paper uses the CRDB to illustrate the hybrid strategy as a viable approach to heterogeneous data integration in biomedicine, and provides a design method for those considering similar systems. More efficient data sharing implies increased productivity, and, hopefully, improved chances of success in cancer research. (Code and database schemas are freely downloadable, http://www.igb.uci.edu/research/research.html.) PMID:19458771

  11. Impact of the Ki-67 labeling index and p53 expression status on disease-free survival in pT1 urothelial carcinoma of the bladder.

    PubMed

    Vetterlein, Malte W; Roschinski, Julia; Gild, Philipp; Marks, Phillip; Soave, Armin; Doh, Ousman; Isbarn, Hendrik; Höppner, Wolfgang; Wagner, Walter; Shariat, Shahrokh F; Brausi, Maurizio; Büscheck, Franziska; Sauter, Guido; Fisch, Margit; Rink, Michael

    2017-12-01

    The identification of protein biomarkers to guide treatment decisions regarding adjuvant therapies for high-risk non-muscle-invasive bladder cancer (NMIBC) has been of increasing interest. Evidence of the impact of tumor suppressor gene product p53 and cell proliferation marker Ki-67 on oncologic outcomes in bladder cancer patients at highest risk of recurrence and progression is partially contradictory. We sought to mirror contemporary expression patterns of p53 and Ki-67 in a select cohort of patients with pT1 bladder cancer. Patients from four Northern German institutions with a primary diagnosis of pT1 bladder cancer between 2009 and 2016 and complete data regarding p53 or Ki-67 expression status were included for final analyses. Baseline patient characteristics (age, gender, age-adjusted Charlson comorbidity index) and tumor characteristics [diagnostic sequence, tumor focality, concomitant carcinoma in situ, 1973 World Health Organization (WHO) grading, lymphovascular invasion, adjuvant instillation therapy] were abstracted by retrospective chart review. Immunohistochemistry for detection of p53 and Ki-67 expression was performed according to standardized protocols. Microscopic analyses were performed by central pathologic review. First, we compared patients with positive vs. negative p53 expression and Ki-67 labeling index [>40% vs. ≤40%; cutoffs based on best discriminative ability in univariable Cox regression analysis with disease-free survival (DFS) as endpoint] with regard to baseline and tumor characteristics. Second, we evaluated the effect of biomarker positivity on DFS by plotting univariable Kaplan-Meier curves and performing uni- and multivariable Cox regression analyses. Of 102 patients with complete information on p53 status, 44 (43.1%) were p53 positive, and they more often harbored concomitant carcinoma in situ (50.0% vs. 27.6%; P=0.032) and 1973 WHO grade 3 (97.7% vs. 69.0%; P=0.001) compared to their p53 negative counterparts. Of 79

  12. p53 Reactivation by PRIMA-1(Met) (APR-246) sensitises (V600E/K)BRAF melanoma to vemurafenib.

    PubMed

    Krayem, Mohammad; Journe, Fabrice; Wiedig, Murielle; Morandini, Renato; Najem, Ahmad; Salès, François; van Kempen, Leon C; Sibille, Catherine; Awada, Ahmad; Marine, Jean-Christophe; Ghanem, Ghanem

    2016-03-01

    Intrinsic and acquired resistance of metastatic melanoma to (V600E/K)BRAF and/or MEK inhibitors, which is often caused by activation of the PI3K/AKT survival pathway, represents a major clinical challenge. Given that p53 is capable of antagonising PI3K/AKT activation we hypothesised that pharmacological restoration of p53 activity may increase the sensitivity of BRAF-mutant melanoma to MAPK-targeted therapy and eventually delay and/or prevent acquisition of drug resistance. To test this possibility we exposed a panel of vemurafenib-sensitive and resistant (innate and acquired) (V600E/K)BRAF melanomas to a (V600E/K)BRAF inhibitor (vemurafenib) alone or in combination with a direct p53 activator (PRIMA-1(Met)/APR-246). Strikingly, PRIMA-1(Met) synergised with vemurafenib to induce apoptosis and suppress proliferation of (V600E/K)BRAF melanoma cells in vitro and to inhibit tumour growth in vivo. Importantly, this drug combination decreased the viability of both vemurafenib-sensitive and resistant melanoma cells irrespectively of the TP53 status. Notably, p53 reactivation was invariably accompanied by PI3K/AKT pathway inhibition, the activity of which was found as a dominant resistance mechanism to BRAF inhibition in our lines. From all various combinatorial modalities tested, targeting the MAPK and PI3K signalling pathways through p53 reactivation or not, the PRIMA-1(Met)/vemurafenib combination was the most cytotoxic. We conclude that PRIMA-1(Met) through its ability to directly reactivate p53 regardless of the mechanism causing its deactivation, and thereby dampen PI3K signalling, sensitises (V600E/K)BRAF-positive melanoma to BRAF inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways.

    PubMed

    Grassi, Elisa Stellaria; Vezzoli, Valeria; Negri, Irene; Lábadi, Árpád; Fugazzola, Laura; Vitale, Giovanni; Persani, Luca

    2015-11-03

    Thyroid cancer is the most common endocrine malignancy with increasing incidence worldwide.The majority of thyroid cancer cases are well differentiated with favorable outcome. However, undifferentiated thyroid cancers are one of the most lethal human malignancies because of their invasiveness, metastatization and refractoriness even to the most recently developed therapies.In this study we show for the first time a significant hyperactivation of ROCK/HDAC6 pathway in thyroid cancer tissues, and its negative correlation with p53 DNA binding ability.We demonstrate that a small compound, SP600125 (SP), is able to induce cell death selectively in undifferentiated thyroid cancer cell lines by specifically acting on the pathogenic pathways of cancer development. In detail, SP acts on the ROCK/HDAC6 pathway involved in dedifferentiation and invasiveness of undifferentiated human cancers, by restoring its physiological activity level. As main consequence, cancer cell migration is inhibited and, at the same time, cell death is induced through the mitotic catastrophe. Moreover, SP exerts a preferential action on the mutant p53 by increasing its DNA binding ability. In TP53-mutant cells that survive mitotic catastrophe this process results in p21 induction and eventually lead to premature senescence. In conclusion, SP has been proved to be able to simultaneously block cell replication and migration, the two main processes involved in cancer development and dissemination, making it an ideal candidate for developing new drugs against anaplastic thyroid cancer.

  14. p53 suppresses hyper-recombination by modulating BRCA1 function

    PubMed Central

    Dong, Chao; Zhang, Fengmei; Luo, Yue; Wang, Hui; Zhao, Xipeng; Guo, Gongshe; Powell, Simon N.; Feng, Zhihui

    2015-01-01

    Both p53 and BRCA1 are tumor suppressors and are involved in a number of cellular processes including cell cycle arrest, apoptosis, transcriptional regulation, and DNA damage repair. Some studies have suggested that the association of BRCA1 and p53 is required for transcriptional regulation of genes involved in cell replication and DNA repair pathways. However, the relationship between the two proteins in molecular mechanisms of DNA repair is still not clear. Therefore, we sought to determine whether there is a functional link between p53 and BRCA1 in DNA repair. Firstly, using a plasmid recombination substrate, pDR-GFP, integrated into the genome of breast cancer cell line MCF7, we have demonstrated that p53 suppressed Rad51-mediated hyper-recombinational repair by two independent cell models of HPV-E6 induced p53 inactivation and p53 knockdown assay. Our study further indicated that p53 mediated homologous recombination (HR) through inhibiting BRCA1 over-function via mechanism of transcription regulation in response to DNA repair. Since it was found p53 and BRCA1 existed in a protein complex, indicating both proteins may be associated at post-transcriptional level. Moreover, defective p53-induced hyper-recombination was associated with cell radioresistance and chromosomal stability, strongly supporting the involvement of p53 in the inhibition of hyper-recombination, which led to genetic stability and cellular function in response to DNA damage. In addition, it was found that p53 loss rescued BRCA1 deficiency via recovering HR and chromosomal stability, suggesting that p53 is also involved in the HR-inhibition independently of BRCA1. Thus, our data indicated that p53 was involved in inhibiting recombination by both BRCA1-dependent and -independent mechanisms, and there is a functional link between p53-suppression and BRCA1-promotion in regulation of HR activity at transcription level and possible post-transcription level. PMID:26162908

  15. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity

    PubMed Central

    Xiong, Rui; Zhou, Wenbo; Siegel, David; Kitson, Russell R. A.; Freed, Curt R.; Moody, Christopher J.

    2015-01-01

    A potential cause of neurodegenerative diseases, including Parkinson’s disease (PD), is protein misfolding and aggregation that in turn leads to neurotoxicity. Targeting Hsp90 is an attractive strategy to halt neurodegenerative diseases, and benzoquinone ansamycin (BQA) Hsp90 inhibitors such as geldanamycin (GA) and 17-(allylamino)-17-demethoxygeldanamycin have been shown to be beneficial in mutant A53T α-synuclein PD models. However, current BQA inhibitors result in off-target toxicities via redox cycling and/or arylation of nucleophiles at the C19 position. We developed novel 19-substituted BQA (19BQA) as a means to prevent arylation. In this study, our data demonstrated that 19-phenyl-GA, a lead 19BQA in the GA series, was redox stable and exhibited little toxicity relative to its parent quinone GA in human dopaminergic SH-SY5Y cells as examined by oxygen consumption, trypan blue, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), and apoptosis assays. Meanwhile, 19-phenyl-GA retained the ability to induce autophagy and potentially protective heat shock proteins (HSPs) such as Hsp70 and Hsp27. We found that transduction of A53T, but not wild type (WT) α-synuclein, induced toxicity in SH-SY5Y cells. 19-Phenyl-GA decreased oligomer formation and toxicity of A53T α-synuclein in transduced cells. Mechanistic studies indicated that mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase signaling was activated by A53T but not WT α-synuclein, and 19-phenyl-GA decreased mTOR activation that may be associated with A53T α-synuclein toxicity. In summary, our results indicate that 19BQAs such as 19-phenyl-GA may provide a means to modulate protein-handling systems including HSPs and autophagy, thereby reducing the aggregation and toxicity of proteins such as mutant A53T α-synuclein. PMID:26405178

  16. Genome-wide effects of MELK-inhibitor in triple-negative breast cancer cells indicate context-dependent response with p53 as a key determinant

    PubMed Central

    Simon, Marisa; Mesmar, Fahmi; Helguero, Luisa

    2017-01-01

    Triple-negative breast cancer (TNBC) is an aggressive, highly recurrent breast cancer subtype, affecting approximately one-fifth of all breast cancer patients. Subpopulations of treatment-resistant cancer stem cells within the tumors are considered to contribute to disease recurrence. A potential druggable target for such cells is the maternal embryonic leucine-zipper kinase (MELK). MELK expression is upregulated in mammary stem cells and in undifferentiated cancers, where it correlates with poor prognosis and potentially mediates treatment resistance. Several MELK inhibitors have been developed, of which one, OTSSP167, is currently in clinical trials. In order to better understand how MELK and its inhibition influence TNBC, we verified its anti-proliferative and apoptotic effects in claudin-low TNBC cell lines MDA-MB-231 and SUM-159 using MTS assays and/or trypan blue viability assays together with analysis of PARP cleavage. Then, using microarrays, we explored which genes were affected by OTSSP167. We demonstrate that different sets of genes are regulated in MDA-MB-231 and SUM-159, but in both cell lines genes involved in cell cycle, mitosis and protein metabolism and folding were regulated. We identified p53 (TP53) as a potential upstream regulator of the regulated genes. Using western blot we found that OTSSP167 downregulates mutant p53 in all tested TNBC cell lines (MDA-MB-231, SUM-159, and BT-549), but upregulates wild-type p53 in the luminal A subtype MCF-7 cell line. We propose that OTSSP167 might have context-dependent or off-target effects, but that one consistent mechanism of action could involve the destabilization of mutant p53. PMID:28235006

  17. P53 Mutation Analysis to Predict Tumor Response in Patients Undergoing Neoadjuvant Treatment for Locally Advanced Breast Cancer

    DTIC Science & Technology

    2006-10-01

    then sequenced (for GeneChip- positiv SSCP (for GeneChip-negative). We have received a total of 43 core breast biopsy DNA samples from the UNC... quantitative luciferase reporter. Both reporters exploit a “rheostatable” promoter for p53 expression and utilize the “delitto perfetto” in vivo... quantitative luciferase-based assay is also being used to characterize the altered function sistent an tion T mutants in greater detail. Preliminary

  18. Prion propagation in cells expressing PrP glycosylation mutants.

    PubMed

    Salamat, Muhammad K; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-04-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection.

  19. KDM4B/JMJD2B is a p53 target gene that modulates the amplitude of p53 response after DNA damage

    PubMed Central

    Moon, Eui Jung; Razorenova, Olga V.; Krieg, Adam J.; von Eyben, Rie

    2017-01-01

    Abstract The p53 tumor suppressor protein plays a critical role in orchestrating the genomic response to various stress signals by acting as a master transcriptional regulator. Differential gene activity is controlled by transcription factors but also dependent on the underlying chromatin structure, especially on covalent histone modifications. After screening different histone lysine methyltransferases and demethylases, we identified JMJD2B/KDM4B as a p53-inducible gene in response to DNA damage. p53 directly regulates JMJD2B gene expression by binding to a canonical p53-consensus motif in the JMJD2B promoter. JMJD2B induction attenuates the transcription of key p53 transcriptional targets including p21, PIG3 and PUMA, and this modulation is dependent on the catalytic capacity of JMJD2B. Conversely, JMJD2B silencing led to an enhancement of the DNA-damage driven induction of p21 and PIG3. These findings indicate that JMJD2B acts in an auto-regulatory loop by which p53, through JMJD2B activation, is able to influence its own transcriptional program. Functionally, exogenous expression of JMJD2B enhanced subcutaneous tumor growth of colon cancer cells in a p53-dependent manner, and genetic inhibition of JMJD2B impaired tumor growth in vivo. These studies provide new insights into the regulatory effect exerted by JMJD2B on tumor growth through the modulation of p53 target genes. PMID:28073943

  20. Modulation of mutant Huntingtin aggregates and toxicity by human myeloid leukemia factors.

    PubMed

    Banerjee, Manisha; Datta, Moumita; Bhattacharyya, Nitai P

    2017-01-01

    Increased poly glutamine (polyQ) stretch at N-terminal of Huntingtin (HTT) causes Huntington's disease. HTT interacts with large number of proteins, although the preference for such interactions with wild type or mutated HTT protein remains largely unknown. HYPK, an intrinsically unstructured protein chaperone and interactor of mutant HTT was found to interact with myeloid leukemia factor 1 (MLF1) and 2 (MLF2). To identify the role of these two proteins in mutant HTT mediated aggregate formation and toxicity in a cell model, both the proteins were found to preferentially interact with the mutated N-terminal HTT. They significantly reduced the number of cells containing mutant HTT aggregates and subsequent apoptosis in Neuro2A cells. Additionally, in FRAP assay, mobile fraction of mutant HTT aggregates was increased in the presence of MLF1 or MLF2. Further, MLF1 could release transcription factors like p53, CBP and CREB from mutant HTT aggregates. Moreover, in HeLa cell co-expressing mutant HTT exon1 and full length MLF1, p53 was released from the aggregates, leading to the recovery of the expression of the GADD45A transcript, a p53 regulated gene. Taking together, these results showed that MLF1 and MLF2 modulated the formation of aggregates and induction of apoptosis as well as the expressions of genes indirectly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. p53 -Dependent and -Independent Nucleolar Stress Responses

    PubMed Central

    Olausson, Karl Holmberg; Nistér, Monica; Lindström, Mikael S.

    2012-01-01

    The nucleolus has emerged as a cellular stress sensor and key regulator of p53-dependent and -independent stress responses. A variety of abnormal metabolic conditions, cytotoxic compounds, and physical insults induce alterations in nucleolar structure and function, a situation known as nucleolar or ribosomal stress. Ribosomal proteins, including RPL11 and RPL5, become increasingly bound to the p53 regulatory protein MDM2 following nucleolar stress. Ribosomal protein binding to MDM2 blocks its E3 ligase function leading to stabilization and activation of p53. In this review we focus on a number of novel regulators of the RPL5/RPL11-MDM2-p53 complex including PICT1 (GLTSCR2), MYBBP1A, PML and NEDD8. p53-independent pathways mediating the nucleolar stress response are also emerging and in particular the negative control that RPL11 exerts on Myc oncoprotein is of importance, given the role of Myc as a master regulator of ribosome biogenesis. We also briefly discuss the potential of chemotherapeutic drugs that specifically target RNA polymerase I to induce nucleolar stress. PMID:24710530

  2. On p53 revival using system oriented drug dosage design.

    PubMed

    Haseeb, Muhammad; Azam, Shumaila; Bhatti, A I; Azam, Rizwan; Ullah, Mukhtar; Fazal, Sahar

    2017-02-21

    We propose a new paradigm in the drug design for the revival of the p53 pathway in cancer cells. It is shown that the current strategy of using small molecule based Mdm2 inhibitors is not enough to adequately revive p53 in cancerous cells, especially when it comes to the extracting pulsating behavior of p53. This fact has come to notice when a novel method for the drug dosage design is introduced using system oriented concepts. As a test case, small molecule drug Mdm2 repressor Nutlin 3a is considered. The proposed method determines the dose of Nutlin to revive p53 pathway functionality. For this purpose, PBK dynamics of Nutlin have also been integrated with p53 pathway model. The p53 pathway is the focus of researchers for the last thirty years for its pivotal role as a frontline cancer suppressant protein due to its effect on cell cycle checkpoints and cell apoptosis in response to a DNA strand break. That is the reason for finding p53 being absent in more than 50% of tumor cancers. Various drugs have been proposed to revive p53 in cancer cells. Small molecule based drugs are at the foremost and are the subject of advanced clinical trials. The dosage design of these drugs is an important issue. We use control systems concepts to develop the drug dosage so that the cancer cells can be treated in appropriate time. We investigate by using a computational model how p53 protein responds to drug Nutlin 3a, an agent that interferes with the MDM2-mediated p53 regulation. The proposed integrated model describes in some detail the regulation network of p53 including the negative feedback loop mediated by MDM2 and the positive feedback loop mediated by Mdm2 mRNA as well as the reversible represses of MDM2 caused by Nutlin. The reported PBK dynamics of Nutlin 3a are also incorporated to see the full effect. It has been reported that p53 response to stresses in two ways. Either it has a sustained (constant) p53 response, or there are oscillations in p53 concentration. The

  3. Modulation of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1) gene by Zac1 through the antagonistic regulators p53 and histone deacetylase 1 in HeLa Cells.

    PubMed

    Liu, Pei-Yao; Chan, James Yi-Hsin; Lin, Hsiu-Chen; Wang, Sung-Ling; Liu, Shu-Ting; Ho, Ching-Liang; Chang, Li-Chien; Huang, Shih-Ming

    2008-07-01

    Zac1 is a novel seven-zinc finger protein which possesses the ability to bind specifically to GC-rich DNA elements. Zac1 not only promotes apoptosis and cell cycle arrest but also acts as a transcriptional cofactor for p53 and a number of nuclear receptors. Our previous study indicated that the enhancement of p53 activity by Zac1 is much more pronounced in HeLa cells compared with other cell lines tested. This phenomenon might be due to the coactivator effect of Zac1 on p53 and the ability of Zac1 to reverse E6 inhibition of p53. In the present study, we showed that Zac1 acted synergistically with either p53 or a histone deacetylase inhibitor, trichostatin A, to enhance p21(WAF1/Cip1) promoter activity. We showed that Zac1 physically interacted with some nuclear receptor corepressors such as histone deacetylase 1 (HDAC1) and mSin3a, and the induction of p21(WAF1/Cip1) gene and protein by Zac1 was suppressed by either overexpressing HDAC1 or its deacetylase-dead mutant. In addition, our data suggest that trichostatin A-induced p21(WAF1/Cip1) protein expression might be mediated through a p53-independent and HDAC deacetylase-independent pathway. Taken together, our data suggest that Zac1 might be involved in regulating the p21(WAF1/Cip1) gene and protein expression through its protein-protein interaction with p53 and HDAC1 in HeLa cells.

  4. Knockdown of p53 suppresses Nanog expression in embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelalim, Essam Mohamed, E-mail: emohamed@qf.org.qa; Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia

    2014-01-10

    Highlights: •We investigate the role of p53 in ESCs in the absence of DNA damage. •p53 knockdown suppresses ESC proliferation. •p53 knockdown downregulates Nanog expression. •p53 is essential for mouse ESC self-renewal. -- Abstract: Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21more » and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.« less

  5. Role of Tumor Suppressor P53 in Megakaryopoiesis and Platelet Function

    PubMed Central

    Apostolidis, Pani A.; Woulfe, Donna S.; Chavez, Massiel; Miller, William M.; Papoutsakis, Eleftherios T.

    2011-01-01

    The pathobiological role of p53 has been widely studied, however its role in normophysiology is relatively unexplored. We previously showed that p53 knock-down increased ploidy in megakaryocytic cultures. This study aims to examine the effect of p53 loss on in vivo megakaryopoiesis, platelet production and function, and to investigate the basis for greater ploidy in p53−/− megakaryocytic cultures. Here, we used flow cytometry to analyze ploidy, DNA synthesis and apoptosis in murine cultured and bone marrow megakaryocytes following thrombopoietin administration and to analyze fibrinogen binding to platelets in vitro. Culture of p53−/− marrow cells for 6 days with thrombopoietin gave rise to 1.7-fold more megakaryocytes, 26.1±3.6% of which reached ploidy classes ≥64N compared to 8.2±0.9% of p53+/+ megakaryocytes. This was due to 30% greater DNA synthesis in p53−/− megakaryocytes and 31% greater apoptosis in p53+/+ megakaryocytes by day 4 of culture. Although the bone marrow and spleen steady-state megakaryocytic content and ploidy were similar in p53+/+ and p53−/− mice, thrombopoietin administration resulted in increased megakaryocytic polyploidization in p53−/− mice. Although their platelet counts were normal, p53−/− mice exhibited significantly longer bleeding times and p53−/− platelets were less sensitive than p53+/+ platelets to agonist-induced fibrinogen binding and P-selectin secretion. In summary, our in vivo and ex-vivo studies indicate that p53 loss leads to increased polyploidization during megakaryopoiesis. Our findings also suggest for the first time a direct link between p53 loss and the development of fully functional platelets resulting in hemostatic deficiencies. PMID:22024107

  6. Tyrosinase overexpression promotes ATM-dependent p53 phosphorylation by quercetin and sensitizes melanoma cells to dacarbazine.

    PubMed

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; Limesand, Kirsten H; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr(+) cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 microM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 microM). Both pcDNA3 and Tyr(+) DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr(+) cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr(+) cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase.

  7. Tyrosinase Overexpression Promotes ATM-Dependent p53 Phosphorylation by Quercetin and Sensitizes Melanoma Cells to Dacarbazine

    PubMed Central

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; H. Limesand, Kirsten; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 μM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 μM). Both pcDNA3 and Tyr DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase. PMID:18791269

  8. Expression of P53 protein after exposure to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Salazar, A. M.; Salvador, C.; Ruiz-Trejo, C.; Ostrosky, P.; Brandan, M. E.

    2001-10-01

    One of the most important tumor suppressor genes is p53 gene, which is involved in apoptotic cell death, cell differentiation and cell cycle arrest. The expression of p53 gene can be evaluated by determining the presence of P53 protein in cells using Western Blot assay with a chemiluminescent method. This technique has shown variabilities that are due to biological factors. Film developing process can influence the quality of the p53 bands obtained. We irradiated tumor cell lines and human peripheral lymphocytes with 137Cs and 60Co gamma rays to standardize irradiation conditions, to compare ionizing radiation with actinomycin D and to reduce the observed variability of P53 protein induction levels. We found that increasing radiation doses increase P53 protein induction while it decreases viability. We also conclude that ionizing radiation could serve as a positive control for Western Blot analysis of protein P53. In addition, our results show that the developing process may play an important role in the quality of P53 protein bands and data interpretation.

  9. An adaptive molecular timer in p53-meidated cell fate decision

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Peng; Wang, Ping; Liu, Feng; Wang, Wei

    The tumor suppressor p53 decides cellular outcomes in the DNA damage response. It is intriguing to explore the link between p53 dynamics and cell fates. We developed a theoretical model of p53 signaling network to clarify the mechanism of cell fate decision mediated by its dynamics. We found that the interplay between p53-Mdm2 negative feedback loop and p53-PTEN-Mdm2 positive feedback loop shapes p53 dynamics. Depending on the intensity of DNA damage, p53 shows three modes of dynamics: persistent pulses, two-phase dynamics with pulses followed by sustained high levels and straightforward high levels. Especially, p53 shows two-phase dynamics upon moderated damage and the required number of p53 pulses before apoptosis induction decreases with increasing DNA damage. Our results suggested there exists an adaptive molecular timer that determines whether and when the apoptosis switch should be triggered. We clarified the mechanism behind the switching of p53 dynamical modes by bifurcation analysis. Moreover, we reproduced the experimental results that drug additions alter p53 pulses to sustained p53 activation and leads to senescence. Our work may advance the understanding the significance of p53 dynamics in tumor suppression. This work was supported by National Natural Science Foundation of China (Nos. 11175084, 11204126 and 31361163003).

  10. Minnelide/Triptolide Impairs Mitochondrial Function by Regulating SIRT3 in P53-Dependent Manner in Non-Small Cell Lung Cancer.

    PubMed

    Kumar, Ajay; Corey, Catherine; Scott, Iain; Shiva, Sruti; D'Cunha, Jonathan

    2016-01-01

    Minnelide/Triptolide (TL) has recently emerged as a potent anticancer drug in non-small cell lung cancer (NSCLC). However, the precise mechanism of its action remains ambiguous. In this study, we elucidated the molecular basis for TL-induced cell death in context to p53 status. Cell death was attributed to dysfunction of mitochondrial bioenergetics in p53-deficient cells, which was characterized by decreased mitochondrial respiration, steady-state ATP level and membrane potential, but augmented reactive oxygen species (ROS). Increased ROS production resulted in oxidative stress in TL-treated cells. This was exhibited by elevated nuclear levels of a redox-sensitive transcriptional factor, NF-E2-related factor-2 (NRF2), along with diminished cellular glutathione (GSH) content. We further demonstrated that in the absence of p53, TL blunted the expression of mitochondrial SIRT3 triggering increased acetylation of NDUAF9 and succinate dehydrogenase, components of complexes I and II of the electron transport chain (ETC). TL-mediated hyperacetylation of complexes I and II proteins and these complexes displayed decreased enzymatic activities. We also provide the evidence that P53 regulate steady-state level of SIRT3 through Proteasome-Pathway. Finally, forced overexpression of Sirt3, but not deacetylase-deficient mutant of Sirt3 (H243Y), restored the deleterious effect of TL on p53-deficient cells by rescuing mitochondrial bioenergetics. On contrary, Sirt3 deficiency in the background of wild-type p53 triggered TL-induced mitochondrial impairment that echoed TL effect in p53-deficeint cells. These findings illustrate a novel mechanism by which TL exerts its potent effects on mitochondrial function and ultimately the viability of NSCLC tumor.

  11. Dopaminergic Neuron-Specific Deletion of p53 Gene Attenuates Methamphetamine Neurotoxicity.

    PubMed

    Lu, Tao; Kim, Paul P; Greig, Nigel H; Luo, Yu

    2017-08-01

    p53 plays an essential role in the regulation of cell death in dopaminergic (DA) neurons and its activation has been implicated in the neurotoxic effects of methamphetamine (MA). However, how p53 mediates MA neurotoxicity remains largely unknown. In this study, we examined the effect of DA-specific p53 gene deletion in DAT-p53KO mice. Whereas in vivo MA binge exposure reduced locomotor activity in wild-type (WT) mice, this was significantly attenuated in DAT-p53KO mice and associated with significant differences in the levels of the p53 target genes BAX and p21 between WT and DAT-p53KO. Notably, DA-specific deletion of p53 provided protection of substantia nigra pars reticulata (SNpr) tyrosine hydroxylase (TH) positive fibers following binge MA, with DAT-p53KO mice having less decline of TH protein levels in striatum versus WT mice. Whereas DAT-p53KO mice demonstrated a consistently higher density of TH fibers in striatum compared to WT mice at 10 days after MA exposure, DA neuron counts within the substantia nigra pars compacta (SNpc) were similar. Finally, supportive of these results, administration of a p53-specific inhibitor (PFT-α) provided a similarly protective effect on MA binge-induced behavioral deficits. Neither DA specific p53 deletion nor p53 pharmacological inhibition affected hyperthermia induced by MA binge. These findings demonstrate a specific contribution of p53 activation in behavioral deficits and DA neuronal terminal loss by MA binge exposure.

  12. Evolution of TEM-type enzymes: biochemical and genetic characterization of two new complex mutant TEM enzymes, TEM-151 and TEM-152, from a single patient.

    PubMed

    Robin, Frédéric; Delmas, Julien; Schweitzer, Cédric; Tournilhac, Olivier; Lesens, Olivier; Chanal, Catherine; Bonnet, Richard

    2007-04-01

    Two clinical isolates of Escherichia coli, CF1179 and CF1295, were isolated from a patient hospitalized in the hematology unit of the University Hospital of Clermont-Ferrand, Clermont-Ferrand, France. They were resistant to penicillin-clavulanate combinations and to ceftazidime. The double-disk synergy test was positive only for isolate CF1179. Molecular comparison of the isolates showed that they were clonally related. E. coli recombinant strains exhibiting the resistance phenotype of the clinical strains were obtained by cloning. The clones corresponding to strains CF1179 and CF1295 produced TEM-type beta-lactamases with pI values of 5.7 and 5.3, respectively. Sequencing analysis revealed two novel blaTEM genes encoding closely related complex mutant TEM enzymes, designated TEM-151 (pI 5.3) and TEM-152 (pI 5.7). These two genes also harbored a new promoter region which presented a 9-bp deletion. The two novel beta-lactamases differed from the parental enzyme, TEM-1, by the substitution Arg164His, previously observed in extended-spectrum beta-lactamases (ESBLs), and by the substitutions Met69Val and Asn276Asp, previously observed in the inhibitor-resistant penicillinase TEM-36/IRT-7. They differed by two amino acid substitutions: TEM-152 harbored a Glu240Lys ESBL-type substitution and TEM-151 had an Ala284Gly substitution. Functional analysis of TEM-151 and TEM-152 showed that both enzymes had hydrolytic activity against ceftazidime (kcat, 5 and 16 s-1, respectively). TEM-152 was more resistant than TEM-151 to the inhibitor clavulanic acid (50% inhibitory concentrations, 1 versus 0.17 microM). These results confirm the evolution of TEM-type enzymes toward complex enzymes harboring the two kinds of substitutions which confer an extended spectrum of action against beta-lactam antibiotics and resistance to inhibitors.

  13. P53-dependent antiproliferative and pro-apoptotic effects of trichostatin A (TSA) in glioblastoma cells.

    PubMed

    Bajbouj, K; Mawrin, C; Hartig, R; Schulze-Luehrmann, J; Wilisch-Neumann, A; Roessner, A; Schneider-Stock, R

    2012-05-01

    Glioblastomas are known to be highly chemoresistant, but HDAC inhibitors (HDACi) have been shown to be of therapeutic relevance for this aggressive tumor type. We treated U87 glioblastoma cells with trichostatin A (TSA) to define potential epigenetic targets for HDACi-mediated antitumor effects. Using a cDNA array analysis covering 96 cell cycle genes, cyclin-dependent kinase inhibitor p21(WAF1) was identified as the major player in TSA-induced cell cycle arrest. TSA slightly inhibited proliferation and viability of U87 cells, cumulating in a G1/S cell cycle arrest. This effect was accompanied by a significant up-regulation of p53 and its transcriptional target p21(WAF1) and by down-regulation of key G1/S regulators, such as cdk4, cdk6, and cyclin D1. Nevertheless, TSA did not induce apoptosis in U87 cells. As expected, TSA promoted the accumulation of total acetylated histones H3 and H4 and a decrease in endogenous HDAC activity. Characterizing the chromatin modulation around the p21(WAF1) promoter after TSA treatment using chromatin immunoprecipitation, we found (1) a release of HDAC1, (2) an increase of acetylated H4 binding, and (3) enhanced recruitment of p53. p53-depleted U87 cells showed an abrogation of the G1/S arrest and re-entered the cell cycle. Immunofluorescence staining revealed that TSA induced the nuclear translocation of p21(WAF1) verifying a cell cycle arrest. On the other hand, a significant portion of p21(WAF1) was present in the cytoplasmic compartment causing apoptosis resistance. Furthermore, TSA-treated p53-mutant cell line U138 failed to show an induction in p21(WAF1), showed a deficient G2/M checkpoint, and underwent mitotic catastrophe. We suggest that HDAC inhibition in combination with other clinically used drugs may be considered an effective strategy to overcome chemoresistance in glioblastoma cells.

  14. Substrate phosphorylation and feedback regulation in JFK-promoted p53 destabilization.

    PubMed

    Sun, Luyang; Shi, Lei; Wang, Feng; Huangyang, Peiwei; Si, Wenzhe; Yang, Jie; Yao, Zhi; Shang, Yongfeng

    2011-02-11

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Previously, we reported that JFK, the only Kelch domain-containing F-box protein in human, promotes ubiquitination and degradation of p53 and that unlike the other E3 ligases for p53, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Here, we report that the substrate recognition by JFK requires phosphorylation of p53 in its central core region by CSN (COP9 signalosome)-associated kinase. Significantly, inhibition of CSN-associated kinase activity or knockdown of CSN5 impairs JFK-promoted p53 degradation, enhances p53-dependent transcription, and promotes cell growth suppression, G(1) arrest, and apoptosis. Moreover, we showed that JFK is transcriptionally regulated by p53 and forms an auto-regulatory negative feedback loop with p53. These data may shed new light on the functional connection between CSN, Skp1-Cul1-F-box ubiquitin ligase, and p53 and provide a molecular mechanism for the regulation of JFK-promoted p53 degradation.

  15. Substrate Phosphorylation and Feedback Regulation in JFK-promoted p53 Destabilization*

    PubMed Central

    Sun, Luyang; Shi, Lei; Wang, Feng; Huangyang, Peiwei; Si, Wenzhe; Yang, Jie; Yao, Zhi; Shang, Yongfeng

    2011-01-01

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Previously, we reported that JFK, the only Kelch domain-containing F-box protein in human, promotes ubiquitination and degradation of p53 and that unlike the other E3 ligases for p53, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Here, we report that the substrate recognition by JFK requires phosphorylation of p53 in its central core region by CSN (COP9 signalosome)-associated kinase. Significantly, inhibition of CSN-associated kinase activity or knockdown of CSN5 impairs JFK-promoted p53 degradation, enhances p53-dependent transcription, and promotes cell growth suppression, G1 arrest, and apoptosis. Moreover, we showed that JFK is transcriptionally regulated by p53 and forms an auto-regulatory negative feedback loop with p53. These data may shed new light on the functional connection between CSN, Skp1-Cul1-F-box ubiquitin ligase, and p53 and provide a molecular mechanism for the regulation of JFK-promoted p53 degradation. PMID:21127074

  16. 40 Years of Research Put p53 in Translation

    PubMed Central

    Marcel, Virginie; Nguyen Van Long, Flora; Diaz, Jean-Jacques

    2018-01-01

    Since its discovery in 1979, p53 has shown multiple facets. Initially the tumor suppressor p53 protein was considered as a stress sensor able to maintain the genome integrity by regulating transcription of genes involved in cell cycle arrest, apoptosis and DNA repair. However, it rapidly came into light that p53 regulates gene expression to control a wider range of biological processes allowing rapid cell adaptation to environmental context. Among them, those related to cancer have been extensively documented. In addition to its role as transcription factor, scattered studies reported that p53 regulates miRNA processing, modulates protein activity by direct interaction or exhibits RNA-binding activity, thus suggesting a role of p53 in regulating several layers of gene expression not restricted to transcription. After 40 years of research, it appears more and more clearly that p53 is strongly implicated in translational regulation as well as in the control of the production and activity of the translational machinery. Translation control of specific mRNAs could provide yet unsuspected capabilities to this well-known guardian of the genome.

  17. Generation of gene-corrected iPSC line from Parkinson's disease patient iPSC line with alpha-SNCA A53T mutation.

    PubMed

    Lee, Seo-Young; Jeong, SangKyun; Kim, Janghwan; Chung, Sun-Ku

    2018-06-09

    Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder. PD can result from a mutation of alpha-synuclein (α-SNCA), such as α-SNCA A53T. Using episomal vectors, induced pluripotent stem cells (iPSCs) were generated from skin fibroblasts with the α-SNCA A53T mutation. A huge bacterial artificial chromosome (BAC) harboring the normal α-SNCA gene successfully corrected the α-SNCA A53T-mutant iPSCs. Melting curve analysis for allelic composition indicated that the BAC DNA was precisely targeted to the α-SNCA A53T mutation allele, without random integration. The corrected PD-iPSCs displayed the normal karyotype and pluripotency, with the capability to differentiate to any cell type. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress.

    PubMed

    Feng, Wenyi; Bachant, Jeff; Collingwood, David; Raghuraman, M K; Brewer, Bonita J

    2009-12-01

    Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.

  19. p53-Mdm2 interaction inhibitors as novel nongenotoxic anticancer agents.

    PubMed

    Nayak, Surendra Kumar; Khatik, Gopal L; Narang, Rakesh; Monga, Vikramdeep; Chopra, Harish Kumar

    2017-06-23

    Cancer is a major global health problem with high mortality rate. Most of clinically used anticancer agents induce apoptosis through genotoxic stress at various stages of cell cycle and activation of p53. Acting as a tumor suppressor p53 plays a vital role in preventing tumor development. Tumor suppressor function of p53 is effectively antagonized by its direct interaction with murine double minute 2 (Mdm2) proteins via multiple mechanisms. Thus, p53-Mdm2 interaction has been found to be an important target for the development of novel anticancer agents. Currently, nutlin, spirooxindole, isoquilinone and piperidinone analogues inhibiting p53-Mdm2 interaction are found to be promising in the treatment of cancer. The current review focused to scrutinize the structural aspects of p53-Mdm2 interaction inhibitors. The present study provides a detailed collection of published information on different classes of inhibitors of p53-Mdm2 interaction as potential anticancer agents. The review highlighted the structural aspects of various reported p53-Mdm2 inhibitor for optimization. In the last few years, different classes of inhibitors of p53-Mdm2 have been designed and developed, and seven such compounds are being evaluated in clinical trials as new anticancer drugs. Further, to explore the role of p53 protein as a potential target for anticancer drug development, in this review, the mechanism of Mdm2 mediated inactivation of p53 and recent developments on p53-Mdm2 interactions inhibitors are discussed. Agents designed to block the p53-Mdm2 interaction may have a therapeutic potential for treatment of a subset of human cancers retaining wild-type p53. We review herein the recent advances in the design and development of potent small molecules as p53-Mdm2 inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. p53 regulates the mevalonate pathway in human glioblastoma multiforme

    PubMed Central

    Laezza, C; D'Alessandro, A; Di Croce, L; Picardi, P; Ciaglia, E; Pisanti, S; Malfitano, A M; Comegna, M; Faraonio, R; Gazzerro, P; Bifulco, M

    2015-01-01

    The mevalonate (MVA) pathway is an important metabolic pathway implicated in multiple aspects of tumorigenesis. In this study, we provided evidence that p53 induces the expression of a group of enzymes of the MVA pathway including 3′-hydroxy-3′-methylglutaryl-coenzyme A reductase, MVA kinase, farnesyl diphosphate synthase and farnesyl diphosphate farnesyl transferase 1, in the human glioblastoma multiforme cell line, U343 cells, and in normal human astrocytes, NHAs. Genetic and pharmacologic perturbation of p53 directly influences the expression of these genes. Furthermore, p53 is recruited to the gene promoters in designated p53-responsive elements, thereby increasing their transcription. Such effect was abolished by site-directed mutagenesis in the p53-responsive element of promoter of the genes. These findings highlight another aspect of p53 functions unrelated to tumor suppression and suggest p53 as a novel regulator of the MVA pathway providing insight into the role of this pathway in cancer progression. PMID:26469958

  1. Molecular and immunohistochemical analysis of P53 in phaeochromocytoma.

    PubMed Central

    Dahia, P. L.; Aguiar, R. C.; Tsanaclis, A. M.; Bendit, I.; Bydlowski, S. P.; Abelin, N. M.; Toledo, S. P.

    1995-01-01

    We searched for mutations of the p53 gene in 25 phaeochromocytomas using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis of the entire conserved region of the gene, encompassing exons 4-8; expression of the p53 protein was assessed by immunohistochemistry. No mutations were found, while a polymorphism in codon 72 was observed. Immunohistochemistry revealed nuclear p53 overexpression in one tumour sample. We conclude that mutations of the 'hotspot' region of the p53 gene do not seem to play a role in the pathogenesis of phaeochromocytoma. Images Figure 1 Figure 2 Figure 3 PMID:7577469

  2. The Prognostic Impact of p53 Expression on Sporadic Colorectal Cancer Is Dependent on p21 Status.

    PubMed

    Kruschewski, Martin; Mueller, Kathrin; Lipka, Sybille; Budczies, Jan; Noske, Aurelia; Buhr, Heinz Johannes; Elezkurtaj, Sefer

    2011-03-11

    The prognostic value of p53 and p21 expression in colorectal cancer is still under debate. We hypothesize that the prognostic impact of p53 expression is dependent on p21 status. The expression of p53 and p21 was immunohistochemically investigated in a prospective cohort of 116 patients with UICC stage II and III sporadic colorectal cancer. The results were correlated with overall and recurrence-free survival. The mean observation period was 51.8 ± 2.5 months. Expression of p53 was observed in 72 tumors (63%). Overall survival was significantly better in patients with p53-positive carcinomas than in those without p53 expression (p = 0.048). No differences were found in recurrence-free survival (p = 0.161). The p53+/p21- combination was seen in 68% (n = 49), the p53+/p21+ combination in 32% (n = 23). Patients with p53+/p21- carcinomas had significantly better overall and recurrence-free survival than those with p53+/p21+ (p < 0.0001 resp. p = 0.003). Our data suggest that the prognostic impact of p53 expression on sporadic colorectal cancer is dependent on p21 status.

  3. Uterine Deletion of Trp53 Compromises Antioxidant Responses in the Mouse Decidua

    PubMed Central

    Burnum, Kristin E.; Hirota, Yasushi; Baker, Erin S.; Yoshie, Mikihiro; Ibrahim, Yehia M.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Daikoku, Takiko

    2012-01-01

    Preterm birth is a global health issue impacting millions of mothers and babies. However, the etiology of preterm birth is not clearly understood. Our recent finding that premature decidual senescence with terminal differentiation is a cause of preterm birth in mice with uterine Trp53 deletion, encoding p53 protein, led us to explore other potential factors that are related to preterm birth. Using proteomics approaches, here, we show that 183 candidate proteins show significant changes in deciduae with Trp53 deletion as compared with normal deciduae. Functional categorization of these proteins unveiled new pathways that are influenced by p53. In particular, down-regulation of a cluster of antioxidant enzymes in p53-deficient deciduae suggests that increased oxidative stress could be one cause of preterm birth in mice harboring uterine deletion of Trp53. PMID:22759378

  4. Effective Targeting of the P53/MDM2 Axis in Preclinical Models of Infant MLL-Rearranged Acute Lymphoblastic Leukemia

    PubMed Central

    Richmond, Jennifer; Carol, Hernan; Evans, Kathryn; High, Laura; Mendomo, Agnes; Robbins, Alissa; Meyer, Claus; Venn, Nicola C.; Marschalek, Rolf; Henderson, Michelle; Sutton, Rosemary; Kurmasheva, Raushan T.; Kees, Ursula R.; Houghton, Peter J.; Smith, Malcolm A.; Lock, Richard B.

    2015-01-01

    Purpose While the overall cure rate for pediatric acute lymphoblastic leukemia (ALL) approaches 90%, infants with ALL harboring translocations in the mixed-lineage leukemia (MLL) oncogene (infant MLL-ALL) experience shorter remission duration and lower survival rates (∼50%). Mutations in the p53 tumor suppressor gene are uncommon in infant MLL-ALL, and drugs that release p53 from inhibitory mechanisms may be beneficial. The purpose of this study was to assess the efficacy of the orally available nutlin, RG7112, against patient-derived MLL-ALL xenografts. Experimental Design Eight MLL-ALL patient-derived xenografts were established in immune-deficient mice, and their molecular features compared with B-lineage ALL and T-ALL xenografts. The sensitivity of MLL-ALL xenografts to RG7112 was assessed in vitro and in vivo, and the ability of RG7112 to induce p53, cell cycle arrest and apoptosis in vivo was evaluated. Results Gene expression analysis revealed that MLL-ALL, B-lineage ALL and T-ALL xenografts clustered according to subtype. Moreover, genes previously reported to be over-expressed in MLL-ALL, including MEIS1, CCNA1, and members of the HOXA family, were significantly up-regulated in MLL-ALL xenografts, confirming their ability to recapitulate the clinical disease. Exposure of MLL-ALL xenografts to RG7112 in vivo caused p53 up-regulation, cell cycle arrest and apoptosis. RG7112 as a single agent induced significant regressions in infant MLL-ALL xenografts. Therapeutic enhancement was observed when RG7112 was assessed using combination treatment with an induction-type regimen (vincristine/dexamethasone/L-asparaginase) against an MLL-ALL xenograft. Conclusion The utility of targeting the p53-MDM2 axis in combination with established drugs for the management of infant MLL-ALL warrants further investigation. PMID:25573381

  5. Hypoxic resistance of KRAS mutant tumor cells to 3-Bromopyruvate is counteracted by Prima-1 and reversed by N-acetylcysteine.

    PubMed

    Orue, Andrea; Chavez, Valery; Strasberg-Rieber, Mary; Rieber, Manuel

    2016-11-18

    The metabolic inhibitor 3-bromopyruvate (3-BrPA) is a promising anti-cancer alkylating agent, shown to inhibit growth of some colorectal carcinoma with KRAS mutation. Recently, we demonstrated increased resistance to 3-BrPA in wt p53 tumor cells compared to those with p53 silencing or mutation. Since hypoxic microenvironments select for tumor cells with diminished therapeutic response, we investigated whether hypoxia unequally increases resistance to 3-BrPA in wt p53 MelJuso melanoma harbouring (Q61L)-mutant NRAS and wt BRAF, C8161 melanoma with (G12D)-mutant KRAS (G464E)-mutant BRAF, and A549 lung carcinoma with a KRAS (G12S)-mutation. Since hypoxia increases the toxicity of the p53 activator, Prima-1 against breast cancer cells irrespective of their p53 status, we also investigated whether Prima-1 reversed hypoxic resistance to 3-BrPA. In contrast to the high susceptibility of hypoxic mutant NRAS MelJuso cells to 3-BrPA or Prima-1, KRAS mutant C8161 and A549 cells revealed hypoxic resistance to 3-BrPA counteracted by Prima-1. In A549 cells, Prima-1 increased p21CDKN1mRNA, and reciprocally inhibited mRNA expression of the SLC2A1-GLUT1 glucose transporter-1 and ALDH1A1, gene linked to detoxification and stem cell properties. 3-BrPA lowered CAIX and VEGF mRNA expression. Death from joint Prima-1 and 3-BrPA treatment in KRAS mutant A549 and C8161 cells seemed mediated by potentiating oxidative stress, since it was antagonized by the anti-oxidant and glutathione precursor N-acetylcysteine. This report is the first to show that Prima-1 kills hypoxic wt p53 KRAS-mutant cells resistant to 3-BrPA, partly by decreasing GLUT-1 expression and exacerbating pro-oxidant stress.

  6. p18(Hamlet) mediates different p53-dependent responses to DNA-damage inducing agents.

    PubMed

    Lafarga, Vanesa; Cuadrado, Ana; Nebreda, Angel R

    2007-10-01

    Cells organize appropriate responses to environmental cues by activating specific signaling networks. Two proteins that play key roles in coordinating stress responses are the kinase p38alpha (MAPK14) and the transcription factor p53 (TP53). Depending on the nature and the extent of the stress-induced damage, cells may respond by arresting the cell cycle or by undergoing cell death, and these responses are usually associated with the phosphorylation of particular substrates by p38alpha as well as the activation of specific target genes by p53. We recently characterized a new p38alpha substrate, named p18(Hamlet) (ZNHIT1), which mediates p53-dependent responses to different genotoxic stresses. Thus, cisplatin or UV light induce stabilization of the p18(Hamlet) protein, which then enhances the ability of p53 to bind to and activate the promoters of pro-apoptotic genes such as NOXA and PUMA leading to apoptosis induction. In a similar way, we report here that p18(Hamlet) can also mediate the cell cycle arrest induced in response to gamma-irradiation, by participating in the p53-dependent upregulation of the cell cycle inhibitor p21(Cip1) (CDKN1A).

  7. p53 as an Effector or Inhibitor of Therapy Response

    PubMed Central

    Ablain, Julien; Poirot, Brigitte; Esnault, Cécile; Lehmann-Che, Jacqueline; de Thé, Hugues

    2016-01-01

    Although integrity of the p53 signaling pathway in a given tumor was expected to be a critical determinant of response to therapies, most clinical studies failed to link p53 status and treatment outcome. Here, we present two opposite situations: one in which p53 is an essential effector of cure by targeted leukemia therapies and another one in advanced breast cancers in which p53 inactivation is required for the clinical efficacy of dose-dense chemotherapy. If p53 promotes or blocks therapy response, therapies must be tailored on its status in individual tumors. PMID:26637438

  8. The transcription factor p53: Not a repressor, solely an activator

    PubMed Central

    Fischer, Martin; Steiner, Lydia; Engeland, Kurt

    2014-01-01

    The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway. PMID:25486564

  9. Gene mutations and increased levels of p53 protein in human squamous cell carcinomas and their cell lines.

    PubMed Central

    Burns, J. E.; Baird, M. C.; Clark, L. J.; Burns, P. A.; Edington, K.; Chapman, C.; Mitchell, R.; Robertson, G.; Soutar, D.; Parkinson, E. K.

    1993-01-01

    Using immunocytochemical and Western blotting techniques we have demonstrated the presence of abnormally high levels of p53 protein in 8/24 (33%) of human squamous cell carcinomas (SCC) and 9/18 (50%) of SCC cell lines. There was a correlation between the immunocytochemical results obtained with eight SCC samples and their corresponding cell lines. Direct sequencing of PCR-amplified, reverse transcribed, p53 mRNA confirmed the expression of point mutations in six of the positive cell lines and detected in-frame deletions in two others. We also detected two stop mutations and three out-of-frame deletions in five lines which did not express elevated levels of p53 protein. Several of the mutations found in SCC of the tongue (3/7) were in a region (codons 144-166) previously identified as being a p53 mutational hot spot in non-small cell lung tumours (Mitsudomi et al., 1992). In 11/13 cases only the mutant alleles were expressed suggesting loss or reduced expression of the wild type alleles in these cases. Six of the mutations were also detected in the SCCs from which the lines were derived, strongly suggesting that the mutations occurred, and were selected, in vivo. The 12th mutation GTG-->GGG (valine-->glycine) at codon 216 was expressed in line SCC-12 clone B along with an apparently normal p53 allele and is to our knowledge a novel mutation. Line BICR-19 also expressed a normal p53 allele in addition to one where exon 10 was deleted. Additionally 15 of the SCC lines (including all of those which did not show elevated p53 protein levels) were screened for the presence of human papillomavirus types 16 and 18 and were found to be negative. These results are discussed in relation to the pathogenesis of SCC and the immortalisation of human keratinocytes in vitro. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8390283

  10. Phosphorylation of the Mdm2 oncoprotein by the c-Abl tyrosine kinase regulates p53 tumor suppression and the radiosensitivity of mice.

    PubMed

    Carr, Michael I; Roderick, Justine E; Zhang, Hong; Woda, Bruce A; Kelliher, Michelle A; Jones, Stephen N

    2016-12-27

    The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2 S394A mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present study, we have generated an Mdm2 mutant mouse (Mdm2 Y393F ) to determine whether c-Abl phosphorylation of Mdm2 regulates the p53-mediated DNA damage response or p53 tumor suppression in vivo. The Mdm2 Y393F mice develop accelerated spontaneous and oncogene-induced tumors, yet display no defects in p53 stabilization and activity following acute genotoxic stress. Although apoptosis is unaltered in these mice, they recover more rapidly from radiation-induced bone marrow ablation and are more resistant to whole-body radiation-induced lethality. These data reveal an in vivo role for c-Abl phosphorylation of Mdm2 in regulation of p53 tumor suppression and bone marrow failure. However, c-Abl phosphorylation of Mdm2 Tyr393 appears to play a lesser role in governing Mdm2-p53 signaling than ATM phosphorylation of Mdm2 Ser394. Furthermore, the effects of these phosphorylation events on p53 regulation are not additive, as Mdm2 Y393F/S394A mice and Mdm2 S394A mice display similar phenotypes.

  11. Phosphorylation of the Mdm2 oncoprotein by the c-Abl tyrosine kinase regulates p53 tumor suppression and the radiosensitivity of mice

    PubMed Central

    Carr, Michael I.; Roderick, Justine E.; Zhang, Hong; Woda, Bruce A.; Kelliher, Michelle A.; Jones, Stephen N.

    2016-01-01

    The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2S394A mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present study, we have generated an Mdm2 mutant mouse (Mdm2Y393F) to determine whether c-Abl phosphorylation of Mdm2 regulates the p53-mediated DNA damage response or p53 tumor suppression in vivo. The Mdm2Y393F mice develop accelerated spontaneous and oncogene-induced tumors, yet display no defects in p53 stabilization and activity following acute genotoxic stress. Although apoptosis is unaltered in these mice, they recover more rapidly from radiation-induced bone marrow ablation and are more resistant to whole-body radiation-induced lethality. These data reveal an in vivo role for c-Abl phosphorylation of Mdm2 in regulation of p53 tumor suppression and bone marrow failure. However, c-Abl phosphorylation of Mdm2 Tyr393 appears to play a lesser role in governing Mdm2-p53 signaling than ATM phosphorylation of Mdm2 Ser394. Furthermore, the effects of these phosphorylation events on p53 regulation are not additive, as Mdm2Y393F/S394A mice and Mdm2S394A mice display similar phenotypes. PMID:27956626

  12. Family matters: sibling rivalry and bonding between p53 and p63 in cancer.

    PubMed

    Romano, Rose-Anne; Sinha, Satrajit

    2014-04-01

    The p53 family (p53, p63 and p73) is intimately linked with an overwhelming number of cellular processes during normal physiological as well as pathological conditions including cancer. The fact that these proteins are expressed in myriad isoforms, each with unique biochemical properties and distinct effects on tumorigenesis, complicates their study. A case in point is Squamous Cell Carcinoma (SCC) where p53 is often mutated and the ΔNp63 isoform is overexpressed. Given that p53 and p63 can hetero-dimerize, bind to quite similar DNA elements and share common co-factors, any alterations in their individual expression levels, activity and/or mutation can severely disrupt the family equilibrium. The burgeoning genomics data sets and new additions to the experimental toolbox are offering crucial insights into the complex role of the p53 family in SCC, but more mechanistic studies are needed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Serum p53 antibody as a potential tumor marker in extrahepatic cholangiocarcinoma.

    PubMed

    Okada, Rei; Shimada, Hideaki; Otsuka, Yuichiro; Tsuchiya, Masaru; Ishii, Jun; Katagiri, Toshio; Maeda, Tetsuya; Kubota, Yoshihisa; Nemoto, Tetsuo; Kaneko, Hironori

    2017-12-01

    Only a few studies have evaluated the clinicopathological significance of the p53 protein expression and s-p53-Abs level in patients with cholangiocarcinoma. We therefore analyzed the clinicopathological and prognostic significance of s-p53-Abs in patients with extrahepatic cholangiocarcinoma. We prospectively evaluated s-p53-Abs levels before and after surgery in 61 patients with extrahepatic cholangiocarcinoma to determine the relationship between clinicopathological factors and the prognostic significance of s-p53-Abs. Among a total of 61 primary extrahepatic cholangiocarcinoma cases, 23% were positive for s-p53-Abs. Combination of s-p53-Abs with the conventional serum markers carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) significantly increased the rate of positive extrahepatic cholangiocarcinoma cases (57% for CEA and/or CA19-9 vs. 75% for CEA and/or CA19-9 and/or s-p53-Abs, P = 0.035). There were no significant differences in clinicopathological factors between the p53-seropositive and p53-seronegative patients. An immunohistochemical analysis showed the presence of significant associations between the intensity (P = 0.003) and extent (P = 0.001) of p53 immunoreactivity and p53-seropositivitly. Although s-p53-Abs was not a significant prognostic factor for the survival in either univariate or multivariate analyses, p53 immunoreactivity was independently associated with a poor survival. Among patients positive for s-p53-Abs before surgery, the s-p53-Abs levels were reduced after surgery in most. These findings suggested that s-p53-Abs might be associated with p53 immunoreactivity. In addition, s-p53-Abs may be useful for a diagnosis, but was not useful for predicting tumor recurrence or the survival. This study was registered as UMIN000014530.

  14. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro

    PubMed Central

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    2016-01-01

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis. PMID:27689798

  15. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Hao, E-mail: hao.hu1@uqconnect.edu.au; Yu, Ting, E-mail: t.yu2@uq.edu.au; Arpiainen, Satu, E-mail: Satu.Juhila@orion.fi

    2015-11-15

    Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3 kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5′-Luc constructs – down to − 160 bp from the TSS – showed p53 responsivenessmore » in p53 overexpressed C3A cells. However, a further deletion from − 160 to − 74 bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene – a well-known p53 activator – increased the expression of the p53 responsive positive control and the CYP2A6-5′-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5′-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. - Highlights: • CYP2A6 is an immediate target gene of p53. • Six putative p53REs located on 3 kb proximate CYP2A6 promoter region. • The region − 160 bp from TSS is highly homologous with the p53 consensus sequence. • P53 specifically bind to the p53RE on the − 160 bp region.

  16. Distinct downstream targets manifest p53-dependent pathologies in mice.

    PubMed

    Pant, V; Xiong, S; Chau, G; Tsai, K; Shetty, G; Lozano, G

    2016-11-03

    Mdm2, the principal negative regulator of p53, is critical for survival, a fact clearly demonstrated by the p53-dependent death of germline or conditional mice following deletion of Mdm2. On the other hand, Mdm2 hypomorphic (Mdm2 Puro/Δ7-12 ) or heterozygous (Mdm2 +/- ) mice that express either 30 or 50% of normal Mdm2 levels, respectively, are viable but present distinct phenotypes because of increased p53 activity. Mdm2 levels are also transcriptionally regulated by p53. We evaluated the significance of this reciprocal relationship in a new hypomorphic mouse model inheriting an aberrant Mdm2 allele with insertion of the neomycin cassette and deletion of 184-bp sequence in intron 3. These mice also carry mutations in the Mdm2 P2-promoter and thus express suboptimal levels of Mdm2 entirely encoded from the P1-promoter. Resulting mice exhibit abnormalities in skin pigmentation and reproductive tissue architecture, and are subfertile. Notably, all these phenotypes are rescued on a p53-null background. Furthermore, these phenotypes depend on distinct p53 downstream activities as genetic ablation of the pro-apoptotic gene Puma reverts the reproductive abnormalities but not skin hyperpigmentation, whereas deletion of cell cycle arrest gene p21 does not rescue either phenotype. Moreover, p53-mediated upregulation of Kitl influences skin pigmentation. Altogether, these data emphasize tissue-specific p53 activities that regulate cell fate.

  17. The small molecule 2-phenylethynesulfonamide induces covalent modification of p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamil, Sarwat; Hojabrpour, Payman; Duronio, Vincent

    p53 is a tumor suppressor protein which is either lost or inactivated in a large majority of tumors. The small molecule 2-phenylethynesulfonamide (PES) was originally identified as the inhibitor of p53 effects on the mitochondrial death pathway. In this report we demonstrate that p53 protein from PES-treated cells was detected in reduced mobility bands between molecular weights 95–220 kDa. Resolution of p53 aggregates on urea gel was unable to reduce the high molecular weight p53 aggregates, which were shown to be primarily located in the nucleus. Therefore, our data suggest that PES exerts its effects through covalent cross-linking and nuclear retentionmore » of p53. - Highlights: • p53 protein is in high molecular weight complexes in the nucleus of PES-treated cells. • PES is a drug that inhibits pro-apoptotic p53 action at the mitochondria. • We propose that PES action involves cross-linking and nuclear retention of p53.« less

  18. Therapeutic targeting of the p53 pathway in cancer stem cells

    PubMed Central

    Prabhu, Varun V.; Allen, Joshua E.; Hong, Bo; Zhang, Shengliang; Cheng, Hairong; El-Deiry, Wafik S.

    2013-01-01

    Introduction Cancer stem cells are a high profile drug target for cancer therapeutics due to their indispensable role in cancer progression, maintenance, and therapeutic resistance. Restoring wild-type p53 function is an attractive new therapeutic approach for the treatment of cancer due to the well-described powerful tumor suppressor function of p53. As emerging evidence intimately links p53 and stem cell biology, this approach also provides an opportunity to target cancer stem cells. Areas covered Therapeutic approaches to restore the function of wild-type p53, cancer and normal stem cell biology in relation to p53, and the downstream effects of p53 on cancer stem cells. Expert opinion The restoration of wild-type p53 function by targeting p53 directly, its interacting proteins, or its family members holds promise as a new class of cancer therapies. This review examines the impact that such therapies may have on normal and cancer stem cells based on the current evidence linking p53 signaling with these populations. PMID:22998602

  19. Modulation of the poly (ADP-ribose) polymerase inhibitor response and DNA recombination in breast cancer cells by drugs affecting endogenous wild-type p53.

    PubMed

    Ireno, Ivanildce Cristiane; Wiehe, Rahel Stephanie; Stahl, Andreea Iulia; Hampp, Stephanie; Aydin, Sevtap; Troester, Melissa A; Selivanova, Galina; Wiesmüller, Lisa

    2014-10-01

    Synthetic lethal interactions between poly (ADP-ribose) polymerase (PARP) and homologous recombination (HR) repair pathways have been exploited for the development of novel mono- and combination cancer therapies. The tumor suppressor p53 was demonstrated to exhibit indirect and direct regulatory activities in DNA repair, particularly in DNA double-strand break (DSB)-induced and replication-associated HR. In this study, we tested a potential influence of the p53 status on the response to PARP inhibition, which is known to cause replication stress. Silencing endogenous or inducibly expressing p53 we found a protective effect of p53 on PARP inhibitor (PARPi)-mediated cytotoxicities. This effect was specific for wild-type versus mutant p53 and observed in cancer but not in non-transformed cell lines. Enhanced cytotoxicities after treatment with the p53-inhibitory drug Pifithrinα further supported p53-mediated resistance to PARP inhibition. Surprisingly, we equally observed increased PARPi sensitivity in the presence of the p53-activating compound Nutlin-3. As a common denominator, both drug responses correlated with decreased HR activities: Pifithrinα downregulated spontaneous HR resulting in damage accumulation. Nutlin-3 induced a decrease of DSB-induced HR, which was accompanied by a severe drop in RAD51 protein levels. Thus, we revealed a novel link between PARPi responsiveness and p53-controlled HR activities. These data expand the concept of cell and stress type-dependent healer and killer functions of wild-type p53 in response to cancer therapeutic treatment. Our findings have implications for the individualized design of cancer therapies using PARPi and the potentially combined use of p53-modulatory drugs. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Autoantibody recognition mechanisms of p53 epitopes

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2016-06-01

    There is an urgent need for economical blood based, noninvasive molecular biomarkers to assist in the detection and diagnosis of cancers in a cost-effective manner at an early stage, when curative interventions are still possible. Serum autoantibodies are attractive biomarkers for early cancer detection, but their development has been hindered by the punctuated genetic nature of the ten million known cancer mutations. A landmark study of 50,000 patients (Pedersen et al., 2013) showed that a few p53 15-mer epitopes are much more sensitive colon cancer biomarkers than p53, which in turn is a more sensitive cancer biomarker than any other protein. The function of p53 as a nearly universal ;tumor suppressor; is well established, because of its strong immunogenicity in terms of not only antibody recruitment, but also stimulation of autoantibodies. Here we examine dimensionally compressed bioinformatic fractal scaling analysis for identifying the few sensitive epitopes from the p53 amino acid sequence, and show how it could be used for early cancer detection (ECD). We trim 15-mers to 7-mers, and identify specific 7-mers from other species that could be more sensitive to aggressive human cancers, such as liver cancer. Our results could provide a roadmap for ECD.

  1. Comparison of Modules of Wild Type and Mutant Huntingtin and TP53 Protein Interaction Networks: Implications in Biological Processes and Functions

    PubMed Central

    Basu, Mahashweta; Bhattacharyya, Nitai P.; Mohanty, Pradeep K.

    2013-01-01

    Disease-causing mutations usually change the interacting partners of mutant proteins. In this article, we propose that the biological consequences of mutation are directly related to the alteration of corresponding protein protein interaction networks (PPIN). Mutation of Huntingtin (HTT) which causes Huntington's disease (HD) and mutations to TP53 which is associated with different cancers are studied as two example cases. We construct the PPIN of wild type and mutant proteins separately and identify the structural modules of each of the networks. The functional role of these modules are then assessed by Gene Ontology (GO) enrichment analysis for biological processes (BPs). We find that a large number of significantly enriched () GO terms in mutant PPIN were absent in the wild type PPIN indicating the gain of BPs due to mutation. Similarly some of the GO terms enriched in wild type PPIN cease to exist in the modules of mutant PPIN, representing the loss. GO terms common in modules of mutant and wild type networks indicate both loss and gain of BPs. We further assign relevant biological function(s) to each module by classifying the enriched GO terms associated with it. It turns out that most of these biological functions in HTT networks are already known to be altered in HD and those of TP53 networks are altered in cancers. We argue that gain of BPs, and the corresponding biological functions, are due to new interacting partners acquired by mutant proteins. The methodology we adopt here could be applied to genetic diseases where mutations alter the ability of the protein to interact with other proteins. PMID:23741403

  2. Induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway delays the initiation but fails to eradicate established murine acute myeloid leukemia.

    PubMed

    Jaako, P; Ugale, A; Wahlestedt, M; Velasco-Hernandez, T; Cammenga, J; Lindström, M S; Bryder, D

    2017-01-01

    Mutations resulting in constitutive activation of signaling pathways that regulate ribosome biogenesis are among the most common genetic events in acute myeloid leukemia (AML). However, whether ribosome biogenesis presents as a therapeutic target to treat AML remains unexplored. Perturbations in ribosome biogenesis trigger the 5S ribonucleoprotein particle (RNP)-Mdm2-p53 ribosomal stress pathway, and induction of this pathway has been shown to have therapeutic efficacy in Myc-driven lymphoma. In the current study we address the physiological and therapeutic role of the 5S RNP-Mdm2-p53 pathway in AML. By utilizing mice that have defective ribosome biogenesis due to downregulation of ribosomal protein S19 (Rps19), we demonstrate that induction of the 5S RNP-Mdm2-p53 pathway significantly delays the initiation of AML. However, even a severe Rps19 deficiency that normally results in acute bone marrow failure has no consistent efficacy on already established disease. Finally, by using mice that harbor a mutation in the Mdm2 gene disrupting its binding to 5S RNP, we show that loss of the 5S RNP-Mdm2-p53 pathway is dispensable for development of AML. Our study suggests that induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway holds limited potential as a single-agent therapy in the treatment of AML.

  3. CCAAT/enhancer-binding protein α is required for hepatic outgrowth via the p53 pathway in zebrafish.

    PubMed

    Yuan, Hao; Wen, Bin; Liu, Xiaohui; Gao, Ce; Yang, Ruimeng; Wang, Luxiang; Chen, Saijuan; Chen, Zhu; de The, Hugues; Zhou, Jun; Zhu, Jun

    2015-10-29

    CCAAT/enhancer-binding protein α (C/ebpα) is a transcription factor that plays important roles in the regulation of hepatogenesis, adipogenesis and hematopoiesis. Disruption of the C/EBPα gene in mice leads to disturbed liver architecture and neonatal death due to hypoglycemia. However, the precise stages of liver development affected by C/ebpα loss are poorly studied. Using the zebrafish embryo as a model organism, we show that inactivation of the cebpa gene by TALENs results in a small liver phenotype. Further studies reveal that C/ebpα is distinctively required for hepatic outgrowth but not for hepatoblast specification. Lack of C/ebpα leads to enhanced hepatic cell proliferation and subsequent increased cell apoptosis. Additional loss of p53 can largely rescue the hepatic defect in cebpa mutants, suggesting that C/ebpα plays a role in liver growth regulation via the p53 pathway. Thus, our findings for the first time demonstrate a stage-specific role for C/ebpα during liver organogenesis.

  4. Mechanism of p53-Dependent Apoptosis and its Role in Breast Cancer Therapy

    DTIC Science & Technology

    1999-07-01

    inducibly express p53 as previously described (Chen et a!., 1996). ( a ) Levels of p53, p21, and actin in p53-3, and p53(A62-91)-l, -5, and -6 cells...1994) was used as template, ( a ) Levels of p53, p21 and actin in p53-3 and p53(gln22-ser23/A62-91)-2 and -14 cells were assayed by Western blot...CGG TAC CCC TGT CAT CTT CTG TC; and reverse primer C393 as used for generating p53(A62-91). ( a ) Levels of p53, p21, and actin in p53-3, and p53(A74

  5. Replication of damaged DNA in vitro is blocked by p53

    PubMed Central

    Zhou, Jianmin; Prives, Carol

    2003-01-01

    The tumor suppressor protein p53 may have other roles and functions in addition to its well-documented ability to serve as a sequence-specific transcriptional activator in response to DNA damage. We showed previously that p53 can block the replication of polyomavirus origin-containing DNA (Py ori-DNA) in vitro when p53 binding sites are present on the late side of the Py ori. Here we have both further extended these observations and have also examined whether p53 might be able to bind directly to and inhibit the replication of damaged DNA. We found that p53 strongly inhibits replication of γ-irradiated Py ori-DNA and such inhibition requires both the central DNA binding domain and the extreme C-terminus of the p53 protein. An endogenous p53 binding site lies within the Py origin and is required for the ability of p53 to block initiation of replication from γ-irradiated Py ori-DNA, suggesting the possibility of DNA looping caused by p53 binding both non-specifically to sites of DNA damage and specifically to the endogenous site in the polyomavirus origin. Our results thus suggest the possibility that under some circumstances p53 might serve as a direct regulator of DNA replication and suggest as well an additional function for cooperation between its two autonomous DNA binding domains. PMID:12853603

  6. Induction of Mitotic Cell Death by Overriding G2/M Checkpoint in Endometrial Cancer Cells with Non-functional p53

    PubMed Central

    Meng, Xiangbing; Laidler, Laura L.; Kosmacek, Elizabeth A.; Yang, Shujie; Xiong, Zhi; Zhu, Danlin; Wang, Xinjun; Dai, Donghai; Zhang, Yuping; Wang, Xiaofang; Brachova, Pavla; Albitar, Lina; Liu, Dawei; Ianzini, Fiorenza; Mackey, Michael A.; Leslie, Kimberly K.

    2012-01-01

    Objective Endometrial tumors with non-functional p53, such as serous uterine endometrial carcinomas, are aggressive malignancies with a poor outcome, yet they have an Achilles’ heel: due to loss of p53 function, these tumors may be sensitive to treatments which abrogate the G2/M checkpoint. Our objective was to exploit this weakness to induce mitotic cell death using two strategies: (1) EGFR inhibitor gefitinib combined with paclitaxel to arrest cells at mitosis, or (2) BI2536, an inhibitor of polo-like kinase 1 (PLK1), to block PLK1 activity. Methods We examined the impact of combining gefitinib and paclitaxel or PLK1 inhibitor on expression of G2/M checkpoint controllers, cell viability, and cell cycle progression in endometrial cancer cells with mutant p53. Results In cells lacking normal p53 activity, each treatment activated CDC25C and inactivated Wee1, which in turn activated cdc2 and sent cells rapidly through the G2/M checkpoint and into mitosis. Live cell imaging demonstrated irreversible mitotic arrest and eventual cell death. Combinatorial therapy with paclitaxel and gefitinib was highly synergistic and resulted in a 10-fold reduction in the IC50 for paclitaxel, from 14 nM as a single agent to 1.3 nM in the presence of gefitinib. However, BI2536 alone at low concentrations (5 nM) was the most effective treatment and resulted in massive mitotic cell death. In a xenograft mouse model with p53-deficient cells, low dose BI2536 significantly inhibited tumor growth. Conclusions These findings reveal induction of mitotic cell death as a therapeutic strategy for endometrial tumors lacking functional p53. PMID:23146687

  7. Development and translational imaging of a TP53 porcine tumorigenesis model

    PubMed Central

    Sieren, Jessica C.; Meyerholz, David K.; Wang, Xiao-Jun; Davis, Bryan T.; Newell, John D.; Hammond, Emily; Rohret, Judy A.; Rohret, Frank A.; Struzynski, Jason T.; Goeken, J. Adam; Naumann, Paul W.; Leidinger, Mariah R.; Taghiyev, Agshin; Van Rheeden, Richard; Hagen, Jussara; Darbro, Benjamin W.; Quelle, Dawn E.; Rogers, Christopher S.

    2014-01-01

    Cancer is the second deadliest disease in the United States, necessitating improvements in tumor diagnosis and treatment. Current model systems of cancer are informative, but translating promising imaging approaches and therapies to clinical practice has been challenging. In particular, the lack of a large-animal model that accurately mimics human cancer has been a major barrier to the development of effective diagnostic tools along with surgical and therapeutic interventions. Here, we developed a genetically modified porcine model of cancer in which animals express a mutation in TP53 (which encodes p53) that is orthologous to one commonly found in humans (R175H in people, R167H in pigs). TP53R167H/R167H mutant pigs primarily developed lymphomas and osteogenic tumors, recapitulating the tumor types observed in mice and humans expressing orthologous TP53 mutant alleles. CT and MRI imaging data effectively detected developing tumors, which were validated by histopathological evaluation after necropsy. Molecular genetic analyses confirmed that these animals expressed the R167H mutant p53, and evaluation of tumors revealed characteristic chromosomal instability. Together, these results demonstrated that TP53R167H/R167H pigs represent a large-animal tumor model that replicates the human condition. Our data further suggest that this model will be uniquely suited for developing clinically relevant, noninvasive imaging approaches to facilitate earlier detection, diagnosis, and treatment of human cancers. PMID:25105366

  8. Cerebellum Development and Tumorigenesis: A p53-Centric Perspective.

    PubMed

    Barthelery, Nicolas J; Manfredi, James J

    2016-05-01

    The p53 protein has been extensively studied for its role in suppressing tumorigenesis, in part through surveillance and maintenance of genomic stability. p53 has been associated with the induction of a variety of cellular outcomes including cell cycle arrest, senescence, and apoptosis. This occurs primarily, but not exclusively, through transcriptional activation of specific target genes. By contrast, the participation of p53 in normal developmental processes has been largely understudied. This review focuses on possible functions of p53 in cerebellar development. It can be argued that a better understanding of such mechanisms will provide needed insight into the genesis of certain embryonic cancers including medulloblastomas, and thus lead to more effective therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Oncolytic reovirus preferentially induces apoptosis in KRAS mutant colorectal cancer cells, and synergizes with irinotecan

    PubMed Central

    Maitra, Radhashree; Seetharam, Raviraja; Tesfa, Lydia; Augustine, Titto A.; Klampfer, Lidija; Coffey, Matthew C.; Mariadason, John M.; Goel, Sanjay

    2014-01-01

    Reovirus is a double stranded RNA virus, with an intrinsic preference for replication in KRAS mutant cells. As 45% of human colorectal cancers (CRC) harbor KRAS mutations, we sought to investigate its efficacy in KRAS mutant CRC cells, and examine its impact in combination with the topoisimerase-1 inhibitor, irinotecan. Reovirus efficacy was examined in the KRAS mutant HCT116, and the isogenic KRAS WT Hke3 cell line, and in the non-malignant rat intestinal epithelial cell line. Apoptosis was determined by flow cytometry and TUNEL staining. Combination treatment with reovirus and irintoecan was investigated in 15 CRC cell lines, including the HCT116 p21 isogenic cell lines. Reovirus preferentially induced apoptosis in KRAS mutant HCT116 cells compared to its isogenic KRAS WT derivative, and in KRAS mutant IEC cells. Reovirus showed a greater degree of caspase 3 activation with PARP 1 cleavage, and preferential inhibition of p21 protein expression in KRAS mutant cells. Reovirus synergistically induced growth inhibition when combined with irinotecan. This synergy was lost upon p21 gene knock out. Reovirus preferentially induces apoptosis in KRAS mutant colon cancer cells. Reovirus and irinotecan combination therapy is synergistic, p21 mediated, and represents a novel potential treatment for patients with CRC. PMID:24798549

  10. Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival

    PubMed Central

    Jain, Ajay N.; Chin, Koei; Børresen-Dale, Anne-Lise; Erikstein, Bjorn K.; Lonning, Per Eystein; Kaaresen, Rolf; Gray, Joe W.

    2001-01-01

    We present a general method for rigorously identifying correlations between variations in large-scale molecular profiles and outcomes and apply it to chromosomal comparative genomic hybridization data from a set of 52 breast tumors. We identify two loci where copy number abnormalities are correlated with poor survival outcome (gain at 8q24 and loss at 9q13). We also identify a relationship between abnormalities at two loci and the mutational status of p53. Gain at 8q24 and loss at 5q15-5q21 are linked with mutant p53. The 9q and 5q losses suggest the possibility of gene products involved in breast cancer progression. The analytical techniques are general and also are applicable to the analysis of array-based expression data. PMID:11438741

  11. Targeting p53-MDM2-MDMX Loop for Cancer Therapy

    PubMed Central

    Zhang, Qi; Zeng, Shelya X.

    2015-01-01

    The tumor suppressor p53 plays a central role in anti-tumorigenesis and cancer therapy. It has been described as “the guardian of the genome”, because it is essential for conserving genomic stability by preventing mutation, and its mutation and inactivation are highly related to all human cancers. Two important p53 regulators, MDM2 and MDMX, inactivate p53 by directly inhibiting its transcriptional activity and mediating its ubiquitination in a feedback fashion, as their genes are also the transcriptional targets of p53. On account of the importance of the p53-MDM2- MDMX loop in the initiation and development of wild type p53-containing tumors, intensive studies over the past decade have been aiming to identify small molecules or peptides that could specifically target individual protein molecules of this pathway for developing better anti-cancer therapeutics. In this chapter, we review the approaches for screening and discovering efficient and selective MDM2 inhibitors with emphasis on the most advanced synthetic small molecules that interfere with the p53-MDM2 interaction and are currently on Phase I clinical trials. Other therapeutically useful strategies targeting this loop, which potentially improve the prospects of cancer therapy and prevention, will also be discussed briefly. PMID:25201201

  12. Suppression of Familial Adenomatous Polyposis by CP-31398, a TP53 modulator, in APCmin/+ Mice1

    PubMed Central

    Rao, Chinthalapally V.; Swamy, Malisetty V.; Patlolla, Jagan M.R.; Kopelovich, Levy

    2008-01-01

    p53 mutations occur in a large number of human malignancies. Mutant p53 is unable to affect downstream genes necessary for DNA repair, cell cycle regulation, and apoptosis. The styrylquinazoline CP-31398 can rescue destabilized mutant p53 expression and promote activity of wild-type p53. The present study examines chemopreventive effects of CP-31398 on intestinal adenoma development in an animal model of familial adenomatous polyposis (FAP). Effects were examined at both early and late stages of adenoma formation. Effects of CP-31398 on early-stage adenomas were determined by feeding 7-week-old female C57B/6J-APCmin (heterozygous) and wild-type C57BL/6J mice with American Institute of Nutrition (AIN)-76A diets containing 0, 100, or 200 ppm CP-31398 for 75 days. To examine activity toward late-stage adenomas, CP31398 administration was delayed until 15 weeks of age and continued for 50 days. During early-stage intervention, dietary CP-31398 suppressed development of intestinal tumors by 36% (p < 0.001) and 75% (p < 0.0001), at low and high dose, respectively. During late-stage intervention, CP-31398 also significantly suppressed intestinal polyp formation, albeit to a lesser extent than observed with early intervention. Adenomas in treated mice showed increased apoptotic cell death and decreased proliferation in conjunction with increased expression of p53, p21WAF1/CIP, cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase (PARP). These observations demonstrate for the first time that the p53-modulating agent CP-31398 possesses significant chemopreventive activity in vivo against intestinal neoplastic lesions in genetically-predisposed APCmin/+ mice. Chemopreventive activity of other agents that restore tumor suppressor functions of mutant p53 in tumor cells is currently under investigation. PMID:18794156

  13. P53 Gene Mutagenesis in Breast Cancer

    DTIC Science & Technology

    2005-03-01

    the wild type T peak. 12 Table 1. Sonic ntations dected by SINtA Individual Cell Sequence Amino Acid Species Conservation 3 ID’ ID Change2 Change... differences in the content of toxic substances in the diet (Biggs et al., 1993; Blaszyk et al., 1996). The development of this p53 mutation load...Changes in the P53 Gene in Single Cells Individual Sequence Amino acid Species conservation ’ ID’ Cell ID change’ change Monkey Mouse Rat Chicken

  14. The impact of p53 on the early stage replication of retrovirus.

    PubMed

    Kinnetz, Michaela; Alghamdi, Faris; Racz, Michael; Hu, Wenwei; Shi, Binshan

    2017-08-09

    The function of p53 in cancer biology has been studied extensively, but its role in anti-retrovirus infection has been elusive for many years. The restriction of retrovirus early stage replication by p53 was investigated in this study. VSV-G pseudotyped retrovirus with GFP reporter gene was used to infect both HCT116 p53 +/+ cells and its isogenic p53 knockout HCT116 p53 -/- cells. The infection was detected by flow cytometry. Reverse transcription products were quantified by real time PCR. Mutation analysis was performed after 1-LTR cycle and 2-LTR cycle DNA were amplified and PCR products were sequenced. Transcription and translation of cyclin-dependent kinase inhibitor 1 (p21 Cip1 ) and SAM domain and HD domain-containing protein 1 (SAMHD1) were analyzed by TaqMan PCR and Western blot experiments. siRNA experiment was applied to study the role of p53 downstream gene p21 Cip1 in the restriction of retrovirus infection. It was found that the block of retrovirus infection in non-cycling cells was significantly attenuated in HCT116 p53 -/- cells when compared to HCT116 p53 +/+ cells. It was found that both late reverse transcription products and viral 2-LTR cycle DNA were significantly increased in infected non-cycling HCT116 p53 -/- cells. Furthermore, the mutation frequency detected in 1-LTR DNA from HCT116 p53 +/+ cells were significantly decreased in comparison to HCT116 p53 -/- cells. A higher number of insertion and deletion mutations were detected in the joint region of 2-LTR cycle DNA in infected p53 +/+ cells. Cell cycle analysis showed retrovirus infection promoted host cell replication. Higher levels of mRNA and protein of p21 Cip1 were found in HCT116 p53 +/+ cells in comparison to the HCT116 p53 -/- cells. Furthermore, knockdown of p21 Cip1 in non-cycling HCT116 p53 +/+ cells significantly increased the infection. The results of this study showed that p53 is an important restriction factor that interferes with retrovirus infection in its early stage of

  15. Accumulation of p21 proteins at DNA damage sites independent of p53 and core NHEJ factors following irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koike, Manabu, E-mail: m_koike@nirs.go.jp; Yutoku, Yasutomo; Graduate School of Science, Chiba University, Chiba 263-8522

    2011-08-19

    Highlights: {yields} p21 accumulated rapidly at laser-irradiated sites via its C-terminal region. {yields} p21 colocalized with the DSB marker {gamma}-H2AX and the DSB sensor Ku80. {yields} Accumulation of p21 is dependent on PCNA, but not p53 and the NHEJ core factors. {yields} Accumulation activity of p21 was conserved among human and animal cells. {yields} p21 is a useful tool as a detection marker of DNA damaged sites. -- Abstract: The cyclin-dependent kinase (CDK) inhibitor p21 plays key roles in p53-dependent DNA-damage responses, i.e., cell cycle checkpoints, senescence, or apoptosis. p21 might also play a role in DNA repair. p21 focimore » arise at heavy-ion-irradiated DNA-double-strand break (DSB) sites, which are mainly repaired by nonhomologous DNA-end-joining (NHEJ). However, no mechanisms of p21 accumulation at double-strand break (DSB) sites have been clarified in detail. Recent works indicate that Ku70 and Ku80 are essential for the accumulation of other NHEJ core factors, e.g., DNA-PKcs, XRCC4 and XLF, and other DNA damage response factors, e.g., BRCA1. Here, we show that p21 foci arise at laser-irradiated sites in cells from various tissues from various species. The accumulation of EGFP-p21 was detected in not only normal cells, but also transformed or cancer cells. Our results also showed that EGFP-p21 accumulated rapidly at irradiated sites, and colocalized with the DSB marker {gamma}-H2AX and with the DSB sensor protein Ku80. On the other hand, the accumulation occurred in Ku70-, Ku80-, or DNA-PKcs-deficient cell lines and in human papillomavirus 18-positive cells, whereas the p21 mutant without the PCNA-binding region (EGFP-p21(1-146)) failed to accumulate at the irradiated sites. These findings suggest that the accumulation of p21, but not functional p53 and the NHEJ core factors, is dependent on PCNA. These findings also suggest that the accumulation activity of p21 at DNA damaged sites is conserved among human and animal cells, and p21 is

  16. p53 predictive value for pT1-2 N0 disease at radical cystectomy.

    PubMed

    Shariat, Shahrokh F; Lotan, Yair; Karakiewicz, Pierre I; Ashfaq, Raheela; Isbarn, Hendrik; Fradet, Yves; Bastian, Patrick J; Nielsen, Matthew E; Capitanio, Umberto; Jeldres, Claudio; Montorsi, Francesco; Müller, Stefan C; Karam, Jose A; Heukamp, Lukas C; Netto, George; Lerner, Seth P; Sagalowsky, Arthur I; Cote, Richard J

    2009-09-01

    Approximately 15% to 30% of patients with pT1-2N0M0 urothelial carcinoma of the bladder experience disease progression despite radical cystectomy with curative intent. We determined whether p53 expression would improve the prediction of disease progression after radical cystectomy for pT1-2N0M0 UCB. In a multi-institutional retrospective cohort we identified 324 patients with pT1-2N0M0 urothelial carcinoma of the bladder who underwent radical cystectomy. Analysis focused on a testing cohort of 272 patients and an external validation of 52. Competing risks regression models were used to test the association of variables with cancer specific mortality after accounting for nonbladder cancer caused mortality. In the testing cohort 91 patients (33.5%) had altered p53 expression (p53alt). On multivariate competing risks regression analysis altered p53 achieved independent status for predicting disease recurrence and cancer specific mortality (each p <0.001). Adding p53 increased the accuracy of multivariate competing risks regression models predicting recurrence and cancer specific mortality by 5.7% (62.0% vs 67.7%) and 5.4% (61.6% vs 67.0%), respectively. Alterations in p53 represent a highly promising marker of disease recurrence and cancer specific mortality after radical cystectomy for urothelial carcinoma of the bladder. Analysis confirmed previous findings and showed that considering p53 can result in substantial accuracy gains relative to the use of standard predictors. The value and the level of the current evidence clearly exceed previous proof of the independent predictor status of p53 for predicting recurrence and cancer specific mortality.

  17. Mapping Mammary Epithelial Cell Transformation in BRCA1 Mutant Mice

    DTIC Science & Technology

    2006-07-01

    Transformation in BRCA1 Mutant Mice PRINCIPAL INVESTIGATOR: Gerburg M. Wulf CONTRACTING ORGANIZATION: Beth Israel Deaconess Medical...REPORT NUMBER Beth Israel Deaconess Medical Center Boston, MA 02215 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES...and whether it allowed us to analyze the early steps of tumor formation. For this purpose transgenic and conditional knock-out mice (mutant p53 or

  18. Karyotypic complexity rather than chromosome 8 abnormalities aggravates the outcome of chronic lymphocytic leukemia patients with TP53 aberrations

    PubMed Central

    Blanco, Gonzalo; Puiggros, Anna; Baliakas, Panagiotis; Athanasiadou, Anastasia; García-Malo, MªDolores; Collado, Rosa; Xochelli, Aliki; Rodríguez-Rivera, María; Ortega, Margarita; Calasanz, Mª José; Luño, Elisa; Vargas, MªTeresa; Grau, Javier; Martínez-Laperche, Carolina; Valiente, Alberto; Cervera, José; Anagnostopoulos, Achilles; Gimeno, Eva; Abella, Eugènia; Stalika, Evangelia; Hernández-Rivas, Jesús Mª; Ortuño, Francisco José; Robles, Diego; Ferrer, Ana; Ivars, David; González, Marcos; Bosch, Francesc; Abrisqueta, Pau; Stamatopoulos, Kostas; Espinet, Blanca

    2016-01-01

    Patients with chronic lymphocytic leukemia (CLL) harboring TP53 aberrations (TP53abs; chromosome 17p deletion and/or TP53 mutation) exhibit an unfavorable clinical outcome. Chromosome 8 abnormalities, namely losses of 8p (8p−) and gains of 8q (8q+) have been suggested to aggravate the outcome of patients with TP53abs. However, the reported series were small, thus hindering definitive conclusions. To gain insight into this issue, we assessed a series of 101 CLL patients harboring TP53 disruption. The frequency of 8p− and 8q+ was 14.7% and 17.8% respectively. Both were associated with a significantly (P < 0.05) higher incidence of a complex karyotype (CK, ≥3 abnormalities) detected by chromosome banding analysis (CBA) compared to cases with normal 8p (N-8p) and 8q (N-8q), respectively. In univariate analysis for 10-year overall survival (OS), 8p− (P = 0.002), 8q+ (P = 0.012) and CK (P = 0.009) were associated with shorter OS. However, in multivariate analysis only CK (HR = 2.47, P = 0.027) maintained independent significance, being associated with a dismal outcome regardless of chromosome 8 abnormalities. In conclusion, our results highlight the association of chromosome 8 abnormalities with CK amongst CLL patients with TP53abs, while also revealing that CK can further aggravate the prognosis of this aggressive subgroup. PMID:27821812

  19. High-Affinity Rb Binding, p53 Inhibition, Subcellular Localization, and Transformation by Wild-Type or Tumor-Derived Shortened Merkel Cell Polyomavirus Large T Antigens

    PubMed Central

    Borchert, Sophie; Czech-Sioli, Manja; Neumann, Friederike; Schmidt, Claudia; Wimmer, Peter; Dobner, Thomas

    2014-01-01

    ABSTRACT Interference with tumor suppressor pathways by polyomavirus-encoded tumor antigens (T-Ags) can result in transformation. Consequently, it is thought that T-Ags encoded by Merkel cell polyomavirus (MCPyV), a virus integrated in ∼90% of all Merkel cell carcinoma (MCC) cases, are major contributors to tumorigenesis. The MCPyV large T-Ag (LT-Ag) has preserved the key functional domains present in all family members but has also acquired unique regions that flank the LxCxE motif. As these regions may mediate unique functions, or may modulate those shared with T-Ags of other polyomaviruses, functional studies of MCPyV T-Ags are required. Here, we have performed a comparative study of full-length or MCC-derived truncated LT-Ags with regard to their biochemical characteristics, their ability to bind to retinoblastoma (Rb) and p53 proteins, and their transforming potential. We provide evidence that full-length MCPyV LT-Ag may not directly bind to p53 but nevertheless can significantly reduce p53-dependent transcription in reporter assays. Although early region expression constructs harboring either full-length or MCC-derived truncated LT-Ag genes can transform primary baby rat kidney cells, truncated LT-Ags do not bind to p53 or reduce p53-dependent transcription. Interestingly, shortened LT-Ags exhibit a very high binding affinity for Rb, as shown by coimmunoprecipitation and in vitro binding studies. Additionally, we show that truncated MCPyV LT-Ag proteins are expressed at higher levels than those for the wild-type protein and are able to partially relocalize Rb to the cytoplasm, indicating that truncated LT proteins may have gained additional features that distinguish them from the full-length protein. IMPORTANCE MCPyV is one of the 12 known polyomaviruses that naturally infect humans. Among these, it is of particular interest since it is the only human polyomavirus known to be involved in tumorigenesis. MCPyV is thought to be causally linked to MCC, a rare

  20. Functional Analysis of Interactions Between 53BP1, BRCA1 and p53

    DTIC Science & Technology

    2004-07-01

    deficiency synergize in tumorigenesis. Furthermore, the loss of a single 53BP1 allele enhances the susceptibility to cancer in the absence of p53. 14...specific antibodies against these sites and showed that at least two of them (S25 and S29) are phosphorylated in vivo by ATM, the kinase mutated in cancer ...characterized by chromosomal aberrations, genetic instability and cancer predisposition. +HU 153BP1 Fig. 5: Lack of 53BP1 prevents the efficient accumulation

  1. p53 Involvement in the Control of Murine Hair Follicle Regression

    PubMed Central

    Botchkarev, Vladimir A.; Komarova, Elena A.; Siebenhaar, Frank; Botchkareva, Natalia V.; Sharov, Andrei A.; Komarov, Pavel G.; Maurer, Marcus; Gudkov, Andrei V.; Gilchrest, Barbara A.

    2001-01-01

    p53 is a transcription factor mediating a variety of biological responses including apoptotic cell death. p53 was recently shown to control apoptosis in the hair follicle induced by ionizing radiation and chemotherapy, but its role in the apoptosis-driven physiological hair follicle regression (catagen) remains to be elucidated. Here, we show that p53 protein is strongly expressed and co-localized with apoptotic markers in the regressing hair follicle compartments during catagen. In contrast to wild-type mice, p53 knockout mice show significant retardation of catagen accompanied by significant decrease in the number of apoptotic cells in the hair matrix. Furthermore, p53 null hair follicles are characterized by alterations in the expression of markers that are encoded by p53 target genes and are implicated in the control of catagen (Bax, Bcl-2, insulin-like growth factor binding protein-3). These data suggest that p53 is involved in the control of apoptosis in the hair follicle during physiological regression and imply that p53 antagonists may be useful for the management of hair growth disorders characterized by premature entry into catagen, such as androgenetic alopecia, alopecia areata, and telogen effluvium. PMID:11395365

  2. PI3K-mediated PDGFRα signaling regulates survival and proliferation in skeletal development through p53-dependent intracellular pathways

    PubMed Central

    Fantauzzo, Katherine A.; Soriano, Philippe

    2014-01-01

    Previous studies have identified phosphatidylinositol 3-kinase (PI3K) as the main downstream effector of PDGFRα signaling during murine skeletal development. Autophosphorylation mutant knock-in embryos in which PDGFRα is unable to bind PI3K (PdgfraPI3K/PI3K) exhibit skeletal defects affecting the palatal shelves, shoulder girdle, vertebrae, and sternum. To identify proteins phosphorylated by Akt downstream from PI3K-mediated PDGFRα signaling, we immunoprecipitated Akt phosphorylation substrates from PDGF-AA-treated primary mouse embryonic palatal mesenchyme (MEPM) lysates and analyzed the peptides by nanoliquid chromatography coupled to tandem mass spectrometry (nano-LC-MS/MS). Our analysis generated a list of 56 proteins, including 10 that regulate cell survival and proliferation. We demonstrate that MEPM cell survival is impaired in the presence of a PI3K inhibitor and that PdgfraPI3K/PI3K-derived MEPMs do not proliferate in response to PDGF-AA treatment. Several of the identified Akt phosphorylation targets, including Ybox1, mediate cell survival through regulation of p53. We show that Ybox1 binds both the Trp53 promoter and the p53 protein and that expression of Trp53 is significantly decreased upon PDGF-AA treatment in MEPMs. Finally, we demonstrate that introduction of a Trp53-null allele attenuates the vertebral defects found in PdgfraPI3K/PI3K neonates. Our findings identify p53 as a novel effector downstream from PI3K-engaged PDGFRα signaling that regulates survival and proliferation during skeletal development in vivo. PMID:24788519

  3. Adiposity is associated with p53 gene mutations in breast cancer.

    PubMed

    Ochs-Balcom, Heather M; Marian, Catalin; Nie, Jing; Brasky, Theodore M; Goerlitz, David S; Trevisan, Maurizio; Edge, Stephen B; Winston, Janet; Berry, Deborah L; Kallakury, Bhaskar V; Freudenheim, Jo L; Shields, Peter G

    2015-10-01

    Mutations in the p53 gene are among the most frequent genetic events in human cancer and may be triggered by environmental and occupational exposures. We examined the association of clinical and pathological characteristics of breast tumors and breast cancer risk factors according to the prevalence and type of p53 mutations. Using tumor blocks from incident cases from a case-control study in western New York, we screened for p53 mutations in exons 2-11 using the Affymetrix p53 Gene Chip array and analyzed case-case comparisons using logistic regression. The p53 mutation frequency among cases was 28.1 %; 95 % were point mutations (13 % of which were silent) and the remainder were single base pair deletions. Sixty seven percent of all point mutations were transitions; 24 % of them are G:C>A:T at CpG sites. Positive p53 mutation status was associated with poorer differentiation (OR, 95 % CI 2.29, 1.21-4.32), higher nuclear grade (OR, 95 % CI 1.99, 1.22-3.25), and increased Ki-67 status (OR, 95 % CI 1.81, 1.10-2.98). Cases with P53 mutations were more likely to have a combined ER-positive and PR-negative status (OR, 95 % CI 1.65, 1.01-2.71), and a combined ER-negative and PR-negative status (OR, 95 % CI 2.18, 1.47-3.23). Body mass index >30 kg/m(2), waist circumference >79 cm, and waist-to-hip ratio >0.86 were also associated with p53 status; obese breast cancer cases are more likely to have p53 mutations (OR, 95 % CI 1.78, 1.19-2.68). We confirmed that p53 mutations are associated with less favorable tumor characteristics and identified an association of p53 mutation status and adiposity.

  4. Downregulated long non-coding RNA MEG3 in breast cancer regulates proliferation, migration and invasion by depending on p53’s transcriptional activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Lin; Li, Yu; Yang, Bangxiang, E-mail: b19933009@qq.coom

    Long non-coding RNAs (lncRNAs) was found to play critical roles in tumorigenesis, hence, screen of tumor-related lncRNAs, identification of their biological roles is important for understanding the processes of tumorigenesis. In this study, we identified the expressing difference of several tumor-related lncRNAs in breast cancer samples and found that, MEG3, which is downregulated in non-small cell lung cancer (NSCLC) tumor tissues, is also downregulated in breast cancer samples compared with adjacent tissues. For figuring out the effect of MEG3 in breast cancer cells MCF7 and MB231, we overexpressed MEG3 in these cells, and found that it resulted the inhibition ofmore » proliferation, colony formation, migration and invasion capacities by enhancing p53’s transcriptional activity on its target genes, including p21, Maspin and KAI1. MEG3 presented similar effects in MB157, which is a p53-null breast cancer cell line, when functional p53 but not p53R273H mutant, which lacks transcriptional activity, was introduced. Surprisingly, overexpression of MEG3 activates p53’s transcriptional activity by decreasing MDM2’s transcription level, and thus stabilizes and accumulates P53. Taken together, our findings indicate that MEG3 is downregulated in breast cancer tissues and affects breast cancer cells’ malignant behaviors, which indicate MEG3 a potential therapeutic target for breast cancer. - Highlights: • MEG3 RNA is widely downregulated in breast tumor tissue. • MEG3 regulates P53 indirectly through transcriptional regulation of MDM2. • Under unstressed condition, MEG3-related P53 accumulation transcriptionally activates p53’s target genes. • MEG3 expression level tightly regulates proliferation, colony formation, migration and invasion in breast tumor cells.« less

  5. Atomic resolution (0.97 Å) structure of the triple mutant (K53,56,121M) of bovine pancreatic phospholipase A2

    PubMed Central

    Sekar, K.; Rajakannan, V.; Gayathri, D.; Velmurugan, D.; Poi, M.-J.; Dauter, M.; Dauter, Z.; Tsai, M.-D.

    2005-01-01

    The enzyme phospholipase A2 catalyzes the hydrolysis of the sn-2 acyl chain of phospholipids, forming fatty acids and lysophospholipids. The crystal structure of a triple mutant (K53,56,121M) of bovine pancreatic phospholipase A2 in which the lysine residues at positions 53, 56 and 121 are replaced recombinantly by methionines has been determined at atomic resolution (0.97 Å). The crystal is monoclinic (space group P2), with unit-cell parameters a = 36.934, b = 23.863, c = 65.931 Å, β = 101.47°. The structure was solved by molecular replacement and has been refined to a final R factor of 10.6% (R free = 13.4%) using 63 926 unique reflections. The final protein model consists of 123 amino-acid residues, two calcium ions, one chloride ion, 243 water molecules and six 2-methyl-2,4-pentanediol molecules. The surface-loop residues 60–70 are ordered and have clear electron density. PMID:16508077

  6. TRIM25 has a dual function in the p53/Mdm2 circuit.

    PubMed

    Zhang, P; Elabd, S; Hammer, S; Solozobova, V; Yan, H; Bartel, F; Inoue, S; Henrich, T; Wittbrodt, J; Loosli, F; Davidson, G; Blattner, C

    2015-11-12

    P53 is an important tumor suppressor that, upon activation, induces growth arrest and cell death. Control of p53 is thus of prime importance for proliferating cells, but also for cancer therapy, where p53 activity contributes to the eradication of tumors. Mdm2 functionally inhibits p53 and targets the tumor suppressor protein for degradation. In a genetic screen, we identified TRIM25 as a novel regulator of p53 and Mdm2. TRIM25 increased p53 and Mdm2 abundance by inhibiting their ubiquitination and degradation in 26 S proteasomes. TRIM25 co-precipitated with p53 and Mdm2 and interfered with the association of p300 and Mdm2, a critical step for p53 polyubiquitination. Despite the increase in p53 levels, p53 activity was inhibited in the presence of TRIM25. Downregulation of TRIM25 resulted in an increased acetylation of p53 and p53-dependent cell death in HCT116 cells. Upon genotoxic insults, TRIM25 dampened the p53-dependent DNA damage response. The downregulation of TRIM25 furthermore resulted in massive apoptosis during early embryogenesis of medaka, which was rescued by the concomitant downregulation of p53, demonstrating the functional relevance of the regulation of p53 by TRIM25 in an organismal context.

  7. p53 on the crossroad between regeneration and cancer.

    PubMed

    Charni, Meital; Aloni-Grinstein, Ronit; Molchadsky, Alina; Rotter, Varda

    2017-01-01

    Regeneration and tumorigenesis share common molecular pathways, nevertheless the outcome of regeneration is life, whereas tumorigenesis leads to death. Although the process of regeneration is strictly controlled, malignant transformation is unrestrained. In this review, we discuss the involvement of TP53, the major tumor-suppressor gene, in the regeneration process. We point to the role of p53 as coordinator assuring that regeneration will not shift to carcinogenesis. The fluctuation in p53 activity during the regeneration process permits a tight control. On one hand, its inhibition at the initial stages allows massive proliferation, on the other its induction at advanced steps of regeneration is essential for preservation of robustness and fidelity of the regeneration process. A better understanding of the role of p53 in regulation of regeneration may open new opportunities for implementation of TP53-based therapies, currently available for cancer patients, in regenerative medicine.

  8. Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer

    PubMed Central

    Diaz-Lagares, Angel; Crujeiras, Ana B.; Lopez-Serra, Paula; Soler, Marta; Setien, Fernando; Goyal, Ashish; Sandoval, Juan; Hashimoto, Yutaka; Martinez-Cardús, Anna; Gomez, Antonio; Heyn, Holger; Moutinho, Catia; Espada, Jesús; Vidal, August; Paúles, Maria; Galán, Maica; Sala, Núria; Akiyama, Yoshimitsu; Martínez-Iniesta, María; Farré, Lourdes; Villanueva, Alberto; Gross, Matthias; Diederichs, Sven; Guil, Sonia; Esteller, Manel

    2016-01-01

    Long noncoding RNAs (lncRNAs) are important regulators of cellular homeostasis. However, their contribution to the cancer phenotype still needs to be established. Herein, we have identified a p53-induced lncRNA, TP53TG1, that undergoes cancer-specific promoter hypermethylation-associated silencing. In vitro and in vivo assays identify a tumor-suppressor activity for TP53TG1 and a role in the p53 response to DNA damage. Importantly, we show that TP53TG1 binds to the multifaceted DNA/RNA binding protein YBX1 to prevent its nuclear localization and thus the YBX1-mediated activation of oncogenes. TP53TG1 epigenetic inactivation in cancer cells releases the transcriptional repression of YBX1-targeted growth-promoting genes and creates a chemoresistant tumor. TP53TG1 hypermethylation in primary tumors is shown to be associated with poor outcome. The epigenetic loss of TP53TG1 therefore represents an altered event in an lncRNA that is linked to classical tumoral pathways, such as p53 signaling, but is also connected to regulatory networks of the cancer cell. PMID:27821766

  9. [Study on serum p53 protein in cops in Guangzhou city].

    PubMed

    Zhu, Wen-Chang; Chen, Qing; Chu, Xin-Wei; Luo, Chen-Ling; Wu, Min; Wang, Ya-Xian; Chen, Si-Dong

    2003-10-01

    Serum p53 protein overexpression was detected in population exposed to traffic exhaust gas to study the relation between traffic exhaust gas and the increased risk in p53 gene mutation. Serum p53 protein expression was measured by enzyme-linked immunosorbent assay. Relationship between different types of job and serum p53 protein overexpression were studied by pearson Chi-square tests. Results on serum p53 protein overexpression on jobs outside of office (5.74%) were not significantly higher than jobs inside the office. However, it suggested that traffic police men (12.12%) working outside of office, with whose length of service longer than 30 years had a significant overexpression of serum p53 protein than the others (5.36%) whose length of service was less than 30 years (P < 0.05, OR = 2.43, 95% CI: 1.11 - 5.33). Overexpression rate of p53 protein appeared to be 6.89% in the group whose average weekly exposure hours were more than 40 hours, which was significant higher than the group whose exposed hours were less than 40 hours (P < 0.05, OR = 1.71, 95% CI: 1.03 - 2.81). The result suggested that traffic exhaust gas was likely to cause mutation of p53 gene and increasing the incidence of lung cancer.

  10. Selective activation of p53-mediated tumour suppression in high-grade tumours.

    PubMed

    Junttila, Melissa R; Karnezis, Anthony N; Garcia, Daniel; Madriles, Francesc; Kortlever, Roderik M; Rostker, Fanya; Brown Swigart, Lamorna; Pham, David M; Seo, Youngho; Evan, Gerard I; Martins, Carla P

    2010-11-25

    Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related death worldwide, with an overall 5-year survival rate of only 10-15%. Deregulation of the Ras pathway is a frequent hallmark of NSCLC, often through mutations that directly activate Kras. p53 is also frequently inactivated in NSCLC and, because oncogenic Ras can be a potent trigger of p53 (ref. 3), it seems likely that oncogenic Ras signalling has a major and persistent role in driving the selection against p53. Hence, pharmacological restoration of p53 is an appealing therapeutic strategy for treating this disease. Here we model the probable therapeutic impact of p53 restoration in a spontaneously evolving mouse model of NSCLC initiated by sporadic oncogenic activation of endogenous Kras. Surprisingly, p53 restoration failed to induce significant regression of established tumours, although it did result in a significant decrease in the relative proportion of high-grade tumours. This is due to selective activation of p53 only in the more aggressive tumour cells within each tumour. Such selective activation of p53 correlates with marked upregulation in Ras signal intensity and induction of the oncogenic signalling sensor p19(ARF)( )(ref. 6). Our data indicate that p53-mediated tumour suppression is triggered only when oncogenic Ras signal flux exceeds a critical threshold. Importantly, the failure of low-level oncogenic Kras to engage p53 reveals inherent limits in the capacity of p53 to restrain early tumour evolution and in the efficacy of therapeutic p53 restoration to eradicate cancers.

  11. The p53 breast cancer tissue biomarker in Indian women

    PubMed Central

    Patil, Vinayak W; Tayade, Mukund B; Pingale, Sangeeta A; Dalvi, Shubhangi M; Rajekar, Rajesh B; Deshmukh, Hemkant M; Patil, Shital D; Singhai, Rajeev

    2011-01-01

    Background Combination chemotherapy is highly effective in locally advanced breast cancer. A negative expression of biomarker p53 indicates a higher chance of responding to this regimen. Patients’ p53 status may be used as a biological cancer marker to identify those who would benefit from more aggressive treatments. Aims The role of p53 in modulating apoptosis has suggested that it may affect the efficacy of anticancer agents. p53 alterations in 80 patients with locally advanced breast cancer IIIB undergoing neoadjuvant chemotherapy were prospectively evaluated. Materials and methods Patients received three cycles of paclitaxel (175 mg/m2) and doxorubicin (60 mg/m2) every 21 days. Tumor sections were analyzed before treatment for altered patterns of p53 expression, using immunohistochemistry and DNA sequencing. Results An overall response rate of 83.5% was obtained, including 15.1% complete pathological responses. The regimen was well tolerated with 17.7% grade 2/3 nausea and 12.8% grade 3/4 leukopenia. There was a statistically significant correlation between response and expression of p53. Of 25 patients who obtained a complete clinical response, only two were classified as p53-positive (P = 0.004, χ2). Of 11 patients who obtained a complete pathological remission, one was positive (P = 0.099, χ2). Conclusion Immunohistochemical (IHC) analysis has been shown to be a prognostic factor for patients with breast cancer in India. Paclitaxel is one of the most promising anticancer agents for the therapy of breast cancer, where it has also shown activity in tumors resistant to doxorubicin. PMID:24367177

  12. The MutSβ complex is a modulator of p53-driven tumorigenesis through its functions in both DNA double-strand break repair and mismatch repair.

    PubMed

    van Oers, J M M; Edwards, Y; Chahwan, R; Zhang, W; Smith, C; Pechuan, X; Schaetzlein, S; Jin, B; Wang, Y; Bergman, A; Scharff, M D; Edelmann, W

    2014-07-24

    Loss of the DNA mismatch repair (MMR) protein MSH3 leads to the development of a variety of tumors in mice without significantly affecting survival rates, suggesting a modulating role for the MutSβ (MSH2-MSH3) complex in late-onset tumorigenesis. To better study the role of MSH3 in tumor progression, we crossed Msh3(-/-) mice onto a tumor predisposing p53-deficient background. Survival of Msh3/p53 mice was not reduced compared with p53 single mutant mice; however, the tumor spectrum changed significantly from lymphoma to sarcoma, indicating MSH3 as a potent modulator of p53-driven tumorigenesis. Interestingly, Msh3(-/-) mouse embryonic fibroblasts displayed increased chromatid breaks and persistence of γH2AX foci following ionizing radiation, indicating a defect in DNA double-strand break repair (DSBR). Msh3/p53 tumors showed increased loss of heterozygosity, elevated genome-wide copy-number variation and a moderate microsatellite instability phenotype compared with Msh2/p53 tumors, revealing that MSH2-MSH3 suppresses tumorigenesis by maintaining chromosomal stability. Our results show that the MSH2-MSH3 complex is important for the suppression of late-onset tumors due to its roles in DNA DSBR as well as in DNA MMR. Further, they demonstrate that MSH2-MSH3 suppresses chromosomal instability and modulates the tumor spectrum in p53-deficient tumorigenesis and possibly has a role in other chromosomally unstable tumors as well.

  13. The critical role of catalase in prooxidant and antioxidant function of p53

    PubMed Central

    Kang, M Y; Kim, H-B; Piao, C; Lee, K H; Hyun, J W; Chang, I-Y; You, H J

    2013-01-01

    The tumor suppressor p53 is an important regulator of intracellular reactive oxygen species (ROS) levels, although downstream mediators of p53 remain to be elucidated. Here, we show that p53 and its downstream targets, p53-inducible ribonucleotide reductase (p53R2) and p53-inducible gene 3 (PIG3), physically and functionally interact with catalase for efficient regulation of intracellular ROS, depending on stress intensity. Under physiological conditions, the antioxidant functions of p53 are mediated by p53R2, which maintains increased catalase activity and thereby protects against endogenous ROS. After genotoxic stress, high levels of p53 and PIG3 cooperate to inhibit catalase activity, leading to a shift in the oxidant/antioxidant balance toward an oxidative status, which could augment apoptotic cell death. These results highlight the essential role of catalase in p53-mediated ROS regulation and suggest that the p53/p53R2–catalase and p53/PIG3–catalase pathways are critically involved in intracellular ROS regulation under physiological conditions and during the response to DNA damage, respectively. PMID:22918438

  14. P53 protein in proliferation, repair and apoptosis of cells.

    PubMed

    Wawryk-Gawda, Ewelina; Chylińska-Wrzos, Patrycja; Lis-Sochocka, Marta; Chłapek, Katarzyna; Bulak, Kamila; Jędrych, Marian; Jodłowska-Jędrych, Barbara

    2014-05-01

    The p53 protein is an important factor of many intra- and extracellular processes. This protein regulates the repair of cellular DNA and induces apoptosis. It is also responsible for the regulation of the senescence and the cell entering the subsequent stages of the cellular cycle. The protein p53 is also involved in inhibiting angiogenesis and the induction of oxidative shock. In our study, we examined the activity of p53 protein in the uterine epithelial cells in rats treated with cladribine. Its action is mainly based on apoptosis induction. We compared the activity of p53 protein in cells with a high apoptosis index and in cells with active repair mechanisms and high proliferation index. We observed stronger p53 protein expression in the epithelial cells of the materials taken 24 h after the last dose of 2-CdA associated with the active process of apoptosis and inhibition of proliferation. After 4 weeks from the last dose of cladribine, the stronger expression of p53 protein was associated with both the existing changes in the cell's genome, the effects of the ongoing repair mechanisms, as well as the high proliferation activity.

  15. p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    PubMed Central

    Yi, Qiyi; Zhao, Xiaoyu; Huang, Yun; Ma, Tieliang; Zhang, Yingyin; Hou, Heli; Cooke, Howard J.; Yang, Da-Qing; Wu, Mian; Shi, Qinghua

    2011-01-01

    Background p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. Principal Findings Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. Conclusions p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway. PMID:22076149

  16. Mathematical Modeling of E6-p53 interactions in Cervical Cancer

    PubMed

    Khattak, Faryal; Haseeb, Muhammad; Fazal, Sahar; Bhatti, A I; Ullah, Mukhtar

    2017-04-01

    Background: Cervical cancer is the third most common cancer in women throughout the world. The human papillomavirus (HPV) E6 viral protein plays an essential role in proteasomal degradation of the cancer suppressant protein p53. As a result, p53 negative regulation and apoptosis relevant activities are abrogated, facilitating development of cervical cancer. Methods: A mathematical model of E6-p53 interactions was developed using mathematical laws. In-silico simulations were carried out on CellDesigner and as a test case the small molecule drug RITA was considered for its ability to rescue the functions of tumor suppressor p53 by inhibiting E6 mediated proteasomal degradation. Results: Using a computational model we scrutinized how p53 responds to RITA, and chemical reactions of this small molecule drug were incorporated to perceive the full effects. The evolved strategy allowed the p53 response and rescue of its tumor suppressor function to be delineated, RITA being found to block p53 interactions with E6 associated proteins. Conclusion: We could develop a model of E6-p53 interactions with incorporation of actions of the small molecule drug RITA. Suppression of E6 associated proteins by RITA induces accumulation of tumor suppressant p53. Using CellDesigner to encode the model ensured that it can be easily modified and extended as more data become available. This strategy should play an effective role in the development of therapies against cancer. Creative Commons Attribution License

  17. Mathematical Modeling of E6-p53 interactions in Cervical Cancer

    PubMed Central

    Khattak, Faryal; Haseeb, Muhammad; Fazal, Sahar; Bhatti, AI; Ullah, Mukhtar

    2017-01-01

    Background: Cervical cancer is the third most common cancer in women throughout the world. The human papillomavirus (HPV) E6 viral protein plays an essential role in proteasomal degradation of the cancer suppressant protein p53. As a result, p53 negative regulation and apoptosis relevant activities are abrogated, facilitating development of cervical cancer. Methods: A mathematical model of E6-p53 interactions was developed using mathematical laws. In-silico simulations were carried out on CellDesigner and as a test case the small molecule drug RITA was considered for its ability to rescue the functions of tumor suppressor p53 by inhibiting E6 mediated proteasomal degradation. Results: Using a computational model we scrutinized how p53 responds to RITA, and chemical reactions of this small molecule drug were incorporated to perceive the full effects. The evolved strategy allowed the p53 response and rescue of its tumor suppressor function to be delineated, RITA being found to block p53 interactions with E6 associated proteins. Conclusion: We could develop a model of E6-p53 interactions with incorporation of actions of the small molecule drug RITA. Suppression of E6 associated proteins by RITA induces accumulation of tumor suppressant p53. Using CellDesigner to encode the model ensured that it can be easily modified and extended as more data become available. This strategy should play an effective role in the development of therapies against cancer. PMID:28547941

  18. Loss of Parkin reduces inflammatory arthritis by inhibiting p53 degradation.

    PubMed

    Jung, Yu Yeon; Son, Dong Ju; Lee, Hye Lim; Kim, Dae Hwan; Song, Min Jong; Ham, Young Wan; Kim, Youngsoo; Han, Sang Bae; Park, Mi Hee; Hong, Jin Tae

    2017-08-01

    Parkin is associated with various inflammatory diseases, including Parkinson's disease (PD) and rheumatoid arthritis (RA). However, the precise role of Parkin in RA is unclear. The present study addressed this issue by comparing the development of RA between non-transgenic (non-Tg) mice and PARK2 knockout (KO) mice. We found that cyclooxygenase-2 and inducible nitric oxide synthase expression and nuclear factor-κB activity were reduced but p53 activation was increased in PARK2 KO as compared to non-Tg mice. These effects were associated with reduced p53 degradation. Parkin was found to interact with p53; however, this was abolished in Parkin KO mice, which prevented p53 degradation. Treatment of PARK2 KO mice with p53 inhibitor increased Parkin expression as well as inflammation and RA development while decreasing nuclear p53 translocation, demonstrating that PARK2 deficiency inhibits inflammation in RA via suppression of p53 degradation. These results suggest that RA development may be reduced in PD patients. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. The tumour suppressor CYLD regulates the p53 DNA damage response

    PubMed Central

    Fernández-Majada, Vanesa; Welz, Patrick-Simon; Ermolaeva, Maria A.; Schell, Michael; Adam, Alexander; Dietlein, Felix; Komander, David; Büttner, Reinhard; Thomas, Roman K.; Schumacher, Björn; Pasparakis, Manolis

    2016-01-01

    The tumour suppressor CYLD is a deubiquitinase previously shown to inhibit NF-κB, MAP kinase and Wnt signalling. However, the tumour suppressing mechanisms of CYLD remain poorly understood. Here we show that loss of CYLD catalytic activity causes impaired DNA damage-induced p53 stabilization and activation in epithelial cells and sensitizes mice to chemical carcinogen-induced intestinal and skin tumorigenesis. Mechanistically, CYLD interacts with and deubiquitinates p53 facilitating its stabilization in response to genotoxic stress. Ubiquitin chain-restriction analysis provides evidence that CYLD removes K48 ubiquitin chains from p53 indirectly by cleaving K63 linkages, suggesting that p53 is decorated with complex K48/K63 chains. Moreover, CYLD deficiency also diminishes CEP-1/p53-dependent DNA damage-induced germ cell apoptosis in the nematode Caenorhabditis elegans. Collectively, our results identify CYLD as a deubiquitinase facilitating DNA damage-induced p53 activation and suggest that regulation of p53 responses to genotoxic stress contributes to the tumour suppressor function of CYLD. PMID:27561390

  20. Structural analysis of α1,3-linked galactose-containing oligosaccharides in Schizosaccharomyces pombe mutants harboring single and multiple α-galactosyltransferase genes disruptions.

    PubMed

    Ohashi, Takao; Nakakita, Shin-ichi; Sumiyoshi, Wataru; Yamada, Naotaka; Ikeda, Yuka; Tanaka, Naotaka; Takegawa, Kaoru

    2011-03-01

    In the fission yeast Schizosaccharomyces pombe, galactose (Gal) residues are transferred to N- and O-linked oligosaccharides of glycoproteins by galactosyltransferases in the lumen of the Golgi apparatus. In S. pombe, the major in vitro α1,2-galactosyltransferase activity has been purified, the gma12(+) gene has been cloned, and three α-galactosyltransferase genes (gmh1(+)-gmh3(+)) have also been partially characterized. In this study, we found three additional uncharacterized genes with homology to gmh1(+) (gmh4(+)-gmh6(+)) in the fission yeast genome sequence. All possible single disruption mutants and the septuple disruption strain were constructed and characterized. The electrophoretic mobility of acid phosphatase prepared from gma12Δ, gmh2Δ, gmh3Δ and gmh6Δ mutants was higher than that from wild type, indicating that Gma12p, Gmh2p, Gmh3p and Gmh6p are required for the galactosylation of N-linked oligosaccharides. High-performance liquid chromatography (HPLC) analysis of pyridylaminated O-linked oligosaccharides from each single mutant showed that Gma12p, Gmh2p and Gmh6p are involved in galactosylation of O-linked oligosaccharides. The septuple mutant exhibited similar drug and temperature sensitivity as a gms1Δ mutant that is incapable of galactosylation. Oligosaccharide structural analysis based on HPLC and methylation analysis revealed that the septuple mutant still contained oligosaccharides consisting of α1,3-linked Gal residues, indicating that an unknown α1,3-galactosyltransferase activity was still present in the septuple mutant.

  1. FGF1 protects neuroblastoma SH-SY5Y cells from p53-dependent apoptosis through an intracrine pathway regulated by FGF1 phosphorylation

    PubMed Central

    Pirou, Caroline; Montazer-Torbati, Fatemeh; Jah, Nadège; Delmas, Elisabeth; Lasbleiz, Christelle; Mignotte, Bernard; Renaud, Flore

    2017-01-01

    Neuroblastoma, a sympathetic nervous system tumor, accounts for 15% of cancer deaths in children. In contrast to most human tumors, p53 is rarely mutated in human primary neuroblastoma, suggesting impaired p53 activation in neuroblastoma. Various studies have shown correlations between fgf1 expression levels and both prognosis severity and tumor chemoresistance. As we previously showed that fibroblast growth factor 1 (FGF1) inhibited p53-dependent apoptosis in neuron-like PC12 cells, we initiated the study of the interaction between the FGF1 and p53 pathways in neuroblastoma. We focused on the activity of either extracellular FGF1 by adding recombinant rFGF1 in media, or of intracellular FGF1 by overexpression in human SH-SY5Y and mouse N2a neuroblastoma cell lines. In both cell lines, the genotoxic drug etoposide induced a classical mitochondrial p53-dependent apoptosis. FGF1 was able to inhibit p53-dependent apoptosis upstream of mitochondrial events in SH-SY5Y cells by both extracellular and intracellular pathways. Both rFGF1 addition and etoposide treatment increased fgf1 expression in SH-SY5Y cells. Conversely, rFGF1 or overexpressed FGF1 had no effect on p53-dependent apoptosis and fgf1 expression in neuroblastoma N2a cells. Using different FGF1 mutants (that is, FGF1K132E, FGF1S130A and FGF1S130D), we further showed that the C-terminal domain and phosphorylation of FGF1 regulate its intracrine anti-apoptotic activity in neuroblastoma SH-SY5Y cells. This study provides the first evidence for a role of an intracrine growth factor pathway on p53-dependent apoptosis in neuroblastoma, and could lead to the identification of key regulators involved in neuroblastoma tumor progression and chemoresistance. PMID:29048426

  2. Clinical and pathologic relevance of p53 index in canine osseous tumors.

    PubMed

    Loukopoulos, P; Thornton, J R; Robinson, W F

    2003-05-01

    The clinicopathologic value of the immunohistochemical (IHC) expression of p53 protein was evaluated in 167 canine osseous tumors. p53 staining frequency and intensity in tumor cells was expressed as a p53 index. p53 index was significantly higher in osteosarcomas than in other sarcomas, chondrosarcoma, multilobular tumor of bone, and tumors initially misdiagnosed as osteosarcomas as well as in appendicular versus axial and in distal versus proximal osteosarcomas. A strong correlation is demonstrated between the p53 index and a range of clinicopathologic parameters in osteosarcoma, including the tumor site, histologic grade and score, mitotic index, degree of tumor necrosis, and pleomorphism. Chondroblastic osteosarcomas had significantly higher and telangiectatic osteosarcomas significantly lower p53 index than did osteosarcomas belonging to other histopathologic subtypes, a fact that tends to reinforce the perception of these osteosarcomas as distinct clinicopathologic entities. Entire males had higher p53 index than did neutered males. p53 index was higher in Rottweilers than in Great Danes and Terriers, confirming breed susceptibilities to osteosarcoma. p53 index showed no association with age, primary or secondary site status, or the presence of metastases or other tumor types. Biopsy samples had a higher p53 index than did postmortem samples, either because of differences in sample processing or the possibility that p53 overexpression is more evident at the earlier stages of osteosarcoma pathogenesis, presumably represented by the biopsy material. IHC examination for p53 and the derived index has the potential to be used as an additional diagnostic tool and prognostic indicator for osseous tumors.

  3. p53 Is a Key Regulator for Osthole-Triggered Cancer Pathogenesis

    PubMed Central

    Huang, Ssu-Ming; Tsai, Cheng-Fang; Wang, Min-Ying

    2014-01-01

    Osthole has been reported to have antitumor activities via the induction of apoptosis and inhibition of cancer cell growth and metastasis. However, the detailed molecular mechanisms underlying the anticancer effects of osthole in human colon cancer remain unclear. In the present study, we have assessed osthole-induced cell death in two different human colon cancer cell lines, HCT116 and SW480. Our results also showed that osthole activated proapoptotic signaling pathways in human colon cancer cells. By using cell culture insert system, osthole reduced cell motility in both human colon cancer cell lines. This study also provides evidence supporting the potential of osthole in p53 activation. Expression of p53, an apoptotic protein, was remarkably upregulated in cells treated with osthole. Importantly, the levels of phosphorylation of p53 on Ser15 (p-p53) and acetylation of p53 on Lys379 (acetyl-p53) were increased under osthole treatment. Our results also demonstrated that p53 was activated followed by generation of reactive oxygen species (ROS) and activation of c-Jun N-terminal kinase (JNK). Our study provides novel insights of p53-mediated responses under osthole treatment. Taken together, we concluded that osthole induces cancer cell death and inhibits migratory activity in a controlled manner and is a promising candidate for antitumor drug development. PMID:25013761

  4. p53 is a key regulator for osthole-triggered cancer pathogenesis.

    PubMed

    Huang, Ssu-Ming; Tsai, Cheng-Fang; Chen, Dar-Ren; Wang, Min-Ying; Yeh, Wei-Lan

    2014-01-01

    Osthole has been reported to have antitumor activities via the induction of apoptosis and inhibition of cancer cell growth and metastasis. However, the detailed molecular mechanisms underlying the anticancer effects of osthole in human colon cancer remain unclear. In the present study, we have assessed osthole-induced cell death in two different human colon cancer cell lines, HCT116 and SW480. Our results also showed that osthole activated proapoptotic signaling pathways in human colon cancer cells. By using cell culture insert system, osthole reduced cell motility in both human colon cancer cell lines. This study also provides evidence supporting the potential of osthole in p53 activation. Expression of p53, an apoptotic protein, was remarkably upregulated in cells treated with osthole. Importantly, the levels of phosphorylation of p53 on Ser15 (p-p53) and acetylation of p53 on Lys379 (acetyl-p53) were increased under osthole treatment. Our results also demonstrated that p53 was activated followed by generation of reactive oxygen species (ROS) and activation of c-Jun N-terminal kinase (JNK). Our study provides novel insights of p53-mediated responses under osthole treatment. Taken together, we concluded that osthole induces cancer cell death and inhibits migratory activity in a controlled manner and is a promising candidate for antitumor drug development.

  5. Metabolic activation of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine and DNA adduct formation depends on p53: Studies in Trp53(+/+),Trp53(+/-) and Trp53(-/-) mice.

    PubMed

    Krais, Annette M; Speksnijder, Ewoud N; Melis, Joost P M; Singh, Rajinder; Caldwell, Anna; Gamboa da Costa, Gonçalo; Luijten, Mirjam; Phillips, David H; Arlt, Volker M

    2016-02-15

    The expression of the tumor suppressor p53 can influence the bioactivation of, and DNA damage induced by, the environmental carcinogen benzo[a]pyrene, indicating a role for p53 in its cytochrome P450 (CYP)-mediated biotransformation. The carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), which is formed during the cooking of food, is also metabolically activated by CYP enzymes, particularly CYP1A2. We investigated the potential role of p53 in PhIP metabolism in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with a single oral dose of 50 mg/kg body weight PhIP. N-(Deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP-C8-dG) levels in DNA, measured by liquid chromatography-tandem mass spectrometry, were significantly lower in liver, colon, forestomach and glandular stomach of Trp53(-/-) mice compared to Trp53(+/+) mice. Lower PhIP-DNA adduct levels in the livers of Trp53(-/-) mice correlated with lower Cyp1a2 enzyme activity (measured by methoxyresorufin-O-demethylase activity) in these animals. Interestingly, PhIP-DNA adduct levels were significantly higher in kidney and bladder of Trp53(-/-) mice compared to Trp53(+/+) mice, which was accompanied by higher sulfotransferase (Sult) 1a1 protein levels and increased Sult1a1 enzyme activity (measured by 2-naphthylsulfate formation from 2-naphthol) in kidneys of these animals. Our study demonstrates a role for p53 in the metabolism of PhIP in vivo, extending previous results on a novel role for p53 in xenobiotic metabolism. Our results also indicate that the impact of p53 on PhIP biotransformation is tissue-dependent and that in addition to Cyp1a enzymes, Sult1a1 can contribute to PhIP-DNA adduct formation. © 2015 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  6. MicroRNA-125b is a novel negative regulator of p53.

    PubMed

    Le, Minh T N; Teh, Cathleen; Shyh-Chang, Ng; Xie, Huangming; Zhou, Beiyan; Korzh, Vladimir; Lodish, Harvey F; Lim, Bing

    2009-04-01

    The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3' untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with gamma-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response.

  7. MicroRNA-125b is a novel negative regulator of p53

    PubMed Central

    Le, Minh T.N.; Teh, Cathleen; Shyh-Chang, Ng; Xie, Huangming; Zhou, Beiyan; Korzh, Vladimir; Lodish, Harvey F.; Lim, Bing

    2009-01-01

    The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3′ untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with γ-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response. PMID:19293287

  8. Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, Gregory T.; Yannone, Steven M.; Langland, Rachel A.

    2009-09-07

    The variability of radiation responses in ovarian tumors and tumor-derived cell lines is poorly understood. Since both DNA repair capacity and p53 status can significantly alter radiation sensitivity, we evaluated these factors along with radiation sensitivity in a panel of sporadic human ovarian carcinoma cell lines. We observed a gradation of radiation sensitivity among these sixteen lines, with a five-fold difference in the LD50 between the most radiosensitive and the most radioresistant cells. The DNA-dependent protein kinase (DNA-PK) is essential for the repair of radiation induced DNA double-strand breaks in human somatic cells. Therefore, we measured gene copy number, expressionmore » levels, protein abundance, genomic copy and kinase activity for DNA-PK in all of our cell lines. While there were detectable differences in DNA-PK between the cell lines, there was no clear correlation with any of these differences and radiation sensitivity. In contrast, p53 function as determined by two independent methods, correlated well with radiation sensitivity, indicating p53 mutant ovarian cancer cells are typically radioresistant relative to p53 wild-type lines. These data suggest that the activity of regulatory molecules such as p53 may be better indicators of radiation sensitivity than DNA repair enzymes such as DNAPK in ovarian cancer.« less

  9. Structures and Free Energy Landscapes of the A53T Mutant-Type α-Synuclein Protein and Impact of A53T Mutation on the Structures of the Wild-Type α-Synuclein Protein with Dynamics

    PubMed Central

    2013-01-01

    The A53T genetic missense mutation of the wild-type α-synuclein (αS) protein was initially identified in Greek and Italian families with familial Parkinson’s disease. Detailed understanding of the structures and the changes induced in the wild-type αS structure by the A53T mutation, as well as establishing the direct relationships between the rapid conformational changes and free energy landscapes of these intrinsically disordered fibrillogenic proteins, helps to enhance our fundamental knowledge and to gain insights into the pathogenic mechanism of Parkinson’s disease. We employed extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations to determine the secondary and tertiary structural properties as well as the conformational free energy surfaces of the wild-type and A53T mutant-type αS proteins in an aqueous solution medium using both implicit and explicit water models. The confined aqueous volume effect in the simulations of disordered proteins using an explicit model for water is addressed for a model disordered protein. We also assessed the stabilities of the residual secondary structure component interconversions in αS based on free energy calculations at the atomic level with dynamics using our recently developed theoretical strategy. To the best of our knowledge, this study presents the first detailed comparison of the structural properties linked directly to the conformational free energy landscapes of the monomeric wild-type and A53T mutant-type α-synuclein proteins in an aqueous solution environment. Results demonstrate that the β-sheet structure is significantly more altered than the helical structure upon A53T mutation of the monomeric wild-type αS protein in aqueous solution. The β-sheet content close to the mutation site in the N-terminal region is more abundant while the non-amyloid-β component (NAC) and C-terminal regions show a decrease in β-sheet abundance upon A53T mutation. Obtained

  10. Structures and free energy landscapes of the A53T mutant-type α-synuclein protein and impact of A53T mutation on the structures of the wild-type α-synuclein protein with dynamics.

    PubMed

    Coskuner, Orkid; Wise-Scira, Olivia

    2013-07-17

    The A53T genetic missense mutation of the wild-type α-synuclein (αS) protein was initially identified in Greek and Italian families with familial Parkinson's disease. Detailed understanding of the structures and the changes induced in the wild-type αS structure by the A53T mutation, as well as establishing the direct relationships between the rapid conformational changes and free energy landscapes of these intrinsically disordered fibrillogenic proteins, helps to enhance our fundamental knowledge and to gain insights into the pathogenic mechanism of Parkinson's disease. We employed extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations to determine the secondary and tertiary structural properties as well as the conformational free energy surfaces of the wild-type and A53T mutant-type αS proteins in an aqueous solution medium using both implicit and explicit water models. The confined aqueous volume effect in the simulations of disordered proteins using an explicit model for water is addressed for a model disordered protein. We also assessed the stabilities of the residual secondary structure component interconversions in αS based on free energy calculations at the atomic level with dynamics using our recently developed theoretical strategy. To the best of our knowledge, this study presents the first detailed comparison of the structural properties linked directly to the conformational free energy landscapes of the monomeric wild-type and A53T mutant-type α-synuclein proteins in an aqueous solution environment. Results demonstrate that the β-sheet structure is significantly more altered than the helical structure upon A53T mutation of the monomeric wild-type αS protein in aqueous solution. The β-sheet content close to the mutation site in the N-terminal region is more abundant while the non-amyloid-β component (NAC) and C-terminal regions show a decrease in β-sheet abundance upon A53T mutation. Obtained results

  11. The Ovary Is an Alternative Site of Origin for High-Grade Serous Ovarian Cancer in Mice

    PubMed Central

    Coffey, Donna M.; Ma, Lang; Matzuk, Martin M.

    2015-01-01

    Although named “ovarian cancer,” it has been unclear whether the cancer actually arises from the ovary, especially for high-grade serous carcinoma (HGSC), also known as high-grade serous ovarian cancer, the most common and deadliest ovarian cancer. In addition, the tumor suppressor p53 is the most frequently mutated gene in HGSC. However, whether mutated p53 can cause HGSC remains unknown. In this study, we bred a p53 mutation, p53R172H, into conditional Dicer-Pten double-knockout (DKO) mice, a mouse model duplicating human HGSC, to generate triple-mutant (TKO) mice. Like DKO mice, these TKO mice develop metastatic HGSCs originating from the fallopian tube. Unlike DKO mice, however, even after fallopian tubes are removed in TKO mice, ovaries alone can develop metastatic HGSCs, indicating that a p53 mutation can drive HGSC arising from the ovary. To confirm this, we generated p53R172H-Pten double-mutant mice, one of the genetic control lines for TKO mice. As anticipated, these double-mutant mice also develop metastatic HGSCs from the ovary, verifying the HGSC-forming ability of ovaries with a p53 mutation. Our study therefore shows that ovaries harboring a p53 mutation, as well as fallopian tubes, can be a distinct tissue source of high-grade serous ovarian cancer in mice. PMID:25815421

  12. The ovary is an alternative site of origin for high-grade serous ovarian cancer in mice.

    PubMed

    Kim, Jaeyeon; Coffey, Donna M; Ma, Lang; Matzuk, Martin M

    2015-06-01

    Although named "ovarian cancer," it has been unclear whether the cancer actually arises from the ovary, especially for high-grade serous carcinoma (HGSC), also known as high-grade serous ovarian cancer, the most common and deadliest ovarian cancer. In addition, the tumor suppressor p53 is the most frequently mutated gene in HGSC. However, whether mutated p53 can cause HGSC remains unknown. In this study, we bred a p53 mutation, p53(R172H), into conditional Dicer-Pten double-knockout (DKO) mice, a mouse model duplicating human HGSC, to generate triple-mutant (TKO) mice. Like DKO mice, these TKO mice develop metastatic HGSCs originating from the fallopian tube. Unlike DKO mice, however, even after fallopian tubes are removed in TKO mice, ovaries alone can develop metastatic HGSCs, indicating that a p53 mutation can drive HGSC arising from the ovary. To confirm this, we generated p53(R172H)-Pten double-mutant mice, one of the genetic control lines for TKO mice. As anticipated, these double-mutant mice also develop metastatic HGSCs from the ovary, verifying the HGSC-forming ability of ovaries with a p53 mutation. Our study therefore shows that ovaries harboring a p53 mutation, as well as fallopian tubes, can be a distinct tissue source of high-grade serous ovarian cancer in mice.

  13. EBNA3C regulates p53 through induction of Aurora kinase B

    PubMed Central

    Jha, Hem C.; Yang, Karren; El-Naccache, Darine W.; Sun, Zhiguo; Robertson, Erle S.

    2015-01-01

    In multicellular organisms p53 maintains genomic integrity through activation of DNA repair, and apoptosis. EBNA3C can down regulate p53 transcriptional activity. Aurora kinase (AK) B phosphorylates p53, which leads to degradation of p53. Aberrant expression of AK-B is a hallmark of numerous human cancers. Therefore changes in the activities of p53 due to AK-B and EBNA3C expression is important for understanding EBV-mediated cell transformation. Here we show that the activities of p53 and its homolog p73 are dysregulated in EBV infected primary cells which can contribute to increased cell transformation. Further, we showed that the ETS-1 binding site is crucial for EBNA3C-mediated up-regulation of AK-B transcription. Further, we determined the Ser 215 residue of p53 is critical for functional regulation by AK-B and EBNA3C and that the kinase domain of AK-B which includes amino acid residues 106, 111 and 205 was important for p53 regulation. AK-B with a mutation at residue 207 was functionally similar to wild type AK-B in terms of its kinase activities and knockdown of AK-B led to enhanced p73 expression independent of p53. This study explores an additional mechanism by which p53 is regulated by AK-B and EBNA3C contributing to EBV-induced B-cell transformation. PMID:25691063

  14. p53 AND MDM2 PROTEIN EXPRESSION IN ACTINIC CHEILITIS

    PubMed Central

    de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida

    2008-01-01

    Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia. PMID:19082401

  15. p53 and MDM2 protein expression in actinic cheilitis.

    PubMed

    de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida

    2008-01-01

    Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia.

  16. CCAAT/enhancer-binding protein α is required for hepatic outgrowth via the p53 pathway in zebrafish

    PubMed Central

    Yuan, Hao; Wen, Bin; Liu, Xiaohui; Gao, Ce; Yang, Ruimeng; Wang, Luxiang; Chen, Saijuan; Chen, Zhu; de The, Hugues; Zhou, Jun; Zhu, Jun

    2015-01-01

    CCAAT/enhancer-binding protein α (C/ebpα) is a transcription factor that plays important roles in the regulation of hepatogenesis, adipogenesis and hematopoiesis. Disruption of the C/EBPα gene in mice leads to disturbed liver architecture and neonatal death due to hypoglycemia. However, the precise stages of liver development affected by C/ebpα loss are poorly studied. Using the zebrafish embryo as a model organism, we show that inactivation of the cebpa gene by TALENs results in a small liver phenotype. Further studies reveal that C/ebpα is distinctively required for hepatic outgrowth but not for hepatoblast specification. Lack of C/ebpα leads to enhanced hepatic cell proliferation and subsequent increased cell apoptosis. Additional loss of p53 can largely rescue the hepatic defect in cebpa mutants, suggesting that C/ebpα plays a role in liver growth regulation via the p53 pathway. Thus, our findings for the first time demonstrate a stage-specific role for C/ebpα during liver organogenesis. PMID:26511037

  17. The Origins and Evolution of the p53 Family of Genes

    PubMed Central

    Belyi, Vladimir A.; Ak, Prashanth; Markert, Elke; Wang, Haijian; Hu, Wenwei; Puzio-Kuter, Anna; Levine, Arnold J.

    2010-01-01

    A common ancestor to the three p53 family members of human genes p53, p63, and p73 is first detected in the evolution of modern‐day sea anemones, in which both structurally and functionally it acts to protect the germ line from genomic instabilities in response to stresses. This p63/p73 common ancestor gene is found in almost all invertebrates and first duplicates to produce a p53 gene and a p63/p73 ancestor in cartilaginous fish. Bony fish contain all three genes, p53, p63, and p73, and the functions of these three transcription factors diversify in the higher vertebrates. Thus, this gene family has preserved its structural features and functional activities for over one billion years of evolution. PMID:20516129

  18. The role of p53 in cancer drug resistance and targeted chemotherapy.

    PubMed

    Hientz, Karin; Mohr, André; Bhakta-Guha, Dipita; Efferth, Thomas

    2017-01-31

    Cancer has long been a grievous disease complicated by innumerable players aggravating its cure. Many clinical studies demonstrated the prognostic relevance of the tumor suppressor protein p53 for many human tumor types. Overexpression of mutated p53 with reduced or abolished function is often connected to resistance to standard medications, including cisplatin, alkylating agents (temozolomide), anthracyclines, (doxorubicin), antimetabolites (gemcitabine), antiestrogenes (tamoxifen) and EGFR-inhibitors (cetuximab). Such mutations in the TP53 gene are often accompanied by changes in the conformation of the p53 protein. Small molecules that restore the wild-type conformation of p53 and, consequently, rebuild its proper function have been identified. These promising agents include PRIMA-1, MIRA-1, and several derivatives of the thiosemicarbazone family. In addition to mutations in p53 itself, p53 activity may be also be impaired due to alterations in p53's regulating proteins such as MDM2. MDM2 functions as primary cellular p53 inhibitor and deregulation of the MDM2/p53-balance has serious consequences. MDM2 alterations often result in its overexpression and therefore promote inhibition of p53 activity. To deal with this problem, a judicious approach is to employ MDM2 inhibitors. Several promising MDM2 inhibitors have been described such as nutlins, benzodiazepinediones or spiro-oxindoles as well as novel compound classes such as xanthone derivatives and trisubstituted aminothiophenes. Furthermore, even naturally derived inhibitor compounds such as α-mangostin, gambogic acid and siladenoserinols have been discovered. In this review, we discuss in detail such small molecules that play a pertinent role in affecting the p53-MDM2 signaling axis and analyze their potential as cancer chemotherapeutics.

  19. Increased Arf/p53 activity in stem cells, aging and cancer.

    PubMed

    Carrasco-Garcia, Estefania; Moreno, Manuel; Moreno-Cugnon, Leire; Matheu, Ander

    2017-04-01

    Arf/p53 pathway protects the cells against DNA damage induced by acute stress. This characteristic is the responsible for its tumor suppressor activity. Moreover, it regulates the chronic type of stress associated with aging. This is the basis of its anti-aging activity. Indeed, increased gene dosage of Arf/p53 displays elongated longevity and delayed aging. At a cellular level, it has been recently shown that increased dosage of Arf/p53 delays age-associated stem cell exhaustion and the subsequent decline in tissue homeostasis and regeneration. However, p53 can also promote aging if constitutively activated. In this context, p53 reduces tissue regeneration, which correlates with premature exhaustion of stem cells. We discuss here the current evidence linking the Arf/p53 pathway to the processes of aging and cancer through stem cell regulation. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. The Tumor Suppressor Protein p53 and its Physiological Splicing Variant p53as in a Mouse Mammary Cancer Model

    DTIC Science & Technology

    1997-10-01

    and Biomedical Laboratories. PI - Signature Date TABLE OF CONTENTS Report Documentation Page ii Foreword m Introduction 1-2 Experimental Methods...life studies of P53 or p53as in G1, S, and G2/ M was unsuccessful as reported last year. Long cell cycle times may be responsible for lack of separation...of S-phase 5 cells from G2/ M -phase cells by centrifugal elutriation. Attempts to synchronize cells by density arrest and/or serum starvation resulted