Sample records for hard carbon films

  1. Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating film

    NASA Astrophysics Data System (ADS)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Imai, Takahiro; Suda, Yoshiyuki; Takikawa, Hirofumi; Kamiya, Masao; Taki, Makoto; Hasegawa, Yushi; Tsuji, Nobuhiro; Kaneko, Satoru; Kunitsugu, Shinsuke; Habuchi, Hitoe; Kiyohara, Shuji; Ito, Mikio; Yick, Sam; Bendavid, Avi; Martin, Phil

    2018-01-01

    Diamond-like carbon (DLC) films, which are amorphous carbon films, have been used as hard-coating films for protecting the surface of mechanical parts. Nitrogen-containing DLC (N-DLC) films are expected as conductive hard-coating materials. N-DLC films are expected in applications such as protective films for contact pins, which are used in the electrical check process of integrated circuit chips. In this study, N-DLC films are prepared using the T-shaped filtered arc deposition (T-FAD) method, and film properties are investigated. Film hardness and film density decreased when the N content increased in the films because the number of graphite structures in the DLC film increased as the N content increased. These trends are similar to the results of a previous study. The electrical resistivity of N-DLC films changed from 0.26 to 8.8 Ω cm with a change in the nanoindentation hardness from 17 to 27 GPa. The N-DLC films fabricated by the T-FAD method showed high mechanical hardness and low electrical resistivity.

  2. Improved adhesion of ultra-hard carbon films on cobalt–chromium orthopaedic implant alloy

    PubMed Central

    Vaid, Rishi; Diggins, Patrick; Weimer, Jeffrey J.; Koopman, M.; Vohra, Yogesh K.

    2010-01-01

    While interfacial graphite formation and subsequent poor film adhesion is commonly reported for chemical vapor deposited hard carbon films on cobalt-based materials, we find the presence of O2 in the feedgas mixture to be useful in achieving adhesion on a CoCrMo alloy. Nucleation studies of surface structure before formation of fully coalesced hard carbon films reveal that O2 feedgas helps mask the catalytic effect of cobalt with carbon through early formation of chromium oxides and carbides. The chromium oxides, in particular, act as a diffusion barrier to cobalt, minimizing its migration to the surface where it would otherwise interact deleteriously with carbon to form graphite. When O2 is not used, graphitic soot forms and films delaminate readily upon cooling to room temperature. Continuous 1 μm-thick nanostructured carbon films grown with O2 remain adhered with measured hardness of 60 GPa and show stable, non-catastrophic circumferential micro-cracks near the edges of indent craters made using Rockwell indentation. PMID:21221739

  3. Deposition of hard elastic hydrogenated fullerenelike carbon films

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Zhang, Junyan

    2011-05-01

    Hydrogenated fullerenelike carbon (H-FLC) films, with high hardness of 41.7 ± 1.4 GPa and elastic recovery of ˜75.1%, have been uniformly deposited at low temperature by pulse direct current plasma enhanced chemical vapor deposition (pulse DC PECVD). The superior mechanical properties of the H-FLC films are attributed to the unique curvature and interconnection of graphitic basal planes. We propose the fullerenelike structures are formed in the far nonequilibrium pulse plasma environment and stabilized in the sequential fast quenching process. It is expected that the facile deposition of H-FLC films will promote the large-scale low-temperature preparation of engineering protective films for industrial applications.

  4. The correlation between nano-hardness and elasticity and fullerene-like clusters in hydrogenated amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Wang, Yongfu; Gao, Kaixiong; Wang, Qi; Zhang, Junyan

    2018-01-01

    Fullerene-like hydrogenated carbon films have outstanding mechanical and frictional properties, but their structures have never enjoyed elaboration. In this study, we investigate the relation between nano-hardness and elasticity and fullerene-like clusters by changing energy supply form (direct current and pulse) and H2 concentration in the feedstock. It is found that the films have a network of H-rich amorphous carbon and H-poor or -deficient fullerene-like carbon, and the network change can affect hardness and elastic recovery. This is due to the energy minimization process of the film growing system in a very short pulse period at low temperature.

  5. Apparatus and process for deposition of hard carbon films

    DOEpatents

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-01

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  6. Apparatus and process for deposition of hard carbon films

    DOEpatents

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-03

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  7. Functionally gradient hard carbon composites for improved adhesion and wear

    NASA Astrophysics Data System (ADS)

    Narayan, Roger Jagdish

    A new approach is proposed for fabricating biomedical devices that last longer and are more biocompatible than those presently available. In this approach, a bulk material is chosen that has desirable mechanical properties (low modulus, high strength, high ductility and high fatigue strength). This material is coated with corrosion-resistant, wear-resistant, hard, and biocompatible hard carbon films. One of the many forms of carbon, tetrahedral amorphous carbon, consists mainly of sp3-bonded atoms. Tetrahedral amorphous carbon possesses properties close to diamond in terms of hardness, atomic smoothness, and inertness. Tetrahedral amorphous carbon and diamond films usually contain large amounts of compressive and sometimes tensile stresses; adhesive failure from these stresses has limited widespread use of these materials. This research involves processing, characterization and modeling of functionally gradient tetrahedral amorphous carbon and diamond composite films on metals (cobalt-chromium and titanium alloys) and polymers (polymethylmethacrylate and polyethylene) used in biomedical applications. Multilayer discontinuous thin films of titanium carbide, titanium nitride, aluminum nitride, and tungsten carbide have been developed to control stresses and graphitization in diamond films. A morphology of randomly interconnected micron sized diamond crystallites provides increased toughness and stress reduction. Internal stresses in tetrahedral amorphous carbon were reduced via incorporation of carbide forming elements (silicon and titanium) and noncarbide forming elements (copper, platinum, and silver). These materials were produced using a novel target design during pulsed laser deposition. These alloying atoms reduce hardness and sp3-bonded carbon content, but increase adhesion and wear resistance. Silver and platinum provide the films with antimicrobial properties, and silicon provides bioactivity and aids bone formation. Bilayer coatings were created that couple

  8. The Structure and Bonding State for Fullerene-Like Carbon Nitride Films with High Hardness Formed by Electron Cyclotron Resonance Plasma Sputtering

    NASA Astrophysics Data System (ADS)

    Kamata, Tomoyuki; Niwa, Osamu; Umemura, Shigeru; Hirono, Shigeru

    2012-12-01

    We studied pure carbon films and carbon nitride (CN) films by using electron cyclotron resonance (ECR) sputtering. The main feature of this method is high density ion irradiation during deposition, which enables the pure carbon films to have fullerene-like (FL) structures without nitrogen incorporation. Furthermore, without substrate heating, the ECR sputtered CN films exhibited an enhanced FL microstructure and hardness comparable to that of diamond at intermediate nitrogen concentration. This microstructure consisted of bent and cross-linked graphene sheets where layered areas remarkably decreased due to increased sp3 bonding. Under high nitrogen concentration conditions, the CN films demonstrated extremely low hardness because nitrile bonding not only decreased the covalent-bonded two-dimensional hexagonal network but also annihilated the bonding there. By evaluating lattice images obtained by transmission electron microscopy and the bonding state measured by X-ray photoelectron spectroscopy, we classified the ECR sputtered CN films and offered phase diagram and structure zone diagram.

  9. Synthesis of Ultrathin ta-C Films by Twist-Filtered Cathodic Arc Carbon Plasmas

    DTIC Science & Technology

    2001-04-01

    system. Ultrathin tetrahedral amorphous carbon (ta-C) films have been deposited on 6 inch wafers. Film properties have been investigated with respect to...Diamondlike films are characterized by an outstanding combination of advantageous properties : they can be very hard, tough, super-smooth, chemically...5 nm) hard carbon films are being used as protective overcoats on hard disks and read-write heads. The tribological properties of the head-disk

  10. Laser Deposition of Polymer Nanocomposite Thin Films and Hard Materials and Their Optical Characterization

    DTIC Science & Technology

    2013-12-05

    visible light on instruments such as microscope tips and micro- surgical tools. Hard carbon known as diamond-like carbon films produced by pulsed laser ...visible (610 nm) LED source and a supplemental infra-red 980-nm laser diode (for the studies of the upconversion fluorescence). The basic package...5/2013 Final Performance Report 15 Sep 2012- 14 Sep 2013 LASER DEPOSITION OF POLYMER NANOCOMPOSITE THIN FILMS AND HARD MATERIALS AND THEIR OPTICAL

  11. Deposition of hard and adherent diamond-like carbon films inside steel tubes using a pulsed-DC discharge.

    PubMed

    Trava-Airoldi, Vladimir Jesus; Capote, Gil; Bonetti, Luís Francisco; Fernandes, Jesum; Blando, Eduardo; Hübler, Roberto; Radi, Polyana Alves; Santos, Lúcia Vieira; Corat, Evaldo José

    2009-06-01

    A new, low cost, pulsed-DC plasma-enhanced chemical vapor deposition system that uses a bipolar, pulsed power supply was designed and tested to evaluate its capacity to produce quality diamond-like carbon films on the inner surface of steel tubes. The main focus of the study was to attain films with low friction coefficients, low total stress, a high degree of hardness, and very good adherence to the inner surface of long metallic tubes at a reasonable growth rate. In order to enhance the diamond-like carbon coating adhesion to metallic surfaces, four steps were used: (1) argon ion sputtering; (2) plasma nitriding; (3) a thin amorphous silicon interlayer deposition, using silane as the precursor gas; and (4) diamond-like carbon film deposition using methane atmosphere. This paper presents various test results as functions of the methane gas pressure and of the coaxial metal anode diameter, where the pulsed-DC voltage constant is kept constant. The influence of the coaxial metal anode diameter and of the methane gas pressure is also demonstrated. The results obtained showed the possibilities of using these DLC coatings for reduced friction and to harden inner surface of the steel tubes.

  12. Method for producing fluorinated diamond-like carbon films

    DOEpatents

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  13. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  14. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  15. The Role of Ambient Gas and Pressure on the Structuring of Hard Diamond-Like Carbon Films Synthesized by Pulsed Laser Deposition

    PubMed Central

    Popescu, Andrei C.; Stan, George E.; Duta, Liviu; Nita, Cristina; Popescu, Camelia; Surdu, Vasile-Adrian; Husanu, Marius-Adrian; Bita, Bogdan; Ghisleni, Rudy; Himcinschi, Cameliu; Craciun, Valentin

    2015-01-01

    Hard carbon thin films were synthesized on Si (100) and quartz substrates by the Pulsed Laser Deposition (PLD) technique in vacuum or methane ambient to study their suitability for applications requiring high mechanical resistance. The deposited films’ surface morphology was investigated by scanning electron microscopy, crystalline status by X-ray diffraction, packing and density by X-ray reflectivity, chemical bonding by Raman and X-ray photoelectron spectroscopy, adherence by “pull-out” measurements and mechanical properties by nanoindentation tests. Films synthesized in vacuum were a-C DLC type, while films synthesized in methane were categorized as a-C:H. The majority of PLD films consisted of two layers: one low density layer towards the surface and a higher density layer in contact with the substrate. The deposition gas pressure played a crucial role on films thickness, component layers thickness ratio, structure and mechanical properties. The films were smooth, amorphous and composed of a mixture of sp3-sp2 carbon, with sp3 content ranging between 50% and 90%. The thickness and density of the two constituent layers of a film directly determined its mechanical properties.

  16. Controllable preparation of fluorine-containing fullerene-like carbon film

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Liang, Aimin; Wang, Fuguo; Xu, Longhua; Zhang, Junyan

    2016-05-01

    Fluorine-containing fullerene-like carbon (F-FLC) films were prepared by high frequency unipolar pulse plasma-enhanced chemical vapor deposition. The microstructures, mechanical properties as well as the tribological properties of the films were investigated. The results indicate that fullerene-like microstructures appear in amorphous carbon matrix and increase greatly with the increase of bias voltage from -600 to -1600 V. And the fluorine contents in F-FLC films also show a minor rise. In addition, the hardness enhances with the bias voltage and the outstanding elastic recovery maintains because of the formation of fullerene-like microstructures in the F-FLC films. Undoubtedly, the F-FLC film deposited under high bias voltage owns a superiorly low friction, which combines the merits of fluorinated carbon film and fullerene-like carbon film. Moreover, the film also shows a remarkable wear resistance, which is mainly attributed to the excellent mechanical properties. This study provides new insights for us to prepare fluorine-containing FLC films with good mechanical and tribological properties.

  17. Effects of thermal annealing on the structural, mechanical, and tribological properties of hard fluorinated carbon films deposited by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Maia da Costa, M. E. H.; Baumvol, I. J. R.; Radke, C.; Jacobsohn, L. G.; Zamora, R. R. M.; Freire, F. L.

    2004-11-01

    Hard amorphous fluorinated carbon films (a-C:F) deposited by plasma enhanced chemical vapor deposition were annealed in vacuum for 30 min in the temperature range of 200-600 °C. The structural and compositional modifications were followed by several analytical techniques: Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Nanoidentation measurements and lateral force microscopy experiments were carried out in order to provide the film hardness and the friction coefficient, respectively. The internal stress and contact angle were also measured. RBS, ERDA, and XPS results indicate that both fluorine and hydrogen losses occur for annealing temperatures higher than 300 °C. Raman spectroscopy shows a progressive graphitization upon annealing, while the surface became slightly more hydrophobic as revealed by the increase of the contact angle. Following the surface wettability reduction, a decrease of the friction coefficient was observed. These results highlight the influence of the capillary condensation on the nanoscale friction. The film hardness and the internal stress are constant up to 300 °C and decrease for higher annealing temperatures, showing a direct correlation with the atomic density of the films. Since the thickness variation is negligible, the mass loss upon thermal treatment results in amorphous structures with a lower degree of cross-linking, explaining the deterioration of the mechanical properties of the a-C:F films.

  18. Hardness and deformation mechanisms of highly elastic carbon nitride thin films as studied by nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hainsworth, S.V.; Page, T.F.; Sjoestroem, H.

    1997-05-01

    Carbon nitride (CN{sub x}) thin films (0.18 < x < 0.43), deposited by magnetron sputtering of C in a N{sub 2} discharge, have been observed to be extremely resistant to plastic deformation during surface contact (i.e., exhibit a purely elastic response over large strains). Elastic recoveries as high as 90% have been measured by nanoindentation. This paper addresses the problems of estimating Young`s modulus (E) and hardness (H) in such cases and shows how different strategies involving analysis of both loading and unloading curves and measuring the work of indentation each present their own problems. The results of some cyclicmore » contact experiments are also presented and possible deformation mechanisms in the fullerene-like CN{sub x} structures discussed.« less

  19. Preparation of multi-layer film consisting of hydrogen-free DLC and nitrogen-containing DLC for conductive hard coating

    NASA Astrophysics Data System (ADS)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Degai, Satoshi; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Yasui, Haruyuki; Kaneko, Satoru; Kunitsugu, Shinsuke; Kamiya, Masao; Taki, Makoto

    2018-01-01

    Conductive hard-coating films have potential application as protective films for contact pins used in the electrical inspection process for integrated circuit chips. In this study, multi-layer diamond-like carbon (DLC) films were prepared as conductive hard-coating films. The multi-layer DLC films consisting of DLC and nitrogen-containing DLC (N-DLC) film were prepared using a T-shape filtered arc deposition method. Periodic DLC/N-DLC four-layer and eight-layer films had the same film thickness by changing the thickness of each layer. In the ball-on-disk test, the N-DLC mono-layer film showed the highest wear resistance; however, in the spherical polishing method, the eight-layer film showed the highest polishing resistance. The wear and polishing resistance and the aggressiveness against an opponent material of the multi-layer DLC films improved by reducing the thickness of a layer. In multi-layer films, the soft N-DLC layer between hard DLC layers is believed to function as a cushion. Thus, the tribological properties of the DLC films were improved by a multi-layered structure. The electrical resistivity of multi-layer DLC films was approximately half that of the DLC mono-layer film. Therefore, the periodic DLC/N-DLC eight-layer film is a good conductive hard-coating film.

  20. Formation of carbon nitride — a novel hard coating

    NASA Astrophysics Data System (ADS)

    Chubaci, J. F. D.; Ogata, K.; Fujimoto, F.; Watanabe, S.; Biersack, J. P.

    1996-08-01

    Increasing efforts have been reported on the formation of carbon nitride. Vapor deposition and simultaneous ion bombardment from accelerators or plasmas (IBAD) proved to be a successful technique for the preparation of this material. In our preparation, the properties of the films were controlled by varying the nitrogen ion energy and the flux composition ratio {C}/{N}. The deposited films with high nitrogen incorporation ( {C}/{N} = 0.6 ˜ 0.7 ) and low implantation energies (< 1.0 keV) showed high Knoop hardnesses of up to 63 GPa. XPS and FT-IR measurements indicated a high fraction of triple bonded CN. X-ray diffraction showed an amorphous structure. Computer simulations by the dynamic TRIM code are used to study the formation parameters, nitrogen ion energy and {C}/{N} ratio. This turned on to be useful in understanding the formation process of the carbon nitride films grown on silicon wafers, fused silica and tungsten carbide substrates.

  1. Growth and structure of hydrogenated carbon films containing fullerene-like structure

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Wang, Xia; Liu, Weimin; Zhang, Junyan

    2008-04-01

    Hydrogenated carbon films were prepared by magnetron sputtering of a titanium target in methane and argon atmosphere. The film grown at -800 V bias exhibits excellent mechanical properties with a hardness of 20.9 GPa and an elastic recovery as high as 85%. Its structure, characterized by high-resolution transmission electron microscopy, Raman spectrum, and x-ray photoelectron spectroscopy, can be described as fullerene-like structures uniformly dispersed in an amorphous carbon matrix. In order to reveal the evolution of fullerene-like structures in our films, different bias voltages were introduced. The results show that high bias voltage leads to the accumulation of high compressive internal stress in the film and promotes the evolution of fullerene-like structures. Although the film grown at -800 V bias presents high sp2 bonding content, it exhibits good mechanical properties with high hardness and high elasticity at the same time; we attribute it to the unique structure of the film, in which a fullerene-like structure, just like a molecule spring dispersed in the film, reserves the elastic energy during distortion through reversible bond rotation and bond angle deflection, while the amorphous carbon matrix restrains the relaxation of the rigid C-C network and compressive stress and restricts the slip of graphene sheets.

  2. Plasma-deposited amorphous hydrogenated carbon films and their tribological properties

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pouch, John J.; Alterovitz, Samuel A.

    1989-01-01

    Recent work on the properties of diamondlike carbon films and their dependence on preparation conditions are reviewed. The results of the study indicate that plasma deposition enables one to deposit a variety of amorphous hydrogenated carbon (a-C:H ) films exhibiting more diamondlike behavior to more graphitic behavior. The plasma-deposited a-C:H can be effectively used as hard, wear-resistant, and protective lubricating films on ceramic materials such as Si(sub 3)N(sub 4) under a variety of environmental conditions such as moist air, dry nitrogrn, and vacuum.

  3. Characteristics of W Doped Nanocrystalline Carbon Films Prepared by Unbalanced Magnetron Sputtering.

    PubMed

    Park, Yong Seob; Park, Chul Min; Kim, Nam-Hoon; Kim, Jae-Moon

    2016-05-01

    Nanocrystalline tungsten doped carbon (WC) films were prepared by unbalanced magnetron sputtering. Tungsten was used as the doping material in carbon thin films with the aim of application as a contact strip in an electric railway. The structural, physical, and electrical properties of the fabricated WC films with various DC bias voltages were investigated. The films had a uniform and smooth surface. Hardness and frication characteristics of the films were improved, and the resistivity and sheet resistance decreased with increasing negative DC bias voltage. These results are associated with the nanocrystalline WC phase and sp(2) clusters in carbon networks increased by ion bombardment enhanced with increasing DC bias voltage. Consequently, the increase of sp(2) clusters containing WC nanocrystalline in the carbon films is attributed to the improvement in the physical and electrical properties.

  4. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Zou, Y. S.; Wu, Y. F.; Yang, H.; Cang, K.; Song, G. H.; Li, Z. X.; Zhou, K.

    2011-12-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  5. Properties of Nanocomposite Nickel-Carbon Films Deposited by Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Grenadyorov, A. S.; Oskomov, K. V.; Solov'ev, A. A.; Rabotkin, S. V.; Zakharov, A. N.; Semenov, V. A.; Oskirko, V. O.; Yelgin, Yu. I.; Korneva, O. S.

    2017-12-01

    The method of magnetron sputtering was used to produce a-C and a-C:Ni films on substrates of monocrystalline silicon and thermoelectric material of n-type ((Bi2Te3)0.94(Bi2Se3)0.06) and p-type ((Bi2Te3)0.20(Sb2Te3)0.80) conductivity. The authors studied the effect of Ni concentration on specific electric resistance, hardness and adhesion of the produced films. It was demonstrated that specific resistance of a-C films deposited by graphite target sputtering when supplying high bias voltage onto the substrate can be reduced by increasing the share of graphitized carbon. Adding Ni to such films allows additionally reducing their specific resistance. The increase in Ni content is accompanied with the decrease in hardness and adhesion of a-C:Ni films. The acquired values of specific electric resistance and adhesion of a-C:Ni films to thermoelectric materials allow using them as barrier anti-diffusion coatings of thermoelectric modules.

  6. On the hardness of high carbon ferrous martensite

    NASA Astrophysics Data System (ADS)

    Mola, J.; Ren, M.

    2018-06-01

    Due to the presence of retained austenite in martensitic steels, especially steels with high carbon concentrations, it is difficult to estimate the hardness of martensite independent of the hardness of the coexisting austenite. In the present work, the hardness of ferrous martensite with carbon concentrations in the range 0.23-1.46 mass-% was estimated by the regression analysis of hardnesses for hardened martensitic-austenitic steels containing various martensite fractions. For a given carbon concentration, the hardness of martensitic-austenitic steels was found to increase exponentially with an increase in the fraction of the martensitic constituent. The hardness of the martensitic constituent was subsequently estimated by the exponential extrapolation of the hardness of phase mixtures to 100 vol.% martensite. For martensite containing 1.46 mass-% carbon, the hardness was estimated to be 1791 HV. This estimate of martensite hardness is significantly higher than the experimental hardness of 822 HV for a phase mixture of 68 vol.% martensite and 32 vol.% austenite. The hardness obtained by exponential extrapolation is also much higher than the hardness of 1104 HV based on the rule of mixtures. The underestimated hardness of high carbon martensite in the presence of austenite is due to the non-linear dependence of hardness on the martensite fraction. The latter is also a common observation in composite materials with a soft matrix and hard reinforcing particles.

  7. Fullerene-like hydrogenated carbon films with super-low friction and wear, and low sensitivity to environment

    NASA Astrophysics Data System (ADS)

    Ji, Li; Li, Hongxuan; Zhao, Fei; Quan, Weilong; Chen, Jianmin; Zhou, Huidi

    2010-01-01

    A novel hydrogenated carbon film containing fullerene-like nanostructure was prepared by pulse bias-assisted plasma enhanced chemical vapour deposition, and the fullerene-like arrangement in the film was characterized by high resolution transmission electron microscopy. The as-prepared hydrogenated carbon film exhibited super-low friction and wear in both dry N2 and humid ambient atmospheres, and was superior to the conventional hydrogenated carbon films. These excellent tribological properties could be attributed to the unique fullerene-like nanostructure, which endows the film with some special chemical and physical features, such as high chemical inertness, hardness and elastic recovery owing to the closed, curved and caged graphite planes, and hence, improves the tribological properties of the hydrogenated carbon film.

  8. Pyrolyzed thin film carbon

    NASA Technical Reports Server (NTRS)

    Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor); Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  9. Elastic properties of single-walled carbon nanotube thin film by nanoindentation test.

    PubMed

    Tang, Xingling; El-Hami, Abdelkhalak; El-Hami, Khalil; Eid, Mohamed; Si, Chaorun

    2017-09-12

    This paper carries out a preliminary study for the elastic properties of single walled carbon nanotube (SWCNT) thin film. The SWCNT thin films (~250 nm) are prepared by a simple and cost effective method of spin-coating technology. Nanoindentation test with a Berkovich indenter is used to determine the hardness and elastic modulus of the SWCNT thin film. It is important to note that the elastic properties of SWCNT film are indirectly derived from the information of load and displacement of the indenter under certain assumptions, deviation of the 'test value' is inevitable. In this regard, uncertainty analysis is an effective process in guarantying the validity of the material properties. This paper carries out uncertainty estimation for the tested elastic properties of SWCNT film by nanoindentation. Experimental results and uncertainty analysis indicates that nanoindentation test could be an effective and reliable method in determine the elastic properties of SWCNT thin film. Moreover, the obtained values of hardness and elastic modulus can further benefit the design of SWCNT thin film based components.

  10. Nanotribological performance of fullerene-like carbon nitride films

    NASA Astrophysics Data System (ADS)

    Flores-Ruiz, Francisco Javier; Enriquez-Flores, Christian Ivan; Chiñas-Castillo, Fernando; Espinoza-Beltrán, Francisco Javier

    2014-09-01

    Fullerene-like carbon nitride films exhibit high elastic modulus and low friction coefficient. In this study, thin CNx films were deposited on silicon substrate by DC magnetron sputtering and the tribological behavior at nanoscale was evaluated using an atomic force microscope. Results show that CNx films with fullerene-like structure have a friction coefficient (CoF ∼ 0.009-0.022) that is lower than amorphous CNx films (CoF ∼ 0.028-0.032). Analysis of specimens characterized by X-ray photoelectron spectroscopy shows that films with fullerene-like structure have a higher number of sp3 CN bonds and exhibit the best mechanical properties with high values of elastic modulus (E > 180 GPa) and hardness (H > 20 GPa). The elastic recovery determined on specimens with a fullerene-like CNx structure was of 95% while specimens of amorphous CNx structure had only 75% elastic recovery.

  11. Deposition And Characterization Of Ultra Thin Diamond Like Carbon Films

    NASA Astrophysics Data System (ADS)

    Tomcik, B.

    2010-07-01

    Amorphous hydrogenated and/or nitrogenated carbon films, a-C:H/a-C:N, in overall thickness up to 2 nm are materials of choice as a mechanical and corrosion protection layer of the magnetic media in modern hard disk drive disks. In order to obtain high density and void-free films the sputtering technology has been replaced by different plasma and ion beam deposition techniques. Hydrocarbon gas precursors, like C2H2 or CH4 with H2 and N2 as reactive gases are commonly used in Kaufman DC ion and RF plasma beam sources. Optimum incident energy of carbon ions, C+, is up to 100 eV while the typical ion current densities during the film formation are in the mA/cm2 range. Other carbon deposition techniques, like filtered cathodic arc, still suffer from co-deposition of fine nanosized carbon clusters (nano dust) and their improvements are moving toward arc excitation in the kHz and MHz frequency range. Non-destructive film analysis like μ-Raman optical spectroscopy, spectroscopic ellipsometry, FTIR and optical surface analysis are mainly used in the carbon film characterization. Due to extreme low film thicknesses the surface enhanced Raman spectroscopy (SERS) with pre-deposited layer of Au can reduce the signal collection time and minimize photon-induced damage during the spectra acquisition. Standard approach in the μ-Raman film evaluation is the measurement of the position (shift) and area of D and G-peaks under the deconvoluted overall carbon spectrum. Also, a slope of the carbon spectrum in the 1000-2000 cm-1 wavenumber range is used as a measure of the hydrogen intake within a film. Diamond like carbon (DLC) film should possess elasticity and self-healing properties during the occasional crash of the read-write head flying only couple of nanometers above the spinning film. Film corrosion protection capabilities are mostly evaluated by electrochemical tests, potentio-dynamic and linear polarization method and by business environmental method. Corrosion mechanism

  12. Effects of CPII implantation on the characteristics of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Chen, Ya-Chi; Weng, Ko-Wei; Chao, Ching-Hsun; Lien, Shui-Yang; Han, Sheng; Chen, Tien-Lai; Lee, Ying-Chieh; Shih, Han-Chang; Wang, Da-Yung

    2009-05-01

    A diamond-like carbon film (DLC) was successfully synthesized using a hybrid PVD process, involving a filter arc deposition source (FAD) and a carbon plasma ion implanter (CPII). A quarter-torus plasma duct filter markedly reduced the density of the macro-particles. Graphite targets were used in FAD. Large electron and ion energies generated from the plasma duct facilitate the activation of carbon plasma and the deposition of high-quality DLC films. M2 tool steel was pre-implanted with 45 kV carbon ions before the DLC was deposited to enhance the adhesive and surface properties of the film. The ion mixing effect, the induction of residual stress and the phase transformation at the interface were significantly improved. The hardness of the DLC increased to 47.7 GPa and 56.5 GPa, and the wear life was prolonged to over 70 km with implantation fluences of 1 × 10 17 ions/cm 2 and 2 × 10 17 ions/cm 2, respectively.

  13. Structure and Mechanical Properties of Polybutadiene Thin Films Bound to Surface-Modified Carbon Interface.

    PubMed

    Hori, Koichiro; Yamada, Norifumi L; Fujii, Yoshihisa; Masui, Tomomi; Kishimoto, Hiroyuki; Seto, Hideki

    2017-09-12

    The structure and mechanical properties of polybutadiene (PB) films on bare and surface-modified carbon films were examined. There was an interfacial layer of PB near the carbon layer whose density was higher (lower) than that of the bulk material on the hydrophobic (hydrophilic) carbon surface. To glean information about the structure and mechanical properties of PB at the carbon interface, a residual layer (RL) adhering to the carbon surface, which was considered to be a model of "bound rubber layer", was obtained by rinsing the PB film with toluene. The density and thickness of the RLs were identical to those of the interfacial layer of the PB film. In accordance with the change in the density, normal stress of the RLs evaluated by atomic force microscopy was also dependent on the surface free energy: the RLs on the hydrophobic carbon were hard like glass, whereas those on the hydrophilic carbon were soft like rubber. Similarly, the wear test revealed that the RLs on the hydrophilic carbon could be peeled off by scratching under a certain stress, whereas the RLs on the hydrophobic carbons were resistant to scratching.

  14. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  15. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  16. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoping, E-mail: wxpchina64@aliyun.com, E-mail: wxpchina@sohu.com; Shanghai Key Laboratory of Modern Optical System, Shanghai 200093; Wang, Jinye

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibitsmore » the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm{sup 2} at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.« less

  17. Optical properties and indentation hardness of thin-film acrylated epoxidized oil

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Syuhaimi Ab.; Shaktur, Khaled Mohamed; Mohammad, Rahmah; Zalikha, Wan Aimi; Nawi, Norwimie; Mohd, Ahmad Faiza

    2012-02-01

    Epoxy acrylate has been widely used as optical resin for applications such as cladding, the core of a waveguide, and other photonic devices. In this study, sustainable resin from edible oil was used as an alternative to epoxy acrylate. Structural features and the transmission of planar thin-film resin from an ultraviolet-visible spectroscopy (UV-VIS) spectrometer were investigated upon UV exposure. It was found that high transmission still persists for all samples with and without an UV absorber for exposed and unexposed samples. The film was found to absorb strongly below 400 nm. A change in the cut-off wavelength was observed upon exposure. Thin-film hardness and its dynamic indentation in the load-unload mode with different test forces were evaluated. Vickers hardness and the elastic modulus were determined for unacrylated epoxidized soybean oil (ESO) and acrylated epoxidized soybean oil (AESO). It was found that the AESO has a higher Vickers hardness and elastic modulus than those of unacrylated thin film. The Vickers hardness and elastic modulus were found to increase as the applied test force increased. The refractive index, thickness, and modes present were characterized from a spin-coated planar thin film. The refractive index in the transverse electric mode (TE) and transverse magnetic mode (TM) were determined and compared for unacrylated and acrylated epoxidized oil.

  18. Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nanostructure

    NASA Astrophysics Data System (ADS)

    Wang, Chengbing; Yang, Shengrong; Wang, Qi; Wang, Zhou; Zhang, Junyan

    2008-06-01

    Hydrogenated carbon films were grown by a plasma-enhanced chemical vapor deposition (PECVD) technique using CH4 and H2 as feedstock at ambient temperature. The microstructure of the films was characterized by high resolution transmission electron microscopy (HRTEM). The images showed the presence of curved basal planes in fullerene-like arrangements. An apparent amorphous graphene structure with nm-sized packages of basal planes in a turbostratic feature was observed. The fabricated fullerene-like hydrogenated carbon films (FL-C:H) possess superior mechanical properties, i.e. high hardness (19 GPa) and high elasticity (elastic recovery of 85%). More importantly, the films exhibit ultra-low friction (μ = 0.009) under ambient conditions with 20% relative humidity.

  19. Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nanostructure.

    PubMed

    Wang, Chengbing; Yang, Shengrong; Wang, Qi; Wang, Zhou; Zhang, Junyan

    2008-06-04

    Hydrogenated carbon films were grown by a plasma-enhanced chemical vapor deposition (PECVD) technique using CH(4) and H(2) as feedstock at ambient temperature. The microstructure of the films was characterized by high resolution transmission electron microscopy (HRTEM). The images showed the presence of curved basal planes in fullerene-like arrangements. An apparent amorphous graphene structure with nm-sized packages of basal planes in a turbostratic feature was observed. The fabricated fullerene-like hydrogenated carbon films (FL-C:H) possess superior mechanical properties, i.e. high hardness (19 GPa) and high elasticity (elastic recovery of 85%). More importantly, the films exhibit ultra-low friction (μ = 0.009) under ambient conditions with 20% relative humidity.

  20. Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery.

    PubMed

    Zhang, Huimin; Ming, Hai; Zhang, Wenfeng; Cao, Gaoping; Yang, Yusheng

    2017-07-19

    Sodium-ion batteries (SIBs) are expected to be a promising commercial alternative to lithium-ion batteries for grid electricity storage due to their potential low cost in the near future. Up to the present, the anode material still remains a great challenge for the application of SIBs, especially at room temperature. Graphite has an obvious limitation to store larger radius sodium ions (Na + ) in comparison with lithium ions (Li + ), while the hard carbon with large interlayer distance can demonstrate a relatively high storage capability and durable cycle life. However, the disadvantages of low initial Coulombic efficiency (ICE) mainly caused by large surface area and high cost synthetic approach hinder its practical applications. Herein, a new coupled carbonization strategy is presented to prepare a cost-effective hard carbon material by pyrolyzing and carbonizing the mixture of abundant sucrose and phenolic resin. Benefiting from the specialized pyrolysis reaction process and optimized conditions as studied in detail, the hard carbon has an extremely low surface area of 1.54 m 2 g -1 and high initial Coulombic efficiency of 87%, which have been rarely reported before and enhance the utilization efficiency of Na + consumption within the cathode in the future. More importantly, the hard carbon, with a high interlayer distance 3.95 Å, can deliver a higher capacity of 319 mAh g -1 and maintain a finer capacity retention of 90% over 150 cycles. Besides, a full cell with the configuration of as-prepared hard carbon anode versus an air-stable O3-Na 0.9 [Cu 0.22 Fe 0.30 Mn 0.48 ]O 2 cathode is further presented, and it has a high ICE of 80% and energy density of 256 Wh kg anode -1 (vs hard carbon) with reliable cycle performance. The results demonstrate that our synthetic strategy is feasible and extendable, while the tunable carbon-based materials should have wider applications in addition to the attractive properties in Na-ion batteries.

  1. Band gap engineering of hydrogenated amorphous carbon thin films for solar cell application

    NASA Astrophysics Data System (ADS)

    Dwivedi, Neeraj; Kumar, Sushil; Dayal, Saurabh; Rauthan, C. M. S.; Panwar, O. S.; Malik, Hitendra K.

    2012-10-01

    In this work, self bias variation, nitrogen introduction and oxygen plasma (OP) treatment approaches have been used for tailoring the band gap of hydrogenated amorphous carbon (a-C:H) thin films. The band gap of a-C:H and modified a- C:H films is varied in the range from 1.25 eV to 3.45 eV, which is found to be nearly equal to the full solar spectrum (1 eV- 3.5 eV). Hence, such a-C:H and modified a-C:H films are found to be potential candidate for the development of full spectrum solar cells. Besides this, computer aided simulation with considering variable band gap a-C:H and modified a- C:H films as window layer for amorphous silicon p-i-n solar cells is also performed by AFORS-HET software and maximum efficiency as ~14 % is realized. Since a-C:H is hard material, hence a-C:H and modified a-C:H films as window layer may avoid the use of additional hard and protective coating particularly in n-i-p configuration.

  2. Method for making carbon films

    DOEpatents

    Tan, M.X.

    1999-07-29

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

  3. Method for making carbon films

    DOEpatents

    Tan, Ming X.

    1999-01-01

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  4. Nanopatterned carbon films with engineered morphology by direct carbonization of UV-stabilized block copolymer films.

    PubMed

    Wang, Yong; Liu, Jinquan; Christiansen, Silke; Kim, Dong Ha; Gösele, Ulrich; Steinhart, Martin

    2008-11-01

    Nanopatterned thin carbon films were prepared by direct and expeditious carbonization of the block copolymer polystyrene- block-poly(2-vinylpyridine) (PS- b-P2VP) without the necessity of slow heating to the process temperature and of addition of further carbon precursors. Carbonaceous films having an ordered "dots-on-film" surface topology were obtained from reverse micelle monolayers. The regular nanoporous morphology of PS- b-P2VP films obtained by subjecting reverse micelle monolayers to swelling-induced surface reconstruction could likewise be transferred to carbon films thus characterized by ordered nanopit arrays. Stabilization of PS- b-P2VP by UV irradiation and the concurrent carbonization of both blocks were key to the conservation of the film topography. The approach reported here may enable the realization of a broad range of nanoscaled architectures for carbonaceous materials using a block copolymer ideally suited as a template because of the pronounced repulsion between its blocks and its capability to form highly ordered microdomain structures.

  5. Strength, hardness, and lattice vibrations of Z-carbon and W-carbon: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Zhiping; Gao, Faming; Xu, Ziming

    2012-04-01

    The strength, hardness, and lattice vibrations of two superhard carbon allotropies, Z-carbon and W-carbon are investigated by first-principles calculations. Phonon dispersion calculations indicate that Z-carbon and W-carbon are dynamically stable at least up to 300 GPa. The strength calculations reveal that the failure mode in Z-carbon is dominated by the tensile type, and the [010] direction is the weakest one. In W-carbon, the failure mode is dominated by the shear type, and the (101)[111¯] direction is the weakest one. Although the ideal strength of diamond is distinctly greater than that of Z-carbon and W-carbon, the tensile strength and shear strength for Z-carbon and W-carbon show much lower anisotropies than that of diamond. The hardness calculations indicate that the average hardness of Z-carbon is less than that of diamond but greater than that of the W-carbon, M-carbon, and body-centered-tetragonal-C4 carbon. The simulated Raman spectra show that the Ag modes at 1094 cm-1 for Z-carbon and 1109.7 cm-1 for W-carbon are in agreement with that of 1082 cm-1 observed in the experiment of cold-compressed graphite at 9.8 GPa.

  6. Protolytic carbon film technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renschler, C.L.; White, C.A.

    1996-04-01

    This paper presents a technique for the deposition of polyacrylonitrile (PAN) on virtually any surface allowing carbon film formation with only the caveat that the substrate must withstand carbonization temperatures of at least 600 degrees centigrade. The influence of processing conditions upon the structure and properties of the carbonized film is discussed. Electrical conductivity, microstructure, and morphology control are also described.

  7. Optical and Scratch Resistant Properties of Diamondlike Carbon Films Deposited with Single and Dual Ion Beams

    NASA Technical Reports Server (NTRS)

    Kussmaul, Michael T.; Bogdanski, Michael S.; Banks, Bruce A.; Mirtich, Michael J.

    1993-01-01

    Amorphous diamond-like carbon (DLC) films were deposited using both single and dual ion beam techniques utilizing filament and hollow cathode ion sources. Continuous DLC films up to 3000 A thick were deposited on fused quartz plates. Ion beam process parameters were varied in an effort to create hard, clear films. Total DLC film absorption over visible wavelengths was obtained using a Perkin-Elmer spectrophotometer. An ellipsometer, with an Ar-He laser (wavelength 6328 A) was used to determine index of refraction for the DLC films. Scratch resistance, frictional, and adherence properties were determined for select films. Applications for these films range from military to the ophthalmic industries.

  8. Optical and scratch resistant properties of diamondlike carbon films deposited with single and dual ion beams

    NASA Technical Reports Server (NTRS)

    Kussmaul, Michael T.; Bogdanski, Michael S.; Banks, Bruce A.; Mirtich, Michael J.

    1993-01-01

    Amorphous diamondlike carbon (DLC) films were deposited using both single and dual ion beam techniques utilizing filament and hollow cathode ion sources. Continuous DLC films up to 3000 A thick were deposited on fused quartz plates. Ion beam process parameters were varied in an effort to create hard, clear films. Total DLC film absorption over visible wavelengths was obtained using a Perkin-Elmer spectrophotometer. An ellipsometer, with an Ar-He laser (wavelength 6328 A) was used to determine index of refraction for the DLC films. Scratch resistance and frictional and adherence properties were determined for select films. Applications for these films range from military to the ophthalmic industries.

  9. Preparation, Properties, and Structure of Hydrogenated Amorphous Carbon Films.

    NASA Astrophysics Data System (ADS)

    Chen, Hsiung

    1990-01-01

    Hydrogenated amorphous carbon films (a-C:H) have been deposited on glass, fused silica, Si, Mo, Al, and 304 stainless steel at room temperature by plasma enhanced chemical vapor deposition (PECVD). The rf glow discharge and plasma kinetics of the deposition process were investigated. Negative self-bias voltage V_{rm b} and gas pressure P were used as two major deposition parameters. The hydrogen concentration, internal stress, mass density, hardness, and thickness of the deposited films were measured. In the low energy deposition region, 0 > V_{rm b} > -100 V, soft polymerlike films with high hydrogen concentration and low density were found. Hard diamondlike films with high stress were deposited in the bias voltage range, -100 V > V _{rm b} > -1000 V. Dark graphitic films with low hydrogen concentration were grown at V_ {rm b} < -1000 V. The optical absorption of a series of a-C:H films have been measured. Optical energy gaps deduced from optical absorption data using the Tauc relation lie between 0.8 eV and 1.4 eV. Doping of a-C:H films by boron and sulfur is accompanied by an increasing number of gap states, i.e., the absorption coefficient is increased and the optical gap is reduced. The thermal stability was studied by thermal desorption spectroscopy and heat treatment at atmospheric pressure. A structural study of a-C:H films was performed using data taken on our films and from literature sources. The relation between cluster size and the intensity ratio of Raman peaks was studied. A comparison of the films as described by the graphitic cluster two-phase (GCT) model, the random covalent network (RCN) model and the all-sp ^2 defect graphite (DG) model was made. The properties and structure of a-C:H films are sensitively dependent on the preparation conditions. Correlations between the deposition conditions, structure, and properties are determined.

  10. Carbon films produced from ionic liquid carbon precursors

    DOEpatents

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  11. Optical and interfacial electronic properties of diamond-like carbon films

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Natarajan, V.; Lamb, J.; Khan, A. A.; Bu-Abbud, G.; Banks, B.; Pouch, J.; Gulino, D. A.; Domitz, S.; Liu, D. C.

    1984-01-01

    Hard, semitransparent carbon films were prepared on oriented polished crystal wafers of silicon, indium phosphide and gallium arsenide, as well as on KBr and quartz. Properties of the films were determined using IR and visible absorption spectrocopy, ellipsometry, conductance-capacitance spectroscopy and alpha particle-proton recoil spectroscopy. Preparation techniques include RF plasma decomposition of methane (and other hydrocarbons), ion beam sputtering, and dual-ion-beam sputter deposition. Optical energy band gaps as large as 2.7 eV and extinction coefficients lower than 0.1 at long wavelengths are found. Electronic state densities at the interface with silicon as low as 10 to the 10th states/eV sq cm per were found.

  12. Supernormal hardness increase of dilute Ga(As, N) thin films

    NASA Astrophysics Data System (ADS)

    Berggren, Jonas; Hanke, Michael; Luna, Esperanza; Trampert, Achim

    2017-03-01

    Hardness of epitaxial GaAs1-xNx films on GaAs(001) with different film thicknesses, varying from 80 to 700 nm, and nitrogen compositions x between zero (pure GaAs) and 0.031, were studied by means of nano-indentation. As a result, a disproportionate and monotonic increase by 17% in hardness was proved in the dilute range from GaAs to GaAs0.969N0.031. We are tracing this observation to solid solution strengthening, an extrinsic effect based on dislocation pinning due to interstitial nitrogen. On the other hand, intrinsic effects related to different electronegativities of As and N (i.e., altered bonding conditions) could be ruled out. Furthermore, in tensilely strained GaAs1-xNx layers, the appearance of cracks acts as the main strain relieving mechanism. A correlation between cracking and hardness reduction is investigated and discussed as a further relaxation pathway.

  13. Carbon film electrodes for super capacitor applications

    DOEpatents

    Tan, Ming X.

    1999-01-01

    A microporous carbon film for use as electrodes in energy strorage devices is disclosed, which is made by the process comprising the steps of: (1) heating a polymer film material consisting essentially of a copolymer of polyvinylidene chloride and polyvinyl chloride in an inert atmosphere to form a carbon film; and (2) activating said carbon film to form said microporous carbon film having a density between about 0.7 g/cm.sup.2 and 1 g/cm.sup.2 and a gravimetric capacitance of about between 120 F/g and 315 F/g.

  14. Investigation of hydrogen concentration and hardness of ion irradiated organically modified silicate thin films

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Prenzel, T.; Harriman, T. A.; Wang, Y. Q.; Lucca, D. A.; Williams, D.; Nastasi, M.; Dong, J.; Mehner, A.

    2010-06-01

    A study of the effects of ion irradiation of organically modified silicate thin films on the loss of hydrogen and increase in hardness is presented. NaOH catalyzed SiNa wO xC yH z thin films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H + or 250 keV N 2+ at fluences ranging from 1 × 10 14 to 2.5 × 10 16 ions/cm 2. Elastic Recoil Detection (ERD) was used to investigate resulting hydrogen concentration as a function of ion fluence and irradiating species. Nanoindentation was used to measure the hardness of the irradiated films. FT-IR spectroscopy was also used to examine resulting changes in chemical bonding. The resulting hydrogen loss and increase in hardness are compared to similarly processed acid catalyzed silicate thin films.

  15. Field Emission and Nanostructure of Carbon Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkulov, V.I.; Lowndes, D.H.; Baylor, L.R.

    1999-11-29

    The results of field emission measurements of various forms of carbon films are reported. It is shown that the films nanostructure is a crucial factor determining the field emission properties. In particular, smooth, pulsed-laser deposited amorphous carbon films with both high and low sp3 contents are poor field emitters. This is similar to the results obtained for smooth nanocrystalline, sp2-bonded carbon films. In contrast, carbon films prepared by hot-filament chemical vapor deposition (HE-CVD) exhibit very good field emission properties, including low emission turn-on fields, high emission site density, and excellent durability. HF-CVD carbon films were found to be predominantly sp2-bonded.more » However, surface morphology studies show that these films are thoroughly nanostructured, which is believed to be responsible for their promising field emission properties.« less

  16. Sodium-Ion Batteries: Improving the Rate Capability of 3D Interconnected Carbon Nanofibers Thin Film by Boron, Nitrogen Dual-Doping.

    PubMed

    Wang, Min; Yang, Yang; Yang, Zhenzhong; Gu, Lin; Chen, Qianwang; Yu, Yan

    2017-04-01

    Boron, nitrogen dual-doping 3D hard carbon nanofibers thin film is synthesized using a facile process. The nanofibers exhibit high specific capacity and remarkable high-rate capability due to the synergistic effect of 3D porous structure, large surface area, and enlarged carbon layer spacing, and the B, N codoping-induced defects.

  17. Atomic migration of carbon in hard turned layers of carburized bearing steel

    DOE PAGES

    Bedekar, Vikram; Poplawsky, Jonathan D.; Guo, Wei; ...

    2016-01-01

    In grain finement and non-equilibrium there is carbon segregation within grain boundaries alters the mechanical performance of hard turning layers in carburized bearing steel. Moreover, an atom probe tomography (APT) study on the nanostructured hard turning layers reveals carbon migration to grain boundaries as a result of carbide decomposition during severe plastic deformation. In addition, samples exposed to different cutting speeds show that the carbon migration rate increases with the cutting speed. For these two effects lead to an ultrafine carbon network structure resulting in increased hardness and thermal stability in the severely deformed surface layer.

  18. Carbon Film Electrodes For Super Capacitor Applications

    DOEpatents

    Tan, Ming X.

    1999-07-20

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  19. Ultra-hard amorphous AlMgB14 films RF sputtered onto curved substrates

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.; Putrolaynen, V. V.; Yuzvyuk, M. H.

    2017-03-01

    Recently, hard AlMgB14 (BAM) coatings were deposited for the first time by RF magnetron sputtering using a single stoichiometric ceramic target. High target sputtering power and sufficiently short target-to-substrate distance were found to be critical processing conditions. They enabled fabrication of stoichiometric in-depth compositionally homogeneous films with the peak values of nanohardness 88 GPa and Young’s modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 GPa and 275 GPa at 200 nm depth in 2 µm thick film (Grishin et al 2014 JETP Lett. 100 680). The narrow range of sufficiently short target-to-substrate distance makes impossible to coat non flat specimens. To achieve ultimate BAM films’ characteristics onto curved surfaces we developed two-step sputtering process. The first thin layer is deposited as a template at low RF power that facilitates a layered Frank van der Merwe mode growth of smooth film occurs. The next layer is grown at high RF target sputtering power. The affinity of subsequent flow of sputtered atoms to already evenly condensed template fosters the development of smooth film surface. As an example, we made BAM coating onto hemispherical 5 mm in diameter ball made from a hard tool steel and used as a head of a special gauge. Very smooth (6.6 nm RMS surface roughness) and hard AlMgB14 films fabricated onto commercial ball-shaped items enhance hardness of tool steel specimens by a factor of four.

  20. Highly Enhanced Raman Scattering on Carbonized Polymer Films.

    PubMed

    Yoon, Jong-Chul; Hwang, Jongha; Thiyagarajan, Pradheep; Ruoff, Rodney S; Jang, Ji-Hyun

    2017-06-28

    We have discovered a carbonized polymer film to be a reliable and durable carbon-based substrate for carbon enhanced Raman scattering (CERS). Commercially available SU8 was spin coated and carbonized (c-SU8) to yield a film optimized to have a favorable Fermi level position for efficient charge transfer, which results in a significant Raman scattering enhancement under mild measurement conditions. A highly sensitive CERS (detection limit of 10 -8 M) that was uniform over a large area was achieved on a patterned c-SU8 film and the Raman signal intensity has remained constant for 2 years. This approach works not only for the CMOS-compatible c-SU8 film but for any carbonized film with the correct composition and Fermi level, as demonstrated with carbonized-PVA (poly(vinyl alcohol)) and carbonized-PVP (polyvinylpyrollidone) films. Our study certainly expands the rather narrow range of Raman-active material platforms to include robust carbon-based films readily obtained from polymer precursors. As it uses broadly applicable and cheap polymers, it could offer great advantages in the development of practical devices for chemical/bio analysis and sensors.

  1. Template-mediated, Hierarchical Engineering of Ordered Mesoporous Films and Powders

    NASA Astrophysics Data System (ADS)

    Tian, Zheng

    Hierarchical control over pore size, pore topology, and meso/mictrostructure as well as material morphology (e.g., powders, monoliths, thin films) is crucial for meeting diverse materials needs among applications spanning next generation catalysts, sensors, batteries, sorbents, etc. The overarching goal of this thesis is to establish fundamental mechanistic insight enabling new strategies for realizing such hierarchical textural control for carbon materials that is not currently achievable with sacrificial pore formation by 'one-pot' surfactant-based 'soft'-templating or multi-step inorganic 'hard-templating. While 'hard'-templating is often tacitly discounted based upon its perceived complexity, it offers potential for overcoming key 'soft'-templating challenges, including bolstering pore stability, accommodating a more versatile palette of replica precursors, realizing ordered/spanning porosity in the case of porous thin films, simplifying formation of bi-continuous pore topologies, and inducing microstructure control within porous replica materials. In this thesis, we establish strategies for hard-templating of hierarchically porous and structured carbon powders and tunable thin films by both multi-step hard-templating and a new 'one-pot' template-replica precursor co-assembly process. We first develop a nominal hard-templating technique to successfully prepare three-dimensionally ordered mesoporous (3DOm) and 3DOm-supported microporous carbon thin films by exploiting our ability to synthesize and assemble size-tunable silica nanoparticles into scalable, colloidal crystalline thin film templates of tunable mono- to multi-layer thickness. This robust thin film template accommodates liquid and/or vapor-phase infiltration, polymerization, and pyrolysis of various carbon sources without pore contraction and/or collapse upon template sacrifice. The result is robust, flexible 3DOm or 3DOm-supported ultra-thin microporous films that can be transferred by stamp

  2. A molecular dynamics analysis of ion irradiation of ultrathin amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Qi, J.; Komvopoulos, K.

    2016-09-01

    Molecular dynamics (MD) simulations provide insight into nanoscale problems where continuum description breaks down, such as the modeling of ultrathin films. Amorphous carbon (a-C) films are commonly used as protective overcoats in various contemporary technologies, including microelectromechanical systems, bio-implantable devices, optical lenses, and hard-disk drives. In all of these technologies, the protective a-C film must be continuous and very thin. For example, to achieve high storage densities (e.g., on the order of 1 Tb/in.2) in magnetic recording, the thickness of the a-C film used to protect the magnetic media and the recording head against mechanical wear and corrosion must be 2-3 nm. Inert ion irradiation is an effective post-deposition method for reducing the film thickness, while preserving the mechanical and chemical characteristics. In this study, MD simulations of Ar+ ion irradiated a-C films were performed to elucidate the effects of the ion incidence angle and ion kinetic energy on the film thickness and structure. The MD results reveal that the film etching rate exhibits a strong dependence on the ion kinetic energy and ion incidence angle, with a maximum etching rate corresponding to an ion incidence angle of ˜20°. It is also shown that Ar+ ion irradiation mainly affects the structure of the upper half of the ultrathin a-C film and that carbon atom hybridization is a strong function of the ion kinetic energy and ion incidence angle. The results of this study elucidate the effects of important ion irradiation parameters on the structure and thickness of ultrathin films and provide fundamental insight into the physics of dry etching.

  3. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating themore » absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.« less

  4. Erosion of fluorinated diamond-like carbon films by exposure to soft X-rays

    NASA Astrophysics Data System (ADS)

    Kanda, Kazuhiro; Takamatsu, Hiroki; Miura-Fujiwara, Eri; Akasaka, Hiroki; Saiga, Akihiro; Tamada, Koji

    2018-04-01

    The effects of soft X-ray irradiation on fluorinated diamond-like carbon (F-DLC) films were investigated using synchrotron radiation (SR). The Vickers hardness of the F-DLC films substantially increased from an initial value of about 290 to about 800 HV at a dose of 50 mA·h and the remained constant at about 1100 HV at doses of more than 300 mA·h. This dose dependence was consistent with those of the film thickness and elemental composition. The depth profile of the elemental composition inside each F-DLC film obtained by the measurement of the X-ray photoelectron spectrum (XPS) during sputtering showed that the composition ratio of fluorine was approximately constant from the surface to the neighborhood of the substrate. Namely, fluorine atoms were desorbed by SR irradiation from not only the surface but also the substrate neighborhood. Modification by SR irradiation was found to occur in the entire F-DLC film of about 200 nm thickness.

  5. Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhifei; Bommier, Clement; Chong, Zhi Sen

    Hard carbon is the candidate anode material for the commercialization of Na-ion batteries the batteries that by virtue of being constructed from inexpensive and abundant components open the door for massive scale up of battery-based storage of electrical energy. Holding back the development of these batteries is that a complete understanding of the mechanism of Na-ion storage in hard carbon has remained elusive. Although as an amorphous carbon, hard carbon possesses a subtle and complex structure composed of domains of layered rumpled sheets that have local order resembling graphene within each layer but complete disorder along the c-axis between layers.more » Here, we present two key discoveries: first that characteristics of hard carbon s structure can be modified systematically by heteroatom doping, and second, that these changes greatly affect Na-ion storage properties, which reveal the mechanisms for Na storage in hard carbon. Specifically, P, S and B doping was used to engineer the density of local defects in graphenic layers, and to modify the spacing between the layers. While opening the interlayer spacing through P or S doping extends the low-voltage capacity plateau, and increasing the defect concentration with P or B doping high first sodiation capacity is achieved. Furthermore, we observe that the highly defective B-doped hard carbon suffers a tremendous irreversible capacity in the first desodiation cycle. Our combined first principles calculations and experimental studies revealed a new trapping mechanism, showing that the high binding energies between B-doping induced defects and Na-ions are responsible for the irreversible capacity. The understanding generated in this work provides a totally new set of guiding principles for materials engineers working to optimize hard carbon for Na-ion battery applications.« less

  6. Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping

    DOE PAGES

    Li, Zhifei; Bommier, Clement; Chong, Zhi Sen; ...

    2017-05-23

    Hard carbon is the candidate anode material for the commercialization of Na-ion batteries the batteries that by virtue of being constructed from inexpensive and abundant components open the door for massive scale up of battery-based storage of electrical energy. Holding back the development of these batteries is that a complete understanding of the mechanism of Na-ion storage in hard carbon has remained elusive. Although as an amorphous carbon, hard carbon possesses a subtle and complex structure composed of domains of layered rumpled sheets that have local order resembling graphene within each layer but complete disorder along the c-axis between layers.more » Here, we present two key discoveries: first that characteristics of hard carbon s structure can be modified systematically by heteroatom doping, and second, that these changes greatly affect Na-ion storage properties, which reveal the mechanisms for Na storage in hard carbon. Specifically, P, S and B doping was used to engineer the density of local defects in graphenic layers, and to modify the spacing between the layers. While opening the interlayer spacing through P or S doping extends the low-voltage capacity plateau, and increasing the defect concentration with P or B doping high first sodiation capacity is achieved. Furthermore, we observe that the highly defective B-doped hard carbon suffers a tremendous irreversible capacity in the first desodiation cycle. Our combined first principles calculations and experimental studies revealed a new trapping mechanism, showing that the high binding energies between B-doping induced defects and Na-ions are responsible for the irreversible capacity. The understanding generated in this work provides a totally new set of guiding principles for materials engineers working to optimize hard carbon for Na-ion battery applications.« less

  7. Nanostructural characterization of amorphous diamondlike carbon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; MARTINEZ-MIRANDA,L.J.

    2000-01-27

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetic and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of 3- and 4-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetic of PLD growth results in films becoming more ``diamondlike'', i.e. increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to materialmore » within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film.« less

  8. In vivo biocompatibility evaluation of a new resilient, hard-carbon, thin-film coating for ventricular assist devices.

    PubMed

    Takaseya, Tohru; Fumoto, Hideyuki; Shiose, Akira; Arakawa, Yoko; Rao, Santosh; Horvath, David J; Massiello, Alex L; Mielke, Nicole; Chen, Ji-Feng; Zhou, Qun; Dessoffy, Raymond; Kramer, Larry; Benefit, Stephen; Golding, Leonard A R; Fukamachi, Kiyotaka

    2010-12-01

    The purpose of this study was to evaluate in vivo the biocompatibility of BioMedFlex (BMF), a new resilient, hard-carbon, thin-film coating, as a blood journal bearing material in Cleveland Heart's (Charlotte, NC, USA) continuous-flow right and left ventricular assist devices (RVADs and LVADs). BMF was applied to RVAD rotating assemblies or both rotating and stator assemblies in three chronic bovine studies. In one case, an LVAD with a BMF-coated stator was also implanted. Cases 1 and 3 were electively terminated at 18 and 29 days, respectively, with average measured pump flows of 4.9 L/min (RVAD) in Case 1 and 5.7 L/min (RVAD) plus 5.7 L/min (LVAD) in Case 3. Case 2 was terminated prematurely after 9 days because of sepsis. The sepsis, combined with running the pump at minimum speed (2000 rpm), presented a worst-case biocompatibility challenge. Postexplant evaluation of the blood-contacting journal bearing surfaces showed no biologic deposition in any of the four pumps. Thrombus inside the RVAD inlet cannula in Case 3 is believed to be the origin of a nonadherent thrombus wrapped around one of the primary impeller blades. In conclusion, we demonstrated that BMF coatings can provide good biocompatibility in the journal bearing for ventricular assist devices. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Modification of the amorphous carbon films by the ns-laser irradiation

    NASA Astrophysics Data System (ADS)

    Grigonis, Alfonsas; Marcinauskas, Liutauras; Vinciunaite, Vinga; Raciukaitis, Gediminas

    2011-10-01

    The effect of a nanosecond laser irradiation of thin (60 and 145 nm) amorphous, diamond-like carbon films deposited on Si substrate by an ion beam deposition (IBD) from pure acetylene and acetylene/hydrogen (1:2) gas mixture was analyzed in this work. The films were irradiated with the infrared (IR) and ultraviolet (UV) radiation of the nanosecond Nd:YAG lasers working at the first (1.16 eV) and the third (3.48 eV) harmonics, using a multi-shot regime. The IR laser irradiation stimulated a minor increase in the fraction of sp2 bonds, causing a slight decrease in the hardness of the films and initiated SiC formation. Irradiation with the UV laser caused the formation of carbides and increased hydrogenization of the Si substrate and the fraction of sp2 sites. Spalliation and ablation were observed at a higher energy density and with a large number of laser pulses per spot.

  10. Diagnostics of capacitively-coupled hydrocarbon plasmas for deposition of diamond-like carbon films using quadrupole mass spectrometry and Langmuir probe

    NASA Astrophysics Data System (ADS)

    Oda, Akinori; Fukai, Shun; Kousaka, Hiroyuki; Ohta, Takayuki

    2015-09-01

    Diamond-like carbon (DLC) films are the hydrogenated amorphous carbon films, which contains a mixture of sp2- and sp3-bonded carbon. The DLC films have been widely used for various applications, such as automotive, semiconductors, medical devices, since have excellent material properties in lower friction, higher chemical stability, higher hardness, higher wear resistance. Until now, numerous investigations on the DLC films using plasma assisted chemical vapor deposition have been done. For precise control of coating technique of DLC films, it is enormously important to clarify the fundamental properties in hydrocarbon plasmas, as a source of hydrocarbon ions and radicals. In this paper, the fundamental properties in a low pressure radio-frequency hydrocarbon (Ar/CH4 (1 %) gas mixture) plasmas have been diagnosed using a quadrupole mass spectrometer (HIDEN ANARYTICAL Ltd., EQP-300) and Langmuir probe system (HIDEN ANARYTICAL Ltd., ESPion). This work was partly supported by KAKENHI (No.26420247), and a ``Grant for Advanced Industrial Technology Development (No.11B06004d)'' in 2011 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

  11. Thermal property tuning in aligned carbon nanotube films and random entangled carbon nanotube films by ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Chen, Di; Wang, Xuemei

    2015-10-12

    Ion irradiation effects on thermal property changes are compared between aligned carbon nanotube (A-CNT) films and randomly entangled carbon nanotube (R-CNT) films. After H, C, and Fe ion irradiation, a focusing ion beam with sub-mm diameter is used as a heating source, and an infrared signal is recorded to extract thermal conductivity. Ion irradiation decreases thermal conductivity of A-CNT films, but increases that of R-CNT films. We explain the opposite trends by the fact that neighboring CNT bundles are loosely bonded in A-CNT films, which makes it difficult to create inter-tube linkage/bonding upon ion irradiation. In a comparison, in R-CNTmore » films, which have dense tube networking, carbon displacements are easily trapped between touching tubes and act as inter-tube linkage to promote off-axial phonon transport. The enhancement overcomes the phonon transport loss due to phonon-defect scattering along the axial direction. A model is established to explain the dependence of thermal conductivity changes on ion irradiation parameters including ion species, energies, and current.« less

  12. Microstructures and Hardness/Wear Performance of High-Carbon Stellite Alloys Containing Molybdenum

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Yao, J. H.; Zhang, Q. L.; Yao, M. X.; Collier, Rachel

    2015-12-01

    Conventional high-carbon Stellite alloys contain a certain amount of tungsten which mainly serves to provide strengthening to the solid solution matrix. These alloys are designed for combating severe wear. High-carbon molybdenum-containing Stellite alloys are newly developed 700 series of Stellite family, with molybdenum replacing tungsten, which are particularly employed in severe wear condition with corrosion also involved. Three high-carbon Stellite alloys, designated as Stellite 706, Stellite 712, and Stellite 720, with different carbon and molybdenum contents, are studied experimentally in this research, focusing on microstructure and phases, hardness, and wear resistance, using SEM/EDX/XRD techniques, a Rockwell hardness tester, and a pin-on-disk tribometer. It is found that both carbon and molybdenum contents influence the microstructures of these alloys significantly. The former determines the volume fraction of carbides in the alloys, and the latter governs the amount of molybdenum-rich carbides precipitated in the alloys. The hardness and wear resistance of these alloys are increased with the carbide volume fraction. However, with the same or similar carbon content, high-carbon CoCrMo Stellite alloys exhibit worse wear resistance than high-carbon CoCrW Stellite alloys.

  13. Friction and hardness of gold films deposited by ion plating and evaporation

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.

  14. Synthesis of Antimony Doped Amorphous Carbon Films

    NASA Astrophysics Data System (ADS)

    Okuyama, H.; Takashima, M.; Akasaka, H.; Ohtake, N.

    2013-06-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  15. Enhanced Fluorescence Properties of Carbon Dots in Polymer Films

    PubMed Central

    Liu, Yamin; Wang, Ping; Shiral Fernando, K. A.; LeCroy, Gregory E.; Maimaiti, Halidan; Harruff-Miller, Barbara A.; Lewis, William K.; Bunker, Christopher E.; Hou, Zhi-Ling; Sun, Ya-Ping

    2016-01-01

    Carbon dots of small carbon nanoparticles surface-functionalized with 2,2′-(ethylenedioxy)bis(ethylamine) (EDA) were synthesized, and the as-synthesized sample was separated on an aqueous gel column to obtain fractions of the EDA-carbon dots with different fluorescence quantum yields. As already discussed in the literature, the variations in fluorescence performance among the fractions were attributed to the different levels and/or effectiveness of the surface functionalization-passivation in the carbon dots. These fractions, as well as carbon nanoparticles without any deliberate surface functionalization, were dispersed into poly(vinyl alcohol) (PVA) for composite films. In the PVA film matrix, the carbon dots and nanoparticles exhibited much enhanced fluorescence emissions in comparison with their corresponding aqueous solutions. The increased fluorescence quantum yields in the films were determined quantitatively by using a specifically designed and constructed film sample holder in the emission spectrometer. The observed fluorescence decays of the EDA-carbon dots in film and in solution were essentially the same, suggesting that the significant enhancement in fluorescence quantum yields from solution to film is static in nature. Mechanistic implications of the results, including a rationalization in terms of the compression effect on the surface passivation layer (similar to a soft corona) in carbon dots when embedded in the more restrictive film environment resulting in more favorable radiative recombinations of the carbon particle surface-trapped electrons and holes, and also potential technological applications of the brightly fluorescent composite films are highlighted and discussed. PMID:28133537

  16. Synthesis of Diamond-Like Carbon Films on Planar and Non-Planar Geometries by the Atmospheric Pressure Plasma Chemical Vapor Deposition Method

    NASA Astrophysics Data System (ADS)

    Noborisaka, Mayui; Hirako, Tomoaki; Shirakura, Akira; Watanabe, Toshiyuki; Morikawa, Masashi; Seki, Masaki; Suzuki, Tetsuya

    2012-09-01

    Diamond-like carbon (DLC) films were synthesized by the dielectric barrier discharge-based plasma deposition at atmospheric pressure and their hardness and gas barrier properties were measured. A decrease in size of grains and heating substrate temperature improved nano-hardness up to 3.3 GPa. The gas barrier properties of DLC-coated poly(ethylene terephthalate) (PET) sheets were obtained by 3-5 times of non-coated PET with approximately 0.5 µm in film thickness. The high-gas-barrier DLC films deposited on PET sheets are expected to wrap elevated bridge of the super express and prevent them from neutralization of concrete. We also deposited DLC films inside PET bottles by the microwave surface-wave plasma chemical vapor deposition (CVD) method at near-atmospheric pressure. Under atmospheric pressure, the films were coated uniformly inside the PET bottles, but did not show high gas barrier properties. In this paper, we summarize recent progress of DLC films synthesized at atmospheric pressure with the aimed of food packaging and concrete pillar.

  17. Structural and optical properties of gold-incorporated diamond-like carbon thin films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Majeed, Shahbaz; Siraj, K.; Naseem, S.; Khan, Muhammad F.; Irshad, M.; Faiz, H.; Mahmood, A.

    2017-07-01

    Pure and gold-doped diamond-like carbon (Au-DLC) thin films are deposited at room temperature by using RF magnetron sputtering in an argon gas-filled chamber with a constant flow rate of 100 sccm and sputtering time of 30 min for all DLC thin films. Single-crystal silicon (1 0 0) substrates are used for the deposition of pristine and Au-DLC thin films. Graphite (99.99%) and gold (99.99%) are used as co-sputtering targets in the sputtering chamber. The optical properties and structure of Au-DLC thin films are studied with the variation of gold concentration from 1%-5%. Raman spectroscopy, atomic force microscopy (AFM), Vickers hardness measurement (VHM), and spectroscopic ellipsometry are used to analyze these thin films. Raman spectroscopy indicates increased graphitic behavior and reduction in the internal stresses of Au-DLC thin films as the function of increasing gold doping. AFM is used for surface topography, which shows that spherical-like particles are formed on the surface, which agglomerate and form larger clusters on the surface by increasing the gold content. Spectroscopy ellipsometry analysis elucidates that the refractive index and extinction coefficient are inversely related and the optical bandgap energy is decreased with increasing gold content. VHM shows that gold doping reduces the hardness of thin films, which is attributed to the increase in sp2-hybridization.

  18. Method for fabricating thin films of pyrolytic carbon

    DOEpatents

    Brassell, G.W.; Lewis, J. Jr.; Weber, G.W.

    1980-03-13

    The present invention relates to a method for fabricating ultrathin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the 10 polymeric resin coating with thermally induced forces.

  19. Method for fabricating thin films of pyrolytic carbon

    DOEpatents

    Brassell, Gilbert W.; Lewis, Jr., John; Weber, Gary W.

    1982-01-01

    The present invention relates to a method for fabricating ultra-thin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the polymeric resin coating with thermally induced forces.

  20. Exchange-coupled hard magnetic Fe-Co/CoPt nanocomposite films fabricated by electro-infiltration

    NASA Astrophysics Data System (ADS)

    Wen, Xiao; Andrew, Jennifer S.; Arnold, David P.

    2017-05-01

    This paper introduces a potentially scalable electro-infiltration process to produce exchange-coupled hard magnetic nanocomposite thin films. Fe-Co/CoPt nanocomposite films are fabricated by deposition of CoFe2O4 nanoparticles onto Si substrate, followed by electroplating of CoPt. Samples are subsequently annealed under H2 to reduce the CoFe2O4 to magnetically soft Fe-Co and also induce L10 ordering in the CoPt. Resultant films exhibit 0.97 T saturation magnetization, 0.70 T remanent magnetization, 127 kA/m coercivity and 21.8 kJ/m3 maximum energy density. First order reversal curve (FORC) analysis and δM plot are used to prove the exchange coupling between soft and hard magnetic phases.

  1. Relationship between thin-film bond strength as measured by a scratch test, and indentation hardness for bonding agents.

    PubMed

    Kusakabe, Shusuke; Rawls, H Ralph; Hotta, Masato

    2016-03-01

    To evaluate thin-film bond strength between a bonding agent and human dentin, using a scratch test, and the characteristics and accuracy of measurement. One-step bonding agents (BeautiBond; Bond Force; Adper Easy Bond; Clearfil tri-S Bond) and two-step bonding agents (Cleafil SE Bond; FL-Bond II) were investigated in this study. Flat dentin surfaces were prepared for extracted human molars. The dentin surfaces were ground and bonding agents were applied and light cured. The thin-film bond strength test of the specimens was evaluated by the critical load at which the coated bonding agent failed and dentin appeared. The scratch mark sections were then observed under a scanning electron microscope. Indentation hardness was evaluated by the variation in depth under an applied load of 10gf. Data were compared by one-way ANOVA with the Scheffé's post hoc multiple comparison test (p<0.05). In addition, thin-film bond strength and indentation hardness were analyzed using analysis of correlation and covariance. The thin-film bond strength of two-step bonding agents were found to be significantly higher than that of one-step bonding agents with small standard deviations. Scratch marks consistently showed adhesive failure in the vicinity of the bonding agent/dentin interface. The indentation hardness showed a trend that two-step bonding agents have greater hardness than one-step bonding agents. A moderately significant correlation (r(2)=0.31) was found between thin-film bond strength and indentation hardness. Thin-film bond strength test is a valid and reliable means of evaluating bond strength in the vicinity of the adhesive interface and is more accurate than other methods currently in use. Further, the thin-film bond strength is influenced by the hardness of the cued bonding agent. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. High Capacity of Hard Carbon Anode in Na-Ion Batteries Unlocked by PO x Doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhifei; Ma, Lu; Surta, Todd Wesley

    2016-08-12

    The capacity of hard carbon anodes in Na-ion batteries 2.5 rarely reaches values beyond 300 mAh/g. We report that doping POx into local structures of hard carbon increases its reversible capacity from 283 to 359 mAh/g. We confirm that the doped POx is redox inactive by X-ray adsorption near edge structure measurements, thus not contributing to the higher capacity. We observe two significant changes of hard carbon's local structures caused by doping. First, the (002) d-spacing inside the turbostratic nanodomains is increased, revealed by both laboratory and synchrotron X-ray diffraction. Second, doping turns turbostratic nanodomains more defective along ab planes,more » indicated by neutron total scattering and the associated pair distribution function studies. The local structural changes of hard carbon are correlated to the higher capacity, where both the plateau and slope regions in the potential profiles are enhanced. Our study demonstrates that Na-ion storage in hard carbon heavily depends on carbon local structures, where such structures, despite being disordered, can be tuned toward unusually high capacities.« less

  3. Surface Roughness of Various Diamond-Like Carbon Films

    NASA Astrophysics Data System (ADS)

    Liu, Dongping; Liu, Yanhong; Chen, Baoxiang

    2006-11-01

    Atomic force microscopy is used to estimate and compare the surface morphology of hydrogenated and hydrogen-free diamond-like carbon (DLC) films. The films were prepared by using DC magnetron sputtering of a graphite target, pulsed cathodic carbon arcs, electron cyclotron resonance (ECR), plasma source ion implantation and dielectric barrier discharge (DBD). The difference in the surface structure is presented for each method of deposition. The influences of various discharge parameters on the film surface properties are discussed based upon the experimental results. The coalescence process via the diffusion of adsorbed carbon species is responsible for the formation of hydrogen-free DLC films with rough surfaces. The films with surface roughness at an atomic level can be deposited by energetic ion impacts in a highly ionized carbon plasma. The dangling bonds created by atomic hydrogen lead to the uniform growth of hydrocarbon species at the a-C:H film surfaces of the ECR or DBD plasmas.

  4. Periodically striped films produced from super-aligned carbon nanotube arrays.

    PubMed

    Liu, Kai; Sun, Yinghui; Liu, Peng; Wang, Jiaping; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2009-08-19

    We report a novel way to draw films from super-aligned carbon nanotube arrays at large drawing angles. The obtained super-aligned carbon nanotube films have a periodically striped configuration with alternating thinner and thicker film sections, and the width of the stripes is equal to the height of the original arrays. Compared with ordinary uniform films, the striped films provide a better platform for understanding the mechanism of spinning films from arrays because carbon nanotube junctions are easily observed and identified at the boundary of the stripes. Further studies show that the carbon nanotube junctions are bottleneck positions for thermal conduction and mechanical strength of the film, but do not limit its electrical conduction. These films can be utilized as striped and high-degree polarized light emission sources. Our results will be valuable for new applications and future large-scale production of tunable super-aligned carbon nanotube films.

  5. Coaxial carbon plasma gun deposition of amorphous carbon films

    NASA Technical Reports Server (NTRS)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  6. Electron Damage Effects on Carbon Nanotube Thin Films

    DTIC Science & Technology

    2013-03-01

    ELECTRON DAMAGE EFFECTS ON CARBON NANOTUBE THIN FILMS THESIS Jeremy S. Best, Captain, USMC AFIT-ENP-13-M-37 DEPARTMENT OF THE AIR FORCE AIR...Government and is not subject to copyright protection in the United States. AFIT-ENP-13-M-37 ELECTRON DAMAGE EFFECTS ON CARBON NANOTUBE THIN FILMS...M-37 ELECTRON DAMAGE EFFECTS ON CARBON NANOTUBE THIN FILMS Jeremy S. Best, BS Aerospace Engineering Captain, USMC Approved: Dr. John McClory

  7. Ultrahard carbon film from epitaxial two-layer graphene

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Cao, Tengfei; Cellini, Filippo; Berger, Claire; de Heer, Walter A.; Tosatti, Erio; Riedo, Elisa; Bongiorno, Angelo

    2018-02-01

    Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, is resistant to perforation with a diamond indenter and shows a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that, upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and sp2 to sp3 chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than three to five layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation.

  8. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  9. Re-crystallization of ITO films after carbon irradiation

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Khan, Shahid; Khan, Majid; Abbas, Turab Ali

    2017-01-01

    2.0 MeV carbon ion irradiation effects on Indium Tin Oxide (ITO) thin films on glass substrate are investigated. The films are irradiated with carbon ions in the fluence range of 1 × 1013 to 1 × 1015 ions/cm2. The irradiation induced effects in ITO are compared before and after ion bombardment by systematic study of structural, optical and electrical properties of the films. The XRD results show polycrystalline nature of un-irradiated ITO films which turns to amorphous state after 1 × 1013 ions/cm2 fluence of carbon ions. Further increase in ion fluence to 1 × 1014 ions/cm2 re-crystallizes the structure and retains for even higher fluences. A gradual decrease in the electrical conductivity and transmittance of irradiated samples is observed with increasing ion fluence. The band gap of the films is observed to be decreased after carbon irradiation.

  10. The effect of passivation film in preparation 3D structural carbon paper/tin oxide@carbon as freestanding anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Deng, Chenfang; Liu, Yang; Lu, Zhongpei; Ma, Chao; Ge, Tao; Li, Weili; Yang, Gang

    2018-03-01

    Tin-based compounds are potential anode materials for high performance lithium-ion batteries (LIBs). Due to the low melting point of metallic Sn, it is hard to maintain the crystal morphology of Sn during the as-follow process of carbon coating for high performance anode. In this work, the core@shell composite of SnOx@carbon (SnOx@C) is successfully fabricated on the substrate of carbon paper (CP) through electrodeposition and carbonization based on the precursor of Sn nanoparticles. A passivation shell is essentially grown onto Sn particles to obtain a stable structure of SnOx@C, otherwise the Sn particles will be pulverized and fell off the substrate of CP during the subsequent process of carbonization. The as-produced CP/SnOx@C film has excellent flexibility and mechanical stability to be directly served as electrode for LIBs. Carbon shell prevents the detachment and agglomeration of the active particles during lithiation/delithiation processes and maintains the stability of the conductive network. After 100th cycles, CP/SnOx@C electrode delivers 0.8 mAh cm-2, much higher than the capacity 0.37 mAh cm-2 of CP/Sn electrode operated at the current density of 0.1 mA cm-2. These features enable the flexible film of CP/SnOx@C to be attractive applications in energy storage devices.

  11. Mechanics of hard films on soft substrates

    NASA Astrophysics Data System (ADS)

    Lu, Nanshu

    2009-12-01

    Flexible electronics have been developed for various applications, including paper-like electronic readers, rollable solar cells, electronic skins etc., with the merits of light weight, low cost, large area, and ruggedness. The systems may be subject to one-time or repeated large deformation during manufacturing and application. Although organic materials can be highly deformable, currently they are not able to fulfill every electronic function. Therefore flexible electronic devices are usually made as organic/inorganic hybrids, with diverse materials, complex architecture, and micro features. While the polymer substrates can recover from large deformations, thin films of electronic materials such as metals, silicon, oxides, and nitrides fracture at small strains, usually less than a few percent. Mechanics of hard films on soft substrates hence holds the key to build high-performance and highly reliable flex circuits. This thesis investigates the deformability and failure mechanisms of thin films of metallic and ceramic materials supported by soft polymeric substrates through combined experimental, theoretical, and numerical methods. When subject to tension, micron-thick metal films with stable microstructure and strong interfacial adhesion to the substrate can be stretched beyond 50% without forming cracks. They eventually rupture by a ductile transgranular fracture which involves simultaneous necking and debonding. When metal films become nanometer-thick, intergranular fracture dominates the failure mode at elongations of only a few percent. Unannealed films show unstable microstructure at room temperature when subject to mechanical loading. In this case, films also rupture at small strains but by three concurrent mechanisms: deformation-induced grain growth, strain localization at large grains, and simultaneous debonding. In contrast to metal films, ceramic films rupture by brittle mechanisms. The only way to prevent rupture of ceramic films is to reduce the

  12. Hardness and adhesion performances of nanocoating on carbon steel

    NASA Astrophysics Data System (ADS)

    Hasnidawani, J. N.; Azlina, H. N.; Norita, H.; Bonnia, N. N.

    2018-01-01

    Nanocoatings industry has been aggressive in searching for cost-effective alternatives and environmental friendly approaches to manufacture products. Nanocoatings represent an engineering solution to prevent corrosion of the structural parts of ships, insulation and pipelines industries. The adhesion and hardness properties of coating affect material properties. This paper reviews ZnO-SiO2 as nanopowder in nano coating formulation as the agent for new and improved coating performances. Carbon steel on type S50C used as common substrate in nanocoating industry. 3wt% ZnO and 2wt% SiO2 addition of nanoparticles into nanocoating showed the best formulation since hardness and adhesion of nanocoating was good on carbon steel substrate. Incorporation of nanoparticles into coating increased the performances of coating.

  13. Research Update: Hard carbon with closed pores from pectin-free apple pomace waste for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Dou, Xinwei; Geng, Chenxi; Buchholz, Daniel; Passerini, Stefano

    2018-04-01

    Herein, we report a hard carbon derived from industrial bio-waste, i.e., pectin-free apple pomace. The structural, morphological, and electrochemical properties of the hard carbon are reported. The impact of the bio-waste on the closed porosity is discussed, providing valuable insights into the sodium storage mechanism in hard carbons. Most importantly, the hard carbon delivers good electrochemical performance, high specific capacities of 285 mAh g-1, and a very good capacity retention of 96% after 230 cycles at 0.1 C.

  14. Pathways to Mesoporous Resin/Carbon Thin Films with Alternating Gyroid Morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qi; Matsuoka, Fumiaki; Suh, Hyo Seon

    Three-dimensional (3D) mesoporous thin films with sub-100 nm periodic lattices are of increasing interest as templates for a number of nanotechnology applications, yet are hard to achieve with conventional top-down fabrication methods. Block copolymer self-assembly derived mesoscale structures provide a toolbox for such 3D template formation. In this work, single (alternating) gyroidal and double gyroidal mesoporous thin-film structures are achieved via solvent vapor annealing assisted co-assembly of poly(isoprene-block-styrene-block-ethylene oxide) (PI-b-PS-b-PEO, ISO) and resorcinol/phenol formaldehyde resols. In particular, the alternating gyroid thin-film morphology is highly desirable for potential template backfilling processes as a result of the large pore volume fraction. Inmore » situ grazing-incidence small-angle X-ray scattering during solvent annealing is employed as a tool to elucidate and navigate the pathway complexity of the structure formation processes. The resulting network structures are resistant to high temperatures provided an inert atmosphere. The thin films have tunable hydrophilicity from pyrolysis at different temperatures, while pore sizes can be tailored by varying ISO molar mass. A transfer technique between substrates is demonstrated for alternating gyroidal mesoporous thin films, circumventing the need to re-optimize film formation protocols for different substrates. Increased conductivity after pyrolysis at high temperatures demonstrates that these gyroidal mesoporous resin/carbon thin films have potential as functional 3D templates for a number of nanomaterials applications.« less

  15. Microstructure and high-temperature tribological properties of Si-doped hydrogenated diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Zhang, Teng Fei; Wan, Zhi Xin; Ding, Ji Cheng; Zhang, Shihong; Wang, Qi Min; Kim, Kwang Ho

    2018-03-01

    Si-doped DLC films have attracted great attention for use in tribological applications. However, their high-temperature tribological properties remain less investigated, especially in harsh oxidative working conditions. In this study, Si-doped hydrogenated DLC films with various Si content were synthesized and the effects of the addition of Si on the microstructural, mechanical and high-temperature tribological properties of the films were investigated. The results indicate that Si doping leads to an obvious increase in the sp3/sp2 ratio of DLC films, likely due to the silicon atoms preferentially substitute the sp2-hybridized carbon atoms and augment the number of sp3 sites. With Si doping, the mechanical properties, including hardness and adhesion strength, were improved, while the residual stress of the DLC films was reduced. The addition of Si leads to higher thermal and mechanical stability of DLC films because the Si atoms inhibit the graphitization of the films at an elevated temperature. Better high-temperature tribological properties of the Si-DLC films under oxidative conditions were observed, which can be attributed to the enhanced thermal stability and formation of a Si-containing lubricant layer on the surfaces of the wear tracks. The nano-wear resistance of the DLC films was also improved by Si doping.

  16. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Liu, Qing; Chen, Weilun; Wan, Min; Li, Xiaocheng; Wang, Lili; Xue, Lihong; Zhang, Wuxing

    2018-02-01

    Porous hard carbons are synthesized via carbonizing lotus stems with naturally hierarchical structures. The hard carbon carbonized at 1400 °C (LS1400) delivers a total capacity 350 mAh g-1 in the current density of 100 mA g-1 and a plateau capacity of 250 mAh g-1. Even cycled at 100 mA g-1 after 450 cycles, the capacity still retains 94%. Further investigation shows that the sodium storage of LS carbons involves Na+ adsorption in the defect sites, Na+ insertion and Na metal deposition in the closed pores. However, the Na metal deposition in closed pores mainly contribute to the plateau capacity, leading to the excellent sodium storage performance of LS1400 with a large closed pore ratio of 66%. The results show that the intrinsic structure of natural biomass can inspire us to design hard carbon with large closed pore ratio as excellent anode for sodium ion batteries.

  17. Growth of graphene films from non-gaseous carbon sources

    DOEpatents

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  18. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, Fernando A.; Yan, Pengfei; Engelhard, Mark H.

    Solid-electrolyte interphase (SEI) with controllable properties are highly desirable to improve battery performance. In this paper, we use a combined experimental and simulation approach to study the SEI formation on hard carbon in Li and Na-ion batteries. We show that with proper additives, stable SEI can be formed on hard carbon by pre-cycling the electrode materials in Li or Na-ion electrolyte. Detailed mechanistic studies suggest that the ion transport in the SEI layer is kinetically controlled and can be tuned by the applied voltage. Selective Na and Li-ion SEI membranes are produced using the Na or Li-ion based electrolytes respectively.more » The large Na ion SEI allows easy transport of Li ions, while the small Li ion SEI shuts off the Na-ion transport. Na-ion storage can be manipulated by tuning the SEI with film-forming electrolyte additives or preforming a SEI on the electrodes’ surface. The Na specific capacity can be controlled to <25 mAh/g, ~1/10 of the normal capacity (250 mAh/g). Unusual selective/preferential transport of Li-ion is demonstrated by preforming a SEI on the electrode’s surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion selective conductors using electrochemical approaches in the future.« less

  19. Low Temperature Unbalanced Magnetron Deposition of Hard, Wear-Resistant Coatings for Liquid-Film Bearing Applications

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1996-01-01

    The original program for evaluating the tribological properties several different hard coatings for liquid film bearing applications was curtailed when the time for the program was reduced from 3 years to 1. Of the several different coatings originally planned for evaluation, we decided to concentrate on one coating, carbon nitride. At BIRL, we have been instrumental in the development of reactively sputtered carbon nitride coatings, and we have found that it is a very interesting new material with very good tribological properties. In this program, we found that the reactively sputtered carbon nitride does not bond well directly to hardened 440C stainless steel; but if an interlayer of titanium nitride is added between the carbon nitride and the 440C, the adhesion of the dual coating combination is very good. Statistically designed experiments were run with the dual layer combination, and 3 variables were chosen for the Box-Benken design, which were the titanium nitride interlayer thickness, the nitrogen partial pressure during the reactive sputtering of the carbon nitride, and the carbon nitride substrate bias voltage. Two responses were studied from these three variables; the adhesion of the dual coating combination to the 440C substrate and the friction coefficient of the carbon nitride in dry sliding contact with 52100 steel in air. The best adhesion came with the thickness interlayer thickness studied, which was 4 micrometers, and the lowest coefficient of friction was 0.1, which was achieved when the bias voltage was in the range of -80 to - 120 V and the nitrogen partial pressure was 3 mTorr.

  20. Structure, mechanical, and frictional properties of hydrogenated fullerene-like amorphous carbon film prepared by direct current plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2016-07-01

    In this study, fullerene like carbon (FL-C) is introduced in hydrogenated amorphous carbon (a-C:H) film by employing a direct current plasma enhanced chemical vapor deposition. The film has a low friction and wear, such as 0.011 and 2.3 × 10-9mm3/N m in the N2, and 0.014 and 8.4 × 10-8mm3/N m in the humid air, and high hardness and elasticity (25.8 GPa and 83.1%), to make further engineering applications in practice. It has several nanometers ordered domains consisting of less frequently cross-linked graphitic sheet stacks. We provide new evidences for understanding the reported Raman fit model involving four vibrational frequencies from five, six, and seven C-atom rings of FL-C structures, and discuss the structure evolution before or after friction according to the change in the 1200 cm-1 Raman band intensity caused by five- and seven-carbon rings. Friction inevitably facilitates the transformation of carbon into FL-C nanostructures, namely, the ultra low friction comes from both such structures within the carbon film and the sliding induced at friction interface.

  1. Transglutaminase-induced crosslinking of gelatin-calcium carbonate composite films.

    PubMed

    Wang, Yuemeng; Liu, Anjun; Ye, Ran; Wang, Wenhang; Li, Xin

    2015-01-01

    The effects of transglutaminase (TGase) on the rheological profiles and interactions of gelatin-calcium carbonate solutions were studied. In addition, mechanical properties, water vapour permeability and microstructures of gelatin-calcium carbonate films were also investigated and compared. Fluorescence data suggested that the interaction of TGase and gelation-calcium carbonate belonged to a static quenching mechanism, and merely one binding site between TGase and gelatin-calcium carbonate was identified. Moreover, differential scanning calorimetry (DSC), the mechanical properties and the water vapour permeability studies revealed that TGase favoured the strong intramolecular polymerisation of the peptides in gelatin. The microstructures of the surfaces and cross sections in gelatin-calcium carbonate films were shown by scanning electron microscope (SEM) micrographs. The results of the fourier transform infrared spectroscopy (FTIR) indicated that TGase caused conformational changes in the proteins films. Therefore, TGase successfully facilitated the formation of gelatin-calcium carbonate composite films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Films of Carbon Nanomaterials for Transparent Conductors

    PubMed Central

    Ho, Xinning; Wei, Jun

    2013-01-01

    The demand for transparent conductors is expected to grow rapidly as electronic devices, such as touch screens, displays, solid state lighting and photovoltaics become ubiquitous in our lives. Doped metal oxides, especially indium tin oxide, are the commonly used materials for transparent conductors. As there are some drawbacks to this class of materials, exploration of alternative materials has been conducted. There is an interest in films of carbon nanomaterials such as, carbon nanotubes and graphene as they exhibit outstanding properties. This article reviews the synthesis and assembly of these films and their post-treatment. These processes determine the film performance and understanding of this platform will be useful for future work to improve the film performance. PMID:28809267

  3. Ion beam and plasma methods of producing diamondlike carbon films

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.; Banks, Bruce A.

    1988-01-01

    A variety of plasma and ion beam techniques was employed to generate diamondlike carbon films. These methods included the use of RF sputtering, dc glow discharge, vacuum arc, plasma gun, ion beam sputtering, and both single and dual ion beam deposition. Since films were generated using a wide variety of techniques, the physico-chemical properties of these films varied considerably. In general, these films had characteristics that were desirable in a number of applications. For example, the films generated using both single and dual ion beam systems were evaluated for applications including power electronics as insulated gates and protective coatings on transmitting windows. These films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Nuclear reaction and combustion analysis indicated hydrogen to carbon ratios to be 1.00, which allowed the films to have good transmittance not only in the infrared, but also in the visible. Other evaluated properties of these films include band gap, resistivity, adherence, density, microhardness, and intrinsic stress. The results of these studies and those of the other techniques for depositing diamondlike carbon films are presented.

  4. Hydrogenated nanostructure boron doped amorphous carbon films by DC bias

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Dayana, K.; Saurdi, I.; Malek, M. F.; Rusop, M.

    2018-03-01

    Hydrogenated nanostructure-boron doped amorphous carbon thin film carbon was deposited at different negative bias using custom-made deposition bias assisted-CVD. Solid of boron and palm oil were used as dopant and carbon source, respectively. The hydrogenated nanostructure amorphous films were characterized by Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, while the photo-response studies of thin film is done by I-V measurement under light measurement. The results showed the carbon film were in nanostructure with hydrogen and boron might be incorporated in the film. The Raman spectra observed the increase of upward shift of D and G peaks as negative bias increased which related to the structural change as boron incorporated in carbon network. These structural changes were further correlated with photo-response study and the results obtained are discussed and compared.

  5. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent

    DOE PAGES

    Luo, Wei; Bommier, Clement; Jian, Zelang; ...

    2015-02-04

    Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m²/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burn-offmore » of sucrose caramel over a wider temperature range. Thus, the obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.« less

  6. Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, W; Bommier, C; Jian, ZL

    2015-02-04

    Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m(2)/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burnoffmore » of sucrose caramel over a wider temperature range. The obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.« less

  7. Hard-Soft Composite Carbon as a Long-Cycling and High-Rate Anode for Potassium-Ion Batteries

    DOE PAGES

    Jian, Zelang; Hwang, Sooyeon; Li, Zhifei; ...

    2017-05-05

    There exist tremendous needs for sustainable storage solutions for intermittent renewable energy sources, such as solar and wind energy. Thus, systems based on Earth-abundant elements deserve much attention. Potassium-ion batteries represent a promising candidate because of the abundance of potassium resources. As for the choices of anodes, graphite exhibits encouraging potassium-ion storage properties; however, it suffers limited rate capability and poor cycling stability. Here in this paper, nongraphitic carbons as K-ion anodes with sodium carboxymethyl cellulose as the binder are systematically investigated. Compared to hard carbon and soft carbon, a hard–soft composite carbon with 20 wt% soft carbon distributed inmore » the matrix phase of hard carbon microspheres exhibits highly amenable performance: high capacity, high rate capability, and very stable long-term cycling. In contrast, pure hard carbon suffers limited rate capability, while the capacity of pure soft carbon fades more rapidly.« less

  8. Hard-Soft Composite Carbon as a Long-Cycling and High-Rate Anode for Potassium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian, Zelang; Hwang, Sooyeon; Li, Zhifei

    There exist tremendous needs for sustainable storage solutions for intermittent renewable energy sources, such as solar and wind energy. Thus, systems based on Earth-abundant elements deserve much attention. Potassium-ion batteries represent a promising candidate because of the abundance of potassium resources. As for the choices of anodes, graphite exhibits encouraging potassium-ion storage properties; however, it suffers limited rate capability and poor cycling stability. Here in this paper, nongraphitic carbons as K-ion anodes with sodium carboxymethyl cellulose as the binder are systematically investigated. Compared to hard carbon and soft carbon, a hard–soft composite carbon with 20 wt% soft carbon distributed inmore » the matrix phase of hard carbon microspheres exhibits highly amenable performance: high capacity, high rate capability, and very stable long-term cycling. In contrast, pure hard carbon suffers limited rate capability, while the capacity of pure soft carbon fades more rapidly.« less

  9. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, Fernando A.; Yan, Pengfei; Engelhard, Mark H.

    Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ionmore » storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1); approximate to 1/10 of the normal capacity (250 mAh g(-1)). Unusual selective/ preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.« less

  10. Tribological and Electrical Properties of Diamond-Like Carbon Films Deposited by Filtered Vacuum Arc Method for Medical Guidewire Application.

    PubMed

    Kang, Ki-Noh; Jeong, Hyejeong; Lee, Jaehyeong; Park, Yong Seob

    2018-09-01

    A good medical guidewires are used to introduce stents, catheters, and other medical devices inside the human body. In this study, diamond-like carbon (DLC) film was proposed to solve the poor adhesion problem of guidewire and to improve the tribological performance of guidewire. DLC films were fabricated on Si substrate by using FVA (Filtered Vacuum Arc) method. In this work, the tribological, structural, and electrical properties of the fabricated DLC films with various arc currents were experimentally investigated. All DLC films showed smooth and uniform surface with increasing applied arc current. The rms surface roughness was increased and the value of contact angle on the film surface was decreased with increasing arc current. The hardness and elastic modulus of DLC films were improved, and the resistivity value of DLC films were decreased with increasing arc current. These results are associated with ion bombardment effects by the applied arc current and bias voltage.

  11. Hard Carbon Originated from Polyvinyl Chloride Nanofibers As High-Performance Anode Material for Na-Ion Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Ying; Wang, Zhen; Wu, Chuan

    2015-02-27

    Two types of hard carbon materials were synthesized through direct pyrolysis of commercial polyvinyl chloride (PVC) particles and pyrolysis of PVC nanofibers at 600-800 degrees C, respectively, where the nanofibers were prepared by an electrospinning PVC precursors method. These as-prepared hard carbon samples were used as anode materials for Na-ion batteries. The hard carbon obtained from PVC nanofibers achieved a high reversible capacity of 271 mAh/g and an initial Coulombic efficiency of 69.9%, which were much superior to the one from commercial PVC, namely, a reversible capacity of 206 mAh/g and an initial Coulombic efficiency of 60.9%. In addition, themore » hard carbon originated from the PVC nanofibers exhibited good cycling stability and rate performance: the initial discharge capacities were 389, 228, 194, 178, 147 mAh/g at the current density of 12, 24, 60, 120, and 240 mA/g, respectively, retaining 211 mAh/g after 150 cycles. Such excellent cycle performance, high reversible capacity, and good rate capability enabled this hard carbon to be a promising candidate as anode material for Na-ion battery application.« less

  12. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery.

    PubMed

    Bai, Ying; Wang, Zhen; Wu, Chuan; Xu, Rui; Wu, Feng; Liu, Yuanchang; Li, Hui; Li, Yu; Lu, Jun; Amine, Khalil

    2015-03-11

    Two types of hard carbon materials were synthesized through direct pyrolysis of commercial polyvinyl chloride (PVC) particles and pyrolysis of PVC nanofibers at 600-800 °C, respectively, where the nanofibers were prepared by an electrospinning PVC precursors method. These as-prepared hard carbon samples were used as anode materials for Na-ion batteries. The hard carbon obtained from PVC nanofibers achieved a high reversible capacity of 271 mAh/g and an initial Coulombic efficiency of 69.9%, which were much superior to the one from commercial PVC, namely, a reversible capacity of 206 mAh/g and an initial Coulombic efficiency of 60.9%. In addition, the hard carbon originated from the PVC nanofibers exhibited good cycling stability and rate performance: the initial discharge capacities were 389, 228, 194, 178, 147 mAh/g at the current density of 12, 24, 60, 120, and 240 mA/g, respectively, retaining 211 mAh/g after 150 cycles. Such excellent cycle performance, high reversible capacity, and good rate capability enabled this hard carbon to be a promising candidate as anode material for Na-ion battery application.

  13. Structure, mechanical, and frictional properties of hydrogenated fullerene-like amorphous carbon film prepared by direct current plasma enhanced chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yongfu; University of Chinese Academy of Sciences, Beijing 100049; Gao, Kaixiong

    In this study, fullerene like carbon (FL-C) is introduced in hydrogenated amorphous carbon (a-C:H) film by employing a direct current plasma enhanced chemical vapor deposition. The film has a low friction and wear, such as 0.011 and 2.3 × 10{sup −9}mm{sup 3}/N m in the N{sub 2}, and 0.014 and 8.4 × 10{sup −8}mm{sup 3}/N m in the humid air, and high hardness and elasticity (25.8 GPa and 83.1%), to make further engineering applications in practice. It has several nanometers ordered domains consisting of less frequently cross-linked graphitic sheet stacks. We provide new evidences for understanding the reported Raman fit model involving four vibrational frequenciesmore » from five, six, and seven C-atom rings of FL-C structures, and discuss the structure evolution before or after friction according to the change in the 1200 cm{sup −1} Raman band intensity caused by five- and seven-carbon rings. Friction inevitably facilitates the transformation of carbon into FL-C nanostructures, namely, the ultra low friction comes from both such structures within the carbon film and the sliding induced at friction interface.« less

  14. Ion beam deposition of amorphous carbon films with diamond like properties

    NASA Technical Reports Server (NTRS)

    Angus, John C.; Mirtich, Michael J.; Wintucky, Edwin G.

    1982-01-01

    Carbon films were deposited on silicon, quartz, and potassium bromide substrates from an ion beam. Growth rates were approximately 0.3 micron/hour. The films were featureless and amorphous and contained only carbon and hydrogen in significant amounts. The density and carbon/hydrogen ratio indicate the film is a hydrogen deficient polymer. One possible structure, consistent with the data, is a random network of methylene linkages and tetrahedrally coordinated carbon atoms.

  15. Tuning carbon nanotube assembly for flexible, strong and conductive films

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Li, Min; Gu, Yizhuo; Zhang, Xiaohua; Wang, Shaokai; Li, Qingwen; Zhang, Zuoguang

    2015-02-01

    Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive.Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction

  16. The photosensitivity of carbon quantum dots/CuAlO2 films composites.

    PubMed

    Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue

    2015-07-31

    Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.

  17. The photosensitivity of carbon quantum dots/CuAlO2 films composites

    NASA Astrophysics Data System (ADS)

    Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue

    2015-07-01

    Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.

  18. Chemical structural analysis of diamondlike carbon films: II. Raman analysis

    NASA Astrophysics Data System (ADS)

    Takabayashi, Susumu; Ješko, Radek; Shinohara, Masanori; Hayashi, Hiroyuki; Sugimoto, Rintaro; Ogawa, Shuichi; Takakuwa, Yuji

    2018-02-01

    The chemical structure of diamondlike carbon (DLC) films, synthesized by photoemission-assisted glow discharge, has been analyzed by Raman spectroscopy. Raman analysis in conjunction with the sp2 cluster model clarified the film structure. The sp2 clusters in DLC films synthesized at low temperature preferred various aliphatic structures. Sufficient argon-ion assist allowed for formation of less strained DLC films containing large amounts of hydrogen. As the synthesis temperature was increased, thermal desorption of hydrogen left carbon dangling bonds with active unpaired electrons in the films, and the reactions that followed created strained films containing aromatic sp2 clusters. In parallel, the desorption of methane molecules from the growing surface by chemisorption of hydrogen radicals prevented the action of argon ions, promoting internal strain of the films. However, in synthesis at very high temperature, where sp2 clusters are sufficiently dominant, the strain was dissolved gradually. In contrast, the DLC films synthesized at low temperature were more stable than other films synthesized at the same temperature because of stable hydrogen-carbon bonds in the films.

  19. Effect of graphite target power density on tribological properties of graphite-like carbon films

    NASA Astrophysics Data System (ADS)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  20. High rate chemical vapor deposition of carbon films using fluorinated gases

    DOEpatents

    Stafford, Byron L.; Tracy, C. Edwin; Benson, David K.; Nelson, Arthur J.

    1993-01-01

    A high rate, low-temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be performed at less than 100.degree. C., including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 atomic percent fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of refraction, mass density, optical clarity, and chemical resistance are within fifteen percent (15%) of those characteristics for pure amorphous carbon films, but the deposition rates are high.

  1. Porous Hard Carbon Derived from Walnut Shell as an Anode Material for Sodium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Sensen; Li, Ying; Li, Min

    2018-02-01

    Porous hard carbon with large interlayer distance was fabricated from walnut shells through a facile high-temperature pyrolysis process and investigated as an anode material for sodium-ion batteries (SIBs). The results show that the electrochemical performance is mainly dependent on the pyrolysis temperature. The porous hard carbon, which was carbonized at 1300°C, displays the highest reversible capacity of 230 mAh g-1 at 20 mA g-1 and an excellent cycling stability (96% capacity retained over 200 cycles). The promising electrochemical performances are attributed to the porous structure reducing distances for sodium ion diffusion and expanded interlayer spacing, which is beneficial for sodium reversible insertion/extraction. The excellent electrochemical performance as well as the low-cost and environmental friendliness demonstrates that walnut shell-derived porous hard carbon is a promising anode material candidate for SIBs.

  2. Low energy electron irradiation induced carbon etching: Triggering carbon film reacting with oxygen from SiO{sub 2} substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Cheng; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060; Wang, Chao, E-mail: cwang367@szu.edu.cn, E-mail: dfdiao@szu.edu.cn

    2016-08-01

    We report low-energy (50–200 eV) electron irradiation induced etching of thin carbon films on a SiO{sub 2} substrate. The etching mechanism was interpreted that electron irradiation stimulated the dissociation of the carbon film and SiO{sub 2}, and then triggered the carbon film reacting with oxygen from the SiO{sub 2} substrate. A requirement for triggering the etching of the carbon film is that the incident electron penetrates through the whole carbon film, which is related to both irradiation energy and film thickness. This study provides a convenient electron-assisted etching with the precursor substrate, which sheds light on an efficient pathway to themore » fabrication of nanodevices and nanosurfaces.« less

  3. Filtered pulsed cathodic arc deposition of fullerene-like carbon and carbon nitride films

    NASA Astrophysics Data System (ADS)

    Tucker, Mark D.; Czigány, Zsolt; Broitman, Esteban; Näslund, Lars-Åke; Hultman, Lars; Rosen, Johanna

    2014-04-01

    Carbon and carbon nitride films (CNx, 0 ≤ x ≤ 0.26) were deposited by filtered pulsed cathodic arc and were investigated using transmission electron microscopy and X-ray photoelectron spectroscopy. A "fullerene-like" (FL) structure of ordered graphitic planes, similar to that of magnetron sputtered FL-CNx films, was observed in films deposited at 175 °C and above, with N2 pressures of 0 and 0.5 mTorr. Higher substrate temperatures and significant nitrogen incorporation are required to produce similar FL structure by sputtering, which may, at least in part, be explained by the high ion charge states and ion energies characteristic of arc deposition. A gradual transition from majority sp3-hybridized films to sp2 films was observed with increasing substrate temperature. High elastic recovery, an attractive characteristic mechanical property of FL-CNx films, is evident in arc-deposited films both with and without nitrogen content, and both with and without FL structure.

  4. The effect of nitrogen incorporation on the bonding structure of hydrogenated carbon nitride films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camero, M.; Buijnsters, J. G.; Gomez-Aleixandre, C.

    2007-03-15

    This work describes the composition and bonding structure of hydrogenated carbon nitride (a-CN{sub x}:H) films synthesized by electron cyclotron resonance chemical vapor deposition using as precursor gases argon, methane, and nitrogen. The composition of the films was derived from Rutherford backscattering and elastic recoil detection analysis and the bonding structure was examined by infrared (IR) spectroscopy and x-ray absorption near edge spectroscopy (XANES). By varying the nitrogen to methane ratio in the applied gas mixture, polymeric a-CN{sub x}:H films with N/C contents varying from 0.06 to 0.49 were obtained. Remarkably, the H content of the films ({approx}40 at. %) wasmore » rather unaffected by the nitrogenation process. The different bonding states as detected in the measured XANES C(1s) and N(1s) spectra have been correlated with those of a large number of reference samples. The XANES and IR spectroscopy results indicate that N atoms are efficiently incorporated into the amorphous carbon network and can be found in different bonding environments, such as pyridinelike, graphitelike, nitrilelike, and amino groups. The nitrogenation of the films results in the formation of N-H bonding environments at the cost of C-H structures. Also, the insertion of N induces a higher fraction of double bonds in the structure at the expense of the linear polymerlike chains, hence resulting in a more cross-linked solid. The formation of double bonds takes place through complex C=N structures and not by formation of graphitic aromatic rings. Also, the mechanical and tribological properties (hardness, friction, and wear) of the films have been studied as a function of the nitrogen content. Despite the major modifications in the bonding structure with nitrogen uptake, no significant changes in these properties are observed.« less

  5. Electrical and optical properties of carbon films

    NASA Astrophysics Data System (ADS)

    Kulkarni, Pranita

    Carbon and carbon-based materials, including graphite, diamond, and other thin-film structures, are being intensively researched for a wide range of electronic applications. A variety of graphitic, nano-structured carbon materials can be synthesized that have current or potential applications as thin-film transistors, photovoltaics, and supercapacitors. Diamond has been pursued for many years for electronics that can be used in extreme conditions, such as high temperature, high power, high frequency, and radiation environments. In this research study, electronic properties of diamond and graphitic films with crystallite or grain sizes in the nanometer range were investigated. The nano-structured graphitic carbon films were grown using a previously developed method based on the pyrolysis of poly(acrylonitrile) and poly(n-butyl acrylate) block copolymers (PAN-b-PBA). An important characteristic of these films is that the morphology (and therefore other properties) can be controlled by the compositions and processing of the starting block copolymers. Spherical, cylindrical, lamellar, and branched morphologies have been fabricated. The crystallite sizes, optical absorption, and morphology of PAN-b-PBA (containing 17.8% PAN) pyrolyzed between 400 and 600°C were determined and were compared to those derived by pyrolysis of PAN homopolymers at the same temperatures. Hall-effect measurements on pyrolyzed PAN-b-PBA films with spherical, cylindrical, and branched morphologies and homopolymer PAN films pyrolyzed at the same temperatures revealed that both PAN-b-PBA with different morphologies and PAN homopolymer-derived films had n-type conductivity; differences in carrier concentration and mobility values were correlated with the morphological differences of the films. Optical absorption measurements in the ultra-violet through visible wavelength range were also conducted on these films; measurements of the pseudo band-gaps and absorption coefficients were correlated with

  6. Preparation of Electrically Conductive Polystyrene/Carbon Nanofiber Nanocomposite Films

    ERIC Educational Resources Information Center

    Sun, Luyi; O'Reilly, Jonathan Y.; Tien, Chi-Wei; Sue, Hung-Jue

    2008-01-01

    A simple and effective approach to prepare conductive polystyrene/carbon nanofiber (PS/CNF) nanocomposite films via a solution dispersion method is presented. Inexpensive CNF, which has a structure similar to multi-walled carbon nanotubes, is chosen as a nanofiller in this experiment to achieve conductivity in PS films. A good dispersion is…

  7. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries.

    PubMed

    Takada, Koji; Yamada, Yuki; Watanabe, Eriko; Wang, Jianhui; Sodeyama, Keitaro; Tateyama, Yoshitaka; Hirata, Kazuhisa; Kawase, Takeo; Yamada, Atsuo

    2017-10-04

    The passivation of negative electrodes is key to achieving prolonged charge-discharge cycling with Na-ion batteries. Here, we report the unusual passivation ability of superconcentrated Na-salt electrolytes. For example, a 50 mol % sodium bis(fluorosulfonyl)amide (NaFSA)/succinonitrile (SN) electrolyte enables highly reversible Na + insertion into a hard carbon negative electrode without any electrolyte additive, functional binder, or electrode pretreatment. Importantly, an anion-derived passivation film is formed via preferential reduction of the anion upon charging, which can effectively suppress further electrolyte reduction. As a structural characteristic of the electrolyte, most anions are coordinated to multiple Na + cations at high concentration, which shifts the lowest unoccupied molecular orbitals of the anions downward, resulting in preferential anion reduction. The present work provides a new understanding of the passivation mechanism with respect to the coordination state of the anion.

  8. Diamond Composite Films for Protective Coatings on Metals and Method of Formation

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    Composite films consisting of diamond crystallites and hard amorphous films such as diamond-like carbon, titanium nitride, and titanium oxide are provided as protective coatings for metal substrates against extremely harsh environments. A composite layer having diamond crystallites and a hard amorphous film is affixed to a metal substrate via an interlayer including a bottom metal silicide film and a top silicon carbide film. The interlayer is formed either by depositing metal silicide and silicon carbide directly onto the metal substrate, or by first depositing an amorphous silicon film, then allowing top and bottom portions of the amorphous silicon to react during deposition of the diamond crystallites, to yield the desired interlayer structure.

  9. Formation of crystalline heteroepitaxial SiC films on Si by carbonization of polyimide Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Luchinin, Viktor V.; Goloudina, Svetlana I.; Pasyuta, Vyacheslav M.; Panov, Mikhail F.; Smirnov, Alexander N.; Kirilenko, Demid A.; Semenova, Tatyana F.; Sklizkova, Valentina P.; Gofman, Iosif V.; Svetlichnyi, Valentin M.; Kudryavtsev, Vladislav V.

    2017-06-01

    High-quality crystalline nano-thin SiC films on Si substrates were prepared by carbonization of polyimide (PI) Langmuir-Blodgett (LB) films. The obtained films were characterized by Fourier transform-infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, Raman spectroscopy, transmission electon microscopy (TEM), transmission electron diffraction (TED), and scanning electron microscopy (SEM). We demonstrated that the carbonization of a PI film on a Si substrate at 1000 °C leads to the formation of a carbon film and SiC nanocrystals on the Si substrate. It was found that five planes in the 3C-SiC(111) film are aligned with four Si(111) planes. As a result of repeated annealing of PI films containing 121 layers at 1200 °C crystalline SiC films were formed on the Si substrate. It was shown that the SiC films (35 nm) grown on Si(111) at 1200 °C have a mainly cubic 3C-SiC structure with small amount of hexagonal polytypes. Only 3C-SiC films (30 nm) were formed on the Si(100) substrate at the same temperature. It was shown that the SiC films (30-35 nm) can cover the voids with size up to 10 µm in the Si substrate. The current-voltage (I-V) characteristics of the n-Si/n-SiC heterostructure were obtained by conductive atomic force microscopy.

  10. Filtered pulsed cathodic arc deposition of fullerene-like carbon and carbon nitride films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Mark D., E-mail: martu@ifm.liu.se; Broitman, Esteban; Näslund, Lars-Åke

    Carbon and carbon nitride films (CN{sub x}, 0 ≤ x ≤ 0.26) were deposited by filtered pulsed cathodic arc and were investigated using transmission electron microscopy and X-ray photoelectron spectroscopy. A “fullerene-like” (FL) structure of ordered graphitic planes, similar to that of magnetron sputtered FL-CN{sub x} films, was observed in films deposited at 175 °C and above, with N{sub 2} pressures of 0 and 0.5 mTorr. Higher substrate temperatures and significant nitrogen incorporation are required to produce similar FL structure by sputtering, which may, at least in part, be explained by the high ion charge states and ion energies characteristic of arc deposition. A gradualmore » transition from majority sp{sup 3}-hybridized films to sp{sup 2} films was observed with increasing substrate temperature. High elastic recovery, an attractive characteristic mechanical property of FL-CN{sub x} films, is evident in arc-deposited films both with and without nitrogen content, and both with and without FL structure.« less

  11. Comment on "Scrutinizing the carbon cycle and CO2residence time in the atmosphere" by H. Harde

    NASA Astrophysics Data System (ADS)

    Köhler, Peter; Hauck, Judith; Völker, Christoph; Wolf-Gladrow, Dieter A.; Butzin, Martin; Halpern, Joshua B.; Rice, Ken; Zeebe, Richard E.

    2018-05-01

    Harde (2017) proposes an alternative accounting scheme for the modern carbon cycle and concludes that only 4.3% of today's atmospheric CO2 is a result of anthropogenic emissions. As we will show, this alternative scheme is too simple, is based on invalid assumptions, and does not address many of the key processes involved in the global carbon cycle that are important on the timescale of interest. Harde (2017) therefore reaches an incorrect conclusion about the role of anthropogenic CO2 emissions. Harde (2017) tries to explain changes in atmospheric CO2 concentration with a single equation, while the most simple model of the carbon cycle must at minimum contain equations of at least two reservoirs (the atmosphere and the surface ocean), which are solved simultaneously. A single equation is fundamentally at odds with basic theory and observations. In the following we will (i) clarify the difference between CO2 atmospheric residence time and adjustment time, (ii) present recently published information about anthropogenic carbon, (iii) present details about the processes that are missing in Harde (2017), (iv) briefly discuss shortcoming in Harde's generalization to paleo timescales, (v) and comment on deficiencies in some of the literature cited in Harde (2017).

  12. Tuning carbon nanotube assembly for flexible, strong and conductive films.

    PubMed

    Wang, Yanjie; Li, Min; Gu, Yizhuo; Zhang, Xiaohua; Wang, Shaokai; Li, Qingwen; Zhang, Zuoguang

    2015-02-21

    Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g(-1), greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive.

  13. Large Electric Field–Enhanced–Hardness Effect in a SiO2 Film

    PubMed Central

    Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen

    2014-01-01

    Silicon dioxide films are extensively used in nano and micro–electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation–induced deformation during the friction measurements. PMID:24681517

  14. Large Electric Field-Enhanced-Hardness Effect in a SiO2 Film

    NASA Astrophysics Data System (ADS)

    Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen

    2014-03-01

    Silicon dioxide films are extensively used in nano and micro-electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation-induced deformation during the friction measurements.

  15. Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Liu, Jingmao; Geng, Dongsen; Guo, Peng; Zheng, Jun; Wang, Qimin

    2016-12-01

    DLC films with weak carbide former Al and carbide former Cr co-doping (Al:Cr-DLC) were deposited by a hybrid beams system comprising an anode-layer linear ion beam source (LIS) and high power impulse magnetron sputtering using a gas mixture of C2H2 and Ar as the precursor. The doped Al and Cr contents were controlled via adjusting the C2H2 fraction in the gas mixture. The composition, microstructure, compressive stress, mechanical properties and tribological behaviors of the Al:Cr-DLC films were researched carefully using X-ray photoelectron spectroscopy, transmission electron microscopy, Raman spectroscopy, stress-tester, nanoindentation and ball-on-plate tribometer as function of the C2H2 fraction. The results show that the Al and Cr contents in the films increased continuously as the C2H2 fraction decreased. The doped Cr atoms preferred to bond with the carbon while the Al atoms mainly existed in metallic state. Structure modulation with alternate multilayer consisted of Al-poor DLC layer and Al-rich DLC layer was found in the films. Those periodic Al-rich DLC layers can effectively release the residual stress of the films. On the other hand, the formation of the carbide component due to Cr incorporation can help to increase the film hardness. Accordingly, the residual stress of the DLC films can be reduced without sacrificing the film hardness though co-doping Al and Cr atoms. Furthermore, it was found that the periodic Al-rich layer can greatly improve the elastic resilience of the DLC films and thus decreases the film friction coefficient and wear rate significantly. However, the existence of the carbide component would cause abrasive wear and thus deteriorate the wear performance of the films.

  16. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films

    NASA Astrophysics Data System (ADS)

    Huo, Wenyi; Liu, Xiaodong; Tan, Shuyong; Fang, Feng; Xie, Zonghan; Shang, Jianku; Jiang, Jianqing

    2018-05-01

    Nano-twinned, nanocrystalline CoCrFeNi high-entropy alloy films were produced by magnetron sputtering. The films exhibit a high hardness of 8.5 GPa, the elastic modulus of 161.9 GPa and the resistivity as high as 135.1 μΩ·cm. The outstanding mechanical properties were found to result from the resistance of deformation created by nanocrystalline grains and nano-twins, while the electrical resistivity was attributed to the strong blockage effect induced by grain boundaries and lattice distortions. The results lay a solid foundation for the development of advanced films with structural and functional properties combined in micro-/nano-electronic devices.

  17. Physical and Tribological Characteristics of Ion-Implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Heidger, S.; Korenyi-Both, A. L.; Jayne, D. T.; Herrera-Fierro, P.; Shogrin, B.; Wilbur, P. J.; Wu, R. L. C.; Garscadden, A.; Barnes, P. N.

    1994-01-01

    Unidirectional sliding friction experiments were conducted with a natural, polished diamond pin in contact with both as-deposited and carbon-ion-implanted diamond films in ultrahigh vacuum. Diamond films were deposited on silicon, silicon carbide, and silicon nitride by microwave-plasma-assisted chemical vapor deposition. The as-deposited diamond films were impacted with carbon ions at an accelerating energy of 60 keV and a current density of 50 micron A/cm(exp 2) for approximately 6 min, resulting in a dose of 1.2 x 10(exp 17) carbon ions/cm(exp 2). The results indicate that the carbon ion implantation produced a thin surface layer of amorphous, nondiamond carbon. The nondiamond carbon greatly decreased both friction and wear of the diamond films. The coefficients of friction for the carbon-ion-implanted, fine-grain diamond films were less than 0.1, factors of 20 to 30 lower than those for the as-deposited, fine-grain diamond films. The coefficients of friction for the carbon-ion-implanted, coarse-grain diamond films were approximately 0.35, a factor of five lower than those for the as-deposited, coarse-grain diamond films. The wear rates for the carbon-ion-implanted, diamond films were on the order of 10(exp -6) mm(exp 3)/Nm, factors of 30 to 80 lower than that for the as-deposited diamond films, regardless of grain size. The friction of the carbon-ion-implanted diamond films was greatly reduced because the amorphous, nondiamond carbon, which had a low shear strength, was restricted to the surface layers (less than 0.1 micron thick) and because the underlying diamond materials retained their high hardness. In conclusion, the carbon-ion-implanted, fine-grain diamond films can be used effectively as wear resistant, self-lubricating coatings for ceramics, such as silicon nitride and silicon carbide, in ultrahigh vacuum.

  18. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes

    PubMed Central

    Chen, Mao-Lin; Wang, Bing-Wei; Tang, Dai-Ming; Jin, Qun; Guo, Qing-Xun; Zhang, Ding-Dong; Du, Jin-Hong; Tai, Kai-Ping; Tan, Jun; Kauppinen, Esko I.

    2018-01-01

    Single-wall carbon nanotubes (SWCNTs) are ideal for fabricating transparent conductive films because of their small diameter, good optical and electrical properties, and excellent flexibility. However, a high intertube Schottky junction resistance, together with the existence of aggregated bundles of SWCNTs, leads to a degraded optoelectronic performance of the films. We report a network of isolated SWCNTs prepared by an injection floating catalyst chemical vapor deposition method, in which crossed SWCNTs are welded together by graphitic carbon. Pristine SWCNT films show a record low sheet resistance of 41 ohm □−1 at 90% transmittance for 550-nm light. After HNO3 treatment, the sheet resistance further decreases to 25 ohm □−1. Organic light-emitting diodes using this SWCNT film as anodes demonstrate a low turn-on voltage of 2.5 V, a high current efficiency of 75 cd A−1, and excellent flexibility. Investigation of isolated SWCNT-based field-effect transistors shows that the carbon-welded joints convert the Schottky contacts between metallic and semiconducting SWCNTs into near-ohmic ones, which significantly improves the conductivity of the transparent SWCNT network. Our work provides a new avenue of assembling individual SWCNTs into macroscopic thin films, which demonstrate great potential for use as transparent electrodes in various flexible electronics. PMID:29736413

  19. TiCN thin films grown by reactive crossed beam pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Escobar-Alarcón, L.; Camps, E.; Romero, S.; Muhl, S.; Camps, I.; Haro-Poniatowski, E.

    2010-12-01

    In this work, we used a crossed plasma configuration where the ablation of two different targets in a reactive atmosphere was performed to prepare nanocrystalline thin films of ternary compounds. In order to assess this alternative deposition configuration, titanium carbonitride (TiCN) thin films were deposited. Two crossed plasmas were produced by simultaneously ablating titanium and graphite targets in an Ar/N2 atmosphere. Films were deposited at room temperature onto Si (100) and AISI 4140 steel substrates whilst keeping the ablation conditions of the Ti target constant. By varying the laser fluence on the carbon target it was possible to study the effect of the carbon plasma on the characteristics of the deposited TiCN films. The structure and composition of the films were analyzed by X-ray Diffraction, Raman Spectroscopy and non-Rutherford Backscattering Spectroscopy. The hardness and elastic modulus of the films was also measured by nanoindentation. In general, the experimental results showed that the TiCN thin films were highly oriented in the (111) crystallographic direction with crystallite sizes as small as 6.0 nm. It was found that the hardness increased as the laser fluence was increased, reaching a maximum value of about 33 GPa and an elastic modulus of 244 GPa. With the proposed configuration, the carbon content could be easily varied from 42 to 5 at.% by changing the laser fluence on the carbon target.

  20. A dense and strong bonding collagen film for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-01

    A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H2O2 solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  1. Highly sensitive humidity sensing properties of carbon quantum dots films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xing; Ming, Hai; Liu, Ruihua

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► A humidity sensing device was fabricated based on carbon quantum dots (CQDs) films. ► The conductivity of the CQDs films shows a linear and rapid response to atmosphere humidity. ► The humidity sensing property was due to the hydrogen bonds between the functional groups on CQDs. -- Abstract: We reported the fabrication of a humidity sensing device based on carbon quantum dots (CQDs) film. The conductivity of the CQDs film has a linear and rapid response to relative humidity, providing the opportunity for the fabrication of humidity sensing devices. The mechanism of our humiditymore » sensor was proposed to be the formation of hydrogen bonds between carbon quantum dots and water molecules in the humidity environment, which significantly promote the electrons migration. In a control experiment, this hypothesis was confirmed by comparing the humidity sensitivity of candle soot (i.e. carbon nanoparticles) with and without oxygen containing groups on the surfaces.« less

  2. Metalorganic Chemical Vapor Deposition of Ruthenium-Doped Diamond like Carbon Films

    NASA Technical Reports Server (NTRS)

    Sunkara, M. K.; Ueno, M.; Lian, G.; Dickey, E. C.

    2001-01-01

    We investigated metalorganic precursor deposition using a Microwave Electron Cyclotron Resonance (ECR) plasma for depositing metal-doped diamondlike carbon films. Specifically, the deposition of ruthenium doped diamondlike carbon films was investigated using the decomposition of a novel ruthenium precursor, Bis(ethylcyclopentadienyl)-ruthenium (Ru(C5H4C2H5)2). The ruthenium precursor was introduced close to the substrate stage. The substrate was independently biased using an applied RF power. Films were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Four Point Probe. The conductivity of the films deposited using ruthenium precursor showed strong dependency on the deposition parameters such as pressure. Ruthenium doped sample showed the presence of diamond crystallites with an average size of approx. 3 nm while un-doped diamondlike carbon sample showed the presence of diamond crystallites with an average size of 11 nm. TEM results showed that ruthenium was atomically dispersed within the amorphous carbon network in the films.

  3. Influence of oxygen on growth of carbon thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Prabhat; Gupta, Mukul; Phase, D. M.; Stahn, Jochen

    2018-04-01

    In this work we studied the influence of oxygen gas on growth of carbon thin films in a magnetron sputtering process. X-ray absorption spectroscopy (XAS), x-ray and neutron reflectivity techniques were used to probe carbon thin films deposited with and without oxygen at room temperature. XAS in particularly x-ray absorption near edge spectroscopy (XANES) is powerful technique to identify the nature of hybridization of carbon atoms with other elements. In a XANES pattern, presence of C=O and C-O bonds is generally observed in spite of the fact that oxygen has not been deliberately included in the growth process. In order to confirm the presence of such features, we introduced a small amount of oxygen at 1% during the growth of carbon thin films. Though such additions do not affect the number density as observed by x-ray and neutron reflectivity, they severally affect the C K-edge spectra as evidenced by an enhancement in carbon-oxygen hybridization. Observed results are helpful in analyzing the C K-edge spectra more confidently.

  4. Microwave plasma induced surface modification of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  5. Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes

    DOEpatents

    Chu,Benjamin; Hsiao, Benjamin S.

    2010-01-26

    Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

  6. Angular distribution of hybridization in sputtered carbon thin film

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, H.; Wei, Z. C.

    2017-08-01

    The sp3/sp2 ratio of sputtered carbon thin film depends on the ion bombardment process and tailors the physical properties of carbon thin film. In present work, we report the angular distribution of hybridization in magnetron sputtered carbon thin film for the first time. By x-ray photoelectron spectra analyses, it is found that the sp3/sp2 ratio increases linearly with increasing the deposition angle from 0 to 90 degree, which could be attributed to the enhancement of direct knocking-out of near-surface target atoms. In addition, we also derive the sp3/sp2 ratio by simulation on complex permittivity in terahertz frequency using a modified percolation approximation tunneling model. Those derived data consist with the results from x-ray photoelectron spectroscopy.

  7. Graphene-Carbon-Metal Composite Film for a Flexible Heat Sink.

    PubMed

    Cho, Hyunjin; Rho, Hokyun; Kim, Jun Hee; Chae, Su-Hyeong; Pham, Thang Viet; Seo, Tae Hoon; Kim, Hak Yong; Ha, Jun-Seok; Kim, Hwan Chul; Lee, Sang Hyun; Kim, Myung Jong

    2017-11-22

    The heat generated from electronic devices such as light emitting diodes (LEDs), batteries, and highly integrated transistors is one of the major causes obstructing the improvement of their performance and reliability. Herein, we report a comprehensive method to dissipate the generated heat to a vast area by using the new type of graphene-carbon-metal composite film as a heat sink. The unique porous graphene-carbon-metal composite film that consists of an electrospun carbon nanofiber with arc-graphene (Arc-G) fillers and an electrochemically deposited copper (Cu) layer showed not only high electrical and thermal conductivity but also high mechanical stability. Accordingly, superior thermal management of LED devices to that of conventional Cu plates and excellent resistance stability during the repeated 10 000 bending cycles has been achieved. The heat dissipation of LEDs has been enhanced by the high heat conduction in the composite film, heat convection in the air flow, and thermal radiation at low temperature in the porous carbon structure. This result reveals that the graphene-carbon-metal composite film is one of the most promising materials for a heat sink of electronic devices in modern electronics.

  8. Enhanced electron transfer kinetics through hybrid graphene-carbon nanotube films.

    PubMed

    Henry, Philémon A; Raut, Akshay S; Ubnoske, Stephen M; Parker, Charles B; Glass, Jeffrey T

    2014-11-01

    We report the first study of the electrochemical reactivity of a graphenated carbon nanotube (g-CNT) film. The electron transfer kinetics of the ferri-ferrocyanide couple were examined for a g-CNT film and compared to the kinetics to standard carbon nanotubes (CNTs). The g-CNT film exhibited much higher catalytic activity, with a heterogeneous electron-transfer rate constant, k 0 , approximately two orders of magnitude higher than for standard CNTs. Scanning electron microscopy and Raman spectroscopy were used to correlate the higher electron transfer kinetics with the higher edge-density of the g-CNT film.

  9. Sustainable Energy-Storage Materials from Lignin-Graphene Nanocomposite-Derived Porous Carbon Film

    DOE PAGES

    Tran, Chau D.; Ho, Hoi Chun; Keum, Jong K.; ...

    2017-05-30

    We present a simple, green approach to fabricating porous free-standing carbon films. An alkaline solution of low-cost, renewable lignin and graphene oxide (GO) is cast, followed by simultaneous carbonization and activation. Lignin, which is the least valued product from several biomass processing industries, is an efficient source of carbon when used as an intercalating agent to separate graphene sheets derived from homogeneous GO/lignin nanocomposite films prepared from an aqueous alkaline (KOH) solution. After thermal treatment the GO/lignin films show complete dispersion of reduced GO sheets within amorphous lignin-derived carbon. Furthermore, the presence of KOH in the film produces activated carbon.more » The resulting activated carbon films display a specific surface area of up to 1744 m2 g 1 and consist of a balance of pore volumes with pore sizes below and above 1 nm. A two-electrode supercapacitor composed of these films in an aqueous electrolyte exhibits near-ideal capacitive behavior at an ultrahigh scan rate of 1 V s 1, while maintaining an excellent specific capacitance of 162 F g 1. Such outstanding performance of renewable carbon as a supercapacitor, in addition to the ease of electrode fabrication from a precursor containing 85 % lignin, offers a novel method for valorization of lignin-rich byproduct streams from biomass processing industries.« less

  10. Sustainable Energy-Storage Materials from Lignin-Graphene Nanocomposite-Derived Porous Carbon Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Chau D.; Ho, Hoi Chun; Keum, Jong K.

    We present a simple, green approach to fabricating porous free-standing carbon films. An alkaline solution of low-cost, renewable lignin and graphene oxide (GO) is cast, followed by simultaneous carbonization and activation. Lignin, which is the least valued product from several biomass processing industries, is an efficient source of carbon when used as an intercalating agent to separate graphene sheets derived from homogeneous GO/lignin nanocomposite films prepared from an aqueous alkaline (KOH) solution. After thermal treatment the GO/lignin films show complete dispersion of reduced GO sheets within amorphous lignin-derived carbon. Furthermore, the presence of KOH in the film produces activated carbon.more » The resulting activated carbon films display a specific surface area of up to 1744 m2 g 1 and consist of a balance of pore volumes with pore sizes below and above 1 nm. A two-electrode supercapacitor composed of these films in an aqueous electrolyte exhibits near-ideal capacitive behavior at an ultrahigh scan rate of 1 V s 1, while maintaining an excellent specific capacitance of 162 F g 1. Such outstanding performance of renewable carbon as a supercapacitor, in addition to the ease of electrode fabrication from a precursor containing 85 % lignin, offers a novel method for valorization of lignin-rich byproduct streams from biomass processing industries.« less

  11. Fabrication of periodical surface structures by picosecond laser irradiation of carbon thin films: transformation of amorphous carbon in nanographite

    NASA Astrophysics Data System (ADS)

    Popescu, C.; Dorcioman, G.; Bita, B.; Besleaga, C.; Zgura, I.; Himcinschi, C.; Popescu, A. C.

    2016-12-01

    Thin films of carbon were synthesized by ns pulsed laser deposition in vacuum on silicon substrates, starting from graphite targets. Further on, the films were irradiated with a picosecond laser source emitting in visible at 532 nm. After tuning of laser parameters, we obtained a film surface covered by laser induced periodical surface structures (LIPSS). They were investigated by optical, scanning electron and atomic force microscopy. It was observed that changing the irradiation angle influences the LIPSS covered area. At high magnification it was revealed that the LIPSS pattern was quite complex, being composed of other small LIPSS islands, interconnected by bridges of nanoparticles. Raman spectra for the non-irradiated carbon films were typical for a-C type of diamond-like carbon, while the LIPSS spectra were characteristic to nano-graphite. The pristine carbon film was hydrophilic, while the LIPSS covered film surface was hydrophobic.

  12. Thin-film-based scintillators for hard x-ray microimaging detectors: the ScinTAX Project

    NASA Astrophysics Data System (ADS)

    Rack, A.; Cecilia, A.; Douissard, P.-A.; Dupré, K.; Wesemann, V.; Baumbach, T.; Couchaud, M.; Rochet, X.; Riesemeier, H.; Radtke, M.; Martin, T.

    2014-09-01

    The project ScinTAX developed novel thin scintillating films for the application in high performance X-ray imaging and subsequent introduced new X-ray detectors to the market. To achieve this aim lutetium orthosilicate (LSO) scintillators doped with different activators were grown successfully by liquid phase epitaxy. The high density of LSO (7.4 g/cm3), the effective atomic number (65.2) and the high light yield make this scintillator highly applicable for indirect X-ray detection in which the ionizing radiation is converted into visible light and then registered by a digital detector. A modular indirect detection system has been developed to fully exploit the potential of this thin film scintillator for radiographic and tomographic imaging. The system is compatible for high-resolution imaging with moderate dose as well as adaptable to intense high-dose applications where radiation hard microimaging detectors are required. This proceedings article shall review the achieved performances and technical details on this high-resolution detector system which is now available. A selected example application demonstrates the great potential of the optimized detector system for hard X-ray microimaging, i.e. either to improve image contrast due to the availability of efficient thin crystal films or to reduce the dose to the sample.

  13. Femtosecond pulsed laser deposition of amorphous, ultrahard boride thin films

    NASA Astrophysics Data System (ADS)

    Stock, Michael; Molian, Pal

    2004-05-01

    Amorphous thin films (300-500 nm) of ultrahard AlMgB10 with oxygen and carbon impurities were grown on Si (100) substrates at 300 K using a solid target of AlMgB14 containing a spinel phase (MgAl2O4) and using a 120 fs pulsed, 800 nm wavelength Ti:sapphire laser. The films were subsequently annealed in argon gas up to 1373 K for 2 h. Scanning electron microscopy (SEM) was used to examine the particulate formation, atomic force microscopy was employed to characterize the film surface topography, x-ray diffraction and transmission electron microscopy were used to determine the microstructure, x-ray photoelectron spectroscopy was performed to examine the film composition, and nanoindentation was employed to study the hardness of thin films. The as-deposited and postannealed films (up to 1273 K) had a stochiometry of AlMgB10 with a significant amount of oxygen and carbon impurities and exhibited amorphous structures for a maximum hardness of 40+/-3 GPa. However, postannealing at higher temperatures led to crystallization and transformation of the film to SiB6 with a substantial loss in hardness. Results are also compared with our previous study on 23 ns, 248 nm wavelength (KrF excimer) pulsed laser deposition of AlMgB14 reported in this journal [Y. Tian, A. Constant, C. C. H. Lo, J. W. Anderegg, A. M. Russell, J. E. Snyder, and P. A. Molian, J. Vac. Sci. Technol. A 21, 1055 (2003)]. .

  14. Chemical structural analysis of diamondlike carbon films: I. Surface growth model

    NASA Astrophysics Data System (ADS)

    Takabayashi, Susumu; Ješko, Radek; Shinohara, Masanori; Hayashi, Hiroyuki; Sugimoto, Rintaro; Ogawa, Shuichi; Takakuwa, Yuji

    2018-02-01

    The surface growth mechanisms of diamondlike carbon (DLC) films has been clarified. DLC films were synthesized in atmospheres with a fixed methane-to-argon ratio at different temperatures up to 700 °C by the photoemission-assisted glow discharge of photoemission-assisted plasma-enhanced chemical vapor deposition. The electrical resistivity of the films decreased logarithmically as the synthesis temperature was increased. Conversely, the dielectric constant of the films increased and became divergent at high temperature. However, the very high electrical resistivity of the film synthesized at 150 °C was retained even after post-annealing treatments at temperatures up to 500 °C, and divergence of the dielectric constant was not observed. Such films exhibited excellent thermal stability and retained large amounts of hydrogen, even after post-annealing treatments. These results suggest that numerous hydrogen atoms were incorporated into the DLC films during synthesis at low temperatures. Hydrogen atoms terminate carbon dangling bonds in the films to restrict π-conjugated growth. During synthesis at high temperature, hydrogen was desorbed from the interior of the growing films and π-conjugated conductive films were formed. Moreover, hydrogen radicals were chemisorbed by carbon atoms at the growing DLC surface, leading to removal of carbon atoms from the surface as methane gas. The methane molecules decomposed into hydrocarbons and hydrogen radicals through the attack of electrons above the surface. Hydrogen radicals contributed to the etching reaction cycle of the film; the hydrocarbon radicals were polymerized by reacting with other radicals and the methane source. The polymer radicals remained above the film, preventing the supply of the methane source and disrupting the action of argon ions. At high temperatures, the resultant DLC films were rough and thin.

  15. Fabrication and Cytocompatibility of In Situ Crosslinked Carbon Nanomaterial Films

    PubMed Central

    Patel, Sunny C.; Lalwani, Gaurav; Grover, Kartikey; Qin, Yi-Xian; Sitharaman, Balaji

    2015-01-01

    Assembly of carbon nanomaterials into two-dimensional (2D) coatings and films that harness their unique physiochemical properties may lead to high impact energy capture/storage, sensors, and biomedical applications. For potential biomedical applications, the suitability of current techniques such as chemical vapor deposition, spray and dip coating, and vacuum filtration, employed to fabricate macroscopic 2D all carbon coatings or films still requires thorough examination. Each of these methods presents challenges with regards to scalability, suitability for a large variety of substrates, mechanical stability of coatings or films, or biocompatibility. Herein we report a coating process that allow for rapid, in situ chemical crosslinking of multi-walled carbon nanotubes (MWCNTs) into macroscopic all carbon coatings. The resultant coatings were found to be continuous, electrically conductive, significantly more robust, and cytocompatible to human adipose derived stem cells. The results lay groundwork for 3D layer-on-layer nanomaterial assemblies (including various forms of graphene) and also opens avenues to further explore the potential of MWCNT films as a novel class of nano-fibrous mats for tissue engineering and regenerative medicine. PMID:26018775

  16. X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy of tetragonal Mn72Ge28 epitaxial thin film

    NASA Astrophysics Data System (ADS)

    Kim, Jinhyeok; Mizuguchi, Masaki; Inami, Nobuhito; Ueno, Tetsuro; Ueda, Shigenori; Takanashi, Koki

    2018-04-01

    An epitaxially grown Mn72Ge28 film with a tetragonal crystal structure was fabricated. It was clarified that the film had a perpendicular magnetization and a high perpendicular magnetic anisotropy energy of 14.3 Merg/cm3. The electronic structure was investigated by X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy. The obtained X-ray magnetic circular dichroism spectrum revealed that the Mn orbital magnetic moment governed the magnetocrystalline anisotropy of the Mn72Ge28 film. A doublet structure was observed for the Mn 2p3/2 peak of hard X-ray photoelectron spectrum, indicating the spin exchange interaction between the 2p core-hole and 3d valence electrons.

  17. Formation of graphitic carbon nitride and boron carbon nitride film on sapphire substrate

    NASA Astrophysics Data System (ADS)

    Kosaka, Maito; Urakami, Noriyuki; Hashimoto, Yoshio

    2018-02-01

    As a novel production method of boron carbon nitride (BCN) films, in this paper, we present the incorporation of B into graphitic carbon nitride (g-C3N4). First, we investigated the formation of g-C3N4 films via chemical vapor deposition (CVD) using melamine powder as the precursor. The formation of g-C3N4 films on a c-plane sapphire substrate was confirmed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy measurements. The deposition temperature of g-C3N4 films was found to be suitable between 550 and 600 °C since the degradation and desorption of hexagonal C-N bonds should be suppressed. As for BCN films, we prepared BCN films via two-zone extended CVD using ammonia borane as the B precursor. Several XPS signals from B, C, and N core levels were detected from B-incorporated g-C3N4 films. While the N composition was almost constant, the marked tendencies for increasing B composition and decreasing C composition were achieved with the increase in the B incorporation, indicating the incorporation of B atoms by the substitution for C atoms. Optical absorptions were shifted to the high-energy side by B incorporation, which indicates the successful formation of BCN films using melamine and ammonia borane powders as precursors.

  18. Method of synthesizing metal doped diamond-like carbon films

    NASA Technical Reports Server (NTRS)

    Ueno, Mayumi (Inventor); Sunkara, Mahendra Kumar (Inventor)

    2003-01-01

    A method of synthesizing metal doped carbon films by placing a substrate in a chamber with a selected amount of a metalorganic compound. An electron cyclotron resonance is applied to the chamber in order to vaporize the metalorganic compound. The resonance is applied to the chamber until a metal doped carbon film is formed. The metalorganic compound is preferably selected from the group consisting of an organic salt of ruthenium, palladium, gold or platinum.

  19. Bias in bonding behavior among boron, carbon, and nitrogen atoms in ion implanted a-BN, a-BC, and diamond like carbon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genisel, Mustafa Fatih; Uddin, Md. Nizam; Say, Zafer

    2011-10-01

    In this study, we implanted N{sup +} and N{sub 2}{sup +} ions into sputter deposited amorphous boron carbide (a-BC) and diamond like carbon (DLC) thin films in an effort to understand the chemical bonding involved and investigate possible phase separation routes in boron carbon nitride (BCN) films. In addition, we investigated the effect of implanted C{sup +} ions in sputter deposited amorphous boron nitride (a-BN) films. Implanted ion energies for all ion species were set at 40 KeV. Implanted films were then analyzed using x-ray photoelectron spectroscopy (XPS). The changes in the chemical composition and bonding chemistry due to ion-implantationmore » were examined at different depths of the films using sequential ion-beam etching and high resolution XPS analysis cycles. A comparative analysis has been made with the results from sputter deposited BCN films suggesting that implanted nitrogen and carbon atoms behaved very similar to nitrogen and carbon atoms in sputter deposited BCN films. We found that implanted nitrogen atoms would prefer bonding to carbon atoms in the films only if there is no boron atom in the vicinity or after all available boron atoms have been saturated with nitrogen. Implanted carbon atoms also preferred to either bond with available boron atoms or, more likely bonded with other implanted carbon atoms. These results were also supported by ab-initio density functional theory calculations which indicated that carbon-carbon bonds were energetically preferable to carbon-boron and carbon-nitrogen bonds.« less

  20. Detecting Airborne Mercury by Use of Polymer/Carbon Films

    NASA Technical Reports Server (NTRS)

    Shevade, Abhijit; Ryan, Margaret; Homer, Margie; Kisor, Adam; Jewell, April; Yen, Shiao-Pin; Manatt, Kenneth; Blanco, Mario; Goddard, William

    2009-01-01

    Films made of certain polymer/carbon composites have been found to be potentially useful as sensing films for detecting airborne elemental mercury at concentrations on the order of tens of parts per billion or more. That is to say, when the polymer/carbon composite films are exposed to air containing mercury vapor, their electrical resistances decrease by measurable amounts. Because airborne mercury is a health hazard, it is desirable to detect it with great sensitivity, especially in enclosed environments in which there is a risk of a mercury leak from lamps or other equipment. The present effort to develop polymerbased mercury-vapor sensors complements the work reported in NASA Tech Briefs Detecting Airborne Mercury by Use of Palladium Chloride (NPO- 44955), Vol. 33, No. 7 (July 2009), page 48 and De tecting Airborne Mer cury by Use of Gold Nanowires (NPO-44787), Vol. 33, No. 7 (July 2009), page 49. Like those previously reported efforts, the present effort is motivated partly by a need to enable operation and/or regeneration of sensors under relatively mild conditions more specifically, at temperatures closer to room temperature than to the elevated temperatures (greater than 100 C ) needed for regeneration of sensors based on noble-metal films. The present polymer/carbon films are made from two polymers, denoted EYN1 and EYN2 (see Figure 1), both of which are derivatives of poly-4-vinyl pyridine with amine functional groups. Composites of these polymers with 10 to 15 weight percent of carbon were prepared and solution-deposited onto the JPL ElectronicNose sensor substrates for testing. Preliminary test results showed that the resulting sensor films gave measurable indications of airborne mercury at concentrations on the order of tens of parts per billion (ppb) or more. The operating temperature range for the sensing films was 28 to 40 C and that the sensor films regenerated spontaneously, without heating above operating temperature (see Figure 2).

  1. Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices.

    PubMed

    Feng, Dan; Lv, Yingying; Wu, Zhangxiong; Dou, Yuqian; Han, Lu; Sun, Zhenkun; Xia, Yongyao; Zheng, Gengfeng; Zhao, Dongyuan

    2011-09-28

    We report for the first time the synthesis of free-standing mesoporous carbon films with highly ordered pore architecture by a simple coating-etching approach, which have an intact morphology with variable sizes as large as several square centimeters and a controllable thickness of 90 nm to ∼3 μm. The mesoporous carbon films were first synthesized by coating a resol precursors/Pluronic copolymer solution on a preoxidized silicon wafer and forming highly ordered polymeric mesostructures based on organic-organic self-assembly, followed by carbonizing at 600 °C and finally etching of the native oxide layer between the carbon film and the silicon substrate. The mesostructure of this free-standing carbon film is confirmed to be an ordered face-centered orthorhombic Fmmm structure, distorted from the (110) oriented body-centered cubic Im3̅m symmetry. The mesoporosity of the carbon films has been evaluated by nitrogen sorption, which shows a high specific BET surface area of 700 m(2)/g and large uniform mesopores of ∼4.3 nm. Both mesostructures and pore sizes can be tuned by changing the block copolymer templates or the ratio of resol to template. These free-standing mesoporous carbon films with cracking-free uniform morphology can be transferred or bent on different surfaces, especially with the aid of the soft polymer layer transfer technique, thus allowing for a variety of potential applications in electrochemistry and biomolecule separation. As a proof of concept, an electrochemical supercapacitor device directly made by the mesoporous carbon thin films shows a capacitance of 136 F/g at 0.5 A/g. Moreover, a nanofilter based on the carbon films has shown an excellent size-selective filtration of cytochrome c and bovine serum albumin.

  2. Protein adsorption on thin films of carbon and carbon nitride monitored with in situ ellipsometry.

    PubMed

    Berlind, T; Tengvall, P; Hultman, L; Arwin, H

    2011-03-01

    Thin films of amorphous carbon and amorphous, graphitic and fullerene-like carbon nitride were deposited by reactive magnetron sputtering and optically characterized with spectroscopic ellipsometry. Complementary studies using scanning electron microscopy and atomic force microscopy were performed. The films were exposed to human serum albumin (HSA) and the adsorption was monitored in situ using dynamic ellipsometry. From the ellipsometric data the adsorbed amount of proteins was quantified in terms of surface mass density using de Feijter's model. The results indicate larger adsorption of proteins onto the amorphous films compared to the films with a more textured structure. Complementary studies with 125I-labeled HSA showed an apparent protein adsorption up to six times larger compared to the ellipsometry measurement. In addition, the four types of films were incubated in blood plasma followed by exposure to anti-fibrinogen, anti-HMWK or anti-C3c, revealing the materials' response to complement and contact activation. The amorphous and graphitic carbon nitride exhibit rather high immune activity compared to a titanium reference, whereas the amorphous carbon and the fullerene-like CNx show less immune complement deposition. Compared to the reference, all films exhibit indications of a stronger ability to initiate the intrinsic pathway of coagulation. Finally, the surfaces' bone-bonding ability was investigated by examination of their ability to form calcium phosphate crystals in a simulated body fluid, with a-CNx depositing most calcium phosphate after 21 days of incubation. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Fan, Xue; Diao, Dongfeng

    2016-10-01

    We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  4. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Deming, E-mail: shu@aps.anl.gov; Shvyd’ko, Yuri V.; Stoupin, Stanislav

    2016-07-27

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  5. Fabrication of thickness controllable free-standing sandwich-structured hybrid carbon film for high-rate and high-power supercapacitor

    PubMed Central

    Wei, Helin; Wei, Sihang; Tian, Weifeng; Zhu, Daming; Liu, Yuhao; Yuan, Lili; Li, Xin

    2014-01-01

    Hybrid carbon films composed of graphene film and porous carbon film may give full play to the advantages of both carbon materials, and have great potential for application in energy storage and conversion devices. Unfortunately, there are very few reports on fabrication of hybrid carbon films. Here we demonstrate a simple approach to fabricate free-standing sandwich-structured hybrid carbon film composed of porous amorphous carbon film and multilayer graphene film by chemical vapor deposition in a controllable and scalable way. Hybrid carbon films reveal good electrical conductivity, excellent flexibility, and good compatibility with substrate. Supercapacitors assembled by hybrid carbon films exhibit ultrahigh rate capability, wide frequency range, good capacitance performance, and high-power density. Moreover, this approach may provide a general path for fabrication of hybrid carbon materials with different structures by using different metals with high carbon solubility, and greatly expands the application scope of carbon materials. PMID:25394410

  6. Hard TiCx/SiC/a-C:H nanocomposite thin films using pulsed high energy density plasma focus device

    NASA Astrophysics Data System (ADS)

    Umar, Z. A.; Rawat, R. S.; Tan, K. S.; Kumar, A. K.; Ahmad, R.; Hussain, T.; Kloc, C.; Chen, Z.; Shen, L.; Zhang, Z.

    2013-04-01

    Thin films of TiCx/SiC/a-C:H were synthesized on Si substrates using a complex mix of high energy density plasmas and instability accelerated energetic ions of filling gas species, emanated from hot and dense pinched plasma column, in dense plasma focus device. The conventional hollow copper anode of Mather type plasma focus device was replaced by solid titanium anode for synthesis of TiCx/SiC/a-C:H nanocomposite thin films using CH4:Ar admixture of (1:9, 3:7 and 5:5) for fixed 20 focus shots as well as with different number of focus shots with fixed CH4:Ar admixture ratio 3:7. XRD results showed the formation of crystalline TiCx/SiC phases for thin film synthesized using different number of focus shots with CH4:Ar admixture ratio fixed at 3:7. SEM results showed that the synthesized thin films consist of nanoparticle agglomerates and the size of agglomerates depended on the CH4:Ar admixture ratio as well as on the number of focus shots. Raman analysis showed the formation of polycrystalline/amorphous Si, SiC and a-C for different CH4:Ar ratio as well as for different number of focus shots. The XPS analysis confirmed the formation of TiCx/SiC/a-C:H composite thin film. Nanoindentation results showed that the hardness and elastic modulus values of composite thin films increased with increasing number of focus shots. Maximum values of hardness and elastic modulus at the surface of the composite thin film were found to be about 22 and 305 GPa, respectively for 30 focus shots confirming the successful synthesis of hard composite TiCx/SiC/a-C:H coatings.

  7. Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries.

    PubMed

    Dou, Xinwei; Hasa, Ivana; Hekmatfar, Maral; Diemant, Thomas; Behm, R Jürgen; Buchholz, Daniel; Passerini, Stefano

    2017-06-22

    Hard carbons are currently the most widely used negative electrode materials in Na-ion batteries. This is due to their promising electrochemical performance with capacities of 200-300 mAh g -1 and stable long-term cycling. However, an abundant and cheap carbon source is necessary in order to comply with the low-cost philosophy of Na-ion technology. Many biological or waste materials have been used to synthesize hard carbons but the impact of the precursors on the final properties of the anode material is not fully understood. In this study the impact of the biomass source on the structural and electrochemical properties of hard carbons is unraveled by using different, representative types of biomass as examples. The systematic structural and electrochemical investigation of hard carbons derived from different sources-namely corncobs, peanut shells, and waste apples, which are representative of hemicellulose-, lignin- and pectin-rich biomass, respectively-enables understanding and interlinking of the structural and electrochemical properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, Daniel M.; Holt, Joseph B.

    1996-01-01

    A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.

  9. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, D.M.; Holt, J.B.

    1996-02-13

    A method is disclosed for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.

  10. Microwave plasma chemical synthesis of nanocrystalline carbon film structures and study their properties

    NASA Astrophysics Data System (ADS)

    Bushuev, N.; Yafarov, R.; Timoshenkov, V.; Orlov, S.; Starykh, D.

    2015-08-01

    The self-organization effect of diamond nanocrystals in polymer-graphite and carbon films is detected. The carbon materials deposition was carried from ethanol vapors out at low pressure using a highly non-equilibrium microwave plasma. Deposition processes of carbon film structures (diamond, graphite, graphene) is defined. Deposition processes of nanocrystalline structures containing diamond and graphite phases in different volume ratios is identified. The solid film was obtained under different conditions of microwave plasma chemical synthesis. We investigated the electrical properties of the nanocrystalline carbon films and identified it's from various factors. Influence of diamond-graphite film deposition mode in non-equilibrium microwave plasma at low pressure on emission characteristics was established. This effect is justified using the cluster model of the structure of amorphous carbon. It was shown that the reduction of bound hydrogen in carbon structures leads to a decrease in the threshold electric field of emission from 20-30 V/m to 5 V/m. Reducing the operating voltage field emission can improve mechanical stability of the synthesized film diamond-graphite emitters. Current density emission at least 20 A/cm2 was obtained. Nanocrystalline carbon film materials can be used to create a variety of functional elements in micro- and nanoelectronics and photonics such as cold electron source for emission in vacuum devices, photonic devices, cathodoluminescent flat display, highly efficient white light sources. The obtained graphene carbon net structure (with a net size about 6 μm) may be used for the manufacture of large-area transparent electrode for solar cells and cathodoluminescent light sources

  11. Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide-derived carbon films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdemir, A.; Kovalchenko, A.; McNallan, M. J.

    2004-01-01

    In this study, we investigated the effects of a high-temperature hydrogenation treatment on the sliding friction and wear behavior of nanostructured carbide-derived carbon (CDC) films in dry nitrogen and humid air environments. These films are produced on the surfaces of silicon carbide substrates by reacting the carbide phase with chlorine or chlorine-hydrogen gas mixtures at 1000 to 1100 C in a sealed tube furnace. The typical friction coefficients of CDC films in open air are in the range of 0.2 to 0.25, but in dry nitrogen, the friction coefficients are 0.15. In an effort to achieve lower friction on CDCmore » films, we developed and used a special hydrogenation process that was proven to be very effective in lowering friction of CDC films produced on SiC substrates. Specifically, the films that were post-hydrogen-treated exhibited friction coefficients as low as 0.03 in dry nitrogen, while the friction coefficients in humid air were 0.2. The wear of Si{sub 3}N{sub 4} counterface balls was hard to measure after the tests, while shallow wear tracks had formed on CDC films on SiC disks. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and these findings were correlated with the friction and wear behaviors of as-produced and hydrogen-treated CDC films.« less

  12. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition

    NASA Astrophysics Data System (ADS)

    D'Arcy, Julio M.; Tran, Henry D.; Stieg, Adam Z.; Gimzewski, James K.; Kaner, Richard B.

    2012-05-01

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated. Electronic supplementary information (ESI) available: Droplet coalescence, catenoid formation, mechanism of film growth, scanning electron micrographs showing carbon nanotube alignment, flexible transparent films of SWCNTs, AFM images of a chemically converted graphene film, and SEM images of SWCNT free-standing thin films. See DOI: 10.1039/c2nr00010e

  13. The Influence of Calcium Carbonate Composition and Activated Carbon in Pack Carburizing Low Carbon Steel Process in The Review of Hardness and Micro Structure

    NASA Astrophysics Data System (ADS)

    Hafni; Hadi, Syafrul; Edison

    2017-12-01

    Carburizing is a way of hardening the surface by heating the metal (steel) above the critical temperature in an environment containing carbon. Steel at a temperature of the critical temperature of affinity to carbon. Carbon is absorbed into the metal form a solid solution of carbon-iron and the outer layer has high carbon content. When the composition of the activator and the activated charcoal is right, it will perfect the carbon atoms to diffuse into the test material to low carbon steels. Thick layer of carbon Depending on the time and temperature are used. Pack carburizing process in this study, using 1 kg of solid carbon derived from coconut shell charcoal with a variation of 20%, 10% and 5% calcium carbonate activator, burner temperature of 950 0C, holding time 4 hours. The test material is low carbon steel has 9 pieces. Each composition has three specimens. Furnace used in this study is a pack carburizing furnace which has a designed burner box with a volume of 1000 x 600 x 400 (mm3) of coal-fired. Equipped with a circulation of oxygen from the blower 2 inches and has a wall of refractory bricks. From the variation of composition CaCO3, microstructure formed on the specimen with 20% CaCO3, better diffusion of carbon into the carbon steel, it is seen by the form marten site structure after quenching, and this indicates that there has been an increase of or adding carbon to in the specimen. This led to the formation of marten site specimen into hard surfaces, where the average value of hardness at one point side (side edge) 31.7 HRC

  14. Tribology of bio-inspired nanowrinkled films on ultrasoft substrates.

    PubMed

    Lackner, Juergen M; Waldhauser, Wolfgang; Major, Lukasz; Teichert, Christian; Hartmann, Paul

    2013-01-01

    Biomimetic design of new materials uses nature as antetype, learning from billions of years of evolution. This work emphasizes the mechanical and tribological properties of skin, combining both hardness and wear resistance of its surface (the stratum corneum) with high elasticity of the bulk (epidermis, dermis, hypodermis). The key for combination of such opposite properties is wrinkling, being consequence of intrinsic stresses in the bulk (soft tissue): Tribological contact to counterparts below the stress threshold for tissue trauma occurs on the thick hard stratum corneum layer pads, while tensile loads smooth out wrinkles in between these pads. Similar mechanism offers high tribological resistance to hard films on soft, flexible polymers, which is shown for diamond-like carbon (DLC) and titanium nitride thin films on ultrasoft polyurethane and harder polycarbonate substrates. The choice of these two compared substrate materials will show that ultra-soft substrate materials are decisive for the distinct tribological material. Hierarchical wrinkled structures of films on these substrates are due to high intrinsic compressive stress, which evolves during high energetic film growth. Incremental relaxation of these stresses occurs by compound deformation of film and elastic substrate surface, appearing in hierarchical nano-wrinkles. Nano-wrinkled topographies enable high elastic deformability of thin hard films, while overstressing results in zigzag film fracture along larger hierarchical wrinkle structures. Tribologically, these fracture mechanisms are highly important for ploughing and sliding of sharp and flat counterparts on hard-coated ultra-soft substrates like polyurethane. Concentration of polyurethane deformation under the applied normal loads occurs below these zigzag cracks. Unloading closes these cracks again. Even cyclic testing do not lead to film delamination and retain low friction behavior, if the adhesion to the substrate is high and the initial

  15. Tribology of bio-inspired nanowrinkled films on ultrasoft substrates

    PubMed Central

    Lackner, Juergen M.; Waldhauser, Wolfgang; Major, Lukasz; Teichert, Christian; Hartmann, Paul

    2013-01-01

    Biomimetic design of new materials uses nature as antetype, learning from billions of years of evolution. This work emphasizes the mechanical and tribological properties of skin, combining both hardness and wear resistance of its surface (the stratum corneum) with high elasticity of the bulk (epidermis, dermis, hypodermis). The key for combination of such opposite properties is wrinkling, being consequence of intrinsic stresses in the bulk (soft tissue): Tribological contact to counterparts below the stress threshold for tissue trauma occurs on the thick hard stratum corneum layer pads, while tensile loads smooth out wrinkles in between these pads. Similar mechanism offers high tribological resistance to hard films on soft, flexible polymers, which is shown for diamond-like carbon (DLC) and titanium nitride thin films on ultrasoft polyurethane and harder polycarbonate substrates. The choice of these two compared substrate materials will show that ultra-soft substrate materials are decisive for the distinct tribological material. Hierarchical wrinkled structures of films on these substrates are due to high intrinsic compressive stress, which evolves during high energetic film growth. Incremental relaxation of these stresses occurs by compound deformation of film and elastic substrate surface, appearing in hierarchical nano-wrinkles. Nano-wrinkled topographies enable high elastic deformability of thin hard films, while overstressing results in zigzag film fracture along larger hierarchical wrinkle structures. Tribologically, these fracture mechanisms are highly important for ploughing and sliding of sharp and flat counterparts on hard-coated ultra-soft substrates like polyurethane. Concentration of polyurethane deformation under the applied normal loads occurs below these zigzag cracks. Unloading closes these cracks again. Even cyclic testing do not lead to film delamination and retain low friction behavior, if the adhesion to the substrate is high and the initial

  16. Dual ion beam deposition of carbon films with diamondlike properties

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1984-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamondlike films generated by sputtering a graphite target.

  17. Synthesis of thin films in boron-carbon-nitrogen ternary system by microwave plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kukreja, Ratandeep Singh

    The Boron Carbon Nitorgen (B-C-N) ternary system includes materials with exceptional properties such as wide band gap, excellent thermal conductivity, high bulk modulus, extreme hardness and transparency in the optical and UV range that find application in most fields ranging from micro-electronics, bio-sensors, and cutting tools to materials for space age technology. Interesting materials that belong to the B-C-N ternary system include Carbon nano-tubes, Boron Carbide, Boron Carbon Nitride (B-CN), hexagonal Boron Nitride ( h-BN), cubic Boron Nitride (c-BN), Diamond and beta Carbon Nitride (beta-C3N4). Synthesis of these materials requires precisely controlled and energetically favorable conditions. Chemical vapor deposition is widely used technique for deposition of thin films of ceramics, metals and metal-organic compounds. Microwave plasma enhanced chemical vapor deposition (MPECVD) is especially interesting because of its ability to deposit materials that are meta-stable under the deposition conditions, for e.g. diamond. In the present study, attempt has been made to synthesize beta-carbon nitride (beta-C3N4) and cubic-Boron Nitride (c-BN) thin films by MPECVD. Also included is the investigation of dependence of residual stress and thermal conductivity of the diamond thin films, deposited by MPECVD, on substrate pre-treatment and deposition temperature. Si incorporated CNx thin films are synthesized and characterized while attempting to deposit beta-C3N4 thin films on Si substrates using Methane (CH4), Nitrogen (N2), and Hydrogen (H2). It is shown that the composition and morphology of Si incorporated CNx thin film can be tailored by controlling the sequence of introduction of the precursor gases in the plasma chamber. Greater than 100mum size hexagonal crystals of N-Si-C are deposited when Nitrogen precursor is introduced first while agglomerates of nano-meter range graphitic needles of C-Si-N are deposited when Carbon precursor is introduced first in the

  18. Structural and morphological properties of mesoporous carbon coated molybdenum oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayal, Saurabh, E-mail: saurabhdayal153@gmail.com; Kumar, C. Sasi, E-mail: csasimv@gmail.com

    2016-05-06

    In the present study, we report the structural and morphological properties of mesoporous carbon coated molybdenum oxide films. The deposition of films was carried out in a two-step process, the first step involves deposition of molybdenum and carbon bilayer thin films using DC magnetron sputtering. In the second step the sample was ex-situ annealed in a muffle furnace at different temperatures (400°C to 600°C) and air cooled in the ambient atmosphere. The formation of the meso-porous carbon clusters on molybdenum oxide during the cooling step was investigated using FESEM and AFM techniques. The structural details were explored using XRD. Themore » meso-porous carbon were found growing over molybdenum oxide layer as a result of segregation phenomena.« less

  19. Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Legnani, C.; Ribeiro Pinto, P. M.; Cremona, M.; de Araújo, P. J. G.; Achete, C. A.

    2003-06-01

    White-blue electroluminescent emission with a voltage bias less than 10 V was achieved in rf sputter-deposited amorphous carbon nitride (a-CN) and amorphous silicon carbon nitride (a-SiCN) thin-film-based devices. The heterojunction structures of these devices consist of: Indium tin oxide (ITO), used as a transparent anode; amorphous carbon film as an emission layer, and aluminum as a cathode. The thickness of the carbon films was about 250 Å. In all of the produced diodes, a stable visible emission peaked around 475 nm is observed at room temperature and the emission intensity increases with the current density. For an applied voltage of 14 V, the luminance was about 3 mCd/m2. The electroluminescent properties of the two devices are discussed and compared.

  20. Ultrathin pyrolytic carbon films on a magnetic substrate

    NASA Astrophysics Data System (ADS)

    Umair, Ahmad; Raza, Tehseen Z.; Raza, Hassan

    2016-07-01

    We report the growth of ultrathin pyrolytic carbon (PyC) films on nickel substrate by using chemical vapor deposition at 1000 °C under methane ambience. We find that the ultra-fast cooling is crucial for PyC film uniformity by controlling the segregation of carbon on nickel. We characterize the in-plane crystal size of the PyC film by using Raman spectroscopy. The Raman peaks at ˜1354 and ˜1584 cm-1 wavenumbers are used to extract the D and G bands. The corresponding peak intensities are then used in an excitation energy dependent equation to calculate the in-plane crystal size. Using Raman area mapping, the mean value of in-plane crystal size over an area of 100 μm × 100 μm is about 22.9 nm with a standard deviation of about 2.4 nm.

  1. Methods of making non-covalently bonded carbon-titania nanocomposite thin films and applications of the same

    DOEpatents

    Liang, Yu Teng; Vijayan, Baiju K.; Gray, Kimberly A.; Hersam, Mark C.

    2016-07-19

    In one aspect, a method of making non-covalently bonded carbon-titania nanocomposite thin films includes: forming a carbon-based ink; forming a titania (TiO.sub.2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO.sub.2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO.sub.2) nanocomposite thin films.

  2. Terahertz Science and Technology of Macroscopically Aligned Carbon Nanotube Films

    NASA Astrophysics Data System (ADS)

    Kono, Junichiro

    One of the outstanding challenges in nanotechnology is how to assemble individual nano-objects into macroscopic architectures while preserving their extraordinary properties. For example, the one-dimensional character of electrons in individual carbon nanotubes leads to extremely anisotropic transport, optical, and magnetic phenomena, but their macroscopic manifestations have been limited. Here, we describe methods for preparing macroscopic films, sheets, and fibers of highly aligned carbon nanotubes and their applications to basic and applied terahertz studies. Sufficiently thick films act as ideal terahertz polarizers, and appropriately doped films operate as polarization-sensitive, flexible, powerless, and ultra-broadband detectors. Together with recently developed chirality enrichment methods, these developments will ultimately allow us to study dynamic conductivities of interacting one-dimensional electrons in macroscopic single crystals of single-chirality single-wall carbon nanotubes.

  3. Study on thick film spin-on carbon hardmask

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Kim, Youngmin; Hwang, Sunmin; Lee, Hyunsoo; Han, Miyeon; Lim, Sanghak

    2017-03-01

    A thick spin-on carbon hardmask (SOH) material is designed to overcome inherent problems of amorphous deposited carbon layer (ACL) and thick photoresist. For ACL in use of semiconductor production process, especially when film thickness from sub-micrometer up to few micrometers is required, not only its inherent low transparency at long wavelength light often causes alignment problems with under layers, but also considerable variation of film thickness within a wafer can also cause patterning problems. To avoid these issues, a thick SOH is designed with monomers of high transparency and good solubility at the same time. In comparison with photoresist, the SOH has good etch resistance and high thermal stability, and it provides wide process window of decreased film thickness and increased thermal budget up to 400°C after processes such as high temperature deposition of SiON. In order to achieve high thickness along with uniform film, many solvent factors was considered such as solubility parameter, surface tension, vapor pressure, and others. By optimizing many solvent factors, we were able to develop a product with a good coating performance

  4. Interface architecture for superthick carbon-based films toward low internal stress and ultrahigh load-bearing capacity.

    PubMed

    Wang, Junjun; Pu, Jibin; Zhang, Guangan; Wang, Liping

    2013-06-12

    Superthick diamond-like carbon (DLC) films [(Six-DLC/Siy-DLC)n/DLC] were deposited on 304 stainless steel substrates by using a plane hollow cathode plasma-enhanced chemical vapor deposition method. The structure was investigated by scanning electron microscopy and transmission electron microscopy. Chemical bonding was examined by Raman, Auger electron, and X-ray photoelectron spectroscopy techniques. Mechanical and tribological properties were evaluated using nanoindentation, scratch, interferometry, and reciprocating-sliding friction testing. The results showed that implantation of a silicon ion into the substrate and the architecture of the tensile stress/compressive stress structure decreased the residual stress to almost 0, resulting in deposition of (Six-DLC/Siy-DLC)n/DLC films with a thickness of more than 50 μm. The hardness of the film ranged from 9 to 23 GPa, and the adhesion strength ranged from 4.6 to 57 N depending on the thickness of the film. Friction coefficients were determined in three tested environments, namely, air, water, and oil. Friction coefficients were typically below 0.24 and as low as 0.02 in a water environment. The as-prepared superthick films also showed an ultrahigh load-bearing capacity, and no failure was detected in the reciprocating wear test with contact pressure higher than 3.2 GPa. Reasons for the ultrahigh load-bearing capacity are proposed in combination with the finite-element method.

  5. Tribological properties of SiC-based MCD films synthesized using different carbon sources when sliding against Si3N4

    NASA Astrophysics Data System (ADS)

    Wang, Xinchang; Shen, Xiaotian; Zhao, Tianqi; Sun, Fanghong; Shen, Bin

    2016-04-01

    Micro-crystalline diamond (MCD) films are deposited on reactive sintering SiC substrates by the bias enhanced hot filament chemical vapor deposition (BE-HFCVD) method, respectively using the methane, acetone, methanol and ethanol as the carbon source. Two sets of standard tribotests are conducted, adopting Si3N4 balls as the counterpart balls, respectively with the purpose of clarifying differences among tribological properties of different MCD films, and studying detailed effects of the carbon source C, normal load Fn and sliding velocity v based on orthogonal analyses. It is clarified that the methane-MCD film presents the lowest growth rate, the highest film quality, the highest hardness and the best adhesion, in consequence, it also performs the best tribological properties, including the lowest coefficient of friction (COF) and wear rate Id, while the opposite is the methanol-MCD film. Under a normal load Fn of 7 N and at a sliding velocity v of 0.4183 m/s, for the methane-MCD film, the maximum COF (MCOF) is 0.524, the average COF during the relatively steady-state regime (ACOF) is 0.144, and the Id is about 1.016 × 10-7 mm3/N m; and for the methanol-MCD film, the MCOF is 0.667, the ACOF is 0.151, and the Id is 1.448 × 10-7 mm3/N m. Moreover, the MCOF, ACOF, Id and the wear rate of the Si3N4 ball Ib will all increase with the Fn, while the v only has significant effect on the ACOF, which shows a monotone increasing trend with the v.

  6. Improvement of orthodontic friction by coating archwire with carbon nitride film

    NASA Astrophysics Data System (ADS)

    Wei, Songbo; Shao, Tianmin; Ding, Peng

    2011-10-01

    In order to reduce frictional resistance between archwire and bracket during orthodontic tooth movement, carbon nitride (CNx) thin films were deposited on the surface of archwires with ion beam assisted deposition (IBAD). The energy-dispersive X-ray spectrometer (EDS) analysis showed that the CNx film was successfully deposited on the surface of the orthodontic wires. X-ray photoelectron spectroscopy (XPS) analysis suggested that the deposited CNx film was sp 2 carbon dominated structures, and diversiform bonds (N sbnd C, N tbnd C, et al.) coexisted in the film. The friction tests indicated that the CNx film significantly reduced the wire-bracket friction both in ambient air and in artificial saliva. The sp 2C rich structure of the CNx film as well as its protection function for the archwire was responsible for the low friction of the wire-bracket sliding system.

  7. An easily accessible carbon material derived from carbonization of polyacrylonitrile ultrathin films: ambipolar transport properties and application in a CMOS-like inverter.

    PubMed

    Jiao, Fei; Zhang, Fengjiao; Zang, Yaping; Zou, Ye; Di, Chong'an; Xu, Wei; Zhu, Daoben

    2014-03-04

    Ultrathin carbon films were prepared by carbonization of a solution processed polyacrylonitrile (PAN) film in a moderate temperature range (500-700 °C). The films displayed balanced hole (0.50 cm(2) V(-1) s(-1)) and electron mobilities (0.20 cm(2) V(-1) s(-1)) under ambient conditions. Spectral characterization revealed that the electrical transport is due to the formation of sp(2) hybridized carbon during the carbonization process. A CMOS-like inverter demonstrated the potential application of this material in the area of carbon electronics, considering its processability and low-cost.

  8. Tribological Behaviour of Ti:Ta-DLC Films Under Different Tribo-Test Conditions

    NASA Astrophysics Data System (ADS)

    Efeoglu, İhsan; Keleş, Ayşenur; Totik, Yaşar; Çiçek, Hikmet; Emine Süküroglu, Ebru

    2018-01-01

    Diamond-like carbon (DLC) films are suitable applicants for cutting tools due to their high hardness, low friction coefficient and wear rate. Doping metals in DLC films have been improved its tribological properties. In this study, titanium and tantalum doped hydrogenated DLC films were deposited by closed-field unbalanced magnetron sputtering system onto M2 high speed steels in Ar/N2/C2H2 atmosphere. The friction and wear properties of Ti:Ta-DLC film were investigated under different tribo-test conditions including in atmospheric pressure, distilled water, commercial oil and Ar atmosphere. The coated specimens were characterized by SEM and X-ray diffraction techniques. The bonding state of C-C (sp3) and C=C (sp2) were obtained with XPS. The tribological properties of Ti:Ta-DLC were investigated with pin-on-disc wear test. Hardness measurements performed by micro-indentation. Our results suggest that Ti:Ta-doped DLC film shows very dense columnar microstructure, high hardness (38.2 GPa) with low CoF (µ≈0.02) and high wear resistance (0.5E-6 mm3/Nm).

  9. Special Polymer/Carbon Composite Films for Detecting SO2

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Ryan, Margaret; Yen, Shiao-Pin; Kisor, Adam; Jewell, April; Shevade, Abhijit; Manatt, Kenneth; Taylor, Charles; Blanco, Mario; Goddard, William

    2008-01-01

    A family of polymer/carbon films has been developed for use as sensory films in electronic noses for detecting SO2 gas at concentrations as low as 1 part per million (ppm). Most previously reported SO2 sensors cannot detect SO2 at concentrations below tens of ppm; only a few can detect SO2 at 1 ppm. Most of the sensory materials used in those sensors (especially inorganic ones that include solid oxide electrolytes, metal oxides, and cadmium sulfide) must be used under relatively harsh conditions that include operation and regeneration at temperatures greater than 100 C. In contrast, the present films can be used to detect 1 ppm of SO2 at typical opening temperatures between 28 and 32 C and can be regenerated at temperatures between 36 and 40 C. The basic concept of making sensing films from polymer/carbon composites is not new. The novelty of the present family of polymer/carbon composites lies in formulating the polymer components of these composites specifically to optimize their properties for detecting SO2. First-principles quantum-mechanical calculations of the energies of binding of SO2 molecules to various polymer functionalities are used as a guide for selecting polymers and understanding the role of polymer functionalities in sensing. The polymer used in the polymer-carbon composite is a copolymer of styrene derivative units with vinyl pyridine or substituted vinyl pyridine derivative units. To make a substituted vinyl pyridine for use in synthesizing such a polymer, poly(2-vinyl pyridine) that has been dissolved in methanol is reacted with 3-chloropropylamine that has been dissolved in a solution of methanol. The methanol is then removed to obtain the copolymer. Later, the copolymer can be dissolved in an appropriate solvent with a suspension of carbon black to obtain a mixture that can be cast and then dried to obtain a sensory film.

  10. Assembling of carbon nanotubes film responding to significant reduction wear and friction on steel surface

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Xue, Yong; Qiang, Li; Gao, Kaixong; Liu, Qiao; Yang, Baoping; Liang, Aiming; Zhang, Junyan

    2017-11-01

    Friction properties of carbon nanotubes have been widely studied and reported, however, the friction properties of carbon nanotubes related on state of itself. It is showing superlubricity under nanoscale, but indicates high shear adhesion as aligned carbon nanotube film. However, friction properties under high load (which is commonly in industry) of carbon nanotube films are seldom reported. In this paper, carbon nanotube films, via mechanical rubbing method, were obtained and its tribology properties were investigated at high load of 5 to 15 N. Though different couple pairs were employed, the friction coefficients of carbon nanotube films are nearly the same. Compared with bare stainless steel, friction coefficients and wear rates under carbon nanotube films lubrication reduced to, at least, 1/5 and 1/(4.3-14.5), respectively. Friction test as well as structure study were carried out to reveal the mechanism of the significant reduction wear and friction on steel surface. One can conclude that sliding and densifying of carbon nanotubes at sliding interface contribute to the sufficient decrease of friction coefficients and wear rates.

  11. Ternary graphene/amorphous carbon/nickel nanocomposite film for outstanding superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaobo; Zhou, Shengguo; Yan, Qingqing

    2018-04-01

    A novel superhydrophobic ternary graphene/amorphous carbon/nickel (G-Ni/a-C:H) carbon-based film was fabricated by a green approach of high-voltage electrochemical deposition without using aqueous solution, which was systematically investigated including the structure and relating applications on self-cleaning and corrosion resistance. Graphene and nickel nano-particle inserts were effective to tailor the feature of nanocrystallite/amorphous microstructure as well as micro-nanoscale hierarchical rose-petal-like surface for G-Ni/a-C:H carbon-based film. Surprisingly, this deposit could present outstanding superhydrophobicity with the contact angle of 158.98 deg and sliding angle of 2.75 deg without any further surface modification meanwhile it could possess fairly well adhesion. Furthermore, the superhydrophobic G-Ni/a-C:H carbon-based film could exhibit excellent corrosion resistance and self-cleaning performances compared to no graphene incorporated deposit. The procedure of fabricating deposit might be simple, scalable, and environmental friendly, indicating a promising prospect for industrial applications in the field of anti-fouling, anti-corrosion and drag resistance.

  12. Friction and Wear Properties of As-deposited and Carbon Ion-implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1994-01-01

    Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 ke V ion energy, resulting in a dose of 1.2310(exp 17) carbon ions/cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40 percent relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and were properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to 10(exp -8)mm(exp 3)/N-m) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4)mm(exp 3/N-m) in ultrahigh vacuum. The carbon ion implanation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, nondiamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine- and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7)mm(exp 3/N-m). Even in ultrahigh vacuum, the presence of the nondiamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6)mm(exp 3)/N-m. Thus, the carbon ion-implanted, fine

  13. Detection of Carbon Monoxide Using Polymer-Carbon Composite Films

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Ryan, Margaret A.; Lara, Liana M.

    2011-01-01

    A carbon monoxide (CO) sensor was developed that can be incorporated into an existing sensing array architecture. The CO sensor is a low-power chemiresistor that operates at room temperature, and the sensor fabrication techniques are compatible with ceramic substrates. Sensors made from four different polymers were tested: poly (4-vinylpryridine), ethylene-propylene-diene-terpolymer, polyepichlorohydrin, and polyethylene oxide (PEO). The carbon black used for the composite films was Black Pearls 2000, a furnace black made by the Cabot Corporation. Polymers and carbon black were used as received. In fact, only two of these sensors showed a good response to CO. The poly (4-vinylpryridine) sensor is noisy, but it does respond to the CO above 200 ppm. The polyepichlorohydrin sensor is less noisy and shows good response down to 100 ppm.

  14. Dual-ion-beam deposition of carbon films with diamond-like properties

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1985-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond like films generated by sputtering a graphite target.

  15. Transparent, flexible supercapacitors from nano-engineered carbon films.

    PubMed

    Jung, Hyun Young; Karimi, Majid B; Hahm, Myung Gwan; Ajayan, Pulickel M; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  16. Transparent, flexible supercapacitors from nano-engineered carbon films

    PubMed Central

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970

  17. Transparent, flexible supercapacitors from nano-engineered carbon films

    NASA Astrophysics Data System (ADS)

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-10-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  18. A film producer focuses on issues of social justice and nurses: an interview with Richard Harding. Interviewed by Kathleen McHugh.

    PubMed

    Harding, Richard

    2012-01-01

    This case study of Richard Harding, a producer currently making a film about the Benghazi Six, includes an introductory biography, an interview with the producer, and a brief conclusion. Harding's commitments to both filmmaking and social justice issues led him to The Benghazi Six and the injustices suffered by these Bulgarian nurses, who were persecuted and imprisoned in Libya for 9 years on false charges of infecting Libyan children with HIV. The film production ran alongside of and aided international efforts to free the nurses and one physician from Libya. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Friction and Wear Properties of As-Deposited and Carbon Ion-Implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1996-01-01

    Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 keV ion energy, resulting in a dose of 1.2 x 10(exp 17) carbon ions per cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40% relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and wear properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to lO(exp -8) mm(exp 3) N(exp -1) m(exp -1)) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4) mm(exp 7) N(exp -1) m(exp -1)) in ultrahigh vacuum. The carbon ion implantation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, non-diamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7) mm(exp 3) N(exp -1) m(exp-1)). Even in ultrahigh vacuum, the presence of the non-diamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6

  20. Relative Permeabilities of Plastic Films to Water and Carbon Dioxide

    PubMed Central

    Woolley, Joseph T.

    1967-01-01

    The permeabilities of several types of plastic films to water and to carbon dioxide were measured. No material was found to have a carbon dioxide permeability as great as its water permeability. PMID:16656548

  1. Stretchable transistors with buckled carbon nanotube films as conducting channels

    DOEpatents

    Arnold, Michael S; Xu, Feng

    2015-03-24

    Thin-film transistors comprising buckled films comprising carbon nanotubes as the conductive channel are provided. Also provided are methods of fabricating the transistors. The transistors, which are highly stretchable and bendable, exhibit stable performance even when operated under high tensile strains.

  2. Chemical and Mechanical Characterization of Diamond-Like Carbon Hard Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poker, D B; Doughty, C

    1999-12-28

    This CRADA was intended to investigate and optimize the process used by ASTEX-PlasmaQuest for deposition of diamond-like carbon films. Approval for funding was delayed, and an unexpected move of the PlasmaQuest headquarters and research facilities prevented appropriate samples from being prepared before the end of the CRADA. Therefore, No effort was expended under this program.

  3. Enhanced lubricant film formation through micro-dimpled hard-on-hard artificial hip joint: An in-situ observation of dimple shape effects.

    PubMed

    Choudhury, Dipankar; Rebenda, David; Sasaki, Shinya; Hekrle, Pavel; Vrbka, Martin; Zou, Min

    2018-05-01

    This study evaluates the impact of dimple shapes on lubricant film formation in artificial hip joints. Micro-dimples with 20-50 µm lateral size and 1 ± 0.2 µm depths were fabricated on CrCoMo hip joint femoral heads using a picosecond laser. Tribological studies were performed using a pendulum hip joint simulator to apply continuous swing flexion-extension motions. The results revealed a significantly enhanced lubricant film thickness (≥ 500 nm) with micro-dimpled prosthesis heads at equilibrium position after the lubricant film has fully developed. The average lubricant film thickness of dimpled prostheses with square- and triangular-shaped dimple arrays over time is about 3.5 that of the non-dimpled prosthesis (204 nm). Remarkably, the prosthesis with square-shaped dimple arrays showed a very fast lubricant film formation reaching their peak values within 0.5 s of pendulum movement, followed by prosthesis with triangular-shaped dimple arrays with a transition period of 42.4 s. The fully developed lubricant film thicknesses (≥ 700 nm) are significantly higher than the surface roughness (≈ 25 nm) demonstrating a hydrodynamic lubrication. Hardly any scratches appeared on the post-experimental prosthesis with square-shaped dimple array and only a few scratches were found on the post-experimental prosthesis with triangular-shaped dimple arrays. Thus, prostheses with square-shaped dimple arrays could be a potential solution for durable artificial hip joints. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Semitransparent conductive carbon films synthesized by sintering spin-coated sp3-based network polymer

    NASA Astrophysics Data System (ADS)

    Yanase, Takashi; Uwabe, Hiroaki; Hasegawa, Koki; Nagahama, Taro; Yamaguchi, Makoto; Shimada, Toshihiro

    2018-03-01

    We synthesized semitransparent conducting thin films of amorphous carbon from sp3-rich network polymer. The films showed a reasonable optical transparency (58-73% transmission in the wavelength range of 380-2200 nm), a low electric resistivity (6.7 × 10-3 Ω cm), and durability against corrosive chemical reagents. The sintering of the amorphous films results in the formation of a carbon honeycomb lattice in the films.

  5. Graphene/semicrystalline-carbon derived from amylose films for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Deraman, M.; Sazali, N. E. S.; Hanappi, M. F. Y. M.; Tajuddin, N. S. M.; Hamdan, E.; Suleman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Noor, A. M.; Jasni, M. R. M.

    2016-08-01

    Graphene/semicrystalline-carbon in the form of carbon flakes is produced by carbonization up to 600, 700, 800, 900 and 1000°C, respectively, of the amylose films prepared by a casting method on copper foil substrate. The carbon flakes are characterized by X-ray diffraction (XRD) method to determine their microcrystallite interlayer spacing, width and stack-height; and Raman spectroscopy (RS) method to obtain structural information from the D-, D2- and G-bands peak-intensities. The XRD results show that increase in carbonization temperature lead to ~(1-3%), ~85% and ~30%increase in the microcrystallites interlayer spacing, width and stack-height, respectively, indicating that a larger growth of microcrytallite of carbon flakes occurs in the direction parallel to (001) plane or film planar surface. The specific surface area of carbon flakes estimated from the XRD results in decreases from ~4400 to ~3400 m2/g, corresponding to the specific capacitance between ~500 to ~400 F/g, which are well within the range of specific capacitance for typical electrodes carbon for supercapacitor application. The RS results show that the multilayer graphene co-exist with semicrystalline- carbon within the carbon flakes, with the multilayer graphene relative quantities increase with increasing carbonization temperature.

  6. Controlling the Pore Size of Mesoporous Carbon Thin Films through Thermal and Solvent Annealing.

    PubMed

    Zhou, Zhengping; Liu, Guoliang

    2017-04-01

    Herein an approach to controlling the pore size of mesoporous carbon thin films from metal-free polyacrylonitrile-containing block copolymers is described. A high-molecular-weight poly(acrylonitrile-block-methyl methacrylate) (PAN-b-PMMA) is synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The authors systematically investigate the self-assembly behavior of PAN-b-PMMA thin films during thermal and solvent annealing, as well as the pore size of mesoporous carbon thin films after pyrolysis. The as-spin-coated PAN-b-PMMA is microphase-separated into uniformly spaced globular nanostructures, and these globular nanostructures evolve into various morphologies after thermal or solvent annealing. Surprisingly, through thermal annealing and subsequent pyrolysis of PAN-b-PMMA into mesoporous carbon thin films, the pore size and center-to-center spacing increase significantly with thermal annealing temperature, different from most block copolymers. In addition, the choice of solvent in solvent annealing strongly influences the block copolymer nanostructure and the pore size of mesoporous carbon thin films. The discoveries herein provide a simple strategy to control the pore size of mesoporous carbon thin films by tuning thermal or solvent annealing conditions, instead of synthesizing a series of block copolymers of various molecular weights and compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Bottom-up Fabrication of Graphene on Silicon/Silica Substrate via a Facile Soft-hard Template Approach

    PubMed Central

    Yang, Yuxing; Liu, Ruili; Wu, Jiayang; Jiang, Xinhong; Cao, Pan; Hu, Xiaofeng; Pan, Ting; Qiu, Ciyuan; Yang, Junyi; Song, Yinglin; Wu, Dongqing; Su, Yikai

    2015-01-01

    In this work, a novel soft-hard template method towards the direct fabrication of graphene films on silicon/silica substrate is developed via a tri-constituent self-assembly route. Using cetyl trimethyl ammonium bromide (CTAB) as a soft template, silica (SiO2) from tetramethoxysilane as a hard template, and pyrene as a carbon source, the self-assembly process allows the formation of a sandwich-like SiO2/CTAB/pyrene composite, which can be further converted to high quantity graphene films with a thickness of ~1 nm and a size of over 5 μm by thermal treatment. The morphology and thickness of the graphene films can be effectively controlled through the adjustment of the ratio of pyrene to CTAB. Furthermore, a high nonlinear refractive index n2 of ~10−12 m2 W−1 is measured from graphene/silica hybrid film, which is six orders of magnitude larger than that of silicon and comparable to the graphene from chemical vapor deposition process. PMID:26311022

  8. Evolution of Structural and Electrical Properties of Carbon Films from Amorphous Carbon to Nanocrystalline Graphene on Quartz Glass by HFCVD.

    PubMed

    Zhai, Zihao; Shen, Honglie; Chen, Jieyi; Li, Xuemei; Jiang, Ye

    2018-05-23

    Direct growth of graphene films on glass is of great importance but has so far met with limited success. The noncatalytic property of glass results in the low decomposition ability of hydrocarbon precursors, especially at reduced temperatures (<1000 °C), and therefore amorphous carbon (a-C) films are more likely to be obtained. Here, we report the hydrogen influence on the structural and electrical properties of carbon films deposited on quartz glass at 850 °C by hot-filament chemical vapor deposition (HFCVD). The results revealed that the obtained a-C films were all graphitelike carbon films. Structural transition of the deposited films from a-C to nanocrystalline graphene was achieved by raising the hydrogen dilution ratios from 10 to over 80%. On the basis of systematic structural and chemical characterizations, a schematic process with three steps including sp 2 chain aggregation, aromatic ring formation, and sp 3 bond etching was proposed to interpret the structural evolution. The nanocrystalline graphene films grown on glass by HFCVD exhibited good electrical performance with a carrier mobility of 36.76 cm 2 /(V s) and a resistivity of 5.24 × 10 -3 Ω cm over an area of 1 cm 2 . Temperature-dependent electrical characterizations revealed that the electronic transport in carbon films was dominated by defect, localized, and extended states, respectively, when increasing the temperature from 75 to 292 K. The nanocrystalline graphene films presented higher carrier mobility and lower carrier concentration than those of a-C films, which was mainly attributed to their smaller conductive activation energy. The present investigation provides an effective way for direct growth of graphene films on glass at reduced temperatures and also offers useful insights into the understanding of structural and electrical relationship between a-C and graphene.

  9. Platelet adhesion on phosphorus-incorporated tetrahedral amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Aiping; Zhu, Jiaqi; Liu, Meng; Dai, Zhifei; Han, Xiao; Han, Jiecai

    2008-11-01

    The haemocompatibility of phosphorus-incorporated tetrahedral amorphous carbon (ta-C:P) films, synthesized by filtered cathodic vacuum arc technique with PH 3 as the dopant source, was assessed by in vitro platelet adhesion tests. Results based on scanning electron microscopy and contact angle measurements reveal that phosphorus incorporation improves the wettability and blood compatibility of ta-C film. Our studies may provide a novel approach for the design and synthesis of doped ta-C films to repel platelet adhesion and reduce thrombosis risk.

  10. Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Won, Yoonjin; Gao, Yuan; Guzman de Villoria, Roberto; Wardle, Brian L.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Goodson, Kenneth E.

    2015-11-01

    Carbon nanotube (CNT) arrays offer the potential to develop nanostructured materials that leverage their outstanding physical properties. Vertically aligned carbon nanotubes (VACNTs), also named CNT forests, CNT arrays, or CNT turfs, can provide high heat conductivity and sufficient mechanical compliance to accommodate thermal expansion mismatch for use as thermal interface materials (TIMs). This paper reports measurements of the in-plane moduli of vertically aligned, single-walled CNT (SWCNT) and multi-walled CNT (MWCNT) films. The mechanical response of these films is related to the nonhomogeneous morphology of the grown nanotubes, such as entangled nanotubes of a top crust layer, aligned CNTs in the middle region, and CNTs in the bottom layer. To investigate how the entanglements govern the overall mechanical moduli of CNT films, we remove the crust layer consisting of CNT entanglements by etching the CNT films from the top. A microfabricated cantilever technique shows that crust removal reduces the resulting moduli of the etched SWCNT films by as much as 40%, whereas the moduli of the etched MWCNT films do not change significantly, suggesting a minimal crust effect on the film modulus for thick MWCNT films (>90 μm). This improved understanding will allow us to engineer the mechanical moduli of CNT films for TIMs or packaging applications.

  11. Carbon nanotube-poly(methyl methacrylate) hybrid films: preparation using diazonium salt chemistry and mechanical properties.

    PubMed

    Mammeri, Fayna; Teyssandier, Joan; Darche-Dugaret, Clément; Debacker, Sabine; Le Bourhis, Eric; Chehimi, Mohamed Mehdi

    2014-11-01

    The poor miscibility of carbon nanotubes (CNTs) in common organic solvents and organic monomers requires their modification by suitable functional (reactive or not) groups prior to their incorporation in thermoplastic polymers. Dispersion behavior of carbon nanotubes and mechanical properties of various CNT-poly(methylmethacrylate) (PMMA) nanocomposites were investigated. We studied the influence of the surface chemistry through the use of diazonium salts as an elegant and environmentally friendly platform to provide a suitable sidewall functionalization by methyl methacrylate functions. We used either a molecular size functional group through the grafting of methacryloxypropyltrimethoxysilane or a macromolecular size one, consisting in PMMA brushes grown by SI-ATRP in order to study the influence of the length of methacrylate function on the dispersion of CNT in PMMA. The hardness and the elastic indentation modulus of all hybrid films were obtained through nanoindentation measurements and found to increase, using ATRP-modified CNTs, suggesting a better dispersion of CNTs in PMMA due to optimal inorganic-organic interactions promoted by the short chains of PMMA. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Method of produce ultra-low friction carbon films

    DOEpatents

    Erdemir, Ali; Fenske, George R.; Eryilmaz, Osman Levent; Lee, Richard H.

    2003-04-15

    A method and article of manufacture of amorphous diamond-like carbon. The method involves providing a substrate in a chamber, providing a mixture of a carbon containing gas and hydrogen gas with the mixture adjusted such that the atomic molar ratio of carbon to hydrogen is less than 0.3, including all carbon atoms and all hydrogen atoms in the mixture. A plasma is formed of the mixture and the amorphous diamond-like carbon film is deposited on the substrate. To achieve optimum bonding an intervening bonding layer, such as Si or SiO.sub.2, can be formed from SiH.sub.4 with or without oxidation of the layer formed.

  13. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips

    NASA Astrophysics Data System (ADS)

    Huang, Peihua; Heon, Min; Pech, David; Brunet, Magali; Taberna, Pierre-Louis; Gogotsi, Yury; Lofland, Samuel; Hettinger, Jeffrey D.; Simon, Patrice

    2013-03-01

    Interdigitated on-chip micro-supercapacitors based on Carbide Derived Carbon (CDC) films were fabricated and tested. A titanium carbide (TiC) film was patterned and treated with chlorine to obtain a TiC derived carbon (TiC-CDC) film, followed by the deposition of two types of current collectors (Ti/Au and Al) using standard micro-fabrication processes. CDC based micro-supercapacitors were electrochemically characterized by cyclic voltammetry and impedance spectroscopy using a 1 M tetraethylammonium tetrafluoroborate, NEt4BF4, in propylene carbonate (PC) electrolyte. A capacitance of 0.78 mF for the device and 1.5 mF cm-2 as the specific capacitance for the footprint of the device was measured for a 2 V potential range at 100 mV s-1. A specific energy of 3.0 mJ cm-2 and a specific power of 84 mW cm-2 were calculated for the devices. These devices provide a pathway for fabricating pure carbon-based micro-supercapacitors by micro-fabrication, and can be used for powering micro-electromechanical systems (MEMS) and electronic devices.

  14. Thermal annealing and SHI irradiation induced modifications in sandwiched structured Carbon-gold-Carbon (a-C/Au/a-C) nanocomposite thin film

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.

    2017-09-01

    In the present work, we study the annealing and swift heavy ion (SHI) beam induced modifications in the optical and structural properties of sandwiched structured Carbon-gold-Carbon (a-C/Au/a-C) nanocomposite (NCs) thin films. The NCs thin films were synthesized by electron-beam evaporation technique at room temperature with ∼30 nm thickness for both carbon layer and ∼6 nm for gold layer. Gold-carbon NCs thin films were annealed in the presence of argon at a temperature of 500 °C, 600 °C and 750 °C. The NCs thin films were also irradiated with 90 MeV Ni ions beam with different ion fluences in the range from 3 × 1012, 6 × 1012 and 1 × 1013 ions/cm2. Surface plasmon resonance (SPR) of Au nanoparticles are not observed in the pristine film but, after annealing at temperature of 600 °C and 750 °C, it was clearly seen at ∼534 nm as confirmed by UV-visible absorption spectroscopy. 90 MeV Ni irradiated thin film at the fluence of 1 × 1013 ions/cm2 also show strong absorption band at ∼534 nm. The growth and size of Au nanoparticle for pristine and 90 MeV Ni ion irradiated thin film with fluence of 1 × 1013 ions/cm2, were estimated by Transmission electron microscopy (TEM) images with the bi-model distribution. The size of the gold nanoparticle (NPs) was found to be ∼4.5 nm for the pristine film and ∼5.4 nm for the irradiated film at a fluence of 1 × 1013 ions/cm2. The thickness and metal atomic fraction in carbon matrix were estimated by Rutherford backscattering spectroscopy (RBS). The effect of annealing as well as heavy ion irradiation on D and G band of carbon matrix were studied by Raman spectroscopy.

  15. Electrodeposited Co-Pt thin films for magnetic hard disks

    NASA Astrophysics Data System (ADS)

    Bozzini, B.; De Vita, D.; Sportoletti, A.; Zangari, G.; Cavallotti, P. L.; Terrenzio, E.

    1993-03-01

    ew baths for Co-Pt electrodeposition have been developed and developed and ECD thin films (≤0.3μm) have been prepared and characterized structurally (XRD), morphologically (SEM), chemically (EDS) and magnetically (VSM); their improved corrosion, oxidation and wear resistance have been ascertained. Such alloys appear suitable candidates for magnetic storage systems, from all technological viewpoints. The originally formulated baths contain Co-NH 3-citrate complexes and Pt-p salt (Pt(NH 3) 2(NO 2) 2). Co-Pt thin films of fcc structure are deposited obtaining microcrystallites of definite composition. At Pt ⋍ 30 at% we obtain fcc films with a=0.369 nm, HC=80 kA m, and high squareness; increasing Co and decreasing Pt content in the bath it is possible to reduce the Pt content of the deposit, obtaining fcc structures containing two types of microcrystals with a = 0.3615 nm and a = 0.369 nm deposited simultaneously. NaH 2PO 2 additions to the bath have a stabilizing influence on the fcc structure of a = 0.3615 nm, Pt ⋍ 20 at% and HC as high as 200 kA/m, with hysteresis loops suitable for both longitudinal or perpendicular recording, depending on the thickness. We have prepared 2.5 in. hard disks for magnetic recording with ECD Co-Pt 20 at% with a polished and texturized ACD Ni-P underlayer. Pulse response, 1F & 2F frequency and frequency sweep response behaviour, as well as noise and overwrite characteristics have been measured for both our disks and high-standard sputtered Co-Cr-Ta production disks, showin improved D50 for Co-Pt ECD disks. The signal-to-noise ratio could be improved by pulse electrodeposition and etching post-treatments.

  16. Structural Analysis of a Carbon Nitride Film Prepared by Ion-Beam-Assisted Deposition

    NASA Astrophysics Data System (ADS)

    Hayashi, Toshiyuki; Matsumuro, Akihito; Muramatsu, Mutsuo; Kohzaki, Masao; Takahashi, Yutaka; Yamaguchi, Katsumi

    1999-04-01

    The microstructure of a carbon nitride (CNx) film formed by ion-beam-assisted deposition (IBAD) was investigated by transmission electron microscopy (TEM). This film was formed on the Si (100) substrate by IBAD with an N/C transport ratio of 1. Three different spacings (0.34 nm, 0.21 nm, 0.12 nm) were observed by transmission electron diffraction (TED) and the periodic structure corresponding to the spacing of 0.34 nm was aligned perpendicular to the substrate. The bending of this plane resembled a carbon nanotube; therefore, it seemed reasonable to suppose that the CNx film obtained consisted of numerous carbon-nanotube-like structural elements grown vertically, relative to the substrate, and it also seemed appropriate that these structural elements should be termed nanotube-like carbon nitride.

  17. Multifunctional Poly(2,5-benzimidazole)/Carbon Nanotube Composite Films

    DTIC Science & Technology

    2010-01-01

    Multifunctional Poly(2,5- benzimidazole )/Carbon Nanotube Composite Films JI-YE KANG,1 SOO-MI EO,1 IN-YUP JEON,1 YEONG SUK CHOI,2 LOON-SENG TAN,3 JONG...molecular-weight poly(2,5- benzimidazole ) (ABPBI). ABPBI/carbon nanotube (CNT) compo- sites were prepared via in situ polymerization of the AB-monomer in the...polymerization; multiwalled carbon nanotube (MWCNT); nano- composites; poly(2,5- benzimidazole ); (ABPBI); polycondensa- tion; poly(phosphoric acid); single-walled

  18. Co-sputter deposited nickel-copper bimetallic nanoalloy embedded carbon films for electrocatalytic biomarker detection

    NASA Astrophysics Data System (ADS)

    Shiba, Shunsuke; Kato, Dai; Kamata, Tomoyuki; Niwa, Osamu

    2016-06-01

    We report the fabrication of a nickel (Ni)-copper (Cu) bimetallic nanoalloy (~3 nm) embedded carbon film electrode with the unbalanced magnetron (UBM) co-sputtering technique, which requires only a one-step process at room temperature. Most of each nanoalloy body was firmly embedded in a chemically stable carbon matrix with an atomically flat surface (Ra: 0.21 nm), suppressing the aggregation and/or detachment of the nanoalloy from the electrode surface. The nanoalloy size and composition can be controlled simply by individually controlling the target powers of carbon, Ni and Cu, which also makes it possible to localize the nanoalloys near the electrode surface. This electrode exhibited excellent electrocatalytic activity for d-mannitol, which should be detected with a low detection limit in urine samples for the diagnosis of severe intestinal diseases. With a Ni/Cu ratio of around 64/36, the electrocatalytic current per metal area was 3.4 times larger than that of an alloy film electrode with a similar composition (~70/30). This improved electrocatalytic activity realized higher stability (n = 60, relative standard deviation (RSD): 4.6%) than the alloy film (RSD: 32.2%) as demonstrated by continuous measurements of d-mannitol.We report the fabrication of a nickel (Ni)-copper (Cu) bimetallic nanoalloy (~3 nm) embedded carbon film electrode with the unbalanced magnetron (UBM) co-sputtering technique, which requires only a one-step process at room temperature. Most of each nanoalloy body was firmly embedded in a chemically stable carbon matrix with an atomically flat surface (Ra: 0.21 nm), suppressing the aggregation and/or detachment of the nanoalloy from the electrode surface. The nanoalloy size and composition can be controlled simply by individually controlling the target powers of carbon, Ni and Cu, which also makes it possible to localize the nanoalloys near the electrode surface. This electrode exhibited excellent electrocatalytic activity for d

  19. Photo-induced thermoelectric response in suspended single-walled carbon nanotube films

    NASA Astrophysics Data System (ADS)

    St-Antoine, Benoit; Menard, David; Martel, Richard

    2010-03-01

    A study was carried out on the position dependent photovoltage of suspended single-walled carbon nanotube films in vacuum. The photoresponse of such films was found to be driven by a thermal mechanism, rather than by direct photoexcitation of carriers. [1] A model was developed which establishes a relation between the photoresponse profile and the local Seebeck coefficient of the film, thus opening up new perspectives for material characterization. The technique was demonstrated by monitoring the doping changes in the nanotube films obtained by successive current conditioning steps. Since the Seebeck coefficient of carbon nanotubes spans a considerable range depending on their doping state, the photovoltage amplitude can be tuned and large responses have been measured (up to 0.75mV for 1.2mW). [4pt] [1] B. St-Antoine et al. Nano Lett. 9, 3503 (2009)

  20. Buckling instability in amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Zhu, X. D.; Narumi, K.; Naramoto, H.

    2007-06-01

    In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 °C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with π-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 µm with a height of ~500 nm and a wavelength of ~8.2 µm. However, the length decreases dramatically to 70 µm as the deposition temperature is increased to 550 °C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542).

  1. Preparation of mesoporous carbon nitride structure by the dealloying of Ni/a-CN nanocomposite films

    NASA Astrophysics Data System (ADS)

    Zhou, Han; Shen, Yongqing; Huang, Jie; Liao, Bin; Wu, Xianying; Zhang, Xu

    2018-05-01

    The preparation of mesoporous carbon nitride (p-CN) structure by the selective dealloying process of Ni/a-CN nanocomposite films is investigated. The composition and structure of the Ni/a-CN nanocomposite films and porous carbon nitride (p-CN) films are determined by scan electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Phase separated structure including nickel carbide phase and the surrounding amorphous carbon nitride (a-CN) matrix are detected for the as-deposited films. Though the bulk diffusion is introduced in the film during the annealing process, the grain sizes for the post-annealed films are around 10 nm and change little comparing with the ones of the as-deposited films, which is associated with the thermostability of the CN surrounding in the film. The p-CN skeleton with its pore size around 12.5 nm is formed by etching the post-annealed films, indicative of the stability of the phase separated structure during the annealing process.

  2. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqiang; Hao, Junying; Xie, Yuntao

    2016-08-01

    Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  3. Theoretical model of hardness anisotropy in brittle materials

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2012-07-01

    Anisotropy is prominent in the hardness test of single crystals. However, the anisotropic nature is not demonstrated quantitatively in previous hardness model. In this work, it is found that the electron transition energy per unit volume in the glide region and the orientation of glide region play critical roles in determining hardness value and hardness anisotropy for a single crystal material. We express the mathematical definition of hardness anisotropy through simple algebraic relations. The calculated Knoop hardnesses of the single crystals are in good agreement with observations. This theory, extended to polycrystalline materials by including hall-petch effect and quantum size effect, predicts that the polycrystalline diamond with low angle grain boundaries can be harder than single-crystal bulk diamond. Combining first-principles technique and the formula of hardness anisotropy the hardness of monoclinic M-carbon, orthorhombic W-carbon, Z-carbon, and T-carbon are predicted.

  4. Nanostructured carbon films with oriented graphitic planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teo, E. H. T.; Kalish, R.; Kulik, J.

    2011-03-21

    Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphiticmore » planes under different conditions.« less

  5. Carbon-based layer-by-layer nanostructures: from films to hollow capsules

    NASA Astrophysics Data System (ADS)

    Hong, Jinkee; Han, Jung Yeon; Yoon, Hyunsik; Joo, Piljae; Lee, Taemin; Seo, Eunyong; Char, Kookheon; Kim, Byeong-Su

    2011-11-01

    Over the past years, the layer-by-layer (LbL) assembly has been widely developed as one of the most powerful techniques to prepare multifunctional films with desired functions, structures and morphologies because of its versatility in the process steps in both material and substrate choices. Among various functional nanoscale objects, carbon-based nanomaterials, such as carbon nanotubes and graphene sheets, are promising candidates for emerging science and technology with their unique physical, chemical, and mechanical properties. In particular, carbon-based functional multilayer coatings based on the LbL assembly are currently being actively pursued as conducting electrodes, batteries, solar cells, supercapacitors, fuel cells and sensor applications. In this article, we give an overview on the use of carbon materials in nanostructured films and capsules prepared by the LbL assembly with the aim of unraveling the unique features and their applications of carbon multilayers prepared by the LbL assembly.

  6. Bicontinuous mesoporous carbon thin films via an order-order transition.

    PubMed

    Deng, Guodong; Zhang, Yuanzhong; Ye, Changhuai; Qiang, Zhe; Stein, Gila E; Cavicchi, Kevin A; Vogt, Bryan D

    2014-10-28

    Bicontinuous mesoporous carbon films are fabricated by cooperative self-assembly of phenolic resin and amphiphilic triblock copolymer via an order-order transition from cylinders to gyroid. The film morphology is strongly influenced by the details of processing, including age of the resol, resol : template ratio, and the solvent vapor annealing process.

  7. On-chip and freestanding elastic carbon films for micro-supercapacitors

    DOE PAGES

    Huang, Peihua; Lethien, C.; Pinaud, S.; ...

    2016-02-11

    Integration of electrochemical capacitors with silicon-based electronics is a major challenge, limiting energy storage on a chip. We describe a wafer-scale process for manufacturing strongly adhering carbide-derived carbon films and interdigitated micro-supercapacitors with embedded titanium carbide current collectors, fully compatible with current microfabrication and silicon-based device technology. Capacitance of those films reaches 410 farads per cubic centimeter/200 millifarads per square centimeter in aqueous electrolyte and 170 farads per cubic centimeter/85 millifarads per square centimeter in organic electrolyte. We also demonstrate preparation of self-supported, mechanically stable, micrometer-thick porous carbon films with a Young’s modulus of 14.5 gigapascals, with the possibility ofmore » further transfer onto flexible substrates. Lastly, these materials are interesting for applications in structural energy storage, tribology, and gas separation.« less

  8. On-chip and freestanding elastic carbon films for micro-supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Peihua; Lethien, C.; Pinaud, S.

    Integration of electrochemical capacitors with silicon-based electronics is a major challenge, limiting energy storage on a chip. We describe a wafer-scale process for manufacturing strongly adhering carbide-derived carbon films and interdigitated micro-supercapacitors with embedded titanium carbide current collectors, fully compatible with current microfabrication and silicon-based device technology. Capacitance of those films reaches 410 farads per cubic centimeter/200 millifarads per square centimeter in aqueous electrolyte and 170 farads per cubic centimeter/85 millifarads per square centimeter in organic electrolyte. We also demonstrate preparation of self-supported, mechanically stable, micrometer-thick porous carbon films with a Young’s modulus of 14.5 gigapascals, with the possibility ofmore » further transfer onto flexible substrates. Lastly, these materials are interesting for applications in structural energy storage, tribology, and gas separation.« less

  9. Raman studied of undoped amorphous carbon thin film deposited by bias assisted-CVD

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Fadzilah, A. N.; Dayana, K.; Saurdi, I.; Malek, M. F.; Nurbaya, Z.; Shafura, A. K.; Rusop, M.

    2018-05-01

    The undoped amorphous carbon thin film carbon was deposited at 200°C-350°C by bias assisted-CVD using palm oil as a precursor material. The effect of different substrate deposition temperatures on structural and electrical properties of undoped doped amorphous carbon film was discussed. The structural of undoped amorphous carbon films were correlated with Raman analysis through the evolution of D and G bands, Fourier spectra, and conductivity measurement. The spectral evolution observed showed the increase of upward shift of D and G peaks as substrate deposition temperatures increased. The spectral evolution observed at different substrate deposition temperatures show progressive formation of crystallites. It was predicted that small number of hydrogen is terminated with carbon at surface of thin film as shown by FTIR spectra since palm oil has high number of hydrogen (C67H127O8). These structural changes were further correlated with conductivity and the results obtained are discussed and compared. The conductivity is found in the range of 10-8 Scm-1. The increase of conductivity is correlated by the change of structural properties as correlated with characteristic parameters of Raman spectra including the position of G peak, full width at half maximum of G peak, and ID/IG and FTIR result.

  10. High efficiency microcolumnar Lu2O3:Eu scintillator thin film for hard X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Marton, Z.; Bhandari, H. B.; Brecher, C.; Miller, S. R.; Singh, B.; Nagarkar, V. V.

    2013-03-01

    We have developed microstructured Lu2O3:Eu scintillator films capable of providing spatial resolution on the order of micrometers for hard X-ray imaging. In addition to their extraordinary resolution, Lu2O3:Eu films simultaneously provide high absorption efficiency for 20 to 100 keV X-rays, and bright 610 nm emission, with intensity rivalling that of the brightest known scintillators. At present, high spatial resolution of such a magnitude is achieved using ultra-thin scintillators measuring only about 1 to 5 μm in thickness, which limits absorption efficiency to ~3% for 12 keV X-rays and less than 0.1% for 20 to 100 keV X-rays, resulting in excessive measurement time and exposure to the specimen. Lu2O3:Eu would significantly improve that (99.9% @12 keV and 30% @ 70 keV). Important properties and features of our Lu2O3:Eu scintillator material, fabricated by our electron-beam physical vapour deposition (EB-PVD) process, combines superior density of 9.5 g/cm3, microcolumnar structure emitting 48000 photons/MeV whose wavelength is an ideal match for the underlying CCD detector array. We grew thin films measuring 5-50μm in thickness as well as covering areas up to 5 × 5 cm2 which can be a suitable basis for microtomography, digital radiography as well as CT and hard X-ray Micro-Tomography (XMT).

  11. Hard-Core Unemployment: A Selected, Annotated Bibliography.

    ERIC Educational Resources Information Center

    Cameron, Colin, Comp.; Menon, Anila Bhatt, Comp.

    This annotated bibliography contains references to various films, articles, and books on the subject of hard-core unemployment, and is divided into the following sections: (1) The Sociology of the Hard-Core Milieu, (2) Training Programs, (3) Business and the Hard-Core, (4) Citations of Miscellaneous References on Hard-Core Unemployment, (5)…

  12. Internal Stress and Microstructure of Zinc Oxide Films Sputter-Deposited with Carbon Dioxide Gas

    NASA Astrophysics Data System (ADS)

    Toru Ashida,; Kazuhiro Kato,; Hideo Omoto,; Atsushi Takamatsu,

    2010-06-01

    The internal stress and microstructure of ZnO films were investigated as a function of carbon dioxide (CO2) gas flow ratio [CO2/(O2+CO2)] during sputter deposition. The internal stress of the ZnO films decreased with increasing CO2 gas flow ratio. The carbon concentration in the films deposited using CO2 gas increased by up to 4.0 at. %. Furthermore, the ZnO films deposited without CO2 gas exhibited a preferred orientation of (002); however, the C-doped ZnO films exhibited random orientations. These findings suggest that the C atoms incorporated in the ZnO crystal lattice induce this random orientation, thereby relaxing the internal stress of C-doped ZnO films.

  13. Encapsulate-and-peel: fabricating carbon nanotube CMOS integrated circuits in a flexible ultra-thin plastic film.

    PubMed

    Gao, Pingqi; Zhang, Qing

    2014-02-14

    Fabrication of single-walled carbon nanotube thin film (SWNT-TF) based integrated circuits (ICs) on soft substrates has been challenging due to several processing-related obstacles, such as printed/transferred SWNT-TF pattern and electrode alignment, electrical pad/channel material/dielectric layer flatness, adherence of the circuits onto the soft substrates etc. Here, we report a new approach that circumvents these challenges by encapsulating pre-formed SWNT-TF-ICs on hard substrates into polyimide (PI) and peeling them off to form flexible ICs on a large scale. The flexible SWNT-TF-ICs show promising performance comparable to those circuits formed on hard substrates. The flexible p- and n-type SWNT-TF transistors have an average mobility of around 60 cm(2) V(-1) s(-1), a subthreshold slope as low as 150 mV dec(-1), operating gate voltages less than 2 V, on/off ratios larger than 10(4) and a switching speed of several kilohertz. The post-transfer technique described here is not only a simple and cost-effective pathway to realize scalable flexible ICs, but also a feasible method to fabricate flexible displays, sensors and solar cells etc.

  14. Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis

    NASA Astrophysics Data System (ADS)

    Bhunia, Susanta Kumar; Nandi, Sukhendu; Shikler, Rafi; Jelinek, Raz

    2016-02-01

    Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies.Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies. Electronic supplementary information (ESI

  15. Carbon nanotube thin film strain sensors: comparison between experimental tests and numerical simulations

    NASA Astrophysics Data System (ADS)

    Lee, Bo Mi; Loh, Kenneth J.

    2017-04-01

    Carbon nanotubes can be randomly deposited in polymer thin film matrices to form nanocomposite strain sensors. However, a computational framework that enables the direct design of these nanocomposite thin films is still lacking. The objective of this study is to derive an experimentally validated and two-dimensional numerical model of carbon nanotube-based thin film strain sensors. This study consisted of two parts. First, multi-walled carbon nanotube (MWCNT)-Pluronic strain sensors were fabricated using vacuum filtration, and their physical, electrical, and electromechanical properties were evaluated. Second, scanning electron microscope images of the films were used for identifying topological features of the percolated MWCNT network, where the information obtained was then utilized for developing the numerical model. Validation of the numerical model was achieved by ensuring that the area ratios (of MWCNTs relative to the polymer matrix) were equivalent for both the experimental and modeled cases. Strain sensing behavior of the percolation-based model was simulated and then compared to experimental test results.

  16. Enhancement of as-sputtered silver-tantalum oxide thin film coating on biomaterial stainless steel by surface thermal treatment

    NASA Astrophysics Data System (ADS)

    Alias, Rodianah; Mahmoodian, Reza; Shukor, Mohd Hamdi Abd; Yew, Been Seok; Muhamad, Martini

    2018-04-01

    Stainless steel 316L (SS316L) is extensively used as surgical/clinical tools due to its low carbon content and excellent mechanical characteristic. The fabrication of metal ceramic based on this metallic biomaterial favor its biofunctionality properties. However, instability phase of amorphous thin film lead to degradation, corrosion and oxidation. Thus, thin film coating requires elevated adhesion strength and higher surface hardness to meet clinical tools criteria. In this study, the SS316L was deposited with micron thickness of Ag-TaO thin film by using magnetron sputtering. The microstructure, elemental analysis and phase identification of Ag-TaO thin film were characterized by using FESEM, EDX and XRD, respectively; whereas the micro scratch test and micro hardness test were performed by using Micro Scratch Testing System and Vickers Micro Hardness Tester, respectively. It was found that the coating thin film's adhesion and hardness strength were improved from 672 to 2749 mN and 142 to 158 Hv respectively. It was found that the as-deposited surface were treated at 500 °C of temperatures with 2 °C/min ramping rate enhance 4.1 times of the adhesion strength value. Furthermore, FESEM characterization revealed coarsening structure of the thin film coating which can provide high durability service.

  17. Reactive magnetron sputtering of N-doped carbon thin films on quartz glass for transmission photocathode applications

    NASA Astrophysics Data System (ADS)

    Balalykin, N. I.; Huran, J.; Nozdrin, M. A.; Feshchenko, A. A.; Kobzev, A. P.; Sasinková, V.; Boháček, P.; Arbet, J.

    2018-03-01

    N-doped carbon thin films were deposited on a silicon substrate and quartz glass by RF reactive magnetron sputtering using a carbon target and an Ar+N2 gas mixture. During the magnetron sputtering, the substrate holder temperatures was kept at 800 °C. The carbon film thickness on the silicon substrate was about 70 nm, while on the quartz glass it was in the range 15 nm – 60 nm. The elemental concentration in the films was determined by RBS and ERD. Raman spectroscopy was used to evaluate the intensity ratios I D/I G of the D and G peaks of the carbon films. The transmission photocathodes prepared were placed in the hollow-cathode assembly of a Pierce-structure DC gun to produce photoelectrons. The quantum efficiency (QE) was calculated from the laser energy and cathode charge measured. The properties of the transmission photocathodes based on semitransparent N-doped carbon thin films on quartz glass and their potential for application in DC gun technology are discussed.

  18. Optical properties of diamond like carbon nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Alam, Md Shahbaz; Mukherjee, Nillohit; Ahmed, Sk. Faruque

    2018-05-01

    The optical properties of silicon incorporated diamond like carbon (Si-DLC) nanocomposite thin films have been reported. The Si-DLC nanocomposite thin film deposited on glass and silicon substrate by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process. Fourier transformed infrared spectroscopic analysis revealed the presence of different bonding within the deposited films and deconvolution of FTIR spectra gives the chemical composition i.e., sp3/sp2 ratio in the films. Optical band gap calculated from transmittance spectra increased from 0.98 to 2.21 eV with a variation of silicon concentration from 0 to 15.4 at. %. Due to change in electronic structure by Si incorporation, the Si-DLC film showed a broad photoluminescence (PL) peak centered at 467 nm, i.e., in the visible range and its intensity was found to increase monotonically with at. % of Si.

  19. Polyaniline/Carbon nanotube Electrochromic Films: Electrochemical Polymerization and characterization

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Xia; Zhao, Liang; Ma, De-Yue; Zeng, Yu-Run

    2018-02-01

    Polyaniline/Carbon nanotube (PANI/CNT) composite films doped with dodecyl-benzene sulfonic acid were synthesized by cyclic voltammetry on an ITO-coated glass substrate. FTIR, XRD and electrochemical analyzer were used to characterize the micro-morphology, chemical structure, crystallinity and electrochromic behavior of the films, respectively. The effect of CNT content on the properties of the films was investigated. Results show that the introducing CNTs make aniline polymerize easier than before. Within a range, the conductivity and crystallinity of PANI/CNT composites improves with CNT content increasing. The electrochromic device made from the PAN/CNT film with a CNT content of 2.5wt% presents a reflectance contrast of 38.8%, a mean response time of 2.3s and a coloration efficiency of 386.4cm2/C at 540nm. The PAN/CNT film shows better electrochromic behaviors due to some interaction between CNTs and the PANI backbones than PANI film.

  20. Microstructure and hardness of carbon and tool steel quenched with high-frequency currents

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Fedoseev, Maksim E.; Palkanov, Pavel A.; Voyko, Aleksey V.; Fomina, Marina A.; Koshuro, Vladimir A.; Zakharevich, Andrey M.; Kalganova, Svetlana G.; Rodionov, Igor V.

    2018-04-01

    In the course of high-temperature treatment with high-frequency currents (HFC) in the range from 600 to 1300 °C, carbon and tool steels are strengthened. After the heat treatment the hardness reaches 64-70 HRC for carbon steel (carbon content 0.4-0.5%) and 68-71 HRC for tool steel 1.3343 (R6M5 steel analogue with 0.9-1.0% C content, W - 5-6 wt%, Mo - 3.5-5.3 wt%, V - 1.3-1.8 wt%, Cr - 3.8-4.3 wt%, Mn+Si - 0.5-1 wt%, Fe - balance). The resulting structure is a carbide network, and in the case of tool steel - complex carbides around a high-strength martensitic phase.

  1. Measurement of the optical properties of a transparent, conductive carbon nanotube film using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Kuwahara, Masashi; Kim, Yeji; Azumi, Reiko

    2015-07-01

    We have measured the complex refractive indices of a transparent, conductive carbon nanotube film by spectroscopic ellipsometry at wavelengths of 300-1700 nm (this includes the visible range). The film was produced on a quartz substrate by the doctor-blade method using single-walled carbon nanotube-polymer ink. The imaginary part of the complex refractive index of the film was found to be lower than 0.09 over the entire wavelength range. This film has a large advantage as a transparent, flexible, and conductive material.

  2. Spray-coated carbon nanotube thin-film transistors with striped transport channels

    NASA Astrophysics Data System (ADS)

    Jeong, Minho; Lee, Kunhak; Choi, Eunsuk; Kim, Ahsung; Lee, Seung-Beck

    2012-12-01

    We present results for the transfer characteristics of carbon nanotube thin-film transistors (CNT-TFTs) that utilize single-walled carbon nanotube thin-films prepared by direct spray-coating on the substrate. By varying the number of spray-coatings (Nsp) and the concentration of nanotubes in solution (CNT), it was possible to control the conductivity of the spray-coated nanotube thin-film from 129 to 0.1 kΩ/□. Also, by introducing stripes into the channel of the CNT-TFT, and thereby reducing the number of metallic percolation paths between source and drain, it was possible to enhance the on/off current ratio 1000-fold, from 10 to 104, demonstrating that it may be possible to utilize spray-coating as a method to fabricate CNT-TFTs for large area switching array applications.

  3. Anisotropic magnetic switching along hard [1 1 0]-type axes in Er-doped DyFe2/YFe2 thin films

    NASA Astrophysics Data System (ADS)

    Stenning, G. B. G.; Bowden, G. J.; van der Laan, G.; Figueroa, A. I.; Bencok, P.; Steadman, P.; Hesjedal, T.

    2017-10-01

    Epitaxial-grown DyFe2/YFe2 multilayer thin films form an ideal model system for the study of magnetic exchange springs. Here the DyFe2 (YFe2) layers are magnetically hard (soft). In the presence of a magnetic field, exchange springs form in the YFe2 layers. Recently, it has been demonstrated that placing small amounts of Er into the centre of the YFe2 springs generates substantial changes in magnetic behavior. In particular, (i) the number of exchange-spring states is increased dramatically, (ii) the resulting domain-wall states cannot simply be described as either Néel or Bloch walls, (iii) the Er and Dy magnetic loops are strikingly different, and (iv) it is possible to engineer Er-induced magnetic exchange-spring collapse. Here, results are presented for Er-doped (1 1 0)-oriented DyFe2 (60 Å/YFe2(240 Å)15 multilayer films, at 100 K in fields of up to 12 T. In particular, we contrast magnetic loops for fields applied along seemingly equivalent hard-magnetic [1 1 0]-type axes. MBE-grown cubic Laves thin films offer the unique feature of allowing to apply the magnetic field along (i) a hard out-of-plane [1 1 0]-axis (the growth axis) and (ii) a similar hard in-plane [ 1 bar 10 ] -axis. Differences are found and attributed to the competition between the crystal-field interaction at the Er site and the long-range dipole-dipole interaction. In particular, the out-of-plane [1 1 0] Er results show the existence of a new magnetic exchange spring state, which would be very difficult to identify without the aid of element-specific technique of X-ray magnetic circular dichroism (XMCD).

  4. Characteristic Study of Boron Doped Carbon Nanowalls Films Deposited by Microwave Plasma Enhanced Chemical Vapor Deposition.

    PubMed

    Lu, Chunyuan; Dong, Qi; Tulugan, Kelimu; Park, Yeong Min; More, Mahendra A; Kim, Jaeho; Kim, Tae Gyu

    2016-02-01

    In this research, catalyst-free vertically aligned boron doped carbon nanowalls films were fabricated on silicon (100) substrates by MPECVD using feeding gases CH4, H2 and B2H6 (diluted with H2 to 5% vol) as precursors. The substrates were pre-seeded with nanodiamond colloid. The fabricated CNWs films were characterized by Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The data obtained from SEM confirms that the CNWs films have different density and wall thickness. From Raman spectrum, a G peak around 1588 cm(-1) and a D band peak at 1362 cm(-1) were observed, which indicates a successful fabrication of CNWs films. The EDX spectrum of boron doped CNWs film shows the existence of boron and carbon. Furthermore, field emission properties of boron doped carbon nanowalls films were measured and field enhancement factor was calculated using Fowler-Nordheim plot. The result indicates that boron doped CNWs films could be potential electron emitting materials.

  5. Growth and structure of fullerene-like CNx thin films produced by pulsed laser ablation of graphite in nitrogen

    NASA Astrophysics Data System (ADS)

    Voevodin, A. A.; Jones, J. G.; Zabinski, J. S.; Czigany, Zs.; Hultman, L.

    2002-11-01

    The growth and structure of fullerene-like CNx films produced by laser ablation of graphite in low pressure nitrogen were investigated. Deposition conditions were selected based on investigations of CN and C2 concentration at the condensation surface, vibrational temperature of CN radicals, and kinetic energies of atomic and molecular species. Films were characterized with x-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron microscopy, nanoindentation, and stress analyses. The nitrogen content in CNx films directly depended on the concentration of CN radicals at the condensation surface. Formation of fullerene-like structures required a high vibrational temperature of these radicals, which was maximized at about 4 eV for depositions at 10 mTorr N2 and laser fluences of approx7 J/cm2. The presence of C2 had only a minor effect on film composition and structure. Optimization of plasma characteristics and a substrate temperature of 300 degC helped to produce about 1-mum-thick solid films of CNx (N/C ratioapproximately0.2-0.3) and pure carbon consisting of fullerene-like fragments and packages. In contrast to carbon films, fullerene-like CNx films exhibited a high elastic recovery of about 80% in using a Berkovich tip at 5 mN load and indentation depths up to 150 nm. Their elastic modulus was about 160 GPa measured from the unloading portion of an indentation curve, and about 250 GPa measured with a 40 Hz tip oscillation during nanoindentation tests. The difference was related to time dependent processes of shape restoration of fullerene-like fragments, and an analogy was made to the behavior of elastomer polymers. However, unlike elastomers, CNx film hardness was as high as 30 GPa, which was twice that of fullerene-like carbon films. The unusual combination of high elasticity and hardness of CNx films was explained by crosslinking of fullerene fragments induced by the incorporated nitrogen and stored compressive stress. The

  6. Silicon algae with carbon topping as thin-film anodes for lithium-ion microbatteries by a two-step facile method

    NASA Astrophysics Data System (ADS)

    Biserni, E.; Xie, M.; Brescia, R.; Scarpellini, A.; Hashempour, M.; Movahed, P.; George, S. M.; Bestetti, M.; Li Bassi, A.; Bruno, P.

    2015-01-01

    Silicon-based electrodes for Li-ion batteries (LIB) attract much attention because of their high theoretical capacity. However, their large volume change during lithiation results in poor cycling due to mechanical cracking. Moreover, silicon can hardly form a stable solid electrolyte interphase (SEI) layer with common electrolytes. We present a safe, innovative strategy to prepare nanostructured silicon-carbon anodes in a two-step process. The nanoporosity of Si films accommodates the volume expansion while a disordered graphitic C layer on top promotes the formation of a stable SEI. This approach shows its promises: carbon-coated porous silicon anodes perform in a very stable way, reaching the areal capacity of ∼175 μAh cm-2, and showing no decay for at least 1000 cycles. With requiring only a two-step deposition process at moderate temperatures, this novel very simple cell concept introduces a promising way to possibly viable up-scaled production of next-generation nanostructured Si anodes for lithium-ion microbatteries.

  7. High performance, freestanding and superthin carbon nanotube/epoxy nanocomposite films.

    PubMed

    Li, Jinzhu; Gao, Yun; Ma, Wenjun; Liu, Luqi; Zhang, Zhong; Niu, Zhiqiang; Ren, Yan; Zhang, Xiaoxian; Zeng, Qingshen; Dong, Haibo; Zhao, Duan; Cai, Le; Zhou, Weiya; Xie, Sishen

    2011-09-01

    We develop a facile, effective and filter free infiltration method to fabricate high performance, freestanding and superthin epoxy nanocomposite films with directly synthesized Sing-Walled Carbon Nanotubes (SWNTs) film as reinforcement skeleton. It is found that the thicknesses of the nanocomposite films can be easily controlled in the range of 0.5-3 μm by dripping target amount of acetone diluted epoxy through the skeleton film. The consequent measurements reveal that the mechanical and electrical properties of SWNTs/epoxy nanocomposite films could be tailored in a quite wide range. For examples, the Young's modulus of nanocomposite films can be tuned from 10 to 30 GPa, and the electrical conductivity can be ranged from 1000 S·cm(-1) to be insulated. Moreover, high load transfer efficiency in the nanocomposite films is demonstrated by the measured ultrahigh Raman bands shift rate (-30 ± 5 cm(-1)/% strain) under strain. The high effective modulus is derived as 774 ± 70 GPa for SWNTs inside this nanocomposite film.

  8. Tribology of carbide derived carbon films synthesized on tungsten carbide

    NASA Astrophysics Data System (ADS)

    Tlustochowicz, Marcin

    Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.

  9. Piezoresistive effect observed in flexible amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Wang, B.; Jiang, Y. C.; Zhao, R.; Liu, G. Z.; He, A. P.; Gao, J.

    2018-05-01

    Amorphous carbon (a-C) films, deposited on Si substrates at 500 °C, were transferred onto flexible polyethylene (PE) substrates by a lift-off method, which overcomes the limit of deposition temperature. After transferring, a-C films exhibited a large piezoresistive effect. Such flexible samples could detect the change of bending angle by attaching them onto Cu foils. The ratio of the bending and non-bending resistances reaches as large as ~27.8, which indicates a potential application as a pressure sensor. Also, the a-C/PE sample revealed an enhanced sensitivity to gas pressure compared with the a-C/Si one. By controlling the bending angle, the sensitivity range can be tuned to shift to a low- or high-pressure region. The fatigue test shows a less than 1% change in resistance after 10 000 bending cycles. Our work provides a route to prepare the flexible and piezoresistive carbon-based devices with high sensitivity, controllable pressure-sensing and high stability.

  10. Ti-Si-C thin films produced by magnetron sputtering: correlation between physical properties, mechanical properties and tribological behavior.

    PubMed

    Cunha, L; Vaz, F; Moura, C; Munteanu, D; Ionescu, C; Rivière, J P; Le Bourhis, E

    2010-04-01

    Ti-Si-C thin films were deposited onto silicon, stainless steel and high-speed steel substrates by magnetron sputtering, using different chamber configurations. The composition of the produced films was obtained by Electron Probe Micro-Analysis (EPMA) and the structure by X-ray diffraction (XRD). The hardness and residual stresses were obtained by depth-sensing indentation and substrate deflection measurements (using Stoney's equation), respectively. The tribological behavior of the produced films was studied by pin-on-disc. The increase of the concentration of non-metallic elements (carbon and silicon) caused significant changes in their properties. Structural analysis revealed the possibility of the coexistence of different phases in the prepared films, namely Ti metallic phase (alpha-Ti or beta-Ti) in the films with higher Ti content. The coatings with highest carbon contents, exhibited mainly a sub-stoichiometric fcc NaCI TiC-type structure. These structural changes were also confirmed by resistivity measurements, whose values ranged from 10(3) omega/sq for low non-metal concentration, up to 10(6) omega/sq for the highest metalloid concentration. A strong increase of hardness and residual stresses was observed with the increase of the non-metal concentration in the films. The hardness (H) values ranged between 11 and 27 GPa, with a clear dependence on both crystalline structure and composition features. Following the mechanical behavior, the tribological results showed similar trends, with both friction coefficients and wear revealing also a straight correlation with the composition and crystalline structure of the coatings.

  11. Flexible Carbon Nanotube Films for High Performance Strain Sensors

    PubMed Central

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  12. Long-lasting hydrophilicity on nanostructured Si-incorporated diamond-like carbon films.

    PubMed

    Yi, Jin Woo; Moon, Myoung-Woon; Ahmed, Sk Faruque; Kim, Haeri; Cha, Tae-Gon; Kim, Ho-Young; Kim, Seock-Sam; Lee, Kwang-Ryeol

    2010-11-16

    We investigated the long-lasting hydrophilic behavior of a Si-incorporated diamond-like carbon (Si-DLC) film by varying the Si fraction in DLC matrix through oxygen and nitrogen plasma surface treatments. The wetting behavior of the water droplets on the pure DLC and Si-DLC with the nitrogen or oxygen plasma treatment revealed that the Si element in the oxygen-plasma-treated Si-DLC films played a major role in maintaining a hydrophilic wetting angle of <10° for 20 days in ambient air. The nanostructured patterns with a roughness of ∼10 nm evolved because of the selective etching of the carbon matrix by the oxygen plasma in the Si-DLC film, where the chemical component of the Si-Ox bond was enriched on the top of the nanopatterns and remained for over 20 days.

  13. Free-Standing Porous Carbon Nanofiber/Carbon Nanotube Film as Sulfur Immobilizer with High Areal Capacity for Lithium-Sulfur Battery.

    PubMed

    Zhang, Ye-Zheng; Zhang, Ze; Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2018-03-14

    Low sulfur utilization and poor cycle life of the sulfur cathode with high sulfur loadings remain a great challenge for lithium-sulfur (Li-S) battery. Herein, the free-standing carbon film consisting of porous carbon nanofibers (PCNFs) and carbon nanotubes (CNTs) is successfully fabricated by the electrospinning technology. The PCNF/CNT film with three-dimensional and interconnected structure is promising for the uniformity of the high-loading sulfur, good penetration of the electrolyte, and reliable accommodation of volumetric expansion of the sulfur cathode. In addition, the abundant N/O-doped elements in PCNF/CNT film are helpful to chemically trap soluble polysulfides in the charge-discharge processes. Consequently, the obtained monolayer S/PCNF/CNT film as the cathode shows high specific capacity, excellent cycle stability, and rate stability with the sulfur loading of 3.9 mg cm -2 . Moreover, the high areal capacity of 13.5 mA h cm -2 is obtained for the cathode by stacking three S/PCNF/CNT layers with the high sulfur loading of 12 mg cm -2 . The stacking-layered cathode with high sulfur loading provides excellent cycle stability, which is beneficial to fabricate high-energy-density Li-S battery in future.

  14. Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity.

    PubMed

    Pastrana-Martínez, L M; López-Ramón, M V; Fontecha-Cámara, M A; Moreno-Castilla, C

    2010-02-01

    There has been little research into the effects of the water hardness and alkalinity of surface waters on the adsorption of herbicides on activated carbons. The aim of this study was to determine the influence of these water characteristics on fluroxypyr adsorption on different activated carbons. At low fluroxypyr surface concentrations, the amount adsorbed from distilled water was related to the surface hydrophobicity. Surface area of carbons covered by fluroxypyr molecules ranged from 60 to 65%. Variations in fluroxypyr solubility with water hardness and alkalinity showed a salting-in effect. Calcium, magnesium and bicarbonate ions were adsorbed to a varied extent on the activated carbons. The presence of fluroxypyr in solution decreased their adsorption due to a competition effect. K(F) from the Freundlich equation linearly increased with water hardness due to salt-screened electrostatic repulsions between charged fluroxypyr molecules. The amount adsorbed from distilled water was largest at high fluroxypyr solution concentrations, because there was no competition between inorganic ions and fluroxypyr molecules. The column breakthrough volume and the amount adsorbed at breakthrough were smaller in tap versus distilled water. Carbon consumption was lower with activated carbon cloth than with the use of granular activated carbon. (c) 2009 Elsevier Ltd. All rights reserved.

  15. Novel Carbon Films for Next Generation Rotating Equipment Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael McNallan; Ali Erdemir; Yury Gogotsi

    2006-02-20

    This report describes the results of research performed on a new generation of low friction, wear resistant carbon coatings for seals and bearings in high speed rotating equipment. The low friction coatings, Near Frictionless Carbon (NFC), a high hydrogen content diamondlike carbon, and Carbide Derived Carbon (CDC), a conversion coating produced on the surfaces of metal carbides by halogenation, can be applied together or separately to improve the performance of seals and bearings, with benefits to energy efficiency and environmental protection. Because hard carbide ceramics, such as silicon carbide, are widely used in the seals industry, this coating is particularlymore » attractive as a low cost method to improve performance. The technology of CDC has been licensed to an Illinois company, Carbide Derivative Technologies, Inc. (CDTI) to implement the commercialization of this material.« less

  16. Nano-crystalline porous tin oxide film for carbon monoxide sensing

    NASA Technical Reports Server (NTRS)

    Liu, Chung-Chiun (Inventor); Savinell, Robert F. (Inventor); Jin, Zhihong (Inventor)

    2000-01-01

    A tin oxide sol is deposited on platinum electrodes (12) of a sensor (10). The sol is calcined at a temperature of 500 to 800.degree. C. to produce a thin film of tin oxide with a thickness of about 150 nm to 2 .mu. and having a nano-crystalline structure with good stability. The sensor rapidly detects reducing gases, such as carbon monoxide, or hydrocarbons and organic vapors. Sensors using films calcined at around 700.degree. C. have high carbon monoxide selectivity with a response time of around 4 minutes and a recovery time of 1 minute, and therefore provide good detection systems for detection of trace amounts of pollutants such as toxic and flammable gases in homes, industrial settings, and hospitals.

  17. A double exposed portal image comparison between electronic portal imaging hard copies and port films in radiation therapy treatment setup confirmation to determine its clinical application in a radiotherapy center.

    PubMed

    Hatherly, K E; Smylie, J C; Rodger, A; Dally, M J; Davis, S R; Millar, J L

    2001-01-01

    At the William Buckland Radiotherapy Center (WBRC), field-only electronic portal image (EPI) hard copies are used for radiation treatment field verification for whole brain, breast, chest, spine, and large pelvic fields, as determined by a previous study. A subsequent research project, addressing the quality of double exposed EPI hard copies for sites where field only EPI was not considered adequate to determine field placement, has been undertaken. The double exposed EPI hard copies were compared to conventional double exposed port films for small pelvic, partial brain, and head and neck fields and for a miscellaneous group. All double exposed EPIs were captured during routine clinical procedures using liquid ion chamber cassettes. EPI hard copies were generated using a Visiplex multi-format camera. In sites where port film remained the preferred verification format, the port films were generated as per department protocol. In addition EPIs were collected specifically for this project. Four radiation oncologists performed the evaluation of EPI and port film images independently with a questionnaire completed at each stage of the evaluation process to assess the following: Adequacy of information in the image to assess field placement. Adequacy of information for determining field placement correction. Clinician's preferred choice of imaging for field placement assessment The results indicate that double exposed EPI hard copies generally do containsufficient information to permit evaluation of field placement and can replace conventionaldouble exposed port films in a significant number of sites. These include the following:pelvis fields < 12 X 12 cm, partial brain fields, and a miscellaneous group. However forradical head and neck fields, the preferred verification image format remained port film dueto the image hard copy size and improved contrast for this media. Thus in this departmenthard copy EPI is the preferred modality of field verification for all sites

  18. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhao, D. G.; Jiang, D. S.; Chen, P.; Liu, Z. S.; Le, L. C.; Li, X. J.; He, X. G.; Liu, J. P.; Zhang, S. M.; Wang, H.; Zhu, J. J.; Yang, H.

    2014-04-01

    The influence of unintentionally doped carbon impurities on electrical resistivity and yellow luminescence (YL) of low-temperature (LT) grown Mg doped GaN films is investigated. It is found that the resistivity of Mg doped GaN films are closely related to the residual carbon impurity concentration, which may be attributed to the compensation effect of carbon impurities. The carbon impurity may preferentially form deep donor complex CN-ON resulting from its relatively low formation energy. This complex is an effective compensate center for MgGa acceptors as well as inducing YL in photoluminescence spectra. Thus, the low resistivity LT grown p-type GaN films can be obtained only when the residual carbon impurity concentration is sufficiently low, which can explain why LT P-GaN films with lower resistivity were obtained more easily when relatively higher pressure, temperature, or NH3/TMGa flow rate ratio were used in the LT grown Mg doped GaN films reported in earlier reports.

  19. Piezoresistivity of Resin-Impregnated Carbon Nanotube Film at High Temperatures.

    PubMed

    Li, Min; Zuo, Tianyi; Wang, Shaokai; Gu, Yizhuo; Gao, Limin; Li, Yanxia; Zhang, Zuoguang

    2018-06-13

    This paper presents the development of a continuous carbon nanotube (CNT) composite film sensor with a strain detecting range of 0-2% for structural composites. The strain-dependent resistance responses of continuous CNT film and its resin-impregnated composite films were investigated at temperatures as high as 200 °C. The results manifest that impregnation with resin leads to a much larger gauge factor than pristine film. Both the pristine and composite films show an increase in resistivity with increasing temperature. For different composite films, the ordering of gauge factors is consistent with that of the matrix moduli. This indicates that a resin matrix with higher modulus and strong interactions between CNTs/CNT bundles and the resin matrix are beneficial for enhancing the piezoresistive effect. The CNT/PAA composite film has a gauge factor of 4.3 at 150 °C, an order of magnitude higher than the metal foil sensor. Therefore, the CNT composite films have great potential for simultaneous application for reinforcement and as strain sensor to realise a multifunctional composite. © 2018 IOP Publishing Ltd.

  20. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOEpatents

    Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

    1994-09-13

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

  1. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOEpatents

    Pitts, J. Roland; Tracy, C. Edwin; King, David E.; Stanley, James T.

    1994-01-01

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp.sup.3 -bonded diamond-type carbon films, comprising: a) providing a volatile hydrocarbon gas/H.sub.2 reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and b) directing a concentrated solar flux of from about 40 to about 60 watts/cm.sup.2 through said reactant mixture to produce substrate temperatures of about 750.degree. C. to about 950.degree. C. to activate deposition of the film on said substrate.

  2. Preparation and characterisation of carbon-free Cu(111) films on sapphire for graphene synthesis

    NASA Astrophysics Data System (ADS)

    Lehnert, J.; Spemann, D.; Surjuse, S.; Mensing, M.; Grüner, C.; With, P.; Schumacher, P.; Finzel, A.; Hirsch, D.; Rauschenbach, B.

    2018-03-01

    This work presents an investigation of carbon formed on polycrystalline Cu(111) thin films prepared by ion beam sputtering at room temperature on c-plane Al2O3 after thermal treatment in a temperature range between 300 and 1020°C. The crystallinity of the Cu films was studied by XRD and RBS/channeling and the surface was characterised by Raman spectroscopy, XPS and AFM for each annealing temperature. RBS measurements revealed the diffusion of the Cu into the Al2O3 substrate at high temperatures of > 700°C. Furthermore, a cleaning procedure using UV ozone treatment is presented to remove the carbon from the surface which yields essentially carbon-free Cu films that open the possibility to synthesize graphene of well-controlled thickness (layer number).

  3. Carbon-Nanotube Conductive Layers for Thin-Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2005-01-01

    Thin, transparent layers comprising mats of carbon nanotubes have been proposed for providing lateral (that is, inplane) electrical conductivities for collecting electric currents from the front surfaces of the emitter layers of thin-film solar photovoltaic cells. Traditionally, thin, semitransparent films of other electrically conductive materials (usually, indium tin oxide, zinc oxide, or cadmium sulfide) have been used for this purpose. As in the cases of the traditional semitransparent conductive films, the currents collected by the nanotube layers would, in turn, be further collected by front metal contact stripes. Depending on details of a specific solar-cell design, the layer of carbon nanotubes would be deposited in addition to, or instead of, a semitransparent layer of one of these traditional conductive materials (see figure). The proposal is expected to afford the following advantages: The electrical conductivity of the carbon- nanotube layer would exceed that of the corresponding semitransparent layer of traditional electrically conductive material. The greater electrical conductivity of the carbon-nanotube layer would make it possible to retain adequate lateral electrical conductivity while reducing the thickness of, or eliminating entirely, the traditional semitransparent conductive layer. As a consequence of thinning or elimination of the traditional semitransparent conductive layer, less light would be absorbed, so that more of the incident light would be available for photovoltaic conversion. The greater electrical conductivity of the carbon-nanotube layer would make it possible to increase the distance between front metal contact stripes, in addition to (or instead of) thinning or eliminating the layer of traditional semitransparent conductive material. Consequently, the fraction of solar-cell area shadowed by front metal contact stripes would be reduced again, making more of the incident light available for photovoltaic conversion. The electrical

  4. Field emission from amorphous carbon films grown by electrochemical deposition using methanol liquid

    NASA Astrophysics Data System (ADS)

    Kiyota, H.; Higashi, M.; Kurosu, T.; Iida, M.

    2006-05-01

    The field emission from an amorphous carbon (a-C) film grown by electrochemical deposition has been studied. The deposition of the a-C film was accomplished by applying a direct-current potential to a substrate that was immersed in methanol. Both scanning electron microscopy and Raman results indicate that smooth and homogeneous a-C films are grown on specific substrates such as Ti and Al. Field emission measurements demonstrate excellent emission properties such as threshold fields as low as 5 V/μm. Enhancement factors are estimated to be in the range of 1300-1500; these are attributed to local field enhancements around sp2 carbon clusters that are embedded in the a-C films. Emission properties of a-C films grown on Si exhibit a current saturation under higher applied fields. These saturation characteristics are explained by effects of a potential barrier at the interface between the a-C film and the substrate. The interface barrier is reduced by formation of the Ti interfacial layer, suggesting that the formation of TiC decreases the contact resistance between the substrate and the a-C film. Therefore, an approach to use carbide formation at the interface is verified as useful to improve the emission properties of a-C films.

  5. Carbon-based Fresnel optics for hard x-ray astronomy.

    PubMed

    Braig, Christoph; Zizak, Ivo

    2018-03-10

    We investigate the potential of large-scale diffractive-refractive normal-incidence transmission lenses for the development of space-based hard x-ray telescopes with an angular resolution in the range of (10 -6 -10 -3 )  arcsec over a field of view that is restricted by the available detector size. Coherently stepped achromatic lenses with diameters up to 5 m for compact apertures and 13 m in the case of segmentation provide an access to spectrally resolved imaging within keV-wide bands around the design energy between 10 and 30 keV. Within an integration time of 10 6   s, a photon-limited 5σ sensitivity down to (10 -9 -10 -7 )  s -1  cm -2  keV -1 can be achieved depending on the specific design. An appropriate fabrication strategy, feasible nowadays with micro-optical technologies, is considered and relies on the availability of high-purity carbon or polymer membranes. X-ray fluorescence measurements of various commercially available carbon-based materials prove for most of them the existence of a virtually negligible contamination by critical trace elements such as transition metals on the ppm level.

  6. Effects of argon addition on a-CNx film deposition by hot carbon filament chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihisa; Aono, Masami; Yamazaki, Ayumi; Kitazawa, Nobuaki; Nakamura, Yoshikazu

    2002-07-01

    Using a carbon filament which supplies carbon and heat, amorphous carbon nitride (a-CNx) films were prepared on Si (100) substrates by hot filament chemical vapor deposition. Deposition was performed in a low-pressure atmosphere of pure nitrogen and a gas mixture of nitrogen and argon. Effects of argon additions to the nitrogen atmosphere on the film microstructure and interface composition between the film and substrate were studied by field-emission scanning electron microscopy (FESEM) and x-ray photoelectron spectroscopy (XPS). FESEM observations reveal that the film prepared in a pure nitrogen atmosphere has uniform nucleation and a densely packed columnar pieces structure. The film prepared in the nitrogen and argon gas mixture exhibits preferential nucleation and a tapered structure with macroscopic voids. Depth analyses using XPS reveal that the film prepared in pure nitrogen possesses a broad interface, which includes silicon carbide as well as a-CNx, whereas a sharp interface is discerned in the film prepared in the mixed nitrogen and argon gas. We observed that silicon carbide formation is suppressed by an argon addition to the nitrogen atmosphere during deposition. copyright 2002 American Vacuum Society.

  7. Anodic stripping voltammetric determination of mercury using multi-walled carbon nanotubes film coated glassy carbon electrode.

    PubMed

    Yi, Hongchao

    2003-10-01

    An electrochemical method for the determination of trace levels of mercury based on a multi-walled carbon nanotubes (MWNT) film coated glassy carbon electrode (GCE) is described. In 0.1 mol L(-1) HCl solution containing 0.02 mol L(-1) KI, Hg(2+) was firstly preconcentrated at the MWNT film and then reduced at -0.60 V. During the anodic potential sweep, reduced mercury was oxidized, and then a sensitive and well-defined stripping peak at about -0.20 V appeared. Under identical conditions, a MWNT film coated GCE greatly enhances the stripping peak current of mercury in contrast to a bare GCE. Low concentrations of I(-) remarkably improve the determining sensitivity, since this increases the accumulation efficiency of Hg(2+) at the MWNT film coated GCE. The stripping peak current is proportional to the concentration of Hg(2+) over the range 8 x 10(-10)-5 x 10(-7) mol L(-1). The lowest detectable concentration of Hg(2+) is 2 x 10(-10) mol L(-1) at 5 min accumulation. The relative standard deviation (RSD) at 1 x 10(-8) mol L(-1) Hg(2+) was about 6% ( n=10). By using this proposed method, Hg(2+) in some water samples was determined, and the results were compared with those obtained by atomic absorption spectrometry (AAS). The two results are similar, suggesting that the MWNT-film coated GCE has great potential in practical analysis.

  8. Effect of Quenching Process on the Microstructure and Hardness of High-Carbon Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao

    2015-11-01

    The microstructure and hardness of high-carbon martensitic stainless steel (HMSS) were investigated using thermal expansion analyzer, Thermo-calc, scanning electron microscope, x-ray diffraction, and Ultra-high temperature confocal microscope. The results indicate that the experimental steel should be austenitized in the temperature range of 1025-1075 °C, which can give a maximum hardness of 62 HRc with the microstructure consisting of martensite, retained austenite, and some undissolved carbides. With increasing austenitizing temperature, the amount of retained austenite increases, while the volume fraction of carbides increases first and then decreases. The starting temperature and finish temperature of martensite formation decrease with increasing cooling rates. Air-quenched samples can obtain less retained austenite, more compact microstructure, and higher hardness, compared with that of oil-quenched samples. For HMSS, the martensitic transformation takes place at some isolated areas with a slow nucleation rate.

  9. Electronic structure of cyclodextrin–carbon nanotube composite films

    DOE PAGES

    Jeong, Hae Kyung; Echeverria, Elena; Chakraborti, Priyanka; ...

    2017-02-10

    The electronic structures of two kinds of cyclodextrin–carbon nanotube (αCD–CNT and γCD–CNT) composite films are investigated by using (angular dependent) photoelectron spectroscopy to gain insight as to why the αCD–CNT and γCD–CNT composite films show different performances in biosensor applications. The γCD–CNT composite film is likely to have the CD localized on the surface rather than in the bulk of the film, while αCD–CNT has CD relatively more concentrated within the bulk of selvedge region of the film, rather than the surface. The results indicate that the CD, of the γCD–CNT composite, may be more bioactive, and possibly a bettermore » sensor of biomolecules due to the favorable surface position compared with that of αCD–CNT. The valence band of αCD–CNT and γCD–CNT show little difference from the CNT film except for a density of states, originating from CD, evident at a binding energy near 27 eV below Fermi level, meaning that there are few or no redox interactions between the CD and the CNT. The absence of a redox interaction between the CD and the CNT permits a clear electrochemical response to occur when guest biomolecules are captured on the composites, providing a route to biosensor applications.« less

  10. Structures and properties of fluorinated amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Huang, K. P.; Lin, P.; Shih, H. C.

    2004-07-01

    Fluorinated amorphous carbon (a-C:F) films were deposited by radio frequency bias assisted microwave plasma electron cyclotron resonance chemical vapor deposition with tetrafluoromethane (CF4) and acetylene (C2H2) as precursors. The deposition process was performed at two flow ratios R=0.90 and R=0.97, where R=CF4/(CF4+C2H2). The samples were annealed at 300 °C for 30 min. in a N2 atmosphere. Both Fourier transform infrared and electron spectroscopy for chemical analyzer were used to characterize the a-C:F film chemical bond and fluorine concentration, respectively. A high resolution electron energy loss spectrometer was applied to detect the electronic structure. The higher CF4 flow ratio (R=0.97) produced more sp3 linear structure, and it made the a-C:F film smoother and softer. A lifetime of around 0.34 μs and an energy gap of ˜2.75 eV were observed in both the as-deposited and after annealing conditions. The short carriers lifetime in the a-C:F film made the photoluminescence peak blueshift. The annealing changed both the structure and composition of the a-C:F film. The type of fluorocarbon bond and electronic structure characterized the mechanical and physical properties of a-C:F film.

  11. Carbon nanotube network thin-film transistors on flexible/stretchable substrates

    DOEpatents

    Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali

    2016-03-29

    This disclosure provides systems, methods, and apparatus for flexible thin-film transistors. In one aspect, a device includes a polymer substrate, a gate electrode disposed on the polymer substrate, a dielectric layer disposed on the gate electrode and on exposed portions of the polymer substrate, a carbon nanotube network disposed on the dielectric layer, and a source electrode and a drain electrode disposed on the carbon nanotube network.

  12. Initial Study on Thin Film Preparation of Carbon Nanodots Composites as Luminescence Material

    NASA Astrophysics Data System (ADS)

    Iskandar, F.; Aimon, A. H.; Akmaluddin, A. R.; Nuryadin, B. W.; Abdullah, M.

    2016-08-01

    Nowadays, the developments of phosphors materials require elements without noble metals and simple production process. Carbon nanodots (C-dots) are one of phosphor materials with wide range of emission band, and high biocompatibility. In this research thin film carbon nanodots composite have been prepared by spin coating method. Prior deposition, powder carbon nanodots were synthesized from a mixture of commercial urea as the nitrogen sources and citric acid as a carbon source by using hydrothermal and microwave-assisted heating method. The prepared powder was dispersed in transparent epoxy resin and then coated on glass substrate. The photoluminescence result for sample with 0.035 g citric acid exhibited an intense, single, homogeneous and broad spectrum with yellowish emission upon excitation at 365 nm. The Fourier Transform Infrared Spectroscopy (FTIR) result showed the existences of C=C, C-H, C=O, N-H and O-H functional groups which confirmed the quality of the sample. Further, based on UV-Vis measurement, the prepared thin film was highly transparent (transmittance 90%) with estimated film thickness around 764 nm. This result may open an opportunity for optoelectronic devices.

  13. Preparation and structural characterization of turbostratic-carbon/graphene derived from amylose film

    NASA Astrophysics Data System (ADS)

    Sazali, N. E. S.; Deraman, M.; Omar, R.; Othman, M. A. R.; Suleman, M.; Shamsudin, S. A.; Tajuddin, N. S. M.; Hanappi, M. F. Y. M.; Hamdan, E.; Nor, N. S. M.; Basri, N. H.

    2016-11-01

    In this study, we report the preparation of turbostratic-carbon/graphene from biomass amylose film by carbonization (N2 gas) and activation (CO2 gas) over different temperatures 600, 700, 800, 900, and 1000 °C, respectively. The Raman spectroscopy results of the produced samples show that the values of the ID/IG ratio ranging from 0.75 to 0.99 are comparable to that of the commercial multilayer graphene and KOH treated multilayer graphene. The X-ray diffraction results of the produced samples show that a small decrease in the d002 (˜0.62 %) and d100 (˜0.57 %) values and a larger decrease in Lc (˜8.6 %) and La (˜27.2 %) values occurs as the carbonization and activation temperature increases, indicating that the increase in temperature has an effect on the growth of microcrystallites during carbonization and activation. This study demonstrates the potential of the amylose film to be used as a precursor for producing graphene flakes.

  14. Effect of diamond-like carbon thin film coated acrylic resin on candida albicans biofilm formation.

    PubMed

    Queiroz, José Renato Cavalcanti; Fissmer, Sara Fernanda; Koga-Ito, Cristiane Yumi; Salvia, Ana C R D; Massi, Marcos; Sobrinho, Argermiro Soares da Silva; Júnior, Lafayette Nogueira

    2013-08-01

    The purpose of this study was to evaluate the effect of diamond-like carbon thin films doped and undoped with silver nanoparticles coating poly(methyl methacrylate) (PMMA) on Candida albicans biofilm formation. The control of biofilm formation is important to prevent oral diseases in denture users. Forty-five PMMA disks were obtained, finished, cleaned in an ultrasonic bath, and divided into three groups: Gc, no surface coating (control group); Gdlc, coated with diamond-like carbon film; and Gag, coated with diamond-like carbon film doped with silver nanoparticles. The films were deposited using a reactive magnetron sputtering system (physical vapor deposition process). The specimens were characterized by optical profilometry, atomic force microscopy, and Rutherford backscattering spectroscopy analyses that determined differences in chemical composition and morphological structure. Following sterilization of the specimens by γ-ray irradiation, C. albicans (ATCC 18804) biofilms were formed by immersion in 2 ml of Sabouraud dextrose broth inoculated with a standardized fungal suspension. After 24 hours, the number of colony forming units (cfu) per specimen was counted. Data concerning biofilm formation were analyzed using ANOVA and the Tukey test (p < 0.05). C. albicans biofilm formation was significantly influenced by the films (p < 0.00001), reducing the number of cfu, while not affecting the roughness parameters (p > 0.05). The Tukey test showed no significant difference between Gdlc and Gag. Films deposited were extremely thin (∼50 nm). The silver particles presented a diameter between 60 and 120 nm and regular distribution throughout the film surface (to Gag). Diamond-like carbon films, doped or undoped with silver nanoparticles, coating the base of PMMA-based dentures could be an alternative procedure for preventing candidosis in denture users. © 2013 by the American College of Prosthodontists.

  15. Thermal Conductivity of Carbon Nanotube Composite Films

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.

    2004-01-01

    State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.

  16. Single-walled carbon nanotube film-silicon heterojunction radioisotope betavoltaic microbatteries

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Chang, Yiyang; Zhang, Jinwen

    2014-05-01

    Ever since the appearance of nanomaterials and nanotechnologies, they have been used in almost every type of microbattery except for nuclear ones. Here we present a radioisotope betavoltaic (BV) microbattery based on a single-walled carbon nanotube (SWCNT) film that acts as a carrier separator. SWCNT film also provides a shortcut for carrier transportation. The energy conversion efficiency of a BV microbattery can reach up to 0.15% after the subtraction of the energy loss of beta particles in air and SWCNT film, proving that the SWCNT film-silicon heterojunction presents a promising configuration suitable for use in radioisotope BV microbatteries. Tracing the particle route, we achieved a charge collection rate of 59.9%, indicating that our device could potentially achieve higher performance. Primary strategies to improve the performance of the BV microbattery are discussed.

  17. Composition and properties of the so-called 'diamond-like' amorphous carbon films

    NASA Technical Reports Server (NTRS)

    Angus, J. C.; Stultz, J. E.; Shiller, P. J.; Macdonald, J. R.; Mirtich, M. J.

    1984-01-01

    The composition of amorphous 'diamond-like' films made by direct low energy ion beam deposition, R.F. discharge and sputtering was determined by nuclear reaction analysis, IR spectroscopy and microcombustion chemical analysis. The nuclear reaction analysis showed very similar hydrogen depth profiles for all three types of samples. The atomic ratio of hydrogen to carbon was approximately 0.2 at the film surface and rose to approximately 1.0 at a depth of 500 A. The integrated intensity of the C-H stretching band at about 2900 per cm indicates that the amount of chemically bonded hydrogen is less than the total hydrogen content. Combustion analysis confirmed the overall atomic ratio of hydrogen to carbon determined by nuclear reaction analysis. The chemical state of the non-bonded hydrogen was not determined; however, the effective diffusion coefficient computed from the hydrogen depth profile was extremely low. This indicates either that the films are exceedingly impermeable or that the non-bonded hydrogen requires an additional activated step to leave the films, e.g., desorption or chemical reaction.

  18. Abrasion resistant low friction and ultra-hard magnetron sputtered AlMgB14 coatings

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.

    2016-04-01

    Hard aluminum magnesium boride films were fabricated by RF magnetron sputtering from a single stoichiometric AlMgB14 ceramic target. X-ray amorphous AlMgB14 films are very smooth. Their roughness does not exceed the roughness of Si wafer and Corning glass used as the substrates. Dispersion of refractive index and extinction coefficient were determined within 300 to 2500 nm range for the film deposited onto Corning glass. Stoichiometric in-depth compositionally homogeneous 2 μm thick films on the Si(100) wafer possess the peak values of nanohardness 88 GPa and Young’s modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 GPa and 275 GPa at 200 nm depth. Friction coefficient was found to be 0.06. The coating scratch adhesion strength of 14 N was obtained as the first chipping of the coating whereas its spallation failure happened at 21 N. These critical loads and the work of adhesion, estimated as high as 18.4 J m-2, surpass characteristics of diamond like carbon films deposited onto tungsten carbide-cobalt (WC-Co) substrates.

  19. Electronic Power System Application of Diamond-Like Carbon Films

    NASA Technical Reports Server (NTRS)

    Wu, Richard L. C.; Kosai, H.; Fries-Carr, S.; Weimer, J.; Freeman, M.; Schwarze, G. E.

    2003-01-01

    A prototype manufacturing technology for producing high volume efficiency and high energy density diamond-like carbon (DLC) capacitors has been developed. Unique dual ion-beam deposition and web-handling systems have been designed and constructed to deposit high quality DLC films simultaneously on both sides of capacitor grade aluminum foil and aluminum-coated polymer films. An optimized process, using inductively coupled RF ion sources, has been used to synthesize electrically robust DLC films. DLC films are amorphous and highly flexible, making them suitable for the production of wound capacitors. DLC capacitors are reliable and stable over a wide range of AC frequencies from 20 Hz to 1 MHz, and over a temperature range from .500 C to 3000 C. The compact DLC capacitors offer at least a 50% decrease in weight and volume and a greater than 50% increase in temperature handling capability over equal value capacitors built with existing technologies. The DLC capacitors will be suitable for high temperature, high voltage, pulsed power and filter applications.

  20. Incomparable hardness and modulus of biomimetic porous polyurethane films prepared by directional melt crystallization of a solvent

    NASA Astrophysics Data System (ADS)

    An, Suyeong; Kim, Byoungsoo; Lee, Jonghwi

    2017-07-01

    Porous materials with surprisingly diverse structures have been utilized in nature for many functional purposes. However, the structures and applications of porous man-made polymer materials have been limited by the use of processing techniques involving foaming agents. Herein, we demonstrate for the first time the outstanding hardness and modulus properties of an elastomer that originate from the novel processing approach applied. Polyurethane films of 100-μm thickness with biomimetic ordered porous structures were prepared using directional melt crystallization of a solvent and exhibited hardness and modulus values that were 6.8 and 4.3 times higher than those of the random pore structure, respectively. These values surpass the theoretical prediction of the typical model for porous materials, which works reasonably well for random pores but not for directional pores. Both the ordered and random pore structures exhibited similar porosities and pore sizes, which decreased with increasing solution concentration. This unexpectedly significant improvement of the hardness and modulus could open up new application areas for porous polymeric materials using this relatively novel processing technique.

  1. Organic/carbon nanotubes hybrid thin films for chemical detection

    NASA Astrophysics Data System (ADS)

    Banimuslem, Hikmat Adnan

    Metallophthalocyanines (MPcs) are classified as an important class of conjugated materials and they possess several advantages attributed to their unique chemical structure. Carbon nanotubes (CNT), on the other hand, are known to enhance the properties of nano-composites in the conjugated molecules, due to their one dimensional electronic skeleton, high surface area and high aspect ratio. In this thesis, work has been carried out on the investigation of different substituted metal-phthalocyanines with the aim of developing novel hybrid film structures which incorporates these phthalocyanines and single-walled carbon nanotubes (SWCNT) for chemical detection applications. Octa-substituted copper phthalocyanines (CuPcR[8]) have been characterised using UV-visible absorption spectroscopy. Obtained spectra have yielded an evidence of a thermally induced molecular reorganization in the films. Influence of the nature of substituents in the phthalocyanine molecule on the thin films conductivity was also investigated. Octa-substituted lead (II) phthalocyanines (PbPcR[8]) have also been characterized using UV-visible spectroscopy. Sandwich structures of ITO/PbPcR[8]/In were prepared to investigate the electronic conduction in PbPcR[8]. The variation in the J(V) behavior of the films as a result of heat treatment is expected to be caused by changes in the alignment inside the columnar stacking of the molecules of the films. Thin films of non-covalently hybridised SWCNT and tetra-substituted copper phthalocyanine (CuPcR[4]) molecules have been produced. FTIR, DC conductivity, SEM and AFM results have revealed the [mathematical equation]; interaction between SWCNTs and CuPCR[4] molecules and shown that films obtained from the acid-treated SWCNTs/CuPcR[4] hybrids demonstrated more homogenous surface. Thin films of pristine CuPCR[4] and CuPcR[4]/S WCNT were prepared by spin coating onto gold-coated glass slides and applied as active layers for the detection of benzo

  2. Fully-flexible supercapacitors using spray-deposited carbon-nanotube films as electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Churl Seung; Bae, Joonho

    2013-12-01

    Fully-flexible carbon-nanotube-based supercapacitors were successfully fabricated using a spray method. For electrodes, multiwalled carbon-nanotube films sprayed on polyethylene terephthalate (PET) substrates were employed. Thin Al films on PET were used as current collectors. The electrolyte was 1 M KNO3. Cyclic voltammetry and galvanostatic charge-discharge measurements on the flexible supercapacitors revealed that the area-specific capacitance was 0.11 mF/cm2. Electrochemical impedance spectroscopy of the supercapacitors resulted in a low internal resistance (3.7 Ω). The energy density and the power density of the flexible supercapacitor were measured to be 3.06 × 10-8 Wh/cm2 and 2.65 × 10-7 W/cm2, respectively. The Bode | z| and phase-angle plots showed that the supercapacitors functioned close to ideal capacitors at the frequencies near 2 kHz. These results indicate that the spray deposition method of carbon nanotubes could be promising for fabricating flexible energy devices or electronics.

  3. Influence of modulation periods on the tribological behavior of Si/a-C: H multilayer film

    NASA Astrophysics Data System (ADS)

    Zhu, Linan; Wu, Yanxia; Zhang, Shujiao; Yu, Shengwang; Tang, Bin; Liu, Ying; Zhou, Bing; Shen, Yanyan

    2018-01-01

    A series of Si/a-C: H multilayer films with different modulation periods were fabricated on stainless steel and silicon substrates by radio-frequency magnetron sputtering. The influence of the modulation period on the structure, morphology, mechanical properties and tribological behaviors in different environments (air, simulated acid rain, and NaCl solution) was investigated. The results show that the content of the sp2 hybrid carbon, surface roughness and hardness of the multilayer film increased firstly and then decreased with the decreased modulation period. Furthermore, the combination of the sublayer agrees well with the formation of the SiC crystal at the interface. Interestingly, the films show quite substantially different tribological properties in various test environments. The lowest friction coefficient is 0.2 for the S1 film in air. However, the lowest friction coefficient can reach 0.13 in solution. Importantly, the tribological behavior of the multilayer film is mainly determined by its hardness, as well as surface roughness in air while it is closely related with modulation period and interface structure in solution.

  4. Investigation of the effect of different carbon film thickness on the exhaust valve

    NASA Astrophysics Data System (ADS)

    Karamangil, M. I.; Avci, A.; Bilal, H.

    2008-03-01

    Valves working under different loads and temperatures are the mostly forced engine elements. In an internal combustion engine, pressures and temperatures affecting on the valves vary with fuel type and the combustion characteristics of the fuel. Consequently, valves are exposed to different dynamic and thermal stress. In this study, stress distributions and temperature profiles on exhaust valve are obtained depending on different carbon film thickness. It is concluded that heat losses and valve temperatures decrease and valve surfaces are exposed to less thermal shocks with increasing carbon film thickness.

  5. Carbon Nanotube Thin Film Transistors for Flat Panel Display Application.

    PubMed

    Liang, Xuelei; Xia, Jiye; Dong, Guodong; Tian, Boyuan; Peng, Lianmao

    2016-12-01

    Carbon nanotubes (CNTs) are promising materials for both high performance transistors for high speed computing and thin film transistors for macroelectronics, which can provide more functions at low cost. Among macroelectronics applications, carbon nanotube thin film transistors (CNT-TFT) are expected to be used soon for backplanes in flat panel displays (FPDs) due to their superior performance. In this paper, we review the challenges of CNT-TFT technology for FPD applications. The device performance of state-of-the-art CNT-TFTs are compared with the requirements of TFTs for FPDs. Compatibility of the fabrication processes of CNT-TFTs and current TFT technologies are critically examined. Though CNT-TFT technology is not yet ready for backplane production line of FPDs, the challenges can be overcome by close collaboration between research institutes and FPD manufacturers in the short term.

  6. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors.

    PubMed

    Chen, Haitian; Cao, Yu; Zhang, Jialu; Zhou, Chongwu

    2014-06-13

    Carbon nanotubes and metal oxide semiconductors have emerged as important materials for p-type and n-type thin-film transistors, respectively; however, realizing sophisticated macroelectronics operating in complementary mode has been challenging due to the difficulty in making n-type carbon nanotube transistors and p-type metal oxide transistors. Here we report a hybrid integration of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors to achieve large-scale (>1,000 transistors for 501-stage ring oscillators) complementary macroelectronic circuits on both rigid and flexible substrates. This approach of hybrid integration allows us to combine the strength of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors, and offers high device yield and low device variation. Based on this approach, we report the successful demonstration of various logic gates (inverter, NAND and NOR gates), ring oscillators (from 51 stages to 501 stages) and dynamic logic circuits (dynamic inverter, NAND and NOR gates).

  7. Laser irradiation of carbon nanotube films: Effects and heat dissipation probed by Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mialichi, J. R.; Brasil, M. J. S. P.; Iikawa, F.

    We investigate the thermal properties of thin films formed by single- and multi-walled carbon nanotubes submitted to laser irradiation using Raman scattering as a probe of both the tube morphology and the local temperature. The nanotubes were submitted to heating/cooling cycles attaining high laser intensities ({approx}1.4 MW/cm{sup 2}) under vacuum and in the presence of an atmosphere, with and without oxygen. We investigate the heat diffusion of the irradiated nanotubes to their surroundings and the effect of laser annealing on their properties. The presence of oxygen during laser irradiation gives rise to an irreversible increase of the Raman efficiency ofmore » the carbon nanotubes and to a remarkable increase of the thermal conductivity of multi-walled films. The second effect can be applied to design thermal conductive channels in devices based on carbon nanotube films using laser beams.« less

  8. Method and apparatus for making diamond-like carbon films

    DOEpatents

    Pern, Fu-Jann [Golden, CO; Touryan, Kenell J [Indian Hills, CO; Panosyan, Zhozef Retevos [Yerevan, AM; Gippius, Aleksey Alekseyevich [Moscow, RU

    2008-12-02

    Ion-assisted plasma enhanced deposition of diamond-like carbon (DLC) films on the surface of photovoltaic solar cells is accomplished with a method and apparatus for controlling ion energy. The quality of DLC layers is fine-tuned by a properly biased system of special electrodes and by exact control of the feed gas mixture compositions. Uniform (with degree of non-uniformity of optical parameters less than 5%) large area (more than 110 cm.sup.2) DLC films with optical parameters varied within the given range and with stability against harmful effects of the environment are achieved.

  9. [Study on single-walled carbon nanotube thin film photoelectric device].

    PubMed

    Xie, Wen-bin; Zhu, Yong; Gong, Tian-cheng; Chen, Yu-lin; Zhang, Jie

    2015-01-01

    The single-walled carbon nanotube film photoelectric device was invented, and it can generate net photocurrent under bias voltage when it is illuminated by the laser. The influences of bias voltage, laser power and illuminating position on the net photocurrent were investigated. The experimental results showed that when the center of the film was illuminated, the photocurrent increased with the applied bias, but tended to saturate as the laser power increased. As the voltage and the laser power reached 0. 2 V and 22. 7 mW respectively, the photocurrent reached 0. 24 µA. When the voltage was removed, the photocurrent varied with the laser illuminating position on the film and its value was distributed symmetrically about the center of the device. The photocurrent reached maximum and almost zero respectively when the laser illuminated on two ends and the center of the film. Analysis proposes that the net photocurrent can be generated due to internal photoelectric effect when the device is under voltage and the laser illuminates on the center of the film. It can be also generated due to photo-thermoelectric effect when the device is under no voltage and the laser illuminates on the film, and the relation between the net photocurrent and the illuminating position was derived according to the nature of thermoelectric power of single-walled carbon nanotubes with the established temperature model, which coincides with experimental result. Two effects are the reasons for the generation and variety of the net photocurrent and they superimpose to form the result of the net photocurrent when the device is under general conditions of voltage and laser illuminating position. The device has potential applications in the areas of photovoltaic device and optical sensor for its characteristic.

  10. Polyethylene-Carbon Nanotube Composite Film Deposited by Cold Spray Technique

    NASA Astrophysics Data System (ADS)

    Ata, Nobuhisa; Ohtake, Naoto; Akasaka, Hiroki

    2017-10-01

    Carbon nanotubes (CNTs) are high-performance materials because of their superior electrical conductivity, thermal conductivity, and self-lubrication, and they have been studied for application to polymer composite materials as fillers. However, the methods of fabricating polymer composites with CNTs, such as injection molding, are too complicated for industrial applications. We propose a simple cold spray (CS) technique to obtain a polymer composite of polyethylene (PE) and CNTs. The composite films were deposited by CS on polypropylene and nano-porous structured aluminum substrates. The maximum thickness of the composite film was approximately 1 mm. Peaks at G and D bands were observed in the Raman spectra of the films. Scanning electron microscopy images of the film surface revealed that PE particles were melted by the acceleration gas and CNTs were attached with melted PE. The PE particles solidified after contact with the substrate. These results indicate that PE-CNT composite films were successfully deposited on polypropylene and nano-porous structured aluminum substrates by CS.

  11. Superstable Ultrathin Water Film Confined in a Hydrophilized Carbon Nanotube.

    PubMed

    Tomo, Yoko; Askounis, Alexandros; Ikuta, Tatsuya; Takata, Yasuyuki; Sefiane, Khellil; Takahashi, Koji

    2018-03-14

    Fluids confined in a nanoscale space behave differently than in the bulk due to strong interactions between fluid molecules and solid atoms. Here, we observed water confined inside "open" hydrophilized carbon nanotubes (CNT), with diameter of tens of nanometers, using transmission electron microscopy (TEM). A 1-7 nm water film adhering to most of the inner wall surface was observed and remained stable in the high vacuum (order of 10 -5 Pa) of the TEM. The superstability of this film was attributed to a combination of curvature, nanoroughness, and confinement resulting in a lower vapor pressure for water and hence inhibiting its vaporization. Occasional, suspended ultrathin water film with thickness of 3-20 nm were found and remained stable inside the CNT. This film thickness is 1 order of magnitude smaller than the critical film thickness (about 40 nm) reported by the Derjaguin-Landau-Verwey-Overbeek theory and previous experimental investigations. The stability of the suspended ultrathin water film is attributed to the additional molecular interactions due to the extended water meniscus, which balances the rest of the disjoining pressures.

  12. Deposition of diamond-like films by ECR microwave plasma

    NASA Technical Reports Server (NTRS)

    Shing, Yuh-Han (Inventor); Pool, Frederick S. (Inventor)

    1995-01-01

    Hard amorphous hydrogenated carbon, diamond-like films are deposited using an electron cyclotron resonance microwave plasma with a separate radio frequency power bias applied to a substrate stage. The electron cyclotron resonance microwave plasma yields low deposition pressure and creates ion species otherwise unavailable. A magnetic mirror configuration extracts special ion species from a plasma chamber. Different levels of the radio frequency power bias accelerate the ion species of the ECR plasma impinging on a substrate to form different diamond-like films. During the deposition process, a sample stage is maintained at an ambient temperature of less than 100.degree. C. No external heating is applied to the sample stage. The deposition process enables diamond-like films to be deposited on heat-sensitive substrates.

  13. Nitrogen incorporation in carbon nitride films produced by direct and dual ion-beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrasonis, G.; Gago, R.; Jimenez, I.

    2005-10-01

    Carbon (C) and carbon nitride (CN{sub x}) films were grown on Si(100) substrates by direct ion-beam sputtering (IBS) of a carbon target at different substrate temperatures (room temperature-450 deg. C) and Ar/N{sub 2} sputtering gas mixtures. Additionally, the effect of concurrent nitrogen-ion assistance during the growth of CN{sub x} films by IBS was also investigated. The samples were analyzed by elastic recoil detection analysis (ERDA) and x-ray absorption near-edge spectroscopy (XANES). The ERDA results showed that significant nitrogen amount (up to 20 at. %) was incorporated in the films, without any other nitrogen source but the N{sub 2}-containing sputtering gas.more » The nitrogen concentration is proportional to the N{sub 2} content in the sputtering beam and no saturation limit is reached under the present working conditions. The film areal density derived from ERDA revealed a decrease in the amount of deposited material at increasing growth temperature, with a correlation between the C and N losses. The XANES results indicate that N atoms are efficiently incorporated into the carbon network and can be found in different bonding environments, such as pyridinelike, nitrilelike, graphitelike, and embedded N{sub 2} molecules. The contribution of molecular and pyridinelike nitrogen decreases when the temperature increases while the contribution of the nitrilelike nitrogen increases. The concurrent nitrogen ion assistance resulted in the significant increase of the nitrogen content in the film but it induced a further reduction of the deposited material. Additionally, the assisting ions inhibited the formation of the nitrilelike configurations while promoting nitrogen environments in graphitelike positions. The nitrogen incorporation and release mechanisms are discussed in terms of film growth precursors, ion bombardment effects, and chemical sputtering.« less

  14. Supramolecular assemblies of nucleoside functionalized carbon nanotubes: synthesis, film preparation, and properties.

    PubMed

    Micoli, Alessandra; Turco, Antonio; Araujo-Palomo, Elsie; Encinas, Armando; Quintana, Mildred; Prato, Maurizio

    2014-04-25

    Nucleoside-functionalized multi-walled carbon nanotubes (N-MWCNTs) were synthesized and characterized. A self-organization process using hydrogen bonding interactions was then used for the fabrication of self-assembled N-MWCNTs films free of stabilizing agents, polymers, or surfactants. Membranes were produced by using a simple water-dispersion-based vacuum-filtration method. Hydrogen-bond recognition was confirmed by analysis with IR spectroscopy and TEM images. Restoration of the electronic conduction properties in the N-MWCNTs membranes was performed by removing the organic portion by thermal treatment under an argon atmosphere to give d-N-MWCNTs. Electrical conductivity and thermal gravimetric analysis (TGA) measurements confirmed the efficiency of the annealing process. Finally, oxidative biodegradation of the films N-MWCNTs and d-N-MWCNTs was performed by using horseradish peroxidase (HRP) and low concentrations of H2 O2 . Our results confirm that functional groups play an important role in the biodegradation of CNT by HRP: N-MWCNTs films were completely biodegraded, whereas for d-N-MWCNTs films no degradation was observed, showing that the pristine CNT undergoes minimal enzyme-catalyzed oxidation This novel methodology offers a straightforward supramolecular strategy for the construction of conductive and biodegradable carbon nanotube films. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support.

    PubMed

    Lin, Xiaoyang; Liu, Peng; Wei, Yang; Li, Qunqing; Wang, Jiaping; Wu, Yang; Feng, Chen; Zhang, Lina; Fan, Shoushan; Jiang, Kaili

    2013-01-01

    Graphene, exhibiting superior mechanical, thermal, optical and electronic properties, has attracted great interest. Considering it being one-atom-thick, and the reduced mechanical strength at grain boundaries, the fabrication of large-area suspended chemical vapour deposition graphene remains a challenge. Here we report the fabrication of an ultra-thin free-standing carbon nanotube/graphene hybrid film, inspired by the vein-membrane structure found in nature. Such a square-centimetre-sized hybrid film can realize the overlaying of large-area single-layer chemical vapour deposition graphene on to a porous vein-like carbon nanotube network. The vein-membrane-like hybrid film, with graphene suspended on the carbon nanotube meshes, possesses excellent mechanical performance, optical transparency and good electrical conductivity. The ultra-thin hybrid film features an electron transparency close to 90%, which makes it an ideal gate electrode in vacuum electronics and a high-performance sample support in transmission electron microscopy.

  16. Effects of ion irradiation on the surface mechanical behavior of hybrid sol-gel derived silicate thin films

    NASA Astrophysics Data System (ADS)

    Ghisleni, Rudy

    hardening coefficient represents an index of the cross-sectional area gradient as a function of fluence. The increase in hardness of hybrid sol-gel films following ion irradiation was linked to structural changes. Ion irradiation results in a cross-linked silica film as well as the segregation of amorphous carbon clusters, both of which contributed to increase the mechanical properties of the films.

  17. A near-wearless and extremely long lifetime amorphous carbon film under high vacuum

    PubMed Central

    Wang, Liping; Zhang, Renhui; Jansson, Ulf; Nedfors, Nils

    2015-01-01

    Prolonging wear life of amorphous carbon films under vacuum was an enormous challenge. In this work, we firstly reported that amorphous carbon film as a lubricant layer containing hydrogen, oxygen, fluorine and silicon (a-C:H:O:F:Si) exhibited low friction (~0.1), ultra-low wear rate (9.0 × 10–13 mm3 N–1 mm–1) and ultra-long wear life (>2 × 106 cycles) under high vacuum. We systematically examined microstructure and composition of transfer film for understanding of the underlying frictional mechanism, which suggested that the extraordinarily excellent tribological properties were attributed to the thermodynamically and structurally stable FeF2 nanocrystallites corroborated using first-principles calculations, which were induced by the tribochemical reaction. PMID:26059254

  18. High enzymatic activity preservation with carbon nanotubes incorporated in urease-lipid hybrid Langmuir-Blodgett films.

    PubMed

    Caseli, Luciano; Siqueira, José Roberto

    2012-03-27

    The search for optimized architectures, such as thin films, for the production of biosensors has been challenged in recent decades, and thus, the understanding of molecular interactions that occur at interfaces is essential to improve the construction of nanostructured devices. In this study, we investigated the possibility of using carbon nanotubes in hybrid Langmuir-Blodgett (LB) films of lipids and urease to improve the catalytic performance of the immobilized enzyme. The molecular interactions were first investigated at the air-water interface with the enzyme adsorbed from the aqueous subphase onto Langmuir monolayers of dimyristoylphosphatidic acid (DMPA). The transfer to solid supports as LB films and the subsequent incorporation of carbon nanotubes in the hybrid film permitted us to evaluate how these nanomaterials changed the physical properties of the ultrathin film. Colorimetric measurments indicated that the presence of nanotubes preserved and enhanced the enzyme activity of the film, even after 1 month. These results show that the use of such hybrid films is promising for the development of biosensors with an optimized performance. © 2012 American Chemical Society

  19. Electrochemical preparation of carbon films with a Mo2C interlayer in LiCl-NaCl-Na2CO3 melts

    NASA Astrophysics Data System (ADS)

    Ge, Jianbang; Wang, Shuai; Zhang, Feng; Zhang, Long; Jiao, Handong; Zhu, Hongmin; Jiao, Shuqiang

    2015-08-01

    The electrodeposition of carbon films with a Mo2C interlayer was investigated in LiCl-NaCl-Na2CO3 melts at 900 °C. Cyclic voltammetry was applied to study the electrochemical reaction mechanism on Mo and Pt electrodes, indicating that, two reduction reactions including carbon deposition and carbon monoxide evolution, may take place on the two electrodes simultaneously during the cathodic sweep. Carbon films with a continuous Mo2C interlayer were prepared by constant voltage electrolysis, showing a good adhesion between Mo substrate and carbon films. The carbon films with a Mo2C interlayer were characterized using X-ray diffraction measurement, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The results reveal that carbon materials deposited on the electrodes are mainly composed of graphite and carbon diffusion in Mo (or Mo2C) leads to the formation and growth of Mo2C interlayer.

  20. Chemical sensing employingpH sensitive emeraldine base thin film for carbon dioxide detection

    NASA Astrophysics Data System (ADS)

    Irimia-Vladu, Mihai

    Respiration, or CO2 evolution, is a universal indicator for all the biological activities. Among many potential applications, the measurement of CO2 evolution has been found to be a rapid and nondestructive means for examining microbial contamination of food. The sensor developed in this work consists of a thin emeraldine base-polyaniline (EB-PAni) film. In the first half of the project the effect of carbon dioxide over the conductivity of a composite film of emeraldine base polyaniline and poly(vinyl alcohol) in N-methyl pyrrolidone (NMP) respectively was tested. Argon gas or mixture of argon and 5% CO2 were circulated through the glass cell containing the polymer film deposited on interdigitated electrode and exposed to specific humidity levels fixed by aqueous supersaturated salt solutions. In the second half of the project, a thin emeraldine base film in NMP was directly deposited on interdigitated electrode and the respective sensor inserted in water. Carbonic acid solutions of various pHs were generated by bubbling specific mixtures of carbon dioxide and argon. Conductivity measurements were performed by impedance spectroscopy throughout the project. The sensing mechanism is based on intermediate stages of the transformation of the emeraldine base polyaniline to a conductive salt type (ES-PAni). This EB-ES transformation is the consequence of the exposure of EB-PAni to a protonic acid and is accompanied by a change in the conductivity of the polymer film. Carbonic acid, unfortunately, is a very weak acid and is unable to induce a conductivity change, but the intermediate steps that predetermine this transformation are detected by impedance spectroscopy even when the overall conductivity of the film is unchanged. The composite thin film developed in the first part of the project showed poor sensing characteristics: limited dynamic range, drift, instability and slow time response. However, the sensor design employed in the second half of this work, coupled with

  1. Binder-free manganese oxide/carbon nanomaterials thin film electrode for supercapacitors.

    PubMed

    Wang, Ning; Wu, Chuxin; Li, Jiaxin; Dong, Guofa; Guan, Lunhui

    2011-11-01

    A ternary thin film electrode was created by coating manganese oxide onto a network composed of single-walled carbon nanotubes and single-walled carbon nanohorns. The electrode exhibited a porous structure, which is a promising architecture for supercapacitors applications. The maximum specific capacitances of 357 F/g for total electrode at 1 A/g were achieved in 0.1 M Na(2)SO(4) aqueous solution.

  2. Properties of Diamond-Like Carbon Films Synthesized by Dual-Target Unbalanced Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Liu, Cui; Li, Guo-Qing; Gou, Wei; Mu, Zong-Xin; Zhang, Cheng-Wu

    2004-11-01

    Smooth, dense and uniform diamond-like carbon films (DLC films) for industrial applications have successfully been prepared by dual-target unbalanced magnetron sputtering and the DLC characteristics of the films are confirmed by Raman spectra. It is found that the sputtering current of target plays an important role in the DLC film deposition. Deposition rate of 3.5 μm/h is obtained by using the sputtering current of 30 A. The friction coefficient of the films is 0.2-0.225 measured by using a pin-on-disc microtribometer. The structure of the films tends to have a growth of sp3 bonds content at high sputtering current. The compressive residual stress in the films increases with the increasing sputtering current of the target.

  3. Aligned Carbon Nanotubes for High-Performance Films and Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Liwen

    Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or

  4. Ultrafast graphene and carbon nanotube film patterning by picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bobrinetskiy, Ivan I.; Emelianov, Alexey V.; Otero, Nerea; Romero, Pablo M.

    2016-03-01

    Carbon nanomaterials is among the most promising technologies for advanced electronic applications, due to their extraordinary chemical and physical properties. Nonetheless, after more than two decades of intensive research, the application of carbon-based nanostructures in real electronic and optoelectronic devices is still a big challenge due to lack of scalable integration in microelectronic manufacturing. Laser processing is an attractive tool for graphene device manufacturing, providing a large variety of processes through direct and indirect interaction of laser beams with graphene lattice: functionalization, oxidation, reduction, etching and ablation, growth, etc. with resolution down to the nanoscale. Focused laser radiation allows freeform processing, enabling fully mask-less fabrication of devices from graphene and carbon nanotube films. This concept is attractive to reduce costs, improve flexibility, and reduce alignment operations, by producing fully functional devices in single direct-write operations. In this paper, a picosecond laser with a wavelength of 515 nm and pulse width of 30 ps is used to pattern carbon nanostructures in two ways: ablation and chemical functionalization. The light absorption leads to thermal ablation of graphene and carbon nanotube film under the fluence 60-90 J/cm2 with scanning speed up to 2 m/s. Just under the ablation energy, the two-photon absorption leads to add functional groups to the carbon lattice which change the optical properties of graphene. This paper shows the results of controlled modification of geometrical configuration and the physical and chemical properties of carbon based nanostructures, by laser direct writing.

  5. Bond topography and nanostructure of hydrogenated fullerene-like carbon films: A comparative study

    NASA Astrophysics Data System (ADS)

    Wang, Yongfu; Gao, Kaixiong; Shi, Jing; Zhang, Junyan

    2016-09-01

    Fullerene-like nanostructural hydrogenated amorphous carbon (FL-C:H) films were prepared by dc- and pulse- plasma enhanced chemical vapor deposition technique (PECVD). Both the films exhibit relatively stresses (0.63 GPa) in spite of their FL features and nanostructural bonding configurations, especially the pentagonal carbon rings. The creation of pentagonal rings is not fully driven by thermodynamics, but is closely related to compressive stress determined by the ion bombardment at the discharged state of the pulse- and dc- discharged plasmas methods. The dc method leads to FL's basal planes which contain less cross-linkages, and causes amorphous strongly hydrogenated structures.

  6. Radiation hardness studies of CdTe thin films for clinical high-energy photon beam detectors

    NASA Astrophysics Data System (ADS)

    Shvydka, Diana; Parsai, E. I.; Kang, J.

    2008-02-01

    In radiation oncology applications, the need for higher-quality images has been driven by recent advances in radiation delivery systems that require online imaging. The existing electronic imaging devices commonly used to acquire portal images implement amorphous silicon (a-Si) detector, which exhibits poor image quality. Efforts for improvement have mostly been in the areas of noise and scatter reduction through software. This has not been successful due to inherent shortcomings of a-Si material. Cadmium telluride (CdTe) semiconductor has long been recognized as highly suitable for use in X-ray detectors in both spectroscopic and imaging applications. Development of such systems has mostly concentrated on single crystal CdTe. Recent advances in thin-film deposition technology suggest replacement of crystalline material with its polycrystalline counterpart, offering ease of large-area device fabrication and achievement of higher resolution as well as a favorable cost difference. While bulk CdTe material was found to have superior radiation hardness, thin films have not been evaluated from that prospective, in particular under high-energy photon beam typical of radiation treatment applications. We assess the performance of thin-film CdTe devices utilizing 6 MeV photon beam and find no consistent trend for material degradation under doses far exceeding the typical radiation therapy detector lifetime dose.

  7. Flexible and Binder-Free Hierarchical Porous Carbon Film for Supercapacitor Electrodes Derived from MOFs/CNT.

    PubMed

    Liu, Yazhi; Li, Gaoran; Guo, Yi; Ying, Yulong; Peng, Xinsheng

    2017-04-26

    Rational design of free-standing porous carbon materials with large specific surface area and high conductivity is a great need for ligh-weight suprecapacitors. Here, we report a flexible porous carbon film composed of metal-organic framework (MOF)-derived porous carbon polyhedrons and carbon nanotubes (CNTs) as binder-free supercapacitor electrode for the first time. Due to the synergistic combination of carbon polyhedrons and CNT, the obtained carbon electrode shows a specific capacitance of 381.2 F g -1 at 5 mV s -1 and 194.8 F g -1 at 2 A g -1 and outstanding cycling stability with a Coulombic effciency above 95% after 10000 cycles at 10 A g -1 . The assembled aqueous symmetrical supercapacitor exhibits an energy density of 9.1 Wh kg -1 with a power density of 3500 W kg -1 . The work opens a new way to design flexible MOF-based hierarchical porous carbon film as binder-free electrodes for high-performance energy storage devices.

  8. Carbon nanotube TiO2 hybrid films for detecting traces of O2

    NASA Astrophysics Data System (ADS)

    Llobet, E.; Espinosa, E. H.; Sotter, E.; Ionescu, R.; Vilanova, X.; Torres, J.; Felten, A.; Pireaux, J. J.; Ke, X.; Van Tendeloo, G.; Renaux, F.; Paint, Y.; Hecq, M.; Bittencourt, C.

    2008-09-01

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO2 films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. <=10 ppm) in a flow of CO2, which is of interest for the beverage industry.

  9. Fabrication of antibacterial PVA nanocomposite films containing dendritic polymer functionalized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sapalidis, Andreas; Sideratou, Zili; Panagiotaki, Katerina N.; Sakellis, Elias; Kouvelos, Evangelos P.; Papageorgiou, Sergios; Katsaros, Fotios

    2018-03-01

    A series of Poly(vinyl alcohol) (PVA) nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI) functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI) are prepared by solvent casting technique. The modified carbon based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls, as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0 % w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized carbon nanotubes into the PVA matrix.

  10. Surface plasmon effect in electrodeposited diamond-like carbon films for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Ghosh, B.; Ray, Sekhar C.; Espinoza-González, Rodrigo; Villarroel, Roberto; Hevia, Samuel A.; Alvarez-Vega, Pedro

    2018-04-01

    Diamond-like carbon (DLC) films and nanocrystalline silver particles containing diamond-like carbon (DLC:Ag) films were electrodeposited on n-type silicon substrate (n-Si) to prepare n-Si/DLC and n-Si/DLC:Ag heterostructures for photovoltaic (PV) applications. Surface plasmon resonance (SPR) effect in this cell structure and its overall performance have been studied in terms of morphology, optical absorption, current-voltage characteristics, capacitance-voltage characteristics, band diagram and external quantum efficiency measurements. Localized surface plasmon resonance effect of silver nanoparticles (Ag NPs) in n-Si/DLC:Ag PV structure exhibited an enhancement of ∼28% in short circuit current density (JSC), which improved the overall efficiency of the heterostructures.

  11. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Coppedè, Nicola; Valitova, Irina; Mahvash, Farzaneh; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Santato, Clara; Martel, Richard; Cicoira, Fabio

    2014-12-01

    The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs.

  12. Preparation of electrochromic thin films by transformation of manganese(II) carbonate

    NASA Astrophysics Data System (ADS)

    Stojkovikj, Sasho; Najdoski, Metodija; Koleva, Violeta; Demiri, Sani

    2013-10-01

    A new chemical bath method for deposition of manganese(II) carbonate thin film on electroconductive FTO glass substrates is designed. The homogeneous thin films with thickness in the range of 70 to 500 nm are deposited at about 98 °C from aqueous solution containing urea and MnCl2. The chemical process is based on a low temperature hydrolysis of the manganese complexes with urea. Three types of films are under consideration: as-deposited, annealed and electrochemically transformed thin films. The structure of the films is studied by XRD, IR and Raman spectroscopy. Electrochemical and optical properties are examined in eight different electrolytes (neutral and alkaline) and the best results are achieved in two component aqueous solution of 0.1 M KNO3 and 0.01 M KOH. It is established that the as-deposited MnCO3 film undergoes electrochemically transformation into birnessite-type manganese(IV) oxide films, which exhibit electrochromic color changes (from bright brown to pale yellow and vice versa) with 30% difference in the transmittance of the colored and bleached state at 400 nm.

  13. Inkjet printing of aligned single-walled carbon-nanotube thin films

    NASA Astrophysics Data System (ADS)

    Takagi, Yuki; Nobusa, Yuki; Gocho, Shota; Kudou, Hikaru; Yanagi, Kazuhiro; Kataura, Hiromichi; Takenobu, Taishi

    2013-04-01

    We report a method for the inkjet printing of aligned single-walled carbon-nanotube (SWCNT) films by combining inkjet technology with the strong wettability contrast between hydrophobic and hydrophilic areas based on the patterning of self-assembled monolayers. Both the drying process control using the strong wettability boundary and the coffee-stain effect strongly promote the aggregation of SWCNTs along the contact line of a SWCNT ink droplet, thereby demonstrating our achievement of inkjet-printed aligned SWCNT films. This method could open routes for developing high-performance and environmentally friendly SWCNT printed electronics.

  14. Formation of high mass carbon cluster ions from laser ablation of polymers and thin carbon films

    NASA Astrophysics Data System (ADS)

    Creasy, William R.; Brenna, J. T.

    1990-02-01

    Three materials were studied by laser ablation/Fourier transform mass spectrometry, using 266 nm laser radiation: a copolymer of ethylene and tetrafluoroethylene (ETFE), polyphenylene sulfide (PPS), and a diamond-like carbon film (DLC). In each case, positive ion mass spectra exhibit primarily even-numbered, high mass carbon clusters (``fullerenes'') of the type previously reported for graphite ablation. In the case of ETFE, a large C+60 peak (``buckminsterfullerene'') was observed. The polymer spectra showed a strong dependence on the number of laser pulses on one spot and the laser power density. For ETFE, the fullerene ion relative intensity first increases and then decreases as a function of the number of laser pulses. For the DLC film, fullerenes are observed with a single laser pulse on a fresh spot of the sample. The results are interpreted in terms of a gas phase growth model for the fullerene ion formation.

  15. Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Delozier, Donavon M.; Connell, John W.; Watson, Kent A.

    2004-01-01

    Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have potential applications on large, deployable, ultra-light weight Gossamer spacecraft as thin film membranes on antennas, solar sails, thermal/optical coatings, multi-layer insulation blankets, etc.. The challenge has been to develop a method to impart robust electrical conductivity into these materials without increasing solar absorptivity (alpha ) or decreasing optical transparency or film flexibility. Since these spacecraft will require significant compaction prior to launch, the film portion of the spacecraft will require folding. The state-of-the-art clear, conductive coating (e.g. indium-tin-oxide, ITO) is brittle and cannot tolerate folding. In this report, doping a polymer with single-walled carbon nanotubes (SWNTs) using two different methods afforded materials with good flexibility and surface conductivities in the range sufficient for ESC mitigation. A coating method afforded materials with minimal effects on the mechanical, optical, and thermo-optical properties as compared to dispersal of SWNTs in the matrix. The chemistry and physical properties of these nanocomposites are discussed.

  16. Structural properties of nitrogenated amorphous carbon films: Influence of deposition temperature and radiofrequency discharge power

    NASA Astrophysics Data System (ADS)

    Lazar, G.; Bouchet-Fabre, B.; Zellama, K.; Clin, M.; Ballutaud, D.; Godet, C.

    2008-10-01

    The structural properties of nitrogenated amorphous carbon deposited by radiofrequency magnetron sputtering of graphite in pure N2 plasma are investigated as a function of the substrate temperature and radiofrequency discharge power. The film composition is derived from x-ray photoemission spectroscopy, nuclear reaction analysis and elastic recoil detection measurements and the film microstructure is discussed using infrared, Raman, x-ray photoemission and near edge x-ray absorption fine structure spectroscopic results. At low deposition temperature and low radiofrequency power, the films are soft, porous, and easily contaminated with water vapor and other atmospheric components. The concentration of nitrogen in the films is very large for low deposition temperatures (˜33.6at.% N at 150°C) but decreases strongly when the synthesis temperature increases (˜15at.% N at 450°C). With increasing deposition temperature and discharge power values, the main observed effects in amorphous carbon nitride alloys are a loss of nitrogen atoms, a smaller hydrogen and oxygen contamination related to the film densification, an increased order of the aromatic sp2 phase, and a strong change in the nitrogen distribution within the carbon matrix. Structural changes are well correlated with modifications of the optical and transport properties.

  17. Observation of electric potential in organic thin-film transistor by bias-applied hard X-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Watanabe, Takeshi; Tada, Keisuke; Yasuno, Satoshi; Oji, Hiroshi; Yoshimoto, Noriyuki; Hirosawa, Ichiro

    2016-03-01

    The effect of gate voltage on electric potential in a pentacene (PEN) layer was studied by hard X-ray photoelectron spectroscopy under a bias voltage. It was observed that applying a negative gate voltage substantially increases the width of a C 1s peak. This suggested that injected and accumulated carriers in an organic thin film transistor channel modified the potential depth profile in PEN. It was also observed that the C 1s kinetic energy tends to increase monotonically with threshold voltage.

  18. Removal of DLC film on polymeric materials by low temperature atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kobayashi, Daichi; Tanaka, Fumiyuki; Kasai, Yoshiyuki; Sahara, Junki; Asai, Tomohiko; Hiratsuka, Masanori; Takatsu, Mikio; Koguchi, Haruhisa

    2017-10-01

    Diamond-like carbon (DLC) thin film has various excellent functions. For example, high hardness, abrasion resistance, biocompatibility, etc. Because of these functionalities, DLC has been applied in various fields. Removal method of DLC has also been developed for purpose of microfabrication, recycling the substrate and so on. Oxygen plasma etching and shot-blast are most common method to remove DLC. However, the residual carbon, high cost, and damage onto the substrate are problems to be solved for further application. In order to solve these problems, removal method using low temperature atmospheric pressure plasma jet has been developed in this work. The removal effect of this method has been demonstrated for DLC on the SUS304 substrate. The principle of this method is considered that oxygen radical generated by plasma oxidize carbon constituting the DLC film and then the film is removed. In this study, in order to widen application range of this method and to understand the mechanism of film removal, plasma irradiation experiment has been attempted on DLC on the substrate with low heat resistance. The DLC was removed successfully without any significant thermal damage on the surface of polymeric material.

  19. Transferring-free and large-area graphitic carbon film growth by using molecular beam epitaxy at low growth temperature

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Yu; Wang, Cheng-Hung; Pao, Chun-Wei; Lin, Shih-Yen

    2015-09-01

    Graphitic carbon films prepared by using molecular beam epitaxy (MBE) on metal templates with different thicknesses deposited on SiO2/Si substrates are investigated in this paper. With thick Cu templates, only graphitic carbon flakes are obtained near the Cu grain boundaries at low growth temperatures on metal/SiO2 interfaces. By replacing the Cu templates with thin Ni templates, complete graphitic carbon films with superior crystalline quality is obtained at 600 °C on SiO2/Si substrates after removing the Ni templates. The enhanced attachment of the graphitic carbon film to the SiO2/Si substrates with reduced Ni thickness makes the approach a promising approach for transferring-free graphene preparation at low temperature by using MBE.

  20. Fabrication of Transparent Protective Diamond-Like Carbon Films on Polymer

    NASA Astrophysics Data System (ADS)

    Baek, Sang-min; Shirafuji, Tatsuru; Saito, Nagahiro; Takai, Osamu

    2011-08-01

    Si doped hydrogenated amorphous carbon (Si-DLC) films as a candidate protection coating for polycarbonate (PC) were prepared using a pulse-biased inductively coupled plasma chemical vapor deposition (ICP-CVD) system with a gas mixture of acetylene (C2H2) and tetramethylsilane [Si(CH3)4]. The effects of Si incorporation on the structure and optical properties of the Si-DLC films were investigated. In addition, plasma pretreatments with O2, N2, and Ar gases were carried out to enhance the adhesion strength of Si-DLC films on polycarbonate. Structural characterization through Raman and X-ray photoelectron spectroscopy (XPS) analyses showed that the incorporation of Si atoms in DLC films leads to an increase in the optical band gap (Eopt) with the formation of sp3 C-Si bonds. O2 plasma pretreatment improved the strength of adhesion of the Si-DLC films to polycarbonate, while Ar and N2 plasma treatments did not. This can be explained by the formation of an activated dense interfacial layer by O2 plasma pretreatment.

  1. Efficient high-resolution hard x-ray imaging with transparent Lu2O3:Eu scintillator thin films

    NASA Astrophysics Data System (ADS)

    Marton, Zsolt; Miller, Stuart R.; Brecher, Charles; Kenesei, Peter; Moore, Matthew D.; Woods, Russell; Almer, Jonathan D.; Miceli, Antonino; Nagarkar, Vivek V.

    2015-09-01

    We have developed microstructured Lu2O3:Eu scintillator films that provide spatial resolution on the order of micrometers for hard X-ray imaging. In addition to their outstanding resolution, Lu2O3:Eu films also exhibits both high absorption efficiency for 20 to 100 keV X-rays, and bright 610 nm emission whose intensity rivals that of the brightest known scintillators. At present, high spatial resolution of such a magnitude is achieved using ultra-thin scintillators measuring only about 1 to 5 μm in thickness, which limits absorption efficiency to ~3% for 12 keV X-rays and less than 0.1% for 20 to 100 keV X-rays; this results in excessive measurement time and exposure to the specimen. But the absorption efficiency of Lu2O3:Eu (99.9% @12 keV and 30% @ 70 keV) is much greater, significantly decreasing measurement time and radiation exposure. Our Lu2O3:Eu scintillator material, fabricated by our electron-beam physical vapor deposition (EB-PVD) process, combines superior density of 9.5 g/cm3, a microcolumnar structure for higher spatial resolution, and a bright emission (48000 photons/MeV) whose wavelength is an ideal match for the underlying CCD detector array. We grew thin films of this material on a variety of matching substrates, measuring some 5-10μm in thickness and covering areas up to 1 x 1 cm2, which can be a suitable basis for microtomography, digital radiography as well as CT and hard X-ray Micro-Tomography (XMT). The microstructure and optical transparency of such screens was optimized, and their imaging performance was evaluated in the Argonne National Laboratory's Advanced Photon Source. Spatial resolution and efficiency were also characterized.

  2. One-step sub-10 μm patterning of carbon-nanotube thin films for transparent conductor applications.

    PubMed

    Fukaya, Norihiro; Kim, Dong Young; Kishimoto, Shigeru; Noda, Suguru; Ohno, Yutaka

    2014-04-22

    We propose a technique for one-step micropatterning of as-grown carbon-nanotube films on a plastic substrate with sub-10 μm resolution on the basis of the dry transfer process. By utilizing this technique, we demonstrated the novel high-performance flexible carbon-nanotube transparent conductive film with a microgrid structure, which enabled improvement of the performance over the trade-off between the sheet resistance and transmittance of a conventional uniform carbon-nanotube film. The sheet resistance was reduced by 46% at its maximum by adding the microgrid, leading to a value of 53 Ω/sq at a transmittance of 80%. We also demonstrated easy fabrication of multitouch projected capacitive sensors with 12 × 12 electrodes. The technique is quite promising for energy-saving production of transparent conductor devices with 100% material utilization.

  3. A sulphonated carbon dot-chitosan hybrid hydrogel nanocomposite as an efficient ion-exchange film for Ca2+ and Mg2+ removal

    NASA Astrophysics Data System (ADS)

    Baruah, Upama; Konwar, Achyut; Chowdhury, Devasish

    2016-04-01

    We have developed a hybrid hydrogel nanocomposite film via conjugation of oxidised carbon dots synthesized from 11-mercaptoundecanoic acid with chitosan. The potential applicability of the film was then successfully tested for the removal of Ca2+ and Mg2+ ions from solution.We have developed a hybrid hydrogel nanocomposite film via conjugation of oxidised carbon dots synthesized from 11-mercaptoundecanoic acid with chitosan. The potential applicability of the film was then successfully tested for the removal of Ca2+ and Mg2+ ions from solution. Electronic supplementary information (ESI) available: The ESI includes the detailed synthesis and characterization of carbon dots both before and after oxidation and of the carbon dot-chitosan nanocomposite films viz. DLS, SEM, UV-visible, FTIR, PL spectroscopy and TGA. See DOI: 10.1039/c6nr01129b

  4. The thickness effect of pre-deposited catalyst film on carbon nanotube growth by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wei, Y. Y.; Eres, Gyula; Lowndes, Douglas H.

    2001-03-01

    Chemical vapor deposition (CVD) of multi wall carbon nanotubes (MWCNTs) was realized on a substrate with a layer of iron film used as a catalyst. The catalyst film was pre-deposited in an electron-gun evaporator equipped with a movable shutter which partially blocks the beam during the evaporation process to produce a catalyst film with a continuously changing thickness from 0 to 60 nm. This technique creates a growth environment in which the film thickness is the only variable and eliminates sample-to-sample variations, enabling a systematic study of the thickness effect of the catalyst film on CNT growth. After the deposition of the catalyst film, the sample was immediately transferred into a CVD chamber where CNT growth was performed. Using Acetylene (C_2H_2) as a carbon-source gas, at the substrate temperature of around 700^oC, MWCNTs preferentially grow as a dense mat on the thin regions of the catalyst film. Moreover, beyond a certain critical film thickness no tubes were observed. The critical film thickness for CNT growth was found to increase with substrate temperature from 640^oC to 800^oC. There appears to be no strong correlation between the film thickness and the diameter of the tubes. At the substrate temperature of over 900^oC, the deposited carbon formed graphite sheets surrounding the catalyst particles and no CNTs were observed. A plot of the critical thickness of the catalyst film where CNTs start to grow as a function of the substrate temperature has obtained, which can be served as a reference for selecting the growth parameter in MWCNT growth. The significance of these experimental trends is discussed within the framework of the diffusion model for MWCNT growth.

  5. The effect of dry shear aligning of nanotube thin films on the photovoltaic performance of carbon nanotube-silicon solar cells.

    PubMed

    Stolz, Benedikt W; Tune, Daniel D; Flavel, Benjamin S

    2016-01-01

    Recent results in the field of carbon nanotube-silicon solar cells have suggested that the best performance is obtained when the nanotube film provides good coverage of the silicon surface and when the nanotubes in the film are aligned parallel to the surface. The recently developed process of dry shear aligning - in which shear force is applied to the surface of carbon nanotube thin films in the dry state, has been shown to yield nanotube films that are very flat and in which the surface nanotubes are very well aligned in the direction of shear. It is thus reasonable to expect that nanotube films subjected to dry shear aligning should outperform otherwise identical films formed by other processes. In this work, the fabrication and characterisation of carbon nanotube-silicon solar cells using such films is reported, and the photovoltaic performance of devices produced with and without dry shear aligning is compared.

  6. High quality boron carbon nitride/ZnO-nanorods p-n heterojunctions based on magnetron sputtered boron carbon nitride films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, J. C.; Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec H3A 3A7; Jha, S. K., E-mail: skylec@gmail.com, E-mail: apwjzh@cityu.edu.hk

    2014-11-10

    Boron carbon nitride (BCN) films were synthesized on Si (100) and fused silica substrates by radio-frequency magnetron sputtering from a B{sub 4}C target in an Ar/N{sub 2} gas mixture. The BCN films were amorphous, and they exhibited an optical band gap of ∼1.0 eV and p-type conductivity. The BCN films were over-coated with ZnO nanorod arrays using hydrothermal synthesis to form BCN/ZnO-nanorods p-n heterojunctions, exhibiting a rectification ratio of 1500 at bias voltages of ±5 V.

  7. Self-Lubricating, Wear-Resistant Diamond Films Developed for Use in Vacuum Environment

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Diamond's outstanding properties--extreme hardness, chemical and thermal inertness, and high strength and rigidity--make it an ideal material for many tribological applications, such as the bearings, valves, and engine parts in the harsh environment found in internal-combustion engines, jet engines, and space propulsion systems. It has been demonstrated that chemical-vapor-deposited diamond films have low coefficients of friction (on the order of 0.01) and low wear rates (less than 10(sup -7) mm (sup 3/N-m)) both in humid air and dry nitrogen but that they have both high coefficients of friction (greater than 0.4) and high wear rates (on the order of 1(sup -4) mm sup 3/N-m)) in vacuum. It is clear that surface modifications that provide acceptable levels of friction and wear properties will be necessary before diamond films can be used for tribological applications in a space-like, vacuum environment. Previously, it was found that coatings of amorphous, non-diamond carbon can provide low friction in vacuum. Therefore, to reduce the friction and wear of diamond film in vacuum, carbon ions were implanted in an attempt to form a surface layer of amorphous carbon phases on the diamond films.

  8. Laser Processing of Carbon Nanotube Transparent Conducting Films

    NASA Astrophysics Data System (ADS)

    Mann, Andrew

    Transparent conducting films, or TCFs, are 2D electrical conductors with the ability to transmit light. Because of this, they are used in many popular electronics including smart phones, tablets, solar panels, and televisions. The most common material used as a TCF is indium tin oxide, or ITO. Although ITO has great electrical and optical characteristics, it is expensive, brittle, and difficult to pattern. These limitations have led researchers toward other materials for the next generation of displays and touch panels. The most promising material for next generation TCFs is carbon nanotubes, or CNTs. CNTs are cylindrical tubes of carbon no more than a few atoms thick. They have different electrical and optical properties depending on their atomic structure, and are extremely strong. As an electrode, they conduct electricity through an array of randomly dispersed tubes. The array is highly transparent because of gaps between the tubes, and size and optical properties of the CNTs. Many research groups have tried making CNT TCFs with opto-electric properties similar to ITO but have difficultly achieving high conductivity. This is partly attributed to impurities from fabrication and a mix of different tube types, but is mainly caused by low junction conductivity. In functionalized nanotubes, junction conductivity is impaired by covalently bonded molecules added to the sidewalls of the tubes. The addition of this molecule, known as functionalization, is designed to facilitate CNT dispersion in a solvent by adding properties of the molecule to the CNTs. While necessary for a good solution, functionalization decreases the conductivity in the CNT array by creating defects in the tube's structures and preventing direct inter-carbon bonding. This research investigates removing the functional coating (after tube deposition) by laser processing. Laser light is able to preferentially heat the CNTs because of their optical and electrical properties. Through local conduction

  9. Hydrogenated amorphous carbon films on steel balls and Si substrates: Nanostructural evolutions and their trigging tribological behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Yongfu; Wang, Yan; Zhang, Xingkai; Shi, Jing; Gao, Kaixiong; Zhang, Bin; Zhang, Junyan

    2017-10-01

    In this study, we prepared hydrogenated amorphous carbon films on steel balls and Si substrates (steel ball- and Si substrate-films) with different deposition time, and discussed their carbon nanostructural evolutions and tribological behaviors. The steel ball-film structure started to be graphite-like structure and then gradually transformed into fullerene-like (FL) structure. The Si substrate-film structure began in FL structure and kept it through the thickness. The difference may be result from the competition between high starting substrate temperature after additional nitriding applied on the steel balls (its supply power is higher than that in the film deposition), and relaxation of compressive stress from energized ion bombardment in film deposition process. The FL structural film friction couples could achieve ultra-low friction in open air. In particular, the Si substrate-film with 3 h, against the steel ball-film with 2 h and 3 h, exhibited super-low friction (∼0.009) and superlong wear life (∼5.5 × 105 cycles). Our result could widen the superlubricity scope from previously high load and velocity, to middle load and velocity.

  10. Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors

    NASA Astrophysics Data System (ADS)

    Chmiola, John; Largeot, Celine; Taberna, Pierre-Louis; Simon, Patrice; Gogotsi, Yury

    2010-04-01

    Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.

  11. Monolithic carbide-derived carbon films for micro-supercapacitors.

    PubMed

    Chmiola, John; Largeot, Celine; Taberna, Pierre-Louis; Simon, Patrice; Gogotsi, Yury

    2010-04-23

    Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.

  12. Sol processing of conjugated carbon nitride powders for thin-film fabrication.

    PubMed

    Zhang, Jinshui; Zhang, Mingwen; Lin, Lihua; Wang, Xinchen

    2015-05-18

    The chemical protonation of graphitic carbon nitride (CN) solids with strong oxidizing acids, for example HNO3, is demonstrated as an efficient pathway for the sol processing of a stable CN colloidal suspension, which can be translated into thin films by dip/disperse-coating techniques. The unique features of CN colloids, such as the polymeric matrix and the reversible hydrogen bonding, result in the thin-film electrodes derived from the sol solution exhibiting a high mechanical stability with improved conductivity for charge transport, and thus show a remarkably enhanced photo-electrochemical performance. The polymer system can in principle be broadly tuned by hybridization with desired functionalities, thus paving the way for the application of CN for specific tasks, as exemplified here by coupling with carbon nanotubes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Capillary assisted deposition of carbon nanotube film for strain sensing

    NASA Astrophysics Data System (ADS)

    Li, Zida; Xue, Xufeng; Lin, Feng; Wang, Yize; Ward, Kevin; Fu, Jianping

    2017-10-01

    Advances in stretchable electronics offer the possibility of developing skin-like motion sensors. Carbon nanotubes (CNTs), owing to their superior electrical properties, have great potential for applications in such sensors. In this paper, we report a method for deposition and patterning of CNTs on soft, elastic polydimethylsiloxane (PDMS) substrates using capillary action. Micropillar arrays were generated on PDMS surfaces before treatment with plasma to render them hydrophilic. Capillary force enabled by the micropillar array spreads CNT solution evenly on PDMS surfaces. Solvent evaporation leaves a uniform deposition and patterning of CNTs on PDMS surfaces. We studied the effect of the CNT concentration and micropillar gap size on CNT coating uniformity, film conductivity, and piezoresistivity. Leveraging the piezoresistivity of deposited CNT films, we further designed and characterized a device for the contraction force measurement. Our capillary assisted deposition method of CNT films showed great application potential in fabrication of flexible CNT thin films for strain sensing.

  14. Plasma-Etching of Spray-Coated Single-Walled Carbon Nanotube Films for Biointerfaces

    NASA Astrophysics Data System (ADS)

    Kim, Joon Hyub; Lee, Jun-Yong; Min, Nam Ki

    2012-08-01

    We present an effective method for the batch fabrication of miniaturized single-walled carbon nanotube (SWCNT) film electrodes using oxygen plasma etching. We adopted the approach of spray-coating for good adhesion of the SWCNT film onto a pre-patterned Pt support and used O2 plasma patterning of the coated films to realize efficient biointerfaces between SWCNT surfaces and biomolecules. By these approaches, the SWCNT film can be easily integrated into miniaturized electrode systems. To demonstrate the effectiveness of plasma-etched SWCNT film electrodes as biointerfaces, Legionella antibody was selected as analysis model owing to its considerable importance to electrochemical biosensors and was detected using plasma-etched SWCNT film electrodes and a 3,3',5,5'-tetramethyl-benzidine dihydrochloride/horseradish peroxidase (TMB/HRP) catalytic system. The response currents increased with increasing concentration of Legionella antibody. This result indicates that antibodies were effectively immobilized on plasma-etched and activated SWCNT surfaces.

  15. Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti-Zr-N and Ti-Ta-N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abadias, G.; Koutsokeras, L. E.; Dub, S. N.

    2010-07-15

    Ternary transition metal nitride thin films, with thickness up to 300 nm, were deposited by dc reactive magnetron cosputtering in Ar-N{sub 2} plasma discharges at 300 deg. C on Si substrates. Two systems were comparatively studied, Ti-Zr-N and Ti-Ta-N, as representative of isostructural and nonisostructural prototypes, with the aim of characterizing their structural, mechanical, and electrical properties. While phase-separated TiN-ZrN and TiN-TaN are the bulk equilibrium states, Ti{sub 1-x}Zr{sub x}N and Ti{sub 1-y}Ta{sub y}N solid solutions with the Na-Cl (B1-type) structure could be stabilized in a large compositional range (up to x=1 and y=0.75, respectively). Substituting Ti atoms by eithermore » Zr or Ta atoms led to significant changes in film texture, microstructure, grain size, and surface morphology, as evidenced by x-ray diffraction, x-ray reflectivity, and scanning electron and atomic force microscopies. The ternary Ti{sub 1-y}Ta{sub y}N films exhibited superior mechanical properties to Ti{sub 1-x}Zr{sub x}N films as well as binary compounds, with hardness as high as 42 GPa for y=0.69. All films were metallic, the lowest electrical resistivity {rho}{approx}65 {mu}{Omega} cm being obtained for pure ZrN, while for Ti{sub 1-y}Ta{sub y}N films a minimum was observed at y{approx}0.3. The evolution of the different film properties is discussed based on microstructrural investigations.« less

  16. The effect of dry shear aligning of nanotube thin films on the photovoltaic performance of carbon nanotube–silicon solar cells

    PubMed Central

    Stolz, Benedikt W; Tune, Daniel D

    2016-01-01

    Summary Recent results in the field of carbon nanotube–silicon solar cells have suggested that the best performance is obtained when the nanotube film provides good coverage of the silicon surface and when the nanotubes in the film are aligned parallel to the surface. The recently developed process of dry shear aligning – in which shear force is applied to the surface of carbon nanotube thin films in the dry state, has been shown to yield nanotube films that are very flat and in which the surface nanotubes are very well aligned in the direction of shear. It is thus reasonable to expect that nanotube films subjected to dry shear aligning should outperform otherwise identical films formed by other processes. In this work, the fabrication and characterisation of carbon nanotube–silicon solar cells using such films is reported, and the photovoltaic performance of devices produced with and without dry shear aligning is compared. PMID:27826524

  17. Hard copies for digital medical images: an overview

    NASA Astrophysics Data System (ADS)

    Blume, Hartwig R.; Muka, Edward

    1995-04-01

    This paper is a condensed version of an invited overview on the technology of film hard-copies used in radiology. Because the overview was given to an essentially nonmedical audience, the reliance on film hard-copies in radiology is outlined in greater detail. The overview is concerned with laser image recorders generating monochrome prints on silver-halide films. The basic components of laser image recorders are sketched. The paper concentrates on the physical parameters - characteristic function, dynamic range, digitization resolution, modulation transfer function, and noise power spectrum - which define image quality and information transfer capability of the printed image. A preliminary approach is presented to compare the printed image quality with noise in the acquired image as well as with the noise of state-of- the-art cathode-ray-tube display systems. High-performance laser-image- recorder/silver-halide-film/light-box systems are well capable of reproducing acquired radiologic information. Most recently development was begun toward a display function standard for soft-copy display systems to facilitate similarity of image presentation between different soft-copy displays as well as between soft- and hard-copy displays. The standard display function is based on perceptional linearization. The standard is briefly reviewed to encourage the printer industry to adopt it, too.

  18. Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Tigelaar, D. M.; Watson, K. A.; Smith, J. G., Jr.; Lillehei, P. T.; Connell, J. W.

    2004-01-01

    Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge build-up have been under investigation as part of a materials development activity. In the work described herein, single-walled carbon nanotubes (SWNT) solutions were dispersed in solutions of a novel ionomer in N,N-dimethylacetamide resulting in homogenous suspensions or quasi-solutions. The ionomer was used to aid in the dispersal of SWNTs in to a soluble, low color space environmentally durable polyimide. The use of the ionomer as a dispersant enabled the nanotubes to be dispersed at loading levels up to 3 weight % in a polyimide solution without visual agglomeration. The films were further characterized for their electrical and mechanical properties.

  19. Nanocomposite films

    DOEpatents

    Mitlin, David; , Ophus, Colin; Evoy, Stephane; Radmilovic, Velimir; Mohammadi, Reza; Westra, Ken; Nelson-Fitzpatrick, Nathaniel; Lee, Zonghoon

    2010-07-20

    A thin-film composition of nanocrystal molybdenum in an amorphous metallic matrix may be formed by co-sputtering Mo with aluminum or nickel. NEMS cantilevers may be formed from the film. The films exhibit high nanoindentation hardness and a reduction in roughness and intrinsic stress, while maintaining resistivity in the metallic range.

  20. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - an agricultural waste.

    PubMed

    Soleimani, Mansooreh; Kaghazchi, Tahereh

    2008-09-01

    In this study, hard shell of apricot stones was selected from agricultural solid wastes to prepare effective and low cost adsorbent for the gold separation from gold-plating wastewater. Different adsorption parameters like adsorbent dose, particle size of activated carbon, pH and agitation speed of mixing on the gold adsorption were studied. The results showed that under the optimum operating conditions, more than 98% of gold was adsorbed onto activated carbon after only 3h. The equilibrium adsorption data were well described by the Freundlich and Langmuir isotherms. Isotherms have been used to obtain thermodynamic parameters. Gold desorption studies were performed with aqueous solution mixture of sodium hydroxide and organic solvents at ambient temperatures. Quantitative recovery of gold ions is possible by this method. As hard shell of apricot stones is a discarded as waste from agricultural and food industries, the prepared activated carbon is expected to be an economical product for gold ion recovery from wastewater.

  1. Improvement of carbon nanotubes films conductivity for use in biomedical application

    NASA Astrophysics Data System (ADS)

    Dybowska-Sarapuk, Łucja; Janczak, Daniel; Krzemiński, Jakub; Lepak, Sandra; Łekawa-Raus, Agnieszka; MłoŻniak, Anna; Jakubowska, Małgorzata

    2017-08-01

    Carbon nanotube (CNT) yarns and sheets due to their biocompatibility, very good mechanical strength and flexibility can find wide range of applications in nanomedicine, inter alia as mechanical actuators for artificial muscles or electrodes used for deep brain stimulation. However, because of CNT film behavior in liquid environment, before their using in biological applications, they should be coated with a special protective layer. The purpose of created coatings is not only to protect the films, but also to increase their conductivity. The aim of the research was to test various methods of achieving such coatings on CNT films and to evaluate quality and flexibility of coated CNT films. The coatings were made using various suspensions containing polymer materials such methyl polymethacrylate and conductive silver flakes. The methods tested in this study were: dipping, painting and flooding of the CNT yarns.

  2. Transparent sunlight conversion film based on carboxymethyl cellulose and carbon dots.

    PubMed

    You, Yaqin; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu

    2016-10-20

    Transparent sunlight conversion film based on carboxymethyl cellulose (CMC) and carbon dots (CDs) has been developed for the first time through dispersion of CDs in CMC aqueous solution. Due to the hydrogen bonds interaction, CMC can effectively absorb the CDs, whose surfaces are functionalized by lots of polar groups. The results from atomic force microscopy (AFM), scanning electron microscopy (SEM) confirm that the composite film possesses a homogeneous and compact structure. Besides, the CMC matrix neither competes for absorbing excitation light nor absorbs the emissions of CDs, which reserves the inherent optical properties of the individual CDs. The composite films can efficiently convert ultraviolet light to blue light. What's more, the film is transparent and possesses excellent mechanical properties, expected to apply in the field of agricultural planting for sunlight conversion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A new, bright and hard aluminum surface produced by anodization

    NASA Astrophysics Data System (ADS)

    Hou, Fengyan; Hu, Bo; Tay, See Leng; Wang, Yuxin; Xiong, Chao; Gao, Wei

    2017-07-01

    Anodized aluminum (Al) and Al alloys have a wide range of applications. However, certain anodized finishings have relatively low hardness, dull appearance and/or poor corrosion resistance, which limited their applications. In this research, Al was first electropolished in a phosphoric acid-based solution, then anodized in a sulfuric acid-based solution under controlled processing parameters. The anodized specimen was then sealed by two-step sealing method. A systematic study including microstructure, surface morphology, hardness and corrosion resistance of these anodized films has been conducted. Results show that the hardness of this new anodized film was increased by a factor of 10 compared with the pure Al metal. Salt spray corrosion testing also demonstrated the greatly improved corrosion resistance. Unlike the traditional hard anodized Al which presents a dull-colored surface, this newly developed anodized Al alloy possesses a very bright and shiny surface with good hardness and corrosion resistance.

  4. Terahertz-infrared electrodynamics of single-wall carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Zhukova, E. S.; Grebenko, A. K.; Bubis, A. V.; Prokhorov, A. S.; Belyanchikov, M. A.; Tsapenko, A. P.; Gilshteyn, E. P.; Kopylova, D. S.; Gladush, Yu G.; Anisimov, A. S.; Anzin, V. B.; Nasibulin, A. G.; Gorshunov, B. P.

    2017-11-01

    Broad-band (4-20 000 cm-1) spectra of real and imaginary conductance of a set of high-quality pristine and AuCl3-doped single-walled carbon nanotube (SWCNT) films with different transparency are systematically measured. It is shown that while the high-energy (≥1 eV) response is determined by well-known interband transitions, the lower-energy electrodynamic properties of the films are fully dominated by unbound charge carriers. Their main spectral effect is seen as the free-carrier Drude-type contribution. Partial localization of these carriers leads to a weak plasmon resonance around 100 cm-1. At the lowest frequencies, below 10 cm-1, a gap-like feature is detected whose origin is associated with the energy barrier experienced by the carriers at the intersections between SWCNTs. It is assumed that these three mechanisms are universal and determine the low-frequency terahertz-infrared electrodynamics of SWCNT wafer-scale films.

  5. Electro-optical properties of the metal oxide-carbon thin film system of CdO-LCC

    NASA Astrophysics Data System (ADS)

    Kokshina, A. V.; Smirnov, A. V.; Razina, A. G.

    2016-08-01

    This article presents the results of a study electrical and optical properties of the thin film system of CdO-LCC. Cadmium oxide films were obtained by method of thermal oxidation. CdO-LCC thin film system was produced by applying on a CdO film a linear chain carbon film in thickness of 100 nm using the ion-plasma method, after which the obtained system was annealed. The studies showed that the obtained CdO-LCC films are quite transparent in the visible region; it has polycrystalline structure, thickness around 300 nm, the band gap to 2.3 eV. The obtained thin film system has photosensitive properties.

  6. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    NASA Astrophysics Data System (ADS)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  7. Incorporation of single-walled carbon nanotubes into ferrocene-modified linear polyethylenimine redox polymer films.

    PubMed

    Tran, Tu O; Lammert, Emily G; Chen, Jie; Merchant, Stephen A; Brunski, Daniel B; Keay, Joel C; Johnson, Matthew B; Glatzhofer, Daniel T; Schmidtke, David W

    2011-05-17

    In this study, we describe the effects of incorporating single-walled carbon nanotubes (SWNTs) into redox polymer-enzyme hydrogels. The hydrogels were constructed by combining the enzyme glucose oxidase with a redox polymer (Fc-C(6)-LPEI) in which ferrocene was attached to linear poly(ethylenimine) by a six-carbon spacer. Incorporation of SWNTs into these films changed their morphology and resulted in a significant increase in the enzymatic response at saturating glucose concentrations (3 mA/cm(2)) as compared to films without SWNTs (0.6 mA/cm(2)). Likewise, the sensitivity at 5 mM glucose was significantly increased in the presence of SWNTs (74 μA/cm(2)·mM) as compared to control films (26 μA/cm(2)·mM). We demonstrate that the increase in the electrochemical and enzymatic response of these films depends on the amount of SWNTs incorporated and the method of SWNT incorporation. Furthermore, we report that the presence of SWNTs in thick films allows for more of the ferrocene redox centers to become accessible. The high current densities of the hydrogels should allow for the construction of miniature biosensors and enzymatic biofuel cells.

  8. Arc-evaporated carbon films: Optical properties and electron mean free paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arakawa, E.T.; Dolfini, S.M.; Ashley, J.C.

    1985-06-15

    The real and imaginary parts of the complex refractive index, n(..omega..) = n(..omega..)+ik(..omega..), of arc-evaporated carbon films have been obtained over the range of photon energies h..omega.. from 0.5 to 62.0 eV. Values of k(..omega..) obtained from transmission measurements in this energy range were combined with values of k(..omega..) from the literature in the infrared and soft-x-ray regions. A Kramers-Kronig analysis then yielded the values of n(..omega..). The density of the arc-evaporated carbon films was found to be 1.90 +- 0.05 g cm/sup -3/ by the ''sink-float'' method, and their thicknesses were determined optically. A sum-rule calculation yielded the effectivemore » numbers of valence and core electrons to be 4.2 and 1.8, respectively. The experimental values determined for n(..omega..) have been used to estimate values of the inelastic mean free path ..lambda..(E) for electrons of energy E from 200 to 3000 eV in amorphous carbon. Good agreement is found between ..lambda..(E) and experimentally determined values of electron attenuation length L(E) from the literature.« less

  9. Carbon nanostructured films modified by metal nanoparticles supported on filtering membranes for electroanalysis.

    PubMed

    Paramo, Erica; Palmero, Susana; Heras, Aranzazu; Colina, Alvaro

    2018-02-01

    A novel methodology to prepare sensors based on carbon nanostructures electrodes modified by metal nanoparticles is proposed. As a proof of concept, a novel bismuth nanoparticle/carbon nanofiber (Bi-NPs/CNF) electrode and a carbon nanotube (CNT)/gold nanoparticle (Au-NPs) have been developed. Bi-NPs/CNF films were prepared by 1) filtering a dispersion of CNFs on a polytetrafluorethylene (PTFE) filter, and 2) filtering a dispersion of Bi-NPs chemically synthesized through this CNF/PTFE film. Next the electrode is prepared by sticking the Bi-NPs/CNF/PTFE film on a PET substrate. In this work, Bi-NPs/CNF ratio was optimized using a Cd 2+ solution as a probe sample. The Cd anodic stripping peak intensity, registered by differential pulse anodic stripping voltammetry (DPASV), is selected as target signal. The voltammograms registered for Cd stripping with this Bi-NPs/CNF/PTFE electrode showed well-defined and highly reproducible electrochemical. The optimized Bi-NPs/CNF electrode exhibits a Cd 2+ detection limit of 53.57 ppb. To demonstrate the utility and versatility of this methodology, single walled carbon nanotubes (SWCNTs) and gold nanoparticles (Au-NPs) were selected to prepare a completely different electrode. Thus, the new Au-NPs/SWCNT/PTFE electrode was tested with a multiresponse technique. In this case, UV/Vis absorption spectroelectrochemistry experiments were carried out for studying dopamine, demonstrating the good performance of the Au-NPs/SWCNT electrode developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Formation of nanocrystalline diamond in polymer like carbon films deposited by plasma CVD.

    PubMed

    Bhaduri, A; Chaudhuri, P

    2009-09-01

    Conventional plasma enhanced chemical vapour deposition (PECVD) method is generally not suitable for the growth of nanocrystalline diamond (NCD) films. However, our study shows that conditions favourable for powder formation help to grow large amount of nanocrystallites in conventional PECVD. With CH4 as the carbon source gas, dilution with Ar and moderate (50 W) rf power enhances formations of powders (nanoparticles) and C2 dimers within the plasma. On the other hand, with pure CH4 or with hydrogen diluted CH4, powder formation as also NCD growth is hindered. It is proposed that the nanoparticles formed in the plasma act as the "islands" while the C2 dimers are the "seeds" for the NCD growth. The structure of the films deposited on the grounded anode under different conditions of dilution has been studied. It is observed that with high Ar dilution the films contain NCD embedded in polymer like carbon (PLC) matrix.

  11. The structure, surface topography and mechanical properties of Si-C-N films fabricated by RF and DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shi, Zhifeng; Wang, Yingjun; Du, Chang; Huang, Nan; Wang, Lin; Ning, Chengyun

    2011-12-01

    Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N2 to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N2 to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties.

  12. Semiconducting Properties of Nanostructured Amorphous Carbon Thin Films Incorporated with Iodine by Thermal Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kamaruzaman, Dayana; Ahmad, Nurfadzilah; Annuar, Ishak; Rusop, Mohamad

    2013-11-01

    Nanostructured iodine-post doped amorphous carbon (a-C:I) thin films were prepared from camphor oil using a thermal chemical vapor deposition (TCVD) technique at different doping temperatures. The structural properties of the films were studied by field-emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), Raman, and Fourier transform infrared (FTIR) studies. FESEM and EDS studies showed successful iodine doping. FTIR and Raman studies showed that the a-C:I thin films consisted of a mixture of sp2- and sp3-bonded carbon atoms. The optical and electrical properties of a-C:I thin films were determined by UV-vis-NIR spectroscopy and current-voltage (I-V) measurement respectively. The optical band gap of a-C thin films decreased upon iodine doping. The highest electrical conductivity was found at 400 °C doping. Heterojunctions are confirmed by rectifying the I-V characteristics of an a-C:I/n-Si junction.

  13. Friction and Wear Properties of Selected Solid Lubricating Films. Part 3; Magnetron-Sputtered and Plasma-Assisted, Chemical-Vapor-Deposited Diamondlike Carbon Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro

    2000-01-01

    To evaluate commercially developed dry solid film lubricants for aerospace bearing applications, an investigation was conducted to examine the friction and wear behavior of magnetron-sputtered diamondlike carbon (MS DLC) and plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DLC) films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Hertzian contact pressure of 0.79 GPa (maximum Hertzian contact pressure of L-2 GPa), and a sliding velocity of 0.2 m/s. The experiments were conducted at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7x10(exp -7) Pa), humid air (relative humidity, approx.20 percent), and dry nitrogen (relative humidity, <1 percent). The resultant films were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and surface profilometry. Marked differences in the friction and wear of the DLC films investigated herein resulted from the environmental conditions. The main criteria for judging the performance of the DLC films were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 10(exp -6) cu mm/N-m or less, respectively. MS DLC films and PACVD DLC films met the criteria in humid air and dry nitrogen but failed in ultrahigh vacuum, where the coefficients of friction were greater than the criterion, 0.3. In sliding contact with 440C stainless steel balls in all three environments the PACVD DLC films exhibited better tribological performance (i.e., lower friction and wear) than the MS DLC films. All sliding involved adhesive transfer of wear materials: transfer of DLC wear debris to the counterpart 440C stainless steel and transfer of 440C stainless steel wear debris to the counterpart DLC film.

  14. Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell

    NASA Astrophysics Data System (ADS)

    Matsuoka, O.; Hiwara, A.; Omi, T.; Toriida, M.; Hayashi, T.; Tanaka, C.; Saito, Y.; Ishida, T.; Tan, H.; Ono, S. S.; Yamamoto, S.

    We investigated the influence of vinylene carbonate, as an additive molecule, on the decomposition phenomena of electrolyte solution [ethylene carbonate (EC)—ethyl methyl carbonate (EMC) (1:2 by volume) containing 1 M LiPF 6] on a highly oriented pyrolytic graphite (HOPG) negative electrode by using cyclic voltammetry (CV) and atomic force microscopy (AFM). Vinylene carbonate deactivated reactive sites (e.g. radicals and oxides at the defects and the edge of carbon layer) on the cleaved surface of the HOPG negative electrode, and prevented further decomposition of the other solvents there. Further, vinylene carbonate induced an ultra-thin film (less than 1.0 nm in thickness) on the terrace of the basal plane of the HOPG negative electrode, and this film suppressed the decomposition of electrolyte solution on the terraces of the basal plane. We consider that this ultra-thin passivating film is composed of a reduction product of vinylene carbonate (VC), and might have a polymer structure. These induced effects might explain how VC improves the life performance of lithium-ion cells.

  15. Microstructural Evolution of Hypoeutectic, Near-Eutectic, and Hypereutectic High-Carbon Cr-Based Hard-Facing Alloys

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Ming; Chang, Chia-Ming; Chen, Jie-Hao; Hsieh, Chih-Chun; Wu, Weite

    2009-05-01

    A series of high-carbon Cr-based hard-facing alloys were successfully fabricated on a substrate of 0.45 pct C carbon steel by gas tungsten arc welding (GTAW) process using various alloy fillers with chromium and chromium carbide, CrC (Cr:C = 4:1) powders. These claddings were designed to observe hypoeutectic, near-eutectic, and hypereutectic structures with various (Cr,Fe)23C6 and (Cr,Fe)7C3 carbides at room temperature. According to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and optical microscopy (OM), in 3.8 pct C cladding, the microstructure consisted of the primary carbides with outer shells (Cr,Fe)23C6 surrounding (Cr,Fe)7C3 cores and [ α + (Cr,Fe)23C6] eutectic structures. In 5.9 pct C cladding, the composite comprised primary (Cr,Fe)7C3 as the reinforcing phase and [α + (Cr,Fe)7C3] eutectic structures as matrix. Various morphologies of carbides were found in primary and eutectic (Cr,Fe)7C3 carbides, which included bladelike and rodlike (with a hexagonal cross section). The 5.9C cladding with great amounts of primary (Cr,Fe)7C3 carbides had the highest hardness (approximately HRC 63.9) of the all conditions.

  16. Effect of chromium underlayer on the properties of nano-crystalline diamond films

    NASA Astrophysics Data System (ADS)

    Garratt, E.; AlFaify, S.; Yoshitake, T.; Katamune, Y.; Bowden, M.; Nandasiri, M.; Ghantasala, M.; Mancini, D. C.; Thevuthasan, S.; Kayani, A.

    2013-01-01

    This paper investigated the effect of chromium underlayer on the structure, microstructure, and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on single crystal silicon substrate with a thin film of chromium as an underlayer. Characterization of the film was implemented using non-Rutherford backscattering spectrometry, Raman spectroscopy, near-edge x-ray absorption fine structure, x-ray diffraction, and atomic force microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphitic phases of the films evaluated by x-ray and optical spectroscopic analyses determined consistency between the sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.

  17. Hard template synthesis of metal nanowires

    NASA Astrophysics Data System (ADS)

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-11-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  18. Hard template synthesis of metal nanowires.

    PubMed

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  19. Preparation and characterization of graphene/turbostratic carbon derived from chitosan film for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hanappi, M. F. Y. M.; Deraman, M.; Suleman, M.; Othman, M. A. R.; Basri, N. H.; Nor, N. S. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.

    2018-04-01

    Electrochemical capacitors or supercapacitors are the potential energy storage devices which are known for having higher specific capacitance and specific energy than electrolytic capacitors. Electric double-layer capacitors (EDLCs) also referred as ultracapacitors is a class of supercapacitors that employ different forms of carbon like activated carbon, CNT, graphene etc., as electrodes. The performance of the supercapacitors is determined by its components namely electrolyte, electrode, etc. Carbon electrodes with high surface area and desired pore size distribution are always preferred and which can be tailored by varying the precursor and method of preparation. In recent years, owing to their low cost, ease of synthesis, high stability and conductivity, the activated carbons derived from biomass precursors have been investigated as potential electrode material for the EDLCs. In this report, we present the preparation and characterization of graphene/turbostratic carbon monolith (CM) electrodes from the carbon grains (CGs) obtained by carbonization (under the flow of nitrogen, N2 gas and over a temperature range from 600 °C to 1000 °C) of biomass precursor chitosan film. The procedure to prepare the chitosan film is described elsewhere. The carbon grains are characterized using Raman spectroscopy (RS) and X-ray diffraction (XRD). We expect that the CGs would have the similar characteristics as graphene and would be a potential electrode material for EDLCs application.

  20. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.

    PubMed

    Allen, Ranulfo; Pan, Lijia; Fuller, Gerald G; Bao, Zhenan

    2014-07-09

    Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.

  1. Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes.

    PubMed

    McMorrow, Julian J; Cress, Cory D; Gaviria Rojas, William A; Geier, Michael L; Marks, Tobin J; Hersam, Mark C

    2017-03-28

    Increasingly complex demonstrations of integrated circuit elements based on semiconducting single-walled carbon nanotubes (SWCNTs) mark the maturation of this technology for use in next-generation electronics. In particular, organic materials have recently been leveraged as dopant and encapsulation layers to enable stable SWCNT-based rail-to-rail, low-power complementary metal-oxide-semiconductor (CMOS) logic circuits. To explore the limits of this technology in extreme environments, here we study total ionizing dose (TID) effects in enhancement-mode SWCNT-CMOS inverters that employ organic doping and encapsulation layers. Details of the evolution of the device transport properties are revealed by in situ and in operando measurements, identifying n-type transistors as the more TID-sensitive component of the CMOS system with over an order of magnitude larger degradation of the static power dissipation. To further improve device stability, radiation-hardening approaches are explored, resulting in the observation that SWNCT-CMOS circuits are TID-hard under dynamic bias operation. Overall, this work reveals conditions under which SWCNTs can be employed for radiation-hard integrated circuits, thus presenting significant potential for next-generation satellite and space applications.

  2. Films, Buckypapers and Fibers from Clay, Chitosan and Carbon Nanotubes

    PubMed Central

    Higgins, Thomas M.; Warren, Holly; Panhuis, Marc in het

    2011-01-01

    The mechanical and electrical characteristics of films, buckypapers and fiber materials from combinations of clay, carbon nanotubes (CNTs) and chitosan are described. The rheological time-dependent characteristics of clay are maintained in clay–carbon nanotube–chitosan composite dispersions. It is demonstrated that the addition of chitosan improves their mechanical characteristics, but decreases electrical conductivity by three-orders of magnitude compared to clay–CNT materials. We show that the electrical response upon exposure to humid atmosphere is influenced by clay-chitosan interactions, i.e., the resistance of clay–CNT materials decreases, whereas that of clay–CNT–chitosan increases. PMID:28348277

  3. Raman spectra boron doped amorphous carbon thin film deposited by bias assisted-CVD

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Fadzilah, A. N.; Dayana, K.; Saurdi, I.; Malek, M. F.; Nurbaya, Z.; Shafura, A. K.; Rusop, M.

    2018-05-01

    Boron doped amorphous carbon thin film carbon was deposited at 200°C-350°C by bias assisted-CVD using palm oil as a precursor material. The structural boron doped amorphous carbon films were discussed by Raman analysis through the evolution of D and G bands. The spectral evolution observed showed the increase of upward shift of D and G peaks as substrate deposition temperatures increased. These structural changes were further correlated with optical gap and the results obtained are discussed and compared. The estimated optical band gap is found to be 1.9 to 2.05 eV and conductivity is to be in the range of 10-5 Scm-1 to 10-4 Scm-1. The decrease of optical band gap is associated to conductivity increased which change the characteristic parameters of Raman spectra including the position of G peak, full width at half maximum of G peak, and ID/IG.

  4. Tunable Manipulation of Mineral Carbonation Kinetics in Nanoscale Water Films via Citrate Additives.

    PubMed

    Miller, Quin R S; Schaef, Herbert T; Kaszuba, John P; Qiu, Lin; Bowden, Mark E; McGrail, Bernard P

    2018-06-06

    We explored the influence of a model organic ligand on mineral carbonation in nanoscale interfacial water films by conducting five time-resolved in situ X-ray diffraction (XRD) experiments at 50 °C. Forsterite was exposed to water-saturated supercritical carbon dioxide (90 bar) that had been equilibrated with 0-0.5 m citrate (C 6 H 5 O 7 -3 ) solutions. The experimental results demonstrated that greater concentrations of citrate in the nanoscale interfacial water film promoted the precipitation of magnesite (MgCO 3 ) relative to nesquehonite (MgCO 3 ·3H 2 O). At the highest concentrations tested, magnesite nucleation and growth were inhibited, lowering the carbonation rate constant from 9.1 × 10 -6 to 3.6 × 10 -6 s -1 . These impacts of citrate were due to partial dehydration of Mg 2+ (aq) and the adsorption of citrate onto nuclei and magnesite surfaces. This type of information may be used to predict and tailor subsurface mineralization rates and pathways.

  5. Vapor annealing synthesis of non-epitaxial MgB2 films on glassy carbon

    NASA Astrophysics Data System (ADS)

    Baker, A. A.; Bayu Aji, L. B.; Bae, J. H.; Stavrou, E.; Steich, D. J.; McCall, S. K.; Kucheyev, S. O.

    2018-05-01

    We describe the fabrication and characterization of 25–800 nm thick MgB2 films on glassy carbon substrates by Mg vapor annealing of sputter-deposited amorphous B films. Results demonstrate a critical role of both the initial B film thickness and the temperature–time profile on the microstructure, elemental composition, and superconducting properties of the resultant MgB2 films. Films with thicknesses of 55 nm and below exhibit a smooth surface, with a roughness of 1.1 nm, while thicker films have surface morphology consisting of elongated nano-crystallites. The suppression of the superconducting transition temperature for thin films scales linearly with the oxygen impurity concentration and also correlates with the amount of lattice disorder probed by Raman scattering. The best results are obtained by a rapid (12 min) anneal at 850 °C with large temperature ramp and cooling rates of ∼540 °C min‑1. Such fast processing suppresses the deleterious oxygen uptake.

  6. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    NASA Astrophysics Data System (ADS)

    Jeon, Jun-Young; Ha, Tae-Jun

    2017-08-01

    In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  7. Synthesis and tribological properties of diamond-like carbon films by electrochemical anode deposition

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhang, GuiFeng; Hou, XiaoDuo; Deng, DeWei

    2012-06-01

    Diamond-like carbon films (DLC) are deposited on Ti substrate by electrochemical anodic deposition at room temperature in pure methanol solution using a pulsed DC voltage at a range from 200 V to 2000 V. Raman spectroscopy analysis of the films reveals two broaden characteristic absorption peaks centred at ˜1350 cm-1 and 1580 cm-1, relating to D- and G-band of typical DLC films, respectively. A broad peak centred at 1325-1330 cm-1 is observed when an applied potential is 1200 V, which can confirm that the deposited films contained diamond structure phase. Tribological properties of the coated Ti substrates have been measured by means of a ball-on-plate wear test machine. A related growth mechanism of DLC films by the anodic deposition mode has also been discussed.

  8. Investigation of the Emissivity and Suitability of a Carbon Thin Film for Terahertz Absorbers

    DTIC Science & Technology

    2016-06-01

    Carbonization In order to verify whether the carbon soot coated THz sensor produces sufficient spectral emissivity for IR-based readout, dummy test...ABSTRACT (maximum 200 words) The main goal of this work is to optimize the emissivity of terahertz (THz) thermal sensors by deposition of a carbon thin...film. Previously, these thermal sensors were designed to detect THz radiation utilizing metamaterials in a complicated optical probing scheme. We

  9. Microstructure and mechanical properties of diamond films on titanium-aluminum-vanadium alloy

    NASA Astrophysics Data System (ADS)

    Catledge, Shane Aaron

    The primary focus of this dissertation is the investigation of the processing-structure-property relationships of diamond films deposited on Ti-6Al-4V alloy by microwave plasma chemical vapor deposition (MPCVD). By depositing a well-adhered protective layer of diamond on an alloy component, its hardness, wear-resistance, performance, and overall lifetime could be significantly increased. However, due to the large thermal expansion mismatch between the diamond film and metal (and the corresponding residual stress induced in the film), film adhesion is typically unsatisfactory and often results in immediate delamination after processing. Therefore, it is a major goal of this research to improve adhesion of the diamond film to the alloy substrate. Through the use of innovative processing techniques involving MPCVD deposition conditions and methane (CH4), nitrogen (N2), and hydrogen (H2) chemistry, we have achieved diamond films which consistently adhere to the alloy substrate. In addition, we have discovered that, with the appropriate choice of deposition conditions, the film structure can be tailored to range from highly crystalline, well-faceted diamond to nanocrystalline diamond with extremely low surface roughness (as low as 27 nm). The relationship between processing and structure was studied using in-situ optical emission spectroscopy, micro-Raman spectroscopy, surface profilometry, glancing-angle x-ray diffraction, and scanning electron microscopy. We observe that when nitrogen is added to the H2/CH4 feedgas mixture, a carbon-nitrogen (CN) emission band arises and its relative abundance to the carbon dimer (C2) gas species is shown to have a pronounced influence on the diamond film structure. By appropriate choice of deposition chemistry and conditions, we can tailor the diamond film structure and its corresponding properties. The mechanical properties of interest in this thesis are those relating to the integrity of the film/substrate interface, as well as the

  10. Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytes

    NASA Astrophysics Data System (ADS)

    Brousse, K.; Huang, P.; Pinaud, S.; Respaud, M.; Daffos, B.; Chaudret, B.; Lethien, C.; Taberna, P. L.; Simon, P.

    2016-10-01

    Carbide derived carbons (CDCs) are promising materials for preparing integrated micro-supercapacitors, as on-chip CDC films are prepared via a process fully compatible with current silicon-based device technology. These films show good adherence on the substrate and high capacitance thanks to their unique nanoporous structure which can be fine-tuned by adjusting the synthesis parameters during chlorination of the metallic carbide precursor. The carbon porosity is mostly related to the synthesis temperature whereas the thickness of the films depends on the chlorination duration. Increasing the pore size allows the adsorption of large solvated ions from organic electrolytes and leads to higher energy densities. Here, we investigated the electrochemical behavior and performance of on-chip TiC-CDC in ionic liquid solvent mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) diluted in either acetonitrile or propylene carbonate via cyclic voltammetry and electrochemical impedance spectroscopy. Thin CDC films exhibited typical capacitive signature and achieved 169 F cm-3 in both electrolytes; 65% of the capacitance was still delivered at 1 V s-1. While increasing the thickness of the films, EMI+ transport limitation was observed in more viscous PC-based electrolyte. Nevertheless, the energy density reached 90 μW h cm-2 in 2M EMIBF4/ACN, confirming the interest of these CDC films for micro-supercapacitors applications.

  11. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature

    PubMed Central

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-01-01

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures. PMID:28772520

  12. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature.

    PubMed

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-02-10

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures.

  13. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.

    PubMed

    Cao, Xuan; Chen, Haitian; Gu, Xiaofei; Liu, Bilu; Wang, Wenli; Cao, Yu; Wu, Fanqi; Zhou, Chongwu

    2014-12-23

    Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.

  14. Correlation study of nanocrystalline carbon doped thin films prepared by a thermionic vacuum arc deposition technique

    NASA Astrophysics Data System (ADS)

    Dinca-Balan, Virginia; Vladoiu, Rodica; Mandes, Aurelia; Prodan, Gabriel

    2017-11-01

    The synthesis of Ag, Mg and Si nanocrystalline, embedded in a hydrogen-free amorphous carbon (a-C) matrix, deposited by a high vacuum and free buffer gas technique, were investigated. The films with compact structures and extremely smooth surfaces were prepared using the thermionic vacuum arc method in one electron gun configuration, on glass and silicon substrates. The surface morphology and wettability of the obtained multifunctional thin films were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and free surface energy (FSE) by See System. The results from the TEM measurements show how the Ag, Mg and Si interacted with carbon and the influence these materials have on the thin film structure formation and the grain size distribution. SEM correlated with EDX results reveal a very precise comparative study, regarding the quantity of the elements that morphed into carbides nanostructures. Also, the FSE results prove how different materials in combination with carbon can make changes to the surface properties.

  15. The Silent Film Era: Silent Films, NAD Films, and the Deaf Community's Response

    ERIC Educational Resources Information Center

    Schuchman, John S.

    2004-01-01

    Older citizens who are deaf or hard of hearing recall the years of silent films (1893-1929) as a "golden era" in the cultural history of the American Deaf community. It was golden for several reasons. First, this period represents the one brief time that deaf and hard of hearing citizens had comparatively equal access to motion pictures--a…

  16. Structural and Electrical Characteristics of Carbon Nanowalls Synthesized on the Polyimide Film.

    PubMed

    Kwon, Seok Hun; Kim, Hyung Jin; Choi, Won Seok; Kang, Hyunil

    2018-09-01

    In this study, the structural and electrical characteristics of carbon nanowalls (CNWs) synthesized on polyimide films were investigated. CNWs were synthesized on polyimide films as various growth times. The cross-section and surface of the CNWs synthesized were examined using FE-SEM. The growth and defects of CNWs were observed by raman spectrum. The hall measurement system was used to analyzed sheet resistance, resistivity and conductivity. The CNWs synthesized at 40 minutes showed outstanding structural and electrical characterizations than another growth times.

  17. Copper Phthalocyanine Functionalized Single-Walled Carbon Nanotubes: Thin Films for Optical Detection.

    PubMed

    Banimuslem, Hikmat; Hassan, Aseel; Basova, Tamara; Durmuş, Mahmut; Tuncel, Sinem; Esenpinar, Aliye Asli; Gürek, Ayşe Gül; Ahsen, Vefa

    2015-03-01

    Thin films of non-covalently hybridized single-walled carbon nanotubes (SWCNT) and tetra-substituted copper phthalocyanine (CuPcR4) molecules have been produced from their solutions in dimethylformamide (DMF). FTIR spectra revealed the 7π-7π interaction between SWCNTs and CuPcR4 molecules. DC conductivity of films of acid-treated SWCNT/CuPcR4 hybrid has increased by more than three orders of.magnitude in comparison with conductivity of CuPcR4 films. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements have shown that films obtained from the acid-treated SWCNTs/CuPcR4 hybrids demonstrated more homogenous surface which is ascribed to the highly improved solubility of the hybrid powder in DMF Using total internal reflection ellipsometry spectroscopy (TIRE), thin films of the new hybrid have been examined as an optical sensing membrane for the detection of benzo[a]pyrene in water to demonstrate the sensing properties of the hybrid.

  18. Study of PECVD films containing flourine and carbon and diamond like carbon films for ultra low dielectric constant interlayer dielectric applications

    NASA Astrophysics Data System (ADS)

    Sundaram, Nandini Ganapathy

    precursors. Pre and post-anneal structural properties of the deposited thin film were studied using laser excitation of 633 nm in a Jobin Yvon Labram high-resolution micro-Raman spectrometer. The film was further characterized using AFM, FTIR, XRD, goniometry and electrical testing. Average film roughness as measured by AFM was less than 1 nm, the k-value was 2.5, and the contact angle with water was 42°. Lastly, layered dielectric films comprising of Diamond like Carbon (DLC) and Amorphous Fluorocarbon (a:C-F) were generated using three different stack configurations and subsequently evaluated. Seven unique process conditions generated promising stacks with k-values between 1.69 and 1.95. Of these, only one film exhibited very low shrinkage rates acceptable for semiconductor device processing. Annealed a:C-F films with DLC top coat are similar in bonding structure to as deposited FC films proving that DLC deposition significantly modified the bonding structure of the underlying annealed a:C-F film. Stacks comprised of a:C-F films with higher oxygen content, deposited using high FRRs exhibited both macro and microbuckling to a larger degree and extent. Film integrity was preserved by annealing the Fluorocarbon component or by providing a DLC base coat.

  19. Overlay degradation induced by film stress

    NASA Astrophysics Data System (ADS)

    Huang, Chi-hao; Liu, Yu-Lin; Luo, Shing-Ann; Yang, Mars; Yang, Elvis; Hung, Yung-Tai; Luoh, Tuung; Yang, T. H.; Chen, K. C.

    2017-03-01

    The semiconductor industry has continually sought the approaches to produce memory devices with increased memory cells per memory die. One way to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories is 3D stacked flash cell array. In constructing 3D NAND flash memories, increasing the number of stacked layers to build more memory cell number per unit area necessitates many high-aspect-ratio etching processes accordingly the incorporation of thick and unique etching hard-mask scheme has been indispensable. However, the ever increasingly thick requirement on etching hard-mask has made the hard-mask film stress control extremely important for maintaining good process qualities. The residual film stress alters the wafer shape consequently several process impacts have been readily observed across wafer, such as wafer chucking error on scanner, film peeling, materials coating and baking defects, critical dimension (CD) non-uniformity and overlay degradation. This work investigates the overlay and residual order performance indicator (ROPI) degradation coupling with increasingly thick advanced patterning film (APF) etching hard-mask. Various APF films deposited by plasma enhanced chemical vapor deposition (PECVD) method under different deposition temperatures, chemicals combinations, radio frequency powers and chamber pressures were carried out. And -342MPa to +80MPa film stress with different film thicknesses were generated for the overlay performance study. The results revealed the overlay degradation doesn't directly correlate with convex or concave wafer shapes but the magnitude of residual APF film stress, while increasing the APF thickness will worsen the overlay performance and ROPI strongly. High-stress APF film was also observed to enhance the scanner chucking difference and lead to more serious wafer to wafer overlay variation. To reduce the overlay degradation from ever increasingly thick APF etching hard-mask, optimizing the

  20. Release of carbon nanoparticles of different size and shape from nanocomposite poly(lactic) acid film into food simulants.

    PubMed

    Velichkova, Hristiana; Kotsilkov, Stanislav; Ivanov, Evgeni; Kotsilkova, Rumiana; Gyoshev, Stanislav; Stoimenov, Nikolay; Vitanov, Nikolay K

    2017-06-01

    Poly(lactic) acid (PLA) film with 2 wt% mixed carbon nanofillers of graphene nanoplates (GNPs) and multiwall carbon nanotubes (MWCNTs) in a weight ratio of 1:1 with impurities of fullerene and carbon black (CB) was produced by layer-to-layer deposition and hot pressing. The release of carbon nanoparticles from the film was studied at varying time-temperature conditions and simulants. Migrants in simulant solvents were examined with laser diffraction analysis and transmission electron microscopy (TEM). Film integrity and the presence of migrants on the film surfaces were visualised by scanning electron microscopy (SEM). The partial dissolution of PLA polymer in the solvents was confirmed by swelling tests and differential scanning calorimetry (DSC). Nanoparticle migrants were not detected in the simulants (at the LOD 0.020 μm of the laser diffraction analysis) after migration testing at 40°C for 10 days. However, high-temperature migration testing at 90°C for 4 h provoked a release of GNPs from the film into ethanol, acetic acid and oil-based food simulants. Short carbon nanotubes were observed rarely to release in the most aggressive acetic acid solvent. Obviously, the enhanced molecular mobility at temperatures above the glass transition and partial dissolution of PLA polymer by the food simulant facilitate the diffusion processes. Moreover, shape, size and concentration of nanoparticles play a significant role. Flexible naked GNPs (lateral size 100-1000 nm) easily migrate when the polymer molecules exhibit enhanced mobility, while fibrous MWCNTs (> 1 μm length) formed entangled networks on the film surfaces as the PLA polymer is partly dissolved, preventing their release into food simulants. The impurities of fullerenes and CB (5-30 nm) were of minor concentration in the polymer, therefore their migration is low or undetectable. The total amount of released migrants is below overall migration limits.

  1. Thin-film hermeticity - A quantitative analysis of diamondlike carbon using variable angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Orzeszko, S.; De, Bhola N.; Woollam, John A.; Pouch, John J.; Alterovitz, Samuel A.

    1988-01-01

    This paper reports on the successful application of variable-angle spectroscopic ellipsometry to quantitative thin-film hermeticity evaluation. It is shown that, under a variety of film preparations and moisture introduction conditions, water penetrates only a very thin diamondlike carbon (DLC) top surface-roughness region. Thus, DLC is an excellent candidate for use as protective coatings in adverse chemical and aqueous environments.

  2. Hard template synthesis of metal nanowires

    PubMed Central

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed. PMID:25453031

  3. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.

    PubMed

    Ogihara, Hitoshi; Kibayashi, Hiro; Saji, Tetsuo

    2012-09-26

    Patterned carbon nanotube (CNT)/acrylic resin composite films were prepared using microcontact printing (μCP). To prepare ink for μCP, CNTs were dispersed into propylene glycol monomethyl ether acetate (PGMEA) solution in which acrylic resin and a commercially available dispersant (Disperbyk-2001) dissolved. The resulting ink were spin-coated onto poly(dimethylsiloxane) (PDMS) stamps. By drying solvent components from the ink, CNT/polymer composite films were prepared over PDMS stamps. Contact between the stamps and glass substrates provided CNT/polymer composite patternings on the substrates. The transfer behavior of the CNT/polymer composite films depended on the thermal-treatment temperature during μCP; thermal treatment at temperatures near the glass-transition temperature (T(g)) of the acrylic resin was effective to form uniform patternings on substrates. Moreover, contact area between polymer and substrates also affect the transfer behavior. The CNT/polymer composite films showed high electrical conductivity, despite the nonconductivity of polymer components, because CNTs in the films were interconnected. The electrical conductivity of the composite films increased as CNT content in the film became higher; as a result, the composite patternings showed almost as high electrical conductivity as previously reported CNT/polymer bulk composites.

  4. Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes.

    PubMed

    Xiao, Fei; Zhao, Faqiong; Li, Jiangwen; Yan, Rui; Yu, Jingjing; Zeng, Baizhao

    2007-07-16

    A novel composite film modified glassy carbon electrode has been fabricated and characterized by scanning electron microscope (SEM) and voltammetry. The composite film comprises of single-wall carbon nanotube (SWNT), gold nanoparticle (GNP) and ionic liquid (i.e. 1-octyl-3-methylimidazolium hexafluorophosphate), thus has the characteristics of them. The resulting electrode shows good stability, high accumulation efficiency and strong promotion to electron transfer. On it, chloramphenicol can produce a sensitive cathodic peak at -0.66 V (versus SCE) in pH 7.0 phosphate buffer solutions. Parameters influencing the voltammetric response of chloramphenicol are optimized, which include the composition of the film and the operation conditions. Under the optimized conditions, the peak current is linear to chloramphenicol concentration in the range of 1.0x10(-8)-6.0x10(-6) M, and the detection limit is estimated to be 5.0x10(-9) M after an accumulation for 150 s on open circuit. The electrode is applied to the determination of chloramphenicol in milk samples, and the recoveries for the standards added are 97.0% and 100.3%. In addition, the electrochemical reaction of chloramphenicol and the effect of single-wall carbon nanotube, gold nanoparticle and ionic liquid are discussed.

  5. Semiconductor Nanorod–Carbon Nanotube Biomimetic Films for Wire-Free Photostimulation of Blind Retinas

    PubMed Central

    2014-01-01

    We report the development of a semiconductor nanorod-carbon nanotube based platform for wire-free, light induced retina stimulation. A plasma polymerized acrylic acid midlayer was used to achieve covalent conjugation of semiconductor nanorods directly onto neuro-adhesive, three-dimensional carbon nanotube surfaces. Photocurrent, photovoltage, and fluorescence lifetime measurements validate efficient charge transfer between the nanorods and the carbon nanotube films. Successful stimulation of a light-insensitive chick retina suggests the potential use of this novel platform in future artificial retina applications. PMID:25350365

  6. Carbon Nanotube/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Watson, K. A.; Thompson, C. M.; Connell, J. W.

    2002-01-01

    Low solar absorptivity, space environmentally stable polymeric materials possessing sufficient electrical conductivity for electrostatic charge dissipation (ESD) are of interest for potential applications on spacecraft as thin film membranes on antennas, solar sails, large lightweight space optics, and second surface mirrors. One method of imparting electrical conductivity while maintaining low solar absorptivity is through the use of single wall carbon nanotubes (SWNTs). However, SWNTs are difficult to disperse. Several preparative methods were employed to disperse SWNTs into the polymer matrix. Several examples possessed electrical conductivity sufficient for ESD. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  7. Study of surface cleaning methods and pyrolysis temperatures on nanostructured carbon films using x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerber, Pranita; Porter, Lisa M.; McCullough, Lynne A.

    2012-11-15

    Nanostructured carbon (ns-C) films fabricated by stabilization and pyrolysis of diblock copolymers are of interest for a variety of electrical/electronic applications due to their chemical inertness, high-temperature insensitivity, very high surface area, and tunable electrical resistivity over a wide range [Kulkarni et al., Synth. Met. 159, 177 (2009)]. Because of their high porosity and associated high specific surface area, controlled surface cleaning studies are important for fabricating electronic devices from these films. In this study, quantification of surface composition and surface cleaning studies on ns-C films synthesized by carbonization of diblock copolymers of polyacrylonitrile-b-poly(n-butyl acrylate) at two different temperatures weremore » carried out. X-ray photoelectron spectroscopy was used for elemental analysis and to determine the efficacy of various surface cleaning methods for ns-C films and to examine the polymer residues in the films. The in-situ surface cleaning methods included HF vapor treatment, vacuum annealing, and exposure to UV-ozone. Quantitative analysis of high-resolution XPS scans showed 11 at. % nitrogen was present in the films pyrolyzed at 600 Degree-Sign C, suggesting incomplete denitrogenation of the copolymer films. The nitrogen atomic concentration decreased significantly for films pyrolyzed at 900 Degree-Sign C confirming extensive denitrogenation at that temperature. Furthermore, quantitative analysis of nitrogen subpeaks indicated higher loss of nitrogen atoms residing at the edge of graphitic clusters relative to that of nitrogen atoms within the graphitic clusters, suggesting higher graphitization with increasing pyrolysis temperature. Of the surface cleaning methods investigated, in-situ annealing of the films at 300 Degree-Sign C for 40 min was found to be the most efficacious in removing adventitious carbon and oxygen impurities from the surface.« less

  8. Synthesis and film formation of furfuryl- and maleimido carbonic acid derivatives of dextran.

    PubMed

    Elschner, Thomas; Obst, Franziska; Stana-Kleinschek, Karin; Kargl, Rupert; Heinze, Thomas

    2017-04-01

    Carbonic acid derivatives of dextran possessing furfuryl- and maleimido moieties were synthesized and processed into thin films by spin coating. First, products with different degrees of substitution (DS) of up to 3.0 and substitution patterns were obtained and characterized by NMR- and FTIR spectroscopy, as well as elemental analysis. Thin films possessing maleimide groups were obtained by spin coating of maleimido dextran (furan-protected) and dextran furfuryl carbamate that was converted with bismaleimide. The removal of the protecting group (furan) on the thin film was monitored by QCM-D and compared with gravimetric analysis of the bulk material. Film morphology and wettability were determined by means of AFM and contact angle measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Optical, mechanical and surface properties of amorphous carbonaceous thin films obtained by plasma enhanced chemical vapor deposition and plasma immersion ion implantation and deposition

    NASA Astrophysics Data System (ADS)

    Turri, Rafael G.; Santos, Ricardo M.; Rangel, Elidiane C.; da Cruz, Nilson C.; Bortoleto, José R. R.; Dias da Silva, José H.; Antonio, César Augusto; Durrant, Steven F.

    2013-09-01

    Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD.

  10. Functionalization of super-aligned carbon nanotube film using hydrogen peroxide solution and its application in copper electrodeposition.

    PubMed

    Xiong, Lunqiao; Shuai, Jing; Hou, Zecheng; Zhu, Lin; Li, Wenzhen

    2017-07-15

    In order to make super-aligned carbon nanotubes (SACNT) homogeneously spread in electrolytes, a swift and effective method was devised for surface functionalization of SACNT film by ohmic heating using hydrogen peroxide solution. Controllable generation of defects and notable graft of oxygen functional groups on the sidewall of SACNTs were induced as proven by X-ray photoelectron spectroscopy and Raman spectroscopy. Differently from the harsh wet chemical oxidation, the super-aligned morphology and structural integrity of carbon nanotubes in the SACNT film were found to be well preserved by electron microscopy analysis. The functionalized treatment can remove extraneous material contaminating SACNT film and improve its conductivity. The grafting of polar ionizable groups has been proved to effectively eliminate the agglomeration of SACNTs. When the oxidized SACNT film was used as host material for electrodeposition of copper, the composite film of well-bonded SACNTs and Cu was successfully prepared. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Structural characteristics of surface-functionalized nitrogen-doped diamond-like carbon films and effective adjustment to cell attachment

    NASA Astrophysics Data System (ADS)

    Liu, Ai-Ping; Liu, Min; Yu, Jian-Can; Qian, Guo-Dong; Tang, Wei-Hua

    2015-05-01

    Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 51272231, and 51010002) and the China Postdoctoral Science Foundation (Grant Nos. 2012M520063, 2013T60587, and Bsh1201016).

  12. Mussel-Inspired Dopamine and Carbon Nanotube Leading to a Biocompatible Self-Rolling Conductive Hydrogel Film.

    PubMed

    Jiang, Junzi; Huang, Yong; Wang, Yitian; Xu, Hui; Xing, Malcolm; Zhong, Wen

    2017-08-18

    We report a novel self-rolling, conductive, and biocompatible multiwall carbon nanotube (MWCNT)-dopamine-polyethylene glycol (PEG) hydrogel film. The gel can self-fold into a thin tube when it is transferred from a glass slide to an aqueous environment, regardless of the concentrations of the MWCNT. The film presents a highly organized pattern, which results from the self-assembly of hydrophilic dopamine and hydrophobic carbon nanotubes. By exploring the biomedical potential, we found that MWCNT-included rolled film is nontoxic and can promote cell growth. For further functional verification by qPCR (quantitative polymerase chain reaction), bone marrow derived mesenchymal cells present higher levels of osteogenic differentiations in response to a higher concentration of CNTs. The results suggest that the self-rolling, conductive CNT-dopamine-PEG hydrogel could have multiple potentials, including biomedical usage and as a conductive biosensor.

  13. Structure Evolution and Thermoelectric Properties of Carbonized Polydopamine Thin Films.

    PubMed

    Li, Haoqi; Aulin, Yaroslav V; Frazer, Laszlo; Borguet, Eric; Kakodkar, Rohit; Feser, Joseph; Chen, Yan; An, Ke; Dikin, Dmitriy A; Ren, Fei

    2017-03-01

    Carbonization of nature-inspired polydopamine can yield thin films with high electrical conductivity. Understanding of the structure of carbonized PDA (cPDA) is therefore highly desired. In this study, neutron diffraction, Raman spectroscopy, and other techniques indicate that cPDA samples are mainly amorphous with some short-range ordering and graphite-like structure that emerges with increasing heat treatment temperature. The electrical conductivity and the Seebeck coefficient show different trends with heat treatment temperature, while the thermal conductivity remains insensitive. The largest room-temperature ZT of 2 × 10 -4 was obtained on samples heat-treated at 800 °C, which is higher than that of reduced graphene oxide.

  14. Effect Of Chromium Underlayer On The Properties Of Nano-Crystalline Diamond Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garratt, Elias; AlFaify, Salem; Yoshitake, T.

    2013-01-11

    This paper investigated the effect of chromium underlayer on the structure, microstructure and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on silicon substrate with a thin film of chromium as an underlayer. The composition, structure and microstructure of the deposited layers were analyzed using non-Rutherford Backscattering Spectrometry, Raman Spectroscopy, Near-Edge X-Ray Absorption Fine Structure, X-ray Diffraction and Atomic Force Microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphiticmore » phases of the films evaluated by x-ray and optical spectroscopic analysis determined consistency between sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.« less

  15. Plasma CVD of hydrogenated boron-carbon thin films from triethylboron

    NASA Astrophysics Data System (ADS)

    Imam, Mewlude; Höglund, Carina; Schmidt, Susann; Hall-Wilton, Richard; Birch, Jens; Pedersen, Henrik

    2018-01-01

    Low-temperature chemical vapor deposition (CVD) of B—C thin films is of importance for neutron voltaics and semiconductor technology. The highly reactive trialkylboranes, with alkyl groups of 1-4 carbon atoms, are a class of precursors that have been less explored for low-temperature CVD of B—C films. Herein, we demonstrate plasma CVD of B—C thin films using triethylboron (TEB) as a single source precursor in an Ar plasma. We show that the film density and B/C ratio increases with increasing plasma power, reaching a density of 2.20 g/cm3 and B/C = 1.7. This is attributed to a more intense energetic bombardment during deposition and more complete dissociation of the TEB molecule in the plasma at higher plasma power. The hydrogen content in the films ranges between 14 and 20 at. %. Optical emission spectroscopy of the plasma shows that BH, CH, C2, and H are the optically active plasma species from TEB. We suggest a plasma chemical model based on β-hydrogen elimination of C2H4 to form BH3, in which BH3 and C2H4 are then dehydrogenated to form BH and C2H2. Furthermore, C2H2 decomposes in the plasma to produce C2 and CH, which together with BH and possibly BH3-x(C2H5)x are the film forming species.

  16. Time dependence of carbon film deposition on SnO{sub 2}/Si using DC unbalanced magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfiadi, H., E-mail: yudi@fi.itb.ac.id; Aji, A. S., E-mail: yudi@fi.itb.ac.id; Darma, Y., E-mail: yudi@fi.itb.ac.id

    Carbon deposition on SnO{sub 2} layer has been demonstrated at low temperature using DC unbalanced magnetron-sputtering technique for various time depositions. Before carbon sputtering process, SnO{sub 2} thin layer is grown on silicon substrate by thermal evaporation method using high purity Sn wire and then fully oxidizes by dry O{sub 2} at 225°C. Carbon sputtering process was carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature of 300 °C for sputtering deposition time of 1 to 4 hours. The properties of SnO{sub 2}/Si structure and carbon thin film on SnO{sub 2} is characterized using SEM, EDAX,more » XRD, FTIR, and Raman Spectra. SEM images and XRD spectra show that SnO2 thin film has uniformly growth on Si substrate and affected by annealing temperature. Raman and FTIR results confirm the formation of carbon-rich thin film on SnO{sub 2}. In addition, XRD spectra indicate that some structural change occur by increasing sputtering deposition time. Furthermore, the change of atomic structure due to the thermal annealing is analized by XRD spectra and Raman spectroscopy.« less

  17. Chain and mirophase-separated structures of ultrathin polyurethane films

    NASA Astrophysics Data System (ADS)

    Kojio, Ken; Uchiba, Yusuke; Yamamoto, Yasunori; Motokucho, Suguru; Furukawa, Mutsuhisa

    2009-08-01

    Measurements are presented how chain and microphase-separated structures of ultrathin polyurethane (PU) films are controlled by the thickness. The film thickness is varied by a solution concentration for spin coating. The systems are PUs prepared from commercial raw materials. Fourier-transform infrared spectroscopic measurement revealed that the degree of hydrogen bonding among hard segment chains decreased and increased with decreasing film thickness for strong and weak microphase separation systems, respectively. The microphase-separated structure, which is formed from hard segment domains and a surrounding soft segment matrix, were observed by atomic force microscopy. The size of hard segment domains decreased with decreasing film thickness, and possibility of specific orientation of the hard segment chains was exhibited for both systems. These results are due to decreasing space for the formation of the microphase-separated structure.

  18. Microstructure and properties of hard and optically transparent HfO2 films prepared by high-rate reactive high-power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Patterson, Burkley Delesdernier

    Hafnium Dioxide (HfO2) has an extraordinary high bulk modulus, high hardness, high chemical stability, high melting point and high thermal stability. This material can be used as protective coatings for application involving high temperature environments. HfO2 films were fabricated on Si using high-rate reactive high-power impulse magnetron sputtering (HiPIMS) using different deposition-averaged target power density and voltage pulse durations t1. Five HfO2 films were prepared with (1) t1 = 25 mus, =7.6 Wcm-2 (T25S7), (2) t 1 = 100 mus, =7.2 Wcm-2 (T100S7), (3) t1 = 200 mus, =7.3 Wcm-2 (T200S7), (4) t1 = 200 mus, =18 Wcm-2 (T200S18) and (5) t1 = 200 mus, =54 Wcm-2 (T200S54). Atomic force microscopy (AFM) images of the T200S54, T200S18 and T200S7 films exhibit a coarser granular structure with a similar grain size varying from 25 nm to 120 nm in diameter and an average grain size of ˜70 nm. AFM images of the T25S7 and T100S7 films show smaller granular structures compared to the other three films. Transmission electron microscopy (TEM) studies show that all films are composed of an interlayer next to the Si interface followed by a nano-columnar structure layer. The interlayer structure of the films consists of a population of lower density nanoscale regions. A reduction in t1 and in films T200S54, T200S18, T200S7 and T100S7 caused an increase in the interlayer thickness and a decrease in the width of the nano-columnar structures from ˜46 nm to ˜21 nm. This microstructural change was accompanied by a concomitant change of the grain boundary structure from tight and interlocking in films T200S54 and T200S18, to rough and thicker (˜1 nm) boundaries in films T200S7 and T100S7. Film T25S7 exhibited an entirely different microstructure composed of a multilayered interlayer (˜3 nm) and nano-columnar (˜15 nm) structure. Films prepared with large t1 (200 mus) have a monoclinic HfO 2 structure and that with small t1 (25 mus) an orthorhombic HfO 2 structure. Film

  19. Rapid thermal annealing of Amorphous Hydrogenated Carbon (a-C:H) films

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.

    1987-01-01

    Amorphous hydrogenated carbon (a-C:H) films were deposited on silicon and quartz substrates by a 30 kHz plasma discharge technique using methane. Rapid thermal processing of the films was accomplished in nitrogen gas using tungsten halogen light. The rapid thermal processing was done at several fixed temperatures (up to 600 C), as a function of time (up to 1800 sec). The films were characterized by optical absorption and by ellipsometry in the near UV and the visible. The bandgap, estimated from extrapolation of the linear part of a Tauc plot, decreases both with the annealing temperature and the annealing time, with the temperature dependence being the dominating factor. The density of states parameter increases up to 25 percent and the refractive index changes up to 20 percent with temperature increase. Possible explanations of the mechanisms involved in these processes are discussed.

  20. Carbon film deposition on SnO{sub 2}/Si(111) using DC unbalanced magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji, A. S.; Darma, Y.

    In this paper, carbon deposition on SnO{sub 2} layer using DC unbalanced magnetron-sputtering technique at low temperature has been systematically studied. Sputtering process were carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature at 300 °C. SnO{sub 2} were growth on silicon (111) substrate using thermal evaporation and continuing with dry oxidation of Sn at 225 °C. Thermal evaporation for high purity Sn was conducted by maintain the current source as high as 40 ampere. The quality of SnO{sub 2} on Si(111) and the characteristic of carbon thin film on SnO{sub 2} were analized by meanmore » XRD, FTIR and Raman spectra. XRD analysis shows that SnO{sub 2} film is growth uniformly on Si(111). FTIR and Raman spectra confirm the formation of thin film carbon on SnO{sub 2}. Additionally, thermal annealing for some sample series have been performed to study their structural stability. The change of atomic structure due to thermal annealing were analized by Raman and XRD spectra.« less

  1. Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Hu, Gaijuan; Zhang, Dongqing; Diao, Dongfeng

    2016-07-01

    We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.

  2. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture.

    PubMed

    Niu, Zhiqiang; Dong, Haibo; Zhu, Bowen; Li, Jinzhu; Hng, Huey Hoon; Zhou, Weiya; Chen, Xiaodong; Xie, Sishen

    2013-02-20

    Highly stretchable, integrated, single-walled carbon nanotube (SWCNT) film supercapacitors are prepared by combining directly grown SWCNT films with continuous reticulate architecture with polydimethylsiloxane with enhanced prestrain. The performance of the prepared stretchable supercapacitors remains nearly unchanged even during the stretching process under 120% strain. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The effect of cesium carbonate on 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C 61 aggregation in films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemann, William R.; Wang, Wenjie; Fungura, Fadzai

    2014-11-11

    Surface-pressure isotherms, X-ray reflectivity, and X-ray near-total reflection fluorescence were used to study the properties of 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C 61 (PCBM) that was pre-mixed with cesium carbonate and spread as a film at the air-water interface. The pre-mixed PCBM with cesium carbonate demonstrated a strikingly strong effect on the organization of the film. Whereas films formed from pure PCBM solution were rough due to strong inter-molecular interactions, the films formed from the mixture were much smoother. This indicates that the cesium carbonate moderates the inter-molecular interactions among PCBM molecules, hinting that the cesium diffusion observed in inverted organic photovoltaics and the likelymore » ensuing ionic Cs-PCBM interaction decrease aggregation tendency of PCBM. As a result, this implies that the use of cesium salts affects the morphology of the organic layer and consequently improves the efficiency of these devices.« less

  4. Low-cost shape-control synthesis of porous carbon film on β″-alumina ceramics for Na-based battery application

    NASA Astrophysics Data System (ADS)

    Hu, Yingying; Wen, Zhaoyin; Wu, Xiangwei; Jin, Jun

    2012-12-01

    Porous carbon films with tunable pore structure to modify the β″-alumina electrolyte surface are fabricated through a low-cost and direct wet chemistry method with glucose and poly(methyl-methacrylate) (PMMA) as precursors. FTIR analysis confirms the effective connection between the carbohydrate and the pore-forming agent PMMA through hydrogen bonds. The experimental results indicate that the structural parameters of the porous carbon films, including mean pore size and film thickness, can be tuned simply by adjusting the amount of PMMA in the glucose/PMMA composite. This soft-template-assisted method could be readily extended to modify any other ceramic surfaces. The porous carbon films are demonstrated to greatly improve the wettability of the β″-alumina ceramics by molten sodium. Na/β″-alumina/Na cells are used to investigate the interfacial properties between sodium and the β″-alumina electrolyte. The results obtained at 350 °C reveal that the polarization behavior of the cell is alleviated by the porous coating. This work represents a successful method to coat ceramics with porous carbon and offers a promising solution to overcome the polarization problems of the sodium/β″-alumina interface in Na-based batteries.

  5. Immobilization and stretching of 5'-pyrene-terminated DNA on carbon film deposited on electron microscope grid.

    PubMed

    Loukanov, Alexandre; Filipov, Chavdar; Lecheva, Marta; Emin, Saim

    2015-11-01

    The immobilization and stretching of randomly coiled DNA molecules on hydrophobic carbon film is a challenging microscopic technique, which possess various applications, especially for genome sequencing. In this report the pyrenyl nucleus is used as an anchor moiety to acquire higher affinity of double stranded DNA to the graphite surface. DNA and pyrene are joined through a linker composed of four aliphatic methylene groups. For the preparation of pyrene-terminated DNA a multifunctional phosphoramidite monomer compound was designed. It contains pyrenylbutoxy group as an anchor moiety for π-stacking attachment to the carbon film, 2-cyanoethyloxy, and diisopropylamino as coupling groups for conjugation to activated oligonucleotide chain or DNA molecule. This monomer derivative was suitable for incorporation into automated solid-phase DNA synthesis and was attached to the 5' terminus of the DNA chain through a phosphodiester linkage. The successful immobilization and stretching of pyrene-terminated DNA was demonstrated by conventional 100 kV transmission electron microscope. The microscopic analysis confirmed the stretched shape of the negatively charged nucleic acid pieces on the hydrophobic carbon film. © 2015 Wiley Periodicals, Inc.

  6. Integration of MnO2 thin film and carbon nanotubes to three-dimensional carbon microelectrodes for electrochemical microcapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Shulan; Shi, Tielin; Liu, Dan; Long, Hu; Xi, Shuang; Wu, Fengshun; Li, Xiaoping; Xia, Qi; Tang, Zirong

    2014-09-01

    Large-scale three-dimensional (3D) hybrid microelectrodes have been fabricated through modified carbon microelectromechanical systems (Carbon-MEMS) process and electrochemical deposition method. Greatly improved electrochemical performance has been shown for the 3D photoresist-derived carbon microelectrodes with the integration of carbon nanotubes (CNTs) and manganese dioxide (MnO2). The electrochemical measurements of the microelectrodes indicate that the specific geometric capacitance can reach up to 238 mF cm-2 at the current density of 0.5 mA cm-2. The capacitance loss is less than 18.2% of the original value after 6000 charge-discharge cycles. This study shows that stacking of MnO2 film and integrating of CNTs to the 3D glassy carbon microelectrodes have great potential for on-chip microcapacitors as energy storage devices, and the presented approach is promising for large-scale and low-cost manufacturing.

  7. Transparent and conductive polyethylene oxide film by the introduction of individualized single-walled carbon nanotubes.

    PubMed

    Jung, Yong Chae; Muramatsu, Hiroyuki; Park, Ki Chul; Shimamoto, Daisuke; Kim, Jin Hee; Hayashi, Takuya; Song, Sung Moo; Kim, Yoong Ahm; Endo, Morinobu; Dresselhaus, Mildred S

    2009-12-16

    It is demonstrated that an optically transparent and electrically conductive polyethylene oxide (PEO) film is fabricated by the introduction of individualized single-walled carbon nanotubes (SWNTs). The incorporated SWNTs in the PEO film sustain their intrinsic electronic and optical properties and, in addition, the intrinsic properties of the polymer matrix are retained. The individualized SWNTs with smaller diameter provide high transmittance as well as good electrical conductivity in PEO films. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Gold-carbon composite thin films for electrochemical gas sensor prepared by reactive plasma sputtering

    NASA Astrophysics Data System (ADS)

    Okamoto, A.; Suzuki, Y.; Yoshitake, M.; Ogawa, S.; Nakano, N.

    1997-01-01

    We have investigated the properties of gold-carbon composite thin films prepared by a plasma sputtering deposition using argon and methane mixture gas. These composite films have an uneven surface in submicron scale or consist of nano-scale particles of gold polycrystalline. Such morphological properties can be controlled by the sputtering voltage and the partial pressure of methane gas. The working electrode of electrochemical gas sensor has needed a stable gas sensitivity and a good gas selectivity. Our composite film is one of the excellent candidates for a thin film working electrode of electrochemical gas sensor. It is described that the output current of sensor is related to the preparation conditions of the thin films and increase linearly as the concentration of PH 3 gas ranging from 0.1 to 1.0 ppm is increasing.

  9. Fabrication and application of a carbon nanotube/poly(dimethylsiloxane) coated optoacoustic film transducer

    NASA Astrophysics Data System (ADS)

    Fan, Xiaofeng; Ha, Kanglyeol; Kim, Moojoon; Kang, Gwansuk; Choi, Min Joo; Oh, Junghwan

    2018-07-01

    An optoacoustic film transducer was fabricated by coating carbon nanotubes (CNTs) and poly(dimethylsiloxane) (PDMS) on the surface of a thin flexible optical poly(ethylene terephthalate) (PET) sheet. When a laser pulse was irradiated on the film transducer, a shockwave, with superimposed waves reflected from the surface and the back of the film, was generated. The shockwave had very small pulse widths of 20–30 ns, and the maximum pressure of 5.4 MPa was obtained at 10 mm from the surface of the transducer. A line-focused optoacoustic source was fabricated using the film transducer, and its characteristics were investigated. A very high maximum pressure of about 35 MPa was obtained using the source. It was demonstrated that the source can engrave a line trace on a chalk surface.

  10. The Mechanical Properties of Energetically Deposited Non-Crystalline Carbon Thin Films

    DOE PAGES

    Kracica, M.; Kocer, C.; Lau, D.; ...

    2015-11-05

    The mechanical behaviour of carbon films prepared with a variety of densities and microstructures was investigated using nanoindentation. Deposition energies between 25 and 600 eV and temperatures in the range 25-600 °C were used. Films prepared at low temperatures and moderate energy were amorphous with a high density. Finite element methods were used to model the stress fields, reproduce the indentation behaviour and evaluate elastic properties. Young s moduli up to 670 GPa and a low Poisson s ratio of ~ 0.17 were found, comparable to polycrystalline cubic boron nitride, one of the hardest materials known. Films with the samemore » density did not always show the same behaviour, emphasising the role of microstructure in determining mechanical response. Extended graphite- like regions within the films grown at high energy and high temperature observed in transmission electron microscopy caused plastic deformation and failure to recover after a complete indentation cycle. At low deposition energies, the graphite-like regions were smaller in size causing plastic deformation but with complete recovery after indentation.« less

  11. Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films.

    PubMed

    Yu, Yang; Luo, Shu; Sun, Li; Wu, Yang; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan

    2015-06-14

    Ultra-stretchable conductors are fabricated by coating super-aligned carbon nanotube (SACNT) films on pre-strained polydimethylsiloxane (PDMS) substrates and forming buckled SACNT structures on PDMS after release of the pre-strain. The parallel SACNT/PDMS conductors demonstrate excellent stability with normalized resistance changes of only 4.1% under an applied strain as high as 200%. The SACNT/PDMS conductors prepared with cross-stacked SACNT films show even lower resistance variation. The parallel SACNT/PDMS conductors exhibit high durability with a resistance increase of less than 5% after 10,000 cycles at 150% strain. In situ microscopic observations demonstrate that the buckled SACNT structures are straightened during the stretching process with reversible morphology evolution and thus the continuous SACNT conductive network can be protected from fracture. Due to the excellent electrical and mechanical properties of SACNT films and the formation of the buckled structure, SACNT/PDMS films exhibit high stretchability and durability, possessing great potential for use as ultra-stretchable conductors for wearable electronics, sensors, and energy storage devices.

  12. Carbon isotope exchange between gaseous CO2 and thin solution films: Artificial cave experiments and a complete diffusion-reaction model

    NASA Astrophysics Data System (ADS)

    Hansen, Maximilian; Scholz, Denis; Froeschmann, Marie-Louise; Schöne, Bernd R.; Spötl, Christoph

    2017-08-01

    Speleothem stable carbon isotope (δ13C) records provide important paleoclimate and paleo-environmental information. However, the interpretation of these records in terms of past climate or environmental change remains challenging because of various processes affecting the δ13C signals. A process that has only been sparsely discussed so far is carbon isotope exchange between the gaseous CO2 of the cave atmosphere and the dissolved inorganic carbon (DIC) contained in the thin solution film on the speleothem, which may be particularly important for strongly ventilated caves. Here we present a novel, complete reaction diffusion model describing carbon isotope exchange between gaseous CO2 and the DIC in thin solution films. The model considers all parameters affecting carbon isotope exchange, such as diffusion into, out of and within the film, the chemical reactions occurring within the film as well as the dependence of diffusion and the reaction rates on isotopic mass and temperature. To verify the model, we conducted laboratory experiments under completely controlled, cave-analogue conditions at three different temperatures (10, 20, 30 °C). We exposed thin (≈0.1 mm) films of a NaHCO3 solution with four different concentrations (1, 2, 5 and 10 mmol/l, respectively) to a nitrogen atmosphere containing a specific amount of CO2 (1000 and 3000 ppmV). The experimentally observed temporal evolution of the pH and δ13C values of the DIC is in good agreement with the model predictions. The carbon isotope exchange times in our experiments range from ca. 200 to ca. 16,000 s and strongly depend on temperature, film thickness, atmospheric pCO2 and the concentration of DIC. For low pCO2 (between 500 and 1000 ppmV, as for strongly ventilated caves), our time constants are substantially lower than those derived in a previous study, suggesting a potentially stronger influence of carbon isotope exchange on speleothem δ13C values. However, this process should only have an

  13. Influence of cluster-assembly parameters on the field emission properties of nanostructured carbon films

    NASA Astrophysics Data System (ADS)

    Ducati, C.; Barborini, E.; Piseri, P.; Milani, P.; Robertson, J.

    2002-11-01

    Supersonic cluster beam deposition has been used to produce films with different nanostructures by controlling the deposition parameters such as the film thickness, substrate temperature and cluster mass distribution. The field emission properties of cluster-assembled carbon films have been characterized and correlated to the evolution of the film nanostructure. Threshold fields ranging between 4 and 10 V/mum and saturation current densities as high as 0.7 mA have been measured for samples heated during deposition. A series of voltage ramps, i.e., a conditioning process, was found to initiate more stable and reproducible emission. It was found that the presence of graphitic particles (onions, nanotube embryos) in the films substantially enhances the field emission performance. Films patterned on a micrometer scale have been conditioned spot by spot by a ball-tip anode, showing that a relatively high emission site density can be achieved from the cluster-assembled material.

  14. Effect of deposition temperature on thermal stabilities of copper-carbon films in barrier-less Cu metallization

    NASA Astrophysics Data System (ADS)

    Zhu, Huan; Fu, Zhiqiang; Xie, Qi; Yue, Wen; Wang, Chengbiao; Kang, Jiajie; Zhu, Lina

    2018-01-01

    Copper-carbon alloy films have been applied in barrier-less Cu metallization as seed layers for improving the thermal stabilities. The effect of the deposition temperature on the microstructure and properties of C-doped Cu films on Si substrates was investigated. The films were prepared by ion beam-assisted deposition at various deposition temperatures by co-sputtering of Cu and graphite targets. No inter-diffusion between Cu and Si was observed in Cu(C) films throughout this experiment, because XRD patterns corresponding to their deep-level reaction product, namely, Cu3Si, were not observed in XRD patterns and EDS results of Cu(C) films. Amorphous carbon layer and SiC layer were found in the interface of Cu(C) as-deposited films when deposition temperature rose to 100 °C by TEM, high-resolution image and Fourier transformation pattern. The Cu(C) films deposited at 100 °C had the best thermal stabilities and the lowest electrical resistivity of 4.44 μW cm after annealing at 400 °C for 1 h. Cu agglomeration was observed in Cu(C) alloy films with deposition temperatures of 200, 300 and 400 °C, and the most serious agglomeration occurred in Cu(C) films deposited at 200 °C. Undesired Cu agglomeration resulted in a sharp increase in the resistivity after annealing at 300 °C for 1 h. The deposition temperature of 100 °C reflected the superior thermal stabilities of Cu(C) seed layers compared with those of other layers.

  15. Fabrication of carbon nanotube films from alkyne-transition metal complexes

    DOEpatents

    Iyer, Vivekanantan S [Delft, NL; Vollhardt, K Peter C. [Oakland, CA

    2007-08-28

    A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

  16. Structure evolution and thermoelectric properties of carbonized polydopamine thin films

    DOE PAGES

    Li, Haoqi; Aulin, Yaroslav V.; Frazer, Laszlo; ...

    2017-02-13

    Carbonization of nature-inspired polydopamine can yield thin films with high electrical conductivity. Understanding of the structure of carbonized PDA (cPDA) is therefore highly desired. In this study, neutron diffraction, Raman spectroscopy, and other techniques indicate that cPDA samples are mainly amorphous with some short-range ordering and graphite-like structure that emerges with increasing heat treatment temperature. The electrical conductivity and the Seebeck coefficient show different trends with heat treatment temperature, while the thermal conductivity remains insensitive. Finally, the largest room-temperature ZT of 2 × 10 –4 was obtained on samples heat-treated at 800 °C, which is higher than that of reducedmore » graphene oxide.« less

  17. Study of Surface Cleaning Methods and Pyrolysis Temperature on Nano-Structured Carbon Films using X-ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerber, Pranita B.; Porter, Lisa M.; McCullough, L. A.

    2012-10-12

    Nanostructured carbon (ns-C) films fabricated by stabilization and pyrolysis of di-block copolymers are of interest for a variety of electrical/electronic applications due to their chemical inertness, high-temperature insensitivity, very high surface area, and tunable electrical resistivity over a wide range [Kulkarni et al., Synth. Met. 159, (2009) 177]. Because of their high porosity and associated high specific surface area, controlled surface cleaning studies are important for fabricating electronic devices from these films. In this study, quantification of surface composition and surface cleaning studies on ns-C films synthesized by carbonization of di-block copolymers of polyacrylonitrile-b-poly(n-butyl acrylate) (PAN-b-PBA) at two different temperaturesmore » were carried out. X-ray photoelectron spectroscopy was used for elemental analysis and to determine the efficacy of various surface cleaning methods for ns-C films and to examine the polymer residues in the films. The in-situ surface cleaning methods included: HF vapor treatment, vacuum annealing, and exposure to UV-ozone. Quantitative analysis of high-resolution XPS scans showed 11 at. % of nitrogen present in the films pyrolyzed at 600 °C, suggesting incomplete denitrogenation of the copolymer films. The nitrogen atomic concentration reduced significantly for films pyrolyzed at 900 °C confirming extensive denitrogenation at that temperature. Furthermore, quantitative analysis of nitrogen sub-peaks indicated higher loss of nitrogen atoms residing at the edge of graphitic clusters relative to that of nitrogen atoms within the graphitic cluster, suggesting higher graphitization with increasing pyrolysis temperature. Of the surface cleaning methods investigated, in-situ annealing of the films at 300 °C for 40 min was found to be the most efficacious in removing adventitious carbon and oxygen impurities from the surface.« less

  18. Electron emission from chemical vapor deposited diamond and amorphous carbon films observed with a simple field emission device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Z.; Brown, I.G.; Ager, J.W. III

    Electron emission from chemical vapor deposited (CVD) diamond and amorphous carbon (a-C) films was observed with a simple field emission device (FED). Both diamond and a-C films were prepared with microwave plasma-enhanced CVD techniques. Electron emission in the field strength range +10 to {minus}10 MVm{sup {minus}1} was studied, and the field emission source was confirmed by a diode characteristic of the {ital I}-{ital V} curve, a straight line in the Fowler--Nordheim (F-N) plot, and direct observation of light emission from a fluorescent screen. The turn-on field strength was {similar_to}5 MVm{sup {minus}1}, which was similar for both kinds of carbon films.more » The highest current density for diamond films, observed at a field strength of 10 MVm{sup {minus}1}, was {similar_to}15 {mu}A cm{sup {minus}2}. Diamond films yielded a higher emission current than a-C films. The reasons for the observed field emission are discussed.« less

  19. Detection of Carbon Monoxide Using Polymer-Composite Films with a Porphyrin-Functionalized Polypyrrole

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Ryan, Margaret A.; Yen, Shiao-Ping S.; Lara, Liana M.; Shevade, Abhijit V.; Kisor, Adam

    2012-01-01

    Post-fire air constituents that are of interest to NASA include CO and some acid gases (HCl and HCN). CO is an important analyte to be able to sense in human habitats since it is a marker for both prefire detection and post-fire cleanup. The need exists for a sensor that can be incorporated into an existing sensing array architecture. The CO sensor needs to be a low-power chemiresistor that operates at room temperature; the sensor fabrication techniques must be compatible with ceramic substrates. Early work on the JPL ElectronicNose indicated that some of the existing polymer-carbon black sensors might be suitable. In addition, the CO sensor based on polypyrrole functionalized with iron porphyrin was demonstrated to be a promising sensor that could meet the requirements. First, pyrrole was polymerized in a ferric chloride/iron porphyrin solution in methanol. The iron porphyrin is 5, 10, 15, 20-tetraphenyl-21H, 23Hporphine iron (III) chloride. This creates a polypyrrole that is functionalized with the porphyrin. After synthesis, the polymer is dried in an oven. Sensors were made from the functionalized polypyrrole by binding it with a small amount of polyethylene oxide (600 MW). This composite made films that were too resistive to be measured in the device. Subsequently, carbon black was added to the composite to bring the sensing film resistivity within a measurable range. A suspension was created in methanol using the functionalized polypyrrole (90% by weight), polyethylene oxide (600,000 MW, 5% by weight), and carbon black (5% by weight). The sensing films were then deposited, like the polymer-carbon black sensors. After deposition, the substrates were dried in a vacuum oven for four hours at 60 C. These sensors showed good response to CO at concentrations over 100 ppm. While the sensor is based on a functionalized pyrrole, the actual composite is more robust and flexible. A polymer binder was added to help keep the sensor material from delaminating from the

  20. Effects of hydrogenation on thermal conductivity of ultrananocrystalline diamond/amorphous carbon composite films prepared via coaxial arc plasma deposition

    NASA Astrophysics Data System (ADS)

    Takeichi, Satoshi; Nishiyama, Takashi; Tabara, Mitsuru; Kawawaki, Shuichi; Kohno, Masamichi; Takahashi, Koji; Yoshitake, Tsuyoshi

    2018-06-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite (UNCD/a-C:H) and UNCD/non-hydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were prepared via coaxial arc plasma deposition, and their thermal conductivity and interfacial conductance in grain boundaries were measured using a time-domain thermoreflectance method. The interfacial conductance was estimated to be 1,010 and 4,892 MW/(m2·K) for UNCD/a-C:H and UNCD/a-C films, respectively. The reasons for the hydrogenated film having lower interfacial conductance than the non-hydrogenated film are 1) the reduced number of carriers that contribute to heat transport and 2) the hydrogen atoms, which are preferentially located at the grain boundaries and enhance phonon scattering.

  1. Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber.

    PubMed

    Tadakaluru, Sreenivasulu; Thongsuwan, Wiradej; Singjai, Pisith

    2014-01-06

    Conventional metallic strain sensors are flexible, but they can sustain maximum strains of only ~5%, so there is a need for sensors that can bear high strains for multifunctional applications. In this study, we report stretchable and flexible high-strain sensors that consist of entangled and randomly distributed multiwall carbon nanotubes or graphite flakes on a natural rubber substrate. Carbon nanotubes/graphite flakes were sandwiched in natural rubber to produce these high-strain sensors. Using field emission scanning electron microscopy, the morphology of the films for both the carbon nanotube and graphite sensors were assessed under different strain conditions (0% and 400% strain). As the strain was increased, the films fractured, resulting in an increase in the electrical resistance of the sensor; this change was reversible. Strains of up to 246% (graphite sensor) and 620% (carbon nanotube sensor) were measured; these values are respectively ~50 and ~120 times greater than those of conventional metallic strain sensors.

  2. Stretchable and Flexible High-Strain Sensors Made Using Carbon Nanotubes and Graphite Films on Natural Rubber

    PubMed Central

    Tadakaluru, Sreenivasulu; Thongsuwan, Wiradej; Singjai, Pisith

    2014-01-01

    Conventional metallic strain sensors are flexible, but they can sustain maximum strains of only ∼5%, so there is a need for sensors that can bear high strains for multifunctional applications. In this study, we report stretchable and flexible high-strain sensors that consist of entangled and randomly distributed multiwall carbon nanotubes or graphite flakes on a natural rubber substrate. Carbon nanotubes/graphite flakes were sandwiched in natural rubber to produce these high-strain sensors. Using field emission scanning electron microscopy, the morphology of the films for both the carbon nanotube and graphite sensors were assessed under different strain conditions (0% and 400% strain). As the strain was increased, the films fractured, resulting in an increase in the electrical resistance of the sensor; this change was reversible. Strains of up to 246% (graphite sensor) and 620% (carbon nanotube sensor) were measured; these values are respectively ∼50 and ∼120 times greater than those of conventional metallic strain sensors. PMID:24399158

  3. Press-Printed Conductive Carbon Black Nanoparticle Films for Molecular Detection at the Microscale.

    PubMed

    Della Pelle, Flavio; Vázquez, Luis; Del Carlo, Michele; Sergi, Manuel; Compagnone, Dario; Escarpa, Alberto

    2016-08-26

    Carbon black nanoparticle (CBNP) press-transferred film-based transducers for the molecular detection at the microscale level were proposed for the first time. Current-sensing atomic force microscopy (CS-AFM) revealed that the CBNP films were effectively press-transferred, retaining their good conductivity. A significant correlation between the morphology and the resistance was observed. The highest resistance was localized at the top of the press-transferred film protrusions, whereas low values are usually obtained at the deep crevices or grooves. The amount of press-transferred CBNPs is the key parameter to obtain films with improved conductivity, which is in good agreement with the electrochemical response. In addition, the conductivity of such optimum films was not only Ohmic; in fact, tunneling/hopping contributions were observed, as assessed by CS-AFM. The CBNP films acted as exclusive electrochemical transducers as evidenced by using two classes of molecules, that is, neurotransmitters and environmental organic contaminants. These results revealed the potential of these CBNP press-transferred films for providing new options in microfluidics and other related micro- and nanochemistry applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Frequency dependent ac transport of films of close-packed carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Endo, A.; Katsumoto, S.; Matsuda, K.; Norimatsu, W.; Kusunoki, M.

    2018-03-01

    We have measured low-temperature ac impedance of films of closely-packed, highly-aligned carbon nanotubes prepared by thermal decomposition of silicon carbide wafers. The measurement was performed on films with the thickness (the length of the nanotubes) ranging from 6.5 to 65 nm. We found that the impedance rapidly decreases with the frequency. This can be interpreted as resulting from the electric transport via capacitive coupling between adjacent nanotubes. We also found numbers of sharp spikes superposed on frequency vs. impedance curves, which presumably represent resonant frequencies seen in the calculated conductivity of random capacitance networks. Capacitive coupling between the nanotubes was reduced by the magnetic field perpendicular to the films at 8.2 mK, resulting in the transition from negative to positive magnetoresistance with an increase of the frequency.

  5. Electrical potential induced switchable wettability of super-aligned carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Zhang, Guang; Duan, Zheng; Wang, Qinggong; Li, Long; Yao, Wei; Liu, Changhong

    2018-01-01

    Controlling of the wettability of micro-nano scale surfaces not only plays important roles in basic science but also presents some significant applications in interference shielding materials, microfluidics and phase-change heat transfer enhancement, etc. Here, the superhydrophobic super-aligned carbon nanotube (SACNT) films are firstly obtained by the chemical vapor deposition method and the annealing process. Then their wettabilities are in-situ switched by the electrowetting strategy. Specifically, the fascinating transformation of superhydrophobicity to the superhydrophilicity is achieved by exerting external DC voltages across the CNT-liquid interfaces, and the transitions of Cassie-to-Wenzel states are observed on the multilayer SACNT films. In addition, the electrowetting induced salt absorption of the porous SACNT is also reported here. Finally, the threshold voltages of the electrowetting behaviors for different liquids on the SACNT films and unit capacitances across the CNT-liquid interfaces are obtained, which reveal that the SACNT films have much more outstanding electrowetting properties than the previously reported works. Our approach reported here demonstrates that the wettability of SACNT films could be simply, effectively and in-situ controlled by the electrowetting method, which will have many profound implications in numerous applications such as phase-change heat transfer enhancement, optical lens with variable focal length and microfluidics, etc.

  6. Large-scale and patternable graphene: direct transformation of amorphous carbon film into graphene/graphite on insulators via Cu mediation engineering and its application to all-carbon based devices

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Ze; Medina, Henry; Lin, Hung-Chiao; Tsai, Hung-Wei; Su, Teng-Yu; Chueh, Yu-Lun

    2015-01-01

    Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a-C) film surprisingly undergoes a noticeable transformation to crystalline graphene. Furthermore, the thickness of graphene could be controlled, depending on the thickness of the pre-deposited a-C film. The transformation mechanism was investigated and explained in detail. This approach enables development of a one-step process to fabricate electrical devices made of all carbon material, highlighting the uniqueness of the novel approach for developing graphene electronic devices. Interestingly, the carbon electrodes made directly on the graphene layer by our approach offer a good ohmic contact compared with the Schottky barriers usually observed on graphene devices using metals as electrodes.Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a

  7. Effects of the carrier concentration on polarity determination in Ga-doped ZnO films by hard x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Song, Huaping; Makino, Hisao; Kobata, Masaaki; Nomoto, Junichi; Kobayashi, Keisuke; Yamamoto, Tetsuya

    2018-03-01

    Core level (CL) and valence band (VB) spectra of heavily Ga-doped ZnO (GZO) films with carrier concentrations (Ne) ranging from 1.8 × 1020 to 1.0 × 1021 cm-3 were measured by high-resolution Al Kα (hν = 1486.6 eV) x-ray photoelectron spectroscopy (XPS) and Cr Kα (hν = 5414.7 eV) hard x-ray photoelectron spectroscopy (HAXPES). The CL spectra of the GZO films measured by XPS had little dependence on Ne. In contrast, clear differences in asymmetric broadening were observed in the HAXPES spectra owing to the large probing depth. The asymmetry in the Zn 2p3/2 and O 1s HAXPES spectra is mainly attributed to the energy loss of the conduction electron plasmon caused by the high Ne of the GZO films. Similar asymmetry was also observed in the VB spectra of these GZO films. It was found that such asymmetry plays a crucial role in the determination of crystal polarity. With increasing Ne, the intensity of the sub-peak at a binding energy Eb of about 5 eV in the VB spectrum decreased and the sub-peak became indistinguishable. We clarified the limitation of the criterion using the sub-peak and proposed an alternative method for polarity determination.

  8. Diamondlike carbon as a moisture barrier and antireflecting coating on optical materials

    NASA Technical Reports Server (NTRS)

    Woollam, John A.; De, Bhola N.; Chen, L. Y.; Pouch, John J.; Alterovitz, Samuel A.

    1990-01-01

    Diamondlike carbon (DLC) is amorphous, hard, semitransparent, and is under consideration for use as a coating material for infrared optics. DLC is also designated as a-C:H to indicate its amorphous nature as well as to indicate the presence of large (20 to 55 percent) amounts of hydrogen in the film. Two important questions arise with respect to use of DLC in infrared optics. Will the lack of grain boundaries help to keep moisture from penetrating the film. Secondly, application as an antireflection coating places restrictions on the allowed values of the index of refraction of the film relative to the particular substrate material being used. Will DLC have the correct index range. These two questions are addressed in this paper.

  9. Non-conductive ferromagnetic carbon-coated (Co, Ni) metal/polystyrene nanocomposites films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takacs, H., E-mail: helene.takacs@gmail.com; LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054; Viala, B.

    2016-03-07

    This article reports non-conductive ferromagnetic properties of metal/polymer nanocomposite films intended to be used for RF applications. The nanocomposite arrangement is unique showing a core double-shell structure of metal-carbon-polystyrene: M/C//P{sub 1}/P{sub 2}, where M = Co, Ni is the core material, C = graphene or carbon is the first shell acting as a protective layer against oxidation, P{sub 1} = pyrene-terminated polystyrene is the second shell for electrical insulation, and P{sub 2} = polystyrene is a supporting matrix (// indicates actual grafting). The nanocomposite formulation is briefly described, and the film deposition by spin-coating is detailed. Original spin-curves are reported and analyzed. One key outcome is the achievementmore » of uniform and cohesive films at the wafer scale. Structural properties of films are thoroughly detailed, and weight and volume fractions of M/C are considered. Then, a comprehensive overview of DC magnetic and electrical properties is reported. A discussion follows on the magnetic softness of the nanocomposites vs. that of a single particle (theoretical) and the raw powder (experimental). Finally, unprecedented achievement of high magnetization (∼0.6 T) and ultra-high resistivity (∼10{sup 10 }μΩ cm) is shown. High magnetization comes from the preservation of the existing protective shell C, with no significant degradation on the particle net-moment, and high electrical insulation is ensured by adequate grafting of the secondary shell P{sub 1}. To conclude, the metal/polymer nanocomposites are situated in the landscape of soft ferromagnetic materials for RF applications (i.e., inductors and antennas), by means of two phase-diagrams, where they play a crucial role.« less

  10. Ferromagnetic order in diamond-like carbon films by Co implantation

    NASA Astrophysics Data System (ADS)

    Gupta, Prasanth; Williams, Grant; Markwitz, Andreas

    2016-02-01

    We report the observation of ferromagnetic order in diamond-like carbon (DLC) films made by mass selective ion beam deposition and after low energy implantation with Co ions. Different Co fluences were studied with a peak concentration of up to 25% at an average Co implantation depth of 30 nm. The saturation moment per Co atom (0.2-0.3 μ B) was found to be strongly dependent on temperature and it was significantly lower than that reported in bulk cobalt or cobalt nanoparticles (1.67 μ B per Co atom). The observed magnetic moment cannot be attributed to ferromagnetic nanoparticles as no evidence for superparamagnetism was detected. The magnetic order observed may be due to Co bonding in DLC possibly leading to dilute ferromagnetic semiconductor behaviour with an inhomogeneous distribution of cobalt atoms. Raman spectroscopy measurements showed that Co implantation resulted in an increase in the sp2 clustering with increasing Co fluence. Thus, our results show that Co implantation into DLC films increases the graphitic properties of the film and leads to magnetic order at room temperature.

  11. Electrodeposition of catalytic and magnetic gold nanoparticles on dendrimer-carbon nanotube layer-by-layer films.

    PubMed

    Siqueira, José R; Gabriel, Rayla C; Zucolotto, Valtencir; Silva, Anielle C A; Dantas, Noelio O; Gasparotto, Luiz H S

    2012-11-07

    Magnetic and catalytic gold nanoparticles were electrodeposited through potential pulse on dendrimer-carbon nanotube layer-by-layer (LbL) films. A plasmon absorption band at about 550 nm revealed the presence of nanoscale gold in the film. The location of the Au nanoparticles in the film was clearly observed by selecting the magnetic force microscopy mode. To our knowledge, this is the first report on the electrochemical synthesis of magnetic Au nanoparticles. In addition to the magnetic properties, the Au nanoparticles also exhibited high catalytic activity towards ethanol and glycerol oxidation in alkaline medium.

  12. Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor

    PubMed Central

    Lin, Huijuan; Li, Li; Ren, Jing; Cai, Zhenbo; Qiu, Longbin; Yang, Zhibin; Peng, Huisheng

    2013-01-01

    Polyaniline composite films incorporated with aligned multi-walled carbon nanotubes (MWCNTs) are synthesized through an easy electrodeposition process. These robust and electrically conductive films are found to function as effective electrodes to fabricate transparent and flexible supercapacitors with a maximum specific capacitance of 233 F/g at a current density of 1 A/g. It is 36 times of bare MWCNT sheet, 23 times of pure polyaniline and 3 times of randomly dispersed MWCNT/polyaniline film under the same conditions. The novel supercapacitors also show a high cyclic stability. PMID:23443325

  13. Poly(malachite green) at nafion doped multi-walled carbon nanotube composite film for simple aliphatic alcohols sensor.

    PubMed

    Umasankar, Yogeswaran; Periasamy, Arun Prakash; Chen, Shen-Ming

    2010-01-15

    Conductive composite film which contains nafion (NF) doped multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(malachite green) (PMG) has been synthesized on glassy carbon electrode (GCE), gold and indium tin oxide (ITO) electrodes by potentiostatic methods. The presence of MWCNTs in the composite film (MWCNTs-NF-PMG) enhances surface coverage concentration (Gamma) of PMG to approximately 396%, and increases the electron transfer rate constant (k(s)) to approximately 305%. Similarly, electrochemical quartz crystal microbalance study reveals the enhancement in the deposition of PMG at MWCNTs-NF film. The surface morphology of the composite film deposited on ITO electrode has been studied using scanning electron microscopy (SEM) and scanning tunneling microscopy (STM). These two techniques reveal that the PMG incorporated on MWCNTs-NF film. The MWCNTs-NF-PMG composite film also exhibits promising enhanced electrocatalytic activity towards the simple aliphatic alcohols such as methanol, ethanol and propanol. The electroanalytical responses of analytes at NF-PMG and MWCNTs-NF-PMG films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). From electroanalytical studies, well defined voltammetric peaks have been obtained at MWCNTs-NF-PMG composite film for methanol, ethanol and propanol at Epa=609, 614 and 602mV respectively. The sensitivity of MWCNTs-NF-PMG composite film towards methanol, ethanol and propanol in CV technique are 0.59, 0.36 and 0.92microAmM(-1)cm(-2) respectively, which are higher than NF-PMG film. Further, the sensitivity values obtained using DPV are higher than the values obtained using CV technique.

  14. The effect of cesium carbonate on 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C{sub 61} aggregation in films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemann, William R.; Wang, Wenjie; Shinar, Joseph

    2014-11-10

    Surface-pressure versus molecular area isotherms, X-ray reflectivity, and X-ray near-total reflection fluorescence were used to study the properties of 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C{sub 61} (PCBM) that was pre-mixed with cesium carbonate and spread as a film at the air-water interface. The pre-mixed PCBM with cesium carbonate demonstrated a strikingly strong effect on the organization of the film. Whereas films formed from pure PCBM solution were rough due to strong inter-molecular interactions, the films formed from the mixture were much smoother. This indicates that the cesium carbonate moderates the inter-molecular interactions among PCBM molecules, hinting that the cesium diffusion observed in inverted organic photovoltaicmore » structures and the likely ensuing ionic Cs-PCBM interaction decrease aggregation tendency of PCBM. This implies that the use of cesium salts affects the morphology of the organic layer and consequently improves the efficiency of these devices.« less

  15. Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices.

    PubMed

    Wei, Lu; Nitta, Naoki; Yushin, Gleb

    2013-08-27

    Continuous, smooth, visibly defect-free, lithographically patterned activated carbon films (ACFs) are prepared on the surface of silicon wafers. Depending on the synthesis conditions, porous ACFs can either remain attached to the initial substrate or be separated and transferred to another dense or porous substrate of interest. Tuning the activation conditions allows one to change the surface area and porosity of the produced carbon films. Here we utilize the developed thin ACF technology to produce prototypes of functional electrical double-layer capacitor devices. The synthesized thin carbon film electrodes demonstrated very high capacitance in excess of 510 F g(-1) (>390 F cm(-3)) at a slow cyclic voltammetry scan rate of 1 mV s(-1) and in excess of 325 F g(-1) (>250 F cm(-3)) in charge-discharge tests at an ultrahigh current density of 45,000 mA g(-1). Good stability was demonstrated after 10,000 galvanostatic charge-discharge cycles. The high values of the specific and volumetric capacitances of the selected ACF electrodes as well as the capacity retention at high current densities demonstrated great potential of the proposed technology for the fabrication of various on-chip devices, such as micro-electrochemical capacitors.

  16. Control of the Structure of Diffusion Layer in Carbon Steels Under Nitriding with Preliminary Deposition of Copper Oxide Catalytic Films

    NASA Astrophysics Data System (ADS)

    Petrova, L. G.; Aleksandrov, V. A.; Malakhov, A. Yu.

    2017-07-01

    The effect of thin films of copper oxide deposited before nitriding on the phase composition and the kinetics of growth of diffusion layers in carbon steels is considered. The process of formation of an oxide film involves chemical reduction of pure copper on the surface of steel specimens from a salt solution and subsequent oxidation under air heating. The oxide film exerts a catalytic action in nitriding of low- and medium-carbon steels, which consists in accelerated growth of the diffusion layer, the nitride zone in the first turn. The kinetics of the nitriding process and the phase composition of the layer are controlled by the thickness of the copper oxide precursor, i.e., the deposited copper film.

  17. Corrosion behavior of aluminum doped diamond-like carbon thin films in NaCl aqueous solution.

    PubMed

    Khun, N W; Liu, E

    2010-07-01

    Aluminum doped diamond-like carbon (DLC:Al) thin films were deposited on n-Si(100) substrates by co-sputtering a graphite target under a fixed DC power (650 W) and an aluminum target under varying DC power (10-90 W) at room temperature. The structure, adhesion strength and surface morphology of the DLC:Al films were characterized by X-ray photoelectron spectroscopy (XPS), micro-scratch testing and atomic force microscopy (AFM), respectively. The corrosion performance of the DLC:Al films was investigated by means of potentiodynamic polarization testing in a 0.6 M NaCl aqueous solution. The results showed that the polarization resistance of the DLC:Al films increased from about 18 to 30.7 k(omega) though the corrosion potentials of the films shifted to more negative values with increased Al content in the films.

  18. Electronic and magneto-transport in chirality sorted carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Janas, Dawid; Czechowski, Nikodem; Adamus, Zbigniew; GiŻewski, Tomasz

    2018-01-01

    This research details electronic and magneto-transport in unsorted and chirality-enriched carbon nanotube (CNT) films. By measuring the electrical conductivity from 4 K to 297 K, we were able to assign the governing mechanism of electronic transport. Fluctuation-induced tunnelling was in accordance with the obtained data and very well matched the underlying physics. We demonstrated how a change in the type of CNT to make the film affects its electrical performance. As the temperature was decreased down to cryogenic conditions, up to a 56-fold increase in resistance was noted. Moreover, the measurement of magnetoresistance (MR) revealed a non-monotonic dependence on the applied magnetic field. The initial negative component of MR was eventually overpowered by the positive MR component as the field strength was increased beyond a certain threshold.

  19. Chemical modification of the electrical properties of hydrogenated amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Meyerson, B.; Smith, F. W.

    1980-05-01

    Semiconducting films of hydrogenated amorphous carbon (a-C:H), prepared via the dc glow discharge decomposition of C 2H 2, have been successfully doped via incorporation of B and P during growth. The doping efficiency achieved was comparable to that achieved in a-Si:H produced in a like manner. For a-C:H films deposited at Td=250 C, ?(RT) increased from 10 -12 to 10 -7 ohm -1 cm -1 when either 1% PH 3 or 10% B 2H 6 were added to the C 2H 2. A shift of the Fermi level E F of about 0.7 eV is inferred from changes in the "activation" energy of conduction.

  20. Large-area, electronically monodisperse, aligned single-walled carbon nanotube thin films fabricated by evaporation-driven self-assembly.

    PubMed

    Shastry, Tejas A; Seo, Jung-Woo T; Lopez, Josue J; Arnold, Heather N; Kelter, Jacob Z; Sangwan, Vinod K; Lauhon, Lincoln J; Marks, Tobin J; Hersam, Mark C

    2013-01-14

    By varying the evaporation conditions and the nanotube and surfactant concentrations, large-area, aligned single-walled carbon nanotube (SWCNT) thin films are fabricated from electronically monodisperse SWCNT solutions by evaporation-driven self-assembly with precise control over the thin film growth geometry. Tunability is possible from 0.5 μm stripes to continuous thin films. The resulting SWCNT thin films possess highly anisotropic electrical and optical properties that are well suited for transparent conductor applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wei, Y. Y.; Eres, Gyula; Merkulov, V. I.; Lowndes, D. H.

    2001-03-01

    The correlation between prepatterned catalyst film thickness and carbon nanotube (CNT) growth by selective area chemical vapor deposition (CVD) was studied using Fe and Ni as catalyst. To eliminate sample-to-sample variations and create a growth environment in which the film thickness is the sole variable, samples with continuously changing catalyst film thickness from 0 to 60 nm were fabricated by electron-gun evaporation. Using thermal CVD CNTs preferentially grow as a dense mat on the thin regions of the catalyst film. Moreover, beyond a certain critical film thickness no tubes were observed. The critical film thickness for CNT growth was found to increase with substrate temperature. There appears to be no strong correlation between the film thickness and the diameter of the tubes. In contrast, using plasma enhanced CVD with Ni as catalyst, vertically oriented CNTs grow in the entire range of catalyst film thickness. The diameter of these CNTs shows a strong correlation with the catalyst film thickness. The significance of these experimental trends is discussed within the framework of the diffusion model for CNT growth.

  2. Design of a diamond-crystal monochromator for the LCLS hard x-ray self-seeding project

    NASA Astrophysics Data System (ADS)

    Shu, D.; Shvyd'ko, Y.; Amann, J.; Emma, P.; Stoupin, S.; Quintana, J.

    2013-03-01

    As the result of collaborations between the Advanced Photon Source (APS), Argonne National Laboratory, and the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory, we have designed and constructed a diamond crystal monochromator for the LCLS hard x-ray self-seeding project. The novel monochromator is ultrahigh-vacuum compatible to meet the LCLS linear accelerator vacuum environmental requirement. A special graphite holder was designed for strain-free mount of the 110-μm thin synthetic diamond crystal plate provided by Technological Institute for Super-hard and Novel Carbon Materials of Russia (TISNCM). An in-vacuum multi-axis precision positioning mechanism is designed to manipulate the thin-film diamond holder with resolutions and stabilities required by the hard x-ray self-seeding physics. Optical encoders, limit switches, and hardware stops are established in the mechanism to ensure system reliability and to meet the accelerator personal and equipment safety interlock requirements. Molybdenum shields are installed in the monochromator to protect the encoders and associated electronics from radiation damage. Mechanical specifications, designs, and preliminary test results of the diamond monochromator are presented in this paper.

  3. Carbon nanotubes/fluorinated polymers nanocomposite thin films for electrical contacts lubrication

    NASA Astrophysics Data System (ADS)

    Benedetto, A.; Viel, P.; Noël, S.; Izard, N.; Chenevier, P.; Palacin, S.

    2007-09-01

    The need to operate in extreme environmental conditions (ultra high vacuum, high temperatures, aerospatial environment, …) and the miniaturization toward micro electromechanical systems is demanding new materials in the field of low-level electrical contacts lubrication. Dry and chemically immobilized lubrication is expected to be an alternative to the traditional wet lubricants oils. With the goal to conciliate electrical conductivity and lubricant properties we designed nanocomposite thin films composed of a 2D carbon nanotubes network embedded in an organic matrix. The nanotubes networks were deposited on gold surfaces modified by electrochemical cathodic grafting of poly(acrylonitrile). The same substrate served for covalently bonding the low-friction organic matrix. Three different matrixes were tested: a perfluorinated oligomer chemically grafted and two different polyfluorinated acrylates electrochemically grafted. The nanocomposite thin films have been characterized by ATR FT-IR, XPS and Raman spectroscopy. We measured the effects of the different matrixes and the nanotubes addition on the tribological properties and on the contact resistances of the films.

  4. Red Phosphorus-Embedded Cross-Link-Structural Carbon Films as Flexible Anodes for Highly Reversible Li-Ion Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Jiafeng; Yuan, Tao; Pang, Yuepeng

    Red phosphorus (P) is considered to be one of the most attractive anodic materials for lithium-ion batteries (LIBs) due to its high theoretical capacity of 2596 mAh g–1. However, intrinsic characteristics such as the poor electronic conductivity and large volume expansion at lithiation impede the development of red P. Here, we design a new strategy to embed red P particles into a cross-link-structural carbon film (P–C film), in order to improve the electronic conductivity and accommodate the volume expansion. The red P/carbon film is synthesized via vapor phase polymerization (VPP) followed by the pyrolysis process, working as a flexible binder-freemore » anode for LIBs. High cycle stability and good rate capability are achieved by the P–C film anode. With 21% P content in the film, it displays a capacity of 903 mAh g–1 after 640 cycles at a current density of 100 mA g–1 and a capacity of 460 mAh g–1 after 1000 cycles at 2.0 A g–1. Additionally, the Coulombic efficiency reaches almost 100% for each cycle. The superior properties of the P–C films together with their facile fabrication make this material attractive for further flexible and high energy density LIB applications.« less

  5. Friction and wear performance of ion-beam deposited diamondlike carbon films on steel substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdemir, A.; Nichols, F.A.; Pan, X.Z.

    1993-01-01

    In this study, we investigated the friction and wear performance of ion-beam-deposited diamondlike-carbon (DLC) films (1.5 {mu}m thick) on AISI 440C steel substrates. Furthermore, we ran a series of long-duration wear tests under 5, 10, and 20 N load to assess the load-bearing capacity and durability limits of these films under each load. Tests were performed on a ball-on-disk machine in open air at room temperature {approx} 22{plus_minus}1{degrees}C, and humidity, {approx} 30{plus_minus}5%. For the test conditions explored, we found that (1) the steady-state friction coefficients of pairs without a DLC film were in the range of 0.7 to 0.9 andmore » the average wear rates of 440C balls (9.55 mm diameter) sliding against uncoated 440C disks were on the order of 10{sup {minus}5} mm{sup 3}/N.m, depending on contact load; (2) DLC films reduced the steady-state friction coefficients of test pairs by factors of 6 to 8, and the wear rates of pins by factors of 500 to 2000; (3) The wear of disks coated with a DLC film was virtually unmeasurable while the wear of uncoated disks was quite substantial, (4) these DLC films were able to endure the range of loads, 5 to 20 N, without any delamination and to last over a million cycles before wearing out. During long-duration wear tests, the friction coefficients were initially on the order of 0.15, but decreased to some low values of 0.05 to 0.07 after sliding for 15 to 25 km, depending on the load, and remained low until wearing out. This low-friction regime was correlated with the formation of a carbon-rich transfer film on the wear scar of 440C balls. Micro-laser-Raman spectroscopy and scanning-electron microscopy were used to examine the structure and chemistry of worn surfaces and to elucidate the wear- and friction-reducing mechanisms of the DLC film.« less

  6. Friction and wear performance of ion-beam deposited diamondlike carbon films on steel substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdemir, A.; Nichols, F.A.; Pan, X.Z.

    1993-01-01

    In this study, we investigated the friction and wear performance of ion-beam-deposited diamondlike-carbon (DLC) films (1.5 [mu]m thick) on AISI 440C steel substrates. Furthermore, we ran a series of long-duration wear tests under 5, 10, and 20 N load to assess the load-bearing capacity and durability limits of these films under each load. Tests were performed on a ball-on-disk machine in open air at room temperature [approx] 22[plus minus]1[degrees]C, and humidity, [approx] 30[plus minus]5%. For the test conditions explored, we found that (1) the steady-state friction coefficients of pairs without a DLC film were in the range of 0.7 tomore » 0.9 and the average wear rates of 440C balls (9.55 mm diameter) sliding against uncoated 440C disks were on the order of 10[sup [minus]5] mm[sup 3]/N.m, depending on contact load; (2) DLC films reduced the steady-state friction coefficients of test pairs by factors of 6 to 8, and the wear rates of pins by factors of 500 to 2000; (3) The wear of disks coated with a DLC film was virtually unmeasurable while the wear of uncoated disks was quite substantial, (4) these DLC films were able to endure the range of loads, 5 to 20 N, without any delamination and to last over a million cycles before wearing out. During long-duration wear tests, the friction coefficients were initially on the order of 0.15, but decreased to some low values of 0.05 to 0.07 after sliding for 15 to 25 km, depending on the load, and remained low until wearing out. This low-friction regime was correlated with the formation of a carbon-rich transfer film on the wear scar of 440C balls. Micro-laser-Raman spectroscopy and scanning-electron microscopy were used to examine the structure and chemistry of worn surfaces and to elucidate the wear- and friction-reducing mechanisms of the DLC film.« less

  7. Metal (Ag/Ti)-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics.

    PubMed

    Constantinou, Marios; Nikolaou, Petros; Koutsokeras, Loukas; Avgeropoulos, Apostolos; Moschovas, Dimitrios; Varotsis, Constantinos; Patsalas, Panos; Kelires, Pantelis; Constantinides, Georgios

    2018-03-30

    This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a-C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical Vapor Deposition (PVD) technologies. The a-C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF) plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC) technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti). The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a-C:H:Ag and a-C:H:Ti) exhibited enhanced nanoscratch resistance (up to +50%) and low values of friction coefficient (<0.05), properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  8. Space Durable Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation

    NASA Technical Reports Server (NTRS)

    Watson, Kent A.; Smith, Joseph G., Jr.; Connell, John W.

    2003-01-01

    Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have been under investigation as part of a materials development activity. These materials have potential applications on advanced spacecraft, particularly on large, deployable, ultra-light weight Gossamer spacecraft. The approach taken to impart sufficient electrical conductivity into the polymer film is based on the use of single walled carbon nanotubes (SWNT) as conductive additives. Earlier approaches investigated in our lab involved both an in-situ polymerization approach and addition of SWNT to an oligomer containing reactive end-groups as methods to improve SWNT dispersion. The work described herein is based on the spray coating of a SWNT/solvent dispersion onto the film surface. Two types of polyimides were investigated, one with reactive end groups that can lead to bond formation between the oligomer chain and the SWNT surface and those without reactive end-groups. Surface conductivities (measured as surface resistance) in the range sufficient for ESC mitigation were achieved with minimal effects on the mechanical, optical, thermo-optical properties of the film as compared to the other methods. The chemistry and physical properties of these nanocomposites will be discussed.

  9. Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Kanninen, Petri; Dang Luong, Nguyen; Hoang Sinh, Le; Anoshkin, Ilya V.; Tsapenko, Alexey; Seppälä, Jukka; Nasibulin, Albert G.; Kallio, Tanja

    2016-06-01

    Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g-1 or 552 μF cm-2), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte.

  10. Mechanical properties and tribological behavior of fullerene-like hydrogenated carbon films prepared by changing the flow rates of argon gas

    NASA Astrophysics Data System (ADS)

    Guo, Junmeng; Wang, Yongfu; Liang, Hongyu; Liang, Aimin; Zhang, Junyan

    2016-02-01

    Fullerene-like hydrogenated carbon (FL-C:H) films as carbon materials were prepared by direct current plasma enhanced chemical vapor deposition (dc-PECVD) technique. The content of FL nanostructure was confirmed by high-resolution transmission electron microscopy (HRTEM), visible Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The effect of fullerene-like nanostructure on the friction behavior of the films was studied using a reciprocating ball-on-flat tribometer in humid environment. It is concluded that the curved FL nanostructure provide the film excellent mechanical properties and friction performance. Interestingly, combining with the results of Raman analyses of the wear debris, we find that new FL nanostructure form during the friction process. These new FL nanostructure may originate from the rapid annealing and stress relaxation of unstable carbon clusters.

  11. Carbon nanotubes/holey graphene hybrid film as binder-free electrode for flexible supercapacitors.

    PubMed

    Deng, Lingjuan; Gu, Yuanzi; Gao, Yihong; Ma, Zhanying; Fan, Guang

    2017-05-15

    The practical application of graphene (GR) has still been hindered because of its unsatisfied physical and chemical properties resulting from the irreversible agglomerates. Preparation of GR-based materials with designed porosities is essential for its practical application. In this work, a facile and scalable method is developed to synthesize carbon nanotubes/holey graphene (CNT/HGR) flexible film using functional CNT and HGR as precursors. Owing to the existence of the small amount CNT, the CNT-5/HGR flexible film with a 3D conductive interpenetrated architecture exhibit significantly improved ion diffusion rate compared to that of the HGR. Moreover, CNT-5/HGR flexible film can be used as binder-free supercapacitor electrodes with ultrahigh specific capacitances of 268Fg -1 , excellent rate capabilities, and superior cycling stabilities. CNT-5/HGR flexible film could be used to fabricate high-performance flexible supercapacitors electrodes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Peeling off effects in vertically aligned Fe3C filled carbon nanotubes films grown by pyrolysis of ferrocene

    NASA Astrophysics Data System (ADS)

    Boi, Filippo S.; Medranda, Daniel; Ivaturi, Sameera; Wang, Jiayu; Guo, Jian; Lan, Mu; Wen, Jiqiu; Wang, Shanling; He, Yi; Mountjoy, Gavin; Willis, Maureen A. C.; Xiang, Gang

    2017-06-01

    We report the observation of an unusual self-peeling effect which allows the synthesis of free standing vertically aligned carbon nanotube films filled with large quantities of Fe3C and small quantities of γ-Fe crystals. We demonstrate that this effect depends on the interplay of three main factors: (1) the physical interactions between the chosen substrate surface and grown carbon nanotubes (CNTs), which is fixed by the composition of the used substrate (111 SiO2/Si or quartz), (2) the CNT-CNT Van der Waals interactions, and (3) the differential thermal contraction between the grown CNT film and the used substrate, which is fixed by the cooling rate differences between the grown film and the used quartz or Si/SiO2 substrates. The width and stability of these films are then further increased to cm-scale by addition of small quantities of toluene to the ferrocene precursor.

  13. Stable iodide doping induced by photonic curing for carbon nanotube transparent conductive films

    NASA Astrophysics Data System (ADS)

    Wachi, Atsushi; Nishikawa, Hiroyuki; Zhou, Ying; Azumi, Reiko

    2018-06-01

    Doping has become crucial for achieving stable and high-performance conductive transparent carbon nanotube (CNT) films. In this study, we systematically investigate the doping effects of a few materials including alkali metal iodides, nonmetal iodide, and metals. We demonstrate that photonic curing can enhance the doping effects, and correspondingly improve the conductivity of CNT films, and that such iodides have better doping effects than metals. In particular, doping with a nonmetal compound (NH4I) shows the largest potential to improve the conductivity of CNT films. Typically, doping with metal iodides reduces the sheet resistance (R S) of CNT films with 70–80% optical transmittances at λ = 550 nm from 600–2400 to 250–440 Ω/square, whereas doping with NH4I reduces R S to 57 and 84 Ω/square at 74 and 84% optical transmittances, respectively. Interestingly, such a doped CNT film exhibits only a slight increase in sheet resistance under an extreme environment of high temperature (85 °C) and high relative humidity (85%) for 350 h. The results suggest that photonic-curing-induced iodide doping is a promising approach to producing high-performance conductive transparent CNT films.

  14. New materials based on polylactide modified with silver and carbon ions

    NASA Astrophysics Data System (ADS)

    Kurzina, I. A.; Pukhova, I. V.; Botvin, V. V.; Davydova, D. V.; Filimoshkin, A. G.; Savkin, K. P.; Oskomov, K. V.; Oks, E. M.

    2015-11-01

    An integrated study of poly-L-lactide (PL) synthesis and the physicochemical properties of film surfaces, both modified by silver and carbon ion implantation and also unmodified PL surfaces, has been carried out. Surface modification was done using aMevva-5.Ru metal ion source with ion implantation doses of 1.1014, 1.1015 and 1.1016 ion/cm2. Material characterization was done using NMR, IRS, XPS and AFM. The molecular weight (MW), micro-hardness, surface resistivity, and limiting wetting angle of both un-implanted and implanted samples were measured. The results reveal that degradation of PL macromolecules occurs during ion implantation, followed by CO or CO2 removal and MW decrease. With increasing implantation dose, the glycerol wettability of the PL surface increases but the water affinity decreases (hydrophobic behavior). After silver and carbon ion implantation into the PL samples, the surface resistivity is reduced by several orders of magnitude and a tendency to micro-hardness reductionis induced.

  15. Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility

    PubMed Central

    Liza, Shahira; Hieda, Junko; Akasaka, Hiroki; Ohtake, Naoto; Tsutsumi, Yusuke; Nagai, Akiko; Hanawa, Takao

    2017-01-01

    Abstract Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices. PMID:28179961

  16. Mechanics of hydrogenated amorphous carbon deposits from electron-beam-induced deposition of a paraffin precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, W.; Dikin, D.A.; Chen, X.

    2005-07-01

    Many experiments on the mechanics of nanostructures require the creation of rigid clamps at specific locations. In this work, electron-beam-induced deposition (EBID) has been used to deposit carbon films that are similar to those that have recently been used for clamping nanostructures. The film deposition rate was accelerated by placing a paraffin source of hydrocarbon near the area where the EBID deposits were made. High-resolution transmission electron microscopy, electron-energy-loss spectroscopy, Raman spectroscopy, secondary-ion-mass spectrometry, and nanoindentation were used to characterize the chemical composition and the mechanics of the carbonaceous deposits. The typical EBID deposit was found to be hydrogenated amorphousmore » carbon (a-C:H) having more sp{sup 2}- than sp{sup 3}-bonded carbon. Nanoindentation tests revealed a hardness of {approx}4 GPa and an elastic modulus of 30-60 GPa, depending on the accelerating voltage. This reflects a relatively soft film, which is built out of precursor molecular ions impacting the growing surface layer with low energies. The use of such deposits as clamps for tensile tests of poly(acrylonitrile)-based carbon nanofibers loaded between opposing atomic force microscope cantilevers is presented as an example application.« less

  17. Epitaxial Growth of Aligned and Continuous Carbon Nanofibers from Carbon Nanotubes.

    PubMed

    Lin, Xiaoyang; Zhao, Wei; Zhou, Wenbin; Liu, Peng; Luo, Shu; Wei, Haoming; Yang, Guangzhi; Yang, Junhe; Cui, Jie; Yu, Richeng; Zhang, Lina; Wang, Jiaping; Li, Qunqing; Zhou, Weiya; Zhao, Weisheng; Fan, Shoushan; Jiang, Kaili

    2017-02-28

    Exploiting the superior properties of nanomaterials at macroscopic scale is a key issue of nanoscience. Different from the integration strategy, "additive synthesis" of macroscopic structures from nanomaterial templates may be a promising choice. In this paper, we report the epitaxial growth of aligned, continuous, and catalyst-free carbon nanofiber thin films from carbon nanotube films. The fabrication process includes thickening of continuous carbon nanotube films by gas-phase pyrolytic carbon deposition and further graphitization of the carbon layer by high-temperature treatment. As-fabricated nanofibers in the film have an "annual ring" cross-section, with a carbon nanotube core and a graphitic periphery, indicating the templated growth mechanism. The absence of a distinct interface between the carbon nanotube template and the graphitic periphery further implies the epitaxial growth mechanism of the fiber. The mechanically robust thin film with tunable fiber diameters from tens of nanometers to several micrometers possesses low density, high electrical conductivity, and high thermal conductivity. Further extension of this fabrication method to enhance carbon nanotube yarns is also demonstrated, resulting in yarns with ∼4-fold increased tensile strength and ∼10-fold increased Young's modulus. The aligned and continuous features of the films together with their outstanding physical and chemical properties would certainly promote the large-scale applications of carbon nanofibers.

  18. Carbon nanotube thin film strain sensor models assembled using nano- and micro-scale imaging

    NASA Astrophysics Data System (ADS)

    Lee, Bo Mi; Loh, Kenneth J.; Yang, Yuan-Sen

    2017-07-01

    Nanomaterial-based thin films, particularly those based on carbon nanotubes (CNT), have brought forth tremendous opportunities for designing next-generation strain sensors. However, their strain sensing properties can vary depending on fabrication method, post-processing treatment, and types of CNTs and polymers employed. The objective of this study was to derive a CNT-based thin film strain sensor model using inputs from nano-/micro-scale experimental measurements of nanotube physical properties. This study began with fabricating ultra-low-concentration CNT-polymer thin films, followed by imaging them using atomic force microscopy. Image processing was employed for characterizing CNT dispersed shapes, lengths, and other physical attributes, and results were used for building five different types of thin film percolation-based models. Numerical simulations were conducted to assess how the morphology of dispersed CNTs in its 2D matrix affected bulk film electrical and electromechanical (strain sensing) properties. The simulation results showed that CNT morphology had a significant impact on strain sensing performance.

  19. Ultra-Smooth Nanostructured Diamond Films Deposited from He/H2/CH4/N2 Microwave Plasmas

    PubMed Central

    Konovalov, Valery V.; Melo, Andrew; Catledge, Shane A.; Chowdhury, Shafiul

    2008-01-01

    Addition of He to a high CH4 content (10.7 vol%) H2/CH4/N2 feedgas mixture for microwave plasma chemical vapor deposition produced hard (56–72 GPa), ultra-smooth nanostructured diamond films on Ti-6Al-4V alloy substrates. Upon increase in He content up to 71 vol%, root mean squared (RMS) surface roughness of the film decreased to 9–10 nm and average diamond grain size to 5–6 nm. Our studies show that increased nanocrystallinity with He addition in plasma is related to plasma dilution, enhanced fragmentation of carbon containing species, and enhanced formation of CN radical. PMID:16573106

  20. Implementation of a Thick-Film Composite Li-Ion Microcathode Using Carbon Nanotubes as the Conductive Filler

    NASA Technical Reports Server (NTRS)

    Lin, Qian; Harb, John N.

    2004-01-01

    This paper describes the development of a thick-film microcathode for use in Li-ion microbatteries in order to provide increased power and energy per area. These cathodes take advantage of a composite porous electrode structure, utilizing carbon nanotubes (CNT) as the conductive filler. The use of carbon nanotubes was found to significantly reduce the measured resistance of the electrodes, increase active material accessibility, and improve electrode performance. In particular, the cycling and power performance of the thick-film cathodes was significantly improved, and the need for compression was eliminated. Cathode thickness and CNT content were optimized to maximize capacity and power performance. Power capability of >50 mW/sq cm (17 mA/sq cm) with discharge capacity of >0.17 mAh/sq cm was demonstrated. The feasibility of fabricating thick-film microcathodes capable of providing the power and capacity needed for use in autonomous microsensor systems was also demonstrated.

  1. Effect of Continuous Multi-Walled Carbon Nanotubes on Thermal and Mechanical Properties of Flexible Composite Film

    PubMed Central

    Cha, Ji Eun; Kim, Seong Yun; Lee, Seung Hee

    2016-01-01

    To investigate the effect of continuous multi-walled carbon nanotubes (MWCNTs) on the thermal and mechanical properties of composites, we propose a fabrication method for a buckypaper-filled flexible composite film prepared by a two-step process involving buckypaper fabrication using vacuum filtration of MWCNTs, and composite film fabrication using the dipping method. The thermal conductivity and tensile strength of the composite film filled with the buckypaper exhibited improved results, respectively 76% and 275% greater than those of the individual MWCNT-filled composite film. It was confirmed that forming continuous MWCNT fillers is an important factor which determines the physical characteristics of the composite film. In light of the study findings, composite films using buckypaper as a filler and polydimethylsiloxane (PDMS) as a flexible matrix have sufficient potential to be applied as a heat-dissipating material, and as a flexible film with high thermal conductivity and excellent mechanical properties. PMID:28335310

  2. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Ren, Ping; Zhang, Kan; Du, Suxuan; Meng, Qingnan; He, Xin; Wang, Shuo; Wen, Mao; Zheng, Weitao

    2017-06-01

    Robust hydrophobic surfaces based on ceramics capable of withstanding harsh conditions such as abrasion, erosion and high temperature, are required in a broad range of applications. The metal cations with coordinative saturation or low electronegativity are commonly chosen to achieve the intrinsically hydrophobic ceramic by reducing Lewis acidity, and thus the ceramic systems are limited. In this work, we present a different picture that robust hydrophobic surface with high hardness (≥20 GPa) can be fabricated through doping Ag atoms into intrinsically hydrophilic ceramic film NbN by reactive co-sputtering. The transition of wettability from hydrophilic to hydrophobic of Nb-Ag-N films induced by Ag doping results from the appearance of Ag2O groups on the films surfaces through self-oxidation, because Ag cations (Ag+) in Ag2O are the filled-shell (4d105S0) electronic structure with coordinative saturation that have no tendency to interact with water. The results show that surface Ag2O benefited for hydrophobicity comes from the solute Ag atoms rather than precipitate metal Ag, in which the more Ag atoms incorporated into Nb-sublattice are able to further improve the hydrophobicity, whereas the precipitation of Ag nanoclusters would worsen it. The present work opens a window for fabricating robust hydrophobic surface through tailoring surface chemical bond states by doping Ag into transition metal nitrides.

  3. Transfer and alignment of random single-walled carbon nanotube films by contact printing.

    PubMed

    Liu, Huaping; Takagi, Daisuke; Chiashi, Shohei; Homma, Yoshikazu

    2010-02-23

    We present a simple method to transfer large-area random single-walled carbon nanotube (SWCNT) films grown on SiO(2) substrates onto another surface through a simple contact printing process. The transferred random SWCNT films can be assembled into highly ordered, dense regular arrays with high uniformity and reproducibility by sliding the growth substrate during the transfer process. The position of the transferred SWCNT film can be controlled by predefined patterns on the receiver substrates. The process is compatible with a variety of substrates, and even metal meshes for transmission electron microscopy (TEM) can be used as receiver substrates. Thus, suspended web-like SWCNT networks and aligned SWCNT arrays can be formed over the grids of TEM meshes, so that the structures of the transferred SWCNTs can be directly observed by TEM. This simple technique can be used to controllably transfer SWCNTs for property studies, for the fabrication of devices, or even as support films for TEM meshes.

  4. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  5. Real-time and post-plasma studies of influence of low levels of tungsten on carbon erosion and surface evolution behaviour in D2 plasma

    NASA Astrophysics Data System (ADS)

    Weilnboeck, F.; Fox-Lyon, N.; Oehrlein, G. S.; Doerner, R. P.

    2010-02-01

    A profound influence of monolayer tungsten coverage of hard carbon films on the evolution of carbon surface erosion behaviour, surface chemistry and morphology in D2 plasma has been established by real-time ellipsometry, x-ray photoelectron spectroscopy and atomic force microscopy measurements. The erosion of tungsten-covered carbon showed two distinct stages of plasma material interactions: rapid tungsten removal during the initial erosion period and steady-state amorphous carbon removal accompanied by large-scale surface roughness development. The initial removal of tungsten takes place at a rate that significantly exceeds typical sputter yields at the ion energies used here and is attributed to elimination of weakly bonded tungsten from the surface. The tungsten remaining on the a-C : H film surface causes surface roughness development of the eroding carbon surface by a masking effect, and simultaneously leads to a seven fold reduction of the steady-state carbon erosion rate for long plasma surface interaction times (~100 s). Results presented are of direct relevance for material transport and re-deposition, and the interaction of those films with plasma in the divertor region and on mirror surfaces of fusion devices.

  6. Enhancement of Ti-containing hydrogenated carbon (Tisbnd C:H) films by high-power plasma-sputtering

    NASA Astrophysics Data System (ADS)

    Gwo, Jyh; Chu, Chun-Lin; Tsai, Ming-Jui; Lee, Shyong

    2012-02-01

    Ti-containing amorphous hydrogenated carbon (Tisbnd C:H) thin films were deposited on stainless steel SS304 substrates by high-power pulsed magnetron sputtering (HPPMS) in an atmosphere of mixed Ar and C2H2 gases using titanium metal as the cathodic material. The multilayer structure of the deposited film had a Tisbnd TiCsbnd DLC gradient to improve adhesion and reduce residual stress. This study investigates the effects of substrate bias and target-to-substrate distance on the mechanical properties of Tisbnd C:H films. Film properties, including composition, morphology, microstructure, mechanical, and tribology, were examined by glow discharge spectroscopy (GDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and a nanoindenter and a pin-on-disk tribometer. Experiments revealed impressive results.

  7. Biomineralized diamond-like carbon films with incorporated titanium dioxide nanoparticles improved bioactivity properties and reduced biofilm formation.

    PubMed

    Lopes, F S; Oliveira, J R; Milani, J; Oliveira, L D; Machado, J P B; Trava-Airoldi, V J; Lobo, A O; Marciano, F R

    2017-12-01

    Recently, the development of coatings to protect biomedical alloys from oxidation, passivation and to reduce the ability for a bacterial biofilm to form after implantation has emerged. Diamond-like carbon films are commonly used for implanted medical due to their physical and chemical characteristics, showing good interactions with the biological environment. However, these properties can be significantly improved when titanium dioxide nanoparticles are included, especially to enhance the bactericidal properties of the films. So far, the deposition of hydroxyapatite on the film surface has been studied in order to improve biocompatibility and bioactive behavior. Herein, we developed a new route to obtain a homogeneous and crystalline apatite coating on diamond-like carbon films grown on 304 biomedical stainless steel and evaluated its antibacterial effect. For this purpose, films containing two different concentrations of titanium dioxide (0.1 and 0.3g/L) were obtained by chemical vapor deposition. To obtain the apatite layer, the samples were soaked in simulated body fluid solution for up to 21days. The antibacterial activity of the films was evaluated by bacterial eradication tests using Staphylococcus aureus biofilm. Scanning electron microscopy, X-ray diffraction, Raman scattering spectroscopy, and goniometry showed that homogeneous, crystalline, and hydrophilic apatite films were formed independently of the titanium dioxide concentration. Interestingly, the diamond-like films containing titanium dioxide and hydroxyapatite reduced the biofilm formation compared to controls. A synergism between hydroxyapatite and titanium dioxide that provided an antimicrobial effect against opportunistic pathogens was clearly observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Main principles of passive devices based on graphene and carbon films in microwave-THz frequency range

    NASA Astrophysics Data System (ADS)

    Kuzhir, Polina P.; Paddubskaya, Alesia G.; Volynets, Nadezhda I.; Batrakov, Konstantin G.; Kaplas, Tommi; Lamberti, Patrizia; Kotsilkova, Rumiana; Lambin, Philippe

    2017-07-01

    The ability of thin conductive films, including graphene, pyrolytic carbon (PyC), graphitic PyC (GrPyC), graphene with graphitic islands (GrI), glassy carbon (GC), and sandwich structures made of all these materials separated by polymer slabs to absorb electromagnetic radiation in microwave-THz frequency range, is discussed. The main physical principles making a basis for high absorption ability of these heterostructures are explained both in the language of electromagnetic theory and using representation of equivalent electrical circuits. The idea of using carbonaceous thin films as the main working elements of passive radiofrequency (RF) devices, such as shields, filters, polarizers, collimators, is proposed theoretically and proved experimentally. The important advantage of PyC, GrI, GrPyC, and GC is that, in contrast to graphene, they either can be easily deposited onto a dielectric substrate or are strong enough to allow their transfer from the catalytic substrate without a shuttle polymer layer. This opens a new avenue toward the development of a scalable protocol for cost-efficient production of ultralight electromagnetic shields that can be transferred to commercial applications. A robust design via finite-element method and design of experiment for RF devices based on carbon/graphene films and sandwiches is also discussed in the context of virtual prototyping.

  9. Ultrathin Carbon Film Protected Silver Nanostructures for Surface-Enhanced Raman Scattering.

    PubMed

    Peng, Yinshan; Zheng, Xianliang; Tian, Hongwei; Cui, Xiaoqiang; Chen, Hong; Zheng, Weitao

    2016-06-23

    In this article, ultrathin carbon film protected silver substrate (Ag/C) was prepared via a plasma-enhanced chemical vapor deposition (PECVD) method. The morphological evolution of silver nanostructures underneath, as well as the surface-enhanced Raman scattering (SERS) activity of Ag/C hybrid can be tuned by controlling the deposition time. The stability and reproducibility of the as-prepared hybrid were also studied. © The Author(s) 2016.

  10. Thin Films of Reduced Hafnium Oxide with Excess Carbon for High-Temperature Oxidation Protection

    DTIC Science & Technology

    2010-02-01

    Cho, N. V. Nguyen, C. A. Richter, J. R. Ehrstein, B . H. Lee, and J. C. Lee, "Spectroscopic Ellipsometry Characterization of High- k Dielectric Hf02...34 Canadian Journal of Chemistry, 61 850-55 (1983). I6D. B . Chrisey and G. K . Hubler (Eds.), "Pulsed Laser Deposition of Thin Films." John Wiley...smaller than b rim. It was shown that high carbon content in the films inhibits crystaliization of HtO( at temperatures at least up to 333 C. Study ot

  11. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    NASA Astrophysics Data System (ADS)

    Ozeki, K.; Hirakuri, K. K.; Masuzawa, T.

    2011-04-01

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO2) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO2 films and DLC/TiO2/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO2-coated and the DLC/TiO2/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO2/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO2/DLC film had a photocatalytic effect even though the TiO2 film was covered with the DLC film.

  12. Conduction properties of thin films from a water soluble carbon nanotube/hemicellulose complex

    NASA Astrophysics Data System (ADS)

    Shao, Dongkai; Yotprayoonsak, Peerapong; Saunajoki, Ville; Ahlskog, Markus; Virtanen, Jorma; Kangas, Veijo; Volodin, Alexander; Van Haesendonck, Chris; Burdanova, Maria; Mosley, Connor D. W.; Lloyd-Hughes, James

    2018-04-01

    We have examined the conductive properties of carbon nanotube based thin films, which were prepared via dispersion in water by non-covalent functionalization of the nanotubes with xylan, a type of hemicellulose. Measurements of low temperature conductivity, Kelvin probe force microscopy, and high frequency (THz) conductivity elucidated the intra-tube and inter-tube charge transport processes in this material. The measurements show excellent conductive properties of the as prepared thin films, with bulk conductivity up to 2000 S cm-1. The transport results demonstrate that the hemicellulose does not seriously interfere with the inter-tube conductance.

  13. Reinforced carbon nanotubes as electrically conducting and flexible films for space applications.

    PubMed

    Atar, Nurit; Grossman, Eitan; Gouzman, Irina; Bolker, Asaf; Hanein, Yael

    2014-11-26

    Chemical vapor deposition (CVD)-grown entangled carbon nanotube (CNT) sheets are characterized by high electrical conductivity and durability to bending and folding. However, since freestanding CNT sheets are mechanically weak, they cannot be used as stand-alone flexible films. In this work, polyimide (PI) infiltration into entangled cup-stacked CNT (CSCNT) sheets was studied to form electrically conducting, robust, and flexible films for space applications. The infiltration process preserved CNTs' advantageous properties (i.e., conductivity and flexibility), prevented CNT agglomeration, and enabled CNT patterning. In particular, the CNT-PI films exhibited ohmic electrical conductance in both the lateral and vertical directions, with a sheet resistivity as low as 122 Ω/□, similar to that of as-grown CNT sheets, with minimal effect of the insulating matrix. Moreover, this high conductivity was preserved under mechanical and thermal manipulations. These properties make the reported CNT-PI films excellent candidates for applications where flexibility, thermal stability, and electrical conductivity are required. Particularly, the developed CNT-PI films were found to be durable in space environment hazards such as high vacuum, thermal cycling, and ionizing radiation, and hence they are suggested as an alternative for the electrostatic discharge (ESD) protection layer in spacecraft thermal blankets.

  14. Influence of inert gases on the reactive high power pulsed magnetron sputtering process of carbon-nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Susann; Czigany, Zsolt; Greczynski, Grzegorz

    2013-01-15

    The influence of inert gases (Ne, Ar, Kr) on the sputter process of carbon and carbon-nitride (CN{sub x}) thin films was studied using reactive high power pulsed magnetron sputtering (HiPIMS). Thin solid films were synthesized in an industrial deposition chamber from a graphite target. The peak target current during HiPIMS processing was found to decrease with increasing inert gas mass. Time averaged and time resolved ion mass spectroscopy showed that the addition of nitrogen, as reactive gas, resulted in less energetic ion species for processes employing Ne, whereas the opposite was noticed when Ar or Kr were employed as inertmore » gas. Processes in nonreactive ambient showed generally lower total ion fluxes for the three different inert gases. As soon as N{sub 2} was introduced into the process, the deposition rates for Ne and Ar-containing processes increased significantly. The reactive Kr-process, in contrast, showed slightly lower deposition rates than the nonreactive. The resulting thin films were characterized regarding their bonding and microstructure by x-ray photoelectron spectroscopy and transmission electron microscopy. Reactively deposited CN{sub x} thin films in Ar and Kr ambient exhibited an ordering toward a fullerene-like structure, whereas carbon and CN{sub x} films deposited in Ne atmosphere were found to be amorphous. This is attributed to an elevated amount of highly energetic particles observed during ion mass spectrometry and indicated by high peak target currents in Ne-containing processes. These results are discussed with respect to the current understanding of the structural evolution of a-C and CN{sub x} thin films.« less

  15. Ultra-fast LuI{sub 3}:Ce scintillators for hard x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marton, Zsolt, E-mail: zmarton@rmdinc.com; Miller, Stuart R.; Ovechkina, Elena

    We have developed ultra-fast cerium-coped lutetium-iodide (LuI{sub 3}:Ce) films thermally evaporated as polycrystalline, structured scintillator using hot wall epitaxy (HWE) method. The films have shown a 13 ns decay compared to the 28 ns reported for crystals. The fast speed coupled with its high density (∼5.6 g/cm{sup 3}), high effective atomic number (59.7), and the fact that it can be vapor deposited in a columnar form makes LuI{sub 3}:Ce an attractive candidate for high frame rate, high-resolution, hard X-ray imaging. In crystal form, LuI{sub 3}:Ce has demonstrated bright (>100,000 photons/MeV) green (540 nm) emission, which is well matched to commercialmore » CCD/CMOS sensors and is critical for maintaining high signal to noise ratio in light starved applications. Here, we report on the scintillation properties of films and those for corresponding crystalline material. The vapor grown films were integrated into a high-speed CMOS imager to demonstrate high-speed radiography capability. The films were also tested at Advanced Photon Source, Argonne National Laboratory beamline 1-ID under hard X-ray irradiation. The data show a factor of four higher efficiency than the reference LuAG:Ce scintillators, high image quality, and linearity of scintillation response over a wide energy range. The films were employed to perform hard X-ray microtomography, the results of which will also be discussed.« less

  16. Effects of Loading Frequency and Film Thickness on the Mechanical Behavior of Nanoscale TiN Film

    NASA Astrophysics Data System (ADS)

    Liu, Jin-na; Xu, Bin-shi; Wang, Hai-dou; Cui, Xiu-fang; Jin, Guo; Xing, Zhi-guo

    2017-09-01

    The mechanical properties of a nanoscale-thickness film material determine its reliability and service life. To achieve quantitative detection of film material mechanical performance based on nanoscale mechanical testing methods and to explore the influence of loading frequency of the cycle load on the fatigue test, a TiN film was prepared on monocrystalline silicon by magnetron sputtering. The microstructure of the nanoscale-thickness film material was characterized by using scanning electron microscopy and high-resolution transmission electron microscopy. The residual stress distribution of the thin film was obtained by using an electronic film stress tester. The hardness values and the fatigue behavior were measured by using a nanomechanical tester. Combined with finite element simulation, the paper analyzed the influence of the film thickness and loading frequency on the deformation, as well as the equivalent stress and strain. The results showed that the TiN film was a typical face-centered cubic structure with a large amount of amorphous. The residual compressive stress decreased gradually with increasing thin film thickness, and the influence of the substrate on the elastic modulus and hardness was also reduced. A greater load frequency would accelerate the dynamic fatigue damage that occurs in TiN films.

  17. Preparation and Characterization of Space Durable Polymer Nanocomposite Films from Functionalized Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Connell, J. W.; Smith, J. G.; Watson, K. A.

    2003-01-01

    Low color, flexible, space durable polyimide films with inherent, robust electrical conductivity have been under investigation as part of a continuing materials development activity for future NASA space missions involving Gossamer structures. Electrical conductivity is needed in these films to dissipate electrostatic charge build-up that occurs due to the orbital environment. One method of imparting conductivity is through the use of single walled carbon nanotubes (SWNTs). However, the incompatibility and insolubility of the SWNTs severely hampers their dispersion in polymeric matrices. In an attempt to improve their dispersability, SWNTs were functionalized by the reaction with an alkyl hydrazone. After this functionalization, the SWNTs were soluble in select solvents and dispersed more readily in the polymer matrix. The functionalized SWNTs were characterized by Raman spectroscopy and thermogravimetric analysis (TGA). The functionalized nanotubes were dispersed in the bulk of the films using a solution technique. The functionalized nanotubes were also applied to the surface of polyimide films using a spray coating technique. The resultant polyimide nanocomposite films were evaluated for nanotube dispersion, electrical conductivity, mechanical, and optical properties and compared with previously prepared polyimide-SWNT samples to assess the effects of SWNT functionalization.

  18. Nucleation and growth of thin films of the organic conductor TTF-iodide over glassy carbon. Electrochemical and spectroelectrochemical study.

    PubMed

    Gómez, L; Rodríguez-Amaro, R

    2009-04-21

    On the basis of the electrochemical and spectroelectrochemical behavior of thin films of TTF over a glassy carbon electrode in iodide media, a new, more complete mechanism for the electrode processes involved is proposed. The voltammetric and chronoamperometric results for the films can be explained in light of a recently developed nucleation-growth model involving a layer-by-layer mechanism. Also, their in situ UV-vis spectral data expand the available knowledge about the overall mechanism and the nature of the compound formed over the glassy carbon electrode.

  19. Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver.

    PubMed

    Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2016-12-01

    In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.

  20. Concurrent improvement in biocompatibility and bioinertness of diamond-like carbon films with nitrogen doping.

    PubMed

    Liao, Wen-Hsiang; Lin, Chii-Ruey; Wei, Da-Hua; Shen, You-Ruey; Li, Yi-Chieh; Lee, Jen-Ai; Liang, Chia-Yao

    2012-11-01

    The surfaces of implantable biomaterials improving biocompatibility and bioinertness are critical for new application of bioimplantable devices. Diamond-like carbon (DLC) film is a promising biomaterial with use for coating bioimplantable devices because of its good biocompatibility, bioinertness, and mechanical properties. In this study, concurrent improvement in biocompatibility and bioinertness of DLC films has been achieved using N-incorporation technique. The N doping degree was found to play an important role in affecting the biocompatibility and bioinertness of N-doped DLC films. The results indicated that the N-doped DLC films deposited at N(2) concentration of 5% could help to create suitable condition of surface/structure/adhesion combination of DLC films in the both affinity of the L929 mouse fibroblasts and electrochemical inertness in the Hank's balanced salt solutions (simulating human body fluids). N doping supports the attachment and proliferation of cells and prevents the permeation of electrolyte solutions, thereby simultaneity improved the biocompatibility and bioinertness of DLC films. This finding is useful for the fabrication and encapsulation of in vivo devices without induced immune response in the human body. Copyright © 2012 Wiley Periodicals, Inc.

  1. Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver

    NASA Astrophysics Data System (ADS)

    Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2016-03-01

    In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.

  2. Mechanical and electromagnetic properties of 3D printed hot pressed nanocarbon/poly(lactic) acid thin films

    NASA Astrophysics Data System (ADS)

    Kotsilkova, R.; Ivanov, E.; Todorov, P.; Petrova, I.; Volynets, N.; Paddubskaya, A.; Kuzhir, P.; Uglov, V.; Biró, I.; Kertész, K.; Márk, G. I.; Biró, L. P.

    2017-02-01

    We constructed a new type of light-weight, nanocarbon based thin film material having good mechanical properties, thermal stability, and electromagnetic shielding efficiency. Our method, 3D printing combined with hot pressing, is a cheap and industrially upscalable process. First a sandwich structure was created by layer-to-layer deposition of alternating 100 μm thick nanocarbon containing plastic layers and 100 μm thick pristine plastic layers, repeated as building blocks. The 3D printed samples were hot pressed to obtain thin films of 10-30 μm thickness. We used a commercial nanocarbon 3D printing filament (Black Magic). TEM investigations revealed the nanocarbon filler to be a mixture of graphene sheets, short carbon nanotubes, fishbone nanotubes, graphitic nanoparticles, and carbon black. Small-angle X-ray scattering and X-ray diffraction studies showed some amorphization of the nanocarbon filler as a consequence of the hot pressing. The nanoindentation hardness, nanoscratch hardness, and Young's modulus increase gradually by increasing the number of layers in the films, due to an increase of the amount of nanocarbon filler. Microwave absorption also increases continuously with the number of nanocarbon layers, reaching 40% for 3 nanocarbon layers. We demonstrate that unlike most conventional composites loaded with nanocarbons having pronounced dielectric properties, when the real part of permittivity Re(ɛ) is much higher than its imaginary part Im(ɛ) at high frequencies, a combination of 3D printing and hot pressing allows the fabrication of composites with Re ɛ ≈ Im ɛ in a very broad frequency range (0.2-0.6 THz). Our new 3D printed—hot pressed thin films may compete with the CVD graphene sandwiches in electromagnetic shielding applications because of their easier processability and low cost.

  3. Tribological performance of monolithic copper thin films during nanowear

    DOE PAGES

    Schultz, Bradley M.; Li, Nan; Economy, David R.; ...

    2017-10-07

    Mathematical models suggest that the strain along the film formed by parallel passes of a nanoindentation probe in contact with the film can be either homogenous or heterogeneous, depending on contact pressure and spacing between passes. Here, in this study, a 1 µm copper thin film was worn with a cono-spherical diamond probe with normal loads ranging from 25 to 800 µN and wear box edge lengths of 40, 60, and 80 µm. The nanoindenter counterface was rastered across the surface to mimic dry sliding wear. To determine potential strain field changes, 10-step quasi-static indents (200–2000 µN) were performed usingmore » nanoindentation inside the wear boxes created at various loads to determine if a strain field alteration could be observed in changes in hardness of the copper thin film. It was shown that there was a softening effect in the hardness for normal loads < 400 µN used during nanowear compared to the as-deposited copper. Normal loads ≥ 400 µN had a similar or higher hardness than the as-deposited copper. This is believed to have occurred due to a relaxation in the residual stresses created during deposition in the copper thin films at lower loads, which caused a decrease in hardness. Conversely, at the higher loads, increased deformation leads to an increase in hardness. Lastly, all of the wear boxes displayed a higher estimated strain hardening exponent than the as-deposited material.« less

  4. Preferential growth of short aligned, metallic-rich single-walled carbon nanotubes from perpendicular layered double hydroxide film.

    PubMed

    Zhao, Meng-Qiang; Tian, Gui-Li; Zhang, Qiang; Huang, Jia-Qi; Nie, Jing-Qi; Wei, Fei

    2012-04-07

    Direct bulk growth of single-walled carbon nanotubes (SWCNTs) with required properties, such as diameter, length, and chirality, is the first step to realize their advanced applications in electrical and optical devices, transparent conductive films, and high-performance field-effect transistors. Preferential growth of short aligned, metallic-rich SWCNTs is a great challenge to the carbon nanotube community. We report the bulk preferential growth of short aligned SWCNTs from perpendicular Mo-containing FeMgAl layered double hydroxide (LDH) film by a facile thermal chemical vapor deposition with CH(4) as carbon source. The growth of the short aligned SWCNTs showed a decreased growth velocity with an initial value of 1.9 nm s(-1). Such a low growth velocity made it possible to get aligned SWCNTs shorter than 1 μm with a growth duration less than 15 min. Raman spectra with different excitation wavelengths indicated that the as-grown short aligned SWCNTs showed high selectivity of metallic SWCNTs. Various kinds of materials, such as mica, quartz, Cu foil, and carbon fiber, can serve as the substrates for the growth of perpendicular FeMoMgAl LDH films and also the growth of the short aligned SWCNTs subsequently. These findings highlight the easy route for bulk preferential growth of aligned metallic-rich SWCNTs with well defined length for further bulk characterization and applications. This journal is © The Royal Society of Chemistry 2012

  5. Polycyclopentene-Crystal-Decorated Carbon Nanotubes by Convenient Large-Scale In Situ Polymerization and their Lotus-Leaf-Like Superhydrophobic Films.

    PubMed

    Xu, Lixin; Huang, Lingqi; Ye, Zhibin; Meng, Nan; Shu, Yang; Gu, Zhiyong

    2017-02-01

    In situ Pd-catalyzed cyclopentene polymerization in the presence of multi-walled carbon nanotubes (MWCNTs) is demonstrated to effectively render, on a large scale, polycyclopentene-crystal-decorated MWCNTs. Controlling the catalyst loading and/or time in the polymerization offers a convenient tuning of the polymer content and the morphology of the decorated MWCNTs. Appealingly, films made of the decorated carbon nanotubes through simple vacuum filtration show the characteristic lotus-leaf-like superhydrophobicity with high water contact angle (>150°), low contact angle hysteresis (<10°), and low water adhesion, while being electrically conductive. This is the first demonstration of the direct fabrication of lotus-leaf-like superhydrophobic films with solution-grown polymer-crystal-decorated carbon nanotubes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Structural and elastoplastic properties of β -Ga2O3 films grown on hybrid SiC/Si substrates

    NASA Astrophysics Data System (ADS)

    Osipov, A. V.; Grashchenko, A. S.; Kukushkin, S. A.; Nikolaev, V. I.; Osipova, E. V.; Pechnikov, A. I.; Soshnikov, I. P.

    2018-04-01

    Structural and mechanical properties of gallium oxide films grown on (001), (011) and (111) silicon substrates with a buffer layer of silicon carbide are studied. The buffer layer was fabricated by the atom substitution method, i.e., one silicon atom per unit cell in the substrate was substituted by a carbon atom by chemical reaction with carbon monoxide. The surface and bulk structure properties of gallium oxide films have been studied by atomic-force microscopy and scanning electron microscopy. The nanoindentation method was used to investigate the elastoplastic characteristics of gallium oxide, and also to determine the elastic recovery parameter of the films under study. The ultimate tensile strength, hardness, elastic stiffness constants, elastic compliance constants, Young's modulus, linear compressibility, shear modulus, Poisson's ratio and other characteristics of gallium oxide have been calculated by quantum chemistry methods based on the PBESOL functional. It is shown that all these properties of gallium oxide are essentially anisotropic. The calculated values are compared with experimental data. We conclude that a change in the silicon orientation leads to a significant reorientation of gallium oxide.

  7. Enhanced absorption of microwave radiations through flexible polyvinyl alcohol-carbon black/barium hexaferrite composite films

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Datt, Gopal; Santhosh Kumar, A.; Abhyankar, A. C.

    2016-10-01

    Flexible microwave absorber composite films of carbon black (CB)/barium hexaferrite nano-discs (BaF) in polyvinyl alcohol (PVA) matrix, fabricated by gel casting, exhibit ˜99.5% attenuation of electromagnetic waves in the entire 8-18 GHz (X and Ku-band) range. The X-ray diffraction and Raman spectroscopy studies confirm the formation of CB-BaF-PVA composite films. The electromagnetic absorption properties of composite films are found to be enhanced with CB content due to the synergetic effect of multiple dielectric and magnetic losses. The 25 wt. % CB grafted PVA-BaF flexible composite films with a thickness of ˜ 2 mm exhibit effective electromagnetic shielding of 23.6 dB with a dominant contribution from absorption mechanism (SEA ˜ 21 dB). The dielectric properties of composite films are further discussed by using the Debye model. The detailed analysis reveals that major contribution to dielectric losses is from dipolar and interfacial polarizations, whereas magnetic losses are predominantly from domain wall displacement.

  8. SU-E-T-771: Two Dimensional Raman Mapping of Carbon Bonds of Radiochromic Films: An Approach to Micro-Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, T; Ye, S

    2015-06-15

    Purpose: To study a feasibility of micro-dosimetry with high dose-sensitivity and resolution using two-dimensional Raman mapping on the basis of carbon bonds concentration of radiochromic films Methods: Unlaminated EBT3 films with the purpose of maximal Raman data acquisition were irradiated by 6 MV beam from 5 MU to 1000 MU at the reference condition. Each film was irradiated with shielding material of lead blocking on the half of film as well as the jaw open in half for distinct dose contrast. Raman peaks of 2070 cm-1, 2095 cm-1, and 2115 cm-1 were major subjects to study, which are assumed tomore » be the spectroscopy of carbon triple bonds of monomers, carbon double bonds of polymers, and carbon triple bonds of polymers, respectively. Laser exposure for Raman spectroscopy generated peak’s trend due to polymerization by laser output and this trend was utilized to find out basic peaks related to polymerization process. The relative dose contrast in each one film was detected by Raman spectroscopy with the aid of an auto-scanning stage, comparing the dose contrast between non-irradiated area and irradiated area. Raman spatial resolution was enhanced up to 20 micrometers, assuming the spatial uniformity of radio¬active rod-shaped LiPCDA crystals. An optical scanner with 9600 dpi was used to scan the red-channel intensity to read the dose contrast for 5 MU delivered film. Results: The peak intensity for Raman wavenumber of 2070 cm-1 was used for mapping since it reflected the different peak intensities based on polymerization degree by irradiation. Dose contrast from 1000MU to 5 MU was distinguished by Raman mapping analysis, whereas optical intensity of red-channel didn’t show any difference. Conclusion: In consideration of laser effect, the quantitative analysis based on raw data of Raman mapping could provide more statistically reliable dosimetry than point measurements.« less

  9. Probing superlubricity stability of hydrogenated diamond-like carbon film by varying sliding velocity

    NASA Astrophysics Data System (ADS)

    Liu, Yunhai; Yu, Bingjun; Cao, Zhongyue; Shi, Pengfei; Zhou, Ningning; Zhang, Bin; Zhang, Junyan; Qian, Linmao

    2018-05-01

    In this study, the superlubricity stability of hydrogenated diamond-like carbon (H-DLC) film in vacuum was investigated by varying the sliding velocity (30-700 mm/s). The relatively stable superlubricity state can be maintained for a long distance at low sliding velocity, whereas the superlubricity state quickly disappears and never recovers at high sliding velocity. Under superlubricity state, the transfer layer of H-DLC film was observed on the Al2O3 ball, which played a key role in obtaining ultra-low friction coefficient. Although the transfer layer can be generated at the beginning of the test, high-velocity sliding tends to accelerate the superlubricity failure and leads to the severe wear of H-DLC film. Analysis indicated that the main reason for superlubricity failure at high sliding velocity is not attributed to friction heat or the break of hydrogen passivation but to the absence of transfer layer on Al2O3 ball. The present study can enrich the understanding of superlubricity mechanism of H-DLC film.

  10. Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions.

    PubMed

    Gao, G T; Mikulski, Paul T; Harrison, Judith A

    2002-06-19

    Classical molecular dynamics simulations have been conducted to investigate the atomic-scale friction and wear when hydrogen-terminated diamond (111) counterfaces are in sliding contact with diamond (111) surfaces coated with amorphous, hydrogen-free carbon films. Two films, with approximately the same ratio of sp(3)-to-sp(2) carbon, but different thicknesses, have been examined. Both systems give a similar average friction in the load range examined. Above a critical load, a series of tribochemical reactions occur resulting in a significant restructuring of the film. This restructuring is analogous to the "run-in" observed in macroscopic friction experiments and reduces the friction. The contribution of adhesion between the probe (counterface) and the sample to friction was examined by varying the saturation of the counterface. Decreasing the degree of counterface saturation, by reducing the hydrogen termination, increases the friction. Finally, the contribution of long-range interactions to friction was examined by using two potential energy functions that differ only in their long-range forces to examine friction in the same system.

  11. Installing logic gates in permeability controllable polyelectrolyte-carbon nitride films for detecting proteases and nucleases.

    PubMed

    Chen, Lichan; Zeng, Xiaoting; Dandapat, Anirban; Chi, Yuwu; Kim, Donghwan

    2015-09-01

    Proteases and nucleases are enzymes heavily involved in many important biological processes, such as cancer initiation, progression, and metastasis; hence, they are indicative of potential diagnostic biomarkers. Here, we demonstrate a new label free and sensitive electrochemiluminescent (ECL) sensing strategy for protease and nuclease assays that utilize target-triggered desorption of programmable polyelectrolyte films assembled on graphite-like carbon nitride (g-C3N4) film to regulate the diffusion flux of a coreactant. Furthermore, we have built Boolean logic gates OR and AND into the polyelectrolyte films, capable of simultaneously sensing proteases and nucleases in a complicated system by breaking it into simple functions. The developed intelligent permeability controlled enzyme sensor may prove valuable in future medical diagnostics.

  12. Wet catalyst-support films for production of vertically aligned carbon nanotubes.

    PubMed

    Alvarez, Noe T; Hamilton, Christopher E; Pint, Cary L; Orbaek, Alvin; Yao, Jun; Frosinini, Aldo L; Barron, Andrew R; Tour, James M; Hauge, Robert H

    2010-07-01

    A procedure for vertically aligned carbon nanotube (VA-CNT) production has been developed through liquid-phase deposition of alumoxanes (aluminum oxide hydroxides, boehmite) as a catalyst support. Through a simple spin-coating of alumoxane nanoparticles, uniform centimer-square thin film surfaces were coated and used as supports for subsequent deposition of metal catalyst. Uniform VA-CNTs are observed to grow from this film following deposition of both conventional evaporated Fe catalyst, as well as premade Fe nanoparticles drop-dried from the liquid phase. The quality and uniformity of the VA-CNTs are comparable to growth from conventional evaporated layers of Al(2)O(3). The combined use of alumoxane and Fe nanoparticles to coat surfaces represents an inexpensive and scalable approach to large-scale VA-CNT production that makes chemical vapor deposition significantly more competitive when compared to other CNT production techniques.

  13. Development of Novel Magnetic Metal Oxide Films and Carbon Nanotube Materials for Magnetic Device Applications

    DTIC Science & Technology

    2015-01-23

    From these studies we learned that nano wires of Fe grown in the lumens of multi-walled carbon nanotubes ( MWCNTs ) required four times higher 35...studies we learned that nano wires of Fe grown in the lumens of multi-walled carbon nanotubes ( MWCNTs ) required four times higher magnetic field...properties of nano-metric Fe thin films on 325 MgO(100) and nano wires of Fe prepared in the lumens of MWCNTs using magnetron DC-sputtering were studied

  14. Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application

    DOEpatents

    Hawkins, G.A.; Clarke, J.

    1975-10-31

    A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.

  15. A study for anticorrosion and tribological behaviors of thin/thick diamond-like carbon films in seawater

    NASA Astrophysics Data System (ADS)

    Ye, Yewei; Jia, Shujuan; Zhang, Dawei; Liu, Wei; Zhao, Haichao

    2018-03-01

    The thin and thick diamond-like carbon (DLC) films were prepared by unbalanced magnetron sputtering technique on 304L stainless steels and (100) silicon wafers. Microstructure, mechanical, corrosion and tribological properties were systematically investigated by SEM, Raman, nanoindenter, scratch tester, modulab electrochemical workstation and R-tec multifunctional tribological tester. Results showed that the adhesion force presented a descending trend with the growth in soaking time. The adhesion force of the thin DLC film with high residual compressive stress (‑3.72 GPa) was higher than that of the thick DLC film (‑2.96 GPa). During the corrosion test, the thick DLC film showed a higher impendence and a lower corrosion current density than the thin DLC film, which is attributed to the barrier action of large thickness. Compared to bare 304L substrate, the friction coefficients and wear rates of DLC films in seawater were obviously decreased. Meanwhile, the thin DLC film with ideal residual compressive stress, super adhesion force and good plastic deformation resistance revealed an excellent anti-wear ability in seawater.

  16. Effect of sputtering power on structure, adhesion strength and corrosion resistance of nitrogen doped diamond-like carbon thin films.

    PubMed

    Khun, N W; Liu, E

    2011-06-01

    Nitrogen doped diamond-like carbon (DLC:N) thin films were deposited on highly conductive p-Si substrates using a DC magnetron sputtering deposition system. The DLC:N films were characterized using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM), contact angle measurement and micro-scratch test. The XPS and Raman results indicated that the sputtering power significantly influenced the properties of the films in terms of bonding configuration in the films. The corrosion performance of the DLC:N films was investigated in a 0.6 M NaCl solution by means of potentiodynamic polarization testing. It was found that the corrosion performance of the films could be enhanced by higher sputtering powers.

  17. Group electronegativity for prediction of materials hardness.

    PubMed

    Li, Keyan; Yang, Peng; Niu, Lingxiao; Xue, Dongfeng

    2012-06-28

    We have developed a method to predict the hardness of materials containing ultrastrong anionic polyhedra, dense atomic clusters, and layers stacked through van der Waals bonds on the basis of group electronegativity. By considering these polyhedra, clusters, and layers as groups that behave as rigid unities like superatoms bonding to other atoms or groups, the hardness values of materials such as oxysalts, T-carbon, and graphite were quantitatively calculated, and the results are consistent with the available experiments. We found that the hardness of materials containing these artificial groups is determined by the bonds between the groups and other atoms or groups, rather than by the weakest bonds. This work sheds light on the nature of materials hardness and the design of novel inorganic crystal materials.

  18. Film thickness for different regimes of fluid-film lubrication

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1980-01-01

    Film thickness equations are provided for four fluid-film lubrication regimes found in elliptical contacts. These regimes are isoviscous-rigid; viscous-rigid; elastohydrodynamic lubrication of low-elastic-modulus materials (soft EHL), or isoviscous-elastic; and elastohydrodynamic lubrication of high-elastic-modulus materials (hard EHL), or viscous-elastic. The influence or lack of influence of elastic and viscous effects is the factor that distinguishes these regimes. The results are presented as a map of the lubrication regimes, with film thickness contours on a log-log grid of the viscosity and elasticity for three values of the ellipticity parameter.

  19. Domain growth of carbon nanotubes assisted by dewetting of thin catalyst precursor films

    NASA Astrophysics Data System (ADS)

    Srivastava, Alok Kumar; Sachan, Priyanka; Samanta, Chandan; Mukhopadhyay, Kingsuk; Sharma, Ashutosh

    2014-01-01

    We explore self-organized dewetting of ultrathin films of a novel metal complex as a one step surface patterning method to create nanoislands of iron, using which spatially separated carbon nanostructures were synthesized. Dewetting of ultrathin metal complex films was induced by two different methods: liquid solvent exposure and thermal annealing to engender surface patterning. For thermal dewetting, thin films of the iron oleate complex were dewetted at high temperature. In the case of liquid solvent assisted dewetting, the metal complex, mixed with a sacrificial polymer (polystyrene) was spin coated as thin films (<40 nm) and then dewetted under an optimal solution mixture consisting of methyl ethyl ketone, acetone and water. The carrier polymer was then selectively removed to produce the iron metal islands. These metal islands were used for selective growth of discrete patches of multiwall CNTs and CNFs by a chemical vapor deposition (CVD) process. Solvent induced dewetting showed clear advantages over thermal dewetting owing to reduced size of catalyst domains formed by dewetting, an improved control over CNT growth as well as in its ability to immobilize the seed particles. The generic solution mediated dewetting and pattern generation in thin films of various catalytic precursors can thus be a powerful method for selective domain growth of a variety of functional nanomaterials.

  20. Characterization of Diamond-like Carbon (DLC) films deposited by RF ICP PECVD method

    NASA Astrophysics Data System (ADS)

    Oleszkiewicz, Waldemar; Kijaszek, Wojciech; Gryglewicz, Jacek; Zakrzewski, Adrian; Gajewski, Krzysztof; Kopiec, Daniel; Kamyczek, Paulina; Popko, Ewa; Tłaczała, Marek

    2013-07-01

    The work presents the results of a research carried out with Plasmalab Plus 100 system, manufactured by Oxford Instruments Company. The system was configured for deposition of diamond-like carbon films by ICP PECVD method. The deposition processes were carried out in CH4 or CH4/H2 atmosphere and the state of the plasma was investigated by the OES method. The RF plasma was capacitively coupled by 13.56 MHz generator with supporting ICP generator (13.56 Mhz). The deposition processes were conducted in constant value of RF generator's power and resultant value of the DC Bias. The power values of RF generator was set at 70 W and the power values of ICP generator was set at 300 W. In this work we focus on the influence of DLC film's thickness on optical, electrical and structural properties of the deposited DLC films. The quality of deposited DLC layers was examined by the Raman spectroscopy, AFM microscopy and spectroscopic ellipsometry. In the investigated DLC films the calculated sp3 content was ranging from 60 % to 70 %. The films were characterized by the refractive index ranging from 2.03 to 2.1 and extinction coefficient ranging from 0.09 to 0.12.