Sample records for hard coatings manufacturing

  1. Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative

    DTIC Science & Technology

    2014-11-01

    1 ASETSDefense 2014 Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative Ruben A. Prado, CEF...COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative...coatings as a Hard Chrome (EHC) electroplating alternative for DoD manufacturing and repair. – Fully define deposition parameters and properties

  2. Development of coatings for ultrasonic additive manufacturing sonotrode using laser direct metal deposition process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Niyanth; Dehoff, Ryan R.; Jordan, Brian H.

    2016-10-01

    ORNL partnered with Fabrisonic, LLC to develop galling resistant hard facing coatings on sonotrodes used to fabricate 3D printed materials using ultrasonic additive manufacturing. The development and deployment of a coated sonotrode is expected to push the existing state of the art to facilitate the solidstate additive manufacturing of hard steels and titanium alloys. To this effect a structurally amorphous stainless steel material and cobalt chrome material were deposited on the sonotrode material. Both the deposits showed good adhesion to the substrate. The coatings made using the structurally amorphous steel materials showed cracking during the initial trials and cracking wasmore » eliminated by deposition on a preheated substrate. Both the coatings show hardness in excess of 600 HVN. Thus the phase 1 of this project has been used to identify suitable materials to use to coat the sonotrode. Despite the fact that successful deposits were obtained, the coatings need to be evaluated by performing detailed galling tests at various temperatures. In addition field tests are also necessary to test the stability of these coatings in a high cycle ultrasonic vibration mode. If awarded, phase 2 of the project would be used to optimize the composition of the deposit material to maximize galling resistance. The industrial partner would then use the coated sonotrode to fabricate builds made of austenitic stainless steel to test the viability of using a coated sonotrode.« less

  3. Hardness and adhesion performances of nanocoating on carbon steel

    NASA Astrophysics Data System (ADS)

    Hasnidawani, J. N.; Azlina, H. N.; Norita, H.; Bonnia, N. N.

    2018-01-01

    Nanocoatings industry has been aggressive in searching for cost-effective alternatives and environmental friendly approaches to manufacture products. Nanocoatings represent an engineering solution to prevent corrosion of the structural parts of ships, insulation and pipelines industries. The adhesion and hardness properties of coating affect material properties. This paper reviews ZnO-SiO2 as nanopowder in nano coating formulation as the agent for new and improved coating performances. Carbon steel on type S50C used as common substrate in nanocoating industry. 3wt% ZnO and 2wt% SiO2 addition of nanoparticles into nanocoating showed the best formulation since hardness and adhesion of nanocoating was good on carbon steel substrate. Incorporation of nanoparticles into coating increased the performances of coating.

  4. Hydroxyapatite Coatings on High Nitrogen Stainless Steel by Laser Rapid Manufacturing

    NASA Astrophysics Data System (ADS)

    Das, Ashish; Shukla, Mukul

    2017-11-01

    In this research, the laser rapid manufacturing (LRM) additive manufacturing process was used to deposit multifunctional hydroxyapatite (HAP) coatings on high nitrogen stainless steel. LRM overcomes the limitations of conventional coating processes by producing coatings with metallurgical bond, osseointegration, and infection inhibition properties. The microstructure, microhardness, antibacterial efficacy, and bioactivity of the coatings were investigated. The microstructure studies established that the coatings consist of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. A Vickers microhardness test confirmed the hardness values of deposited HAP coatings to be higher than those of the bare 254SS samples, while a fluorescence activated cell sorting test confirmed their superior antibacterial properties as compared with pristine samples. The coated samples immersed in simulated body fluid showed rapid apatite forming ability. The results obtained in this research signify the potential application of the LRM process in synthesizing multifunctional orthopaedic coatings.

  5. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  6. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE PAGES

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; ...

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  7. Method of protecting surfaces from abrasion and abrasion resistant articles of manufacture

    DOEpatents

    Hirschfeld, T.B.

    1988-06-09

    Surfaces of fabricated structures are protected from damage by impacting particulates by a coating of hard material formed as a mass of thin flexible filaments having root ends secured to the surface and free portions which can flex and overlap to form a resilient cushioning mat which resembles hair or fur. The filamentary coating covers the underlying surface with hard abrasion resistance material while also being compliant and capable of local accommodation to particle impacts. The coating can also function as thermal and/or acoustical insulation and has a friction reducing effect. 11 figs.

  8. Establishment of Wear Resistant HVOF Coatings for 50CrMo4 Chromium Molybdenum Alloy Steel as an Alternative for Hard Chrome Plating

    NASA Astrophysics Data System (ADS)

    Karuppasamy, S.; Sivan, V.; Natarajan, S.; Kumaresh Babu, S. P.; Duraiselvam, M.; Dhanuskodi, R.

    2018-05-01

    High cost imported components of seamless steel tube manufacturing plants wear frequently and need replacement to ensure the quality of the product. Hard chrome plating, which is time consuming and hazardous, is conventionally used to restore the original dimension of the worn-out surface of the machine components. High Velocity Oxy-Fuel (HVOF) thermal spray coatings with NiCrBSi super alloy powder and Cr3C2 NiCr75/25 alloy powder applied on a 50CrMo4 (DIN-1.7228) chromium molybdenum alloy steel, the material of the wear prone machine component, were evaluated for use as an alternative for hard chrome plating in this present work. The coating characteristics are evaluated using abrasive wear test, sliding wear test and microscopic analysis, hardness test, etc. The study results revealed that the HVOF based NiCrBSi and Cr3C2NiCr75/25 coatings have hardness in the range of 800-900 HV0.3, sliding wear rate in the range of 50-60 µm and surface finish around 5 microns. Cr3C2 NiCr75/25 coating is observed to be a better option out of the two coatings evaluated for the selected application.

  9. Influence of Powder Morphology and Microstructure on the Cold Spray and Mechanical Properties of Ti6Al4V Coatings

    NASA Astrophysics Data System (ADS)

    Munagala, Venkata Naga Vamsi; Akinyi, Valary; Vo, Phuong; Chromik, Richard R.

    2018-06-01

    The powder microstructure and morphology has significant influence on the cold sprayability of Ti6Al4V coatings. Here, we compare the cold sprayability and properties of coatings obtained from Ti6Al4V powders of spherical morphology (SM) manufactured using plasma gas atomization and irregular morphology (IM) manufactured using the Armstrong process. Coatings deposited using IM powders had negligible porosity and better properties compared to coatings deposited using SM powders due to higher particle impact velocities, porous surface morphology and more deformable microstructure. To evaluate the cohesive strength, multi-scale indentation was performed and hardness loss parameter was calculated. Coatings deposited using SM powders exhibited poor cohesive strength compared to coatings deposited using IM powders. Images of the residual indents showed de-bonding and sliding of adjacent splats in the coatings deposited using SM powders irrespective of the load. Coatings deposited using IM powders showed no evidence of de-bonding at low loads. At high loads, splat de-bonding was observed resulting in hardness loss despite negligible porosity. Thus, while the powders from Armstrong process lead to a significant improvement in sprayability and coating properties, further optimization of powder and cold spray process will be required as well as consideration of post-annealing treatments to obtain acceptable cohesive strength.

  10. Implementation of quality by design approach in manufacturing process optimization of dry granulated, immediate release, coated tablets - a case study.

    PubMed

    Teżyk, Michał; Jakubowska, Emilia; Milanowski, Bartłomiej; Lulek, Janina

    2017-10-01

    The aim of this study was to optimize the process of tablets compression and identification of film-coating critical process parameters (CPPs) affecting critical quality attributes (CQAs) using quality by design (QbD) approach. Design of experiment (DOE) and regression methods were employed to investigate hardness, disintegration time, and thickness of uncoated tablets depending on slugging and tableting compression force (CPPs). Plackett-Burman experimental design was applied to identify critical coating process parameters among selected ones that is: drying and preheating time, atomization air pressure, spray rate, air volume, inlet air temperature, and drum pressure that may influence the hardness and disintegration time of coated tablets. As a result of the research, design space was established to facilitate an in-depth understanding of existing relationship between CPPs and CQAs of intermediate product (uncoated tablets). Screening revealed that spray rate and inlet air temperature are two most important factors that affect the hardness of coated tablets. Simultaneously, none of the tested coating factors have influence on disintegration time. The observation was confirmed by conducting film coating of pilot size batches.

  11. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A., E-mail: aelmusta@odu.edu; Taus, Rhys

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  12. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    NASA Astrophysics Data System (ADS)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  13. Manufacturing Techniques for Application of Erosion Resistant Coatings to Turbine Engine Compressor Components.

    DTIC Science & Technology

    means of increasing the life of aircraft gas turbine compressor rotor blades and stator vanes . Two proprietary erosion resistant coating systems... engine tests as the two most promising systems for doubling compressor airfoil lives. An Air Force Sponsored program to evaluate the applicability of...Helicopter engine erosion has become a severe problem in S. E. Asia because of extensive operations in sand and dust. Hard coatings offer a potential

  14. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  15. Thin coatings for heavy industry: Advanced coatings for pipes and valves

    NASA Astrophysics Data System (ADS)

    Vernhes, Luc

    Pipes and valves are pressure vessels that regulate the flow of materials (liquids, gases, and slurries) by controlling the passageways. To optimize processes, reduce costs, and comply with government regulations, original equipment manufacturers (OEMs) must maintain their products in state-of-the-art condition. The first valves were invented over 3,000 years ago to supply water to farms and cities. They were made with bronze alloys, providing good corrosion resistance and acceptable tribological performance. The industrial revolution drove manufacturers to develop new and improved tribological materials. In the 20th century, innovative alloys such as Monel copper-nickel and Stellite cobalt-chrome as well as hard chrome plating were introduced to better control tribological properties and maximize in-service life. Since then, new materials have been regularly introduced to extend the range of applications for valves. For example, Teflon fluoropolymers are used in corrosive chemical and petrochemical processes, the nickel-based superalloys Hastelloy and Inconel for petrochemical applications, and creep-resistant chromium-rich F91 steel for supercritical power plants. Recently, the valve industry has embraced the use of hard thermal sprayed coatings for the most demanding applications, and is investing heavily in research to develop the most suitable coatings for specific uses. There is increasing evidence that the optimal solution to erosive, corrosive, and fretting wear problems lies in the design and manufacture of multi-layer, graded, and/or nanostructured coatings and coating systems that combine controlled hardness with high elastic modulus, high toughness, and good adhesion. The overall objectives of this thesis were 1) to report on advances in the development of structurally controlled hard protective coatings with tailored mechanical, elastoplastic, and thermal properties; and 2) to describe enhanced wear-, erosion-, and corrosion-resistance and other characteristics suitable for applications such as pipes and valves. From these general objectives, three specific objectives were derived: 1) to select and assess the best candidates for alternatives to hard chromium electroplating, which has been classified by the U.S. Environmental Protection Agency (EPA) as an environmentally unfriendly process; 2) to investigate recurrent failures occurring in the field with thermal sprayed HVOF Cr3C 2-NiCr coating applied to Inconel 718 PH when exposed to supercritical steam lines and thermal shocks in supercritical power plants (determining the root causes of coating failures and assessing potential coating alternatives to alleviate these issues); and 3) to develop new coating architectures, including complex microstructures and interfaces, and to better understand and optimize complex tribomechanical properties. The main results are presented in the form of articles in peer-reviewed journals. In the first article, a variety of chromium-free protective coatings were assessed as alternatives to hard chromium (HC) electroplating, such as nanostructured cobalt-phosphor (NCP) deposited by electroplating and tungsten/tungsten carbide (W/WC) applied by chemical vapor deposition. In order to compare performance across the coatings, a series of laboratory tests were performed, including hardness, microscratch, pin-on-disk, and electrochemical polarization measurements. Mechanical and fatigue resistance were also determined using prototype valves with coated ball under severe tribocorrosion conditions. It was found that W/WC coating exhibits superior wear and corrosion resistance due to high hardness and high pitting resistance, respectively, whereas NCP exhibits better wear resistance than HC with alumina ball as well as low corrosion potential, making it suitable for use as sacrificial protective coating. Both nanostructured coatings exhibited superior tribomechanical and functional characteristics compared to HC. The second article presents an investigation of an HVOF 80/20 Cr 3C2-NiCr coating failure in an on-off metal-seated ball valve (MSBV) used in supercritical steam lines in a power plant, along with an assessment of alternative coating solutions that are less susceptible to this failure mode. HVOF 80/20 Cr3C2-NiCr coating has been used to protect thousands of MSBVs without incident. However, in this case the valves were challenged with exposure to rapid variations in high-pressure flow and temperature, resulting in a unique situation that caused the coating to undergo cracking and cohesive failure. Carbide precipitation was found to be a major factor, resulting in coating embrittlement. Reduced coating toughness and ductility allowed thermal, mechanical, and residual stresses to initiate cracks and propagate them more easily, leading to coating failure with exposure to thermal shock. To alleviate these issues, possible coating alternatives were assessed. The third article presents the mechanical, tribological, and corrosion properties of two novel hybrid coating systems: 1) a tungsten-tungsten carbide (W-WC) top layer and a laser cladded cobalt-chromium (Co-Cr) interlayer (StelliteRTM 6 superalloy) applied to a 316 stainless steel substrate; and 2) the same W-WC top layer and an HVOF spray-and-fused Ni-W-Cr-B interlayer (ColmonoyRTM 88 superalloy) applied to an InconelRTM 718 substrate. X-ray diffraction, energy dispersive spectroscopy, and scanning electron microscopy were used to analyze the microstructure of the coating layers. Microindentation was used to measure surface hardness and the hardness profile of the coating systems. Rockwell indentation was used to assess coating adhesion according to CEN/TS 1071-8. Surface load-carrying capacity was also assessed by measuring micro- and macrohardness at high loads. Tribological properties were assessed with a linear reciprocating ball-on-flat sliding wear test, and corrosion resistance was measured by potentiodynamic polarization and electrochemical impedance spectroscopy.

  16. .beta.-silicon carbide protective coating and method for fabricating same

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.

    1994-01-01

    A polycrystalline beta-silicon carbide film or coating and method for forming same on components, such as the top of solar cells, to act as an extremely hard protective surface, and as an anti-reflective coating. This is achieved by DC magnetron co-sputtering of amorphous silicon and carbon to form a SiC thin film onto a surface, such as a solar cell. The thin film is then irradiated by a pulsed energy source, such as an excimer laser, to synthesize the poly- or .mu.c-SiC film on the surface and produce .beta.--SiC. While the method of this invention has primary application in solar cell manufacturing, it has application wherever there is a requirement for an extremely hard surface.

  17. [beta]-silicon carbide protective coating and method for fabricating same

    DOEpatents

    Carey, P.G.; Thompson, J.B.

    1994-11-01

    A polycrystalline beta-silicon carbide film or coating and method for forming same on components, such as the top of solar cells, to act as an extremely hard protective surface, and as an anti-reflective coating are disclosed. This is achieved by DC magnetron co-sputtering of amorphous silicon and carbon to form a SiC thin film onto a surface, such as a solar cell. The thin film is then irradiated by a pulsed energy source, such as an excimer laser, to synthesize the poly- or [mu]c-SiC film on the surface and produce [beta]-SiC. While the method of this invention has primary application in solar cell manufacturing, it has application wherever there is a requirement for an extremely hard surface. 3 figs.

  18. Characteristics and Machining Performance of TiN and TiAlN Coatings on a Milling Cutter

    NASA Astrophysics Data System (ADS)

    Sarwar, Mohammed; Haider, Julfikar

    2011-01-01

    Titanium Nitride (TiN) coating deposited by Physical Vapour Deposition (PVD) or Chemical Vapour Deposition (CVD) techniques on cutting tools (single point or multipoint) has contributed towards the improvement of tool life, productivity and product quality [1]. Addition of Al in TiN coating (e.g., TiAlN or AlTiN) has further improved the coating properties required for machining applications [2, 3]. This work presents a comparative investigation on TiN and TiAlN coatings deposited on to a Powder Metallurgy High Speed Steel (PM HSS) milling cutter used for machining bimetal (M42+D6A) steel strips. PVD (Arc evaporation) technique was used to deposit the coatings after carefully preparing the cutting edges of the milling cutter. Microstructure, chemical composition, hardness and adhesion of the coatings have been characterised using different techniques. The incorporation of Al into TiN coating results in an improvement in hardness, wear resistance and cutting performance. Examination of the worn flank in the coated cutting edges revealed that abrasive and adhesive wear are the predominant failure mechanisms. Tool designers, coating suppliers and manufacturing engineers could benefit from the information provided.

  19. Quality optimization of thermally sprayed coatings produced by the JP-5000 (HVOF) gun using mathematical modeling

    NASA Technical Reports Server (NTRS)

    Tawfik, Hazem

    1994-01-01

    Currently, thermal barrier coatings (TBC) of gas-turbine blades and similar applications have centered around the use of zirconia as a protective coating for high thermal applications. The advantages of zirconia include low thermal conductivity and good thermal shock resistance. Thermally sprayed tungsten carbide hardface coatings are used for a wide range of applications spanning both the aerospace and other industrial markets. Major aircraft engine manufacturers and repair facilities use hardface coatings for original engine manufacture (OEM), as well as in the overhaul of critical engine components. The principle function of these coatings is to resist severe wear environments for such wear mechanisms as abrasion, adhesion, fretting, and erosion. The (JP-5000) thermal spray gun is the most advanced in the High Velocity Oxygen Fuel (HVOF) systems. Recently, it has received considerable attention because of its relative low cost and its production of quality coatings that challenge the very successful but yet very expensive Vacuum Plasma Spraying (VPS) system. The quality of thermal spray coatings is enhanced as porosity, oxidation, residual stress, and surface roughness are reduced or minimized. Higher densification, interfacial bonding strength, hardness and wear resistance of coating are desirable features for quality improvement.

  20. Structure and properties of ZrB2, ZrSiB and ZrAlSiB cathode materials and coatings obtained by their magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Iatsyuk, I. V.; Lemesheva, M. V.; Kiryukhantsev-Korneev, Ph V.; Levashov, E. A.

    2018-04-01

    The ceramic ZrB2, ZrSiB, and ZrAlSiB cathodes were manufactured by means of self-propagating high-temperature synthesis (SHS). The parameters of SHS process including dependence of the combustion temperature and rate on the initial temperature of the reaction mixtures, as well as values of effective activation energy were estimated. Cathodes were subjected to the magnetron sputtering in the argon atmosphere. The structure and properties of cathodes and coatings were studied by means of X-ray diffraction, scanning electron microscopy, energy-dispersive and glow discharge optical emission spectroscopy. Bulk ceramic samples and coatings were characterised in terms of their hardness, elastic modulus, elastic recovery, density, and residual porosity. Results obtained shows that cathodes posses homogeneous structure with low porosity level in range 2-6% and hardness between 10 and 17 GPa. Coatings demonstrate dense defect-free structure and contain nanocrystallites of h-ZrB2 phase. The grain size and hardness decrease from 8 down to 2 nm and from 37 down to 16 GPa with the addition of the silicon and aluminum dopes.

  1. Demonstration of no-VOC/no-HAP wood furniture coating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, E.W.; Guan, R.; McCrillis, R.C.

    1997-12-31

    The United States Environmental Protection Agency has contracted with AeroVironment Environmental Services, Inc. and its subcontractor, Adhesive Coating Co., to develop and demonstrate a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating system. The objectives of this project are to develop a new wood coating system that is sufficiently mature for demonstration and to develop a technology transfer plan to get the product into public use. The performance characteristics of this new coating system are excellent in terms of adhesion, drying times, gloss, hardness, mar resistance, level of solvents, and stain resistance. Workshops will be held to providemore » detailed information to wood furniture manufacturers on what is required to change to the new coating system. Topics such as spray gun selection, spray techniques, coating repair procedures, drying times and procedures, and spray equipment cleaning materials and techniques will be presented. A cost analysis, including costs of materials, capital outlay, and labor will be conducted comparing costs to finish furniture with the new system to systems currently used. Film performance, coating materials cost per unit production, productivity, manufacturing changes, and emission levels will be compared in the workshops, based on data gathered during the in-plant, full scale demonstrations.« less

  2. High speed metal removal

    NASA Astrophysics Data System (ADS)

    Pugh, R. F.; Pohl, R. F.

    1982-10-01

    Four types of steel (AISI 1340, 4140, 4340, and HF-1) which are commonly used in large caliber projectile manufacture were machined at different hardness ranges representing the as-forged and the heat treated condition with various ceramic tools using ceramic coated tungsten carbide as a reference. Results show that machining speeds can be increased significantly using present available tooling.

  3. Study of PVD AlCrN Coating for Reducing Carbide Cutting Tool Deterioration in the Machining of Titanium Alloys.

    PubMed

    Cadena, Natalia L; Cue-Sampedro, Rodrigo; Siller, Héctor R; Arizmendi-Morquecho, Ana M; Rivera-Solorio, Carlos I; Di-Nardo, Santiago

    2013-05-24

    The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum-chromium-nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating.

  4. Study of PVD AlCrN Coating for Reducing Carbide Cutting Tool Deterioration in the Machining of Titanium Alloys

    PubMed Central

    Cadena, Natalia L.; Cue-Sampedro, Rodrigo; Siller, Héctor R.; Arizmendi-Morquecho, Ana M.; Rivera-Solorio, Carlos I.; Di-Nardo, Santiago

    2013-01-01

    The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum–chromium–nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating. PMID:28809266

  5. Protective Coatings

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  6. Lipid-coated mannitol core microparticles for sustained release of protein.

    PubMed

    Wang, Bifeng; Friess, Wolfgang

    2018-07-01

    Parenteral sustained release systems for proteins which provide therapeutic levels over a longer period avoiding frequent administration, which preserve protein stability during manufacturing, storage and application and which are biodegradable and highly biocompatible in the body are intensively sought after. The aim of this study was to generate and study mannitol core microparticles loaded with a monoclonal antibody IgG1 and coated with lipid either hard fat or glyceryl stearate at different coating levels. The protein was stabilized with 22.5 mg/mL sucrose, 0.1% PS 80, 10 mM methionine in 10 mM His buffer pH 7.2 during the spray loading process. 30 g protein-loaded mannitol carrier microparticles were coated with 5 g, 10 g, 20 g and 30 g of lipid, respectively. Placing more lipid onto the protein-loaded microparticles reduced both burst and release rate, and the particles maintained their geometric form during the release test. The IgG1 release from microparticles covered with a hard fat layer extended up to 6 weeks. The IgG1 was released in its monomeric form and maintained its secondary structure as shown by FTIR. Incomplete release of IgG1 from glyceryl stearate-coated microparticles was observed, which may be due to the small pore sizes of the glyceryl stearate layer or a detrimental surfactant character of glyceryl stearate to protein. Hence, these hard fat-coated mannitol core microparticles have high potential for protein delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Characterization of Ti and Co based biomaterials processed via laser based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Himanshu

    Titanium and Cobalt based metallic materials are currently the most ideal materials for load-bearing metallic bio medical applications. However, the long term tribological degradation of these materials still remains a problem that needs a solution. To improve the tribological performance of these two metallic systems, three different research approaches were adapted, stemming out four different research projects. First, the simplicity of laser gas nitriding was utilized with a modern LENS(TM) technology to form an in situ nitride rich later in titanium substrate material. This nitride rich composite coating improved the hardness by as much as fifteen times and reduced the wear rate by more than a magnitude. The leaching of metallic ions during wear was also reduced by four times. In the second research project, a mixture of titanium and silicon were processed on a titanium substrate in a nitrogen rich environment. The results of this reactive, in situ additive manufacturing process were Ti-Si-Nitride coatings that were harder than the titanium substrate by more than twenty times. These coatings also reduced the wear rate by more than two magnitudes. In the third research approach, composites of CoCrMo alloy and Calcium phosphate (CaP) bio ceramic were processed using LENS(TM) based additive manufacturing. These composites were effective in reducing the wear in the CoCrMo alloy by more than three times as well as reduce the leaching of cobalt and chromium ions during wear. The novel composite materials were found to develop a tribofilm during wear. In the final project, a combination of hard nitride coating and addition of CaP bioceramic was investigated by processing a mixture of Ti6Al4V alloy and CaP in a nitrogen rich environment using the LENS(TM) technology. The resultant Ti64-CaP-Nitride coatings significantly reduced the wear damage on the substrate. There was also a drastic reduction in the metal ions leached during wear. The results indicate that the three tested approaches for reducing the wear damage in Ti and Co based were successful. These approaches and the associated research investigations could pave the way for future work in alleviating wear and corrosion related damage, especially via the additive manufacturing route.

  8. Characterization and Surface Treatment of Materials Used in MADEAL S.A. Industry Productive Process of Rims by Plasma Assisted Repetitive Pulsed Arcs Technique

    NASA Astrophysics Data System (ADS)

    Jiménez, H.; Salazar, V. H.; Devia, A.; Jaramillo, S.; Velez, G.

    2006-12-01

    A study of materials used in the molds production to aluminium rims manufacture in the MADEAL S.A. factory was carried out for apply a plasma assisted surface treatment consists in growing TiAlN hard coatings that it protects this molds in the productive process. This coating resists high oxidation temperatures, of the other of 800 °C, high hardness (2800 Vickers) and low friction coefficient. A plasma assisted repetitive pulsed arcs mono-evaporator system was used in the grow of the TiAlN coatings, the TiAlN target is a sinterized 50% Ti and 50% Al, in the substrate they were used two types of steel that compose the molds injection pieces for the rims production. These materials were subjected to linear and fluctuating thermal changes in the Bruker axs X-Ray diffractometer temperature chamber, what simulated the molds thermal variation in the rims production process and they were compared with TiAlN coatings subjected to same thermal changes. The Materials characterization, before and later of thermal process, was carried out using XRD, SPM and EDS techniques, to analyze the crystallographic, topographic and chemical surface structure behaviours.

  9. Robot based deposition of WC-Co HVOF coatings on HSS cutting tools as a substitution for solid cemented carbide cutting tools

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Schaak, C.; Biermann, D.; Aßmuth, R.; Goeke, S.

    2017-03-01

    Cemented carbide (hard metal) cutting tools are the first choice to machine hard materials or to conduct high performance cutting processes. Main advantages of cemented carbide cutting tools are their high wear resistance (hardness) and good high temperature strength. In contrast, cemented carbide cutting tools are characterized by a low toughness and generate higher production costs, especially due to limited resources. Usually, cemented carbide cutting tools are produced by means of powder metallurgical processes. Compared to conventional manufacturing routes, these processes are more expensive and only a limited number of geometries can be realized. Furthermore, post-processing and preparing the cutting edges in order to achieve high performance tools is often required. In the present paper, an alternative method to substitute solid cemented carbide cutting tools is presented. Cutting tools made of conventional high speed steels (HSS) were coated with thick WC-Co (88/12) layers by means of thermal spraying (HVOF). The challenge is to obtain a dense, homogenous, and near-net-shape coating on the flanks and the cutting edge. For this purpose, different coating strategies were realized using an industrial robot. The coating properties were subsequently investigated. After this initial step, the surfaces of the cutting tools were ground and selected cutting edges were prepared by means of wet abrasive jet machining to achieve a smooth and round micro shape. Machining tests were conducted with these coated, ground and prepared cutting tools. The occurring wear phenomena were analyzed and compared to conventional HSS cutting tools. Overall, the results of the experiments proved that the coating withstands mechanical stresses during machining. In the conducted experiments, the coated cutting tools showed less wear than conventional HSS cutting tools. With respect to the initial wear resistance, additional benefits can be obtained by preparing the cutting edge by means of wet abrasive jet machining.

  10. The Effects of Sn Addition on the Microstructure and Surface Properties of Laser Deposited Al-Si-Sn Coatings on ASTM A29 Steel

    NASA Astrophysics Data System (ADS)

    Fatoba, Olawale S.; Akinlabi, Stephen A.; Akinlabi, Esther T.

    2018-03-01

    Aluminium and its alloys have been successful metal materials used for many applications like commodity roles, automotive and vital structural components in aircrafts. A substantial portion of Al-Fe-Si alloy is also used for manufacturing the packaging foils and sheets for common heat exchanger applications. The present research was aimed at studying the morphology and surface analyses of laser deposited Al-Sn-Si coatings on ASTM A29 steel. These Fe-intermetallic compounds influence the material properties during rapid cooling by laser alloying technique and play a crucial role for the material quality. Thus, it is of considerable technological interest to control the morphology and distribution of these phases in order to eliminate the negative effects on microstructure. A 3 kW continuous wave ytterbium laser system (YLS) attached to a KUKA robot which controls the movement of the alloying process was utilized for the fabrication of the coatings at optimum laser parameters. The fabricated coatings were investigated for its hardness and wear resistance performance. The field emission scanning electron microscope equipped with energy dispersive spectroscopy (SEM/EDS) was used to study the morphology of the fabricated coatings and X-ray diffractometer (XRD) for the identification of the phases present in the coatings. The coatings were free of cracks and pores with homogeneous and refined microstructures. The enhanced hardness and wear resistance performance were attributed to metastable intermetallic compounds formed.

  11. Infrared particle detection for battery electrode foils

    NASA Astrophysics Data System (ADS)

    Just, P.; Ebert, L.; Echelmeyer, T.; Roscher, M. A.

    2013-11-01

    Failures of electrochemical cells caused by internal shorts still are an important issue to be faced by the cell manufacturers and their customers. A major cause for internal shorts are contaminated electrode foils. These contaminations have to be detected securely via a non-destructive inspection technique integrated into the electrode manufacturing process. While optical detection already is state of the art, infrared detection of particles finds a new field of application in the battery electrode manufacturing process. This work presents two approaches focusing on electrode inspection by electromagnetic radiation (visible and infrared). Copper foils with a carbon based coating were intentionally contaminated by slivers of aluminum and copper as well as by abraded coating particles. Optical excitation by a flash and a luminescent lamp was applied at different angles in order to detect the reflected visible radiation. A laser impulse was used to heat up the specimen for infrared inspection. Both approaches resulted in setups providing a high contrast between contaminations and the coated electrode foil. It is shown that infrared detection offers a higher security thanks to its reliance on absorbance and emissivity instead of reflectivity as it is used for optical detection. Infrared Detection offers a potential since it is hardly influenced by the particle's shape and orientation and the electrode's waviness.

  12. HLH Rotor Blade Manufacturing Technology Development Report

    DTIC Science & Technology

    1977-09-01

    30 Tool Design and Fabrication . . . . . .. 30 Tool Concepts and Materials . . . . . . . 30 Autoclave Cure - Plastic Molds . . . 30...Materials Autoclave Cure - Plastic MoiJ.- The Double Coke Bottle specimen (Figure 13) was layed-up on a bean bag and cured in a fiberglass tool in...lower airfoil) was made from a foam material, mounted on a common base, and covered with plastic coating to give a hard working surface. This is

  13. Influence of charged defects on the interfacial bonding strength of tantalum- and silver-doped nanograined TiO2.

    PubMed

    Azadmanjiri, Jalal; Wang, James; Berndt, Christopher C; Kapoor, Ajay; Zhu, De Ming; Ang, Andrew S M; Srivastava, Vijay K

    2017-05-17

    A nano-grained layer including line defects was formed on the surface of a Ti alloy (Ti alloy , Ti-6Al-4V ELI). Then, the micro- and nano-grained Ti alloy with the formation of TiO 2 on its top surface was coated with a bioactive Ta layer with or without incorporating an antibacterial agent of Ag that was manufactured by magnetron sputtering. Subsequently, the influence of the charged defects (the defects that can be electrically charged on the surface) on the interfacial bonding strength and hardness of the surface system was studied via an electronic model. Thereby, material systems of (i) Ta coated micro-grained titanium alloy (Ta/MGTi alloy ), (ii) Ta coated nano-grained titanium alloy (Ta/NGTi alloy ), (iii) TaAg coated micro-grained titanium alloy (TaAg/MGTi alloy ) and (iv) TaAg coated nano-grained titanium alloy (TaAg/NGTi alloy ) were formed. X-ray photoelectron spectroscopy was used to probe the electronic structure of the micro- and nano-grained Ti alloy , and so-formed heterostructures. The thin film/substrate interfaces exhibited different satellite peak intensities. The satellite peak intensity may be related to the interfacial bonding strength and hardness of the surface system. The interfacial layer of TaAg/NGTi alloy exhibited the highest satellite intensity and maximum hardness value. The increased bonding strength and hardness in the TaAg/NGTi alloy arises due to the negative core charge of the dislocations and neighbor space charge accumulation, as well as electron accumulation in the created semiconductor phases of larger band gap at the interfacial layer. These two factors generate interfacial polarization and enhance the satellite intensity. Consequently, the interfacial bonding strength and hardness of the surface system are improved by the formation of mixed covalent-ionic bonding structures around the dislocation core area and the interfacial layer. The bonding strength relationship by in situ XPS on the metal/TiO 2 interfacial layer may be examined with other noble metals and applied in diverse fields.

  14. Performance of Ti-multilayer coated tool during machining of MDN431 alloyed steel

    NASA Astrophysics Data System (ADS)

    Badiger, Pradeep V.; Desai, Vijay; Ramesh, M. R.

    2018-04-01

    Turbine forgings and other components are required to be high resistance to corrosion and oxidation because which they are highly alloyed with Ni and Cr. Midhani manufactures one of such material MDN431. It's a hard-to-machine steel with high hardness and strength. PVD coated insert provide an answer to problem with its state of art technique on the WC tool. Machinability studies is carried out on MDN431 steel using uncoated and Ti-multilayer coated WC tool insert using Taguchi optimisation technique. During the present investigation, speed (398-625rpm), feed (0.093-0.175mm/rev), and depth of cut (0.2-0.4mm) varied according to Taguchi L9 orthogonal array, subsequently cutting forces and surface roughness (Ra) were measured. Optimizations of the obtained results are done using Taguchi technique for cutting forces and surface roughness. Using Taguchi technique linear fit model regression analysis carried out for the combination of each input variable. Experimented results are compared and found the developed model is adequate which supported by proof trials. Speed, feed and depth of cut are linearly dependent on the cutting force and surface roughness for uncoated insert whereas Speed and depth of cut feed is inversely dependent in coated insert for both cutting force and surface roughness. Machined surface for coated and uncoated inserts during machining of MDN431 is studied using optical profilometer.

  15. Assessment of Tablet Surface Hardness by Laser Ablation and Its Correlation With the Erosion Tendency of Core Tablets.

    PubMed

    Narang, Ajit S; Breckenridge, Lydia; Guo, Hang; Wang, Jennifer; Wolf, Abraham Avi; Desai, Divyakant; Varia, Sailesh; Badawy, Sherif

    2017-01-01

    Surface erosion of uncoated tablets results in processing problems such as dusting and defects during coating and is governed by the strength of particle bonding on tablet surface. In this study, the correlation between dusting tendency of tablets in a coating pan with friability and laser ablation surface hardness was assessed using tablets containing different concentrations of magnesium stearate and tartaric acid. Surface erosion propensity of different batches was evaluated by assessing their dusting tendency in the coating pan. In addition, all tablets were analyzed for crushing strength, friability, modified friability test using baffles in the friability apparatus, and weight loss after laser ablation. Tablets with similar crushing strength showed differences in their surface erosion and dusting tendency when rotated in a coating pan. These differences did not correlate well with tablet crushing strength or friability but did show reasonably good correlation with mass loss after laser ablation. These results suggest that tablet surface mass loss by laser ablation can be used as a minipiloting (small-scale) tool to assess tablet surface properties during early stages of drug product development to assess the risk of potential large-scale manufacturing issues. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Porous Architecture of SPS Thick YSZ Coatings Structured at the Nanometer Scale (~50 nm)

    NASA Astrophysics Data System (ADS)

    Bacciochini, Antoine; Montavon, Ghislain; Ilavsky, Jan; Denoirjean, Alain; Fauchais, Pierre

    2010-01-01

    Suspension plasma spraying (SPS) is a fairly recent technology that is able to process sub-micrometer-sized or nanometer-sized feedstock particles and permits the deposition of coatings thinner (from 20 to 100 μm) than those resulting from conventional atmospheric plasma spraying (APS). SPS consists of mechanically injecting within the plasma flow a liquid suspension of particles of average diameter varying between 0.02 and 1 μm. Due to the large volume fraction of the internal interfaces and reduced size of stacking defects, thick nanometer- or sub-micrometer-sized coatings exhibit better properties than conventional micrometer-sized ones (e.g., higher coefficients of thermal expansion, lower thermal diffusivity, higher hardness and toughness, better wear resistance, among other coating characteristics and functional properties). They could hence offer pertinent solutions to numerous emerging applications, particularly for energy production, energy saving, etc. Coatings structured at the nanometer scale exhibit nanometer-sized voids. Depending upon the selection of operating parameters, among which plasma power parameters (operating mode, enthalpy, spray distance, etc.), suspension properties (particle size distribution, powder mass percentage, viscosity, etc.), and substrate characteristics (topology, temperature, etc.), different coating architectures can be manufactured, from dense to porous layers, from connected to non-connected network. Nevertheless, the discrimination of porosity in different classes of criteria such as size, shape, orientation, specific surface area, etc., is essential to describe the coating architecture. Moreover, the primary steps of the coating manufacturing process affect significantly the coating porous architecture. These steps need to be further understood. Different types of imaging experiments were performed to understand, describe and quantify the pore level of thick finely structured ceramics coatings.

  17. Evaluation of antimicrobial edible coatings from a whey protein isolate base to improve the shelf life of cheese.

    PubMed

    Ramos, Ó L; Pereira, J O; Silva, S I; Fernandes, J C; Franco, M I; Lopes-da-Silva, J A; Pintado, M E; Malcata, F X

    2012-11-01

    The objective of this work was to evaluate the effectiveness of antimicrobial edible coatings to wrap cheeses, throughout 60 d of storage, as an alternative to commercial nonedible coatings. Coatings were prepared using whey protein isolate, glycerol, guar gum, sunflower oil, and Tween 20 as a base matrix, together with several combinations of antimicrobial compounds-natamycin and lactic acid, natamycin and chitooligosaccharides (COS), and natamycin, lactic acid, and COS. Application of coating on cheese decreased water loss (~10%, wt/wt), hardness, and color change; however, salt and fat contents were not significantly affected. Moreover, the antimicrobial edible coatings did not permit growth of pathogenic or contaminant microorganisms, while allowing regular growth of lactic acid bacteria throughout storage. Commercial nonedible coatings inhibited only yeasts and molds. The antimicrobial edible coating containing natamycin and lactic acid was the best in sensory terms. Because these antimicrobial coatings are manufactured from food-grade materials, they can be consumed as an integral part of cheese, which represents a competitive advantage over nonedible coatings. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings

    PubMed Central

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-01-01

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings. PMID:26924136

  19. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings.

    PubMed

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-02-29

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings.

  20. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-02-01

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings.

  1. Traceability in hardness measurements: from the definition to industry

    NASA Astrophysics Data System (ADS)

    Germak, Alessandro; Herrmann, Konrad; Low, Samuel

    2010-04-01

    The measurement of hardness has been and continues to be of significant importance to many of the world's manufacturing industries. Conventional hardness testing is the most commonly used method for acceptance testing and production quality control of metals and metallic products. Instrumented indentation is one of the few techniques available for obtaining various property values for coatings and electronic products in the micrometre and nanometre dimensional scales. For these industries to be successful, it is critical that measurements made by suppliers and customers agree within some practical limits. To help assure this measurement agreement, a traceability chain for hardness measurement traceability from the hardness definition to industry has developed and evolved over the past 100 years, but its development has been complicated. A hardness measurement value not only requires traceability of force, length and time measurements but also requires traceability of the hardness values measured by the hardness machine. These multiple traceability paths are needed because a hardness measurement is affected by other influence parameters that are often difficult to identify, quantify and correct. This paper describes the current situation of hardness measurement traceability that exists for the conventional hardness methods (i.e. Rockwell, Brinell, Vickers and Knoop hardness) and for special-application hardness and indentation methods (i.e. elastomer, dynamic, portables and instrumented indentation).

  2. Novel Investigation on Nanostructured Multilayer and Functionally Graded Ni-P Electroless Coatings on Stainless Steel

    NASA Astrophysics Data System (ADS)

    Anvari, S. R.; Monirvaghefi, S. M.; Enayati, M. H.

    2015-06-01

    In this study, step-wise multilayer and functionally graded Ni-P coatings were deposited with electroless in which the content of phosphorus and nickel would be changed gradually and step-wise through the thickness of the coatings, respectively. To compare the properties of these coatings with Ni-P single-layer coatings, three types of coatings with different phosphorus contents were deposited. Heat treatment of coatings was performed at 400 °C for 1 h. The microstructure and phase transformation of coatings were characterized by SEM/EDS, TEM, and XRD. The mechanical properties of coatings were studied by nanoindentation test. According to the results of the single-layer coatings, low P coating had the maximum hardness and also the ratio of hardness ( H) to elasticity modulus ( E) for the mentioned coating was maximum. In addition, low and medium P coatings had crystalline and semi-crystalline structure, respectively. The mentioned coatings had <111> texture and after heat treatment their texture didn't change. While high P coating had amorphous structure, after heat treatment it changed to crystalline structure with <100> texture for nickel grains. Furthermore, the results showed that functionally graded and step-wise multilayer coatings were deposited successfully by using the same initial bath and changing the temperature and pH during deposition. Nanoindentation test results showed that the hardness of the mentioned coatings changed from 670 Hv near the substrate to 860 Hv near the top surface of coatings. For functionally graded coating the hardness profile had gradual changes, while step-wise multilayer coating had step-wise hardness profile. After heat treatment trend of hardness profiles was changed, so that near the substrate, hardness was measured 1400 Hv and changed to 1090 Hv at the top coat.

  3. Study of metallic powder behavior in very low pressure plasma spraying (VLPPS) — Application to the manufacturing of titanium–aluminum coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vautherin, B.; Planche, M.-P.; Montavon, G.

    2015-08-28

    In this study, metallic materials made of aluminum and titanium were manufactured implementing very low pressure plasma spraying (VLPPS). Aluminum was selected at first as a demonstrative material due to its rather low vaporization enthalpy ( i.e., 381.9 kJ·mol⁻¹). Developments were then carried out with titanium which exhibits a higher vaporization enthalpy ( i.e., 563.6 kJ·mol⁻¹). Optical emission spectroscopy (OES) was implemented to analyze the behavior of each solid precursor (metallic powders) when it is injected into the plasma jet under very low pressure ( i.e., in the 150 Pa range). Besides, aluminum, titanium and titanium–aluminum coatings were deposited inmore » the same conditions implementing a stick-cathode plasma torch operated at 50 kW, maximum power. Coating phase compositions were identified by X-Ray Diffraction (XRD). Coating elementary compositions were quantified by Glow Discharge Optical Emission Spectroscopy (GDOES) and Energy Dispersive Spectroscopy (EDS) analyses. The coating structures were observed by Scanning Electron Microscopy (SEM). The coating void content was determined by Ultra-Small Angle X-ray Scattering (USAXS). The coatings exhibit a two-scale structure corresponding to condensed vapors (smaller scale) and solidified areas (larger scale). Titanium–aluminum sprayed coatings, with various Ti/Al atomic ratios, are constituted of three phases: metastable α-Ti, Al and metastable α₂-Ti₃Al. This latter is formed at elevated temperature in the plasma flow, before being condensed. Its rather small fraction, impeded by the rather small amount of vaporized Ti, does not allow modifying however the coating hardness.« less

  4. Gear Performance Improved by Coating

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    2004-01-01

    Gears, bearings, and other mechanical elements transmit loads through contacting surfaces. Even if properly designed, manufactured, installed, and maintained, gears and bearings will eventually fail because of the fatigue of the working surfaces. Economical means for extending the fatigue lives of gears and bearings are highly desired, and coatings offer the opportunity to engineer surfaces to extend the fatigue lives of mechanical components. A tungsten-containing diamondlike-carbon coating exhibiting high hardness, low friction, and good toughness was evaluated for application to spur gears. Fatigue testing was done at the NASA Glenn Research Center on both uncoated and coated spur gears. The results showed that the coating extended the surface fatigue lives of the gears by a factor of about 5 relative to the uncoated gears. For the experiments, a lot of spur test gears made from AISI 9310 gear steel were case-carburized and ground to aerospace specifications. The geometries of the 28-tooth, 8-pitch gears were verified as meeting American Gear Manufacturing Association (AGMA) quality class 12. One-half of the gears were randomly selected for coating. The method of coating was selected to achieve desired adherence, toughness, hardness, and low-friction characteristics. First the gears to be coated were prepared by blasting (vapor honing) with Al2O3 particles and cleaning. Then, the gears were provided with a thin adhesion layer of elemental chromium followed by magnetron sputtering of the outer coating consisting of carbon (70 at.%), hydrogen (15 at.%), tungsten (12 at.%), and nickel (3 at.%) (atomic percent at the surface). In total, the coating thickness was about 2.5 to 3 microns. As compared with the steel substrate, the coated surface was harder by a factor of about 2 and had a smaller elastic modulus. All gears were tested using a 5-centistoke synthetic oil, a 10,000-rpm rotation speed, and a hertzian contact stress of at least 1.7 GPa (250 ksi). Tests were run until either surface fatigue occurred or 300 million stress cycles were completed. Tests were run using either a pair of uncoated gears or a pair of coated gears (coated gears mated with uncoated gears were not evaluated). The fatigue test results, shown on Weibull coordinates in the graph, demonstrate that the coating provided substantially longer fatigue lives even though some of the coated gears endured larger stresses. The increase in fatigue life was a factor of about 5 and the statistical confidence for the improvement is high (greater than 99 percent). Examination of the tested gears revealed substantial reductions of total wear for coated gears in comparison to uncoated gears. The coated gear surface topography changed with running, with localized areas of the tooth surface becoming smoother with running. Theories explaining how coatings can extend gear fatigue lives are research topics for coating, tribology, and fatigue specialists. This work was done as a partnership between NASA, the U.S. Army Research Laboratory, United Technologies Research Corporation, and Sikorsky Aircraft.

  5. Influence of Ni-P Coated SiC and Laser Scan Speed on the Microstructure and Mechanical Properties of IN625 Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad

    2015-12-01

    Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.

  6. Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Ramachandran, C. S.; Balasubramanian, V.; Ananthapadmanabhan, P. V.

    2011-03-01

    Atmospheric plasma spraying is used extensively to make Thermal Barrier Coatings of 7-8% yttria-stabilized zirconia powders. The main problem faced in the manufacture of yttria-stabilized zirconia coatings by the atmospheric plasma spraying process is the selection of the optimum combination of input variables for achieving the required qualities of coating. This problem can be solved by the development of empirical relationships between the process parameters (input power, primary gas flow rate, stand-off distance, powder feed rate, and carrier gas flow rate) and the coating quality characteristics (deposition efficiency, tensile bond strength, lap shear bond strength, porosity, and hardness) through effective and strategic planning and the execution of experiments by response surface methodology. This article highlights the use of response surface methodology by designing a five-factor five-level central composite rotatable design matrix with full replication for planning, conduction, execution, and development of empirical relationships. Further, response surface methodology was used for the selection of optimum process parameters to achieve desired quality of yttria-stabilized zirconia coating deposits.

  7. Numerical study of the influence of the thickness and roughness of TiN coatings on their wear in scratch testing

    NASA Astrophysics Data System (ADS)

    Eremina, G. M.; Smolin, A. Yu.

    2017-12-01

    One of the mostly used and complicated surgical operations on large human joints is total hip replacement. An endoprosthesis is chosen individually for each person on the basis of his anatomical features and physical activity. However, such an important factor affecting the durability of an endoprosthesis as wear in the head-acetabular cup friction pair is still poorly understood, and it is taken into account only qualitatively. The determining role in wear belongs to the structure of the surface layers and coatings of the friction pair. The mechanical and structural characteristics of the coating largely depend on the method of its application. In this paper, to study the tribological characteristics of the coating material of the friction pair, we use computer simulation of scratch testing. The simulations are performed with the application of the method of movable cellular automata. The model specimens correspond to real coatings manufactured under different treatment conditions (deposition temperature and time). The analysis of the simulation results allows one to choose the optimal regime corresponding to the maximum hardness of coatings or adhesive strength.

  8. Formation of Heterogeneous Powder Coatings with a Two-Level Micro-and Nanocomposite Structure under Gas-Dynamic Spraying Conditions

    NASA Astrophysics Data System (ADS)

    Aborkin, A. V.; Alymov, M. I.; Arkhipov, V. E.; Khrenov, D. S.

    2018-02-01

    Heterogeneous coatings have been deposited by the cold gas-dynamic spraying of mechanically synthesized AMg2/graphite + Al2O3 powders. A specific feature of the coatings formed is the existence of a two-level micro-and nanocomposite structure. It has been established that an increase in the content of microsized Al2O3 particles in the mixture from 10 to 30 wt % produces a twofold increase in the thickness of the coating deposited for the same time period from 140 to 310 μm. A further growth in the content of microsized Al2O3 particles in the mixture up to 50 wt % leads to a decrease in the thickness of the coating formed to 40 μm. The manufactured coatings have a high microhardness ranging from 1.7 to 3.2 GPa depending on their composition. The high microhardness of these coatings is caused by an increase in the hardness of the matrix material due to the creation of a nanocomposite structure, which strengthens the immobilization of microsized Al2O3 particles in it, thus improving the properties of the heterogeneous coating as a whole.

  9. Selection criteria for wear resistant powder coatings under extreme erosive wear conditions

    NASA Astrophysics Data System (ADS)

    Kulu, P.; Pihl, T.

    2002-12-01

    Wear-resistant thermal spray coatings for sliding wear are hard but brittle (such as carbide and oxide based coatings), which makes them useless under impact loading conditions and sensitive to fatigue. Under extreme conditions of erosive wear (impact loading, high hardness of abrasives, and high velocity of abradant particles), composite coatings ensure optimal properties of hardness and toughness. The article describes tungsten carbide-cobalt (WC-Co) systems and self-fluxing alloys, containing tungsten carbide based hardmetal particles [NiCrSiB-(WC-Co)] deposited by the detonation gun, continuous detonation spraying, and spray fusion processes. Different powder compositions and processes were studied, and the effect of the coating structure and wear parameters on the wear resistance of coatings are evaluated. The dependence of the wear resistance of sprayed and fused coatings on their hardness is discussed, and hardness criteria for coating selection are proposed. The so-called “double cemented” structure of WC-Co based hardmetal or metal matrix composite coatings, as compared with a simple cobalt matrix containing particles of WC, was found optimal. Structural criteria for coating selection are provided. To assist the end user in selecting an optimal deposition method and materials, coating selection diagrams of wear resistance versus hardness are given. This paper also discusses the cost-effectiveness of coatings in the application areas that are more sensitive to cost, and composite coatings based on recycled materials are offered.

  10. Effect of bond coat and preheat on the microstructure, hardness, and porosity of flame sprayed tungsten carbide coatings

    NASA Astrophysics Data System (ADS)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermally sprayed coatings are used to improve the surface properties of tool steel materials. Bond coatings are commonly used as intermediate layers deposited on steel substrates (i.e. H13 tool steel) before the top coat is applied in order to enhance a number of critical performance criteria including adhesion of a barrier coating, limiting atomic migration of the base metal, and corrosion resistance. This paper presents the experimental results regarding the effect of nickel bond coat and preheats temperatures (i.e. 200°C, 300°C and 400°C) on microstructure, hardness, and porosity of tungsten carbide coatings sprayed by flame thermal coating. Micro-hardness, porosity and microstructure of tungsten carbide coatings are evaluated by using micro-hardness testing, optical microscopy, scanning electron microscopy, and X-ray diffraction. The results show that nickel bond coatings reduce the susceptibility of micro crack formation at the bonding area interfaces. The percentage of porosity level on the tungsten carbide coatings with nickel bond coat decreases from 5.36 % to 2.78% with the increase of preheat temperature of the steel substrate of H13 from 200°C to 400°C. The optimum hardness of tungsten carbide coatings is 1717 HVN in average resulted from the preheat temperature of 300°C.

  11. Effects of coating materials on nanoindentation hardness of enamel and adjacent areas.

    PubMed

    Alsayed, Ehab Z; Hariri, Ilnaz; Nakashima, Syozi; Shimada, Yasushi; Bakhsh, Turki A; Tagami, Junji; Sadr, Alireza

    2016-06-01

    Materials that can be applied as thin coatings and actively release fluoride or other bioavailable ions for reinforcing dental hard tissue deserve further investigation. In this study we assessed the potential of resin coating materials in protection of underlying and adjacent enamel against demineralization challenge using nanoindentation. Enamel was coated using Giomer (PRG Barrier Coat, PBC), resin-modified glass-ionomer (Clinpro XT Varnish, CXT), two-step self-etch adhesive (Clearfil SE Protect, SEP) or no coating (control). After 5000 thermal cycles and one-week demineralization challenge, Martens hardness of enamel beneath the coating, uncoated area and intermediate areas was measured using a Berkovich tip under 2mN load up to 200μm depth. Integrated hardness and 10-μm surface zone hardness were compared among groups. Nanoindentation and scanning electron microscopy suggested that all materials effectively prevented demineralization in coated area. Uncoated areas presented different hardness trends; PBC showed a remarkable peak at the surface zone before reaching as low as the control, while CXT showed relatively high hardness values at all depths. Ion-release from coating materials affects different layers of enamel. Coatings with fluoride-releasing glass fillers contributed to reinforcement of adjacent enamel. Surface prereacted glass filler-containing PBC superficially protected neighboring enamel against demineralization, while resin-modified glass-ionomer with calcium (CXT) improved in-depth protection. Cross-sectional hardness mapping of enamel on a wide range of locations revealed minute differences in its structure. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Further studies on gold alloys used in fabrication of porcelain-fused-to-metal restorations.

    PubMed

    Civjan, S; Huget, E F; Dvivedi, N; Cosner, H J

    1975-03-01

    Composition, microstructure, castability, mechanical properties, and heat treatment characteristics of two gold-palladium-silver-based alloys were studied. The materials exhibited compositional as well as microstructural differences. Clinically acceptable castings could not be obtained when manufacturers' recommended casting temperatures were used. Ultimate tensile strength, yield strength, modulus of elasticity, and Brinell hardness values for the alloys were comparable. The elastic limit of Cameo, however, was significantly higher than that of vivo-star. Maximum rehardening of annealed castings occurred on reheat treatment at temperatures between 1,200 and 1,300 F. As-cast specimens, however, were not heat hardenable. The sequence of heat treatments used in the application of porcelain reduced slightly the hardness of both alloys. Hardness of the metal substructures was not increased by return of porcelain-coated specimens to a 1,250 F oven for final heat treatment.

  13. Internal Diameter HVAF Spraying for Wear and Corrosion Applications

    NASA Astrophysics Data System (ADS)

    Lyphout, C.; Björklund, S.

    2015-01-01

    Electrolytic hard chrome (EHC) methods are still widely utilized in the printing, automotive and off-shore industries. Alternative methods to EHC have been widely developed in the past decade by conventional HVOF processes and more recently HVAF systems, which are processing at higher kinetic energy and more particularly at lower temperature, significantly increasing wear and corrosion resistance properties. A dedicated internal diameter HVAF system is here presented, and coatings characteristics are compared to the one obtained by standard HVAF coatings. Specially R&D designed fixtures with inside bore of 200 mm have been manufactured for this purpose, with a possibility to spray samples at increasing depth up to 400 mm while simulating closed bottom bore spraying. WC-based and Cr3C2-based powder feedstock materials have been deposited onto high-strength steel substrates. Respective coating microstructures, thermally induced stresses and corrosion resistance are discussed for further optimization of coating performances. The fact that the ID-HVAF system is utilized both for spraying and gritblasting procedures is also given a particular interest.

  14. Gallium incorporation into phosphate based glasses: Bulk and thin film properties.

    PubMed

    Stuart, Bryan W; Grant, Colin A; Stan, George E; Popa, Adrian C; Titman, Jeremy J; Grant, David M

    2018-06-01

    The osteogenic ions Ca 2+ , P 5+ , Mg 2+ , and antimicrobial ion Ga 3+ were homogenously dispersed into a 1.45 µm thick phosphate glass coating by plasma assisted sputtering onto commercially pure grade titanium. The objective was to deliver therapeutic ions in orthopaedic/dental implants such as cementeless endoprostheses or dental screws. The hardness 4.7 GPa and elastic modulus 69.7 GPa, of the coating were comparable to plasma sprayed hydroxyapatite/dental enamel, whilst superseding femoral cortical bone. To investigate the manufacturing challenge of translation from a target to vapour condensed coating, structural/compositional properties of the target (P51MQ) were compared to the coating (P40PVD) and a melt-quenched equivalent (P40MQ). Following condensation from P51MQ to P40PVD, P 2 O 5 content reduced from 48.9 to 40.5 mol%. This depolymerisation and reduction in the P-O-P bridging oxygen content as determined by 31 P NMR, FTIR and Raman spectroscopy techniques was attributed to a decrease in the P 2 O 5 network former and increases in alkali/alkali-earth cations. P40PVD appeared denser (3.47 vs. 2.70 g cm -3 ) and more polymerised than it's compositionally equivalent P40MQ, showing that structure/ mechanical properties were affected by manufacturing route. Copyright © 2018. Published by Elsevier Ltd.

  15. Improving halva quality with dietary fibres of sesame seed coats and date pulp, enriched with emulsifier.

    PubMed

    Elleuch, Mohamed; Bedigian, Dorothea; Maazoun, Bouthaina; Besbes, Souhail; Blecker, Christophe; Attia, Hamadi

    2014-02-15

    Supplementation of halva with waste products of manufacturing, for example defatted sesame seed coats (testae) and date fibre concentrate, can improve its nutritional and organoleptic qualities. These constituents provide high fibre content and technological potential for retaining water and fat. Standard halva supplemented with date fibre concentrate, defatted sesame testae and emulsifier was evaluated for oil separation, texture and colour changes, sensory qualities and acceptability to a taste panel. Addition of both fibres with an emulsifier, improved emulsion stability and increased the hardness of halva significantly. The functional properties of sesame testae and date fibres promote nutrition and health, supplying polyphenol antioxidants and laxative benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Nanostructured and Conventional Cr2O3, TiO2, and TiO2-Cr2O3 Thermal-Sprayed Coatings for Metal-Seated Ball Valve Applications in Hydrometallurgy

    NASA Astrophysics Data System (ADS)

    Vernhes, Luc; Bekins, Craig; Lourdel, Nicolas; Poirier, Dominique; Lima, Rogerio S.; Li, Duanjie; Klemberg-Sapieha, Jolanta E.

    2016-06-01

    A detailed characterization project was undertaken by Velan, an international industrial valve designer and manufacturer, in collaboration with the National Research Council of Canada, Boucherville, and Polytechnique Montréal. The purpose was to assess the mechanical and tribological resistances of promising ceramic coatings for hydrometallurgy applications, including a novel n-TiO2-Cr2O3 blend. Hardness and shear strength were determined using microhardness indentation testers and universal tensile testing equipment. Wear resistance of the coatings under sliding wear, abrasion, and galling conditions were measured by standard pin-on-disk tests, abrasion tests, and custom-designed galling tests. The main result is that the synergy between Cr2O3 and n-TiO2 produced abrasion performance exceeding that of these materials alone. Also, an optimized balance between the hard and brittle Cr2O3 phases and the soft and ductile n-TiO2 phases resulted in higher abrasion, sliding, and galling resistance. The novel n-TiO2-Cr2O3 blend is therefore considered as a promising evolution of the current TiO2-Cr2O3 blend.

  17. Formation of high heat resistant coatings by using gas tunnel type plasma spraying.

    PubMed

    Kobayashi, A; Ando, Y; Kurokawa, K

    2012-06-01

    Zirconia sprayed coatings are widely used as thermal barrier coatings (TBC) for high temperature protection of metallic structures. However, their use in diesel engine combustion chamber components has the long run durability problems, such as the spallation at the interface between the coating and substrate due to the interface oxidation. Although zirconia coatings have been used in many applications, the interface spallation problem is still waiting to be solved under the critical conditions such as high temperature and high corrosion environment. The gas tunnel type plasma spraying developed by the author can make high quality ceramic coatings such as Al2O3 and ZrO2 coating compared to other plasma spraying method. A high hardness ceramic coating such as Al2O3 coating by the gas tunnel type plasma spraying, were investigated in the previous study. The Vickers hardness of the zirconia (ZrO2) coating increased with decreasing spraying distance, and a higher Vickers hardness of about Hv = 1200 could be obtained at a shorter spraying distance of L = 30 mm. ZrO2 coating formed has a high hardness layer at the surface side, which shows the graded functionality of hardness. In this study, ZrO2 composite coatings (TBCs) with Al2O3 were deposited on SS304 substrates by gas tunnel type plasma spraying. The performance such as the mechanical properties, thermal behavior and high temperature oxidation resistance of the functionally graded TBCs was investigated and discussed. The resultant coating samples with different spraying powders and thickness are compared in their corrosion resistance with coating thickness as variables. Corrosion potential was measured and analyzed corresponding to the microstructure of the coatings. High Heat Resistant Coatings, Gas Tunnel Type Plasma Spraying, Hardness,

  18. Microstructure and Wear Resistance of Composite Coating by Laser Cladding Al/TiN on the Ti-6Al-4V Substrate

    NASA Astrophysics Data System (ADS)

    Zhang, H. X.; Yu, H. J.; Chen, C. Z.

    2015-05-01

    The composite coatings were fabricated by laser cladding Al/TiN pre-placed powders on Ti-6Al-4V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β-Ti (Al) and the reinforcements of titanium nitride (TiN), Ti3Al, TiAl and Al3Ti. The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti-6Al-4V substrate. And the wear resistance of sample 4 was four times of the substrate.

  19. Contact Behavior of Composite CrTiSiN Coated Dies in Compressing of Mg Alloy Sheets under High Pressure

    PubMed Central

    Yang, T.S.; Yao, S.H.; Chang, Y.Y.; Deng, J.H.

    2018-01-01

    Hard coatings have been adopted in cutting and forming applications for nearly two decades. The major purpose of using hard coatings is to reduce the friction coefficient between contact surfaces, to increase strength, toughness and anti-wear performance of working tools and molds, and then to obtain a smooth work surface and an increase in service life of tools and molds. In this report, we deposited a composite CrTiSiN hard coating, and a traditional single-layered TiAlN coating as a reference. Then, the coatings were comparatively studied by a series of tests. A field emission SEM was used to characterize the microstructure. Hardness was measured using a nano-indentation tester. Adhesion of coatings was evaluated using a Rockwell C hardness indentation tester. A pin-on-disk wear tester with WC balls as sliding counterparts was used to determine the wear properties. A self-designed compression and friction tester, by combining a Universal Testing Machine and a wear tester, was used to evaluate the contact behavior of composite CrTiSiN coated dies in compressing of Mg alloy sheets under high pressure. The results indicated that the hardness of composite CrTiSiN coating was lower than that of the TiAlN coating. However, the CrTiSiN coating showed better anti-wear performance. The CrTiSiN coated dies achieved smooth surfaces on the Mg alloy sheet in the compressing test and lower friction coefficient in the friction test, as compared with the TiAlN coating. PMID:29316687

  20. Contact Behavior of Composite CrTiSiN Coated Dies in Compressing of Mg Alloy Sheets under High Pressure.

    PubMed

    Yang, T S; Yao, S H; Chang, Y Y; Deng, J H

    2018-01-08

    Hard coatings have been adopted in cutting and forming applications for nearly two decades. The major purpose of using hard coatings is to reduce the friction coefficient between contact surfaces, to increase strength, toughness and anti-wear performance of working tools and molds, and then to obtain a smooth work surface and an increase in service life of tools and molds. In this report, we deposited a composite CrTiSiN hard coating, and a traditional single-layered TiAlN coating as a reference. Then, the coatings were comparatively studied by a series of tests. A field emission SEM was used to characterize the microstructure. Hardness was measured using a nano-indentation tester. Adhesion of coatings was evaluated using a Rockwell C hardness indentation tester. A pin-on-disk wear tester with WC balls as sliding counterparts was used to determine the wear properties. A self-designed compression and friction tester, by combining a Universal Testing Machine and a wear tester, was used to evaluate the contact behavior of composite CrTiSiN coated dies in compressing of Mg alloy sheets under high pressure. The results indicated that the hardness of composite CrTiSiN coating was lower than that of the TiAlN coating. However, the CrTiSiN coating showed better anti-wear performance. The CrTiSiN coated dies achieved smooth surfaces on the Mg alloy sheet in the compressing test and lower friction coefficient in the friction test, as compared with the TiAlN coating.

  1. Manufacturing of Fe-Mn-C surface alloys by Nd:YAG and CO2 laser processing

    NASA Astrophysics Data System (ADS)

    Pelletier, Jean-Marc.; Pilloz, Michel; Sallamand, P.; Malau, V.; Grevey, Dominique F.; Vannes, A. B.

    1996-09-01

    In order to obtain a good behavior in dynamic conditions, it is often necessary to manufacture surface alloys with conflicting properties, for example a high ductility combined with a high hardness or a high yield stress. Iron- base alloys with appropriated contents of manganese and carbon can be candidates for such requirements. Particular alloys, known as Hadfield steels, are of major interest. By using either Nd-YAG or CO2 lasers, and by either injection of specific powder or remelting of a predeposited layer with a suitable composition, sound surface layers have been manufactured on steels with either a low or a high carbon content. These coatings with an austenitic structure have an elevated yield stress. After a presentation of the experimental procedures, the new surface alloys are characterized by using metallurgical observations, chemical analysis and mechanical tests.

  2. Wear Resistance Properties Reinforcement Using Nano-Al/Cu Composite Coating in Sliding Bearing Maintenance.

    PubMed

    Liu, Hongtao; Li, Zhixiong; Wang, Jianmei; Sheng, Chenxing; Liu, Wanli

    2018-03-01

    Sliding bearing maintenance is crucial for reducing the cost and extending the service life. An efficient and practical solution is to coat a restorative agent onto the worn/damaged bearings. Traditional pure-copper (Cu) coating results in a soft surface and poor abrasion resistance. To address this issue, this paper presents a nano-composite repairing coating method. A series of nano-Al/Cu coatings were prepared on the surface of 45 steel by composite electro-brush plating (EBP). Their micro-hardness was examined by a MHV-2000 Vickers hardness tester, and tribological properties by a UMT-2M Micro-friction tester, 3D profiler and SEM. Then, the influence of processing parameters such as nano-particle concentration and coating thickness on the micro-hardness of nano-Al/Cu coating was analyzed. The experimental analysis results demonstrate that, when the nano-Al particle concentration in electrolyte was 10 g/L, the micro-hardness of the composite coating was 1.1 times as much as that of pure-Cu coating. When the Al nano-particle concentration in electrolyte was 20 g/L, the micro-hardness of the composite coating reached its maximum value (i.e., 231.6 HV). Compared with the pure-Cu coating, the hardness and wear resistance of the nano-composite coating were increased, and the friction coefficient and wear volume were decreased, because of the grain strengthening and dispersion strengthening. The development in this work may provide a feasible and effective nano-composite EBP method for sliding bearing repair.

  3. Recent developments in turning hardened steels - A review

    NASA Astrophysics Data System (ADS)

    Sivaraman, V.; Prakash, S.

    2017-05-01

    Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.

  4. Mechanical and tribological properties of gradient a-C:H/Ti coatings

    NASA Astrophysics Data System (ADS)

    Batory, D.; Szymański, W.; Cłapa, M.

    2013-08-01

    The unusual combination of high hardness and very low friction coefficient are the most attractive tribological parameters of DLC (diamond-like carbon) layers. However, their usability is strongly restricted by the limited thickness due to high residual stress. The main goal of the presented work was to obtain thick, wear resistant and well adherent DLC layers while keeping their perfect friction parameters. As a proposed solution a Ti-Ti x C y gradient layer was manufactured as the adhesion improving interlayer followed by a thick diamond-like carbon film. This kind of combination seems to be very promising for many applications, where dry friction conditions for highly loaded elements can be observed. Both layers were obtained in one process using a hybrid deposition system combining PVD and CVD techniques in one reaction chamber. The investigation was performed on nitrided samples made from X53CrMnNiN21-9 valve steel. Structural features, surface topography, tribological and mechanical properties of manufactured layers were evaluated. The results of the investigation confirmed that the presented deposition technique makes it possible to manufacture thick and well adherent carbon layers with high hardness and very good tribological parameters. Preliminary investigation results prove the possibility of application of presented technology in automotive industry.

  5. Effect of Coating Thickness on the Properties of TiN Coatings Deposited on Tool Steels Using Cathodic Arc Pvd Technique

    NASA Astrophysics Data System (ADS)

    Mubarak, A.; Akhter, Parvez; Hamzah, Esah; Mohd Toff, Mohd Radzi Hj.; Qazi, Ishtiaq A.

    Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The study concentrated on cathodic arc physical vapor deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MDs) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester, and pin-on-disc machine, were used to analyze and quantify the following properties and parameters: surface morphology, thickness, hardness, adhesion, and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MDs produced during the etching stage, protruded through the TiN film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 μm showed the most stable trend of COF versus sliding distance.

  6. Effect of pH, Surfactant, and Heat Treatment on Morphology, Structure, and Hardness of Electrodeposited Co-P Coatings

    NASA Astrophysics Data System (ADS)

    Zeinali-Rad, M.; Allahkaram, S. R.; Mahdavi, S.

    2015-09-01

    Nano-crystalline and amorphous Co-P coatings were deposited on plain carbon steel substrates by using direct current. Effects of electrolyte pH on morphology, current efficiency, phosphorus content, hardness, and preferred orientation of the nano-crystalline coatings were investigated. Moreover, the effects of heat treatment on microstructure and hardness of the nano-crystalline and the amorphous coatings were studied. The results showed that, phosphorus content and hardness of the nano-crystalline coatings were decreased by increasing of the pH, in spite of a current efficiency enhancement to as much as 98%. Grain size and preferred orientation were also changed from 13 to 31 nm and from mostly [002] to [100] by increasing the pH from 1 to 4, respectively. Smoother coatings and higher current efficiencies were obtained by the addition of 1 g/L sodium dodecyl sulfate (SDS) to the bath. Highest hardness of the nano-crystalline and the amorphous coatings was about 600 and 750 HV, which increased and reached 760 and 1090 HV after heat treatment, respectively.

  7. Erosion Coatings for High-Temperature Polymer Composites: A Collaborative Project With Allison Advanced Development Company

    NASA Technical Reports Server (NTRS)

    Sutter, James K.

    2000-01-01

    The advantages of replacing metals in aircraft turbine engines with high-temperature polymer matrix composites (PMC's) include weight savings accompanied by strength improvements, reduced part count, and lower manufacturing costs. Successfully integrating high-temperature PMC's into turbine engines requires several long-term characteristics. Resistance to surface erosion is one rarely reported property of PMC's in engine applications because PMC's are generally softer than metals and their erosion resistance suffers. Airflow rates in stationary turbine engine components typically exceed 2.3 kg/sec at elevated temperatures and pressures. In engine applications, as shown in the following photos, the survivability of PMC components is clearly a concern, especially when engine and component life-cycle requirements become longer. Although very few publications regarding the performance of erosion coatings on PMC's are available particularly in high-temperature applications the use of erosion-resistant coatings to significantly reduce wear on metallic substrates is well documented. In this study initiated by the NASA Glenn Research Center at Lewis Field, a low-cost (less than $140/kg) graphite-fiber-reinforced T650 35/PMR 15 sheet-molding compound was investigated with various coatings. This sheet-molding compound has been compression molded into many structurally complicated components, such as shrouds for gas turbine inlet housings and gearboxes. Erosion coatings developed for PMC s in this study consisted of a two-layered system: a bondcoat sprayed onto a cleaned PMC surface, followed by an erosion-resistant, hard topcoat sprayed onto the bondcoat as shown in following photomicrograph. Six erosion coating systems were evaluated for their ability to withstand harsh thermal cycles, erosion resistance (ASTM G76 83 "Standard Practice for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets") using Al2O3, and adhesion to the graphite fiber polyimide composite (ASTM D 4541 95 "Pull Off Strength of Coatings"). Glenn and Allison Advanced Development Company collaborated to optimize erosion coatings for gas turbine fan and compressor applications. All the coating systems survived aggressive thermal cycling without spalling. During erosion tests (see the final photo), the most promising coating systems tested had Cr3C2-NiCr and WC-Co as the hard topcoats. In all cases, these coating systems performed significantly better than that with a TiN hard topcoat. When material depth (thickness) loss is considered, the Cr3C2-NiCr and WC-Co coating systems provided, on average, an erosion resistance 8.5 times greater than that for the uncoated PMR 15/T650 35 composite. Similarly, Cr3C2-NiCr and WC-Co coating systems adhered to the PMC substrate during tensile tests significantly better than systems containing a TiN topcoat. Differences in topcoats of Cr3C2-NiCr and WC-Co were determined by considering issues such as cost and environmental impact. The preferred erosion-resistant coating system for PMR 15/T650 35 has WC-Co as the hard topcoat. This system provides the following benefits in comparison to the coating system with Cr3C2-NiCr topcoat: lower powder material cost (15 to 20 percent), environmentally friendly materials (Cr3C2-NiCr is hazardous), and higher deposition yield (10 to 15 percent), which results in less waste.

  8. Influence of microstructure on hardness of plasma sprayed Al2O3-TiO2-MgO coatings with interface diffusion by heat treatment

    NASA Astrophysics Data System (ADS)

    Chen, Kunlun; Song, Peng; Li, Chao; Lu, Jiansheng

    2017-12-01

    The effect of heat treatment on the microstructure and mechanical properties of Al2O3-TiO2 coatings doped with 5 wt% MgO was investigated in this paper. The composite coatings were prepared by atmospheric plasma spraying (APS) and heat treated at 1000 °C for 24 h in Ar. The coatings were analyzed using scanning electron microscopy with electron probe x-ray microanalysis and x-ray diffraction. The hardness was determined using a Vickers hardness test on the as-sprayed coatings and after heat treatment. The results showed that the interface diffusion between the Al-rich and Ti-rich layers resulted in mutual pinning within the coating during the heat treatment. The newly formed MgAl2O4 phase promoted cracking-healing behavior within the coating. We conclude that increase of the hardness of the coatings was mainly caused by the mutual pinning interface and crack healing.

  9. A novel method to predict the highest hardness of plasma sprayed coating without micro-defects

    NASA Astrophysics Data System (ADS)

    Zhuo, Yukun; Ye, Fuxing; Wang, Feng

    2018-04-01

    The plasma sprayed coatings are stacked by splats, which are regarded generally as the elementary units of coating. Many researchers have focused on the morphology and formation mechanism of splat. However, a novel method to predict the highest hardness of plasma sprayed coating without micro-defects is proposed according to the nanohardness of splat in this paper. The effectiveness of this novel method was examined by experiments. Firstly, the microstructure of splats and coating, meanwhile the 3D topography of the splats were observed by SEM (SU1510) and video microscope (VHX-2000). Secondly, the nanohardness of splats was evaluated by nanoindentation (NHT) in order to be compared with microhardness of coating measured by microhardness tester (HV-1000A). The results show that the nanohardness of splats with diameter of 70 μm, 100 μm and 140 μm were in the scope of 11∼12 GPa while the microhardness of coating were in the range of 8∼9 GPa. Because the splats had not micro-defects such as pores and cracks in the nanohardness evaluated nano-zone, the nanohardness of the splats can be utilized to predict the highest hardness of coating without micro-defects. This method indicates the maximum of sprayed coating hardness and will reduce the test number to get high hardness coating for better wear resistance.

  10. Hard and low friction nitride coatings and methods for forming the same

    DOEpatents

    Erdemir, Ali; Urgen, Mustafa; Cakir, Ali Fuat; Eryilmaz, Osman Levent; Kazmanli, Kursat; Keles, Ozgul

    2007-05-01

    An improved coating material possessing super-hard and low friction properties and a method for forming the same. The improved coating material includes the use of a noble metal or soft metal homogeneously distributed within a hard nitride material. The addition of small amounts of such metals into nitrides such as molybdenum nitride, titanium nitride, and chromium nitride results in as much as increasing of the hardness of the material as well as decreasing the friction coefficient and increasing the oxidation resistance.

  11. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    NASA Astrophysics Data System (ADS)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  12. Nanostructured diamond coatings for orthopaedic applications

    PubMed Central

    CATLEDGE, S.A.; THOMAS, V.; VOHRA, Y.K.

    2013-01-01

    With increasing numbers of orthopaedic devices being implanted, greater emphasis is being placed on ceramic coating technology to reduce friction and wear in mating total joint replacement components, in order to improve implant function and increase device lifespan. In this chapter, we consider ultra-hard carbon coatings, with emphasis on nanostructured diamond, as alternative bearing surfaces for metallic components. Such coatings have great potential for use in biomedical implants as a result of their extreme hardness, wear resistance, low friction and biocompatibility. These ultra-hard carbon coatings can be deposited by several techniques resulting in a wide variety of structures and properties. PMID:25285213

  13. Application of hard coatings to substrates at low temperatures

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1993-01-01

    BIRL, the industrial research laboratory of Northwestern University, has conducted unique and innovative research, under sponsorship from the NASA Marshall Space Flight Center (MSFC), in the application of hard, wear resistant coatings to bearing steels using the high-rate reactive sputtering (HRRS) process that was pioneered by Dr. William Sproul, the principal investigator on this program. Prior to this program, Dr. Sproul had demonstrated that it is possible to apply hard coatings such as titanium nitride (TiN) to alloy steels at low temperatures via the HRRS process without changing the metallurgical properties of the steel. The NASA MSFC program at BIRL had the specific objectives to: apply TiN to 440C stainless steel without changing the metallurgical properties of the steel; prepare rolling contact fatigue (RCF) test samples coated with binary hard coatings of TiN, zirconium nitride (ZrN), hafnium nitride (HfN), chromium nitride (CrN), and molybdenum nitride (MoN), and metal coatings of copper (Cu) and gold (Au); and develop new alloyed hard coatings of titanium aluminum nitride (Ti(0.5)Al(0.5)N), titanium zirconium nitride (Ti(0.5)Zr(0.5)N), and titanium aluminum vanadium nitride.

  14. Friction and hardness of gold films deposited by ion plating and evaporation

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.

  15. Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.

    PubMed

    Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A

    2016-05-04

    Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality.

  16. The durability of ceramic coated dental instruments.

    PubMed

    Rawlings, R D; Robinson, P B; Rogers, P S

    1995-09-01

    This study investigates the hardness, structure, composition, and thickness of coatings on two dental instruments and the changes which occurred when the instruments were subjected to conditions that closely match their clinical use. One group of instruments had a titanium nitride coating that was approximately 8 micrometers thick and had a hardness of 19.5 GN/m2. The coating on the other instrument was alumina (aluminium oxide) and contained some microcracks even when new; this coating was thicker (approximately 30 micrometers) and had a hardness less than the titanium nitride coating (15.8 GN/m2). The results showed that the titanium nitride coating was structurally superior compared with the aluminium oxide coating. Laboratory wear tests against composite resin showed that the wear resistance of titanium nitride was superior to that of stainless steel whether assessed in terms of weight or volume loss.

  17. Effect of heat treatment duration on tribological behavior of electroless Ni-(high)P coatings

    NASA Astrophysics Data System (ADS)

    Biswas, A.; Das, S. K.; Sahoo, P.

    2016-09-01

    Electroless nickel coating occurs through an autocatalytic chemical reaction and without the aid of electricity. From tribological perspective, it is recommended due to its high hardness, wear resistance, lubricity and corrosion resistance properties. In this paper electroless Ni-P coatings with high phosphorous weight percentages are developed on mild steel (AISI 1040) substrates. The coatings are subjected to heat treatment at 300°C and 500°C for time durations up to 4 hours. The effect of heat treatment duration on the hardness as well as tribological properties is discussed in detail. Hardness is measured in a micro hardness tester while the tribological tests are carried out on a pin-on-disc tribotester. Wear is reported in the form of wear rates of the sample subjected to the test. As expected, heat treatment of electroless Ni-P coating results in enhancement in its hardness which in turn increases its wear resistance. The present study also finds that duration of heat treatment has quite an effect on the properties of the coating. Increase in heat treatment time in general results in increase in the hardness of the coating. Coefficient of friction is also found to be lesser for the samples heat treated for longer durations (4 hour). However, in case of wear, similar trend is not observed. Instead samples heat treated for 2 to 3 hour display better wear resistance compared to the same heat treated for 4 hour duration. The microstructure of the coating is also carried out to ensure about its proper development. From scanning electron microscopy (SEM), the coating is found to possess the conventional nodular structure while energy dispersive X-ray analysis (EDX) shows that the phosphorous content in the coating to be greater than 9%. This means that the current coating belongs to the high phosphorous category. From X-ray diffraction analysis (XRD), it is found that coating is amorphous in as-deposited condition but transforms into a crystalline structure with heat treatment.

  18. Cirrus Dopant Nano-Composite Coatings

    DTIC Science & Technology

    2014-11-01

    100 200 300 400 500 600 HARDNESS (HV) MICROHARDNESS - ELECTROPLATED NICKEL STANDARD DC PLATED DOPED DC PLATED DOPED PULSE PLATED ↑48% 10...STANDARD COATING HARDNESS (HV) DOPED COATING MICROHARDNESS - ELECTROPLATED ZN NI ↑32% DC ZnNi Cirrus ZnNi Current Test Applications cirrus nano

  19. Analysis of failed and nickel-coated 3093 beam clamp components at the East Tennessee Technology Park (ETTP).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, D.; Pappacena, K.; Gaviria, J.

    2010-10-11

    The U.S. Department of Energy and its contractor, Bechtel Jacobs Company (BJC), are undertaking a major effort to clean up the former gaseous diffusion facility (K-25) located in Oak Ridge, TN. The decontamination and decommissioning activities require systematic removal of contaminated equipment and machinery followed by demolition of the buildings. As part of the cleanup activities, a beam clamp, used for horizontal life lines (HLLs) for fall protection, was discovered to be fractured during routine inspection. The beam clamp (yoke and D-ring) was a component in the HLL system purchased from Reliance Industries LLC. Specifically, the U-shaped stainless steel yokemore » of the beam clamp failed in a brittle mode at under less than 10% of the rated design capacity of 14,500 lb. The beam clamp had been in service for approximately 16 months. Bechtel Jacobs approached Argonne National Laboratory to assist in identifying the root cause of the failure of the beam clamp. The objectives of this study were to (1) review the prior reports and documents on the subject, (2) understand the possible failure mechanism(s) that resulted in the failed beam clamp components, (3) recommend approaches to mitigate the failure mechanism(s), and (4) evaluate the modified beam clamp assemblies. Energy dispersive x-ray analysis and chemical analysis of the corrosion products on the failed yoke and white residue on an in-service yoke indicated the presence of zinc, sulfur, and calcium. Analysis of rainwater in the complex, as conducted by BJC, indicated the presence of sulfur and calcium. It was concluded that, as a result of galvanic corrosion, zinc from the galvanized components of the beam clamp assembly (D-ring) migrated to the corroded region in the presence of the rainwater. Under mechanical stress, the corrosion process would have accelerated, resulting in the catastrophic failure of the yoke. As suggested by Bechtel Jacobs personnel, hydrogen embrittlement as a consequence of corrosion was also explored as a failure mechanism. Corroded and failed yoke samples had hydrogen concentrations of 20-60 ppm. However, the hydrogen content reduced to 4-11 ppm (similar to baseline as-received yoke samples) when the corrosion products were polished off. The hydrogen content in the scraped off corrosion product powders was >7000 ppm. These results indicate that hydrogen is primarily present in the corrosion products and not in the underlying steel. Rockwell hardness values on the corroded yoke and D-rings were R{sub c} {approx} 41-46. It was recommended to the beam clamp manufacturer that the beam clamp components be annealed to reduce the hardness values so that they are less susceptible to brittle failure. Upon annealing, hardness values of the beam clamp components reduced to R{sub c} {approx} 25. Several strategies were recommended and put in place to mitigate failure of the beam clamp components: (a) maintain hardness levels of both yokes and D-rings at R{sub c} < 35, (b) coat the yoke and D-rings with a dual coating of nickel (with 10% phosphorus) to delay corrosion and aluminum to prevent galvanic corrosion since it is more anodic to zinc, and (c) optimize coating thicknesses for nickel and aluminum while maintaining the physical integrity of the coatings. Evaluation of the Al- and Ni-coated yoke and D-ring specimens indicated they appear to have met the recommendations. Average hardness values of the dual-coated yokes were R{sub c} {approx} 25-35. Hardness values of dual-coated D-ring were R{sub c} {approx} 32. Measured average coating thicknesses for the aluminum and nickel coatings for yoke samples were 22 {micro}m (0.9 mils) and 80 {micro}m (3 mils), respectively. The D-rings also showed similar coating thicknesses. Microscopic examination showed that the aluminum coating was well bonded to the underlying nickel coating. Some observed damage was believed to be an artifact of the cutting-and-polishing steps during sample preparation for microscopy.« less

  20. Evaluation of Moisture-Cure Urethane Coatings for Compliance with Industry Specifications

    DTIC Science & Technology

    2011-12-01

    Upon curing, RUST GRIP provides a protective coating of superior adhesion, flexibility, abrasion - and impact- resistance . It is resistant to most...THANE 2821 is an extremely hard abrasion resistant coating. It is ideally suited for usage such as bridges, tanks, locks and dams, marine structures...extremely hard abrasion resistant coating. It makes an excellent coating for concrete floors when used directly on concrete. CHEM-THANE 2822HS

  1. In situ reactive multi-material Ti6Al4V-calcium phosphate-nitride coatings for bio-tribological applications.

    PubMed

    Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2018-05-24

    To reduce the wear related damage of medical grade Ti-6Al-4V alloy, laser engineered net shaping (LENS™) based in situ reactive multi-material additive manufacturing was employed to process a mixed coating of Ti-6Al-4V powder and calcium phosphate (CaP) in an oxygen free, nitrogen-argon environment. The resultant coatings were composite materials of titanium nitrides and calcium titanate in an α-Ti matrix. Hardness was increased by up to ~148% to 868 ± 9 HV as compared to the untreated Ti-6Al-4V substrate. Similarly, when tribological properties were evaluated in deionized (DI) water medium against alumina counter material, the wear damage was reduced by ~91% as compared to the untreated Ti-6Al-4V substrate. Furthermore, the untreated Ti-6Al-4V substrate released Ti ions of ~12.45 ppm concentration during wear whereas the Ti6Al4V-5%CaP coating processed in an argon-nitrogen environment released ions of ~3.17 ppm concentration under similar testing conditions. The overall coefficient of friction was also found to decrease due to the addition of CaP and processing the Ti6Al4V-CaP mixture in an argon-nitrogen environment. Our results indicate that this reactive multi-material additive manufacturing of metal-ceramic composites is an effective way of enhancing the tribological performance of metallic materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Influences of pretreatment and hard baking on the mechanical reliability of SU-8 microstructures

    NASA Astrophysics Data System (ADS)

    Morikaku, Toshiyuki; Kaibara, Yoshinori; Inoue, Masatoshi; Miura, Takuya; Suzuki, Takaaki; Oohira, Fumikazu; Inoue, Shozo; Namazu, Takahiro

    2013-10-01

    In this paper, the influences of pretreatment and hard baking on the mechanical characteristics of SU-8 microstructures are described. Four types of samples with different combinations of O2 plasma ashing, primer coating and hard baking were prepared for shear strength tests and uniaxial tensile tests. Specially developed shear test equipment was used to experimentally measure the shear adhesion strength of SU-8 micro posts on a glass substrate. The adhesiveness was strengthened by hard baking at 200 °C for 60 min, whereas other pretreatment processes hardly affected the strength. The pretreatment and hard baking effects on the adhesive strength were compared with those on the fracture strength measured by uniaxial tensile testing. There were no influences of O2 plasma ashing on both the strengths, and primer coating affected only tensile strength. The primer coating effect as well as the hard baking effect on stress relaxation phenomena in uniaxial tension was observed as well. Fourier transform infrared spectroscopy demonstrated that surface degradation and epoxide-ring opening polymerization would have given rise to the primer coating effect and the hard baking effect on the mechanical characteristics, respectively.

  3. Effect of Sodium Dodecyl Sulphate and Sodium Bromide Additives on Ni–W Nanocoatings.

    PubMed

    Das, Malay Kumar; Qin, Jiaqian; Zhang, Xinyu; Li, Rongxia; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanat; Ma, Mingzhen; Liu, Riping

    2017-02-01

    Nickel-tungsten (Ni–W) coatings were fabricated by electrodeposition method with varying quantities of sodium dodecyl sulphate and sodium bromide to examine the effects of the aforesaid additives on the coatings. The obtained nanocoatings were studied by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and hardness tester. The hardness, tungsten content and grain size attained a maximum value at current density of 0.15 A/cm²,0.1 A/cm² and 0.1 A/cm², respectively. There was a pronounced impact of both the additives on the microstructure and morphology of the coatings. According to results, there are considerable difference in terms of the impact caused by the additives to the tungsten content, hardness and grain size of the coatings. The obtained results suggest that hardness of coatings is mainly contributed by W content in the deposits.

  4. AMORPHOUS ALLOY SURFACE COATINGS FOR HARD CHROMIUM REPLACEMENT - PHASE I

    EPA Science Inventory

    Hard chromium coatings (0.25 to10 mil thick) are used extensively for imparting wear and erosion resistance to components in both industrial and military applications. The most common means of depositing hard chromium has been through the use of chromic acid baths containing ...

  5. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  6. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  7. Deformation mechanism of CrN/nitriding coated steel in wear and nano-scratch experiments under heavy loading conditions

    NASA Astrophysics Data System (ADS)

    Wang, Yongguang; Chen, Yao; Zhao, Dong; Lu, Xiaolong; Liu, Weiwei; Qi, Fei; Chen, Yang

    2018-07-01

    CrN coatings are widely used to protect metals from wear in industrial engineering. However, fundamental deformation mechanism of these coatings under heavy loading conditions remains elusive. In this paper, multilayered hard coatings with a CrN matrix and a supporting layer were developed by means of the hybrid deposition process combined with PVD and ionicnitriding. The tribological behavior of coatings with and without ionicnitriding were investigated by a pin-on-disk arrangement under heavy loading conditions. In addition, the deformation mechanism of the multilayered hard coatings was studied by nano-scratch experiment with ramp load model, which has not been discussed previously. It was found that the deformation process of coatings could be divided into three regimes based on the evolution of frictional coefficient. The insertion of nitriding films leads to the further increase in frictional resistance owing to the elastic-plastic deformation. The results and analysis reveal some insights into the coating design for multilayered hard coatings with the consideration of deformation mechanisms.

  8. Electrodeposition of Nanocrystalline Co-P Coatings as a Hard Chrome Alternative

    DTIC Science & Technology

    2009-09-02

    Electrodeposition  of Nanocrystalline Co‐P  Coatings as a Hard Chrome Alternative Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden...AND SUBTITLE Electrodeposition of Nanocrystalline Co‐P Coatings as a Hard Chrome Alternative 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Defense Conference – 2 September 2009 Conventional  Electrodeposits Polycrystalline (10‐100 µm) Electrodeposited Nanocrystalline Materials Pulsed

  9. Design and development of next-generation bottom anti-reflective coatings for 45nm process with hyper NA lithography

    NASA Astrophysics Data System (ADS)

    Nakajima, Makoto; Sakaguchi, Takahiro; Hashimoto, Keisuke; Sakamoto, Rikimaru; Kishioka, Takahiro; Takei, Satoshi; Enomoto, Tomoyuki; Nakajima, Yasuyuki

    2006-03-01

    Integrated circuit manufacturers are consistently seeking to minimize device feature dimensions in order to reduce chip size and increase integration level. Feature sizes on chips are achieved sub 65nm with the advanced 193nm microlithography process. R&D activities of 45nm process have been started so far, and 193nm lithography is used for this technology. The key parameters for this lithography process are NA of exposure tool, resolution capability of resist, and reflectivity control with bottom anti-reflective coating (BARC). In the point of etching process, single-layer resist process can't be applied because resist thickness is too thin for getting suitable aspect ratio. Therefore, it is necessary to design novel BARC system and develop hard mask materials having high etching selectivity. This system and these materials can be used for 45nm generation lithography. Nissan Chemical Industries, Ltd. and Brewer Science, Inc. have been designed and developed the advanced BARCs for the above propose. In order to satisfy our target, we have developed novel BARC and hard mask materials. We investigated the multi-layer resist process stacked 4 layers (resist / thin BARC / silicon-contained BARC (Si-ARC) / spin on carbon hard mask (SOC)) (4 layers process). 4 layers process showed the excellent lithographic performance and pattern transfer performance. In this paper, we will discuss the detail of our approach and materials for 4 layers process.

  10. IN SITU Deposition of Fe-TiC Nanocomposite on Steel by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Razavi, Mansour; Rahimipour, Mohammad Reza; Ganji, Mojdeh; Ganjali, Mansoreh; Gangali, Monireh

    The possibility of deposition of Fe-TiC nanocomposite on the surface of carbon steel substrate with the laser coating method had been investigated. Mechanical milling was used for the preparation of raw materials. The mixture of milled powders was used as a coating material on the substrate steel surface and a CO2 laser was used in continuous mode for coating. Microstructural studies were performed by scanning electron microscopy. Determinations of produced phases, crystallite size and mean strain have been done by X-ray diffraction. The hardness and wear resistance of coated samples were measured. The results showed that the in situ formation of Fe-TiC nanocomposite coating using laser method is possible. This coating has been successfully used to improve the hardness and wear resistance of the substrate so that the hardness increased by about six times. Coated iron and titanium carbide crystallite sizes were in the nanometer scale.

  11. Hardfacing of duplex stainless steel using melting and diffusion processes

    NASA Astrophysics Data System (ADS)

    Lailatul, H.; Maleque, M. A.

    2017-03-01

    Duplex stainless steel (DSS) is a material with high potential successes in many new applications such as rail car manufacturing, automotive and chemical industries. Although DSS is widely used in various industries, this material has faced wear and hardness problems which obstruct a wider capability of this material and causes problems in current application. Therefore, development of surface modification has been introduced to produce hard protective layer or coating on DSS. The main aim of this work is to brief review on hard surface layer formation on DSS using melting and diffusion processes. Melting technique using tungsten inert gas (TIG) torch and diffusion technique using gas nitriding are the effective process to meet this requirement. The processing route plays a significant role in developing the hard surface layer for any application with effective cost and environmental factors. The good understanding and careful selection of processing route to form products are very important factors to decide the suitable techniques for surface engineering treatment. In this paper, an attempt is also made to consolidate the important research works done on melting and diffusion techniques of DSS in the past. The advantages and disadvantages between melting and diffusion technique are presented for better understanding on the feasibility of hard surface formation on DSS. Finally, it can be concluded that this work will open an avenue for further research on the application of suitable process for hard surface formation on DSS.

  12. Exposure to space radiation of high-performance infrared multilayer filters

    NASA Technical Reports Server (NTRS)

    Seeley, J. S.; Hawkins, G. J.; Hunneman, R.

    1991-01-01

    The University of Reading experiment exposed IR interference filters and crystal substrates on identical earth facing and leading-edge sites of the Long Duration Exposure Facility (LDEF). Filters mostly comprised multilayer coatings of lead telluride (PbTe)/II-IV on germanium (Ge) and other substrates: crystals comprised CdTe, MgF2, sapphire, quartz, silicon, and some softer materials. Identical control samples were maintained in the laboratory throughout the experiment. The filters were novel in their design, construction and manufacture, and categorized high-performance because of their ability to resolve emission spectra of the important atmospheric gases for various purposes in remote sensing. No significant changes were found in the spectra of the hard-coated filters or in the harder crystals (the softer materials were degraded to an extent). By virtue of this well-documented and long exposure in LDEF, the qualification of the filter type is significantly improved for its future requirements.

  13. 75 FR 13759 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... Emission Standards for Automobile Refinish Coatings AGENCY: Environmental Protection Agency. ACTION: Notice... potentially affected by this action as respondents are manufacturers and importers of automobile refinish coatings and coating components. Manufacturers of automobile refinish coatings and coating components fall...

  14. 78 FR 31921 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... Requirements for National Volatile Organic Compound Emission Standards for Automobile Refinish Coatings, EPA... potentially affected by this action as respondents are manufacturers and importers of automobile refinish coatings and coating components. Manufacturers of automobile refinish coatings and coating components fall...

  15. Microstructures and Properties of Plasma Sprayed Ni Based Coatings Reinforced by TiN/C1-xNxTi Generated from In-Situ Solid-Gas Reaction.

    PubMed

    Wang, Wenquan; Li, Wenmo; Xu, Hongyong

    2017-07-11

    The strengthening hard phases TiN/C 1- x N x Ti were generated by in-situ solid-gas reaction in Ni-based composite coatings prepared using a plasma spray welding process to reinforce the wear resistance of the coatings. The microstructures and properties of the coatings were investigated. The results showed that the coatings mainly consisted of phases such as TiN, C 1- x N x Ti, TiC, etc. A small amount of CrB, M₇C₃, and M 23 C₆ were also detected in the coatings by micro-analysis method. Compared with the originally pure NiCrBSi coatings, the hardness of the NiCrBSi coatings reinforced by in-situ solid-gas reaction was 900 HV 0.5 , increased by more than 35%. Consequently, the wear resistance of the reinforced coatings was greatly improved due to the finely and uniformly dispersed hard phases mentioned above. The weight losses after wear test for the two kinds of coatings were 15 mg and 8 mg, respectively.

  16. Wear and Corrosion Resistance of Thick Ti-6Al-4V Coating Deposited on Ti-6Al-4V Substrate via High-Pressure Cold Spray

    NASA Astrophysics Data System (ADS)

    Khun, N. W.; Tan, A. W. Y.; Sun, W.; Liu, E.

    2017-08-01

    Ti-6Al-4V (Ti64) coating with a thickness of about 9 mm was deposited on commercial Ti64 substrate via a high-pressure cold spray process. The microstructure, hardness, and wear and corrosion resistance of the Ti64 coating were systematically investigated. The hardness of the Ti64 coating was higher than that of the Ti64 substrate due to the cold-worked microstructure of the coating. The tribological results showed that there was no significant difference in the surface wear rates of the Ti64 coating measured on its different layers while the surface wear resistance of the Ti64 coating was lower than its cross-sectional wear resistance. The corrosion results showed that the Ti64 coating did not effectively prevent its underlying Ti64 substrate from corrosion due to the occurrence of pores in the coating microstructure. It could be concluded that the hardness and wear resistance of the Ti64 coating were comparable to those of the commercial Ti64 substrate.

  17. Investigation of stand-off distance effect on structure, adhesion and hardness of copper coatings obtained by the APS technique

    NASA Astrophysics Data System (ADS)

    Masoumeh, Goudarzi; Shahrooz, Saviz; Mahmood, Ghoranneviss; Ahmad, Salar Elahi

    2018-03-01

    The outbreak of the disease and infection in the hospital environment and medical equipment is one of the concerns of modern life. One of the effective ways for preventing and reducing the complications of infections is modification of the surface. Here, the handmade atmospheric plasma spray system is used for accumulating copper as an antibacterial agent on the 316L stainless steel substrate, which applies to hospital environment and medical equipment. As a durable coating with proper adhesion is needed on the substrate, the effect of stand-off distance (SOD) which is an important parameter of the spray on the microstructure, the hardness and adhesion of the copper coating on the 316L stainless steel were investigated. The structure and phase composition of copper depositions were investigated using scanning electron microscopy and X-ray diffraction. The adhesion and hardness of depositions are evidenced using the cross cut tester and Vickers hardness tester, respectively. The findings confirm that the voids in the coatings increase with increasing SOD, which leads to decreasing the hardness of coatings and also the adhesion strength between depositions and substrate. In addition, by increasing the SOD, the oxygen content and the size of grains in the lamellae (fine structure) of coatings also increase.

  18. CrN-Ag Self-Lubricating Hard Coatings

    DTIC Science & Technology

    2005-03-01

    Report). An entry in this block is necessary if the abstract is to be limited. CrN-Ag Self-Lubricating Hard Coatings C.P. Mulligan,a,b D. Galla ...1997) 165. 8. A. Tricoteaux, P.Y. Jouan, J.D. Guerin, J. Martinez A. Djouadi, Surface and Coatings Technology, 174 –175 (2003) 440. 9. C

  19. 40 CFR 59.400 - Applicability and compliance dates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart apply to each architectural coating manufactured on or after September 13, 1999 for sale or... such coating manufactured on or after March 13, 2000 for sale or distribution in the United States. (c...) through (c)(5) of this section: (1) A coating that is manufactured for sale or distribution to...

  20. The effect of annealing on structure and hardness of (Fe-Cr)-50 at.% Al coatings synthesized by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Ciswandi, Aryanto, Didik; Irmaniar, Tjahjono, Arif; Sudiro, Toto

    2018-05-01

    In this research, the deposition of (Fe-Cr)-50at.% Al coatings on low carbon steel was carried out by a mechanical alloying (MA) technique. The MA was performed in a shaker mill for 4 hours. Two types of Fe-Cr powders as starting material were used, high purity Fe-Cr powders: (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al, and Fe-Cr lump powder: (50FeCr)-50Al (in at.%). The coated samples were then annealed in a vacuum furnace at 700°C for 1h. The characterizations of coating structure before and after annealing were studied by XRD and SEM-EDX, while the coating hardness was measured by micro-Vickers hardness tester. Before annealing, all of coating composition were composed mainly of (Fe,Cr)Al phase. After annealing, the FeAl and Fe0.99Cr0.02Al0.99 intermetallic phases was formed in the (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al coatings. In addition, Fe2CrAlwas also found in the (Fe-25Cr)-50Al coating. Whilethe AlCr2 intermetallic phase was detected as the main phase of (50FeCr)-50Al coating. The cross-sectional microstructure showed that the (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al coatings have a smoother structure compared to (50FeCr)-50Al coating. The annealing led to intermetallic phase formation and an increasing coating hardness.

  1. Mechanical properties of Cr-Cu coatings produced by electroplating

    NASA Astrophysics Data System (ADS)

    Riyadi, Tri Widodo Besar; Sarjito, Masyrukan, Riswan, Ricky Ary

    2017-06-01

    Hard chromium coatings has long been considered as the most used electrodeposited coating in several industrial applications such as in petrochemistry, oil and gas industries. When hard coatings used in fastener components, the sliding contact during fastening operation produces high tensile stresses on the surface which can generate microcracks. For component used in high oxidation and corrosion environment, deep cracks cannot be tolerated. In this work, a laminated structure of Cr-Cu coating was prepared using electroplating on carbon steel substrates. Two baths of chrome and copper electrolyte solutions were prepared to deposit Cr as the first layer and Cu as the second layer. The effect of current voltages on the thickness, hardness and specific wear rate of the Cu layer was investigated. The results show that an increase of the current voltages increased the thickness and hardness of the Cu layer, but reduced the specific wear rate. This study showed that the use of Cu can be a potential candidate as a laminated structure Cr-Cu for chromium plating.

  2. Infrared spectroscopy, nano-mechanical properties, and scratch resistance of esthetic orthodontic coated archwires.

    PubMed

    da Silva, Dayanne Lopes; Santos, Emanuel; Camargo, Sérgio de Souza; Ruellas, Antônio Carlos de Oliveira

    2015-09-01

    To evaluate the material composition, mechanical properties (hardness and elastic modulus), and scratch resistance of the coating of four commercialized esthetic orthodontic archwires. The coating composition of esthetic archwires was assessed by Fourier-transform infrared spectroscopy (FTIR). Coating hardness and elastic modulus were analyzed with instrumented nano-indentation tests. Scratch resistance of coatings was evaluated by scratch test. Coating micromorphologic characteristics after scratch tests were observed in a scanning electron microscope. Statistical differences were investigated using analysis of variance and Tukey post hoc test. The FTIR results indicate that all analyzed coatings were markedly characterized by the benzene peak at about 1500 cm(-1). The coating hardness and elastic modulus average values ranged from 0.17 to 0.23 GPa and from 5.0 to 7.6 GPa, respectively. Scratch test showed a high coating elasticity after load removal with elastic recoveries >60%, but different failure features could be observed along the scratches. The coatings of esthetic archwires evaluated are probably a composite of polyester and polytetrafluoroethylene. Delamination, crack propagation, and debris generation could be observed along the coating scratches and could influence its durability in the oral environment.

  3. Pollution prevention and the use of low-VOC/HAP coatings at wood furniture manufacturing facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, A.M.; Spaight, J.L.; Jones, J.W.

    1999-07-01

    Midwest Research Institute, under a cooperative agreement with the Air Pollution Prevention and Control Division of the U.S. Environmental Protection Agency's (EPA's) National Risk Management Research Laboratory, is conducting a study to identify wood furniture and cabinet manufacturing facilities that have converted to low-volatile organic compound/hazardous air pollutant (VOC/HAP) coatings and to develop case studies for those facilities. The case studies include: (1) a discussion of the types of products each facility manufactures; (2) the types of low-VOC/HAP coatings each facility is using; (3) problems encountered in converting to low-VOC/HAP coatings; (4) equipment changes that were required; (5) the costsmore » associated with the conversion process, including capital costs associated with equipment purchases, research and development costs, and operating costs such as operator training in new application techniques; (6) advantages/disadvantages of the low-VOC/HAP coatings; and (7) customer feedback on products finished with the low-VOC/HAP coatings. The primary goals of the project are (1) to demonstrate that low-VOC/HAP coatings can be used successfully by many wood furniture manufacturing facilities, and (2) to assist other wood furniture manufacturing facilities in their conversion to low-VOC/HAP coatings, in particular facilities that do not have the resources to devote to extensive coatings research. This paper discusses the progress of the project and pollution prevention options at wood furniture manufacturing facilities and the regulatory requirements (e.g., the National Emissions Standards for Hazardous Air Pollutants [NESHAP] for Wood Furniture Manufacturing Operations) that these facilities face.« less

  4. The corrosion protection of aluminum by various anodizing treatments

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.

    1989-01-01

    Corrosion protection to 6061-T6 aluminum, afforded by both teflon-impregnated anodized coats (Polylube and Tufram) and hard-anodized coats (water sealed and dichromate sealed), was studied at both pH 5.5 and pH 9.5, with an exposure period of 28 days in 3.5 percent NaCl solution (25 C) for each specimen. In general, corrosion protection for all specimens was better at pH 9.5 than at pH 5.5. Protection by a Tufram coat proved superior to that afforded by Polylube at each pH, with corrosion protection by the hard-anodized, water-sealed coat at pH 9.5 providing the best protection. Electrochemical work in each case was corroborated by microscopic examination of the coats after exposure. Corrosion protection by Tufram at pH 9.5 was most comparable to that of the hard-anodized samples, although pitting and some cracking of the coat did occur.

  5. The effect of immersion time to low carbon steel hardness and microstructure with hot dip galvanizing coating method

    NASA Astrophysics Data System (ADS)

    Hakim, A. A.; Rajagukguk, T. O.; Sumardi, S.

    2018-01-01

    Along with developing necessities of metal materials, these rise demands of quality improvements and material protections especially the mechanical properties of the material. This research used hot dip galvanizing coating method. The objectives of this research were to find out Rockwell hardness (HRb), layer thickness, micro structure and observation with Scanning Electron Microscope (SEM) from result of coating by using Hot Dip Galvanizing coating method with immersion time of 3, 6, 9, and 12 minutes at 460°C. The result shows that Highest Rockwell hardness test (HRb) was at 3 minutes immersion time with 76.012 HRb. Highest thickness result was 217.3 μm at 12 minutes immersion. Microstructure test result showed that coating was formed at eta, zeta, delta and gamma phases, while Scanning Electron Microscope (SEM) showed Fe, Zn, Mn, Si and S elements at the specimens after coating.

  6. Comparative assessment of the microhardness and plastic degradation mechanism of deposited modulated coatings on mild steel

    NASA Astrophysics Data System (ADS)

    Fayomi, O. S. I.; Anawe, P. A. L.; Inegbenebor, A. O.; Udoye, N. E.

    2018-05-01

    Zinc based coatings modified with aluminium and tin inclusions were electrodeposited in chloride zinc sulfate electrolytes containing a metallic powder of titanium. It was found that presence of these particulates is suitable to obtain ZnAlSn-Ti composites coating that could help increase the microhardnesss characteristics and wear properties. The hardness and wear properties of the deposited coatings were examined with diamond base micro-hardness tester and CETR reciprocating sliding tester respectively. The structural properties were examined with the help of scanning electron microscope. It was observed that structural coating surface impact on the hardness propagation with increases from 33.4 to 299 kgf mm-2 (HVN40), and shows a considerably higher wear resistance from 2.351g/min to 0.002g/min. It is obvious that plastic deformation of the working steel structure is dependent on protective coating and the concentration of the individual particulate.

  7. Investigating catalyst coated membrane equilibration time for polymer electrolyte membrane fuel cell manufacturing

    NASA Astrophysics Data System (ADS)

    Cote, Philippe

    Mercedes-Benz Canada Inc., Fuel Cell Division, manufactures polymer electrolyte membrane fuel cell stacks for use in vehicles. The manufacturing line is being optimized for efficiency and quality control, in order to uphold the high standards of Mercedes-Benz Inc. vehicles. In an operating polymer electrolyte membrane fuel cell, the catalyst coated membrane facilitates the electrochemical reaction that generates electricity. This research examines the equilibration of catalyst coated membrane rolls to controlled temperature and humidity conditions, before they are used in the manufacturing of polymer electrolyte membrane fuel cells. Equilibration involves allowing the water content in the catalyst coated membrane to stabilize at the controlled conditions, in order to reduce mechanical stress in the material for better manufacturability. Initial equilibration measurements were conducted on discrete catalyst coated membrane samples using novel electronic conductivity measurements of the catalyst layer, and compared to ionic conductivity measurements of the membrane. Electronic conductivity measurements are easier to implement in the manufacturing environment than the more complex ionic conductivity measurements. When testing discrete catalyst coated membrane samples in an environmental chamber, the equilibration trends for the measured ionic and electronic conductivity signals were similar enough to permit us to adapt the electronic conductivity measurements for catalyst coated membrane in roll form. Equilibration measurements of catalyst coated membrane rolls were optimized to achieve a robust and repeatable procedure which could be used in the manufacturing environment at Mercedes-Benz Canada Inc., Fuel Cell Division.

  8. 40 CFR 52.222 - Negative declarations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Coils, Surface Coating Fabrics, Surface Coating Operations at Automotive and Light Duty Truck..., Utility Boilers, Cement Manufacturing Plants, Glass Manufacturing Plants, and Iron and Steel Manufacturing..., Asphalt Batch Plants, Iron and Steel Manufacturing Plants, and Driers were submitted on October 17, 1994...

  9. 40 CFR 52.222 - Negative declarations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of Coils, Surface Coating Fabrics, Surface Coating Operations at Automotive and Light Duty Truck..., Glass Manufacturing Plants, and Iron and Steel Manufacturing Plants were submitted on March 4, 1996, and... Adipic Acid Manufacturing Plants, Cement Manufacturing Plants, Asphalt Batch Plants, Iron and Steel...

  10. Investigation on the relationship between NbC and wear-resistance of Fe matrix composite coatings with different C contents

    NASA Astrophysics Data System (ADS)

    Zhao, Changchun; Zhou, Yefei; Xing, Xiaolei; Liu, Sha; Ren, Xuejun; Yang, Qingxiang

    2018-05-01

    The wear resistance of Fe-based composite coating is significantly related with the character of carbides and matrix, which could be strongly affected by C content in it. In this work, the Fe-based composite coatings with different C contents were prepared. The microstructure and phase structure of the coatings were analyzed by scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and X-ray diffractometer (XRD). The hardness and wear resistance of the coatings were determined. Then the hardness and brittleness of carbon poor niobium carbides were calculated by first principles calculation. The results show that, the phase structures of the coatings are mainly composed of NbC, γ phase (retained austenite) and α phase (martensite). With the increase of C content, the retained austenite appears and C content of martensite is increased. The hardness of the coatings are increased from HRC 22 to HRC 59. The distribution and morphology of NbC are changed with the increase of C content. The NbC precipitated in reticular grain boundary can be observed when C content is 0.4 wt.% C (C-1). NbC turn into granular and small rod morphology when C content increases to 0.8 wt.% C (C-2). The cracks and defects cannot been found on the surface of the coating when C content is 1.2 wt.% C(C-3), whose hardness is HRC 58 and wear loss is 0.27 g/N cm2 in 8 h. The flaky M7C3 carbide precipitates on the coating when C content is 1.4 wt.% C(C-4), which weaken the wear resistance of the matrix. Compared with the hardfacing coatings with different C contents, the C-3 coating processes higher hardness and wear resistance.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Bivas; Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; Lawrence, Samantha K.

    High hardness TiAlN alloys for wear-resistant coatings exhibit limited lifetimes at elevated temperatures due to a cubic-AlN to hexagonal-AlN phase transformation that leads to decreasing hardness. We enhance the hardness (up to 46 GPa) and maximum operating temperature (up to 1050 °C) of TiAlN-based coatings by alloying with scandium nitride to form both an epitaxial TiAlScN alloy film and epitaxial rocksalt TiN/(Al,Sc)N superlattices on MgO substrates. The superlattice hardness increases with decreasing period thickness, which is understood by the Orowan bowing mechanism of the confined layer slip model. These results make them worthy of additional research for industrial coating applications.

  12. Case study project: The use of low-VOC/HAP coatings at wood furniture manufacturing facilities. Report for March 1995--March 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, A.M.; Jones, J.W.; Fields, J.L.

    1999-07-01

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted to low-VOC/HAP coatings and to develop case studies for those facilities. The case studies include a discussion of the types of products each facility manufactures; the types of low-VOC/HAP coatings each facility is using; problems encountered in converting to low-VOC/HAP coatings; equipment changes that were required; costs associated with the conversion process, including capital costs associated with equipment purchases, research and developmentmore » costs, and operating costs such as operator training in new application techniques;advantages/ disadvantages of the low-VOC/HAP coatings; and customer feedback on products finished with the low-VOC/HAP coatings. The paper discusses the progress of the study and pollution prevention options at wood furniture manufacturing facilities.« less

  13. Effect of powder reactivity on fabrication and properties of NiAl/Al2O3 composite coated on cast iron using spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Beyhaghi, Maryam; Kiani-Rashid, Ali-Reza; Kashefi, Mehrdad; Khaki, Jalil Vahdati; Jonsson, Stefan

    2015-07-01

    Powder mixtures of Ni, NiO and Al are ball milled for 1 and 10 h. X-ray diffractometry and differential thermal analysis show that while ball milling for 1 h produced mechanically activated powder; 10 h ball milling produced NiAl and Al2O3 phases. Dense NiAl/Al2O3 composite coatings are formed on gray cast iron substrate by spark plasma sintering (SPS) technique. The effect of powder reactivity on microstructure, hardness and scratch hardness of NiAl/Al2O3 coatings after SPS is discussed. Results show that in the coating sample made of mechanically activated powder in situ synthesis of NiAl/Al2O3 composite coating is fulfilled and a thicker well-formed diffusion bond layer at the interface between coating and substrate is observed. The diffusion of elements across the bond layers and phase evolution in the bond layers were investigated. No pores or cracks were observed at the interface between coating layer and substrate in any of samples. Higher Vickers hardness and scratch hardness values in coating made of 10 h ball milled powder than in coating fabricated from 1 h ball milled powder are attributed to better dispersion of Al2O3 reinforcement particles in NiAl matrix and nano-crystalline structure of NiAl matrix. Scratched surface of coatings did not reveal any cracking or spallation at coating-substrate interface indicating their good adherence at test conditions.

  14. Microstructure and Dry Sliding Wear Resistance of Laser Cladding Ti-Al-Si Composite Coating

    NASA Astrophysics Data System (ADS)

    Zhang, H. X.; Yu, H. J.; Chen, C. Z.; Dai, J. J.

    In order to improve the wear resistance of Ti alloys, different mass ratios of Ti-Si-Al powders were designed to fabricate hard phases reinforced intermetallic matrix composite coatings on the Ti-6Al-4V substrate by laser cladding. The corresponding coatings were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and high resolution transmission microscopy (HRTEM). The HV-1000 hardness tester and MM200 wear test machine were employed to test the hardness and the wear resistance of the composite coatings, respectively. The composite coatings mainly consisted of the reinforcements of Ti5Si3, Ti3AlC2 and Ti7Al5Si12 and the matrix of Ti3Al, TiAl, TiAl3 and α-Ti. The micro-hardness of the Ti-35Al-15Si coating was from 956 HV0.2 to 1130 HV0.2, which was approximately 3-4 times of the substrate and the highest in the three samples. The wear rate of the Ti-35Al-15Si coating was 0.023cm3ṡmin-1, which was about 1/4 of the Ti-6Al-4V substrate. It was the lowest in the three samples.

  15. Synthesis and characterization of CrCN-DLC composite coatings by cathodic arc ion-plating

    NASA Astrophysics Data System (ADS)

    Wang, R. Y.; Wang, L. L.; Liu, H. D.; Yan, S. J.; Chen, Y. M.; Fu, D. J.; Yang, B.

    2013-07-01

    CrCN-DLC composite coatings were deposited onto silicon (1 0 0) and cemented carbides substrates using pure Cr targets under C2H2 ambient by cathodic arc ion plating system. The influence of C2H2 flow rate on the structure and mechanical properties of the coatings was investigated systemically. The coatings structure and bonding state were characterized by XRD, Raman and X-ray photoelectron spectroscopy. The chemical composition was measured by EDS. The mechanical performance and tribological behaviour of the coatings were studied by a hardness tester and ball-on-disc wear tester. The results showed that with increasing C2H2 flow rate from 50 to 100 sccm, the corresponding hardness of coatings increased firstly and then decreased with further addition of C2H2 flow rate. The coatings deposited at lower C2H2 flow rate (less than 200 sccm) exhibited a relatively higher hardness value (more than HV0.0252000) and then the hardness decrease with increasing C2H2 flow rate. The friction coefficient also exhibited similar variation trend, when the C2H2 flow rate was higher than 100 sccm, the friction coefficient decreased and then maintained in a relatively lower value from 0.18 to 0.24, which may be attribute to the increasing carbon content and the coating exhibited more diamond-like structure.

  16. Evaluation of risk and benefit in thermal effusivity sensor for monitoring lubrication process in pharmaceutical product manufacturing.

    PubMed

    Uchiyama, Jumpei; Kato, Yoshiteru; Uemoto, Yoshifumi

    2014-08-01

    In the process design of tablet manufacturing, understanding and control of the lubrication process is important from various viewpoints. A detailed analysis of thermal effusivity data in the lubrication process was conducted in this study. In addition, we evaluated the risk and benefit in the lubrication process by a detailed investigation. It was found that monitoring of thermal effusivity detected mainly the physical change of bulk density, which was changed by dispersal of the lubricant and the coating powder particle by the lubricant. The monitoring of thermal effusivity was almost the monitoring of bulk density, thermal effusivity could have a high correlation with tablet hardness. Moreover, as thermal effusivity sensor could detect not only the change of the conventional bulk density but also the fractional change of thermal conductivity and thermal capacity, two-phase progress of lubrication process could be revealed. However, each contribution of density, thermal conductivity, or heat capacity to thermal effusivity has the risk of fluctuation by formulation. After carefully considering the change factor with the risk to be changed by formulation, thermal effusivity sensor can be a useful tool for monitoring as process analytical technology, estimating tablet hardness and investigating the detailed mechanism of the lubrication process.

  17. Deposition and Characterization of HVOF Thermal Sprayed Functionally Graded Coatings Deposited onto a Lightweight Material

    NASA Astrophysics Data System (ADS)

    Hasan, M.; Stokes, J.; Looney, L.; Hashmi, M. S. J.

    2009-02-01

    There is a significant interest in lightweight materials (like aluminum, magnesium, titanium, and so on) containing a wear resistance coating, in such industries as the automotive industry, to replace heavy components with lighter parts in order to decrease vehicle weight and increase fuel efficiency. Functionally graded coatings, in which the composition, microstructure, and/or properties vary gradually from the bond coat to the top coat, may be applied to lightweight materials, not only to decrease weight, but also to enhance components mechanical properties by ensuring gradual microstructural (changes) together with lower residual stress. In the current work, aluminum/tool-steel functionally graded coatings were deposited onto lightweight aluminum substrates. The graded coatings were then characterized in terms of residual stress and hardness. Results show that residual stress increased with an increase in deposition thickness and a decrease in number of layers. However, the hardness also increased with an increase in deposition thickness and decrease in number of layers. Therefore, an engineer must compromise between the hardness and stress values while designing a functionally graded coating-substrate system.

  18. The corrosion protection of 6061-T6 aluminum by a polyurethane-sealed anodized coat

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    The corrosion protection of 6061-T6 anodized aluminum afforded by a newly patented polyurethane seal was studied using the ac impedance technique. Values of the average corrosion rates over a 27-day exposure period in 3.5 percent NaCl solutions at pH 5.2 and pH 9.5 compared very favorably for Lockheed-prepared polyurethane-sealed and dichromate-sealed coats of the same thickness. Average corrosion rates for both specimens over the first 7 days of exposure compared well with those for a hard anodized, dichromate-sealed coat, but rose well above those for the hard anodized coat over the entire 27-day period. This is attributed both to the greater thickness of the hard anodized coat, and possibly to its inherently better corrosion protective capability.

  19. EVALUATION AND RECOMMENDATION OF SALTSTONE MIXER AUGER/PADDLES MATERIALS OF CONSTRUCTION FOR IMPROVED WEAR RESISTANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.; Torres, R.

    2012-08-15

    Wear and corrosion testing were conducted to evaluate alternate materials of construction for the Saltstone mixer auger and paddles. These components have been degraded by wear from the slurry processed in the mixer. Material test options included PVD coatings (TiN, TiCN, and ZrN), weld overlays (Stellite 12 and Ultimet) and higher hardness steels and carbides (D2 and tungsten carbide). The corrosion testing demonstrated that the slurry is not detrimental to the current materials of construction or the new candidates. The ASTM G75 Miller wear test showed that the high hardness materials and the Stellite 12 weld overlay provide superior wearmore » relative to the Astralloy and CF8M stainless steel, which are the current materials of construction, as well as the PVD coatings and Ultimet. The following recommendations are made for selecting new material options and improving the overall wear resistance of the Saltstone mixer components: A Stellite 12 weld overlay or higher hardness steel (with toughness equivalent to Astralloy) be used to improve the wear resistance of the Saltstone mixer paddles; other manufacturing specifications for the mixer need to be considered in this selection. The current use of the Stellite 12 weld overlay be evaluated so that coverage of the 316 auger can be optimized for improved wear resistance of the auger. The wear surfaces of the Saltstone mixer auger and paddles be evaluated so that laboratory data can be better correlated to actual service. The 2-inch Saltstone mixer prototype be used to verify material performance.« less

  20. Tribological performance of Zinc soft metal coatings in solid lubrication

    NASA Astrophysics Data System (ADS)

    Regalla, Srinivasa Prakash; Krishnan Anirudh, V.; Reddy Narala, Suresh Kumar

    2018-04-01

    Solid lubrication by soft coatings is an important technique for superior tribological performance in machine contacts involving high pressures. Coating with soft materials ensures that the subsurface machine component wear decreases, ensuring longer life. Several soft metal coatings have been studied but zinc coatings have not been studied much. This paper essentially deals with the soft coating by zinc through electroplating on hard surfaces, which are subsequently tested in sliding experiments for tribological performance. The hardness and film thickness values have been found out, the coefficient of friction of the zinc coating has been tested using a pin on disc wear testing machine and the results of the same have been presented.

  1. Integrated Glass Coating Manufacturing Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brophy, Brenor

    2015-09-30

    This project aims to enable US module manufacturers to coat glass with Enki’s state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki’s coating process in an integrated tool that facilitates effective process improvement through metrology and data analysis for greater quality and performance while reducing footprint, operating and capital costs. The Phase 1 objective was a fully designed manufacturing line, including fully specified equipment ready for issue of purchase requisitions; a detailed economic justification based on market prices at the end of Phase 1 and projected manufacturing costs andmore » a detailed deployment plan for the equipment.« less

  2. Effect of Substrate Bias on Friction Coefficient, Adhesion Strength and Hardness of TiN-COATED Tool Steel

    NASA Astrophysics Data System (ADS)

    Hamzah, Esah; Ali, Mubarak; Toff, Mohd Radzi Hj. Mohd

    In the present study, TiN coatings have been deposited on D2 tool steel substrates by using cathodic arc physical vapor deposition technique. The objective of this research work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness and friction coefficient of TiN coating deposited on D2 tool steel, which is widely used in tooling applications. A Pin-on-Disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating deposited at various substrate biases. The standard deviation parameter during tribo-test result showed that the coating deposited at substrate bias of -75 V was the most stable coating. A significant increase in micro-Vickers hardness was recorded, when substrate bias was reduced from -150 V to zero. Scratch tester was used to compare the critical loads for coatings deposited at different bias voltages and the adhesion achievable was demonstrated with relevance to the various modes, scratch macroscopic analysis, critical load, acoustic emission and penetration depth. A considerable improvement in TiN coatings was observed as a function of various substrate bias voltages.

  3. Microindentation hardness testing of coatings: techniques and interpretation of data

    NASA Astrophysics Data System (ADS)

    Blau, P. J.

    1986-09-01

    This paper addresses the problems and promises of micro-indentation testing of thin solid films. It has discussed basic penetration hardness testing philosophy, the peculiarities of low load-shallow penetration tests of uncoated metals, and it has compared coated with uncoated behavior so that some of the unique responses of coatings can be distinguished from typical hardness versus load behavior. As the uses of thin solid coatings with technological interest continue to proliferate, microindentation testing methodology will increasingly be challenged to provide useful tools for their characterization. The understanding of microindentation response must go hand-in-hand with machine design so that the capability of measurement precision does not outstrip our abilities to interpret test results in a meaningful way.

  4. The friction coefficient evolution of a MoS2/WC multi-layer coating system during sliding wear

    NASA Astrophysics Data System (ADS)

    Chan, T. Y.; Hu, Y.; Gharbi, Mohammad M.; Politis, D. J.; Wang, L.

    2016-08-01

    This paper discusses the evolution of friction coefficient for the multi-layered Molybdenum Disulphide (MoS2) and WC coated substrate during sliding against Aluminium AA 6082 material. A soft MoS2 coating was prepared over a hard WC coated G3500 cast iron tool substrate and underwent friction test using a pin-on-disc tribometer. The lifetime of the coating was reduced with increasing load while the Aluminium debris accumulated on the WC hard coating surfaces, accelerated the breakdown of the coatings. The lifetime of the coating was represented by the friction coefficient and the sliding distance before MoS2 coating breakdown and was found to be affected by the load applied and the wear mechanism.

  5. Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Li, Yunfeng; Liu, Jia; Yuan, Zhenyu

    2018-02-01

    In this study, a gradient composite coating was manufactured on 20CrMnTi alloy steel by laser cladding. The laser power, cladding scan velocity and powder flow rate were selected as influencing factors of the orthogonal cladding experiments. The influencing factors were optimized by the comprehensive analysis of Taguchi OA and TOPSIS method. The high significant parameters and the predicted results were confirmed by the ANOVA method. The macromorphology and microstructures are characterized by using laser microscope, SEM, XRD and microhardness tester. Comparison tests of wear resistance of gradient composite coating, 20CrMnTi cemented quenching sample and the 20CrMnTi sample were conducted on the friction-wear tester. The results show that the phases are γ-Co solid solution, Co3B, M23C6 and etc. The interlayers and wear-resisting layer also contain new hard phases as WC, W2C. The microhardness of the gradient coating was increased to 3 times as compared with that of the 20CrMnTi substrate. The wear resistance of the gradient composite coating and 20CrMnTi cemented quenching sample was enhanced to 36.4 and 15.9 times as compared with that of the 20CrMnTi.

  6. Effect of a self-adhesive coating on the load-bearing capacity of tooth-coloured restorative materials.

    PubMed

    Bagheri, R; Palamara, Jea; Mese, A; Manton, D J

    2017-03-01

    The aim of this study was to compare the flexural strength and Vickers hardness of tooth-coloured restorative materials with and without applying a self-adhesive coating for up to 6 months. Specimens were prepared from three resin composites (RC), two resin-modified glass-ionomer cements (RM-GIC) and two conventional glass-ionomer cements (CGIC). All materials were tested both with and without applying G-Coat Plus (GCP). Specimens were conditioned in 37 °C distilled deionized water for 24 h, and 1, 3 and 6 months. The specimens were strength tested using a four-point bend test jig in a universal testing machine. The broken specimen's halves were used for Vickers hardness testing. Representative specimens were examined under an environmental scanning electron microscope. Data analysis showed that regardless of time and materials, generally the surface coating was associated with a significant increase in the flexural strength of the materials. Applying the GCP decreased the hardness of almost all materials significantly (P < 0.05) and effect of time intervals on hardness was material dependent. The load-bearing capacity of the restorative materials was affected by applying self-adhesive coating and ageing. The CGIC had significantly higher hardness but lower flexural strength than the RM-GIC and RC. © 2016 Australian Dental Association.

  7. Clean Metal Finishing Alternatives

    DTIC Science & Technology

    2006-05-01

    Cr, must heat treat for hardness 4 4 Trivalent chrome Trivalent plating chemistry Varying success, some must be brush plate 3 3 Alloy plating...metals. Hard coating deposition unproven. 3 N/A Weld coating Electrospark Deposition/ Alloying (ESD/ ESA) Microarc welding Localized repair of non...Alternatives to chromate conversion coatings Al TriChrome Pretreatment (TCP)* – AnoChem TCP, Aluminescent, TCP-HF Trivalent Cr3+ conversion with Zr

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANI,SEETHAMBAL S.; FLEMING,JAMES G.; WALRAVEN,JEREMY A.

    Two major problems associated with Si-based MEMS (MicroElectroMechanical Systems) devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, the authors present a CVD (Chemical Vapor Deposition) process that selectively coats MEMS devices with tungsten and significantly enhances device durability. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable. This selective deposition process results in a very conformal coating and can potentially address both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through the siliconmore » reduction of WF{sub 6}. The self-limiting nature of the process ensures consistent process control. The tungsten is deposited after the removal of the sacrificial oxides to minimize stress and process integration problems. The tungsten coating adheres well and is hard and conducting, which enhances performance for numerous devices. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release adhered parts that are contacted over small areas such as dimples. The wear resistance of tungsten coated parts has been shown to be significantly improved by microengine test structures.« less

  9. EVALUATION OF BARRIERS TO THE USE OF RADIATION-CURED AND HOT MELT COATINGS IN COATED AND LAMINATED SUBSTRATE MANUFACTURING

    EPA Science Inventory

    The report gives results of a study to investigate and identify the technical, educational, and economic barriers to the use and implementation of radiation-cured and hot melt coatings in coated and laminated substrate manufacturing. (NOTE: In support of EPA's Source Reduction Re...

  10. Interpretations of the Critical Indentation Depths in Soft Coatings on Hard Substrates from a Morphological Analysis on Nanocontact Impressions

    NASA Astrophysics Data System (ADS)

    Lee, Yun-Hee; Kim, Yongil; Ryu, Kwon Sang; Nahm, Seung Hoon; Yoon, Ki-Bong

    2011-01-01

    When a nanoindentation is carried out on a coating-substrate system, the resulting deformation can be influenced by not only the coating but also the substrate. In order to measure the coating-only contact properties, many works have been done to extract the critical indentation depth. In this study, we proposed a morphological parameter to determine the critical indentation depth by materializing interfacial constraints. From nanoindents were formed on 1.2-µm-thick Cu and Au coatings, several morphological parameters were analyzed such as remnant indentation volume, impression apex angle and apex bluntness. The critical relative depths of the Cu and Au coatings were, respectively, as 0.25 and 0.16 consistent with the results from the hardness and volumetric approach. In addition, the apex angle approach can explain the discrepancy between both hardness and volumetric approach because the new approach traces the ratio of superficial edge recovery and depth-directional shrinkage inside of an impression.

  11. Indentation property and corrosion resistance of electroless nickel-phosphorus coatings deposited on austenitic high-Mn TWIP steel

    NASA Astrophysics Data System (ADS)

    Hamada, A. S.; Sahu, P.; Porter, D. A.

    2015-11-01

    A multilayer coating using electroless nickel-phosphorus (Ni-P) was applied on a twinning-induced plasticity (TWIP) steel containing nominally 25 wt.% Mn and 3 wt.% Al to improve the indentation hardness and corrosion properties. Microindentation tests with two different indenters, namely, a three-sided pyramidal Berkovich indenter and a ball indenter were performed to study the mechanical response, the indentation hardness and elastic modulus of the coatings in conditions: as-plated, and post treated (PT) at 350 °C and 700 °C for 1 h. The deformation morphology underneath the indenters was examined using a scanning laser microscope. The results showed that Ni-P coatings could significantly enhance the surface hardness of the TWIP steel. Significant improvement in the corrosion resistance could be observed in a sulfuric acid solution for the Ni-P coated steel compared to the uncoated substrate TWIP steel.

  12. Effect of layer thickness on the properties of nickel thermal sprayed steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurisna, Zuhri, E-mail: zuhri-nurisna@yahoo.co.id; Triyono,, E-mail: triyonomesin@uns.ac.id; Muhayat, Nurul, E-mail: nurulmuhayat@staff.uns.ac.id

    Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni–5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers weremore » conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.« less

  13. Development of Oxide Dispersion Strengthened MCrAlY Coatings

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Schläfer, T.; Richardt, K.; Brühl, M.

    2008-12-01

    MCrAlY materials are widely used as bond coats for thermal barrier coatings on turbine blades. The aim of this work is to improve mechanical properties and wear resistance of thermal sprayed NiCoCrAlY-coatings by strengthening the coating with hard phase particles. In order to retain the effect of the dispersion reinforcement at high temperatures, the use of temperature-stable oxide hard phases such as ZrO2-Y2O3 is necessary. To realize this new material structure, the high-energy ball-milling process is applied and analyzed. The mixture ratio between NiCoCrAlY and ZrO2-Y2O3 was varied between 5 and 10 wt.% ZrO2-Y2O3. The influences of the milling time of the high-energy ball-milling process on the distribution of the hard phases in the metal matrix were analyzed. After spraying with a HVOF system the mechanical properties of the coatings are measured and compared with conventional NiCoCrAlY coatings.

  14. Manufacturing of composite titanium-titanium nitride coatings by reactive very low pressure plasma spraying (R-VLPPS)

    NASA Astrophysics Data System (ADS)

    Vautherin, B.; Planche, M.-P.; Quet, A.; Bianchi, L.; Montavon, G.

    2014-11-01

    Very Low Pressure Plasma Spraying (VLPPS) is an emerging spray process nowadays intensively studied by many research centers in the World. To date, studies are mostly focused on the manufacturing of ceramic or metallic coatings. None refers to composite coatings manufacturing by reactive plasma spraying under very low pressure (i.e., ~150 Pa). This paper aims at presenting the carried-out developments and some results concerning the manufacturing of composite coatings by reactive spraying. Titanium was selected as metallic material in order to deposit titanium-nitride titanium coatings (Ti-TiN). Nitrogen was used as plasma gas and was injected along an Ar-H2-N2 plasma jet via a secondary injector in order to reach the nitrogen content on the substrate surface. Thus, different kind of reactive mechanisms were highlighted. Resulting coatings were characterized by Scanning Electron Microscopy (SEM) observations. Porous microstructures are clearly identified and the deposits exhibit condensed vapours and molten particles. Glow Discharge Optical Emission Spectroscopy (GDOES) analysis evidenced nitrogen inside the deposits and X-Ray Diffraction (XRD) analysis confirmed the formation of titanium nitride phases, such as TiN and Ti2N, depending upon the location of the nitrogen injection. Microhardness values as high as 800 VHN were measured on manufactured samples (to be compared to 220 VHN for pure titanium VLPPS-manufactured coatings).

  15. Experimental and numerical investigations on the temperature distribution in PVD AlTiN coated and uncoated Al2O3/TiCN mixed ceramic cutting tools in hard turning of AISI 52100 steel

    NASA Astrophysics Data System (ADS)

    Sateesh Kumar, Ch; Patel, Saroj Kumar; Das, Anshuman

    2018-03-01

    Temperature generation in cutting tools is one of the major causes of tool failure especially during hard machining where machining forces are quite high resulting in elevated temperatures. Thus, the present work investigates the temperature generation during hard machining of AISI 52100 steel (62 HRC hardness) with uncoated and PVD AlTiN coated Al2O3/TiCN mixed ceramic cutting tools. The experiments were performed on a heavy duty lathe machine with both coated and uncoated cutting tools under dry cutting environment. The temperature of the cutting zone was measured using an infrared thermometer and a finite element model has been adopted to predict the temperature distribution in cutting tools during machining for comparative assessment with the measured temperature. The experimental and numerical results revealed a significant reduction of cutting zone temperature during machining with PVD AlTiN coated cutting tools when compared to uncoated cutting tools during each experimental run. The main reason for decrease in temperature for AlTiN coated tools is the lower coefficient of friction offered by the coating material which allows the free flow of the chips on the rake surface when compared with uncoated cutting tools. Further, the superior wear behaviour of AlTiN coating resulted in reduction of cutting temperature.

  16. Enhancement of surface mechanical properties by using TiN[BCN/BN] n/c-BN multilayer system

    NASA Astrophysics Data System (ADS)

    Moreno, H.; Caicedo, J. C.; Amaya, C.; Muñoz-Saldaña, J.; Yate, L.; Esteve, J.; Prieto, P.

    2010-11-01

    The aim of this work is to improve the mechanical properties of AISI 4140 steel substrates by using a TiN[BCN/BN] n/c-BN multilayer system as a protective coating. TiN[BCN/BN] n/c-BN multilayered coatings via reactive r.f. magnetron sputtering technique were grown, systematically varying the length period ( Λ) and the number of bilayers ( n) because one bilayer ( n = 1) represents two different layers ( tBCN + tBN), thus the total thickness of the coating and all other growth parameters were maintained constant. The coatings were characterized by Fourier transform infrared spectroscopy showing bands associated with h-BN bonds and c-BN stretching vibrations centered at 1400 cm -1 and 1100 cm -1, respectively. Coating composition and multilayer modulation were studied via secondary ion mass spectroscopy. Atomic force microscopy analysis revealed a reduction in grain size and roughness when the bilayer number ( n) increased and the bilayer period decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period ( Λ) was 80 nm ( n = 25), yielding the relative highest hardness (˜30 GPa) and elastic modulus (230 GPa). The values for the hardness and elastic modulus are 1.5 and 1.7 times greater than the coating with n = 1, respectively. The enhancement effects in multilayered coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain increased hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayered coatings taking into account the thickness reduction at individual single layers that make up the multilayered system. The Hall-Petch model based on dislocation motion within layered and across layer interfaces has been successfully applied to multilayered coatings to explain this hardness enhancement.

  17. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samad, Ubair Abdus; Center of excellence for research in engineering materials; Khan, Rawaiz

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust freemore » environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.« less

  18. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    NASA Astrophysics Data System (ADS)

    Samad, Ubair Abdus; Khan, Rawaiz; Alam, Mohammad Asif; Al-Othman, Othman Y.; Al-Zahrani, Saeed M.

    2015-05-01

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust free environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.

  19. Influence of free carbon on the characteristics of ZrC and deposition of near-stoichiometric ZrC in TRISO coated particle fuel

    NASA Astrophysics Data System (ADS)

    Kim, Daejong; Ko, Myeong Jin; Park, Ji Yeon; Cho, Moon Sung; Kim, Weon-Ju

    2014-08-01

    Advanced TRISO coated particles with a ZrC coating layer as a main pressure boundary were fabricated by a fluidized-bed chemical vapor deposition (FBCVD) method using a chloride process. Experiments were performed to determine the effect of codeposition of graphitic carbon on the hardness and obtain the stoichiometric ZrC phase. The ZrC coating layer was composed of a mixture of ZrC and graphitic carbon phases at a low ZrCl4/CH4 ratio. A near-stoichiometric ZrC without the free carbon can be obtained by employing an impeller-driven ZrCl4 vaporizer. The codeposition of the graphitic carbon significantly lowered the hardness of ZrC while increasing the fraction of the carbon. The hardness reached its maximum when ZrC was in a slight carbon deficit without free carbon. As the graphitic carbon increased up to 12 vol%, the hardness was reduced by approximately 50% compared to the near-stoichiometric ZrC.

  20. A Single-Nucleotide Polymorphism in an Endo-1,4-β-Glucanase Gene Controls Seed Coat Permeability in Soybean

    PubMed Central

    Jang, Seong-Jin; Sato, Masako; Sato, Kei; Jitsuyama, Yutaka; Fujino, Kaien; Mori, Haruhide; Takahashi, Ryoji; Benitez, Eduardo R.; Liu, Baohui; Yamada, Tetsuya; Abe, Jun

    2015-01-01

    Physical dormancy, a structural feature of the seed coat known as hard seededness, is an important characteristic for adaptation of plants against unstable and unpredictable environments. To dissect the molecular basis of qHS1, a quantitative trait locus for hard seededness in soybean (Glycine max (L) Merr.), we developed a near-isogenic line (NIL) of a permeable (soft-seeded) cultivar, Tachinagaha, containing a hard-seed allele from wild soybean (G. soja) introduced by successive backcrossings. The hard-seed allele made the seed coat of Tachinagaha more rigid by increasing the amount of β-1,4-glucans in the outer layer of palisade cells of the seed coat on the dorsal side of seeds, known to be a point of entrance of water. Fine-mapping and subsequent expression and sequencing analyses revealed that qHS1 encodes an endo-1,4-β-glucanase. A single-nucleotide polymorphism (SNP) introduced an amino acid substitution in a substrate-binding cleft of the enzyme, possibly reducing or eliminating its affinity for substrates in permeable cultivars. Introduction of the genomic region of qHS1 from the impermeable (hard-seeded) NIL into the permeable cultivar Kariyutaka resulted in accumulation of β-1,4-glucan in the outer layer of palisade cells and production of hard seeds. The SNP allele found in the NIL was further associated with the occurrence of hard seeds in soybean cultivars of various origins. The findings of this and previous studies may indicate that qHS1 is involved in the accumulation of β-1,4-glucan derivatives such as xyloglucan and/or β-(1,3)(1,4)-glucan that reinforce the impermeability of seed coats in soybean. PMID:26039079

  1. Sectioning Coated Specimens Without Edge Rounding

    NASA Technical Reports Server (NTRS)

    Mckechnie, Timothy N.

    1988-01-01

    New method devised for preparation of cross sections of coated specimens for scanning electron microscopy or energy-dispersive analysis without rounding edges of coatings. After cutting and polishing, specimen section remains smooth and flat so it can be examined under high magnification out to edge of coating. Sectioned blade first electroplated with hard nickel 0.003 in., then encapsulated in two layers of material: soft conductive material at bottom and 0.25 in. of hard diallyl phthalate at top. Nickel plate provides electrical path from surface of section to conductive material below.

  2. Influence of Cobalt on the Adhesion Strength of Polycrystalline Diamond Coatings on WC-Co Hard Alloys

    NASA Astrophysics Data System (ADS)

    Linnik, S. A.; Gaidaichuk, A. V.; Okhotnikov, V. V.

    2018-02-01

    The influence of cobalt on the phase composition and adhesion strength of polycrystalline diamond coatings has been studied using scanning electron microscopy, Raman spectroscopy, and X-ray microanalysis. The coatings have been deposited on WC-Co hard alloy substrates in glow discharge plasma. It has been found that the catalytic amorphization of carbon only takes place during the direct synthesis of the diamond coating, when the cobalt vapor pressure over the substrate is high and the cobalt-related degradation of the synthesized diamond is absent.

  3. Tribological Properties of TiO2/SiO2 Double Layer Coatings Deposited on CP-Ti

    NASA Astrophysics Data System (ADS)

    Çomakli, O.; Yazici, M.; Yetim, T.; Yetim, A. F.; Çelik, A.

    In the present paper, the influences of different double layer on wear and scratch performances of commercially pure Titanium (CP-Ti) were investigated. TiO2/SiO2 and SiO2/TiO2 double layer coatings were deposited on CP-Ti by sol-gel dip coating process and calcined at 750∘C. The phase structure, cross-sectional morphology, composition, wear track morphologies, adhesion properties, hardness and roughness of uncoated and coated samples were characterized with X-ray diffraction, scanning electron microscopy (SEM), nano-indentation technique, scratch tester and 3D profilometer. Also, the tribological performances of all samples were investigated by a pin-on-disc tribo-tester against Al2O3 ball. Results showed that hardness, elastic modulus and adhesion resistance of double layer coated samples were higher than untreated CP-Ti. It was found that these properties of TiO2/SiO2 double layer coatings have higher than SiO2/TiO2 double layer coating. Additionally, the lowest friction coefficient and wear rates were obtained from TiO2/SiO2 double layer coatings. Therefore, it was seen that phase structure, hardness and film adhesion are important factors on the tribological properties of double layer coatings.

  4. Optimized water vapor permeability of sodium alginate films using response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Xu, Jiachao; Gao, Xin; Fu, Xiaoting

    2013-11-01

    The water vapor permeability (WVP) of films is important when developing pharmaceutical applications. Films are frequently used as coatings, and as such directly influence the quality of the medicine. The optimization of processing conditions for sodium alginate films was investigated using response surface methodology. Single-factor tests and Box-Behnken experimental design were employed. WVP was selected as the response variable, and the operating parameters for the single-factor tests were sodium alginate concentration, carboxymethyl cellulose (CMC) concentration and CaCl2 solution immersion time. The coefficient of determination ( R 2) was 0.97, indicating statistical significance. A minimal WVP of 0.389 8 g·mm/(m2·h·kPa) was achieved under the optimum conditions. These were found to be a sodium alginate concentration, CMC concentration and CaCl2 solution immersion time at 8.04%, 0.13%, and 12 min, respectively. This provides a reference for potential applications in manufacturing film-coated hard capsule shells.

  5. Multiple-layer compression-coated tablets: formulation and humidity studies of novel chewable amoxicillin/clavulanate tablet formulations.

    PubMed

    Wardrop, J; Jaber, A B; Ayres, J W

    1998-08-01

    The purpose of this study was to produce novel multiple-layer, compression-coated, chewable tablet formulations containing amoxicillin trihydrate, and clavulanic acid as potassium clavulanate, and to test in vitro dissolution characteristics and the effect of humidity stability compared to Augmentin chewable tablets as a reference. Double- and triple-layer tablets were manufactured on a laboratory scale by multiple-layer dry compression, and dissolution profiles of both active ingredients were determined. Tablets were subjected to stability evaluation in laboratory-scale humidity tanks maintained at constant humidity. Assay of content was determined by HPLC or UV spectroscopy. Physical characteristics of the powder mixture, such as angle of repose, and of tablets for hardness and friability, were also determined. Chewable tablets showed similar dissolution profiles in vitro for both active ingredients, compared to the marketed reference, Augmentin. The stability of clavulanic acid, but not amoxicillin, was increased in the novel triple or bilayer formulation. The tablets showed suitable friability, hardness, and angle of repose for starting materials to suggest that industrial scale-up is feasible. This approach to formulation of drugs containing multiple or moisture-sensitive ingredients has been shown to increase the stability of the central core drug without changing the dissolution pattern of the active ingredients. This formulation is expected to be bioequivalent in vivo based on these in vitro results.

  6. 40 CFR 52.222 - Negative declarations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of Coils, Surface Coating Fabrics, Surface Coating Operations at Automotive and Light Duty Truck... Plants, Glass Manufacturing Plants, and Iron and Steel Manufacturing Plants were submitted on March 4... Steel Manufacturing Plants, and Driers were submitted on October 17, 1994 and adopted on September 14...

  7. Relationship Between Crystalline Structure and Hardness of Ti-Si-N-O Coatings Fabricated by dc Sputtering

    NASA Astrophysics Data System (ADS)

    García-González, Leandro; Hernández-Torres, Julián; Mendoza-Barrera, Claudia; Meléndez-Lira, Miguel; García-Ramírez, Pedro J.; Martínez-Castillo, Jaime; Sauceda, Ángel; Herrera-May, Agustin L.; Muñoz Saldaña, Juan; Espinoza-Beltrán, Francisco J.

    2008-08-01

    Ti-Si-N-O coatings were deposited on AISI D2 tool steel and silicon substrates by dc reactive magnetron co-sputtering using a target of Ti-Si with a constant area ratio of 0.2. The substrate temperature was 400 °C and reactive atmosphere of nitrogen and argon. For all samples, argon flow was maintained constant at 25 sccm, while the flow of the nitrogen was varied to analyze the structural changes related to chemical composition and resistivity. According to results obtained by x-ray diffraction and stoichiometry calculations by x-ray energy dispersive spectroscopy the Ti-Si-N-O coatings contain two solid solutions. The higher crystalline part corresponds to titanium oxynitrure. Hardness tests on the coatings were carried out using the indentation work model and the hardness value was determined. Finally, the values of hardness were corroborated by nanoindentation test, and values of Young’s modulus and elastic recovery were discussed. We concluded that F2TSN sample ( F Ar = 25 sccm, F N = 5 sccm, P = 200 W, and P W = 8.9 × 10-3 mbar) presented the greatest hardness and the lowest resistivity values, due to its preferential crystalline orientation.

  8. Effect of G-Coat Plus on the mechanical properties of glass-ionomer cements.

    PubMed

    Bagheri, R; Taha, N A; Azar, M R; Burrow, M F

    2013-12-01

    Although various mechanical properties of tooth-coloured materials have been described, little data have been published on the effect of ageing and G-Coat Plus on the hardness and strength of the glass-ionomer cements (GICs). Specimens were prepared from one polyacid-modified resin composite (PAMRC; Freedom, SDI), one resin-modified glass-ionomer cement; (RM-GIC; Fuji II LC, GC), and one conventional glass-ionomer cement; (GIC; Fuji IX, GC). GIC and RM-GIC were tested both with and without applying G-Coat Plus (GC). Specimens were conditioned in 37 °C distilled water for either 24 hours, four and eight weeks. Half the specimens were subjected to a shear punch test using a universal testing machine; the remaining half was subjected to Vickers Hardness test. Data analysis showed that the hardness and shear punch values were material dependent. The hardness and shear punch of the PAMRC was the highest and GIC the lowest. Applying the G-Coat Plus was associated with a significant decrease in the hardness of the materials but increase in the shear punch strength after four and eight weeks. The mechanical properties of the restorative materials were affected by applying G-Coat Plus and distilled water immersion over time. The PAMRC was significantly stronger and harder than the RM-GIC or GIC. © 2013 Australian Dental Association.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanaghi, Ali, E-mail: alishanaghi@gmail.com; Rouhaghdam, Ali Reza Sabour, E-mail: sabour01@modares.ac.ir; Ahangarani, Shahrokh, E-mail: sh.ahangarani@gmail.com

    Highlights: ► The TiC{sub x} nanostructure coatings have been deposited by PACVD method. ► Dominant mechanism of growth structure at 490 °C is island-layer type. ► TiC{sub x} nanostructure coating applied at 490 °C, exhibits lowest friction coefficient. ► Young's moduli are 289.9, 400 and 187.6 GPa for 470, 490 and 510 °C, respectively. ► This higher elastic modulus and higher hardness of nanocoating obtain at 490 °C. -- Abstract: The structure, composition, and mechanical properties of nanostructured titanium carbide (TiC) coatings deposited on H{sub 11} hot-working tool steel by pulsed-DC plasma assisted chemical vapor deposition at three different temperaturesmore » are investigated. Nanoindentation and nanoscratch tests are carried out by atomic force microscopy to determine the mechanical properties such as hardness, elastic modulus, surface roughness, and friction coefficient. The nanostructured TiC coatings prepared at 490 °C exhibit lower friction coefficient (0.23) than the ones deposited at 470 and 510 °C. Increasing the deposition temperature reduces the Young's modulus and hardness. The overall superior mechanical properties such as higher hardness and lower friction coefficient render the coatings deposited at 490 °C suitable for wear resistant applications.« less

  10. Tribological Testing, Analysis and Characterization of D.C. Magnetron Sputtered Ti-Nb-N Thin Film Coatings on Stainless Steel

    NASA Astrophysics Data System (ADS)

    Joshi, Prathmesh

    To enhance the surface properties of stainless steel, the substrate was coated with a 1μm thick coating of Ti-Nb-N by reactive DC magnetron sputtering at different N2 flow rates, substrate biasing and Nb-Ti ratio. The characterization of the coated samples was performed by the following techniques: hardness by Knoop micro-hardness tester, phase analysis by X-ray Diffraction (XRD), compositional analysis by Energy Dispersive X-ray Spectroscopy (EDS) and adhesion by scratch test. The tribology testing was performed on linearly reciprocating ball-on-plate wear testing machine and wear depth and wear volume were evaluated by white light interferometer. The micro-hardness test yielded appreciable enhancement in the surface hardness with the highest value being 1450 HK. Presence of three prominent phases namely NbN, Nb2N3 and TiN resulted from the XRD analysis. EDS analysis revealed the presence of Ti, Nb and Nitrogen. Adhesion was evaluated on the basis of critical loads for cohesive (Lc1) and adhesive (Lc2) failures with values varying between 7-12 N and 16-25 N respectively, during scratch test for coatings on SS substrates.

  11. 40 CFR 59.100 - Applicability and designation of regulated entity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Automobile Refinish Coatings... automobile refinish coatings and coating components manufactured on or after January 11, 1999 for sale or distribution in the United States. (b) Regulated entities are manufacturers and importers of automobile...

  12. 40 CFR 59.100 - Applicability and designation of regulated entity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Automobile Refinish Coatings... automobile refinish coatings and coating components manufactured on or after January 11, 1999 for sale or distribution in the United States. (b) Regulated entities are manufacturers and importers of automobile...

  13. 40 CFR 59.100 - Applicability and designation of regulated entity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Automobile Refinish Coatings... automobile refinish coatings and coating components manufactured on or after January 11, 1999 for sale or distribution in the United States. (b) Regulated entities are manufacturers and importers of automobile...

  14. Feasibility of using Big Area Additive Manufacturing to Directly Manufacture Boat Molds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Brian K.; Chesser, Phillip C.; Lind, Randall F.

    The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. andmore » the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.« less

  15. Improvement in Microstructure Performance of the NiCrBSi Reinforced Coating on TA15 Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Peng, Li

    2012-10-01

    This work is based on the dry sliding wear of NiCrBSi reinforced coating deposited on TA15 titanium alloy using the laser cladding technique, the parameters of which were such as to provide almost crack-free coatings with minimum dilution and very low porosity. SEM results indicated that a laser clad coating with metallurgical joint to the substrate was formed. Compared with TA15 substrate, an improvement of the micro-hardness and wear resistance was observed for this composite coating. Rare earth oxide Y2O3 was beneficial in producing of the amorphous phases in laser clad coating. With addition of Y2O3, more amorphous alloys were produced, which increased the micro-hardness and wear resistance of the coating.

  16. Tribological Behavior of IN718 Superalloy Coating Fabricated by Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Zhang, Yaocheng; Pan, Qiyong; Yang, Li; Li, Ruifeng; Dai, Jun

    2017-12-01

    The tribological behavior of laser manufactured IN718 superalloy coating are investigated with different applied loads, sliding speeds and lubricating mediums. The wear resistance of laser manufactured IN718 coating is increased by heat treatment due to higher microhardness and homogeneous brittle phase distribution. The principal factors for the wear rate are applied load and lubricating medium. The worn surface of laser manufactured IN718 coating consists of the grooves, crack, wear debris and material delamination generated by the fatigue wear associated with adhesive wear and abrasive wear. The friction coefficients are influenced by the tribological noise decrescence by the tribo-oxidant and the liquid lubricant. The real contact temperature between coating sample and frictional counterpart is higher than the solid-solution temperature of IN718 superalloy, and the effect of surface contact temperature on the orientational microstructure and wear resistance for dry friction and wet friction process is indistinct.

  17. Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.

  18. Effect of current density during electrodeposition on microstructure and hardness of textured Cu coating in the application of antimicrobial Al touch surface.

    PubMed

    Augustin, Arun; Huilgol, Prashant; Udupa, K Rajendra; Bhat K, Udaya

    2016-10-01

    Copper is a well proven antimicrobial material which can be used in the form of a coating on the touch surfaces. Those coating can offer a good service as touch surface for very long time if only they possess good mechanical properties like scratch resistance and microhardness. In the present work the above mentioned mechanical properties were determined on the electrodeposited copper thin film; deposited on double zincated aluminium. During deposition, current density was varied from 2Adm(-2) to 10Adm(-2), to produce crystallite size in the range of 33.5nm to 66nm. The crystallite size was calculated from the X-ray peak broadening (Scherrer׳s formula) which were later confirmed by TEM micrographs. The scratch hardness and microhardness of the coating were measured and correlated with the crystallite size in the copper coating. Both characteristic values were found to increase with the reduction in crystallite size. Reduced crystallite size (Hall-Petch effect) and preferred growth of copper films along (111) plane play a significant role on the increase in the hardness of the coating. Further, TEM analysis reveals the presence of nano-twins in the film deposited at higher current density, which contributed to a large extent to the sharp increase of coating hardness compared to the mechanism of Hall-Petch effect. The antimicrobial ability of the coated sample has been evaluated against Escherichia coli bacteria and which is compared with that of commercially available bulk copper using the colony count method. 94% of E. coli cells were died after six hours of exposure to the copper coated surface. The morphology of the copper treated cells was studied using SEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating film

    NASA Astrophysics Data System (ADS)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Imai, Takahiro; Suda, Yoshiyuki; Takikawa, Hirofumi; Kamiya, Masao; Taki, Makoto; Hasegawa, Yushi; Tsuji, Nobuhiro; Kaneko, Satoru; Kunitsugu, Shinsuke; Habuchi, Hitoe; Kiyohara, Shuji; Ito, Mikio; Yick, Sam; Bendavid, Avi; Martin, Phil

    2018-01-01

    Diamond-like carbon (DLC) films, which are amorphous carbon films, have been used as hard-coating films for protecting the surface of mechanical parts. Nitrogen-containing DLC (N-DLC) films are expected as conductive hard-coating materials. N-DLC films are expected in applications such as protective films for contact pins, which are used in the electrical check process of integrated circuit chips. In this study, N-DLC films are prepared using the T-shaped filtered arc deposition (T-FAD) method, and film properties are investigated. Film hardness and film density decreased when the N content increased in the films because the number of graphite structures in the DLC film increased as the N content increased. These trends are similar to the results of a previous study. The electrical resistivity of N-DLC films changed from 0.26 to 8.8 Ω cm with a change in the nanoindentation hardness from 17 to 27 GPa. The N-DLC films fabricated by the T-FAD method showed high mechanical hardness and low electrical resistivity.

  20. Study on micro-hardness of electroless composite plating of Ni-P with SiC Nano-particles

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Zhang, Zhaoguo; Li, Jiamin; Xu, Donghui

    2007-07-01

    In this paper, a Ni-P electroless composite coating containing nano SiC particles was produced. The wearability of the composite coating was studied. Temperature, PH of the plating liquid and the concentration of SiC nanoparticles in the plating liquid were taken as parameters and the experiment with three factors and five levels was designed through the method of quadratic orthogonal rotation combination. SiC nanoparticles were dispersed by ultrasonic. The influence of the testing parameters on the hardness of the coating was studied intensively. The optimal parameters were obtained when the temperature is 86+/-1°C, PH is 6+/-0.5 and the concentration of SiC nanoparticles is 6g/L. The maximal hardness of the coating is over 1700HV after heat treatment.

  1. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Xi Chu; Barnett, S.A.

    1998-03-10

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  2. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Chu, X.; Barnett, S.A.

    1998-07-07

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  3. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yip-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  4. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yin-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  5. Investigations on the corrosion resistance of metallic bipolar plates (BPP) in proton exchange membrane fuel cells (PEMFC) - understanding the effects of material, coating and manufacturing

    NASA Astrophysics Data System (ADS)

    Dur, Ender

    Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material selection, coating selection, manufacturing process development and cost considerations need to be addressed in terms of the corrosion behavior to justify the use of stainless steels as a BPP material in PEMFC and to make them commercially feasible in industrial applications. In this study, Ti, Ni, SS304, SS316L, and SS 430 blanks, and BPPs comprised of SS304 and SS316L were examined in terms of the corrosion behavior. SS316L plates were coated to investigate the effect of coatings on the corrosion resistance performance. Stamping and hydroforming as manufacturing processes, and three different coatings (TiN, CrN, ZrN) applied via the Physical Vapor Deposition (PVD) method in three different thicknesses were selected to observe the effects of manufacturing processes, coating types and coating thicknesses on the corrosion resistance of BPP, respectively. Uncoated-coated blank and formed BPP were subjected to two different corrosion tests: potentiostatic and potentiodynamic. Some of the substantial results: 1- Manufacturing processes have an adverse impact on the corrosion resistance. 2- Hydroformed plates have slightly higher corrosion resistance than stamped samples. 3- BPPs with higher channel size showed better corrosion resistance. 4- Since none of the uncoated samples meet the 2015 target of the U.S. Department of Energy, surface coating is required. 5- ZrN and CrN coated BPPs exhibited higher corrosion resistance meeting DOE target while TiN coated samples had the lowest corrosion resistance. Higher coating thicknesses improved the corrosion resistance of the BPPs. 6- Process sequence between coating and manufacturing is not significant for hydroforming case (ZrN and CrN) and stamping case (CrN) in terms of the corrosion resistance. In other words, coating the BPP`s substrate material before manufacturing process does not always decrease the corrosion resistance of the BPPs.

  6. Miscellaneous Coating Manufacturing: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    The national emission standards for hazardous air pollutants for miscellaneous coating manufacturing. Includes summary, rule history, compliance and implementation information, federal registry citations.

  7. Tribology of nitrided-coated steel-a review

    NASA Astrophysics Data System (ADS)

    Bhaskar, Santosh V.; Kudal, Hari N.

    2017-01-01

    Surface engineering such as surface treatment, coating, and surface modification are employed to increase surface hardness, minimize adhesion, and hence, to reduce friction and improve resistance to wear. To have optimal tribological performance of Physical Vapor Deposition (PVD) hard coating to the substrate materials, pretreatment of the substrate materials is always advisable to avoid plastic deformation of the substrate, which may result in eventual coating failure. The surface treatment results in hardening of the substrate and increase in load support effect. Many approaches aim to improve the adhesion of the coatings onto the substrate and nitriding is the one of the best suitable options for the same. In addition to tribological properties, nitriding leads to improved corrosion resistance. Often corrosion resistance is better than that obtainable with other surface engineering processes such as hard-chrome and nickel plating. Ability of this layer to withstand thermal stresses gives stability which extends the surface life of tools and other components exposed to heat. Most importantly, the nitrogen picked-up by the diffusion layer increases the rotating-bending fatigue strength in components. The present article reviews mainly the tribological advancement of different nitrided-coated steels based on the types of coatings, structure, and the tribo-testing parameters, in recent years.

  8. Effect of substrate preheating treatment on the microstructure and ultrasonic cavitation erosion behavior of plasma-sprayed YSZ coatings.

    PubMed

    Deng, Wen; An, Yulong; Hou, Guoliang; Li, Shuangjian; Zhou, Huidi; Chen, Jianmin

    2018-09-01

    Inconel 718 was used as the substrate and preheated at different temperatures to deposit yttrium stabilized zirconia (denoted as YSZ) coatings by atmospheric plasma spraying. The microstructure of the as-deposited YSZ coatings and those after cavitation-erosion tests were characterized by field emission scanning electron microscopy, Raman spectroscopy, and their hardness and toughness as well as cavitation-erosion resistance were evaluated in relation to the effect of substrate preheating temperature. Results indicate that the as-deposited YSZ coatings exhibit typical layered structure and consist of columnar crystals. With the increase of the substrate preheating temperature, the compactness and cohesion strength of coatings are obviously enhanced, which result in the increases in the hardness, elastic modulus and toughness as well as cavitation-erosion resistance of the ceramic coatings therewith. Particularly, the YSZ coating deposited at a substrate preheating temperature of 800 °C exhibits the highest hardness and toughness as well as the strongest lamellar interfacial bonding and cavitation-erosion resistance (its cavitation-erosion life is as much as 8 times than that of deposited at room temperature). Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Fe-C-Si ternary composite coating on CP-titanium and its tribological properties

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Saffina, W.; Ahmed, A. S.; Ali, M. Y.

    2017-03-01

    This study focused on the development of ternary composite coating through incorporation of Fe-C-Si ternary powder mixtures on CP-Ti substrate and characterizes the microstructure, hardness and wears behavior in presence of Jatropha oil. In this work, the surface of commercial purity titanium (CP-Ti) was modified using a tungsten inert gas (TIG) surface melting technique. The wear behavior of coated CP-titanium was performed using pin-on-disk machine. The results showed that the melt track has dendritic microstructure which was homogenously distributed throughout the melt pool. This Fe-C-Si ternary composite coating enhanced the surface hardness of CP-Ti significantly from 175 HV for the untreated substrate to ∼800 HV for the Fe-C-Si coated CP-Ti due to the formation of intermetallic compounds.. The wear results showed that less wear volume loss was observed on the composite coated CP-Ti in presence of Jatropha-biodiesel compared to uncoated CP-Ti. The achievement of this hard Fe-C-Si composite coating on the surface of CP-Ti can broadened new prospect for many engineering applications that use biodiesel under different tribological variables.

  10. Deformation Microstructures Near Vickers Indentations in SNO2/SI Coated Systems

    NASA Astrophysics Data System (ADS)

    Daria, G.; Evghenii, H.; Olga, S.; Zinaida, D.; Iana, M.; Victor, Z.

    The micromechanical properties (hardness and brittleness) of the hard-on-hard SnO2 / Si-coated system (CS) and their modification depending the on load value has been studied. A nonmonotonic changing of microhardness with load growth was detected. The brittle/plastic behavior of the rigid/hard-on-hard SnO2 / Si CS and its response to concentrated load action explains it.A specific evolution of the indentation-deformed zone vs. load value attributed to the change in the internal stress redistribution between film and substrate was detected. It results in a brittleness indentation size effect (BISE) of the SnO2 / Si CS revealed in this experiment.It was shown that the greater portion of internal stresses under indentation is concentrated in the coating layer at small loads. This fact causes a strong elastic-plastic relaxation in the film and its delamination from substrate. The increase of brittle failure in the indentation-deformed zone with a decrease of indentation load was revealed.

  11. Comparative Fatigue Lives of Rubber and PVC Wiper Cylindrical Coatings

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Hendricks, Robert C.; Zaretsky, Erwin V.; Savage, Michael

    2002-01-01

    Three coating materials for rotating cylindrical-coated wiping rollers were fatigue tested in 2 Intaglio printing presses. The coatings were a hard, cross-linked, plasticized PVC thermoset (P-series); a plasticized PVC (A-series); and a hard, nitryl rubber (R-series). Both 2- and 3-parameter Weibull analyses as well as a cost-benefit analysis were performed. The mean value of life for the R-series coating is 24 and 9 times longer than the P- and A-series coatings, respectively. Both the cost and replacement rate for the R-series coating was significantly less than those for the P- and A-series coatings. At a very high probability of survival the R-series coating is approximately 2 and 6 times the lives of the P- and A-series, respectively, before the first failure occurs. Where all coatings are run to failure, using the mean (life) time between removal (MTBR) for each coating to calculate the number of replacements and costs provides qualitatively similar results to those using a Weibull analysis.

  12. BARRIERS TO THE USE OF RADIATION-CURABLE ADHESIVES IN THE COATED AND LAMINATED SUBSTRATE MANUFACTURING INDUSTRY

    EPA Science Inventory

    The paper gives results of an investigation of barriers to the use of radiation-cured technology in the coated and laminated substrate manufacturing industry. t presents information gathered from radiation-curable coating and equipment suppliers as well as technical publications....

  13. 40 CFR 63.4130 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic... of the mass fraction of organic HAP for each coating, thinner, and cleaning material used during each... suppliers or manufacturers such as manufacturer's formulation data or test data used to determine the mass...

  14. FBIS report. Science and technology: Europe/International, March 29, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-29

    ;Partial Contents: Advanced Materials (EU Project to Improve Production in Metal Matrix Compounds Noted, Germany: Extremely Hard Carbon Coating Development, Italy: Director of CNR Metallic Materials Institute Interviewed); Aerospace (ESA Considers Delays, Reductions as Result of Budget Cuts, Italy: Space Agency`s Director on Restructuring, Future Plans); Automotive, Transportation (EU: Clean Diesel Engine Technology Research Reviewed); Biotechnology (Germany`s Problems, Successes in Biotechnology Discussed); Computers (EU Europort Parallel Computing Project Concluded, Italy: PQE 2000 Project on Massively Parallel Systems Viewed); Defense R&D (France: Future Tasks of `Brevel` Military Intelligence Drone Noted); Energy, Environment (German Scientist Tests Elimination of Phosphates); Advanced Manufacturing (France:more » Advanced Rapid Prototyping System Presented); Lasers, Sensors, Optics (France: Strategy of Cilas Laser Company Detailed); Microelectronics (France: Simulation Company to Develop Microelectronic Manufacturing Application); Nuclear R&D (France: Megajoule Laser Plan, Cooperation with Livermore Lab Noted); S&T Policy (EU Efforts to Aid Small Companies` Research Viewed); Telecommunications (France Telecom`s Way to Internet).« less

  15. Investigation of Thermal Processing on the Properties of PS304: A Solid Lubricant Coating

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.; Williams, Syreeta (Technical Monitor)

    2002-01-01

    The effect of thermal processing on PS304, a solid lubricant coating, was investigated. PS304 is a plasma sprayed solid lubricant consisting of 10% Ag and 10% BaF2 and CaF2 in a eutectic mixture for low and high temperature lubricity respectively. In addition, PS304 contains 20% Cr2O3 for increased hardness and 60% NiCr which acts as a binder. All percents are in terms of weight not volume. Previous research on thermal processing (NAG3-2245) of PS304 revealed that substrate affected both the pre- and post-anneal hardness of the plasma spray coating. The objective of this grant was to both quantify this effect and determine whether the root cause was an artifact of the substrate or an actual difference in hardness due to interaction between the substrate and the coating. In addition to clarifying past research developments new data was sought in terms of coating growth due to annealing.

  16. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Brinton, John C. (Technical Monitor); Gorenstein, Paul

    2004-01-01

    The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i .e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well.

  17. Application of TiC reinforced Fe-based coatings by means of High Velocity Air Fuel Spraying

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Sommer, J.

    2017-03-01

    In the field of hydraulic applications, different development trends can cause problems for coatings currently used as wear and corrosion protection for piston rods. Aqueous hydraulic fluids and rising raw material prices necessitate the search for alternatives to conventional coatings like galvanic hard chrome or High Velocity Oxygen Fuel (HVOF)-sprayed WC/Co coatings. In a previous study, Fe/TiC coatings sprayed by a HVOF-process, were identified to be promising coating systems for wear and corrosion protection in hydraulic systems. In this feasibility study, the novel High Velocity Air Fuel (HVAF)-process, a modification of the HVOF-process, is investigated using the same feedstock material, which means the powder is not optimized for the HVAF-process. The asserted benefits of the HVAF-process are higher particle velocities and lower process temperatures, which can result in a lower porosity and oxidation of the coating. Further benefits of the HVAF process are claimed to be lower process costs and higher deposition rates. In this study, the focus is set on to the applicability of Fe/TiC coatings by HVAF in general. The Fe/TiC HVAF coating could be produced, successfully. The HVAF- and HVOF-coatings, produced with the same powder, were investigated using micro-hardness, porosity, wear and corrosion tests. A similar wear coefficient and micro-hardness for both processes could be achieved. Furthermore the propane/hydrogen proportion of the HVAF process and its influence on the coating thickness and the porosity was investigated.

  18. Effect of Cu content on microstructure, mechanical and anti-fouling properties of TiSiN-Cu coating deposited by multi-arc ion plating

    NASA Astrophysics Data System (ADS)

    Bai, Xuebing; Li, Jinlong; Zhu, Lihui; Wang, Liping

    2018-01-01

    The copper-doped TiSiN coatings were deposited on 316L stainless steel by reactive co-sputtering in multi-arc ion plating. The surface morphology and structure of the coating were analyzed by scanning electron microcopies, X-ray diffraction and X-ray photoelectron spectroscopy. The hardness was tested using Nano-indentation. The influence of the copper content in the coatings on the structure and mechanical properties of TiSiN-Cu coatings was investigated. Antifouling behaviors of the coatings were evaluated by analyzing adhesion and propagation of P. tricornutum, N. closterium, and Chlorella sp. The TiSiN-Cu coatings had a unique structure of amorphous Si3N4 and nanocrystalline nc-TiN/nc-Cu. The Cu-TiSiN coatings can inhibit effectively attachment and colonization of the algae on the surface. When the copper content increases from 6.75 at.% to 25.15 at.%, the coatings show an obvious decrease in hardness, significantly increase in the surface roughness and greatly weaken in antifouling properties. When the copper content is 6.75 at.%, the coating has the highest hardness with 30 GPa, and the best reduction ratio with 89%, 93% and 57% attachment of P. triceratium, N. closterium and Chlorella sp., respectively. The TiSiN-Cu coating with a copper dosage of 6.75 at.% has the excellent mechanical properties and capability of killing effectively microalgae.

  19. Assessment of the hardness of different orthodontic wires and brackets produced by metal injection molding and conventional methods

    PubMed Central

    Alavi, Shiva; Kachuie, Marzie

    2017-01-01

    Background: This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. Materials and Methods: A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal–Wallis test, followed by Mann–Whitney test at the 0.05 level of significance. Results: The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. Conclusion: MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness. PMID:28928783

  20. Assessment of the hardness of different orthodontic wires and brackets produced by metal injection molding and conventional methods.

    PubMed

    Alavi, Shiva; Kachuie, Marzie

    2017-01-01

    This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal-Wallis test, followed by Mann-Whitney test at the 0.05 level of significance. The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness.

  1. POLLUTION PREVENTION AND THE USE OF LOW-VOC/HAP COATINGS AT WOOD FURNITURE MANUFACTURING FACILITIES

    EPA Science Inventory

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted...

  2. CASE STUDY PROJECT: THE USE OF LOW-VOC/HAP COATINGS AT WOOD FURNITURE MANUFACTURING FACILITIES

    EPA Science Inventory

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted...

  3. Surface Properties of the IN SITU Formed Ceramics Reinforced Composite Coatings on TI-3AL-2V Alloys

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Guo, Wei; Hu, Dakui; Luo, Hui; Zhang, Yuanbin

    2012-04-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.

  4. Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon.

    PubMed

    Xin, Yunchang; Jiang, Jiang; Huo, Kaifu; Tang, Guoyi; Tian, Xiubo; Chu, Paul K

    2009-06-01

    The fast degradation rates in the physiological environment constitute the main limitation for the applications of surgical magnesium alloys as biodegradable hard-tissue implants. In this work, a stable and dense hydrogenated amorphous silicon coating (a-Si:H) with desirable bioactivity is deposited on AZ91 magnesium alloy using magnetron sputtering deposition. Raman spectroscopy and Fourier transform infrared spectroscopy reveal that the coating is mainly composed of hydrogenated amorphous silicon. The hardness of the coated alloy is enhanced significantly and the coating is quite hydrophilic as well. Potentiodynamic polarization results show that the corrosion resistance of the coated alloy is enhanced dramatically. In addition, the deterioration process of the coating in simulated body fluids is systematically investigated by open circuit potential evolution and electrochemical impedance spectroscopy. The cytocompatibility of the coated Mg is evaluated for the first time using hFOB1.19 cells and favorable biocompatibility is observed. 2008 Wiley Periodicals, Inc.

  5. The anti-corrosion behavior under multi-factor impingement of Hastelloy C22 coating prepared by multilayer laser cladding

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Bai, Shu-Lin

    2018-04-01

    Hastelloy C22 coating was prepared on substrate of Q235 steel by high power multilayer laser cladding. The microstructure, hardness and anti-corrosion properties of coating were investigated. The corrosion tests in 3.5% NaCl solution were carried out with variation of impingement angle and velocity, and vibration frequency of sample. The microstructure of coating changes from equiaxed grain at the top surface to dendrites oriented at an angle of 60° to the substrate inside the coating. The corrosion rate of coating increases with the increase of impingement angle and velocity, and vibrant frequency of sample. Corrosion mechanisms relate to repassivation and depassivation of coating according to electrochemical measurements. Above results show that multilayer laser cladding can endow Hastelloy C22 coating with fine microstructures, high hardness and good anti-corrosion performances.

  6. GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean

    USDA-ARS?s Scientific Manuscript database

    Loss of seed-coat impermeability was an essential step towards domestication of many leguminous crops for production of their highly nutritious seeds. Here we show that seed-coat impermeability in wild soybean is controlled by a single gene, Hard seededness 1 (Hs1), which encodes a calcineurin-like ...

  7. Annual Report - Compatibility of ZDDP and ionic liquid anti-wear additives with hard coatings for engine lubrications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jun; Zhou, Yan; Leonard, Donovan N

    The objectives for this considerations described here are to; investigate the compatibility of engine lubricant antiwear (AW) additives, specifically conventional zinc dialkyldithiophosphate (ZDDP) and newly developed ionic liquids (ILs), with selected commercial hard coatings, and provide fundamental understanding to guide future development of engine lubricants.

  8. Fact Sheet - Final Amendments to Air Toxics Rule for Miscellaneous Coating Manufacturing

    EPA Pesticide Factsheets

    Fact sheet answering questions concerning National Emission Standards for Hazardous Air Pollutants for Miscellaneous Coating Manufacturing which includes facilities that produce inks, paints and adhesives.

  9. Hard X-Ray And Wide Focusing Telescopes

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Johnson, William B. (Technical Monitor)

    2001-01-01

    The development of a hard X-ray telescope requires new technology for both substrates and coatings. Our activities in these two areas were carried out virtually in parallel during most of the past few years. They are converging on the production of our first integral conical, substrate electroformed mirror that will be coated with a graded d-spacing multilayer. Its imaging properties and effective area will be measured in hard X-ray beams. We discuss each of these activities separately in the following two sections.

  10. Anti-scratch AlMgB14 Gorilla® Glass coating

    NASA Astrophysics Data System (ADS)

    Putrolaynen, V. V.; Grishin, A. M.; Rigoev, I. V.

    2017-10-01

    Hard aluminum-magnesium boride (BAM) films were fabricated onto Corning® Gorilla® Glass by radio-frequency magnetron sputtering of a single stoichiometric AlMgB14 target. BAM films exhibit a Vickers hardness from 10 to 30 GPa and a Young's modulus from 80 to 160 GPa depending on applied loading forces. Deposited hard coating increases the critical load at which glass substrate cracks. The adhesion energy of BAM films on Gorilla® Glass is 6.4 J/m2.

  11. Evaluation of design parameters for TRISO-coated fuel particles to establish manufacturing critical limits using PARFUME

    DOE PAGES

    Skerjanc, William F.; Maki, John T.; Collin, Blaise P.; ...

    2015-12-02

    The success of modular high temperature gas-cooled reactors is highly dependent on the performance of the tristructural-isotopic (TRISO) coated fuel particle and the quality to which it can be manufactured. During irradiation, TRISO-coated fuel particles act as a pressure vessel to contain fission gas and mitigate the diffusion of fission products to the coolant boundary. The fuel specifications place limits on key attributes to minimize fuel particle failure under irradiation and postulated accident conditions. PARFUME (an integrated mechanistic coated particle fuel performance code developed at the Idaho National Laboratory) was used to calculate fuel particle failure probabilities. By systematically varyingmore » key TRISO-coated particle attributes, failure probability functions were developed to understand how each attribute contributes to fuel particle failure. Critical manufacturing limits were calculated for the key attributes of a low enriched TRISO-coated nuclear fuel particle with a kernel diameter of 425 μm. As a result, these critical manufacturing limits identify ranges beyond where an increase in fuel particle failure probability is expected to occur.« less

  12. Preparation, Microstructure and Performance of Nanoscale Ceramics Reinforced Hard Composite Coating

    NASA Astrophysics Data System (ADS)

    Li, Peng

    2014-11-01

    This paper is based on the dry sliding wear of Stellite SF12-B4C-TiN-Mo composite coating deposited on a pure Ti using a laser cladding technique, the parameters of which provide almost crack-free composites with low porosity. To the best of our knowledge, it is the first time that Stellite SF12-B4C-TiN-Mo mixed powders are deposited as the hard composites by a laser cladding technique. Scanning electron microscope images indicate that the nanoscale particles are produced in such coating. The fact that due to the sufficiently rapid heating and cooling rates of the laser cladding technique, the ceramics, such as TiC or TiB2 did not have enough time to grow up, resulting in the formation of the nanoscale particles. Compared with a pure Ti substrate, the increments of the micro-hardness and wear resistance are obtained for such composite coating.

  13. Using Hysteretic Energy to Evaluate Damping Characteristics of Hard Coating on Titanium

    DTIC Science & Technology

    2013-03-21

    Ivancic, Frank T. The Effect of a Hard Coating on the Damping and Fatigue Life of Titanium. Air Force Institute of Technology (AU), Wright-Patterson AFB... aluminum specimens to determine the effects of losses for different grip mechanisms, a suspected problem in previous work with this method. Peak...done in a vacuum, and the nature of the free-decay test also confines strain to relatively low values for coated specimens (< 1000 µε) (Reed 2007

  14. The production and tribology of hard facing coatings for agricultural applications

    NASA Astrophysics Data System (ADS)

    Roffey, Paul

    Abrasive wear is a significant issue in many industries but is of particular significance in agriculture. This research is being carried out due to the demand for a hard wearing, economical coating for use in the agricultural industry.A primary objective has been to review and develop an in depth understanding of the type of wear suffered by metal shares in agricultural soils. The affect of soil properties and abrasive wear environments on the amount of wear that occurs, and the way in which material properties can be used to reduce or prevent this has also been investigated. A review of the diverse range of soil properties, such as the mineral content, moisture content, soils strengths has been carried out in order to create an appropriate wear test procedure.The coatings developed for testing were modifications to an existing powder metallurgy coating. The modifications were made by the addition of selected hard phases to the powder prior to sintering. The resulting materials were characterised in terms of sinterability, hardness and abrasive wear resistance. Prior to commencing this work little or no data existed on the wear performance of the pre-existing coating. Wear resistance has been measured using a fixed ball micro-scale abrasive wear test (also known as the ball-cratering wear test) with SiC and SiO2 abrasives and also using a modified version of the ASTM G65 abrasive wear test which allowed testing in dry and wet modes. Limited field trials were performed to determine the abrasive wear resistance in real soil. Results from wear testing have determined that the optimum modification to the coating can improve performance compared to the unmodified coating.Detailed scanning electron microscopy (SEM) has been performed on the wear scars and has revealed the resultant wear mechanisms and role that the hard phase additions play in improving the wear resistance. The influence of the hard phase addition on the microstructure has also been studied.The wear volume and corresponding wear coefficient from laboratory studies have been used to determine the optimum level of addition that can be added to produce an improved wear resistance. The results show the optimum hard phase addition to be 100mum WC/W[2]C particles at around 10wt.% with 15 mum WC at 5wt.% also providing improved wear resistance.

  15. Structural and Mechanical Properties of the ZrC/Ni-Nanodiamond Coating Synthesized by the PVD and Electroplating Processes for the Cutting Knifes

    NASA Astrophysics Data System (ADS)

    Chayeuski, V.; Zhylinski, V.; Cernashejus, O.; Visniakov, N.; Mikalauskas, G.

    2018-04-01

    In this work, combined gradient ZrC/Ni-nanodiamond ultradispersed diamonds (UDD) coatings were synthesized on the surface of knife blades made of hard alloy WC-2 wt.% Co by electroplating and cathode arc evaporation PVD techniques to increase the durability period of a wood-cutting milling tool. The microstructure, phase and elemental composition, microhardness, and adhesion strength of the coatings were investigated. Ni-UDD layer is not mixed with the ZrC coating and hard alloy substrate. Cobalt is present in Ni-UDD layer after deposition of ZrC. The ZrC/Ni-nanodiamond coating consists of separate phases of zirconium carbide (ZrC), α-Ni, and Ni-UDD. The maximum value of microhardness of the Ni-nanodiamond coating is 5.9 GPa. The microhardness value of the ZrC/Ni-nanodiamond coatings is 25 ± 6 GPa, which corresponds to the microhardness of the hard alloy substrate and ZrC coating. The obtained high values of the critical loads on the scratch track of the ZrC/Ni-nanodiamond coating in 24 N prove a sufficiently high value of the adhesion strength of the bottom Ni-UDD layer with WC-Co substrate. Pilot testing of ZrC/Ni-nanodiamond-coated cutting tools proved their increasing durability period to be 1.5-1.6 times higher than that of bare tools, when milling laminated chipboard.

  16. The hardness of the hydroxyapatite-titania bilayer coatings by microindentation and nanoindentation testing

    NASA Astrophysics Data System (ADS)

    SIDANE, Djahida; KHIREDDINE, Hafit; YALA, Sabeha

    2017-12-01

    The aim of this paper is to investigate the effect of the addition of titania (TiO2) inner-layer on the morphological and mechanical properties of hydroxyapatite (HAP) bioceramic coatings deposited on 316L stainless steel (316L SS) by sol-gel method in order to improve the properties of hydroxyapatite and expand its clinical application. The addition of TiO2 as sublayer of a hydroxyapatite coating results in changes in surface morphology as well as an increase of the microhardness. The deposition of the inner-layer provides the formation of new types of hydroxyapatite coatings at the same condition of annealing. This represents an advantage for the various applications of the hydroxyapatite bioceramic in the medical field. Classical hardness measurements conducted on the coated systems under the same indentation load (10g) indicated that the microhardness of the HAP coating is improved by the addition of TiO2 inner-layer on the 316L stainless steel substrate. The hardness values obtained from both classical tests in microindentation and the continuous stiffness measurement mode in nanoindentation are slightly different. This is because nanoindentation is more sensitive to the surface roughness and the influence of defects that could be present into the material. Moreover, nanoindentation is the most useful method to separate the contribution of each layer in the bilayer coatings. In this study, the hardness is comparable with those reported previously for pure HAP ceramics (1.0-5.5 GPa) which are close to the properties of natural teeth.

  17. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 14 2011-07-01 2011-07-01 false Emission Limits for Asphalt Roofing... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * * 1...

  18. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 15 2013-07-01 2013-07-01 false Emission Limits for Asphalt Roofing... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * * 1...

  19. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 15 2014-07-01 2014-07-01 false Emission Limits for Asphalt Roofing... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * * 1...

  20. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 15 2012-07-01 2012-07-01 false Emission Limits for Asphalt Roofing... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * * 1...

  1. Computational manufacturing as a bridge between design and production.

    PubMed

    Tikhonravov, Alexander V; Trubetskov, Michael K

    2005-11-10

    Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.

  2. Computational manufacturing as a bridge between design and production

    NASA Astrophysics Data System (ADS)

    Tikhonravov, Alexander V.; Trubetskov, Michael K.

    2005-11-01

    Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.

  3. Analyzing FTIR spectra using high sensitivity compare function of FTIR software for 2-pack epoxy paints

    NASA Astrophysics Data System (ADS)

    Saaid, Farish Irfal; Chan, Chin Han; Ong, Max Chong Hup; Winie, Tan; Harun, Mohamad Kamal

    2015-08-01

    The existing problem of oil and gas companies faced for on-site jobs of polymeric coatings on steel pipelines is that the quality of polymeric coatings varies from job to job for the same product brand from the same supplier or paint manufacturer. This can be due to the inherent problem of the reformulation of polymeric coatings or in other words adulterated polymeric coatings are supplied, where the quality of the coatings deviates from the submitted specifications for prequalification and tender purpose. Major oil and gas companies in Malaysia are calling for Coating Fingerprinting Certificate for the supply of polymeric coatings from local paint manufactures as quality assurance requirement of the coatings supplied. This will reduce the possibility of failures of the polymeric coatings, which lead to the corrosion of steel pipelines resulting in leakage of crude oil and gas to the environment. In this case, Fourier-transform infrared (FTIR) is a simple and reliable tool for coating fingerprinting. In this study, we conclude that, revelation of possible components of the 2-pack epoxy paints by carrying out extensive FTIR libraries search on FTIR spectra seems to be extremely challenging. Estimation of correlation of the sample spectrum to that of the reference spectrum using Compare function from one FTIR manufacturer, even the FTIR spectra are collected by different FTIR spectrometers from different FTIR manufacturers, can be made. The results of the correlation are reproducible.

  4. Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.

    PubMed

    Qu, Li; Morton, David A V; Zhou, Qi Tony

    2015-01-01

    Cohesive powders are problematic in the manufacturing of pharmaceutical solid dosage forms because they exhibit poor flowability, fluidization and aerosolization. These undesirable bulk properties of cohesive powders represent a fundamental challenge in the design of efficient pharmaceutical manufacturing processes. Recently, mechanical dry coating has attracted increasing attention as it can improve the bulk properties of cohesive powders in a cheaper, simpler, safer and more environment-friendly way than the existing solvent-based counterparts. In this review, mechanical dry coating techniques are outlined and their potential applications in formulation and manufacturing of pharmaceutical solid dosage forms are discussed. Reported data from the literature have shown that mechanical dry coating holds promise for the design of superior pharmaceutical solid formulations or manufacturing processes by engineering the interfaces of cohesive powders in an efficient and economical way.

  5. Surface Morphology and Hardness Analysis of TiCN Coated AA7075 Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    Srinath, M. K.; Ganesha Prasad, M. S.

    2017-12-01

    Successful titanium carbonitride (TiCN) coating on AA7075 plates using the PVD technique depends upon many variables, including temperature, pressure, incident angle and energy of the reactive ions. Coated specimens have shown an increase in their surface hardness of 2.566 GPa. In this work, an attempt to further augment the surface hardness and understand its effects on the surface morphology was performed through heat treatments at 500°C for different duration of times. Specimen's heat treated at 500°C for 1 h exhibited a maximum surface hardness of 6.433 GPa, corresponding to an increase of 92.07%. The XRD results showed the presence of Al2Ti and AlTi3N and indicate the bond created between them. Unit cell lattice parameters in the XRD data are calculated using Bragg's law. The SEM images exhibit increasing crack sizes as the heat treatment time is increased. From the studies, the heat treatment duration can be optimized to 1 h, which exhibited an augmented surface hardness, as further increases in durations caused a drop in the surface hardness. The heat treatment effectively modified the surface hardness. Equations providing the relationships that temperature and time have with the reaction parameters are presented.

  6. An update on coating/manufacturing techniques of microneedles.

    PubMed

    Tarbox, Tamara N; Watts, Alan B; Cui, Zhengrong; Williams, Robert O

    2017-12-29

    Recently, results have been published for the first successful phase I human clinical trial investigating the use of dissolving polymeric microneedles… Even so, further clinical development represents an important hurdle that remains in the translation of microneedle technology to approved products. Specifically, the potential for accumulation of polymer within the skin upon repeated application of dissolving and coated microneedles, combined with a lack of safety data in humans, predicates a need for further clinical investigation. Polymers are an important consideration for microneedle technology-from both manufacturing and drug delivery perspectives. The use of polymers enables a tunable delivery strategy, but the scalability of conventional manufacturing techniques could arguably benefit from further optimization. Micromolding has been suggested in the literature as a commercially viable means to mass production of both dissolving and swellable microneedles. However, the reliance on master molds, which are commonly manufactured using resource intensive microelectronics industry-derived processes, imparts notable material and design limitations. Further, the inherently multi-step filling and handling processes associated with micromolding are typically batch processes, which can be challenging to scale up. Similarly, conventional microneedle coating processes often follow step-wise batch processing. Recent developments in microneedle coating and manufacturing techniques are highlighted, including micromilling, atomized spraying, inkjet printing, drawing lithography, droplet-born air blowing, electro-drawing, continuous liquid interface production, 3D printing, and polyelectrolyte multilayer coating. This review provides an analysis of papers reporting on potentially scalable production techniques for the coating and manufacturing of microneedles.

  7. Development and Characterization of Nanostructured Cermet Coatings Produced by Co-electrodeposition

    NASA Astrophysics Data System (ADS)

    Farrokhzad, Mohammad Ali

    Nanostructured cermet (ceramic-metallic) coatings are a group of materials that combine properties possessed by ceramics, such as oxidation resistance and high hardness, and the properties of metals such as strength and ductility. These coatings consist of nano-sized metal-oxide particles (i.e. Al2 O3) dispersed into a corrosion resistant metal matrix such as nickel. Cermet coatings have been used in many industrial applications such as cutting tools and jet engines where high temperature and erosion resistance performance are required. However, despite the promising properties, the lack of experimental data and theories on high temperature oxidation and mechanical properties of cermet coatings have restricted their full potential to be used in technologies for oil sand production such as In-Situ Combustion (ISC). In this study, the structure of cermet coatings was investigated to identify the characteristics that give rise to oxidation performance and wear resistance properties of cermet coatings. The experimental oxidation results on the single-component oxide cermet coatings showed that when Al2O3 and TiO2 were combined in the electrolyte, the new combination can improve oxidation performance (less mass gain) as compared to a pure Ni coating. Based on the oxidation and micro-hardness results, a new group of nanostructured cermet coatings (double-component oxides) was developed and investigated using long term oxidation tests, thermo-gravimetric analysis in mixed gas, thermal cycling, micro-hardness and abrasive wear tests. The mechanical analysis of the newly developed coatings showed improved resistance against wear and thermal cycling compared to single-component oxide cermet and pure Ni coatings. Furthermore, some new theoretical analysis were also put forward that aims at a new explanation of high temperature oxidation for cermet coatings.

  8. Proton transfer bis-benzazole fluors and their use in scintillator detectors

    DOEpatents

    Kauffman, Joel M.

    1994-01-01

    A novel class of proton transfer, bis-benzazole, fluorescent compounds, i.e., fluors, is disclosed. The novel fluors include substituted or unsubstituted 1,4-bis(2-benzazolyl)-2-hydroxybenzenes and 1,4-bis(2-benzazolyl)-2-amidobenzenes wherein the benzazolyl group may be benzoxazolyl, benzimidazolyl, benzothiazolyl, and the like. The benzazolyl groups may be substituted with one or more alkyl groups to improve solubility in organic matrix materials such as solvents, monomers, resins, polymers, and the like. The novel fluors may be used in the manufacture of fluorescent coatings, objects, scintillators, light sources and the like. The novel fluors are particularly useful for radiation-hard, solid scintillators for the detection and measurement of high energy particles and radiation.

  9. Proton transfer bis-benzazole fluors and their use in scintillator detectors

    DOEpatents

    Kauffman, J.M.

    1994-03-29

    A novel class of proton transfer, bis-benzazole, fluorescent compounds, i.e., fluors, is disclosed. The novel fluors include substituted or unsubstituted 1,4-bis(2-benzazolyl)-2-hydroxybenzenes and 1,4-bis(2-benzazolyl)-2-amidobenzenes wherein the benzazolyl group may be benzoxazolyl, benzimidazolyl, benzothiazolyl, and the like. The benzazolyl groups may be substituted with one or more alkyl groups to improve solubility in organic matrix materials such as solvents, monomers, resins, polymers, and the like. The novel fluors may be used in the manufacture of fluorescent coatings, objects, scintillators, light sources and the like. The novel fluors are particularly useful for radiation-hard, solid scintillators for the detection and measurement of high energy particles and radiation.

  10. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  11. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Hua; Wang, Jin; Lu, Yan; Du, Mao-Hua; Han, Fu-Zhu

    2015-01-01

    The effects of single pulse energy on the properties of ceramic coating fabricated on a Ti-6Al-4V alloy via micro-arc oxidation (MAO) in aqueous solutions containing aluminate, phosphate, and some additives are investigated. The thickness, micro-hardness, surface and cross-sectional morphology, surface roughness, and compositions of the ceramic coating are studied using eddy current thickness meter, micro-hardness tester, JB-4C Precision Surface roughness meter, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Single pulse energy remarkably influences the ceramic coating properties. The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. The sizes of oxide particles, micro-pores and micro-cracks slightly increase with impulse width and single pulse energy. The main surface conversion products generated during MAO process in aqueous solutions containing aluminate are rutile TiO2, anatase TiO2, and a large amount of Al2TiO5. The effects of single pulse energy on the micro-hardness and phase composition of ceramic coating are not as evident as those of frequency and duty cycle.

  12. water-soluble fluorocarbon coating

    NASA Technical Reports Server (NTRS)

    Nanelli, P.

    1979-01-01

    Water-soluble fluorocarbon proves durable nonpolluting coating for variety of substrates. Coatings can be used on metals, masonry, textiles, paper, and glass, and have superior hardness and flexibility, strong resistance to chemicals fire, and weather.

  13. Properties of Lightning Strike Protection Coatings

    NASA Astrophysics Data System (ADS)

    Gagne, Martin

    Composite materials are being increasingly used by many industries. In the case of aerospace companies, those materials are installed on their aircraft to save weight, and thus, fuel costs. These aircraft are lighter, but the loss of electrical conductivity makes aircraft vulnerable to lightning strikes, which hit commercial aircrafts on average once per year. This makes lightning strike protection very important, and while current metallic expanded copper foils offer good protection, they increase the weight of composites. Therefore, under the CRIAQ COMP-502 project, a team of industrial partners and academic researchers are investigating new conductive coatings with the following characteristics: High electromagnetic protection, high mechanical resistance, good environmental protection, manufacturability and moderate cost. The main objectives of this thesis, as part of this project, was to determine the main characteristics, such as electrical and tribomechanical properties, of conductive coatings on composite panels. Their properties were also to be tested after destructive tests such as current injection and environmental testing. Bombardier Aerospace provided the substrate, a composite of carbon fiber reinforced epoxy matrix, and the current commercial product, a surfacing film that includes an expanded copper foil used to compare with the other coatings. The conductive coatings fabricated by the students are: silver nanoparticles inside a binding matrix (PEDOT:PSS or a mix of Epoxy and PEDOT:PSS), silvered carbon nanofibers embedded in the surfacing film, cold sprayed tin, graphene oxide functionalized with silver nanowires, and electroless plated silver. Additionally as part of the project and thesis, magnetron sputtered aluminum coated samples were fabricated. There are three main types of tests to characterize the conductive coatings: electrical, mechanical and environmental. Electrical tests consist of finding the sheet resistance and specific resistivity of conductive coatings. Mechanical tests include adhesion, scratch, hardness and Young's modulus of the coatings. The environmental tests are temperature cycling and salt spray cycling. These basic characteristics were investigated first, but further tests also combine the categories, such as electrical tests before, during and after environmental tests, and the effects on the sample's mechanical properties after high electrical current injections. The electrical properties of the conductive coatings have improved and are very close to that of current expanded metallic foil or within an order of magnitude. The mechanical properties of most of these coatings are also good. They exhibit good adhesion, hardness, and no significant loss of flexion properties after current injections. The environmental tests are more mitigated, with some conductive coatings losing their surface conductivity, others having a small increase in specific resistivity, and some were simply unaffected. Tests such as thermogravimetric analysis, scanning electron microscope analysis of scratch tests, and optical microscope observations are included to provide additional analysis of the results of the conductive coatings. The conductive coatings were characterized and tested as part of the CRIAQ project. Lightning strike tests are required to gather further information on these conductive coatings. The main application for these coatings is for lightning strike protection of aircraft, but they can also be used for ground based lightning strike protection and general electromagnetic shielding.

  14. Very Hard Corrosion-Resistant Roll-Bonded Cr Coating on Mild Steel in Presence of Graphite

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Khara, S.; Shekhar, S.; Mondal, K.

    2017-12-01

    The present work discusses the development of very hard Cr and Cr-carbide coating by roll bonding of Cr powder on a mild steel followed by annealing at 800, 1000, 1100 and 1200 °C with and without the presence of graphite powder packing in argon environment. In addition, the effect of a roll skin pass of 5% prior to the application of coating was studied. The presence of graphite allows diffusion of both carbon and Cr in the mild steel substrate, leading to the formation of Cr-carbide on the outer surface, making the surface very hard (VHN 1800). Depending on the annealing temperature and processing condition, diffusion layer thickness of Cr is found to be in the range of 10-250 μm with Cr content of 12.5-15 wt.% across the diffusion layer. Excellent stable passivity of the coated surface is observed in 0.2 N H2SO4, which is comparable to a highly passivating 304 stainless steel, and very low corrosion rate of the coating is observed as compared to the substrate mild steel.

  15. Tribo-mechanical and electrical properties of boron-containing coatings

    NASA Astrophysics Data System (ADS)

    Qian, Jincheng

    The development of new hard protective coatings with advanced performance is very important for progress in a variety of scientific and industrial fields. Application of hard protective coatings can significantly improve the performance of parts and components, extend their service life, and save energy in many industrial applications including aerospace, automotive, manufacturing, and other industries. In addition, the multifunctionality of protective coatings is also required in many other application fields such as optics, microelectronics, biomedical, magnetic storage media, etc. Therefore, protective coatings with enhanced tribo-mechanical and corrosion properties as well as other functions are in demand. The coating characteristics can be adjusted by controlling the microstructure at different scales. For example, films with nanostructures, such as superlattice, nanocolumn, and nanocomposite systems, exhibit distinctive characteristics compared to single-phase materials. They show superior tribo-mechanical properties due to the presence of strong interfaces, and different functions can be achieved due to the multi-phase characteristics. Boron-containing materials with their excellent mechanical properties and interesting electronic characteristics are good candidates for functional hard protective coatings. For instance, cubic boron nitride (c-BN), boron carbide (B1-xCx), and titanium diboride (TiB 2) are well known for their high hardness, high thermal stability, and high chemical inertness. An interesting example is the boron carbon nitride (BCN) compound that possesses many attractive properties because its structure is similar to that of carbon (graphite and diamond) and of boron nitride (BN in hexagonal and cubic phases). The main goal of this work is to further develop the family of Boron-containing films including B1-xCx, Ti-B-C, and BCN films fabricated by magnetron sputtering, and to enhance their performance by controlling their microstructure on the nanoscale. Their tribo-mechanical, corrosion, and electrical properties are studied in relation to the composition and microstructure, aiming at enhancing their performance for multi-functional protective coating applications via microstructural design. First, B1-xCx (0 < x < 1) films with tailored tribo-mechanical properties were deposited by magnetron sputtering using one graphite and two boron targets. The hardness of the B1-xC x films was found to reach 25 GPa both for boron-rich and carbon-rich films, and the friction coefficient and wear rate can be adjusted from 0.66 to 0.13 and from 6.4x10-5 mm3/Nm to 1.3x10 -7 mm3/Nm, respectively, by changing the carbon content from 19 to 76 at.%. The hardness variation is closely related to the microstructure, and the low friction and wear rate of the B0.24C0.76 film are due to the high portion of an amorphous carbon phase. Moreover, application of the B0.81C0.19 film improves the corrosion resistance of the M2 steel substrate significantly, indicated by the decrease of the corrosion current by almost four orders of magnitude. Based on the optimization of the B1-xCx films, nanostructured Ti-B-C films with different compositions were deposited by adding titanium by simultaneously sputtering a titanium diboride target. We found that the film microstructure features TiB2 nanocrystallites embedded in an amorphous boron carbide matrix. The film hardness varies from 33 to 42 GPa with different titanium contents, which is related to the changes in microstructure, namely, the size and concentration of the TiB2 nanocrystallites. The friction coefficient and wear rate are in the ranges of 0.37-0.73 and of 3.3x10-6-5.7x10-5 mm3/Nm, respectively, which are affected by the mechanical properties and the surface chemical states of the films. By applying the Ti-B-C films, the corrosion resistance of the M2 steel substrate is significantly enhanced as documented by a reduction of the corrosion current density by two orders of magnitude. BCN films were synthesized by magnetron sputtering using a single B 4C target in an N2: Ar gas mixture. The BCN films exhibit an amorphous structure and contain a mixture of B-C, B-N, and C-N bonds. The films show p-type conductivity with an optical band gap of 1.0 eV. Subsequently, ZnO nanorods were grown on the BCN films using hydrothermal synthesis to form BCN/ZnO nanorods p-n heterojunctions. The performance of the junctions is evaluated by the I-V characterization, which shows a rectification behavior with a rectification ratio of 1500 at the bias voltages of +/-5 V.

  16. Mechanical and wear properties of aluminum coating prepared by cold spraying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, Siti Nurul Akmal, E-mail: em-leo277@yahoo.com; Manap, Abreeza, E-mail: Abreeza@uniten.edu.my; Afandi, Nurfanizan Mohd

    In this study, aluminum (Al) powders were deposited onto Al substrates using cold spray to form a coating. The main objective is to investigate and compare the microstructure, mechanical and wear properties of Al coating to that of the Al substrate. The microstructure of the coating and substrate were observed using Scanning Electron Microscope (SEM). Hardness was evaluated using the Vickers Hardness test and wear properties were investigated using a pin-on-disk wear test machine. The elemental composition of the coating and substrate was determined using Energy-dispersive X-ray spectroscopy (EDX). Results showed that the friction coefficient and specific wear rate decreasedmore » while wear rate increased linearly with increasing load. It was found that the coating exhibit slightly better mechanical and wear properties compared to the substrate.« less

  17. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.

    PubMed

    Das, Mitun; Bhattacharya, Kaushik; Dittrick, Stanley A; Mandal, Chitra; Balla, Vamsi Krishna; Sampath Kumar, T S; Bandyopadhyay, Amit; Manna, Indranil

    2014-01-01

    Wear resistant TiB-TiN reinforced Ti6Al4V alloy composite coatings were deposited on Ti substrate using laser based additive manufacturing technology. Ti6Al4V alloy powder premixed with 5wt% and 15wt% of boron nitride (BN) powder was used to synthesize TiB-TiN reinforcements in situ during laser deposition. Influences of laser power, scanning speed and concentration of BN on the microstructure, mechanical, in vitro tribological and biological properties of the coatings were investigated. Microstructural analysis of the composite coatings showed that the high temperature generated due to laser interaction with Ti6Al4V alloy and BN results in situ formation of TiB and TiN phases. With increasing BN concentration, from 5wt% to 15wt%, the Young's modulus of the composite coatings, measured by nanoindentation, increased from 170±5GPa to 204±14GPa. In vitro tribological tests showed significant increase in the wear resistance with increasing BN concentration. Under identical test conditions TiB-TiN composite coatings with 15wt% BN exhibited an order of magnitude less wear rate than CoCrMo alloy-a common material for articulating surfaces of orthopedic implants. Average top surface hardness of the composite coatings increased from 543±21HV to 877±75HV with increase in the BN concentration. In vitro biocompatibility and flow cytometry study showed that these composite coatings were non-toxic, exhibit similar cell-materials interactions and biocompatibility as that of commercially pure titanium (CP-Ti) samples. In summary, excellent in vitro wear resistance, high stiffness and suitable biocompatibility make these composite coatings as a potential material for load-bearing articulating surfaces towards orthopaedic implants. © 2013 Elsevier Ltd. All rights reserved.

  18. Evaluation of quick-dry asphalt paving seal (QDAPS).

    DOT National Transportation Integrated Search

    1987-10-01

    Quick-Dry Asphalt Paving Seal (QDAPS) manufactured for Texas Refinery Corp. Fort Worth, Texas. : According to the manufacturer, the primary use for this product is "a moisture resistant preventative maintenance asphalt coating for coating and sealing...

  19. In-situ phosphatizing coatings for aerospace, OEM and coil coating applications

    NASA Astrophysics Data System (ADS)

    Neuder, Heather Aurelia

    The current metal coating process is a multi-step process. The surface is cleaned, primered, dried and then painted. The process is labor intensive and time consuming. The wash primer is a conversion coating, which prepares metal surface for better paint adhesion. The wash primers currently used often contain hexavalent chromium (Cr6+), which seals the pores in the conversion coating. The presence of hexavalent chromium, a known carcinogen, and volatile organic compounds (VOCs) make waste disposal expensive and pose dangers to workers. The novel technique of in-situ phosphatizing coating (ISPC) is a single-step, chrome-free alternative to the present coating practice. Formulation of an ISPC involves predispersal of an in-situ phosphatizing reagent (ISPR) into the paint system to form a stable formulation. The ISPR reacts with the metal surface and bonds with the paint film simultaneously, which eliminates the need for a conversion coating. In acid catalyzed paint systems, such as polyester-melamine paints, the ISPR also catalyzes cross-linking reactions between the melamine and the polyester polyols. ISPCs are formulated using commercially available coating systems including: polyester-melamine, two-component epoxy, polyurethane and high-hydroxy content polyester-melamine coil coating. The ISPCs are applied to metal substrates and their performances are evaluated using electrochemical, thermal and standard American Society for Testing and Materials (ASTM) testing methods. In addition, ISPCs were designed and formulated based on: (1) phosphate chemistry, (2) polymer chemistry, (3) sol-gel chemistry, and (4) the ion-exchange principle. Organo-functionalized silanes, which serve as excellent coupling and dispersion agents, are incorporated into the optimized ISPC formula and evaluated using standard ASTM testing methods and electrochemical spectroscopy. Also, an ion-exchange pigment, which leads to better adhesion by forming a mixed metal silicate surface, is dispersed into an ISPC and the performance of the final coating formulation is evaluated. Successful ISPCs formulated for multiple coating systems exhibited excellent adhesion, hardness and gloss, which supports their suitability as a chrome-free, single-step alternative for aerospace, original equipment manufacturing (OEM) and coil coating applications.

  20. Influence of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires

    NASA Astrophysics Data System (ADS)

    Asiry, Moshabab A.; AlShahrani, Ibrahim; Almoammar, Salem; Durgesh, Bangalore H.; Kheraif, Abdulaziz A. Al; Hashem, Mohamed I.

    2018-02-01

    Aim. To investigate the effect of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires Methods. Three different coated (Epoxy, polytetrafluoroethylene (PTFE) and rhodium) and one uncoated Ni-Ti archwires were evaluated in the present study. Surface roughness (Ra) was assessed using a non-contact surface profilometer. The mechanical properties (nano-hardness and elastic modulus) were measured using a nanoindenter. Bacterial adhesion assays were performed using Streptococcus mutans (MS) and streptococcus sobrinus (SS) in an in-vitro set up. The data obtained were analyzed using analyses of variance, Tukey’s post hoc test and Pearson’s correlation coefficient test. Result. The highest Ra values (1.29 ± 0.49) were obtained for epoxy coated wires and lowest Ra values (0.29 ± 0.16) were obtained for the uncoated wires. No significant differences in the Ra values were observed between the rhodium coated and uncoated archwires (P > 0.05). The highest nano-hardness (3.72 ± 0.24) and elastic modulus values (61.15 ± 2.59) were obtained for uncoated archwires and the lowest nano-hardness (0.18 ± 0.10) and elastic modulus values (4.84 ± 0.65) were observed for epoxy coated archwires. No significant differences in nano-hardness and elastic modulus values were observed between the coated archwires (P > 0.05). The adhesion of Streptococcus mutans (MS) to the wires was significantly greater than that of streptococcus sobrinus (SS). The epoxy coated wires demonstrated an increased adhesion of MS and SS and the uncoated wires demonstrated decreased biofilm adhesion. The Spearman correlation test showed that MS and SS adhesion was positively correlated with the surface roughness of the wires. Conclusion. The different surface coatings significantly influence the roughness, nano-mechanical properties and biofilm adhesion parameters of the archwires. The evaluated parameters were most influenced by epoxy coating followed by PTFE and rhodium coating. A positive correlation was detected between surface roughness and biofilm adhesion.

  1. Promising Hard Carbon Coatings on Cu Substrates: Corrosion and Tribological Performance with Theoretical Aspect

    NASA Astrophysics Data System (ADS)

    Kumar, A. Madhan; Babu, R. Suresh; Obot, I. B.; Adesina, Akeem Yusuf; Ibrahim, Ahmed; de Barros, A. L. F.

    2018-05-01

    Protecting the surface of metals and alloys against corrosion and wear is of abundant importance owing to their widespread applications. In the present work, we report the improved anticorrosion and tribo-mechanical performance of copper (Cu) by a hard carbon (HC) coating synthesized in different pyrolysis temperature. Structural and surface characterization with roughness measurements was systematically investigated using various techniques. Effect of pyrolysis temperature on the corrosion behavior of coated Cu substrates in 0.6 M NaCl solution was evaluated via electrochemical impedance spectroscopy, potentiodynamic polarization. Pin-on-disk wear test of coated Cu substrate showed the influence of the pyrolysis temperature on the wear resistance performance of the HC coatings. According to the obtained results, it could be concluded that the HC coatings synthesized at 1100 °C revealed an enhanced comprehensive performance, revealing their possible utilization as a protective coating for Cu substrates in chloride environment. Monte Carlo simulations have been utilized to elucidate the interaction between the Cu surface and HC coatings.

  2. Promising Hard Carbon Coatings on Cu Substrates: Corrosion and Tribological Performance with Theoretical Aspect

    NASA Astrophysics Data System (ADS)

    Kumar, A. Madhan; Babu, R. Suresh; Obot, I. B.; Adesina, Akeem Yusuf; Ibrahim, Ahmed; de Barros, A. L. F.

    2018-01-01

    Protecting the surface of metals and alloys against corrosion and wear is of abundant importance owing to their widespread applications. In the present work, we report the improved anticorrosion and tribo-mechanical performance of copper (Cu) by a hard carbon (HC) coating synthesized in different pyrolysis temperature. Structural and surface characterization with roughness measurements was systematically investigated using various techniques. Effect of pyrolysis temperature on the corrosion behavior of coated Cu substrates in 0.6 M NaCl solution was evaluated via electrochemical impedance spectroscopy, potentiodynamic polarization. Pin-on-disk wear test of coated Cu substrate showed the influence of the pyrolysis temperature on the wear resistance performance of the HC coatings. According to the obtained results, it could be concluded that the HC coatings synthesized at 1100 °C revealed an enhanced comprehensive performance, revealing their possible utilization as a protective coating for Cu substrates in chloride environment. Monte Carlo simulations have been utilized to elucidate the interaction between the Cu surface and HC coatings.

  3. Shadow-casted ultrathin surface coatings of titanium and titanium/silicon oxide sol particles via ultrasound-assisted deposition.

    PubMed

    Karahan, H Enis; Birer, Özgür; Karakuş, Kerem; Yıldırım, Cansu

    2016-07-01

    Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. RETRACTED: Chemical densification of plasma sprayed yttria stabilized zirconia (YSZ) coatings for high temperature wear and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ye, Yaping; Fehr, Karl Thomas; Faulstich, Martin; Wolf, Gerhard

    2012-12-01

    Plasma-sprayed yttria stabilized zirconia (YSZ) ceramic coatings have been widely used as wear- and corrosion-resistant coatings in high temperature applications and an aggressive environment due to their high hardness, wear resistance, heat and chemical resistance, and low thermal conductivity. The highly porous structure of plasma-sprayed ceramic coatings and their poor adhesion to the substrate usually lead to the coating degradation and failure. In this study, a two-layer system consisting of atmospheric plasma-sprayed 8 wt.% yttria-stabilized zirconia (8YSZ) and Ni-based alloy coatings was post-treated by means of a novel chemical sealing process at moderate temperatures of 600-800 °C. Microstructure characteristics of the YSZ coatings were studied using an electron probe micro-analyzer (EPMA). Results revealed that the ceramic top coat was densified by the precipitated zirconia in the open pores. Therefore, the sealed YSZ coatings exhibit reduced porosity, higher hardness and a better adhesion onto the bond coat. The mechanisms for the sealing process were also proposed.

  5. Preparation of multi-layer film consisting of hydrogen-free DLC and nitrogen-containing DLC for conductive hard coating

    NASA Astrophysics Data System (ADS)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Degai, Satoshi; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Yasui, Haruyuki; Kaneko, Satoru; Kunitsugu, Shinsuke; Kamiya, Masao; Taki, Makoto

    2018-01-01

    Conductive hard-coating films have potential application as protective films for contact pins used in the electrical inspection process for integrated circuit chips. In this study, multi-layer diamond-like carbon (DLC) films were prepared as conductive hard-coating films. The multi-layer DLC films consisting of DLC and nitrogen-containing DLC (N-DLC) film were prepared using a T-shape filtered arc deposition method. Periodic DLC/N-DLC four-layer and eight-layer films had the same film thickness by changing the thickness of each layer. In the ball-on-disk test, the N-DLC mono-layer film showed the highest wear resistance; however, in the spherical polishing method, the eight-layer film showed the highest polishing resistance. The wear and polishing resistance and the aggressiveness against an opponent material of the multi-layer DLC films improved by reducing the thickness of a layer. In multi-layer films, the soft N-DLC layer between hard DLC layers is believed to function as a cushion. Thus, the tribological properties of the DLC films were improved by a multi-layered structure. The electrical resistivity of multi-layer DLC films was approximately half that of the DLC mono-layer film. Therefore, the periodic DLC/N-DLC eight-layer film is a good conductive hard-coating film.

  6. Increased Reliability of Gas Turbine Components by Robust Coatings Manufacturing

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Dudykevych, T.; Sansom, D.; Subramanian, R.

    2017-08-01

    The expanding operational windows of the advanced gas turbine components demand increasing performance capability from protective coating systems. This demand has led to the development of novel multi-functional, multi-materials coating system architectures over the last years. In addition, the increasing dependency of components exposed to extreme environment on protective coatings results in more severe penalties, in case of a coating system failure. This emphasizes that reliability and consistency of protective coating systems are equally important to their superior performance. By means of examples, this paper describes the effects of scatter in the material properties resulting from manufacturing variations on coating life predictions. A strong foundation in process-property-performance correlations as well as regular monitoring and control of the coating process is essential for robust and well-controlled coating process. Proprietary and/or commercially available diagnostic tools can help in achieving these goals, but their usage in industrial setting is still limited. Various key contributors to process variability are briefly discussed along with the limitations of existing process and product control methods. Other aspects that are important for product reliability and consistency in serial manufacturing as well as advanced testing methodologies to simplify and enhance product inspection and improve objectivity are briefly described.

  7. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  8. Mechanical properties of tantalum-based ceramic coatings for biomedical applications

    NASA Astrophysics Data System (ADS)

    Donkov, N.; Walkowicz, J.; Zavaleyev, V.; Zykova, A.; Safonov, V.; Dudin, S.; Yakovin, S.

    2018-03-01

    The properties were studied of Ta, Ta2O5 and Ta/Ta2O5 coatings deposited by reactive magnetron sputtering on stainless steel (AISI 316) substrates. The compositional, structural and morphological parameters of the coatings were investigated by means of X-ray photoemission spectroscopy (XPS), energy dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The roughness parameters, adhesion strength, hardness, elastic modulus, and H/E ratio were evaluated by standard techniques. The hardness parameters of the Ta2O5 and Ta/Ta2O5 coatings increased in comparison with pure Ta films, while the relatively low Young’s modulus was related to high elastic recovery and high resistance to cracking. The tantalum-based coatings possessed good biomechanical parameters for advanced implant and stent applications.

  9. Development of RF sputtered chromium oxide coating for wear application

    NASA Technical Reports Server (NTRS)

    Bhushan, B.

    1979-01-01

    The radio frequency sputtering technique was used to deposite a hard refractory, chromium oxide coating on an Inconel X-750 foil 0.1 mm thick. Optimized sputtering parameters for a smooth and adherent coating were found to be as follows: target-to-substrate spacing, 41.3 mm; argon pressure, 5-10 mTorr; total power to the sputtering module, 400 W (voltage at the target, 1600 V), and a water-cooled substrate. The coating on the annealed foil was more adherent than that on the heat-treated foil. Substrate biasing during the sputter deposition of Cr2O3 adversely affected adherence by removing naturally occurring interfacial oxide layers. The deposited coatings were amorphous and oxygen deficient. Since amorphous materials are extremely hard, the structure was considered to be desirable.

  10. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool.

    PubMed

    Paiva, Jose Mario; Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Seid Ahmed, Yassmin; Matos Martins, Marcelo; Bork, Carlos; Veldhuis, Stephen

    2018-02-28

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si₃N₄ nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  11. Surface Modifications with Laser Synthesized Mo Modified Coating

    NASA Astrophysics Data System (ADS)

    Sun, Lu; Chen, Hao; Liu, Bo

    2013-01-01

    Mg-Cu-Al was first used to improve the surface performance of TA15 titanium alloys by means of laser cladding technique. The synthesis of hard composite coating on TA15 titanium alloy by laser cladding of Mg-Cu-Al-B4C/Mo pre-placed powders was investigated by means of scanning electron microscope, energy dispersive spectrometer and high resolution transmission electron microscope. Experimental results indicated that such composite coating mainly consisted of TiB2, TiB, TiC, Ti3Al and AlCuMg. Compared with TA15 alloy substrate, an improvement of wear resistance was observed for this composite coating due to the actions of fine grain, amorphous and hard phase strengthening.

  12. Development and characterization of food-grade tracers for the global grain tracing and recall system.

    PubMed

    Lee, Kyung-Min; Armstrong, Paul R; Thomasson, J Alex; Sui, Ruixiu; Casada, Mark; Herrman, Timothy J

    2010-10-27

    Tracing grain from the farm to its final processing destination as it moves through multiple grain-handling systems, storage bins, and bulk carriers presents numerous challenges to existing record-keeping systems. This study examines the suitability of coded caplets to trace grain, in particular, to evaluate methodology to test tracers' ability to withstand the rigors of a commercial grain handling and storage systems as defined by physical properties using measurement technology commonly applied to assess grain hardness and end-use properties. Three types of tracers to dispense into bulk grains for tracing the grain back to its field of origin were developed using three food-grade substances [processed sugar, pregelatinized starch, and silicified microcrystalline cellulose (SMCC)] as a major component in formulations. Due to a different functionality of formulations, the manufacturing process conditions varied for each tracer type, resulting in unique variations in surface roughness, weight, dimensions, and physical and spectroscopic properties before and after coating. The applied two types of coating [pregelatinized starch and hydroxypropylmethylcellulose (HPMC)] using an aqueous coating system containing appropriate plasticizers showed uniform coverage and clear coating. Coating appeared to act as a barrier against moisture penetration, to protect against mechanical damage of the surface of the tracers, and to improve the mechanical strength of tracers. The results of analysis of variance (ANOVA) tests showed the type of tracer, coating material, conditioning time, and a theoretical weight gain significantly influenced the morphological and physical properties of tracers. Optimization of these factors needs to be pursued to produce desirable tracers with consistent quality and performance when they flow with bulk grains throughout the grain marketing channels.

  13. In situ formation of titanium carbide using titanium and carbon-nanotube powders by laser cladding

    NASA Astrophysics Data System (ADS)

    Savalani, M. M.; Ng, C. C.; Li, Q. H.; Man, H. C.

    2012-01-01

    Titanium metal matrix composite coatings are considered to be important candidates for high wear resistance applications. In this study, TiC reinforced Ti matrix composite layers were fabricated by laser cladding with 5, 10, 15 and 20 wt% carbon-nanotube. The effects of the carbon-nanotube content on phase composition, microstructure, micro-hardness and dry sliding wear resistance of the coating were studied. Microstructural observation using scanning electron microscopy showed that the coatings consisted of a matrix of alpha-titanium phases and the reinforcement phase of titanium carbide in the form of fine dendrites, indicating that titanium carbide was synthesized by the in situ reaction during laser irradiation. Additionally, measurements on the micro-hardness and dry sliding wear resistance of the coatings indicated that the mechanical properties were affected by the amount of carbon-nanotube in the starting precursor materials and were enhanced by increasing the carbon-nanotube content. Results indicated that the composite layers exhibit high hardness and excellent wear resistance.

  14. Low activation steels welding with PWHT and coating for ITER test blanket modules and DEMO

    NASA Astrophysics Data System (ADS)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2011-02-01

    EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 °C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.

  15. Tribological performances of new steel grades for hot stamping tools

    NASA Astrophysics Data System (ADS)

    Medea, F.; Venturato, G.; Ghiotti, A.; Bruschi, S.

    2017-09-01

    In the last years, the use of High Strength Steels (HSS) as structural parts in car body-in-white manufacturing has rapidly increased thanks to their favourable strength-to-weight ratio and stiffness, which allow a reduction of the fuel consumption to accommodate the new restricted regulations for CO2 emissions control. The survey of the technical and scientific literature shows a large interest in the development of different coatings for the blanks from the traditional Al-Si up to new Zn-based coatings and on the analysis of hard PVD, CVD coatings and plasma nitriding applied on the tools. By contrast, fewer investigations have been focused on the development and test of new tools steels grades capable to improve the wear resistance and the thermal properties that are required for the in-die quenching during forming. On this base, the paper deals with the analysis and comparison the tribological performances in terms of wear, friction and heat transfer of new tool steel grades for high-temperature applications, characterized by a higher thermal conductivity than the commonly used tools. Testing equipment, procedures as well as measurements analyses to evaluate the friction coefficient, the wear and heat transfer phenomena are presented. Emphasis is given on the physical simulation techniques that were specifically developed to reproduce the thermal and mechanical cycles on the metal sheets and dies as in the industrial practice. The reference industrial process is the direct hot stamping of the 22MnB5 HSS coated with the common Al-Si coating for automotive applications.

  16. Method For Manufacturing Articles For High Temperature Use, And Articles Made Therewith

    DOEpatents

    Wang, Hongyu; Mitchell, David Joseph; Lau, Yuk-Chiu; Henry, Arnold Thomas

    2006-02-28

    A method for manufacturing an article for use in a high-temperature environment, and an article for use in such an environment, are presented. The method comprises providing a substrate; selecting a desired vertical crack density for a protective coating to be deposited on the substrate; providing a powder, wherein the powder has a size range selected to provide a coating having the desired vertical crack density; and applying a thermal-sprayed coating to the substrate, the coating having the desired vertical crack density, wherein the powder is used as a raw material for the coating.

  17. Method For Manufacturing Articles For High Temperature Use, And Articles Made Therewith

    DOEpatents

    Wang, Hongyu; Mitchell, David Joseph; Lau, Yuk-Chiu; Henry, Arnold Thomas

    2005-03-15

    A method for manufacturing an article for use in a high-temperature environment, and an article for use in such an environment, are presented. The method comprises providing a substrate; selecting a desired vertical crack density for a protective coating to be deposited on the substrate; providing a powder, wherein the powder has a size range selected to provide a coating having the desired vertical crack density; and applying a thermal-sprayed coating to the substrate, the coating having the desired vertical crack density, wherein the powder is used as a raw material for the coating.

  18. Microstructure characterization of hypereutectoid aluminium bronze composite coating

    NASA Astrophysics Data System (ADS)

    Kucita, P.; Wang, S. C.; Li, W. S.; Cook, R. B.; Starink, M. J.

    2015-10-01

    Hypereutectoid aluminium bronze coating was deposited onto an E.N. 10503 steel substrate using plasma transferred arc welding (PTA). Microstructure characterisation of the coating and a section near the steel substrate joint was carried out using SEM, EBSD, EDS in conjunction with XRD and depth-sensing nano-indentation. The constituent phases in the coating were identified as: martensitic Cu3Al β1' phase, solid solution of Al in Cu α phase and the intermetallic Fe3Al κ1 phase. The region near the steel substrate was characterised by high hardness, large grains and presence of Cu precipitates. No cracks were observed in this region. The coating has high hardness of 4.9GPa and Young's modulus of 121.7GPa. This is attributed to homogeneous distribution of sub microns size Fe3Al intermetallic phase. The implications of the coating to the engineering application of sheet metal forming are discussed.

  19. FABRICATION OF IN SITUFe-Ti-B COMPOSITE COATING BY LASER CLADDING

    NASA Astrophysics Data System (ADS)

    Du, Baoshuai

    2013-06-01

    Laser cladding was applied to deposit in situFe-Ti-B composite coatings on mild carbon steel with precursor of ferrotitanium, ferroboron and pure Fe alloy powders. The composite coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA). Wear resistance of the laser-cladded Fe-Ti-B coatings was evaluated under dry sliding condition at room temperature using block-on-ring wear tester. Results indicate that in situ reinforcements of TiB2 and Fe2B can be synthesized in the Fe-Ti-B coatings. The amount of TiB2 increases with the increase of content of ferrotitanium and ferroboron in the precursor. Reinforcements are formed through the liquid-precipitation route following the solidification path of the Fe-Ti-B system. Hardness and wear properties of the coatings improved significantly in comparison to the as-received substrate due to the presence of hard reinforcements.

  20. Effect of Zinc Coatings on Joint Properties and Interfacial Reactions in Aluminum to Steel Ultrasonic Spot Welding

    NASA Astrophysics Data System (ADS)

    Haddadi, F.; Strong, D.; Prangnell, P. B.

    2012-03-01

    Dissimilar joining of aluminum to steel sheet in multimaterial automotive structures is an important potential application of ultrasonic spot welding (USW). Here, the weldability of different zinc-coated steels with aluminum is discussed, using a 2.5-kW USW welder. Results show that soft hot-dipped zinc (DX56-Z)-coated steel results in better weld performance than hard (galv-annealed) zinc coatings (DX53-ZF). For Al to hard galv-annealed-coated steel welds, lap shear strengths reached a maximum of ~80% of the strength of an Al-Al joint after a 1.0 s welding time. In comparison, welds between Al6111-T4 and hot dipped soft zinc-coated steel took longer to achieve the same maximum strength, but nearly matched the Al-Al joint properties. The reasons for these different behaviors are discussed in terms of the interfacial reactions between the weld members.

  1. Metallurgical characterization of orthodontic brackets produced by Metal Injection Molding (MIM).

    PubMed

    Zinelis, Spiros; Annousaki, Olga; Makou, Margarita; Eliades, Theodore

    2005-11-01

    The aim of this study was to investigate the bonding base surface morphology, alloy type, microstructure, and hardness of four types of orthodontic brackets produced by Metal Injection Molding technology (Discovery, Extremo, Freedom, and Topic). The bonding base morphology of the brackets was evaluated by scanning electron microscopy (SEM). Brackets from each manufacturer were embedded in epoxy resin, and after metallographic grinding, polishing and coating were analyzed by x-ray energy-dispersive spectroscopic (EDS) microanalysis to assess their elemental composition. Then, the brackets were subjected to metallographic etching to reveal their metallurgical structure. The same specimen surfaces were repolished and used for Vickers microhardness measurements. The results were statistically analyzed with one-way analysis of variance and Student-Newman-Keuls multiple comparison test at the 0.05 level of significance. The findings of SEM observations showed a great variability in the base morphology design among the brackets tested. The x-ray EDS analysis demonstrated that each bracket was manufactured from different ferrous or Co-based alloys. Metallographic analysis showed the presence of a large grain size for the Discovery, Freedom, and Topic brackets and a much finer grain size for the Extremo bracket. Vickers hardness showed great variations among the brackets (Topic: 287 +/- 16, Freedom: 248 +/- 13, Discovery: 214 +/- 12, and Extremo: 154 +/- 9). The results of this study showed that there are significant differences in the base morphology, composition, microstructure, and microhardness among the brackets tested, which may anticipate significant clinical implications.

  2. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    NASA Astrophysics Data System (ADS)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.

  3. IMPROVED EQUIPMENT CLEANING IN COATED AND LAMINATED SUBSTRATE MANUFACTURING FACILITIES (PHASE II)

    EPA Science Inventory

    The report discusses EPA efforts to identify, demonstrate, and publish pollution prevention information and opportunities for equipment cleaning for the coated and laminated substrate manufacturing industry. It summarizes initial data collected and summarized during industry obse...

  4. TiC-Fe-Based Composite Coating Prepared by Self-Propagating High-Temperature Synthesis

    NASA Astrophysics Data System (ADS)

    He, Shen; Fan, Xi'an; Chang, Qingming; Xiao, Lixiang

    2017-06-01

    TiC-Fe-based composite coatings were prepared in situ by self-propagating high-temperature synthesis combined with vacuum expendable pattern casting process. The band-like TiC phase embedded in a continuous Fe binder. There were no obvious defects and impurities at the interface between coatings and matrices. Fe presented consecutively in the coating zones and substrate zones without interruption and the microhardness in the cross-sectional area of the coating-matrix reduces continuously from the coating to the matrix area, indicating a good metallurgical bonding between the coatings and matrices. The effect of casting temperature on the microstructure and hardness of TiC-Fe-based composite coating was investigated in detail. The TiC particles formed at low casting temperature were nearly spherical in shape, and the size of TiC particles increased with increasing casting temperature due to more agglomeration. The hardness of the coatings increased first and then decreased with increasing casting temperature, and reached the highest value of 68 HRC when the casting temperature was 1773 K (1500 °C), which was twice more than that of the matrix.

  5. Improvement of wear resistance of plasma-sprayed molybdenum blend coatings

    NASA Astrophysics Data System (ADS)

    Ahn, Jeehoon; Hwang, Byoungchul; Lee, Sunghak

    2005-06-01

    The wear resistance of plasma sprayed molybdenum blend coatings applicable to synchronizer rings or piston rings was investigated in this study. Four spray powders, one of which was pure molybdenum and the others blended powders of bronze and aluminum-silicon alloy powders mixed with molybdenum powders, were sprayed on a low-carbon steel substrate by atmospheric plasma spraying. Microstructural analysis of the coatings showed that the phases formed during spraying were relatively homogeneously distributed in the molybdenum matrix. The wear test results revealed that the wear rate of all the coatings increased with increasing wear load and that the blended coatings exhibited better wear resistance than the pure molybdenum coating, although the hardness was lower. In the pure molybdenum coatings, splats were readily fractured, or cracks were initiated between splats under high wear loads, thereby leading to the decrease in wear resistance. On the other hand, the molybdenum coating blended with bronze and aluminum-silicon alloy powders exhibited excellent wear resistance because hard phases such as CuAl2 and Cu9Al4 formed inside the coating.

  6. Effect of Sputtering Current on the Comprehensive Properties of (Ti,Al)N Coating and High-Speed Steel Substrate

    NASA Astrophysics Data System (ADS)

    Su, Yongyao; Tian, Liangliang; Hu, Rong; Liu, Hongdong; Feng, Tong; Wang, Jinbiao

    2018-05-01

    To improve the practical property of (Ti,Al)N coating on a high-speed steel (HSS) substrate, a series of sputtering currents were used to obtain several (Ti,Al)N coatings using a magnetron sputtering equipment. The phase structure, morphology, and components of (Ti,Al)N coatings were characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy, respectively. The performance of (Ti,Al)N coatings, adhesion, hardness, and wear resistance was tested using a scratch tester, micro/nanohardness tester, and tribometer, respectively. Based on the structure-property relationships of (Ti,Al)N coatings, the results show that both the Al content and deposition temperature of (Ti,Al)N coatings increased with sputtering current. A high Al content helped to improve the performance of (Ti,Al)N coatings. However, the HSS substrate was softened during the high sputtering current treatment. Therefore, the optimum sputtering current was determined as 2.5 A that effectively increased the hardness and wear resistance of (Ti,Al)N coating.

  7. Effects of nanoscale coatings on reliability of MEMS ohmic contact switches

    NASA Astrophysics Data System (ADS)

    Tremper, Amber Leigh

    This thesis examines how the electrical and mechanical behavior of Au thin films is altered by the presence of ultra-thin metallic coatings. To examine the mechanical behavior, nanoindentation, nano-scratch, and atomic force microscopy (AFM) testing was performed. The electrical behavior was evaluated through Kelvin probe contact resistance measurements. This thesis shows that ultra-thin, hard, ductile coatings on a softer, ductile underlying layer (such as Ru or Pt on Au) had a significant effect on mechanical behavior of the system, and can be tailored to control the deformation resistance of the thin film system. Despite Ru and Pt having a higher hardness and plane strain modulus than Au, the Ru and Pt coatings decreased both the hardness and plane strain modulus of the layered system when the indentation depth was on the order of the coating thickness. Alternately, when the indentation depth was several times the coating thickness, the ductile, plastically hard, elastically stiff layer significantly hardened the contact response. These results correlate well with membrane stress theoretical predictions, and demonstrate that membrane theory can be applied even when the ratio of indentation depth, h, to coating thickness, t, is very large ( h/t<10). The transition from film-substrate models to membrane models occurs when the indent penetration depth to coating thickness ratio is less than ˜0.5. When the electrical behavior of the Ru-coated Au films was examined, it was found that all the measured resistances of the Au-only film and Ru-coated systems were several orders of magnitude larger than those predicted by Holm's law, but were still in good agreement with previously reported values in the literature. Previous studies attributed the high contact resistances to a variety of causes, including the buildup of an insulating contamination layer. This thesis determined the cause of the deviations to be large sheet resistance contributions to the total measured resistance. Further, studies on aged samples (with thicker contamination layers) conclusively showed that, while contamination increases the contact resistance, it also increases the dependence on force. This thesis also details that the relative contribution of contact resistance to the total measured resistance can be maximized by decreasing the probe spacing and tip radius. AFM testing of the layered systems showed that the coated samples had larger predicted plane strain moduli than the Au sample, in contrast to the nanoindentation testing. Thus, when the contact depth was kept sufficiently small, the contact stiffness increased as predicted by substrate models. When the contact depth was on the order of the coating thickness, the contact stiffness actually decreased. Additionally, the forceseparation plots showed that the Ru and Pt surfaces either accumulated large amounts of contamination or were less susceptible to being wiped clean than the Au film. Further, scratch testing of the Au film and Ru and Pt coatings show that the hard surface coatings reduce material removal and contact wear. Ultra-thin Ru and Pt surface coatings on Au films are shown to be improved material systems for ohmic contact switches. The wear is reduced for coated materials, while the resistance and power consumption through the coating are not significantly affected.

  8. Microstructure and tribological properties of in situ synthesized TiC, TiN, and SiC reinforced Ti 3Al intermetallic matrix composite coatings on pure Ti by laser cladding

    NASA Astrophysics Data System (ADS)

    Pu, Yuping; Guo, Baogang; Zhou, Jiansong; Zhang, Shitang; Zhou, Huidi; Chen, Jianmin

    2008-12-01

    TiC, TiN, and SiC reinforced Ti 3Al intermetallic matrix composite (IMC) coatings were in situ synthesized on a pure Ti substrate by laser cladding. It was found that the surface hardness and the wear resistance of the Ti 3Al coating were improved by the formation of these Ti 3Al IMC coatings. The surface hardness and the wear resistance of the TiC/Ti 3Al IMC coatings increased with the increasing volume fraction of TiC powder. Under the same dry sliding test conditions, the wear resistance of TiC, TiN, and SiC reinforced Ti 3Al IMC coatings with 40 vol.% reinforced powder was in the following order: TiN/Ti 3Al IMC coating > TiC/Ti 3Al IMC coating > SiC/Ti 3Al IMC coating. It should be noted that both the TiC/Ti 3Al IMC coating with 40 vol.% TiC powder and the TiN/Ti 3Al coating with 40 vol.% TiN powder showed excellent wear resistance under 5 N normal load.

  9. Self-cleaning and self-sanitizing coatings on plastic fabrics: design, manufacture and performance.

    PubMed

    Barletta, M; Vesco, S; Tagliaferri, V

    2014-08-01

    Self-cleaning and self-sanitizing coatings are of utmost interest in several manufacturing domains. In particular, fabrics and textile materials are often pre-treated by impregnation or incorporation with antimicrobial pesticides for protection purposes against bacteria and fungi that are pathogenic for man or other animals. In this respect, the present investigation deals with the design and manufacture of self-cleaning and self-sanitizing coatings on plastic fabrics. The functionalization of the coatings was yield by incorporating active inorganic matter alone (i.e., photo-catalytic TiO2 anatase and Ag(+) ions) inside an organic inorganic hybrid binder. The achieved formulations were deposited on coextruded polyvinylchloride-polyester fabrics by air-mix spraying and left to dry at ambient temperature. The performance of the resulting coatings were characterized for their self-cleaning and self-sanitizing ability according to standardized testing procedure and/or applicable international regulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Research on Protective Coating on Inner Surface of Alloy Tube

    NASA Astrophysics Data System (ADS)

    Zhang, Y. C.; Liu, Y. H.; Zhou, Z. J.; Zheng, M. M.; Kong, S. Y.; Xia, H. H.; Li, H. L.

    2017-09-01

    Materials are one of the most important factors which limit reactor development. Molten salt not only used as the coolant but used as application in which fissile materials and fission products are dissolved in Molten Salt Reactors (MSRs). Therefore the corrosion resistance of structure materials is the one of most important aspects for application in MSRs. Compatibility and chemical stability with the molten salt should be considered for some common structural alloys such as Incoloy-800H. In this research, the pure nickel coating was obtained by electroplating on the inner surface of nickel alloy to improve the corrosion resistance. However, there are some problems for plating on the inner surface of tube. For example the current is shielded and the anode is easy to passivate. The inner anode was used for solving these problems in this study. Pure nickel coating was obtain and the microstructure and properties of coating were analysed using this method. The thickness, hardness and microstructure of coating were observed by metallographic microscope, micro hardness tester and field emission scanning electron microscope, and the influence of deposition duration and annealing treatment duration on properties were analysed. Thermal shock performance was investigated as well. The results showed that the coating thickness increased linearly with the increasing of plating durations and the size of grain increased with the durations as well, the surface of coating became inhomogeneous correspondingly. The hardness of coating changed as the change of durations of annealing treatment. The thermal shock test showed that bonding strength of coating with substrate was good.

  11. Manufacturing Aids

    NASA Astrophysics Data System (ADS)

    1983-01-01

    Contractor's work for Lewis Research Center on "thermal barrier" coatings designed to improve aircraft engine efficiency resulted in two related but separate spinoffs. The Materials and Manufacturing Technology Center of TRW, Inc. invented a robotic system for applying the coating, and in the course of that research found it necessary to develop a new, extremely accurate type of optical gage that offers multiple improvements in controlling the quality of certain manufactured parts.

  12. Sustainable design and manufacturing of multifunctional polymer nanocomposite coatings: A multiscale systems approach

    NASA Astrophysics Data System (ADS)

    Xiao, Jie

    Polymer nanocomposites have a great potential to be a dominant coating material in a wide range of applications in the automotive, aerospace, ship-making, construction, and pharmaceutical industries. However, how to realize design sustainability of this type of nanostructured materials and how to ensure the true optimality of the product quality and process performance in coating manufacturing remain as a mountaintop area. The major challenges arise from the intrinsic multiscale nature of the material-process-product system and the need to manipulate the high levels of complexity and uncertainty in design and manufacturing processes. This research centers on the development of a comprehensive multiscale computational methodology and a computer-aided tool set that can facilitate multifunctional nanocoating design and application from novel function envisioning and idea refinement, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications and life cycle analysis. The principal idea is to achieve exceptional system performance through concurrent characterization and optimization of materials, product and associated manufacturing processes covering a wide range of length and time scales. Multiscale modeling and simulation techniques ranging from microscopic molecular modeling to classical continuum modeling are seamlessly coupled. The tight integration of different methods and theories at individual scales allows the prediction of macroscopic coating performance from the fundamental molecular behavior. Goal-oriented design is also pursued by integrating additional methods for bio-inspired dynamic optimization and computational task management that can be implemented in a hierarchical computing architecture. Furthermore, multiscale systems methodologies are developed to achieve the best possible material application towards sustainable manufacturing. Automotive coating manufacturing, that involves paint spay and curing, is specifically discussed in this dissertation. Nevertheless, the multiscale considerations for sustainable manufacturing, the novel concept of IPP control, and the new PPDE-based optimization method are applicable to other types of manufacturing, e.g., metal coating development through electroplating. It is demonstrated that the methodological development in this dissertation can greatly facilitate experimentalists in novel material invention and new knowledge discovery. At the same time, they can provide scientific guidance and reveal various new opportunities and effective strategies for sustainable manufacturing.

  13. Nanostructure of and structural defects in a Mo2BC hard coating investigated by transmission electron microscopy and atom probe tomography

    NASA Astrophysics Data System (ADS)

    Gleich, Stephan; Fager, Hanna; Bolvardi, Hamid; Achenbach, Jan-Ole; Soler, Rafael; Pradeep, Konda Gokuldoss; Schneider, Jochen M.; Dehm, Gerhard; Scheu, Christina

    2017-08-01

    In this work, the nanostructure of a Mo2BC hard coating was determined by several transmission electron microscopy methods and correlated with the mechanical properties. The coating was deposited on a Si (100) wafer by bipolar pulsed direct current magnetron sputtering from a Mo2BC compound target in Ar at a substrate temperature of 630 °C. Transmission electron microscopy investigations revealed structural features at various length scales: bundles (30 nm to networks of several micrometers) consisting of columnar grains (˜10 nm in diameter), grain boundary regions with a less ordered atomic arrangement, and defects including disordered clusters (˜1.5 nm in diameter) as well as stacking faults within the grains. The most prominent defect with a volume fraction of ˜0.5% is the disordered clusters, which were investigated in detail by electron energy loss spectroscopy and atom probe tomography. The results provide conclusive evidence that Ar is incorporated into the Mo2BC film as disordered Ar-rich Mo-B-C clusters of approximately 1.5 nm in diameter. Hardness values of 28 ± 1 GPa were obtained by nanoindentation tests. The Young's modulus of the Mo2BC coating exhibits a value of 462 ± 9 GPa, which is consistent with ab initio calculations for crystalline and defect free Mo2BC and measurements of combinatorically deposited Mo2BC thin films at a substrate temperature of 900 °C. We conclude that a reduction of the substrate temperature of 270 °C has no significant influence on hardness and Young's modulus of the Mo2BC hard coating, even if its nanostructure exhibits defects.

  14. Mechanical Performance of Cold-Sprayed A357 Aluminum Alloy Coatings for Repair and Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Petráčková, K.; Kondás, J.; Guagliano, M.

    2017-12-01

    Cold-sprayed coatings made of A357 aluminum alloy, a casting alloy widely used in aerospace, underwent set of standard tests as well as newly developed fatigue test to gain an information about potential of cold spray for repair and additive manufacturing of loaded parts. With optimal spray parameters, coating deposition on substrate with smooth surface resulted in relatively good bonding, which can be further improved by application of grit blasting on substrate's surface. However, no enhancement of adhesion was obtained for shot-peened surface. Process temperature, which was set either to 450 or 550 °C, was shown to have an effect on adhesion and cohesion strength, but it does not influence residual stress in the coating. To assess cold spray perspectives for additive manufacturing, flat tensile specimens were machined from coating and tested in as-sprayed and heat-treated (solution treatment and aging) condition. Tensile properties of the coating after the treatment correspond to properties of the cast A357-T61 aluminum alloy. Finally, fatigue specimen was proposed to test overall performance of the coating and coating's fatigue limit is compared to the results obtained on cast A357-T61 aluminum alloy.

  15. Friction and wear properties of three hard refractory coatings applied by radiofrequency sputtering

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.

    1977-01-01

    The adherence, friction, and wear properties of thin hard refractory compound coatings applied to 440C bearing steel by radiofrequency sputtering were investigated. Friction and wear tests were done with nonconforming pin on disk specimens. The compounds examined were chromium carbide, molybdenum silicide, and titanium carbide. The adherence, friction, and wear were markedly improved by the application of a bias voltage to the bearing steel substrate during coating deposition. Analysis by X-ray photoelectron spectroscopy indicated that the improvement may be due to a reduction in impurities in bias deposited coatings. A fivefold reduction in oxygen concentration in MoSi2 coating by biasing was noted. Chromium carbide was not effective as an antiwear coating. Molybdenum silicide provided some reduction in both friction and wear. Titanium carbide exhibited excellent friction and antiwear properties at light loads. Plastic flow and transfer of the coating material onto the pin specimen appears to be important in achieving low friction and wear.

  16. IMPROVED EQUIPMENT CLEANING IN COATED AND LAMINATED SUBSTRATE MANUFACTURING FACILITIES (PHASE I)

    EPA Science Inventory

    The report gives results of a Phase I study to characterize current equipment cleaning practices in the coated and laminated substrate manufacturing industry, to identify alternative cleaning technologies, and to identify demonstrable technologies and estimate their emissions imp...

  17. Experimental investigation on hard turning of AISI 4340 steel using cemented coated carbide insert

    NASA Astrophysics Data System (ADS)

    Pradeep Kumar, J.; Kishore, K. P.; Ranjith Kumar, M.; Saran Karthick, K. R.; Vishnu Gowtham, S.

    2018-02-01

    Hard turning is a developing technology that offers many potential advantages compared to grinding, which remains the standard finishing process for critical hardened surfaces. In this work, an attempt has been made to experimentally investigate hard turning of AISI 4340 steel under wet and dry condition using cemented coated carbide insert. Hardness of the workpiece material is tested using Brinell and Rockwell hardness testers. CNC LATHE and cemented coated carbide inserts of designation CNMG 120408 are used for conducting experimental trials. Significant cutting parameters like cutting speed, feed rate and depth of cut are considered as controllable input parameters and surface roughness (Ra), tool wear are considered as output response parameters. Design of experiments is carried out with the help of Taguchi’s L9 orthogonal array. Results of response parameters like surface roughness and tool wear under wet and dry condition are analysed. It is found that surface roughness and tool wear are higher under dry machining condition when compared to wet machining condition. Feed rate significantly influences the surface roughness followed by cutting speed. Depth of cut significantly influences the tool wear followed by cutting speed.

  18. Influence of Substrate Heating and Nitrogen Flow on the Composition, Morphological and Mechanical Properties of SiNx Coatings Aimed for Joint Replacements

    PubMed Central

    Skjöldebrand, Charlotte; Schmidt, Susann; Vuong, Vicky; Pettersson, Maria; Grandfield, Kathryn; Högberg, Hans; Engqvist, Håkan; Persson, Cecilia

    2017-01-01

    Silicon nitride (SiNx) coatings are promising for joint replacement applications due to their high wear resistance and biocompatibility. For such coatings, a higher nitrogen content, obtained through an increased nitrogen gas supply, has been found to be beneficial in terms of a decreased dissolution rate of the coatings. The substrate temperature has also been found to affect the composition as well as the microstructure of similar coatings. The aim of this study was to investigate the effect of the substrate temperature and nitrogen flow on the coating composition, microstructure and mechanical properties. SiNx coatings were deposited onto CoCrMo discs using reactive high power impulse magnetron sputtering. During deposition, the substrate temperatures were set to 200 °C, 350 °C or 430 °C, with nitrogen-to-argon flow ratios of 0.06, 0.17 or 0.30. Scanning and transmission electron spectroscopy revealed that the coatings were homogenous and amorphous. The coatings displayed a nitrogen content of 23–48 at.% (X-ray photoelectron spectroscopy). The surface roughness was similar to uncoated CoCrMo (p = 0.25) (vertical scanning interferometry). The hardness and Young’s modulus, as determined from nanoindentation, scaled with the nitrogen content of the coatings, with the hardness ranging from 12 ± 1 GPa to 26 ± 2 GPa and the Young’s moduli ranging from 173 ± 8 GPa to 293 ± 18 GPa, when the nitrogen content increased from 23% to 48%. The low surface roughness and high nano-hardness are promising for applications exposed to wear, such as joint implants. PMID:28772532

  19. Mechanical properties, electrochemical corrosion and in-vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying.

    PubMed

    Yugeswaran, S; Yoganand, C P; Kobayashi, A; Paraskevopoulos, K M; Subramanian, B

    2012-05-01

    Yttria stabilized zirconia reinforced hydroxyapatite coatings were deposited by a gas tunnel type plasma spray torch under optimum spraying conditions. For this purpose, 10, 20 and 30 wt% of yttria stabilized zirconia (YSZ) powders were premixed individually with hydroxyapatite (HA) powder and were used as the feedstocks for the coatings. The effect of YSZ reinforcement on the phase formation and mechanical properties of the coatings such as hardness, adhesive strength and sliding wear rates was examined. The results showed that the reinforcement of YSZ in HA could significantly enhance the hardness and adhesive strength of the coatings. The potentiodynamic polarization and impedance measurements showed that the reinforced coatings exhibited superior corrosion resistance compared to the HA coating in SBF solution. Further the results of the bioactivity test conducted by immersion of coatings in SBF showed that after 10 days of immersion of the obtained coatings with all the above compositions commonly exhibited the onset of bioactive apatite formation except for HA+10%YSZ coating. The cytocompatibility was investigated by culturing the green fluorescent protein (GFP)-labeled marrow stromal cells (MSCs) on the coating surface. The cell culture results revealed that the reinforced coatings have superior cell growth than the pure HA coatings. Copyright © 2012. Published by Elsevier Ltd.

  20. Effect of coating mild steel with CNTs on its mechanical properties and corrosion behaviour in acidic medium

    NASA Astrophysics Data System (ADS)

    Abdulmalik Abdulrahaman, Mahmud; Kamaldeeen Abubakre, Oladiran; Ambali Abdulkareem, Saka; Oladejo Tijani, Jimoh; Aliyu, Ahmed; Afolabi, Ayo Samuel

    2017-03-01

    The study investigated the mechanical properties and corrosion behaviour of mild steel coated with carbon nanotubes at different coating conditions. Multi-walled carbon nanotubes (MWCNTs) were synthesized via the conventional chemical vapour deposition reaction using bimetallic Fe-Ni catalyst supported on kaolin, with acetylene gas as a carbon source. The HRSEM/HRTEM analysis of the purified carbon materials revealed significant reduction in the diameters of the purified MWCNT bundles from 50 nm to 2 nm and was attributed to the ultrasonication assisted dispersion with surfactant (gum arabic) employed in purification process. The network of the dispersed MWCNTs was coated onto the surfaces of mild steel samples, and as the coating temperature and holding time increased, the coating thickness reduced. The mechanical properties (tensile strength, yield strength, hardness value) of the coated steel samples increased with increase in coating temperature and holding time. Comparing the different coating conditions, coated mild steels at the temperature of 950 °C for 90 min holding time exhibited high hardness, yield strength and tensile strength values compared to others. The corrosion current and corrosion rate of the coated mild steel samples decreased with increase in holding time and coating temperature. The lowest corrosion rate was observed on sample coated at 950 °C for 90 min.

  1. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  2. Surface texture and hardness of dental alloys processed by alternative technologies

    NASA Astrophysics Data System (ADS)

    Porojan, Liliana; Savencu, Cristina E.; Topală, Florin I.; Porojan, Sorin D.

    2017-08-01

    Technological developments have led to the implementation of novel digitalized manufacturing methods for the production of metallic structures in prosthetic dentistry. These technologies can be classified as based on subtractive manufacturing, assisted by computer-aided design/computer-aided manufacturing (CAD/CAM) systems, or on additive manufacturing (AM), such as the recently developed laser-based methods. The aim of the study was to assess the surface texture and hardness of metallic structures for dental restorations obtained by alternative technologies: conventional casting (CST), computerized milling (MIL), AM power bed fusion methods, respective selective laser melting (SLM) and selective laser sintering (SLS). For the experimental analyses metallic specimens made of Co-Cr dental alloys were prepared as indicated by the manufacturers. The specimen structure at the macro level was observed by an optical microscope and micro-hardness was measured in all substrates. Metallic frameworks obtained by AM are characterized by increased hardness, depending also on the surface processing. The formation of microstructural defects can be better controlled and avoided during SLM and MIL process. Application of power bed fusion techniques, like SLS and SLM, is currently a challenge in dental alloys processing.

  3. Investigation of the effects of process sequence on the contact resistance characteristics of coated metallic bipolar plates for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Turan, Cabir; Cora, Ömer Necati; Koç, Muammer

    2013-12-01

    In this study, results of an investigation on the effects of manufacturing and coating process sequence on the contact resistance (ICR) of metallic bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) are presented. Firstly, uncoated stainless steel 316L blanks were formed into BPP through hydroforming and stamping processes. Then, these formed BPP samples were coated with three different PVD coatings (CrN, TiN and ZrN) at three different thicknesses (0.1, 0.5 and 1 μm). Secondly, blanks of the same alloy were coated first with the same coatings, thickness and technique; then, they were formed into BPPs of the same shape and dimensions using the manufacturing methods as in the first group. Finally, these two groups of BPP samples were tested for their ICR to reveal the effect of process sequence. ICR tests were also conducted on the BPP plates both before and after exposure to corrosion to disclose the effect of corrosion on ICR. Coated-then-formed BPP samples exhibited similar or even better ICR performance than formed-then-coated BPP samples. Thus, manufacturing of coated blanks can be concluded to be more favorable and worth further investigation in quest of making cost effective BPPs for mass production of PEMFC.

  4. 40 CFR 91.504 - Maintenance of records; submittal of information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... testing required for the engine family in a model year. Records may be retained as hard copy (i.e., on... hard copy is retained. (c) The manufacturer must, upon request by the Administrator, submit the... testing using an EPA information format. The Administrator may exempt manufacturers from this requirement...

  5. 40 CFR 90.704 - Maintenance of records; submission of information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... testing required for the engine family in a model year. Records may be retained as hard copy (i.e., on... hard copy is retained. (c) The manufacturer must, upon request by the Administrator, submit the... production line testing using EPA's standardized format. The Administrator may exempt manufacturers from this...

  6. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Zou, Y. S.; Wu, Y. F.; Yang, H.; Cang, K.; Song, G. H.; Li, Z. X.; Zhou, K.

    2011-12-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  7. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance againstmore » corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.« less

  8. Enhancement of as-sputtered silver-tantalum oxide thin film coating on biomaterial stainless steel by surface thermal treatment

    NASA Astrophysics Data System (ADS)

    Alias, Rodianah; Mahmoodian, Reza; Shukor, Mohd Hamdi Abd; Yew, Been Seok; Muhamad, Martini

    2018-04-01

    Stainless steel 316L (SS316L) is extensively used as surgical/clinical tools due to its low carbon content and excellent mechanical characteristic. The fabrication of metal ceramic based on this metallic biomaterial favor its biofunctionality properties. However, instability phase of amorphous thin film lead to degradation, corrosion and oxidation. Thus, thin film coating requires elevated adhesion strength and higher surface hardness to meet clinical tools criteria. In this study, the SS316L was deposited with micron thickness of Ag-TaO thin film by using magnetron sputtering. The microstructure, elemental analysis and phase identification of Ag-TaO thin film were characterized by using FESEM, EDX and XRD, respectively; whereas the micro scratch test and micro hardness test were performed by using Micro Scratch Testing System and Vickers Micro Hardness Tester, respectively. It was found that the coating thin film's adhesion and hardness strength were improved from 672 to 2749 mN and 142 to 158 Hv respectively. It was found that the as-deposited surface were treated at 500 °C of temperatures with 2 °C/min ramping rate enhance 4.1 times of the adhesion strength value. Furthermore, FESEM characterization revealed coarsening structure of the thin film coating which can provide high durability service.

  9. 40 CFR 63.802 - Emission limits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards for Wood Furniture Manufacturing Operations § 63.802 Emission limits. (a) Each owner or operator... and contact adhesives only if they are low-formaldehyde coatings and adhesives, in any wood furniture...-formaldehyde coatings and adhesives, in any wood furniture manufacturing operations. (c) At all times, the...

  10. Tribological and corrosion behaviour of electroless Ni-B coating possessing a blackberry like structure

    NASA Astrophysics Data System (ADS)

    Bülbül, Ferhat; Altun, Hikmet; Küçük, Özkan; Ezirmik, Vefa

    2012-08-01

    This study aims to evaluate the tribological and corrosion properties of the electroless Ni-B coating deposited on AISI 304 stainless steels. The microstructure of the coating was characterized using x-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS). XRD analysis revealed that the prepared coating possessed an amorphous character. SEM-EDS investigation also indicated that a non-stoichiometric Ni-B coating was deposited with a columnar growth mechanism on the stainless steel substrate and the morphology of the growth surface was blackberry-like. The hardness and tribological properties were characterized by microhardness and a pin-on-disc wear test. The electroless Ni-B coated sample had a higher degree of hardness, a lower friction coefficient and a lower wear rate than the uncoated substrate. The electrochemical potentiodynamic polarization method was used to evaluate the corrosion resistance of the coating. The electroless Ni-B coating offered cathodic protection on the substrate by acting as a sacrificial anode although it was electrochemically more reactive than the stainless steel substrate.

  11. Porosity and wear resistance of flame sprayed tungsten carbide coatings

    NASA Astrophysics Data System (ADS)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermal-sprayed coatings offer practical and economical solutions for corrosion and wear protection of components or tools. To improve the coating properties, heat treatment such as preheat is applied. The selection of coating and substrate materials is a key factor in improving the quality of the coating morphology after the heat treatment. This paper presents the experimental results regarding the effect of preheat temperatures, i.e. 200°C, 300°C and 400°C, on porosity and wear resistance of tungsten carbide (WC) coating sprayed by flame thermal coating. The powders and coatings morphology were analyzed by a Field Emission Scanning Electron Microscope equipped with Energy Dispersive Spectrometry (FE-SEM/EDS), whereas the phase identification was performed by X-Ray diffraction technique (XRD). In order to evaluate the quality of the flame spray obtained coatings, the porosity, micro-hardness and wear rate of the specimens was determined. The results showed that WC coating gives a higher surface hardness from 1391 HVN up to 1541 HVN compared to that of the non-coating. Moreover, the wear rate increased from 0.072 mm3/min. to 0.082 mm3/min. when preheat temperature was increased. Preheat on H13 steel substrate can reduce the percentage of porosity level from 10.24 % to 3.94% on the thermal spray coatings.

  12. Investigations on the micro-scale surface interactions at the tool and workpiece interface in micro-manufacturing of bipolar plates for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Peker, Mevlut Fatih

    Micro-forming studies have been more attractive in recent years because of miniaturization trend. One of the promising metal forming processes, micro-stamping, provides durability, strength, surface finish, and low cost for metal products. Hence, it is considered a prominent method for fabricating bipolar plates (BPP) with micro-channel arrays on large metallic surfaces to be used in Proton Exchange Membrane Fuel Cells (PEMFC). Major concerns in micro-stamping of high volume BPPs are surface interactions between micro-stamping dies and blank metal plates, and tribological changes. These concerns play a critical role in determining the surface quality, channel formation, and dimensional precision of bipolar plates. The surface quality of BPP is highly dependent on the micro-stamping die surface, and process conditions due to large ratios of surface area to volume (size effect) that cause an increased level of friction and wear issues at the contact interface. Due to the high volume and fast production rates, BPP surface characteristics such as surface roughness, hardness, and stiffness may change because of repeated interactions between tool (micro-forming die) and workpiece (sheet blank of interest). Since the surface characteristics of BPPs have a strong effect on corrosion and contact resistance of bipolar plates, and consequently overall fuel cell performance, evolution of surface characteristics at the tool and workpiece should be monitored, controlled, and kept in acceptable ranges throughout the long production cycles to maintain the surface quality. Compared to macro-forming operations, tribological changes in micro-forming process are bigger challenges due to their dominance and criticality. Therefore, tribological size effect should be considered for better understanding of tribological changes in micro-scale. The integrity of process simulation to the experiments, on the other hand, is essential. This study describes an approach that aims to investigate the surface topography changes during long-run micro-stamping of BPPs, and establish relationships between surface roughness--corrosion resistance and surface roughness-contact resistance characteristics of BPPs. Formability levels of formed BPPs and repeatability characteristics of the process were investigated. In addition, blank thickness changes, von-Mises stress, plastic strain levels and distributions of micro-stamping process were determined via finite element analysis (FEA). Test results revealed that the surface roughness change for the stamping dies and BPPs was unsteady (no trend) due to the continuous change of surface topography (i.e. asperity deformation). Sub-micron range local plastic deformations on stamping dies led to surface topography changes on BPP in long-run manufacturing case. As surface defects trigger corrosion, the correlation between surface roughness and corrosion resistance of BPPs was found to be direct. Increasing number of surface irregularities (asperities) lowered contact surface area that resulted in increased contact resistance. ZrN coated BPPs, on the other hand, did not change surface roughness, however; it improved the protection of BPPs against corrosion significantly. In addition, ZrN coating increased the conductivity of BPPs and reduced the contact resistance between BPP and gas diffusion layer (GDL), at certain extent. As dimensional stability and repeatability was confirmed in forming of both uncoated and coated BPPs during the long run manufacturing, different formability levels were achieved for coated and uncoated samples. Lower channel height values were obtained for coated plates because of the different surface hardness of uncoated and coated plates. In tribological size effect part of study, micro stamping experiments using three different dies with distinct channel height values at different stamping force levels were performed. It was concluded that decrease in forming die dimensions led to increase in coefficient of friction as previously reported by other researchers as one of the consequences of tribological size effect. On the other hand, coefficient of friction values were not affected by the force levels used in the experiments and simulations, whereas plastic strain, equivalent stress, and formability levels were increased with increasing stamping force, as expected. In essence, this study proposed a methodology to investigate the long-run manufacturing effects on dimensional stability and surface characteristics of micro-stamped sheets. It also correlates these parameters to fuel cell performance measures such as interfacial contact and corrosion resistance.

  13. Manufacturing and coating of optical components for the EnMAP hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Schürmann, M.; Gäbler, D.; Schlegel, R.; Schwinde, S.; Peschel, T.; Damm, C.; Jende, R.; Kinast, J.; Müller, S.; Beier, M.; Risse, S.; Sang, B.; Glier, M.; Bittner, H.; Erhard, M.

    2016-07-01

    The optical system of the hyperspectral imager of the Environmental Mapping and Analysis Program (EnMAP) consists of a three-mirror anastigmat (TMA) and two independent spectrometers working in the VNIR and SWIR spectral range, respectively. The VNIR spectrometer includes a spherical NiP coated Al6061 mirror that has been ultra-precisely diamond turned and finally coated with protected silver as well as four curved fused silica (FS) and flint glass (SF6) prisms, respectively, each with broadband antireflection (AR) coating, while the backs of the two outer prisms are coated with a high-reflective coating. For AR coating, plasma ion assisted deposition (PIAD) has been used; the high-reflective enhanced Ag-coating on the backside has been deposited by magnetron sputtering. The SWIR spectrometer contains four plane and spherical gold-coated mirrors, respectively, and two curved FS prisms with a broadband antireflection coating. Details about the ultra-precise manufacturing of metal mirrors and prisms as well as their coating are presented in this work.

  14. Investigation of metallurgical coatings for automotive applications

    NASA Astrophysics Data System (ADS)

    Su, Jun Feng

    Metallurgical coatings have been widely used in the automotive industry from component machining, engine daily running to body decoration due to their high hardness, wear resistance, corrosion resistance and low friction coefficient. With high demands in energy saving, weight reduction and limiting environmental impact, the use of new materials such as light Aluminum/magnesium alloys with high strength-weight ratio for engine block and advanced high-strength steel (AHSS) with better performance in crash energy management for die stamping, are increasing. However, challenges are emerging when these new materials are applied such as the wear of the relative soft light alloys and machining tools for hard AHSS. The protective metallurgical coatings are the best option to profit from these new materials' advantages without altering largely in mass production equipments, machinery, tools and human labor. In this dissertation, a plasma electrolytic oxidation (PEO) coating processing on aluminum alloys was introduced in engine cylinder bores to resist wear and corrosion. The tribological behavior of the PEO coatings under boundary and starve lubrication conditions was studied experimentally and numerically for the first time. Experimental results of the PEO coating demonstrated prominent wear resistance and low friction, taking into account the extreme working conditions. The numerical elastohydrodynamic lubrication (EHL) and asperity contact based tribological study also showed a promising approach on designing low friction and high wear resistant PEO coatings. Other than the fabrication of the new coatings, a novel coating evaluation methodology, namely, inclined impact sliding tester was presented in the second part of this dissertation. This methodology has been developed and applied in testing and analyzing physical vapor deposition (PVD)/ chemical vapor deposition (CVD)/PEO coatings. Failure mechanisms of these common metallurgical hard coatings were systematically studied and summarized via the new testing methodology. Field tests based on the new coating characterization technique proved that this methodology is reliable, effective and economical.

  15. ENABLING COMMERCIALIZATION OF A LEAD-FREE COATING MANUFACTURING PROCESS - PHASE I

    EPA Science Inventory

    This Phase I SBIR program addresses the need for a manufacturing process that enables high reliability Pb-free tin coatings. Pb-free tin solders used in electronics applications have demonstrated whisker growth, due in part to compressive stresses within the deposit, causing ...

  16. Manufacturing issues which affect coating erosion performance in wind turbine blades

    NASA Astrophysics Data System (ADS)

    Cortés, E.; Sánchez, F.; Domenech, L.; Olivares, A.; Young, T. M.; O'Carroll, A.; Chinesta, F.

    2017-10-01

    Erosion damage, caused by repeated rain droplet impact on the leading edges of wind turbine blades, is a major cause for cost concern. Resin Infusion (RI) is used in wind energy blades where low weight and high mechanical performance materials are demanded. The surface coating plays a crucial role in the manufacturing and performance response. The Leading Edge coating is usually moulded, painted or sprayed onto the blade surface so adequate adhesion in the layers' characterization through the thickness is required for mechanical performance and durability reasons. In the current work, an investigation has been directed into the resulting rain erosion durability of the coating was undertaken through a combination of mass loss testing measurements with manufacturing processing parameter variations. The adhesion and erosion is affected by the shock wave caused by the collapsing water droplet on impact. The stress waves are transmitted to the substrate, so microestructural discontinuities in coating layers and interfaces play a key role on its degradation. Standard industrial systems are based on a multilayer system, with a high number of interfaces that tend to accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations and their potential stress reduction on the interface. In this research, the input parameters for the appropriate definition of the Cohesive Zone Modelling (CZM) of the coating-substrate interface are outlined by means of Pull off testing and Peeling testing results. It allowed one to optimize manufacturing and coating process for blades into a knowledge-based guidance for leading edge coating material development. It was achieved by investigating the erosion degradation process using both numerical and laboratory techniques (Pull off, Peeling and Rain Erosion Testing in a whirling arm rain erosion test facility).

  17. Antibacterial characteristics of thermal plasma spray system.

    PubMed

    Goudarzi, M; Saviz, Sh; Ghoranneviss, M; Salar Elahi, A

    2018-03-15

    The objective of this study is to investigate antibacterial characteristics of a thermal plasma spray system. For this purpose, copper powder was coated on a handmade atmospheric plasma spraying system made by the stainless steel 316 substrate, which is preheated at different temperatures before spraying. A number of deposition characteristics such as antibacterial characteristics, adhesion strength and hardness of coating, was investigated. All of the spray parameters are fixed except the substrate temperature. The chemical composition was analyzed by X-ray diffraction (XRD). A scanning electron microscopy (SEM) and back scattering electron microscopy (BSE) were used to show the coating microstructure, its thickness and also the powder micrograph. The energy dispersive X-ray spectroscopy (EDX) was used to analyze the coating particles. Hardness of the deposition was examined by Vickers tester (HV0.1). Its adhesion strength was declared by cross cut tester (TQC). In addition, the percentage of bactericidal coating was evidenced with Staphylococcus aurous and Escherichia coli bacteria. Study results show that as the substrates temperature increases, the number of splats in the shape of pancake increases, the greatness and percentage of the deposition porosity both decrease. The increment of the substrate temperature leads to more oxidation and makes thicker dendrites on the splat. The enhancement of the substrate temperature also enlarges thickness and efficiency of coating. The interesting results are that antibacterial properties of coatings against the Escherichia coli are more than Staphylococcus aurous bacteria. However the bactericidal percentage of the coatings against Staphylococcus aurous and Escherichia coli bacteria roughly does not change with increasing the substrate temperature. Furthermore, by increment of the substrate temperature, coatings with both high adhesion and hardness are obtained. Accordingly, the temperature of substrate can be an important parameter for progressing mechanical properties of the antiseptic deposition.

  18. Effect of heat input on microstructure, wear and friction behavior of (wt.-%) 50FeCrC-20FeW-30FeB coating on AISI 1020 produced by using PTA welding.

    PubMed

    Özel, Cihan; Gürgenç, Turan

    2018-01-01

    In this study, AISI 1020 steel surface was coated in different heat inputs with (wt.-%) 50FeCrC-20FeW-30FeB powder mixture by using plasma transferred arc (PTA) welding method. The microstructure of the coated samples were investigated by using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDS). The hardness was measured with micro hardness test device. The dry sliding wear and friction coefficient properties were determined using a block-on-disk type wear test device. Wear tests were performed at 19.62 N, 39.24 N, 58.86 N load and the sliding distance of 900 m. The results were shown that different microstructures formed due to the heat input change. The highest average micro hardness value was measured at 1217 HV on sample coated with low heat input. It was determined that the wear resistance decreased with increasing heat input.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumpala, Ravikumar; Nano Functional Materials Technology Centre, Department of Physics, Indian Institute of Technology Madras, Chennai 600036; Kumar, N.

    Tribo-layer formation and frictional characteristics of the SiC ball were studied with the sliding test against nanocrystalline diamond coating under atmospheric test conditions. Unsteady friction coefficients in the range of 0.04 to 0.1 were observed during the tribo-test. Friction and wear characteristics were found to be influenced by the formation of cohesive tribo-layer (thickness ∼ 1.3 μm) in the wear track of nanocrystalline diamond coating. Hardness of the tribo-layer was measured using nanoindentation technique and low hardness of ∼ 1.2 GPa was observed. The presence of silicon and oxygen in the tribo-layer was noticed by the energy dispersive spectroscopy mappingmore » and the chemical states of the silicon were analyzed using X-ray photoelectron spectroscopy. Large amount of oxygen content in the tribo-layer indicated tribo-oxidation wear mechanism. - Highlights: • Sliding wear and friction characteristics of SiC were studied against NCD coating. • Silicon oxide tribo-layer formation was observed in the NCD coating wear track. • Low hardness 1.2 GPa of tribo-layer was measured using nanoindentation technique. • Chemical states of silicon were analyzed using X-ray photoelectron spectroscopy.« less

  20. Effect of heat input on microstructure, wear and friction behavior of (wt.-%) 50FeCrC-20FeW-30FeB coating on AISI 1020 produced by using PTA welding

    PubMed Central

    Gürgenç, Turan

    2018-01-01

    In this study, AISI 1020 steel surface was coated in different heat inputs with (wt.-%) 50FeCrC-20FeW-30FeB powder mixture by using plasma transferred arc (PTA) welding method. The microstructure of the coated samples were investigated by using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDS). The hardness was measured with micro hardness test device. The dry sliding wear and friction coefficient properties were determined using a block-on-disk type wear test device. Wear tests were performed at 19.62 N, 39.24 N, 58.86 N load and the sliding distance of 900 m. The results were shown that different microstructures formed due to the heat input change. The highest average micro hardness value was measured at 1217 HV on sample coated with low heat input. It was determined that the wear resistance decreased with increasing heat input. PMID:29324875

  1. Mechanical properties of titanium-hydroxyapatite (Ti-HA) composite coating on stainless steel prepared by thermal spraying

    NASA Astrophysics Data System (ADS)

    Rosmamuhamadani, R.; Azhar, N. H.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.

    2017-09-01

    Addition of hydroxyapatite (HA) can enhance the bioactivity of the common metallic implant due to its similarity with natural bones and teeth. In this investigation, high velocity oxy-fuel (HVOFT) technique was used to deposit titanium-hydroxyapatite (Ti-HA) composite on stainless steel substrate plate with different percentage of HA for biomedical applications. The aim of this research is to investigate the mechanical properties of Ti-HA coating such as hardness, adhesion strength and wear behaviour. The hardness and strength was determined by using SHIMADZU-microhardness Vickers tester and PosiTest AT portable adhesion tester respectively. The wear test was performed by using pin-on-disk equipment and field emission scanning electron microscope (FESEM) used to determine the extent of surface damage. From the results obtained, mechanical properties such as hardness and adhesion strength of titanium (Ti) coating decreased with the increased of HA contents. Meanwhile, the coefficient of friction of Ti-10% HA coating shows the highest value compare to others as three-body abrasion had occurred during the test.

  2. Combined Effect of Long Processing Time and Na2SiF6 on the Properties of PEO Coatings Formed on AZ91D

    NASA Astrophysics Data System (ADS)

    Rehman, Zeeshan Ur; Koo, Bon Heun

    2016-08-01

    In this study, protective ceramic coatings were prepared on AZ91D magnesium alloy by plasma electrolytic oxidation (PEO) to improve the corrosion and mechanical properties of AZ91D magnesium alloy. The process was conducted in silicate-fluoride-based electrolyte solution. It was found that the average micro-hardness of the coating was significantly increased with an increase in the PEO processing time. The highest value of the average micro-hardness ~1271.2 HV was recorded for 60-min processing time. The phase analysis of the coatings indicated that they were mainly composed of Mg2SiO4, MgO, and MgF2 phases. The surface and cross-sectional study demonstrated that porosity was largely reduced with processing time, together with the change in pore geometry from irregular to spherical shape. The results of the polarization test in 3.5 wt.% NaCl solution revealed that aggressive corrosion took place for 5-min sample; however, the corrosion current was noticeably decreased to 0.43 × 10-7 A/cm2 for the 60-min-coated sample. The superior nobility and hardness for long processing time are suggested to be due to the dense and highly thick coating, coupled with the presence of MgF2 phase.

  3. Tribological Properties of HVOF-Sprayed TiB2-NiCr Coatings with Agglomerated Feedstocks

    NASA Astrophysics Data System (ADS)

    Zhao, Zichun; Li, Hui; Yang, Tianlong; Zhu, Hongbin

    2018-04-01

    Boride materials have drawn great attention in surface engineering field, owing to their high hardness and good wear resistance. In our previous work, a plasma-sprayed TiB2-based cermet coating was deposited, but the coating toughness was significantly influenced by the formation of a brittle ternary phase (Ni20Ti3B6) derived from the reaction between TiB2 and metal binder. In order to suppress such a reaction occurred in the high-temperature spraying process, the high-velocity oxygen-fuel spraying technique was applied to prepare the TiB2-NiCr coating. Emphasis was paid on the microstructure, the mechanical properties, and the sliding wearing performance of the coating. The result showed that the HVOF-sprayed coating mainly consisted of hard ceramic particles including TiB2, CrB, and the binder phase. No evidence of Ni20Ti3B6 phase was found in the coating. The mechanical properties of HVOF-sprayed TiB2-NiCr coating were comparable to the conventional Cr3C2-NiCr coating. The frictional coefficient of the TiB2-NiCr coating was lower than the Cr3C2-NiCr coating when sliding against a bearing steel ball.

  4. EVALUATION OF BARRIERS TO THE USE OF RADIATION-CURED COATINGS IN CAN MANUFACTURING

    EPA Science Inventory

    The report gives results of a study to investigate and identify the technical, educational, and economic barriers to the use and implementation of radiation-cured coatings in can manufacturing. The study is part of an EPA investigation of current industrial use and barriers to th...

  5. Dry coating of solid dosage forms: an overview of processes and applications.

    PubMed

    Foppoli, Anastasia Anna; Maroni, Alessandra; Cerea, Matteo; Zema, Lucia; Gazzaniga, Andrea

    2017-12-01

    Dry coating techniques enable manufacturing of coated solid dosage forms with no, or very limited, use of solvents. As a result, major drawbacks associated with both organic solvents and aqueous coating systems can be overcome, such as toxicological, environmental, and safety-related issues on the one hand as well as costly drying phases and impaired product stability on the other. The considerable advantages related to solventless coating has been prompting a strong research interest in this field of pharmaceutics. In the article, processes and applications relevant to techniques intended for dry coating are analyzed and reviewed. Based on the physical state of the coat-forming agents, liquid- and solid-based techniques are distinguished. The former include hot-melt coating and coating by photocuring, while the latter encompass press coating and powder coating. Moreover, solventless techniques, such as injection molding and three-dimensional printing by fused deposition modeling, which are not purposely conceived for coating, are also discussed in that they would open new perspectives in the manufacturing of coated-like dosage forms.

  6. Metallurgical coatings and thin films; Proceedings of the International Conference, 18th, San Diego, CA, Apr. 22-26, 1991. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    Mcguire, Gary E. (Editor); Mcintyre, Dale C. (Editor); Hofmann, Siegfried (Editor)

    1991-01-01

    A conference on metallurgical coatings and thin films produced papers in the areas of coatings for use at high temperatures; hard coatings and deposition technologies; diamonds and related materials; tribological coatings/surface modifications; thin films for microelectronics and high temperature superconductors; optical coatings, film characterization, magneto-optics, and guided waves; and methods for characterizing films and modified surfaces.

  7. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  8. Fracture toughness and sliding properties of magnetron sputtered CrBC and CrBCN coatings

    NASA Astrophysics Data System (ADS)

    Wang, Qianzhi; Zhou, Fei; Ma, Qiang; Callisti, Mauro; Polcar, Tomas; Yan, Jiwang

    2018-06-01

    CrBC and CrBCN coatings with low and high B contents were deposited on 316L steel and Si wafers using an unbalanced magnetron sputtering system. Mechanical properties including hardness (H), elastic modulus (E) and fracture toughness (KIc) as well as residual stresses (σ) were quantified. A clear correlation between structural, mechanical and tribological properties of coatings was found. In particular, structural analyses indicated that N incorporation in CrBC coatings with high B content caused a significant structural evolution of the nanocomposite structure (crystalline grains embedded into an amorphous matrix) from nc-CrB2/(a-CrBx, a-BCx) to nc-CrN/(a-BCx, a-BN). As a result, the hardness of CrBC coating with high B content decreased from 23.4 to 16.3 GPa but the fracture toughness was enhanced. Consequently, less cracks initiated on CrBCN coatings during tribological tests, which combined with the shielding effect of a-BN on wear debris, led to a low friction coefficient and wear rate.

  9. Transparent anti-stain coatings with good thermal and mechanical properties based on polyimide-silica nanohybrids.

    PubMed

    Choi, Myeon-Cheon; Sung, Giju; Nagappan, Saravanan; Han, Mi-Jeong; Ha, Chang-Sik

    2012-07-01

    In this work, we synthesized polyimide/silica hybrid materials via sol-gel method using a fluorinated poly(amic acid) silane precursor and a variety of perfluorosilane contents. We studied the influence of a hybrid coating film with the following characteristics; hydrophobicity, oleophobicity, optical transparency, and surface hardness of the coating films. The hybrid coatings with the fluorosilane contents up to 10 wt% are optically transparent and present good thermal stability with a degradation temperature of > 500 degrees C as well as a glass transition of > 300 degrees C. Both water contact angle and oil contact angle increase rapidly with introducing small amount of the fluorosilane in the hybrids and reaches the maximum of 115 degrees and 61 degrees, respectively. The hardness of the hybrid coatings increases up to 5H with an increase of the FTES content in the hybrids. These colorless, transparent, and thermally stable hybrid materials could be suitable for applications as anti-stain coatings.

  10. Submicrometric structure of superhard oxide coatings on the surface of refractory metals treated with high-frequency currents

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Egorov, Ivan S.; Shelkunov, Andrey Yu.

    2018-04-01

    As a result of heat treatment of titanium in the high-temperature range (1000-1200 °C), a layer of rutile (TiO2) is formed on the surface, the hardness of which can reach 60 GPa. The production of the coating includes an intensive growth of the crystals, spontaneous scale delamination (up to 100 μm thick) and formation of a submicrometric porous-crystalline structure of a superhard thin coating (about 0.5-1.5 μm thick). Preliminary tests have shown that the resulting coatings of the system "steel substrate - Ti+TiO2" can be used as tool coatings in the treatment of structural steel (0.4-0.5 wt.% carbon content), as well as chromium steel 40Cr13 (0.4 wt.% carbon content, chromium - about 13 wt.%) with a hardness within 45 HRC. These coatings are also characterized by biocompatibility, which was previously proved by in vitro and in vivo tests.

  11. Microstructural Analysis of TiAl x N y O z Coatings Fabricated by DC Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    García-González, L.; Hernández-Torres, J.; Flores-Ramírez, N.; Martínez-Castillo, J.; García-Ramírez, P. J.; Muñoz-Saldaña, J.; Espinoza-Beltrán, F. J.

    2009-02-01

    TiAl x N y O z coatings were prepared by DC reactive sputtering on AISI D2 tool steel substrates, using a target of Ti-Al-O fabricated from a mixture of powders of Ti (22.60 wt.%), Al (24.77 wt.%), and O (52.63 wt.%). The coatings were deposited on substrates at room temperature in a reactive atmosphere of nitrogen and argon under a pressure of 8.5 × 10-3 mbar. X-ray diffraction, electron dispersive spectroscopy, Raman scattering, and nanoindentation techniques were employed to investigate the coatings. The results show that the increment in the nitrogen flow affects the structure and the mechanical properties of the coatings. The sample with the lowest nitrogen flow presented the highest hardness (10.5 GPa) and the Young’s modulus (179.5 GPa). The hardness of the coatings TiAl x N y O z as a function of crystalline grain size shows a behavior consistent with the Hall-Petch relation.

  12. Design of a high power TM01 mode launcher optimized for manufacturing by milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dal Forno, Massimo

    2016-12-15

    Recent research on high-gradient rf acceleration found that hard metals, such as hard copper and hard copper-silver, have lower breakdown rate than soft metals. Traditional high-gradient accelerating structures are manufactured with parts joined by high-temperature brazing. The high temperature used in brazing makes the metal soft; therefore, this process cannot be used to manufacture structures out of hard metal alloys. In order to build the structure with hard metals, the components must be designed for joining without high-temperature brazing. One method is to build the accelerating structures out of two halves, and join them by using a low-temperature technique, atmore » the symmetry plane along the beam axis. The structure has input and output rf power couplers. We use a TM01 mode launcher as a rf power coupler, which was introduced during the Next Linear Collider (NLC) work. The part of the mode launcher will be built in each half of the structure. This paper presents a novel geometry of a mode launcher, optimized for manufacturing by milling. The coupler was designed for the CERN CLIC working frequency f = 11.9942 GHz; the same geometry can be scaled to any other frequency.« less

  13. Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Harris, J.; Kesler, O.

    2010-01-01

    Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.

  14. A Comparative Study of the Microstructure, Mechanical Properties and Corrosion Resistance of Ni- or Fe- Based Composite Coatings by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wan, M. Q.; Shi, J.; Lei, L.; Cui, Z. Y.; Wang, H. L.; Wang, X.

    2018-04-01

    Ni- and Fe-based composite coatings were laser cladded on 40Cr steel to improve the surface mechanical property and corrosion resistance, respectively. The microstructure and phase composition were analyzed by x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) equipped with an energy-dispersive spectrometer (EDS). The micro-hardness, tribological properties and electrochemical corrosion behavior of the coatings were evaluated. The results show that the thickness of both the coatings is around 0.7 mm, the Ni-based coating is mainly composed of γ-(Ni, Fe), FeNi3, Ni31Si12, Ni3B, CrB and Cr7C3, and the Fe-based coating is mainly composed of austenite and (Fe, Cr)7C3. Micro-hardness of the Ni-based composite coating is about 960 HV0.3, much higher than that of Fe-based coating (357.4 HV0.3) and the 40Cr substrate (251 HV0.3). Meanwhile, the Ni-based composite coating possesses better wear resistance than the Fe-based coating validated by the worn appearance and the wear loss. Electrochemical results suggested that Ni-based coating exhibited better corrosion resistance than the Fe-based coating. The 40Cr substrate could be well protected by the Ni-based coating.

  15. Microstructure and Antiwear Property of Laser Cladding Ni-Co Duplex Coating on Copper.

    PubMed

    Wang, Yiyong; Liang, Zhipeng; Zhang, Junwei; Ning, Zhe; Jin, Hui

    2016-07-28

    Ni-Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al₂O₃/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni-Co duplex coatings comprised a Co-based solid solution, Cr₇C₃, (Fe,Ni) 23 C₆, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV). The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni-Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni-Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties.

  16. Analysis and experimental investigation of ceramic powder coating on aluminium piston

    NASA Astrophysics Data System (ADS)

    Pal, S.; Deore, A.; Choudhary, A.; Madhwani, V.; Vijapuri, D.

    2017-11-01

    Energy conservation and efficiency have always been the quest of engineers concerned with internal combustion engines. The diesel engine generally offers better fuel economy than its counterpart petrol engine. Even the diesel engine rejects about two thirds of the heat energy of the fuel, one-third to the coolant, and one third to the exhaust, leaving only about one-third as useful power output. Theoretically if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. Low Heat Rejection engines aim to do this by reducing the heat lost to the coolant. Thermal Barrier Coatings (TBCs) in diesel engines lead to advantages including higher power density, fuel efficiency, and multifuel capacity due to higher combustion chamber temperature. Using TBC can increase engine power by 8%, decrease the specific fuel consumption by 15-20% and increase the exhaust gas temperature by 200K. Although several systems have been used as TBC for different purposes, yttria stabilized zirconia with 7-8 wt.% yttria has received the most attention. Several factors playing important role in TBC life include thermal conductivity, thermo chemical stability at the service temperature, high thermo mechanical stability to the maximum service temperature and thermal expansion coefficient (TEC). This work mainly concentrates on the behaviour of three TBC powders under the same diesel engine conditions. This work finds out the best powder among yttria, alumina and zirconia to be used as a piston coating material i.e., the one resulting in lowest heat flux and low side skirt and bottom temperature has been chosen for the coating purpose. This work then analyses the coated sample for its surface properties such as hardness, roughness, corrosion resistance and microstructural study. This work aims at making it easier for the manufacturers choose the coating material for engine coating purposes and surface properties for operating them in their service period.

  17. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalablemore » manufacture of said subwavelength coatings.« less

  18. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1999-01-01

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  19. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

  20. Compositionally modulated multilayer diamond-like carbon coatings with AlTiSi multi-doping by reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Gao, Xiang; Liu, Jingmao; Kwon, Se-Hun; Wang, Qimin

    2017-12-01

    Diamond-like carbon (DLC) coatings with AlTiSi multi-doping were prepared by a reactive high power impulse magnetron sputtering with using a gas mixture of Ar and C2H2 as precursor. The composition, microstructure, compressive stress, and mechanical property of the as-deposited DLC coatings were studied systemically by using SEM, XPS, TEM, Raman spectrum, stress-tester, and nanoindentation as a function of the Ar fraction. The results show that the doping concentrations of the Al, Ti and Si atoms increased as the Ar fraction increased. The doped Ti and Si preferred to bond with C while the doped Al mainly existed in oxidation state without bonding with C. As the doping concentrations increased, TiC carbide nanocrystals were formed in the DLC matrix. The microstructure of coatings changed from an amorphous feature dominant AlTiSi-DLC to a carbide nanocomposite AlTiSi-DLC with TiC nanoparticles embedding. In addition, the coatings exhibited the compositionally modulated multilayer consisting of alternate Al-rich layer and Al-poor layer due to the rotation of the substrate holder and the diffusion behavior of the doped Al which tended to separate from C and diffuse towards the DLC matrix surface owing to its weak interactions with C. The periodic Al-rich layer can effectively release the compressive stress of the coatings. On the other hand, the hard TiC nanoparticles were conducive to the hardness of the coatings. Consequently, the DLC coatings with relatively low residual stress and high hardness could be acquired successfully through AlTiSi multi-doping. It is believed that the AlCrSi multi-doping may be a good way for improving the comprehensive properties of the DLC coatings. In addition, we believe that the DLC coatings with Al-rich multilayered structure have a high oxidation resistance, which allows the DLC coatings application in high temperature environment.

  1. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool

    PubMed Central

    Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Matos Martins, Marcelo

    2018-01-01

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds. PMID:29495620

  2. Experience of high-nitrogenous steel powder application in repairs and surface hardening of responsible parts for power equipment by plasma spraying

    NASA Astrophysics Data System (ADS)

    Kolpakov, A. S.; Kardonina, N. I.

    2016-02-01

    The questions of the application of novel diffusion-alloying high-nitrogenous steel powders for repair and surface hardening of responsible parts of power equipment by plasma spraying are considered. The appropriateness of the method for operative repair of equipment and increasing its service life is justified. General data on the structure, properties, and manufacture of nitrogen-, aluminum-, and chromium-containing steel powders that are economically alloyed using diffusion are described. It is noted that the nitrogen release during the decomposition of iron nitrides, when heating, protects the powder particles from oxidation in the plasma jet. It is shown that the coating retains 50% of nitrogen that is contained in the powder. Plasma spraying modes for diffusion-alloying high-nitrogenous steel powders are given. The service properties of plasma coatings based on these powders are analyzed. It is shown that the high-nitrogenous steel powders to a nitrogen content of 8.9 wt % provide the necessary wear resistance and hardness of the coating and the strength of its adhesion to the substrate and corrosion resistance to typical aggressive media. It is noted that increasing the coating porosity promotes stress relaxation and increases its thickness being limited with respect to delamination conditions in comparison with dense coatings on retention of the low defectiveness of the interface and high adhesion to the substrate. The examples of the application of high-nitrogenous steel powders in power engineering during equipment repairs by service companies and overhaul subdivisions of heat power plants are given. It is noted that the plasma spraying of diffusion-alloyed high-nitrogenous steel powders is a unique opportunity to restore nitrided steel products.

  3. Microstructure and properties of TiB2-TiB reinforced titanium matrix composite coating by laser cladding

    NASA Astrophysics Data System (ADS)

    Lin, Yinghua; Yao, Jianhua; Lei, Yongping; Fu, Hanguang; Wang, Liang

    2016-11-01

    TiB2 particle and TiB short fiber reinforced titanium matrix composite coatings were prepared utilizing in situ synthesized technique by laser cladding on the surface of Ti6Al4V alloy. Through the experiment, it was found that the surface of the single-track coatings appeared in the depression, but it can be improved by laser track overlapping. With the increase of laser power density, the amount of TiB short fiber was increased, and the distribution of TiB2 and TiB became more uniform from the top to bottom. The micro-hardness of TiB2/TiB coating showed a gradient decreasing trend, and the average micro-hardness of the coatings was two-fold higher than that of the substrate. Due to the strengthening effect of TiB2 particle and TiB short fiber, the wear volume loss of the center of the coating was approximately 30% less than that of the Ti-6Al-4V substrate, and the wear mechanism of the coating was mild fatigue particle detachment.

  4. A new formulation for orally disintegrating tablets using a suspension spray-coating method.

    PubMed

    Okuda, Y; Irisawa, Y; Okimoto, K; Osawa, T; Yamashita, S

    2009-12-01

    The aim of this study was to design a new orally disintegrating tablet (ODT) that has high tablet hardness and a fast oral disintegration rate using a new preparation method. To obtain rapid disintegration granules (RDGs), a saccharide, such as trehalose, mannitol, or lactose, was spray-coated with a suspension of corn starch using a fluidized-bed granulator (suspension method). As an additional disintegrant, crospovidone, light anhydrous silicic acid, or hydroxypropyl starch was also included in the suspension. The RDGs obtained possessed extremely large surface areas, narrow particle size distribution, and numerous micro-pores. When tabletting these RDGs, it was found that the RDGs increased tablet hardness by decreasing plastic deformation and increasing the contact frequency between granules. In all tablets, a linear relationship was observed between tablet hardness and oral disintegration time. From each linear correlation line, a slope (D/H value) and an intercept (D/H(0) value) were calculated. Tablets with small D/H and D/H(0) values could disintegrate immediately in the oral cavity regardless of the tablet hardness and were considered to be appropriate for ODTs. Therefore, these values were used as key parameters to select better ODTs. Of all the RDGs prepared in this study, mannitol spray-coated with a suspension of corn starch and crospovidone (2.5:1 w/w ratio) showed most appropriate properties for ODTs; fast in vivo oral disintegration time, and high tablet hardness. In conclusion, this simple method to prepare superior formulations for new ODTs was established by spray-coating mannitol with a suspension of appropriate disintegrants.

  5. TiCN/TiNbCN multilayer coatings with enhanced mechanical properties

    NASA Astrophysics Data System (ADS)

    Caicedo, J. C.; Amaya, C.; Yate, L.; Gómez, M. E.; Zambrano, G.; Alvarado-Rivera, J.; Muñoz-Saldaña, J.; Prieto, P.

    2010-08-01

    Enhancement of mechanical properties by using a TiCN/TiNbCN multilayered system with different bilayer periods ( Λ) and bilayer numbers ( n) via magnetron sputtering technique was studied in this work. The coatings were characterized in terms of structural, chemical, morphological and mechanical properties by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nanoindentation. Results of the X-ray analysis showed reflections associated to FCC (1 1 1) crystal structure for TiCN/TiNbCN films. AFM analysis revealed a reduction of grain size and roughness when the bilayer number is increased and the bilayer period is decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period ( Λ) was 15 nm ( n = 200), yielding the highest hardness (42 GPa) and elastic modulus (408 GPa). The values for the hardness and elastic modulus are 1.6 and 1.3 times greater than the coating with n = 1, respectively. The enhancement effects in multilayer coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain the increase in hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayers taking into account the thickness reduction at individual single layers that make the multilayered system. The Hall-Petch model based on dislocation motion within layers and across layer interfaces, has been successfully applied to multilayers to explain this hardness enhancement.

  6. ACES. Accelerated Corrosion Expert Simulator

    DTIC Science & Technology

    2010-02-01

    Composites Coating Systems Organic Inorganic Ceramic Materials 22 Inputs and Dimensions Xi Thickness Hardness Strength Ductility Abrasion Resistance...GPU 25 T-Handle Latch 10-Year ACT Material/ Coating Configuration Die Cast Zinc T-Handle Carbon Steel Pin CS Shank CS T-Washer Carbon Steel Dish E- coat ...CARC Zinc Plating Cadmium Plated BoltE- coat /CARC CS Panel CS Panel O-Ring E- coat /CARC Original (10-year ACT) Design Green Flag Color Qualitative

  7. Static evaluation of surface coatings for compliant gas bearings in an oxidizing atmosphere to 650 C

    NASA Technical Reports Server (NTRS)

    Bhushan, B.; Gray, S.

    1978-01-01

    Hard wear-resistant coatings and soft low shear strength coatings were developed for an air-lubricated compliant journal bearing for a future automotive gas turbine engine. The coatings were expected to function in either 540 or 650 C ambient. Soft lubricant coatings were generally limited in temperature. Therefore emphasis was on the hard wear-resistant coatings. The coating materials covered were TiC, B4C, Cr3C2, WC, SiC, CrB2, TiB2, Cr2O3, Al2O3, Si3N4, Tribaloy 800, CaF2, CaF2-BaF2 eutectic, Ni-Co, silver, CdO-graphite and proprietary compounds. The coatings on test coupons were subjected to static oven screening tests. The test consisted of exposure of material samples in an oven for 300 h at the maximum temperature (540 or 650 C) and ten temperature cycles from room temperature to the maximum service temperature. On the basis of the specimen examinations the following coatings were recommended for future wear tests: TiC (sputtered), Cr2O3 (sputtered), Si3N4 (sputtered), CdO and graphite (fused), Kaman DES (a proprietary coating), CrB2 (plasma sprayed), Cr3C2 (detonation gun) and NASA PS-106 (plasma sprayed).

  8. Solid particle erosion mechanisms of protective coatings for aerospace applications

    NASA Astrophysics Data System (ADS)

    Bousser, Etienne

    The main objective of this PhD project is to investigate the material loss mechanisms during Solid Particle Erosion (SPE) of hard protective coatings, including nanocomposite and nanostructured systems. In addition, because of the complex nature of SPE mechanisms, rigorous testing methodologies need to be employed and the effects of all testing parameters need to be fully understood. In this PhD project, the importance of testing methodology is addressed throughout in order to effectively study the SPE mechanisms of brittle materials and coatings. In the initial stage of this thesis, we studied the effect of the addition of silicon (Si) on the microstructure, mechanical properties and, more specifically, on the SPE resistance of thick CrN-based coatings. It was found that the addition of Si significantly improved the erosion resistance and that SPE correlated with the microhardness values, i.e. the coating with the highest microhardness also had the lowest erosion rate (ER). In fact, the ERs showed a much higher dependence on the surface hardness than what has been proposed for brittle erosion mechanisms. In the first article, we study the effects of the particle properties on the SPE behavior of six brittle bulk materials using glass and alumina powders. First, we apply a robust methodology to accurately characterize the elasto-plastic and fracture properties of the studied materials. We then correlate the measured ER to materials' parameters with the help of a morphological study and an analysis of the quasi-static elasto-plastic erosion models. Finally, in order to understand the effects of impact on the particles themselves and to support the energy dissipation-based model proposed here, we study the particle size distributions of the powders before and after erosion testing. It is shown that tests using both powders lead to a material loss mechanism related to lateral fracture, that the higher than predicted velocity exponents point towards a velocity-dependent damage accumulation mechanism correlated to target yield pressure, and that damage accumulation effects are more pronounced for the softer glass powder because of kinetic energy dissipation through different means. In the second article, we study the erosion mechanisms for several hard coatings deposited by pulsed DC magnetron sputtering. We first validate a new methodology for the accurate measurement of volume loss, and we show the importance of optimizing the testing parameters in order to obtain results free from experimental artefacts. We then correlate the measured ERs to the material parameters measured by depth-sensing indentation. In order to understand the material loss mechanisms, we study three of the coating systems in greater detail with the help of fracture characterization and a morphological study of the eroded surfaces. Finally, we study the particle size distributions of the powders before and after erosion testing in an effort to understand the role of particle fracture. We demonstrate that the measured ERs of the coatings are strongly dependent on the target hardness and do not correlate with coating toughness. In fact, the material removal mechanism is found to occur through repeated ductile indentation and cutting of the surface by the impacting particles and that particle breakup is not sufficiently large to influence the results significantly. Studying SPE mechanisms of hard protective coating systems in detail has proven to be quite challenging in the past, given that conventional SPE testing is notoriously inaccurate due to its aggressive nature and its many methodological uncertainties. In the third article, we present a novel in situ real-time erosion testing methodology using a quartz crystal microbalance, developed in order to study the SPE process of hard protective coating systems. Using conventional mass loss SPE testing, we validate and discuss the advantages and challenges related to such a method. In addition, this time-resolved technique enables us to discuss some transient events present during SPE testing of hard coating systems leading to new insights into the erosion process. (Abstract shortened by UMI.)

  9. Experimental investigation on erosive wear behaviour of plasma spray coated stainless steel

    NASA Astrophysics Data System (ADS)

    Girisha, K. G.; Sreenivas Rao, K. V.; Anil, K. C.; Sanman, S.

    2017-04-01

    Slurry erosion is an implicit problem in many engineering industrial components such as ore carrying pipelines, slurry pumps and extruders. Even the water turbine blades are subjected to erosive wear when the water contains considerable amount of silt. In the present study, Al2O3-40%TiO2 powder particles of average particle size of 50 micrometer were deposited on EN56B martenistic stainless steel by atmospheric plasma spray technique. Ni/Cr was pre coated to work as bond coat for good adhesion between coating and the substrate material. A coating thickness of 200 micrometer was achieved. Coated and un-coated substrates were subjected to slurry erosion test as per ASTM G-119 standard. Slurry erosion test rig was used to evaluate the erosion properties at room temperature condition by varying the spindle speed. Scanning electron microphotographs were taken before and after the slurry erosion test. Microstructures reveal uniform distribution of coating materials. Eroded surface shows lip, groove, and crater formation and dense coating resulting in less porosity. Micro hardness test was evaluated and reported. EDX analysis confirms the presence of Al, Ti and O2 particles. It was observed that, Al2O3-40%TiO2 coated substrates exhibit superior erosion resistance as compared to un-coated substrates due to higher hardness and less coating porosity.

  10. Characterization and mechanical properties investigation of TiN-Ag films onto Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Du, Dongxing; Liu, Daoxin; Zhang, Xiaohua; Tang, Jingang; Xiang, Dinggen

    2016-03-01

    To investigate their effect on fretting fatigue (FF) resistance of a Ti-6Al-4V alloy, hard solid lubricating composite films of TiN with varying silver contents (TiN-Ag) were deposited on a Ti-6Al-4V alloy using ion-assisted magnetron sputtering. The surface morphology and structure were analyzed by atomic force microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. The hardness, bonding strength, and toughness of films were tested using a micro-hardness tester, scratch tester, and a repeated press-press test system that was manufactured in-house, respectively. The FF resistance of TiN-Ag composite films was studied using self-developed devices. The results show that the FF resistance of a titanium alloy can be improved by TiN-Ag composite films, which were fabricated using hard TiN coating doped with soft Ag. The FF life of Ag0.5, Ag2, Ag5, Ag10 and Ag20 composite films is 2.41, 3.18, 3.20, 2.94 and 2.87 times as great as that of the titanium alloy, respectively. This is because the composite films have the better toughness, friction lubrication, and high bonding strength. When the atomic fraction of Ag changes from 2% to 5%, the FF resistance of the composite films shows the best performance. This is attributed to the surface integrity of the composite film is sufficiently fine to prevent the initiation and early propagation of FF cracks.

  11. Development of Multilayer Coatings for Hard X-Ray Optics at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gurgew, Danielle N.; Broadway, David M.; Ramsey, Brian; Gregory, Don

    2017-01-01

    Broadband X-ray multilayer coatings are under development at NASA MSFC for use on future astronomical X-ray telescopes. Multilayer coatings deposited onto the reflecting surfaces of X-ray optics can provide a large bandpass enabling observations of higher energy astrophysical objects and phenomena.

  12. Tests Of Polyurethane And Dichromate Coats On Aluminum

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Report describes experiments to determine relative effectiveness of new polyurethane and more-conventional dichromate coat in helping to retard corrosion of anodized 6061-T6 aluminum. Concludes by suggesting greater protection against corrosion achieved by combining polyurethane-sealing method with hard-anodizing method and by increasing thickness of coat.

  13. Nanocrystalline coating design for extreme applications based on the concept of complex adaptive behavior

    NASA Astrophysics Data System (ADS)

    Fox-Rabinovich, G. S.; Veldhuis, S. C.; Dosbaeva, G. K.; Yamamoto, K.; Kovalev, A. I.; Wainstein, D. L.; Gershman, I. S.; Shuster, L. S.; Beake, B. D.

    2008-04-01

    The development of effective hard coatings for high performance dry machining, which is associated with high stress/temperatures during friction, is a major challenge. Newly developed synergistically alloyed nanocrystalline adaptive Ti0.2Al0.55Cr0.2Si0.03Y0.02N plasma vapor deposited hard coatings exhibit excellent tool life under conditions of high performance dry machining of hardened steel, especially under severe and extreme cutting conditions. The coating is capable of sustaining cutting speeds as high as 600 m/min. Comprehensive investigation of the microstructure and properties of the coating was performed. The structure of the coating before and after service has been characterized by high resolution transmission electron microscopy. Micromechanical characteristics of the coating have been investigated at elevated temperatures. Oxidation resistance of the coating has been studied by using thermogravimetry within a temperature range of 25-1100 °C in air. The coefficient of friction of the coatings was studied within a temperature range of 25-1200 °C. To determine the causes of excellent tool life and improved wear behavior of the TiAlCrSiYN coatings, its surface structure characteristics after service have been investigated by using x-ray photoelectron spectroscopy and extended energy-loss fine spectroscopy. One of the major features of this coating is the dynamic formation of the protective tribo-oxide films (dissipative structures) on the surface during friction with a sapphire and mullite crystal structure. Aluminum- and silicon-rich tribofilms with dangling bonds form on the surface as well. These tribofilms act in synergy and protect the surface so efficiently that it is able to sustain extreme operating conditions. Moreover, the Ti0.2Al0.55Cr0.2Si0.03Y0.02N coating possesses some features of a complex adaptive behavior because it has a number of improved characteristics (tribological adaptability, ultrafine nanocrystalline structure, hot hardness and plasticity, and oxidation stability) that work synergistically as a whole. Due to the complex adaptive behavior, this coating represents a higher ordered system that has an ability to achieve unattainable wear resistance under strongly intensifying and extreme tribological conditions.

  14. The role of nanocrystalline binder metallic coating into WC after additive manufacturing

    NASA Astrophysics Data System (ADS)

    Cavaleiro, A. J.; Fernandes, C. M.; Farinha, A. R.; Gestel, C. V.; Jhabvala, J.; Boillat, E.; Senos, A. M. R.; Vieira, M. T.

    2018-01-01

    Tungsten carbide with microsized particle powders are commonly used embedded in a tough binder metal. The application of these composites is not limited to cutting tools, WC based material has been increasingly used in gaskets and other mechanical parts with complex geometries. Consequently, additive manufacturing processes as Selective Laser Sintering (SLS) might be the solution to overcome some of the manufacturing problems. However, the use of SLS leads to resolve the problems resulting from difference of physical properties between tungsten carbide and the metallic binder, such as laser absorbance and thermal conductivity. In this work, an original approach of powder surface modification was considered to prepare WC-metal composite powders and overcome these constraints, consisting on the sputter-coating of the WC particle surfaces with a nanocrystalline thin film of metallic binder material (stainless steel). The coating improves the thermal behavior and rheology of the WC particles and, at the same time, ensures a binder homogenous distribution. The feasibility of the SLS technology as manufacturing process for WC powder sputter-coated with 13 wt% stainless steel AISI 304L was explored with different laser power and scanning speed parameters. The SLS layers were characterized regarding elemental distribution, phase composition and morphology, and the results are discussed emphasizing the role of the coating on the consolidation process.

  15. Protective Coatings for Metals

    NASA Technical Reports Server (NTRS)

    Ruggieri, D. J.; Rowe, A. P.

    1986-01-01

    Report evaluates protective coatings for metal structures in seashore and acid-cloud environments. Evaluation result of study of coating application characteristics, repair techniques, and field performance. Products from variety of manufacturers included in study. Also factory-coated panels and industrial galvanized panels with and without topcoats.

  16. Advanced Materials and Multifunctional Structures for Aerospace Vehicles

    DTIC Science & Technology

    2006-10-01

    environment and sulfur in fuels, leading to deterioration of engine hot section components, including the turbine and combustor. As such, development and...barrier coatings for high temperature turbine components are in high demand. 3.1 Hard Coatings for Erosion, Wear and Corrosion Protection A coating that...C-N coatings showed that increasing carbon content in the coating reduced the corrosion resistance in 1 N H2SO4 solution102; nevertheless, it was

  17. COATING COLUMBIUM FOR HIGH TEMPERATURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoz, G.

    1960-04-01

    An investigation was conducted to find a coating for niobium to make it oxidation resistaat. The results obtained at the U. S. Naval Research Laboratory using zinc as a coating are reported. Tests conducted on molten zinc dipped niobium with an intentional flaw after coating, revealed a moderate hardness increase near the flaw. No indication of oxygen absorption or other embrittlement after 5 hours at 2000 deg F was observed in the coated metal. (B.O.G.)

  18. Friction- and wear-reducing coating

    DOEpatents

    Zhu, Dong [Farmington Hills, MI; Milner, Robert [Warren, MI; Elmoursi, Alaa AbdelAzim [Troy, MI

    2011-10-18

    A coating includes a first layer of a ceramic alloy and a second layer disposed on the first layer and including carbon. The coating has a hardness of from 10 to 20 GPa and a coefficient of friction of less than or equal to 0.12. A method of coating a substrate includes cleaning the substrate, forming the first layer on the substrate, and depositing the second layer onto the first layer to thereby coat the substrate.

  19. Surface modification techniques for increased corrosion tolerance of zirconium fuel cladding

    NASA Astrophysics Data System (ADS)

    Carr, James Patrick, IV

    Corrosion is a major issue in applications involving materials in normal and severe environments, especially when it involves corrosive fluids, high temperatures, and radiation. Left unaddressed, corrosion can lead to catastrophic failures, resulting in economic and environmental liabilities. In nuclear applications, where metals and alloys, such as steel and zirconium, are extensively employed inside and outside of the nuclear reactor, corrosion accelerated by high temperatures, neutron radiation, and corrosive atmospheres, corrosion becomes even more concerning. The objectives of this research are to study and develop surface modification techniques to protect zirconium cladding by the incorporation of a specific barrier coating, and to understand the issues related to the compatibility of the coatings examined in this work. The final goal of this study is to recommend a coating and process that can be scaled-up for the consideration of manufacturing and economic limits. This dissertation study builds on previous accident tolerant fuel cladding research, but is unique in that advanced corrosion methods are tested and considerations for implementation by industry are practiced and discussed. This work will introduce unique studies involving the materials and methods for accident tolerant fuel cladding research by developing, demonstrating, and considering materials and processes for modifying the surface of zircaloy fuel cladding. This innovative research suggests that improvements in the technique to modify the surface of zirconium fuel cladding are likely. Three elements selected for the investigation of their compatibility on zircaloy fuel cladding are aluminum, silicon, and chromium. These materials are also currently being investigated at other labs as alternate alloys and coatings for accident tolerant fuel cladding. This dissertation also investigates the compatibility of these three elements as surface modifiers, by comparing their microstructural and mechanical properties. To test their application for use in corrosive atmospheres, the corrosion behaviors are also compared in steam, water, and boric-acid environments. Various methods of surface modification were attempted in this investigation, including dip coating, diffusion bonding, casting, sputtering, and evaporation. The benefits and drawbacks of each method are discussed with respect to manufacturing and economic limits. Characterization techniques utilized in this work include optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, nanoindentation, adhesion testing, and atomic force microscopy. The composition, microstructure, hardness, modulus, and coating adhesion were studied to provide encompassing properties to determine suitable comparisons and to choose an ideal method to scale to industrial applications. The experiments, results, and detailed discussions are presented in the following chapters of this dissertation research.

  20. Evaluating the Field Emission Characteristics of Aluminum for DC High Voltage Photo-Electron Guns

    NASA Astrophysics Data System (ADS)

    Taus, Rhys; Poelker, Matthew; Forman, Eric; Mamun, Abdullah

    2014-03-01

    High current photoguns require high power laser light, but only a small portion of the laser light illuminating the photocathode produces electron beam. Most of the laser light (~ 65%) simply serves to heat the photocathode, which leads to evaporation of the chemicals required to create the negative electron affinity condition necessary for photoemission. Photocathode cooling techniques have been employed to address this problem, but active cooling of the photocathode is complicated because the cooling apparatus must float at high voltage. This work evaluates the field emission characteristics of cathode electrodes manufactured from materials with high thermal conductivity: aluminum and copper. These electrodes could serve as effective heat sinks, to passively cool the photocathode that resides within such a structure. However, literature suggests ``soft'' materials like aluminum and copper are ill suited for photogun applications, due to excessive field emission when biased at high voltage. This work provides an evaluation of aluminum and copper electrodes inside a high voltage field emission test stand, before and after coating with titanium nitride (TiN), a coating that enhances surface hardness. National Science Foundation Award Number: 1062320 and the Department of Defence ASSURE program.

  1. Flexible storage medium for write-once optical tape

    NASA Technical Reports Server (NTRS)

    Strandjord, Andrew J. G.; Webb, Steven P.; Perettie, Donald J.; Cipriano, Robert A.

    1993-01-01

    A write-once data storage media was developed which is suitable for optical tape applications. The media is manufactured using a continuous film process to deposit a ternary alloy of tin, bismuth, and copper. This laser sensitive layer is sputter deposited onto commercial plastic web as a single-layer thin film. A second layer is sequentially deposited on top of the alloy to enhance the media performance and act as an abrasion resistant hard overcoat. The media was observed to have laser write sensitivities of less than 2.0 njoules/bit, carrier-to-noise levels of greater than 50dB's, modulation depths of approximately 100 percent, read-margins of greater than 35, uniform grain sizes of less than 200 Angstroms, and a media lifetime that exceeds 10 years. Prototype tape media was produced for use in the CREO drive system. The active and overcoat materials are first sputter deposited onto three mil PET film in a single pass through the vacuum coating system, and then converted down into multiple reels of 35mm x 880m tape. One mil PET film was also coated in this manner and then slit and packaged into 3480 tape cartridges.

  2. Morphology and microhardness of TiC coatings on titanium treated with high-frequency currents

    NASA Astrophysics Data System (ADS)

    Voyko, Aleksey V.; Fomina, Marina A.; Koshuro, Vladimir A.; Fomin, Aleksandr A.; Rodionov, Igor V.; Atkin, Vsevolod S.; Galushka, Viktor V.; Zakharevich, Andrey M.; Skaptsov, Alexander A.

    2018-04-01

    The treatment with high frequency currents (HFC) is traditionally used to improve the mechanical properties of metal products, in particular hardness and wear resistance. A new method of carburization of titanium samples in a solid carburizer using HFC is proposed in the work. The temperature of the carburization is characterized by a wide range from 1000 to 1400 °C. As a result of thermochemical treatment, a hard coating of TiC (H ≥ 20 GPa) with a microstructure (d = 7-14 μm) consisting of nanoparticles (d = 10-12 nm) is formed on the titanium surface. These coatings are widely used in friction pairs for various purposes, including machinery, instrumentation and medicine.

  3. Formation Mechanisms, Structure, and Properties of HVOF-Sprayed WC-CoCr Coatings: An Approach Toward Process Maps

    NASA Astrophysics Data System (ADS)

    Varis, T.; Suhonen, T.; Ghabchi, A.; Valarezo, A.; Sampath, S.; Liu, X.; Hannula, S.-P.

    2014-08-01

    Our study focuses on understanding the damage tolerance and performance reliability of WC-CoCr coatings. In this paper, the formation of HVOF-sprayed tungsten carbide-based cermet coatings is studied through an integrated strategy: First-order process maps are created by using online-diagnostics to assess particle states in relation to process conditions. Coating properties such as hardness, wear resistance, elastic modulus, residual stress, and fracture toughness are discussed with a goal to establish a linkage between properties and particle characteristics via second-order process maps. A strong influence of particle state on the mechanical properties, wear resistance, and residual stress stage of the coating was observed. Within the used processing window (particle temperature ranged from 1687 to 1831 °C and particle velocity from 577 to 621 m/s), the coating hardness varied from 1021 to 1507 HV and modulus from 257 to 322 GPa. The variation in coating mechanical state is suggested to relate to the microstructural changes arising from carbide dissolution, which affects the properties of the matrix and, on the other hand, cohesive properties of the lamella. The complete tracking of the coating particle state and its linking to mechanical properties and residual stresses enables coating design with desired properties.

  4. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing

    NASA Astrophysics Data System (ADS)

    Cai, Zhaobing; Cui, Xiufang; Liu, Zhe; Li, Yang; Dong, Meiling; Jin, Guo

    2018-02-01

    An attempt, combined with the technologies of laser cladding and laser remelting, has been made to develop a Ni-Cr-Co-Ti-V high entropy alloy coating. The phase composition, microstructure, micro-hardness and wear resistance (rolling friction) were studied in detail. The results show that after laser remelting, the phase composition remains unchanged, that is, as-cladded coating and as-remelted coatings are all composed of (Ni, Co)Ti2 intermetallic compound, Ti-rich phase and BCC solid solution phase. However, after laser remelting, the volume fraction of Ti-rich phase increases significantly. Moreover, the micro-hardness is increased, up to ∼900 HV at the laser remelting parameters: laser power of 1 kW, laser spot diameter of 3 mm, and laser speed of 10 mm/s. Compared to the as-cladded high-entropy alloy coating, the as-remelted high-entropy alloy coatings have high friction coefficient and low wear mass loss, indicating that the wear resistance of as-remelted coatings is improved and suggesting practical applications, like coatings on brake pads for wear protection. The worn surface morphologies show that the worn mechanism of as-cladded and as-remelted high-entropy alloy coatings are adhesive wear.

  5. Correlation between hardness and water absorption properties of Saudi kaolin and white clay geopolymer coating

    NASA Astrophysics Data System (ADS)

    Ramasamy, Shamala; Abdullah, Mohd Mustafa Al Bakri; Huang, Yue; Hussin, Kamarudin; Wang, Jin; Shahedan, Noor Fifinatasha

    2017-09-01

    Geopolymer is an uprising technology that is being studied worldwide. Geopolymer raw materials are basically aluminosilicate source materials. However, this technology is yet to infiltrate into pipelines and coating industries which initiated our research idea. The idea of creating universal geopolymer based coating material is mainly to help oil and gas industry reduce its maintenance cost. Kaolin based geopolymer paste was coated on glass reinforced epoxy (GRE) substrates which are majorly used as pipeline material in the oil and gas industry at Saudi Arabia. Kaolin and white clay was chosen as raw material to study the possibilities of utilizing underused aluminosilicate raw materials for geopolymer coating. To obtain suitable formulation, Na2SiO3/NaOH ratio was varied from 0.40 untill 0.60 while other parameters such as solid/liquid ratio and NaOH molarity were kept constant at values as per previous works. Geopolymer coated GRE substrates were then subjected to water absorption, flexural strength and hardness test to validate our findings. Water absorption is a crucial test as for coating materials which justifies the pratical usability of the coating product. Upon testing, kaolin and white clay based geopolymer coating each shows promising properties at Na2SiO3/NaOH ratio of 0.45 and 0.50 each.

  6. Microstructure and Antiwear Property of Laser Cladding Ni–Co Duplex Coating on Copper

    PubMed Central

    Wang, Yiyong; Liang, Zhipeng; Zhang, Junwei; Ning, Zhe; Jin, Hui

    2016-01-01

    Ni–Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al2O3/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni–Co duplex coatings comprised a Co-based solid solution, Cr7C3, (Fe,Ni)23C6, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV). The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni–Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni–Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties. PMID:28773755

  7. Innovative manufacturing and materials for low cost lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Steven

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator andmore » any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability with no shrinkage at up to 220oC. This allows vacuum drying of the dry cell just before filling with the electrolyte and thereby can reduce the size of the cell assembly dry room by 50%. Once the electrode-coated separator is produced, there are many different approaches for adding the metal current collector layers and making and connecting the tabs of the cells. These approaches include: (1) laminating the electrode side of the electrode-coated separator to both sides of a metal current collector; and (2) making a full coated electrode stack by coating or depositing a current collector layer on the electrode side and then coating a second electrode layer onto the current collector. Further cost savings are available from using lower cost and/or thinner and lighter current collectors and from using a separator coating manufacturing process at widths of 1.5 meters (m) or more and at high production line speeds of up to 125 meters per minute (mpm), both of which are well above the conventional coating widths and line speeds presently used in manufacturing electrodes for lithium ion batteries.« less

  8. Hard and flexible nanocomposite coatings using nanoclay-filled hyperbranched polymers.

    PubMed

    Fogelström, Linda; Malmström, Eva; Johansson, Mats; Hult, Anders

    2010-06-01

    The combination of hardness, scratch resistance, and flexibility is a highly desired feature in many coating applications. The aim of this study is to achieve this through the introduction of an unmodified nanoclay, montmorillonite (Na(+)MMT), in a polymer resin based on the hyperbranched polyester Boltorn H30. Smooth and transparent films were prepared from both the neat and the nanoparticle-filled hyperbranched resins. X-ray diffraction (XRD) and transmission electron microscopy (TEM) corroborated a mainly exfoliated structure in the nanocomposite films, which was also supported by results from dynamic mechanical analysis (DMA). Furthermore, DMA measurements showed a 9-16 degrees C increase in Tg and a higher storage modulus-above and below the T(g)-both indications of a more cross-linked network, for the clay-containing film. Thermogravimetric analysis (TGA) demonstrated the influence of the nanofiller on the thermal properties of the nanocomposites, where a shift upward of the decomposition temperature in oxygen atmosphere is attributed to the improved barrier properties of the nanoparticle-filled materials. Conventional coating characterization methods demonstrated an increase in the surface hardness, scratch resistance and flexibility, with the introduction of clay, and all coatings exhibited excellent chemical resistance and adhesion.

  9. Direct laser metal deposition of WC/Co/Cr powder by means of the functionally graded materials strategy

    NASA Astrophysics Data System (ADS)

    Angelastro, A.; Campanelli, S. L.

    2017-12-01

    One of the many applications of direct laser metal deposition (DLMD) is the realization of multilayer thick coatings having particular mechanical characteristics, such as high hardness. The objective of this work was to obtain a thick, very hard and wear resistant coating, containing a high percentage of tungsten carbide (WC), on an AISI 304 stainless steel substrate. In order to achieve this result, a tungsten carbide-cobalt-chrome (WC/Co/Cr) powder was processed by the DLMD method. WC/Co/Cr is a composite widely used as a wear-resistant material for cutting tools, molds, coatings and other severe applications. Because of its high hardness, poor ductility and low thermal expansion coefficient, depositing this material directly on the stainless steel substrate is very difficult. In order to overcome this problem, the strategy of functionally graded materials (FGM) was used. Colmonoy 227-F nickel alloy was chosen for this purpose in order to generate a mixture with the WC/Co/Cr powder. Four different materials were deposited, layer by layer, by mixing Colmonoy 227-F with an increasing amount of WC/Co/Cr powders, until obtaining a thick surface coating with a maximum amount of WC of 77.4 wt%. For each powder mixture, a mathematical model was applied to calculate optimal values of translation speed and overlap percentages. A metallographic examination was performed in order to detect macro- and micro-structures of the different materials. Finally, Vickers micro-hardness was measured at various locations along the transverse section to appreciate the gradual increase of the FGM hardness, starting from the substrate and culminating at the top surface of the last deposited material.

  10. Hard ceramic coatings: an experimental study on a novel damping treatment

    NASA Astrophysics Data System (ADS)

    Patsias, Sophoclis; Tassini, Nicola; Stanway, Roger

    2004-07-01

    This paper describes a novel damping treatment, namely hard ceramic coatings. These materials can be applied on almost any surface (internal or external) of a component. Their effect is the significant reduction of vibration levels and hence the extension of life expectancy of the component. The damping features of air-plasma-sprayed ceramic coatings (for example amplitude dependence, influence of initial amplitude) are discussed and the experimental procedure employed for testing and characterising such materials is also described. This test procedure is based around a custom-developed rig that allows one to measure the damping (internal friction) of specimens at controlled frequencies, strain amplitudes and, if required, various temperatures. A commonly used Thermal Barrier Coating, Yttria Stabilised Zirconia (8%), is used to demonstrate the above mentioned features. The damping effectiveness of this coating is then compared against two established damping treatments: polymer Free Layer Damping (FLD) and Constrained Layer Damping (CLD). The paper discusses the major issues in characterising ceramic damping coatings and their damping effectiveness when compared against the "traditional" approaches. Finally, the paper concludes with suggestions for further research.

  11. Microscopic observation of laser glazed yttria-stabilized zirconia coatings

    NASA Astrophysics Data System (ADS)

    Morks, M. F.; Berndt, C. C.; Durandet, Y.; Brandt, M.; Wang, J.

    2010-08-01

    Thermal barrier coatings (TBCs) are frequently used as insulation system for hot components in gas-turbine, combustors and power plant industries. The corrosive gases which come from combustion of low grade fuels can penetrate into the TBCs and reach the metallic components and bond coat and cause hot corrosion and erosion damage. Glazing the top coat by laser beam is advanced approach to seal TBCs surface. The laser beam has the advantage of forming a dense thin layer composed of micrograins. Plasma-sprayed yttria-stabilized zirconia (YSZ) coating was glazed with Nd-YAG laser at different operating conditions. The surface morphologies, before and after laser treatment, were investigated by scanning electron microscopy. Laser beam assisted the densification of the surface by remelting a thin layer of the exposed surface. The laser glazing converted the rough surface of TBCs into smooth micron-size grains with size of 2-9 μm and narrow grain boundaries. The glazed surfaces showed higher Vickers hardness compared to as-sprayed coatings. The results revealed that the hardness increases as the grain size decreases.

  12. Composite coatings improve engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funatani, K.; Kurosawa, K.

    1994-12-01

    About 40% of the power loss in engine systems is attributed to the adverse effects of friction in reciprocating engine components. Over half of this power loss is caused by friction between pistons, piston rings, and cylinder bores. In addition, engine parts may be attacked by corrosive gasoline substitutes such as liquid propane gas and alcohol/gasoline mixtures. To solve both friction and corrosion problems, Nihon Parkerizing Co. has improved the nickel-phosphorus based ceramic composite (NCC) plating technology that was developed for cylinder bores and pistons by Suzuki Motor Co. in the mid 1970s. Iron and nickel-based composite plating technologies havemore » been investigated since the early 1970s, and a few have been used on small two-stroke motorcycle, outboard marine, snowmobile, and some luxury passenger car engine components. Both nickel- and iron-base plating processes are used on cylinders and pistons because they offer excellent wear and corrosion resistance. Nickel-base films have higher corrosion resistance than those based on iron, and are capable of withstanding the corrosive conditions characteristic of high methanol fuels. Unfortunately, they experience a decrease in hardness as operating temperatures increase. However, NCC coatings with phosphorus additions have high hardness even under severe operating conditions, and hardness increases upon exposure to elevated temperatures. In addition to high hardness and corrosion resistance, NCC coatings provide a low friction coefficient, which contributes to the reduction of friction losses between sliding components. When used in low-quality or alcohol fuels, the corrosion resistance of NCC coatings is far higher than that of Fe-P plating. Additionally, the coatings reduce wall and piston temperature, wear of ring groove and skirt, and carbon deposit formation, and they improve output power and torque. These advantages all contribute to the development of light and efficient engines with better fuel mileage.« less

  13. Lateral gradients of phases, residual stress and hardness in a laser heated Ti0.52Al0.48N coating on hard metal

    PubMed Central

    Bartosik, M.; Daniel, R.; Zhang, Z.; Deluca, M.; Ecker, W.; Stefenelli, M.; Klaus, M.; Genzel, C.; Mitterer, C.; Keckes, J.

    2012-01-01

    The influence of a local thermal treatment on the properties of Ti–Al–N coatings is not understood. In the present work, a Ti0.52Al0.48N coating on a WC–Co substrate was heated with a diode laser up to 900 °C for 30 s and radially symmetric lateral gradients of phases, residual stress and hardness were characterized ex-situ using position-resolved synchrotron X-ray diffraction, Raman spectroscopy, transmission electron microscopy and nanoindentation. The results reveal (i) a residual stress relaxation at the edge of the irradiated area and (ii) a compressive stress increase of few GPa in the irradiated area center due to the Ti–Al–N decomposition, in particular due to the formation of small wurtzite (w) AlN domains. The coating hardness increased from 35 to 47 GPa towards the center of the heated spot. In the underlying heated substrate, a residual stress change from about − 200 to 500 MPa down to a depth of 6 μm is observed. Complementary, in-situ high-temperature X-ray diffraction analysis of stresses in a homogeneously heated Ti0.52Al0.48N coating on a WC–Co substrate was performed in the range of 25–1003 °C. The in-situ experiment revealed the origin of the observed thermally-activated residual stress oscillation across the laser heated spot. Finally, it is demonstrated that the coupling of laser heating to produce lateral thermal gradients and position-resolved experimental techniques opens the possibility to perform fast screening of structure–property relationships in complex materials. PMID:23471140

  14. Valve seat pores sealed with thermosetting monomer

    NASA Technical Reports Server (NTRS)

    Olmore, A. B.

    1966-01-01

    Hard anodic coating provides a smooth wear resistant value seating surface on a cast aluminum alloy valve body. Vacuum impregnation with a thermosetting monomer, diallyl phthalate, seals the pores on the coating to prevent galvanic corrosion.

  15. Quality Improvement of Chrome-Diamond Coatings on Flowing Chrome Plating

    NASA Astrophysics Data System (ADS)

    Belyaev, V. N.; Koslyuk, A. Yu; Lobunets, A. V.; Andreyev, A. S.

    2016-04-01

    The research results of the process of flowing chrome plating of internal surfaces of long-length cylindrical articles with the usage of electrolyte with ultra-dispersed diamonds when continuous article rotation, while chromium-plating, are presented. During experiments the following varying technological parameters: electrolyte temperature and article frequency rotation were chosen, and experimental samples were obtained. Estimation of porosity, micro-hardness, thickness of chrome coatings and uniformity were performed as well as the precipitation structure by the method of scanning electron microscopy. The results showed that the use of ultra-dispersed diamonds and realization of the scheme with rotation of detail-cathode when flowing chromium-plating allows one to increase servicing characteristics of the coating due to the decrease of grains size of chrome coating and porosity, and due to the increase of micro-hardness, so confirming the efficiency of using the suggested scheme of coating application and the given type of ultra-dispersed fillers when chromium-plating.

  16. Studies of the air plasma spraying of zirconia powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varacalle, D.J. Jr.; Wilson, G.C.; Crawmer, D.E.

    As part of an investigation of the dynamics that occur in the air plasma spray process, an experimental and analytical study has been accomplished for the deposition of yttria-stabilized zirconia powder using argon-hydrogen and argon-helium working gases. Numerical models of the plasma dynamics and the related plasma-particle interaction are presented. The analytical studies were conducted to determine the parameter space for the empirical studies. Experiments were then conducted using a Box statistical design-of-experiment approach. A substantial range of plasma processing conditions and their effect on the resultant coating is presented. The coatings were characterized by hardness tests and optical metallographymore » (i.e., image analysis). Coating qualities are discussed with respect to hardness, porosity, surface roughness, deposition efficiency, and microstructure. Attributes of the coatings are correlated with the changes in operating parameters. An optimized coating design predicted by the SDE analysis and verified by the calculations is also presented.« less

  17. 40 CFR 60.720 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in which plastic parts for use in the manufacture of business machines receive prime coats, color... Performance for Industrial Surface Coating: Surface Coating of Plastic Parts for Business Machines § 60.720...

  18. Pollution prevention and the use of low-VOC/HAP coatings at wood furniture manufacturing facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, A.M.; Spaight, J.L.; Jones, J.W.

    1999-10-01

    Midwest Research Institute, under a cooperative agreement with the Air Pollution Prevention and Control Division of the US Environmental Protection Agency`s (EPA`s) National Risk Management Research Laboratory, is conducting a study to identify wood furniture and cabinet manufacturing facilities that have converted to low-volatile organic compound/hazardous air pollutant (VOC/HAP) coatings and to develop case studies for those facilities. This paper discusses the progress of the project and pollution prevention options at wood furniture manufacturing facilities and the regulatory requirements (e.g., the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Wood Furniture Manufacturing Operations) that these facilities face.

  19. A new methodology to prepare ceramic-organic composite coatings with good cavitation erosion resistance.

    PubMed

    Deng, Wen; Hou, Guoliang; Li, Shuangjian; Han, Jiesheng; Zhao, Xiaoqin; Liu, Xia; An, Yulong; Zhou, Huidi; Chen, Jianmin

    2018-06-01

    A simple, scalable and economical method was proposed to obtain ceramic-organic composite coating with excellent comprehensive properties include hardness, toughness, elastic recovery, lamellar interfacial bonding and anti-cavitation erosion: introducing epoxy resin into the pores and micro-cracks of plasma sprayed ceramic coating. The results indicate that the epoxy resin was successfully penetrated into the whole ceramic coating and filled almost all defects by vacuum impregnation, which greatly enhanced its compactness and mechanical properties. The bonding strength between top coating and metal interlayer significantly increased from 17.3 MPa to 53.0 MPa, and the hardness (H) of top coating greatly increased from 11.07 GPa to 23.57 GPa. Besides, the value of H 3 /E 2 also increased from 0.06 GPa to 0.15 GPa, meaning the toughness of ceramic coating had been obviously improved. The pure ceramic coating had been punctured only after 4 h of cavitation test. However, the resin with high elasticity and toughness can effectively absorb impact energy, prevent cracks propagation and delay splats spallation during the cavitation erosion process. The novel composite coating displayed far better cavitation erosion resistance than pure ceramic coating, and it was still intact after 10 h of test. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Further improvement of mechanical and tribological properties of Cr-doped diamond-like carbon nanocomposite coatings by N codoping

    NASA Astrophysics Data System (ADS)

    Zou, Changwei; Xie, Wei; Tang, Xiaoshan

    2016-11-01

    In this study, the effects of nitrogen codoping on the microstructure and mechanical properties of Cr-doped diamond-like carbon (DLC) nanocomposite coatings were investigated in detail. Compared with undoped DLC coatings, the Cr-DLC and N/Cr-DLC coatings showed higher root-mean-square (RMS) roughness values. However, from the X-ray photoelectron spectroscopy (XPS) and Raman results, the fraction of sp2 carbon bonds of N/Cr-DLC coatings increased with increasing N content, which indicated the graphitization of the coatings. The hardness and elastic modulus of N/Cr-DLC coatings with 1.8 at. % N were about 26.8 and 218 GPa, respectively. The observed hardness increase with N codoping was attributed to the incorporation of N in the C network along with the formation of CrC(N) nanoparticles, as confirmed from the transmission electron microscopy (TEM) results. The internal stress markedly decreased from 0.93 to 0.32 GPa as the N content increased from 0 to 10.3 at. %. Furthermore, N doping significantly improved the high-temperature dry friction behavior of DLC coatings. The friction coefficient of N/Cr-DLC coatings with 8.0 and 10.3 at. % N was kept at about 0.2 during the overall sliding test at 500 °C. These results showed that appropriate N doping could promote the mechanical and tribological properties of Cr-DLC nanocomposite coatings.

  1. A study of TiB2/TiB gradient coating by laser cladding on titanium alloy

    NASA Astrophysics Data System (ADS)

    Lin, Yinghua; Lei, Yongping; Li, Xueqiao; Zhi, Xiaohui; Fu, Hanguang

    2016-07-01

    TiB2/TiB gradient coating has been fabricated by a laser cladding technique on the surface of a Ti-6Al-4V substrate using TiB2 powder as the cladding material. The microstructure and mechanical properties of the gradient coating were analyzed by SEM, EPMA, XRD, TEM and an instrument to measure hardness. With the increasing distance from the coating surface, the content of TiB2 particles gradually decreased, but the content of TiB short fibers gradually increased. Meanwhile, the micro-hardness and the elastic modulus of the TiB2/TiB coating showed a gradient decreasing trend, but the fracture toughness showed a gradient increasing trend. The fracture toughness of the TiB2/TiB coating between the center and the bottom was improved, primarily due to the debonding of TiB2 particles and the high fracture of TiB short fibers, and the fracture position of TiB short fiber can be moved to an adjacent position. However, the debonding of TiB2 particles was difficult to achieve at the surface of the TiB2/TiB coating.

  2. Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications.

    PubMed

    Rifai, Aaqil; Tran, Nhiem; Lau, Desmond W; Elbourne, Aaron; Zhan, Hualin; Stacey, Alastair D; Mayes, Edwin L H; Sarker, Avik; Ivanova, Elena P; Crawford, Russell J; Tran, Phong A; Gibson, Brant C; Greentree, Andrew D; Pirogova, Elena; Fox, Kate

    2018-03-14

    Additive manufacturing using selective laser melted titanium (SLM-Ti) is used to create bespoke items across many diverse fields such as medicine, defense, and aerospace. Despite great progress in orthopedic implant applications, such as for "just in time" implants, significant challenges remain with regards to material osseointegration and the susceptibility to bacterial colonization on the implant. Here, we show that polycrystalline diamond coatings on these titanium samples can enhance biological scaffold interaction improving medical implant applicability. The highly conformable coating exhibited excellent bonding to the substrate. Relative to uncoated SLM-Ti, the diamond coated samples showed enhanced mammalian cell growth, enriched apatite deposition, and reduced microbial S. aureus activity. These results open new opportunities for novel coatings on SLM-Ti devices in general and especially show promise for improved biomedical implants.

  3. Functionally gradient hard carbon composites for improved adhesion and wear

    NASA Astrophysics Data System (ADS)

    Narayan, Roger Jagdish

    A new approach is proposed for fabricating biomedical devices that last longer and are more biocompatible than those presently available. In this approach, a bulk material is chosen that has desirable mechanical properties (low modulus, high strength, high ductility and high fatigue strength). This material is coated with corrosion-resistant, wear-resistant, hard, and biocompatible hard carbon films. One of the many forms of carbon, tetrahedral amorphous carbon, consists mainly of sp3-bonded atoms. Tetrahedral amorphous carbon possesses properties close to diamond in terms of hardness, atomic smoothness, and inertness. Tetrahedral amorphous carbon and diamond films usually contain large amounts of compressive and sometimes tensile stresses; adhesive failure from these stresses has limited widespread use of these materials. This research involves processing, characterization and modeling of functionally gradient tetrahedral amorphous carbon and diamond composite films on metals (cobalt-chromium and titanium alloys) and polymers (polymethylmethacrylate and polyethylene) used in biomedical applications. Multilayer discontinuous thin films of titanium carbide, titanium nitride, aluminum nitride, and tungsten carbide have been developed to control stresses and graphitization in diamond films. A morphology of randomly interconnected micron sized diamond crystallites provides increased toughness and stress reduction. Internal stresses in tetrahedral amorphous carbon were reduced via incorporation of carbide forming elements (silicon and titanium) and noncarbide forming elements (copper, platinum, and silver). These materials were produced using a novel target design during pulsed laser deposition. These alloying atoms reduce hardness and sp3-bonded carbon content, but increase adhesion and wear resistance. Silver and platinum provide the films with antimicrobial properties, and silicon provides bioactivity and aids bone formation. Bilayer coatings were created that couple the adherence, biocompatibility, erosion resistance, and long term release of functional elements from hard carbon coatings with bioactive properties of nanocrystalline hydroxyapatite and short term drug release properties of resorbable poly (D,L) lactide-based materials. Finally, these hard carbon coatings have a variety of non-medical applications, including use in microelectronics packaging, sensors, flat panel displays, photodiodes, cutting tools, optical switches, and wear-resistant magnetic disks.

  4. 40 CFR 63.5731 - What standards must I meet for resin and gel coat mixing operations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and gel coat mixing operations? 63.5731 Section 63.5731 Protection of Environment ENVIRONMENTAL... Manufacturing Standards for Resin and Gel Coat Mixing Operations § 63.5731 What standards must I meet for resin and gel coat mixing operations? (a) All resin and gel coat mixing containers with a capacity equal to...

  5. 40 CFR 63.5731 - What standards must I meet for resin and gel coat mixing operations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and gel coat mixing operations? 63.5731 Section 63.5731 Protection of Environment ENVIRONMENTAL... Manufacturing Standards for Resin and Gel Coat Mixing Operations § 63.5731 What standards must I meet for resin and gel coat mixing operations? (a) All resin and gel coat mixing containers with a capacity equal to...

  6. 40 CFR 63.5731 - What standards must I meet for resin and gel coat mixing operations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and gel coat mixing operations? 63.5731 Section 63.5731 Protection of Environment ENVIRONMENTAL... Boat Manufacturing Standards for Resin and Gel Coat Mixing Operations § 63.5731 What standards must I meet for resin and gel coat mixing operations? (a) All resin and gel coat mixing containers with a...

  7. 40 CFR 63.5731 - What standards must I meet for resin and gel coat mixing operations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and gel coat mixing operations? 63.5731 Section 63.5731 Protection of Environment ENVIRONMENTAL... Boat Manufacturing Standards for Resin and Gel Coat Mixing Operations § 63.5731 What standards must I meet for resin and gel coat mixing operations? (a) All resin and gel coat mixing containers with a...

  8. 40 CFR 63.5731 - What standards must I meet for resin and gel coat mixing operations?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and gel coat mixing operations? 63.5731 Section 63.5731 Protection of Environment ENVIRONMENTAL... Boat Manufacturing Standards for Resin and Gel Coat Mixing Operations § 63.5731 What standards must I meet for resin and gel coat mixing operations? (a) All resin and gel coat mixing containers with a...

  9. Frictional and mechanical properties of diamond-like carbon-coated orthodontic brackets.

    PubMed

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Nakagaki, Susumu; Endo, Kazuhiko; Mizoguchi, Itaru

    2013-04-01

    This study investigated the effects of a diamond-like carbon (DLC) coating on frictional and mechanical properties of orthodontic brackets. DLC films were deposited on stainless steel brackets using the plasma-based ion implantation/deposition (PBIID) method under two different atmospheric conditions. As-received metal brackets served as the control. Two sizes of stainless steel archwires, 0.018 inch diameter and 0.017 × 0.025 inch cross-section dimensions, were used for measuring static and kinetic friction by drawing the archwires through the bracket slots, using a mechanical testing machine (n = 10). The DLC-coated brackets were observed with a scanning electron microscope (SEM). Values of hardness and elastic modulus were obtained by nanoindentation testing (n = 10). Friction forces were compared by one-way analysis of variance and the Scheffé test. The hardness and elastic modulus of the brackets were compared using Kruskal-Wallis and Mann-Whitney U-tests. SEM photomicrographs showed DLC layers on the bracket surfaces with thickness of approximately 5-7 μm. DLC-coated brackets deposited under condition 2 showed significantly less static frictional force for the stainless steel wire with 0.017 × 0.025 inch cross-section dimensions than as-received brackets and DLC-coated brackets deposited under condition 1, although both DLC-coated brackets showed significantly less kinetic frictional force than as-received brackets. The hardness of the DLC layers was much higher than that of the as-received bracket surfaces. In conclusion, the surfaces of metal brackets can be successfully modified by the PBIID method to create a DLC layer, and the DLC-coating process significantly reduces frictional forces.

  10. Optimization of propranolol HCl release kinetics from press coated sustained release tablets.

    PubMed

    Ali, Adel Ahmed; Ali, Ahmed Mahmoud

    2013-01-01

    Press-coated sustained release tablets offer a valuable, cheap and easy manufacture alternative to the highly expensive, multi-step manufacture and filling of coated beads. In this study, propranolol HCl press-coated tablets were prepared using hydroxylpropylmethylcellulose (HPMC) as tablet coating material together with carbopol 971P and compressol as release modifiers. The prepared formulations were optimized for zero-order release using artificial neural network program (INForm, Intelligensys Ltd, North Yorkshire, UK). Typical zero-order release kinetics with extended release profile for more than 12 h was obtained. The most important variables considered by the program in optimizing formulations were type and proportion of polymer mixture in the coat layer and distribution ratio of drug between core and coat. The key elements found were; incorporation of 31-38 % of the drug in the coat, fixing the amount of polymer in coat to be not less than 50 % of coat layer. Optimum zero-order release kinetics (linear regression r2 = 0.997 and Peppas model n value > 0.80) were obtained when 2.5-10 % carbopol and 25-42.5% compressol were incorporated into the 50 % HPMC coat layer.

  11. Mechanism of adaptability for the nano-structured TiAlCrSiYN-based hard physical vapor deposition coatings under extreme frictional conditions

    NASA Astrophysics Data System (ADS)

    Fox-Rabinovich, G. S.; Endrino, J. L.; Aguirre, M. H.; Beake, B. D.; Veldhuis, S. C.; Kovalev, A. I.; Gershman, I. S.; Yamamoto, K.; Losset, Y.; Wainstein, D. L.; Rashkovskiy, A.

    2012-03-01

    Recently, a family of hard mono- and multilayer TiAlCrSiYN-based coatings have been introduced that exhibit adaptive behavior under extreme tribological conditions (in particular during dry ultrahigh speed machining of hardened tool steels). The major feature of these coatings is the formation of the tribo-films on the friction surface which possess high protective ability under operating temperatures of 1000 °C and above. These tribo-films are generated as a result of a self-organization process during friction. But the mechanism how these films affect adaptability of the hard coating is still an open question. The major mechanism proposed in this paper is associated with a strong gradient of temperatures within the layer of nano-scaled tribo-films. This trend was outlined by the performed thermodynamic analysis of friction phenomena combined with the developing of a numerical model of heat transfer within cutting zone based on the finite element method. The results of the theoretical studies show that the major physical-chemical processes during cutting are mostly concentrated within a layer of the tribo-films. This nano-tribological phenomenon produces beneficial heat distribution at the chip/tool interface which controls the tool life and wear behavior.Results of x-ray photoelectron spectroscopy studies indicate enhanced formation of protective sapphire- and mullite-like tribo-films on the friction surface of the multilayer TiAlCrSiYN/TiAlCrN coating. Comprehensive investigations of the structure and phase transformation within the coating layer under operation have been performed, using high resolution transmission electron microscopy, synchrotron radiation technique: x-ray absorption near-edge structure and XRD methods.The data obtained show that the tribo-films efficiently perform their thermal barrier functions preventing heat to penetrate into the body of coated cutting tool. Due to this the surface damaging process as well as non-beneficial phase transformation (formation of AlN hex phase) drastically diminishes within the layer of the adaptive coating. Micro-mechanical properties measurements performed at room and elevated temperatures show that the hardness of the multilayer TiAlCrSiYN/TiAlCrN coating appears stable to 500 °C and then drops a little at 600 °C but still remains high. It means that if the surface tribo-films can reduce actual temperature down to this level the coating underneath is able to efficiently withstand heavy loads under operation.

  12. Application of terahertz pulse imaging as PAT tool for non-destructive evaluation of film-coated tablets under different manufacturing conditions.

    PubMed

    Dohi, Masafumi; Momose, Wataru; Yoshino, Hiroyuki; Hara, Yuko; Yamashita, Kazunari; Hakomori, Tadashi; Sato, Shusaku; Terada, Katsuhide

    2016-02-05

    Film-coated tablets (FCTs) are a popular solid dosage form in pharmaceutical industry. Manufacturing conditions during the film-coating process affect the properties of the film layer, which might result in critical quality problems. Here, we analyzed the properties of the film layer using a non-destructive approach with terahertz pulsed imaging (TPI). Hydrophilic tablets that become distended upon water absorption were used as core tablets and coated with film under different manufacturing conditions. TPI-derived parameters such as film thickness (FT), film surface reflectance (FSR), and interface density difference (IDD) between the film layer and core tablet were affected by manufacturing conditions and influenced critical quality attributes of FCTs. Relative standard deviation of FSR within tablets correlated well with surface roughness. Tensile strength could be predicted in a non-destructive manner using the multivariate regression equation to estimate the core tablet density by film layer density and IDD. The absolute value of IDD (Lateral) correlated with the risk of cracking on the lateral film layer when stored in a high-humidity environment. Further, in-process control was proposed for this value during the film-coating process, which will enable a feedback control system to be applied to process parameters and reduced risk of cracking without a stability test. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1997-09-23

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition. 6 figs.

  14. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1997-01-01

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.

  15. Cold Sprayability of Mixed Commercial Purity Ti Plus Ti6Al4V Metal Powders

    NASA Astrophysics Data System (ADS)

    Aydin, Huseyin; Alomair, Mashael; Wong, Wilson; Vo, Phuong; Yue, Stephen

    2017-02-01

    In the present work, metallic composite coatings of commercial purity Ti plus Ti6Al4V were produced by cold spraying to explore the effect of mixing on porosity and mechanical properties of the coatings. The coatings were deposited using N2 gas at 800 °C and 4 MPa pressure on 1020 steel substrate. Coating characteristics were studied by examining porosity percentages and Vickers's hardness. The microstructure was examined using optical and electron microscopy techniques. It was observed that mixing metal powders can lead to improvements in cold sprayability, specifically decreases in the porosity of the `matrix' powder. It is shown that a critical addition can significantly influence porosity, but above this critical level, there is a little change in porosity. Hardness differences between the two powders are considered to be the first-order influence, but differences in particle sizes and morphology may also be contributing factors.

  16. Effect of Spray Particle Velocity on Cavitation Erosion Resistance Characteristics of HVOF and HVAF Processed 86WC-10Co4Cr Hydro Turbine Coatings

    NASA Astrophysics Data System (ADS)

    Kumar, R. K.; Kamaraj, M.; Seetharamu, S.; Pramod, T.; Sampathkumaran, P.

    2016-08-01

    The hydro plants utilizing silt-laden water for power generation suffer from severe metal wastage due to particle-induced erosion and cavitation. High-velocity oxy-fuel process (HVOF)-based coatings is widely applied to improve the erosion life. The process parameters such as particle velocity, size, powder feed rate, temperature, affect their mechanical properties. The high-velocity air fuel (HVAF) technology, with higher particle velocities and lower spray temperatures, gives dense and substantially nonoxidized coating. In the present study, the cavitation resistance of 86WC-10Co4Cr-type HVOF coating processed at 680 m/s spray particle velocity was compared with HVAF coatings made at 895, 960, and 1010 m/s. The properties such as porosity, hardness, indentation toughness, and cavitation resistance were investigated. The surface damage morphology has been analyzed in SEM. The cohesion between different layers has been examined qualitatively through scratch depth measurements across the cross section. The HVAF coatings have shown a lower porosity, higher hardness, and superior cavitation resistance. Delamination, extensive cracking of the matrix interface, and detachment of the WC grains were observed in HVOF coating. The rate of metal loss is low in HVAF coatings implying that process parameters play a vital role in achieving improved cavitation resistance.

  17. Structural phase composition and effectiveness of gas-dynamic spraying of hybrid coatings based on AlMg2 nanocrystalline matrix reinforced with graphene-like structures and micro-size corundum

    NASA Astrophysics Data System (ADS)

    Aborkin, A. V.; Sobol'kov, A. V.; Elkin, A. I.; Arkhipov, V. E.

    2018-01-01

    The method of cold gas-dynamic spraying of mechanically synthesized powders based on a nanocrystalline AlMg2 matrix reinforced with graphene-like structures and micro-sized corundum particles was used for obtaining hybrid coatings. A feature of the formed coatings is the presence of a two-level micro- and nanocomposite structure. It was found that an increase in the content of corundum microdimensional particles in the mixture from 10 to 30% by weight contributes to an increase in the thickness of the coating obtained at the same time by a factor of 2 from 140 to 310 μm. Further increase in the content of a mixture of micron-sized corundum particles to 50% by weight leads to a decrease in the thickness of the coating formed to 40 μm. The resulting coatings correspond to a high microhardness, varying depending on the composition in the range from 1.7 GPa to 3.2 GPa. The high hardness of the coatings is due to the increase in the hardness of the matrix material due to the creation of a nanocomposite structure, which increases the strength of fixing micro-sized corundum particles therein, improving the characteristics of the heterogeneous coating as a whole.

  18. Coating for components requiring hydrogen peroxide compatibility

    NASA Technical Reports Server (NTRS)

    Yousefiani, Ali (Inventor)

    2010-01-01

    The present invention provides a heretofore-unknown use for zirconium nitride as a hydrogen peroxide compatible protective coating that was discovered to be useful to protect components that catalyze the decomposition of hydrogen peroxide or corrode when exposed to hydrogen peroxide. A zirconium nitride coating of the invention may be applied to a variety of substrates (e.g., metals) using art-recognized techniques, such as plasma vapor deposition. The present invention further provides components and articles of manufacture having hydrogen peroxide compatibility, particularly components for use in aerospace and industrial manufacturing applications. The zirconium nitride barrier coating of the invention provides protection from corrosion by reaction with hydrogen peroxide, as well as prevention of hydrogen peroxide decomposition.

  19. 40 CFR 63.5743 - What standards must I meet for aluminum recreational boat surface coating operations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aluminum recreational boat surface coating operations? 63.5743 Section 63.5743 Protection of Environment... Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5743 What standards must I meet for aluminum recreational boat surface coating operations? (a) For...

  20. New Life for Miss Liberty

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Corrosion protection for the Statue of Liberty's interior structure is provided by a coating called IC 531, manufactured by Inorganic Coatings, Inc. The coating was developed by Goddard to protect structures at KSC. Inorganic Coatings has an exclusive to this high ratio potassium silicate formula. The coating is water based, nontoxic, nonflammable, and bonds to steel in 30 minutes. Tests on a variety of coated structures have been very positive.

  1. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  2. Two feasible approaches to enhance the wear behaviors of NiCrBSi coating in atmosphere and aqueous environments

    NASA Astrophysics Data System (ADS)

    Ye, Yuwei; Wang, Chunting; Zheng, Wenru; Xiong, Wei; Wang, Yongxin; Li, Xiaogang

    2017-09-01

    NiCrBSi coating was deposited successfully on the surface of 316 stainless steel substrate by means of plasma spraying. The microstructures and mechanical property were analyzed by scanning electron microscopy, x-ray diffraction, and a Vickers hardness tester. The wear performances of the coatings sliding against the GCr15 ball under ambient air and water conditions were investigated, and two feasible approaches (tungsten carbide (WC)-doping and heat treatment) were used to improve the tribological performance. Results showed that the hardness of the NiCrBSi coating increased by 12.5% and 28.5% and the porosity decreased by 26.1% and 47.8%, respectively, after WC-doping and heat treatment. During dry friction, the friction coefficient and wear rate of the NiCrBSi coating were about 0.47 and 1.4  ×  10-5 mm3 N-1 m-1, respectively. These values were higher than those obtained on other coatings. In water conditions, all coatings showed a lower friction and wear rate than that in ambient air, which was as a result of the lubrication effect of water. Significantly, with WC-doping and heat treatment, the friction coefficients of both coatings were about 18.5% and 36.7%, respectively, lower than that of the NiCrBSi coating. Furthermore, the wear rates of both coatings were about 20% and 70%, respectively, lower than that of the NiCrBSi coating.

  3. Confined-plume chemical deposition: rapid synthesis of crystalline coatings of known hard or superhard materials on inorganic or organic supports by resonant IR decomposition of molecular precursors.

    PubMed

    Ivanov, Borislav L; Wellons, Matthew S; Lukehart, Charles M

    2009-08-26

    A one-step process for preparing microcrystalline coatings of known superhard, very hard, or ultraincompressible ceramic compositions on either inorganic or organic supports is reported. Midinfrared pulsed-laser irradiation of preceramic chemical precursors layered between IR-transmissive hard/soft supports under temporal and spatial confinement at a laser wavelength resonant with a precursor vibrational band gives one-step deposition of crystalline ceramic coatings without incurring noticeable collateral thermal damage to the support material. Reaction plume formation at the precursor/laser beam interface initiates confined-plume, chemical deposition (CPCD) of crystalline ceramic product. Continuous ceramic coatings are produced by rastering the laser beam over a sample specimen. CPCD processing of the Re-B single-source precursor, (B(3)H(8))Re(CO)(4), the dual-source mixtures, Ru(3)(CO)(12)/B(10)H(14) or W(CO)(6)/B(10)H(14), and the boron/carbon single-source precursor, o-B(10)C(2)H(12), confined between Si wafer or NaCl plates gives microcrystalline deposits of ReB(2), RuB(2), WB(4), or B(4)C, respectively. CPCD processing of Kevlar fabric wetted by (B(3)H(8))Re(CO)(4) produces an oriented, microcrystalline coating of ReB(2) on the Kevlar fabric without incurring noticeable thermal damage of the polymer support. Similarly, microcrystalline coatings of ReB(2) can be formed on IR-transmissive IR2, Teflon, or Ultralene polymer films.

  4. Resistance of superhydrophobic and oleophobic surfaces to varied temperature applications on 316L SS

    NASA Astrophysics Data System (ADS)

    Shams, Hamza; Basit, Kanza; Saleem, Sajid; Siddiqui, Bilal A.

    316L SS also called Marine Stainless Steel is an important material for structural and marine applications. When superhydrophobic and oleophobic coatings are applied on 316L SS it shows significant resistance to wear and corrosion. This paper aims to validate the coatings manufacturer's information on optimal temperature range and test the viability of coating against multiple oil based cleaning agents. 316L SS was coated with multiple superhydrophic and oleohobic coatings and observed under SEM for validity of adhesion and thickness and then scanned under FFM to validate the tribological information. The samples were then dipped into multiple cleaning agents maintained at the range of operating temperatures specified by the manufacturer. Coating was observed for deterioration over a fixed time intervals through SEM and FFM. A comparison was drawn to validate the most critical cleaning agent and the most critical temperature at which the coating fails to leave the base substrate exposed to the environment.

  5. Article with buffer layer and method of making the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCamy, James W.; Ma, Zhixun; Kabagambe, Benjamin

    A method of forming a coating layer on a glass substrate in a glass manufacturing process includes: providing a first coating precursor material for a selected coating layer composition to at least one multislot coater to form a first coating region of the selected coating layer; and providing a second coating precursor material for the selected coating layer composition to the multislot coater to form a second coating region of the selected coating layer over the first region. The first coating precursor material is different than the second precursor coating material.

  6. 40 CFR 59.105 - Reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Volatile Organic Compound Emission Standards for Automobile Refinish Coatings § 59.105 Reporting... 180 days of the date that the regulated entity first manufactures or imports automobile refinish... States that is producing, packaging, or importing automobile refinish coatings or coating components...

  7. 40 CFR 59.105 - Reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Volatile Organic Compound Emission Standards for Automobile Refinish Coatings § 59.105 Reporting... 180 days of the date that the regulated entity first manufactures or imports automobile refinish... States that is producing, packaging, or importing automobile refinish coatings or coating components...

  8. 40 CFR 59.105 - Reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Volatile Organic Compound Emission Standards for Automobile Refinish Coatings § 59.105 Reporting... 180 days of the date that the regulated entity first manufactures or imports automobile refinish... States that is producing, packaging, or importing automobile refinish coatings or coating components...

  9. 40 CFR Appendix A to Subpart II of... - VOC Data Sheet 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... supplied” by the manufacturer. Properties of the coating as supplied 1 to the customer: A. Coating Density... (nonvolatiles) 2. __ g/L coating (less water and exempt compounds) G. Thinner Density: Dth __ g/L ASTM...

  10. 40 CFR Appendix A to Subpart II of... - VOC Data Sheet 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... supplied” by the manufacturer. Properties of the coating as supplied 1 to the customer: A. Coating Density... (nonvolatiles) 2. __ g/L coating (less water and exempt compounds) G. Thinner Density: Dth __ g/L ASTM...

  11. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, Daniel M.; Holt, Joseph B.

    1996-01-01

    A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.

  12. Structural changes of polymer-coated microgranules and excipients on tableting investigated by microtomography using synchrotron X-ray radiation.

    PubMed

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Itai, Shigeru

    2015-03-15

    Multiple-unit tablets consisting of polymer-coated microgranules and excipients have a number of advantageous pharmaceutical properties. Polymer-coated microgranules are known to often lose their functionality because of damage to the polymer coating caused by tableting, and the mechanism of polymer coating damage as well as the structural changes of excipients upon tableting had been investigated but without in-situ visualization and quantitative analysis. To elucidate the mechanism of coating damage, the internal structures of multiple-unit tablets were investigated by X-ray computed microtomography using synchrotron X-rays. Cross sectional images of the tablets with sub-micron spatial resolution clearly revealed that void spaces remained around the compressed excipient particles in the tablets containing an excipient composed of cellulose and lactose (Cellactose(®) 80), whereas much smaller void spaces remained in the tablets containing an excipient made of sorbitol (Parteck(®) SI 150). The relationships between the void spaces and the physical properties of the tablets such as hardness and disintegration were investigated. Damage to the polymer coating in tablets was found mainly where polymer-coated microgranules were in direct contact with each other in both types of tablets, which could be attributed to the difference in hardness of excipient particles and the core of the polymer-coated microgranules. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. In-Service Evaluation of HVOF Coated Main Landing Gear on Navy P-3 Aircraft

    NASA Technical Reports Server (NTRS)

    Devereaux, jon L.; Forrest, Clint

    2008-01-01

    Due to the environmental and health concerns with Electroplated Hard Chrome (EHC), the Hard Chrome Alternatives Team (HCAT) has been working to provide an alternative wear coating for EHC. The US Navy selected Tungsten-Carbide Cobalt (WC- 17Co) High Velocity Oxy-Fuel (HVOF) thermal spray coating for this purpose and completed service evaluations on select aircraft components to support the HCAT charter in identifying an alternative wear coating for chrome plating. Other benefits of WC-Co thermal spray coatings over EHC are enhanced corrosion resistance, improved durability, and exceptional wear properties. As part of the HCAT charter and to evaluate HVOF coatings on operational Navy components, the P-3 aircraft was selected for a service evaluation to determine the coating durability as compared to chrome plating. In April 1999, a VP-30 P-3 aircraft was outfitted with a right-hand Main Landing Gear (MLG) shock strut coated with WCCo HYOF thermal spray applied to the piston barrel and four axle journals. The HVOF coating on the piston barrel and axle journals was applied by Southwest United Industries, Inc. This HVOF coated strut assembly has since completed 6,378 landings. Teardown analysis .for this WC-Co HVOF coated MLG asset is significant in assessing the durability of this wear coating in service relative to EHC and to substantiate Life Cycle Cost (LCC) data to support a retrograde transition from EHC to HVOF thermal spray coatings. Findings from this teardown analysis may also benefit future transitions to HVOF thermal spray coatings by identifying enhancements to finishing techniques, mating bearing and liner material improvements, improved seal materials, and improvements in HVOF coating selection.

  14. Fabrication of nano-structured HA/CNT coatings on Ti6Al4V by electrophoretic deposition for biomedical applications.

    PubMed

    Zhang, Bokai; Kwok, Chi Tat; Cheng, Fai Tsun; Man, Hau Chung

    2011-12-01

    In order to improve the bone bioactivity and osteointegration of metallic implants, hydroxyapatite (HA) is often coated on their surface so that a real bond with the surrounding bone tissue can be formed. In the present study, cathodic electrophoretic deposition (EPD) has been attempted for depositing nanostructured HA coatings on titanium alloy Ti6Al4V followed by sintering at 800 degrees C. Nano-sized HA powder was used in the EPD process to produce dense coatings. Moreover, multiwalled carbon nanotubes (CNTs) were also used to reinforce the HA coating for enhancing its mechanical strength. The surface morphology, compositions and microstructure of the monolithic coating of HA and nanocomposite coatings of HA with different CNT contents (4 to 25%) on Ti6Al4V were investigated by scanning-electron microscopy, energy-dispersive X-ray spectroscopy and Xray diffractometry, respectively. Electrochemical corrosion behavior of the various coatings in Hanks' solution at 37 degrees C was investigated by means of open-circuit potential measurement and cyclic potentiodynamic polarization tests. Surface hardness, adhesion strength and bone bioactivity of the coatings were also studied. The HA and HA/CNT coatings had a thickness of about 10 microm, with corrosion resistance higher than that of the substrate and adhesion strength higher than that of plasma sprayed HA coating. The properties of the composite coatings were optimized by varying the CNT contents. The enhanced properties could be attributed to the use of nano-sized HA particles and CNTs. Compared with the monolithic HA coating, the CNT-reinforced HA coating markedly increased the coating hardness without deteriorating the corrosion resistance or adhesion strength.

  15. Cold spray NDE for porosity and other process anomalies

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.

    2018-04-01

    This paper describes a technology review of nondestructive evaluation (NDE) methods that can be applied to cold spray coatings. Cold spray is a process for depositing metal powder at high velocity so that it bonds to the substrate metal without significant heating that would be likely to cause additional residual tensile stresses. Coatings in the range from millimeters to centimeters are possible at relatively high deposition rates. Cold spray coatings that may be used for hydroelectric components that are subject to erosion, corrosion, wear, and cavitation damage are of interest. The topic of cold spray NDE is treated generally, however, but may be considered applicable to virtually any cold spray application except where there are constraints of the hydroelectric component application that bear special consideration. Optical profilometry, eddy current, ultrasound, and hardness tests are shown for one set of good, fair, and poor nickel-chrome (NiCr) on 304 stainless steel (304SS) cold spray samples to demonstrate inspection possibilities. The primary indicator of cold spray quality is the cold spray porosity that is most directly measured with witness-sample destructive examinations (DE)—mostly photo-micrographs. These DE-generated porosity values are correlated with optical profilometry, eddy current, ultrasound, and hardness test NDE methods to infer the porosity and other information of interest. These parameters of interest primarily include: • Porosity primarily caused by improper process conditions (temperature, gas velocity, spray standoff, spray angle, powder size, condition, surface cleanliness, surface oxide, etc.) • Presence/absence of the cold spray coating including possible over-sprayed voids • Coating thicknessOptical profilometry measurements of surface roughness trended with porosity plus, if compared with a reference measurement or reference drawing, would provide information on the coating thickness. Ultrasound could provide similar surface profile information plus attenuation measurements trended with porosity. The ultrasound measurements, however, may be limited to geometries where the substrate back-wall is normal to the cold spray surface and not too thick. Eddy current showed a strong correlation with porosity. Eddy currents can also be sensitive to cracks and do not need fluid coupling to make measurements, but are not sensitive to coating thicknesses in most cases. Vickers hardness measurements also tracked well with porosity; however, these types of hardness measurements are also not sensitive to coating thickness. An NDE program may include multiple measurements.

  16. ULTRACOATINGS: Enabling Energy and Power Solutions in High Contact Stress Environments through Next-Generation Nanocoatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, P.; Qu, J.; Higdon, C. III

    This industry-driven project was the result of a successful response by Eaton Corporation to a DOE/ITP Program, Grand Challenge, industry call. It consisted of a one-year effort in which ORNL participated in the area of friction and wear testing. In addition to Eaton Corporation and ORNL (CRADA), the project team included: Ames Laboratory, who developed the underlying concept for titanium- zirconium-boron (TZB) based nanocomposite coatings; Borg-Warner Morse TEC, an automotive engine timing chain manufacturer in Ithaca, New York, with its own proprietary hard coating; and Pratt & Whitney Rocketdyne, Inc., a dry-solids pump manufacturer in San Fernando Valley, California. Thismore » report focuses only on the portion of work that was conducted by ORNL, in a CRADA with Eaton Corporation. A comprehensive final report for the entire effort, which ended in September 2010, has been prepared for DOE by the team. The term 'ultracoatings' derives from the ambitious technical target for the new generation of nanocoatings. As applications, Eaton was specifically considering a fuel pump and a gear application in which the product of the contact pressure and slip velocity during operation of mating surfaces, commonly called the 'PV value', was equal to or greater than 70,000 MPa-m/s. This ambitious target challenges the developers of coatings to produce material capable of strong bonding to the substrate, as well as high wear resistance and the ability to maintain sliding friction at low, energy-saving levels. The partners in this effort were responsible for the selection and preparation of such candidate ultracoatings, and ORNL used established tribology testing capabilities to help screen these candidates for performance. This final report summarizes ORNL's portion of the nanocomposite coatings development effort and presents both generated data and the analyses that were used in the course of this effort. Initial contact stress and speed calculations showed that laboratory tests with available geometries, applied forces, and speeds at ORNL could not reach 70,000 MPa-m/s for the project target, so test conditions were modified to enable screening of the new coating compositions under conditions used in a prior nano-coatings development project with Eaton Corporation and Ames Laboratory. Eaton Innovation Center was able to conduct screening tests at higher loads and speeds, thus providing complementary information on coating durability and friction reduction. Those results are presented in the full team's final report which is in preparation at this writing. Tests of two types were performed at ORNL during the course of this work: (1) simulations of timing chain wear and friction under reciprocating conditions, and (2) pin-on-disk screening tests for bearings undergoing unidirectional sliding. The four materials supplied for evaluation in a timing chain link simulation were hardened type 440B stainless steel, nitrided type 440B stainless steel, vanadium carbide (VC)-coated type 52100 bearing steel, and (ZrTi)B-coated type 52100 bearing steel. Reciprocating wear tests revealed that the VC coating was by far the most wear resistant. In friction, the nitrided stainless steel did slightly better than the other materials.« less

  17. Evaluation of Advanced Polymers for Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Orlando; Carter, William G.; Kutchko, Cindy

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. (PPG) was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition, and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficientmore » mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and inherently low-cost.« less

  18. Fortifying the Bone-Implant Interface Part 1: An In Vitro Evaluation of 3D-Printed and TPS Porous Surfaces.

    PubMed

    MacBarb, Regina F; Lindsey, Derek P; Bahney, Chelsea S; Woods, Shane A; Wolfe, Mark L; Yerby, Scott A

    2017-01-01

    An aging society and concomitant rise in the incidence of impaired bone health have led to the need for advanced osteoconductive spinal implant surfaces that promote greater biological fixation ( e.g. for interbody fusion cages, sacroiliac joint fusion implants, and artificial disc replacements). Additive manufacturing, i.e. 3D-printing, may improve bone integration by generating biomimetic spinal implant surfaces that mimic bone morphology. Such surfaces may foster an enhanced cellular response compared to traditional implant surfacing processes. This study investigated the response of human osteoblasts to additive manufactured (AM) trabecular-like titanium implant surfaces compared to traditionally machined base material with titanium plasma spray (TPS) coated surfaces, with and without a nanocrystalline hydroxyapatite (HA) coating. For TPS-coated discs, wrought Ti6Al4V ELI was machined and TPS-coating was applied. For AM discs, Ti6Al4V ELI powder was 3D-printed to form a solid base and trabecular-like porous surface. The HA-coating was applied via a precipitation dip-spin method. Surface porosity, pore size, thickness, and hydrophilicity were characterized. Initial cell attachment, proliferation, alkaline phosphatase (ALP) activity, and calcium production of hFOB cells ( n =5 per group) were measured. Cells on AM discs exhibited expedited proliferative activity. While there were no differences in mean ALP expression and calcium production between TPS and AM discs, calcium production on the AM discs trended 48% higher than on TPS discs ( p =0.07). Overall, HA-coating did not further enhance results compared to uncoated TPS and AM discs. Results demonstrate that additive manufacturing allows for controlled trabecular-like surfaces that promote earlier cell proliferation and trends toward higher calcium production than TPS coating. Results further showed that nanocrystalline HA may not provide an advantage on porous titanium surfaces. Additive manufactured porous titanium surfaces may induce a more osteogenic environment compared to traditional TPS, and thus present as an attractive alternative to TPS-coating for orthopedic spinal implants.

  19. Applicability of near-infrared spectroscopy in the monitoring of film coating and curing process of the prolonged release coated pellets.

    PubMed

    Korasa, Klemen; Hudovornik, Grega; Vrečer, Franc

    2016-10-10

    Although process analytical technology (PAT) guidance has been introduced to the pharmaceutical industry just a decade ago, this innovative approach has already become an important part of efficient pharmaceutical development, manufacturing, and quality assurance. PAT tools are especially important in technologically complex operations which require strict control of critical process parameters and have significant effect on final product quality. Manufacturing of prolonged release film coated pellets is definitely one of such processes. The aim of the present work was to study the applicability of the at-line near-infrared spectroscopy (NIR) approach in the monitoring of pellet film coating and curing steps. Film coated pellets were manufactured by coating the active ingredient containing pellets with film coating based on polymethacrylate polymers (Eudragit® RS/RL). The NIR proved as a useful tool for the monitoring of the curing process since it was able to determine the extent of the curing and hence predict drug release rate by using partial least square (PLS) model. However, such approach also showed a number of limitations, such as low reliability and high susceptibility to pellet moisture content, and was thus not able to predict drug release from pellets with high moisture content. On the other hand, the at-line NIR was capable to predict the thickness of Eudragit® RS/RL film coating in a wide range (up to 40μm) with good accuracy even in the pellets with high moisture content. To sum up, high applicability of the at-line NIR in the monitoring of the prolonged release pellets production was demonstrated in the present study. The present findings may contribute to more efficient and reliable PAT solutions in the manufacturing of prolonged release dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Y2O3-MgO Nano-Composite Synthesized by Plasma Spraying and Thermal Decomposition of Solution Precursors

    NASA Astrophysics Data System (ADS)

    Muoto, Chigozie Kenechukwu

    This research aims to identify the key feedstock characteristics and processing conditions to produce Y2O3-MgO composite coatings with high density and hardness using solution precursor plasma spray (SPPS) and suspension plasma spray (SPS) processes, and also, to explore the phenomena involved in the production of homogenized nano-composite powders of this material system by thermal decomposition of solution precursor mixtures. The material system would find potential application in the fabrication of components for optical applications such as transparent windows. It was shown that a lack of major endothermic events during precursor decomposition and the resultant formation of highly dense particles upon pyrolysis are critical precursor characteristics for the deposition of dense and hard Y2O3-MgO coatings by SPPS. Using these principles, a new Y2O3-MgO precursor solution was developed, which yielded a coating with Vickers hardness of 560 Hv. This was a considerable improvement over the hardness of the coatings obtained using conventional solution precursors, which was as low as 110 Hv. In the thermal decomposition synthesis process, binary solution precursor mixtures of: yttrium nitrate (Y[n]) or yttrium acetate (Y[a]), with magnesium nitrate (Mg[n]) or magnesium acetate (Mg[a]) were used in order to study the effects of precursor chemistry on the structural characteristics of the resultant Y2O3-MgO powders. The phase domains were coarse and distributed rather inhomogeneously in the materials obtained from the Y[n]Mg[n] and Y[a]Mg[a] mixtures; finer and more homogeneously-distributed phase domains were obtained for ceramics produced from the Y[a]Mg[n] and Y[n]Mg[a] mixtures. It was established that these phenomena were related to the thermal characteristics for the decomposition of the precursors and their effect on phase separation during oxide crystallization. Addition of ammonium acetate to the Y[n[Mg[n] mixture changed the endothermic process to exothermic and improved the dispersion of the component phases. Two suspension types, made with powders synthesized from the Y[n]Mg[n] and Y[n]Mg[a] precursor mixtures were sprayed by SPS. The densities and hardnesses of the coatings deposited using the two powder types were similar. However, the microstructure of coatings deposited using the Y[n]Mg[a]-synthesized powder exhibited some eutectic configuration which was not observed in the coatings deposited using the Y[n]Mg[n]-synthesized powder.

  1. Manufacturing PDMS micro lens array using spin coating under a multiphase system

    NASA Astrophysics Data System (ADS)

    Sun, Rongrong; Yang, Hanry; Rock, D. Mitchell; Danaei, Roozbeh; Panat, Rahul; Kessler, Michael R.; Li, Lei

    2017-05-01

    The development of micro lens arrays has garnered much interest due to increased demand of miniaturized systems. Traditional methods for manufacturing micro lens arrays have several shortcomings. For example, they require expensive facilities and long lead time, and traditional lens materials (i.e. glass) are typically heavy, costly and difficult to manufacture. In this paper, we explore a method for manufacturing a polydimethylsiloxane (PDMS) micro lens array using a simple spin coating technique. The micro lens array, formed under an interfacial tension dominated system, and the influence of material properties and process parameters on the fabricated lens shape are examined. The lenses fabricated using this method show comparable optical properties—including surface finish and image quality—with a reduced cost and manufacturing lead time.

  2. SiC Design Guide: Manufacture of Silicon Carbide Products (Briefing charts)

    DTIC Science & Technology

    2010-06-08

    DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Presented at Mirror Technology Days, Boulder...coatings. 15. SUBJECT TERMS Mirrors , structures, silicon carbide, design, inserts, coatings, pockets, ribs, bonding, threads 16. SECURITY...Prescribed by ANSI Std. 239.18 purify protect transport SiC Design Guide Manufacture of Silicon Carbide Products Mirror Technology Days June 7 to 9, 2010

  3. Cleanroom Contaminant Monitor

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Small Business Innovation Research (SBIR) contract from Kennedy Space Center (KSC), Femtometrics, Inc. developed the Real-Time Non-Volatile Residue (NVR) monitor. Criteria established by KSC called for a technology that could regulate the accumulation of nonvolatile residues in cleanroom environments. The company accommodated the Center's need with an advanced, highly sensitive surface acoustic wave (SAW) microsensor capable of detecting sub-monolayer deposition in cleanrooms where aerospace systems are assembled. Years earlier, Femtometrics responded to and received SBIR contracts from Langley Research Center for highly sensitive aerosol detectors for environmental researchers. Stimulated by the SBIR wins, the company set about to develop the SAW resonator technology. A new type of sensor has evolved from the research, one that has the ability to measure a range of chemical vapors by applying chemical-specific coating on the sensing surface. Commercial applications of the Real-Time NVR include Class 1 cleanrooms at semiconductor and hard-disk manufacturing plants.

  4. Organic inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica)

    NASA Astrophysics Data System (ADS)

    Rubio, E.; Almaral, J.; Ramírez-Bon, R.; Castaño, V.; Rodríguez, V.

    2005-04-01

    Polymethylmethacrylate-silica hybrid coatings were prepared from methyl methacrylate and monodisperse colloidal silica prepared by the Stöber method. The surfaces of the spheres were successfully modified by chemical reaction with 3-(trimethoxysilyl) propyl methacrylate (TMSPM) to compatibilise the organic and inorganic components of the precursor solution mixture. The coatings were deposited by dip-coating on glass substrates. They result with good properties of homogeneity, optical transparence, hardness and adhesion.

  5. Mechanical and tribological properties of thermally sprayed tungsten carbide-cobalt coatings

    NASA Astrophysics Data System (ADS)

    Qiao, Yunfei

    Since previous work in our laboratory has shown that very fine microstructures increase the hardness and the resistance to sliding and abrasive wear of bulk, sintered, WC/Co composites, it was decided to explore whether similar benefits can be obtained in coatings of this material deposited by the Thermal Spray Method. The research was a collaborative effort in which a number of companies and universities prepared feedstock powders by a number of methods and deposited coatings by Plasma Spray and High Velocity Oxy Fuel spray techniques. Our role was to study the resistance of these coatings to abrasion and to wear in unlubricated sliding, to relate our findings to the microstructure of the coatings and to the properties of the powder and the parameters of deposition. The results were then used by our partners in the program to modify their processes in order to obtain the best possible performance. The thesis consists of four parts. In the first, we review the literature on WC/Co coatings and present the results of our survey of 45 coatings. This shows that the details of the thermal spray technique determine the tribological performance of the coatings much more than the size of the WC grains in the starting powder. It also shows that abrasive and sliding wear respond differently to the material properties. The remainder of the thesis describes a systematic variation of powders and deposition techniques, based on our earlier findings. In the second part, we describe the microstructures, hardness and toughness of nine coatings deposited by A. Dent at SUNY Stony Brook, with three different powders and three different flame chemistries. We find that the hardness is determined mainly by the flame temperature; hardness is decreased by porosity on the 50-nm size range, and this porosity is produced by insufficient melting of the Co binder. High temperatures and certain powder morphologies cause extensive decarburization, and the latter reduces the adhesion between the deposited material splats. In the third and fourth sections, we examine the abrasive wear resistance of these nine samples. Abrasive wear occurs on a small scale and depends mainly on the adhesion between the WC grains and the Co binder phase. Sliding wear, which occurs chiefly by the removal of entire splats by fatigue, is more sensitive to decarburization. The technological result is that WC/Co coatings made of "multimodal" powders that consist of a mixture of micrometer and nanometer-sized WC are to be preferred for abrasion resistance, and coatings made of a very fine powder with an additive that retards grain growth and decarburization is preferred for sliding wear resistance.

  6. 40 CFR 63.5734 - What standards must I meet for resin and gel coat application equipment cleaning operations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...? (a) For routine flushing of resin and gel coat application equipment (e.g., spray guns, flowcoaters... and gel coat application equipment cleaning operations? 63.5734 Section 63.5734 Protection of... Pollutants for Boat Manufacturing Standards for Resin and Gel Coat Application Equipment Cleaning Operations...

  7. 40 CFR 63.5746 - How do I demonstrate compliance with the emission limits for aluminum wipedown solvents and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) to determine the density of each aluminum surface coating and wipedown solvent. (d) Compliance is... Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating... of solids per liter of coating, or volume fraction) of each aluminum surface coating, including...

  8. 40 CFR Appendix A to Subpart II of... - VOC Data Sheet 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Shipbuilding and Ship Repair (Surface Coating) Pt. 63, Subpt. II, App. A... supplied” by the manufacturer. Properties of the coating as supplied 1 to the customer: A. Coating Density... (nonvolatiles) 2. __ g/L coating (less water and exempt compounds) G. Thinner Density: Dth __ g/L ASTM...

  9. Surface modification of acetaminophen particles by atomic layer deposition.

    PubMed

    Kääriäinen, Tommi O; Kemell, Marianna; Vehkamäki, Marko; Kääriäinen, Marja-Leena; Correia, Alexandra; Santos, Hélder A; Bimbo, Luis M; Hirvonen, Jouni; Hoppu, Pekka; George, Steven M; Cameron, David C; Ritala, Mikko; Leskelä, Markku

    2017-06-15

    Active pharmaceutical ingredients (APIs) are predominantly organic solid powders. Due to their bulk properties many APIs require processing to improve pharmaceutical formulation and manufacturing in the preparation for various drug dosage forms. Improved powder flow and protection of the APIs are often anticipated characteristics in pharmaceutical manufacturing. In this work, we have modified acetaminophen particles with atomic layer deposition (ALD) by conformal nanometer scale coatings in a one-step coating process. According to the results, ALD, utilizing common chemistries for Al 2 O 3 , TiO 2 and ZnO, is shown to be a promising coating method for solid pharmaceutical powders. Acetaminophen does not undergo degradation during the ALD coating process and maintains its stable polymorphic structure. Acetaminophen with nanometer scale ALD coatings shows slowed drug release. ALD TiO 2 coated acetaminophen particles show cytocompatibility whereas those coated with thicker ZnO coatings exhibit the most cytotoxicity among the ALD materials under study when assessed in vitro by their effect on intestinal Caco-2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Solvent-free dry powder coating process for low-cost manufacturing of LiNi1/3Mn1/3Co1/3O2 cathodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Al-Shroofy, Mohanad; Zhang, Qinglin; Xu, Jiagang; Chen, Tao; Kaur, Aman Preet; Cheng, Yang-Tse

    2017-06-01

    We report a solvent-free dry powder coating process for making LiNi1/3Mn1/3Co1/3O2 (NMC) positive electrodes in lithium-ion batteries. This process eliminates volatile organic compound emission and reduces thermal curing time from hours to minutes. A mixture of NMC, carbon black, and poly(vinylidene difluoride) was electrostatically sprayed onto an aluminum current collector, forming a uniformly distributed electrode with controllable thickness and porosity. Charge/discharge cycling of the dry-powder-coated electrodes in lithium-ion half cells yielded a discharge specific capacity of 155 mAh g-1 and capacity retention of 80% for more than 300 cycles when the electrodes were tested between 3.0 and 4.3 V at a rate of C/5. The long-term cycling performance and durability of dry-powder coated electrodes are similar to those made by the conventional wet slurry-based method. This solvent-free dry powder coating process is a potentially lower-cost, higher-throughput, and more environmentally friendly manufacturing process compared with the conventional wet slurry-based electrode manufacturing method.

  11. Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD

    NASA Astrophysics Data System (ADS)

    Rezanka, S.; Mauer, G.; Vaßen, R.

    2014-01-01

    The plasma spray-physical vapor deposition (PS-PVD) process is a promising method to manufacture thermal barrier coatings (TBCs). It fills the gap between traditional thermal spray processes and electron beam physical vapor deposition (EB-PVD). The durability of PS-PVD manufactured columnar TBCs is strongly influenced by the compatibility of the metallic bondcoat (BC) and the ceramic TBC. Earlier investigations have shown that a smooth BC surface is beneficial for the durability during thermal cycling. Further improvements of the bonding between BC and TBC could be achieved by optimizing the formation of the thermally grown oxide (TGO) layer. In the present study, the parameters of pre-heating and deposition of the first coating layer were investigated in order to adjust the growth of the TGO. Finally, the durability of the PS-PVD coatings was improved while the main advantage of PS-PVD, i.e., much higher deposition rate in comparison to EB-PVD, could be maintained. For such coatings, improved thermal cycling lifetimes more than two times higher than conventionally sprayed TBCs, were measured in burner rigs at ~1250 °C/1050 °C surface/substrate exposure temperatures.

  12. Effect of Nano-Y2O3 on Microstructure and Crack Formation in Laser Direct-Deposited In Situ Particle-Reinforced Fe-Based Coatings

    NASA Astrophysics Data System (ADS)

    Yin, Guili; Chen, Suiyuan; Liu, Yuanyuan; Liang, Jing; Liu, Changsheng; Kuang, Zheng

    2018-03-01

    In situ hard-particle-reinforced Fe-based composite coatings were prepared on Q235 steel substrates by direct laser deposition using Fe-based alloy powders containing 2 wt.% B, 3 wt.% Si and 1-3 wt.% nano-Y2O3. The microstructures, phase compositions, hardnesses and wear resistances of the deposited coatings with different nano-Y2O3 contents were studied using metallographic microscopy, scanning electron microscopy, x-ray diffraction, transmission electron microscopy, microhardness tests and pin-on-disk abrasion tests (MMW-1A), respectively. The results showed that the appropriate addition of Y2O3 played a role in grain refinement and in decreasing the number of brittle phases and impurity elements in the grain boundaries. Consequently, the number of cracks in the laser-deposited coating also decreased. The Fe-based composite coatings were mainly composed of α-Fe, γ-Fe and in situ-produced reinforced particle phases, such as Cr23C6, Cr7C3, (Cr, Fe)7C3, Fe2B, and CrFeB. When the content of nano-Y2O3 was 2 wt.%, a Fe-based composite coating with a thickness of 4 mm that was free of cracks was obtained, and its surface hardness reached 650HV. Moreover, the wear resistance of the coating with 2 wt.% nano-Y2O3 was the best among the samples studied. The presence of nano-Y2O3 increased the solubility of Cr and Si in the solid solution, which eliminated the residual austenite region, and as a result, the phase transformation from γ-Fe to α-Fe was restrained and the transformation stress was also limited, thereby decreasing the probability of cracks in the coatings.

  13. Optimising sulfuric acid hard coat anodising for an Al-Mg-Si wrought aluminium alloy

    NASA Astrophysics Data System (ADS)

    Bartolo, N.; Sinagra, E.; Mallia, B.

    2014-06-01

    This research evaluates the effects of sulfuric acid hard coat anodising parameters, such as acid concentration, electrolyte temperature, current density and time, on the hardness and thickness of the resultant anodised layers. A small scale anodising facility was designed and set up to enable experimental investigation of the anodising parameters. An experimental design using the Taguchi method to optimise the parameters within an established operating window was performed. Qualitative and quantitative methods of characterisation of the resultant anodised layers were carried out. The anodised layer's thickness, and morphology were determined using a light optical microscope (LOM) and field emission gun scanning electron microscope (FEG-SEM). Hardness measurements were carried out using a nano hardness tester. Correlations between the various anodising parameters and their effect on the hardness and thickness of the anodised layers were established. Careful evaluation of these effects enabled optimum parameters to be determined using the Taguchi method, which were verified experimentally. Anodised layers having hardness varying between 2.4-5.2 GPa and a thickness of between 20-80 μm were produced. The Taguchi method was shown to be applicable to anodising. This finding could facilitate on-going and future research and development of anodising, which is attracting remarkable academic and industrial interest.

  14. Effects of Co contents on the microstructures and properties of the electrodeposited NiCo–Zr composite coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Fei; Jiang, Chuanhai, E-mail: chuanhaijiang1963@163.com; Zhao, Yuantao

    2015-05-15

    Highlights: • The novel NiCo–Zr coatings were prepared by electro-deposition. • Surface morphology, crystal structure, grain size and microstrain were examined. • Texture, residual stress and corrosion resistance were investigated. • Addition of Co increased the hardness and corrosion resistance of the coatings. - Abstract: In this study, the NiCo–Zr composite coatings were prepared from the electrolytes with different Co{sup 2+} concentrations by electrodeposition method. The effects of Co contents on the crystal structure, surface morphology, grain size, microstrain and residual stress were examined by X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) andmore » atomic force microscope (AFM). The corrosion resistance of the composite coatings was also examined by the potentiodynamic polarization and electrochemical impedance (EIS) measurements. The results revealed that the crystal structures of the coatings were dependent on the Co contents and addition of Co content of 58 wt% resulted in the formation of hexagonal (hcp) Co. The increasing Co contents in the NiCo–Zr composite coatings resulted in the smoother and more compact surface, decreased the grain size and increased the microstrain. The micro-hardness and residual stress also increased with increasing Co contents. The addition of Co increased the corrosion resistance of the NiCo–Zr composite coatings compared with the Ni–Zr coating while the corrosion resistance of the NiCo–Zr composite coatings decreased as the Co contents increased.« less

  15. Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Bakhsheshi-Rad, H. R.; Hamzah, E.; Bagheriyan, S.; Daroonparvar, M.; Kasiri-Asgarani, M.; Shah, A. M.; Medraj, M.

    2016-09-01

    A triplex plasma (NiCoCrAlHfYSi/Al2O3·13%TiO2)/polycaprolactone composite coating was successfully deposited on a Mg-1.2Ca alloy by a combination of atmospheric plasma spraying and dip-coating techniques. The NiCoCrAlHfYSi (MCrAlHYS) coating, as the first layer, contained a large number of voids, globular porosities, and micro-cracks with a thickness of 40-50 μm, while the Al2O3·13%TiO2 coating, as the second layer, presented a unique bimodal microstructure with a thickness of 70-80 μm. The top layer was a hydrophobic polymer, which effectively sealed the porosities of plasma layers. The results of micro-hardness and bonding strength tests showed that the plasma coating presented excellent hardness (870 HV) and good bonding strength (14.8 MPa). However, the plasma/polymer coatings interface exhibited low bonding strength (8.6 MPa). The polymer coating formed thick layer (100-110 μm) that homogeneously covered the surface of the plasma layers. Contact angle measurement showed that polymer coating over plasma layers significantly decreased surface wettability. The corrosion current density ( i corr) of an uncoated sample (262.7 µA/cm2) decreased to 76.9 µA/cm2 after plasma coatings were applied. However, it was found that the i corr decreased significantly to 0.002 µA/cm2 after polymer sealing of the porous plasma layers.

  16. Determining the Effect of Material Hardness During the Hard Turning of AISI4340 Steel

    NASA Astrophysics Data System (ADS)

    Kambagowni, Venkatasubbaiah; Chitla, Raju; Challa, Suresh

    2018-05-01

    In the present manufacturing industries hardened steels are most widely used in the applications like tool design and mould design. It enhances the application range of hard turning of hardened steels in manufacturing industries. This study discusses the impact of workpiece hardness, feed and depth of cut on Arithmetic mean roughness (Ra), root mean square roughness (Rq), mean depth of roughness (Rz) and total roughness (Rt) during the hard turning. Experiments have been planned according to the Box-Behnken design and conducted on hardened AISI4340 steel at 45, 50 and 55 HRC with wiper ceramic cutting inserts. Cutting speed is kept constant during this study. The analysis of variance was used to determine the effects of the machining parameters. 3-D response surface plots drawn based on RSM were utilized to set up the input-output relationships. The results indicated that the feed rate has the most significant parameter for Ra, Rq and Rz and hardness has the most critical parameter for the Rt. Further, hardness shows its influence over all the surface roughness characteristics.

  17. Lessons learned from the development and manufacture of ceramic reusable surface insulation materials for the space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Banas, R. P.; Elgin, D. R.; Cordia, E. R.; Nickel, K. N.; Gzowski, E. R.; Aguiler, L.

    1983-01-01

    Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed.

  18. Multilayer Coatings for UV Spectral Range

    NASA Astrophysics Data System (ADS)

    Miloushev, Ilko; Tenev, Tihomir; Peyeva, Rumiana; Panajotov, Krassimir

    2010-01-01

    Optical coatings for the UV spectral range play currently a significant role in the modern optical devices. For reducing of manufacturing cost the reliable design is essential. Therefore, better understanding of the optical properties of the used materials is indispensable for the proper design and manufacturing of the multilayer UV coatings. In this work we present some results on the preparation of reflective UV coatings. The implemented materials are magnesium fluoride and lanthanum fluoride. Their optical constants are determined from spectral characteristics of single layers in the 200-800 nm spectral range, obtained by thermal boat evaporation in high vacuum conditions. These results are subsequently used for the analysis of high reflection (HR) stack made of 40 layers deposited by the same deposition process.

  19. Technology Exploitation/Exploration/Examination Report (TeX3): Adaptive Self-Lubricating Nanoporous Hard Coatings

    DTIC Science & Technology

    2008-04-01

    Technology, 167 (2003) 25. 14. T. Polcar, N.M.G. Parreira, R . Novak, Surface and Coatings Technology, 201 (2007) 5228. 15. H.C. Barshilia, N. Selvakumar ...Sodergren, D. Mihut, S. L. Rohde, J. Xu, S. R . Mishra, Surface and Coatings Technology, 201 (2006) 418. 9. A.A. Voevodin, J.J. Hu, T.A. Fitz, J.S

  20. Effect of KOH to Na2SiO3 Ratio on Microstructure and Hardness of Plasma Electrolytic Oxidation Coatings on AA 6061 Alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Jang, Yong-Joo; Jung, Jae Pil

    2017-10-01

    In this study, plasma electrolytic oxidation (PEO) process has been employed to fabricate alumina coatings on AA 6061 aluminum alloy from an electrolyte containing water glass (Na2SiO3) and alkali (KOH). The effect of deposition time and the alkali to water glass (KOH: Na2SiO3) composition ratio on the coating morphology and properties are studied. The different phases of the oxide layer and microstructure are investigated by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. The results indicate that initially γ-Al2O3 forms in the coating, and as the processing time is increased from 5 to 60 minutes, α-Al2O3 phase becomes prominent. Further, higher the content of Na2SiO3, higher is the hardness and coating growth rate due to the formation of stable α-Al2O3 and Al-Si-O phase. It has been reported that the optimum properties of the PEO coatings can be obtained at a ratio of KOH: Na2SiO3 ≈ 15:10 followed by 10:10.

  1. Ni-Al phase transformation of dual layer coating prepared by pack cementation and electrodeposition

    NASA Astrophysics Data System (ADS)

    Afandi, A.; Sugiarti, E.; Ekaputra, R.; Sudiro, T.; Thosin, K. A. Z.

    2018-03-01

    In this work, Fe-Cr alloys were coated via Aluminum (Al) pack cementation, followed by Nickel (Ni) electrodeposition. The process of pack cementation was done with mixing powders of Al, Al203 and NH4Cl with weight percentage of 15%, 85%, and 5% respectively. To control successful Al diffusion to the substrate, pack cementation was conducted for 7 hours with two holding temperatures treatment at 400 °C for 4 hours, and 800 ° C hours for 2 hours. Subsequently, the electrodeposition of Ni was applied with the solution consisting of NiSO4, H3BO3, and NiCl2. The samples were placed in the cathode, and then dipped in the solutions, while Ni plate used as anode. Successfully the samples were coated by dual Al-Ni layers, the samples were slowly heat treated at 900 °C for 10 hours. The inter-diffusion of Al and Ni were characterized with SEM/EDX to investigate the distribution of the elements. Mechanical properties of the coated substrates were analyzed with Hardness Vickers (HV). It was found the hardness of the substrate increased significantly, from originally 255 HV to the 1177 HV after pack cementation. The hardness of the substrates has decreased to 641 HV after Ni plating, but subsequent heat treatment has been able to increase the hardness to 842 HV. This phenomenon can be correlated to the inward Al diffusion, and outward Fe, Cr diffusion. The formation of intermetallic compounds due to Al inward and Fe, Cr outward diffusion were discussed in details.

  2. Structural and tribological properties of CrTiAlN coatings on Mg alloy by closed-field unbalanced magnetron sputtering ion plating

    NASA Astrophysics Data System (ADS)

    Shi, Yongjing; Long, Siyuan; Yang, Shicai; Pan, Fusheng

    2008-09-01

    In this paper, a series of multi-layer hard coating system of CrTiAlN has been prepared by closed-field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique in a gas mixture of Ar + N 2. The coatings were deposited onto AZ31 Mg alloy substrates. During deposition step, technological temperature and metallic atom concentration of coatings were controlled by adjusting the currents of different metal magnetron targets. The nitrogen level was varied by using the feedback control of plasma optical emission monitor (OEM). The structural, mechanical and tribological properties of coatings were characterized by means of X-ray photoelectron spectrometry, high-resolution transmission electron microscope, field emission scanning electron microscope (FESEM), micro-hardness tester, and scratch and ball-on-disc tester. The experimental results show that the N atomic concentration increases and the oxide on the top of coatings decreases; furthermore the modulation period and the friction coefficient decrease with the N 2 level increasing. The outstanding mechanical property can be acquired at medium N 2 level, and the CrTiAlN coatings on AZ31 Mg alloy substrates outperform the uncoated M42 high speed steel (HSS) and the uncoated 316 stainless steel (SS).

  3. Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel

    NASA Astrophysics Data System (ADS)

    Durmaz, M.; Kilinc, B.; Abakay, E.; Sen, U.; Sen, S.

    2015-03-01

    In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1 m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000°C for 2 h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layer formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr2N. The depth of the layer was 8.15 µm. The average hardness of the layer was 2160±15 HV0.025. For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results.

  4. Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durmaz, M., E-mail: mdurmaz@sakarya.edu.tr; Abakay, E.; Sen, U.

    2015-03-30

    In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1 m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000°C for 2 h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layermore » formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr{sub 2}N. The depth of the layer was 8.15 µm. The average hardness of the layer was 2160±15 HV{sub 0.025}. For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results.« less

  5. 75 FR 52309 - Notice of Petitions by Firms for Determination of Eligibility To Apply for Trade Adjustment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... manufactures parts and assemblies. Bracalente Manufacturing Company, Inc. 20 W. Creamery Road, 8/2/2010 The.... electrical wiring harnesses and lighting fixture components whose primary manufacturing material is copper... and Mill, SC 29715. coatings whose manufacturing materials include pigments, resins, solvents...

  6. 40 CFR 59.108 - State Authority.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Compound Emission Standards for Automobile Refinish Coatings § 59.108 State Authority. The provisions in... or importer of automobile refinish coatings or components in addition to the requirements of this subpart. (b) Requiring the manufacturer or importer of automobile refinish coatings or components to...

  7. 40 CFR 59.108 - State Authority.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Compound Emission Standards for Automobile Refinish Coatings § 59.108 State Authority. The provisions in... or importer of automobile refinish coatings or components in addition to the requirements of this subpart. (b) Requiring the manufacturer or importer of automobile refinish coatings or components to...

  8. 40 CFR 59.108 - State Authority.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Compound Emission Standards for Automobile Refinish Coatings § 59.108 State Authority. The provisions in... or importer of automobile refinish coatings or components in addition to the requirements of this subpart. (b) Requiring the manufacturer or importer of automobile refinish coatings or components to...

  9. CASE STUDIES: LOW-VOC/HAP WOOD FURNITURE COATINGS

    EPA Science Inventory


    The report gives results of a study in which wood furniture manufacturing facilities were identified that had converted at least one of their primary coating steps to low-volatile organic compound (VOC)/hazardous Air pollutant (HAP) wood furniture coatings: high-solids, water...

  10. Anti-Glare Filters

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Glare from CRT screens has been blamed for blurred vision, eyestrain, headaches, etc. Optical Coating Laboratory, Inc. (OCLI) manufactures a coating to reduce glare which was used to coat the windows on the Gemini and Apollo spacecraft. In addition, OCLI offers anti-glare filters (Glare Guard) utilizing the same thin film coating technology. The coating minimizes brightness, provides enhanced contrast and improves readability. The filters are OCLI's first consumer product.

  11. Method for smoothing the surface of a protective coating

    DOEpatents

    Sangeeta, D.; Johnson, Curtis Alan; Nelson, Warren Arthur

    2001-01-01

    A method for smoothing the surface of a ceramic-based protective coating which exhibits roughness is disclosed. The method includes the steps of applying a ceramic-based slurry or gel coating to the protective coating surface; heating the slurry/gel coating to remove volatile material; and then further heating the slurry/gel coating to cure the coating and bond it to the underlying protective coating. The slurry/gel coating is often based on yttria-stabilized zirconia, and precursors of an oxide matrix. Related articles of manufacture are also described.

  12. Microstructure and mechanical behavior of Zr substrates coated with FeCrAl and Mo by cold-spraying

    NASA Astrophysics Data System (ADS)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2018-06-01

    FeCrAl and Mo layers were cold-sprayed onto a Zr surface, with the Mo layer introduced between the FeCrAl coating and the Zr matrix preventing high-temperature interdiffusion. Microstructural characterization of the first-deposited Mo layer and the Zr matrix immediately below the Mo/Zr interface was performed using transmission electron microscopy, and near-interface elemental distributions were obtained using energy-dispersive X-ray spectroscopy. The deformation of the coated Mo powder induced the formation of microbands and mechanically interlocked nanoscale structures. The mechanical behavior of Zr with a coating layer was compared with those characteristic of conventional Zr samples. The coated sample showed smaller strength reduction in the test conducted at elevated temperature. The hardness and fracture morphology of the Zr matrix near the interface region were investigated to determine the effect of impacting Mo particles on the matrix microstructure. The enhanced hardness and cleavage fracture morphology of the Zr matrix immediately below the Mo/Zr interface indicated the occurrence of localized deformation owing to Mo particle impact.

  13. Method for producing fluorinated diamond-like carbon films

    DOEpatents

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  14. Measured reflectance of graded multilayer mirrors designed for astronomical hard X-ray telescopes

    NASA Astrophysics Data System (ADS)

    Christensen, F. E.; Craig, W. W.; Windt, D. L.; Jimenez-Garate, M. A.; Hailey, C. J.; Harrison, F. A.; Mao, P. H.; Chakan, J. M.; Ziegler, E.; Honkimaki, V.

    2000-09-01

    Future astronomical X-ray telescopes, including the balloon-borne High-Energy Focusing Telescope (HEFT) and the Constellation-X Hard X-ray Telescope (Con-X HXT) plan to incorporate depth-graded multilayer coatings in order to extend sensitivity into the hard X-ray (10<~E<~80keV) band. In this paper, we present measurements of the reflectance in the 18-170 keV energy range of a cylindrical prototype nested optic taken at the European Synchrotron Radiation Facility (ESRF). The mirror segments, mounted in a single bounce stack, are coated with depth-graded W/Si multilayers optimized for broadband performance up to 69.5 keV (WK-edge). These designs are ideal for both the HEFT and Con-X HXT applications. We compare the measurements to model calculations to demonstrate that the reflectivity can be well described by the intended power law distribution of the bilayer thicknesses, and that the coatings are uniform at the 5% level over the mirror surface. Finally, we apply the measurements to predict effective areas achievable for HEFT and Con-X HXT using these W/Si designs.

  15. [Emission characteristics and safety evaluation of volatile organic compounds in manufacturing processes of automotive coatings].

    PubMed

    Zeng, Pei-Yuan; Li, Jian-Jun; Liao, Dong-Qi; Tu, Xiang; Xu, Mei-Ying; Sun, Guo-Ping

    2013-12-01

    Emission characteristics of volatile organic compounds (VOCs) were investigated in an automotive coating manufacturing enterprise. Air samples were taken from eight different manufacturing areas in three workshops, and the species of VOCs and their concentrations were measured by gas chromatography-mass spectrometry (GC-MS). Safety evaluation was also conducted by comparing the concentration of VOCs with the permissible concentration-short term exposure limit (PC-STEL) regulated by the Ministry of Health. The results showed that fifteen VOCs were detected in the indoor air of the automotive coatings workshop, including benzene, toluene, ethylbenzene, xylene, ethyl acetate, butyl acetate, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, trimethylbenzene and ethylene glycol monobutyl ether, Their concentrations widely ranged from 0.51 to 593.14 mg x m(-3). The concentrations of TVOCs were significantly different among different manufacturing processes. Even in the same manufacturing process, the concentrations of each component measured at different times were also greatly different. The predominant VOCs of indoor air in the workshop were identified to be ethylbenzene and butyl acetate. The concentrations of most VOCs exceeded the occupational exposure limits, so the corresponding control measures should be taken to protect the health of the workers.

  16. Development of Multispectral Sandwich-Type IR Windows.

    DTIC Science & Technology

    1977-04-01

    Coatings 52 4.4 Thermophyslcal Properties 59 4.5 Mechanical Properties 62 4.5.1 Hardness and Strength of Window Components ... 62 4.5.2 Bond...AR coating ) 51 36 Transmittance vs. wavelength for a 0.050 in. thick CVD ZnS plate (No AR coating ) 53 37 Transmittance of a ZnS/ZnSe composite...compared to 67% calculated for the ZnSe window alone. As described below, anti -reflection coatings deposited onto the composite window will further enhance

  17. Development & characterization of alumina coating by atmospheric plasma spraying

    NASA Astrophysics Data System (ADS)

    Sebastian, Jobin; Scaria, Abyson; Kurian, Don George

    2018-03-01

    Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.

  18. Suspension thermal spraying of hydroxyapatite: microstructure and in vitro behaviour.

    PubMed

    Bolelli, Giovanni; Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella; Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer; Altomare, Lina; De Nardo, Luigi

    2014-01-01

    In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27-37μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%-70% were obtained, depending on the deposition parameters and the use of a TiO2 bond coat. The average hardness of layers with low (<24%) and high (70%) crystallinity was ≈3.5GPa and ≈4.5GPa respectively. The distributions of hardness values, all characterised by Weibull modulus in the 5-7 range, were narrower than that of conventional plasma-sprayed hydroxyapatite, with a Weibull modulus of ≈3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates. © 2013.

  19. Effects of different binders on microstructure and phase composition of hydroxyapatite Nd-YAG laser clad coatings

    NASA Astrophysics Data System (ADS)

    Chien, C. S.; Hong, T. F.; Han, T. J.; Kuo, T. Y.; Liao, T. Y.

    2011-01-01

    The laser clad coating technique can help to produce metallurgical bonding with high bonding strength between the coating layer and the substrate, which has been gradually applied for hydroxyapatite (HA) coating on metallic substrates. In this study, HA powder is mixed with two different binders, namely water glass (WG) and polyvinyl alcohol (PVA), respectively, and is then clad on Ti-6Al-4V substrates using an Nd:YAG laser system under various processing conditions. The microstructure, chemical composition and hardness of the coating layer and transition layer of the various samples are then systematically explored. The experimental results show that the coating layers of the various samples all contain both cellular dendrites and rod-like piled structures, while the transition layers contain only cellular dendrites. For all samples, the coating layer consists mostly of CaTiO 3, Ca 2P 2O 7, CaO and HA phases, whereas the transition layer contains primarily CaTiO 3, Ca 2P 2O 7, Ti 3P, Ti and HA phases. In addition, the transition layer of the WG samples also contains SiO 2 and Si 2Ti phases. In all of the specimens, the transition layer has a higher average hardness than the substrate or coating layer. Moreover, the transition layer in the WG sample is harder than that in the PVA sample.

  20. Effect of coating on properties of esthetic orthodontic nickel-titanium wires.

    PubMed

    Iijima, Masahiro; Muguruma, Takeshi; Brantley, William; Choe, Han-Cheol; Nakagaki, Susumu; Alapati, Satish B; Mizoguchi, Itaru

    2012-03-01

    To determine the effect of coating on the properties of two esthetic orthodontic nickel-titanium wires. Woowa (polymer coating; Dany Harvest) and BioForce High Aesthetic Archwire (metal coating; Dentsply GAC) with cross-section dimensions of 0.016 × 0.022 inches were selected. Noncoated posterior regions of the anterior-coated Woowa and uncoated Sentalloy were used for comparison. Nominal coating compositions were determined by x-ray fluorescence (JSX-3200, JOEL). Cross-sectioned and external surfaces were observed with a scanning electron microscope (SEM; SSX-550, Shimadzu) and an atomic force microscope (SPM-9500J2, Shimadzu). A three-point bending test (12-mm span) was carried out using a universal testing machine (EZ Test, Shimadzu). Hardness and elastic modulus of external and cross-sectioned surfaces were obtained by nanoindentation (ENT-1100a, Elionix; n  =  10). Coatings on Woowa and BioForce High Aesthetic Archwire contained 41% silver and 14% gold, respectively. The coating thickness on Woowa was approximately 10 µm, and the coating thickness on BioForce High Aesthetic Archwire was much smaller. The surfaces of both coated wires were rougher than the noncoated wires. Woowa showed a higher mean unloading force than the noncoated Woowa, although BioForce High Aesthetic Archwire showed a lower mean unloading force than Sentalloy. While cross-sectional surfaces of all wires had similar hardness and elastic modulus, values for the external surface of Woowa were smaller than for the other wires. The coating processes for Woowa and BioForce High Aesthetic Archwire influence bending behavior and surface morphology.

  1. Fate of Mycobacterium avium subsp. paratuberculosis in Swiss hard and semihard cheese manufactured from raw milk.

    PubMed

    Spahr, U; Schafroth, K

    2001-09-01

    Raw milk was artificially contaminated with declumped cells of Mycobacterium avium subsp. paratuberculosis at a concentration of 10(4) to 10(5) CFU/ml and was used to manufacture model hard (Swiss Emmentaler) and semihard (Swiss Tisliter) cheese. Two different strains of M. avium subsp. paratuberculosis were tested, and for each strain, two model hard and semihard cheeses were produced. The survival of M. avium subsp. paratuberculosis cells was monitored over a ripening period of 120 days by plating out homogenized cheese samples onto 7H10-PANTA agar. In both the hard and the semihard cheeses, counts decreased steadily but slowly during cheese ripening. Nevertheless, viable cells could still be detected in 120-day cheese. D values were calculated at 27.8 days for hard and 45.5 days for semihard cheese. The most important factors responsible for the death of M. avium subsp. paratuberculosis in cheese were the temperatures applied during cheese manufacture and the low pH at the early stages of cheese ripening. Since the ripening period for these raw milk cheeses lasts at least 90 to 120 days, the D values found indicate that 10(3) to 10(4) cells of M. avium subsp. paratuberculosis per g will be inactivated.

  2. Fate of Mycobacterium avium subsp. paratuberculosis in Swiss Hard and Semihard Cheese Manufactured from Raw Milk

    PubMed Central

    Spahr, U.; Schafroth, K.

    2001-01-01

    Raw milk was artificially contaminated with declumped cells of Mycobacterium avium subsp. paratuberculosis at a concentration of 104 to 105 CFU/ml and was used to manufacture model hard (Swiss Emmentaler) and semihard (Swiss Tisliter) cheese. Two different strains of M. avium subsp. paratuberculosis were tested, and for each strain, two model hard and semihard cheeses were produced. The survival of M. avium subsp. paratuberculosis cells was monitored over a ripening period of 120 days by plating out homogenized cheese samples onto 7H10-PANTA agar. In both the hard and the semihard cheeses, counts decreased steadily but slowly during cheese ripening. Nevertheless, viable cells could still be detected in 120-day cheese. D values were calculated at 27.8 days for hard and 45.5 days for semihard cheese. The most important factors responsible for the death of M. avium subsp. paratuberculosis in cheese were the temperatures applied during cheese manufacture and the low pH at the early stages of cheese ripening. Since the ripening period for these raw milk cheeses lasts at least 90 to 120 days, the D values found indicate that 103 to 104 cells of M. avium subsp. paratuberculosis per g will be inactivated. PMID:11526024

  3. A plasma-sprayed valve coating

    NASA Technical Reports Server (NTRS)

    Brennan, A.; Olmore, A. B.

    1980-01-01

    Need to reduce wear on nickel alloy seats and poppets for Space Shuttle main engine led to fused cobalt/tungsten carbide coating. Coating, which is dense, wear-resistant, and nonporous, can be applied in controlled amounts to various substrate configurations. Ease of application to parts with intricate shapes and contours should make coating useful in automotive and aircraft manufacturing.

  4. 40 CFR 63.5752 - How do I calculate the organic HAP content of aluminum recreational boat surface coatings?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... content of aluminum recreational boat surface coatings? 63.5752 Section 63.5752 Protection of Environment... Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5752 How do I calculate the organic HAP content of aluminum recreational boat surface coatings? (a) Use...

  5. 40 CFR 63.5752 - How do I calculate the organic HAP content of aluminum recreational boat surface coatings?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... content of aluminum recreational boat surface coatings? 63.5752 Section 63.5752 Protection of Environment... Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5752 How do I calculate the organic HAP content of aluminum recreational boat surface coatings? (a) Use...

  6. 40 CFR 63.5752 - How do I calculate the organic HAP content of aluminum recreational boat surface coatings?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... content of aluminum recreational boat surface coatings? 63.5752 Section 63.5752 Protection of Environment... Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5752 How do I calculate the organic HAP content of aluminum recreational boat surface coatings? (a) Use...

  7. Investigations of Nanocrystalline Alloy Electrospark Coating Made of Nanocrystalline Alloy Based on 5БДCP Ferrum

    NASA Astrophysics Data System (ADS)

    Kolomeichenko, A. V.; Kuznetsov, I. S.; Izmaylov, A. Yu; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes the properties of wear resistant electrospark coating made of nanocrystalline alloy of type 5БДCP (Finemet). It is proved that electrospark coating has nanocrystalline structure which is like amorphous matrix with nanocrystals α - Fe. Coating thickness is 33 μm, micro-hardness is 8461 - 11357 MPa, wear resistance is 0,55×104s/g. Coating ofnanocrystalline alloy of type 5БДCP can be used to increase wear resistance of machinery working surfaces.

  8. Friction Stir Additive Manufacturing: Route to High Structural Performance

    NASA Astrophysics Data System (ADS)

    Palanivel, S.; Sidhar, H.; Mishra, R. S.

    2015-03-01

    Aerospace and automotive industries provide the next big opportunities for additive manufacturing. Currently, the additive industry is confronted with four major challenges that have been identified in this article. These challenges need to be addressed for the additive technologies to march into new frontiers and create additional markets. Specific potential success in the transportation sectors is dependent on the ability to manufacture complicated structures with high performance. Most of the techniques used for metal-based additive manufacturing are fusion based because of their ability to fulfill the computer-aided design to component vision. Although these techniques aid in fabrication of complex shapes, achieving high structural performance is a key problem due to the liquid-solid phase transformation. In this article, friction stir additive manufacturing (FSAM) is shown as a potential solid-state process for attaining high-performance lightweight alloys for simpler geometrical applications. To illustrate FSAM as a high-performance route, manufactured builds of Mg-4Y-3Nd and AA5083 are shown as examples. In the Mg-based alloy, an average hardness of 120 HV was achieved in the built structure and was significantly higher than that of the base material (97 HV). Similarly for the Al-based alloy, compared with the base hardness of 88 HV, the average built hardness was 104 HV. A potential application of FSAM is illustrated by taking an example of a simple stiffener assembly.

  9. Plasma electrolytic oxidation of Titanium Aluminides

    NASA Astrophysics Data System (ADS)

    Morgenstern, R.; Sieber, M.; Grund, T.; Lampke, T.; Wielage, B.

    2016-03-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na2SiO3·5H2O and K4P2O7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum.

  10. Nd:YOV4 laser polishing on WC-Co HVOF coating

    NASA Astrophysics Data System (ADS)

    Giorleo, L.; Ceretti, E.; Montesano, L.; La Vecchia, G. M.

    2017-10-01

    WC/Co coatings are widely applied to different types of components due to their extraordinary performance properties including high hardness and wear properties. In industrial applications High Velocity Oxy-Fuel (HVOF) technique is extensively used to deposit hard metal coatings. The main advantage of HVOF compared to other thermal spray techniques is the ability to accelerate the melted powder particles of the feedstock material at a relatively high velocity, leading to obtain good adhesion and low porosity level. However, despite the mentioned benefits, the surface finish quality of WC-Co HVOF coatings results to be poor (Ra higher than 5 µm) thus a mechanical polishing process is often needed. The main problem is that the high hardness of coating leads the polishing process expensive in terms of time and tool wear; moreover polishing becomes difficult and not always possible in case of limited accessibility of a part, micro dimensions or undercuts. Nowadays a different technique available to improve surface roughness is the laser polishing process. The polishing principle is based on focused radiation of a laser beam that melts a microscopic layer of surface material. Compared to conventional polishing process (as grinding) it ensures the possibility of avoiding tool wear, less pollution (no abrasive or liquids), no debris, less machining time and coupled with a galvo system it results to be more suitable in case of 3D complex workpieces. In this paper laser polishing process executed with a Nd:YOV4 Laser was investigated: the effect of different process parameters as initial coating morphology, laser scan speed and loop cycles were tested. Results were compared by a statistical approach in terms of average roughness along with a morphological analysis carried out by Scanning Electron Microscope (SEM) investigation coupled with EDS spectra.

  11. EMISSIONS FROM COATINGS USED IN THE AUTO REFINISHING INDUSTRY

    EPA Science Inventory

    The report presents results of EPA Methods 24 and 311 analyses of the volatile organic compound (VOC) content of selected auto refinishing coatings and their components that are sold by the five major auto coating manufacturers. These analyses were undertaken to determine the acc...

  12. Evaluation of reformulated thermal control coatings in a simulated space environment. Part 1: YB-71

    NASA Technical Reports Server (NTRS)

    Cerbus, Clifford A.; Carlin, Patrick S.

    1994-01-01

    The Air Force Space and Missile Systems Center and Wright Laboratory Materials Directorate (WL/ML) have sponsored and effort to effort to reformulate and qualify Illinois Institute of Technology Research Institute (IITRI) spacecraft thermal control coatings. S13G/LO-1, Z93, and YB-71 coatings were reformulated because the potassium silicate binder, Sylvania PS-7, used in the coatings is no longer manufactured. Coatings utilizing the binder's replacement candidate, Kasil 2130, manufactured by The Philadelphia Quartz (PQ) Corporation, Baltimore, Maryland, and undergoing testing at the Materials Directorate's Space Combined Effects Primary Test and Research Equipment (SCEPTRE) Facility operated by the University of Dayton Research Institute (UDRI). The simulated space environment consists of combined ultraviolet (UV) and electron exposure with in site specimen reflectance measurements. A brief description of the effort at IITRI, results and discussion from testing the reformulated YB-71 coating in SCEPTRE, and plans for further testing of reformulated Z93 and S13G/LO-1 are presented.

  13. 40 CFR Appendix A to Part 122 - NPDES Primary Industry Categories

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coating Copper forming Electrical and electronic components Electroplating Explosives manufacturing... chemicals manufacturing Paint and ink formulation Pesticides Petroleum refining Pharmaceutical preparations...

  14. 40 CFR Appendix A to Part 122 - NPDES Primary Industry Categories

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coating Copper forming Electrical and electronic components Electroplating Explosives manufacturing... chemicals manufacturing Paint and ink formulation Pesticides Petroleum refining Pharmaceutical preparations...

  15. 40 CFR Appendix A to Part 122 - NPDES Primary Industry Categories

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coating Copper forming Electrical and electronic components Electroplating Explosives manufacturing... chemicals manufacturing Paint and ink formulation Pesticides Petroleum refining Pharmaceutical preparations...

  16. 40 CFR Appendix A to Part 122 - NPDES Primary Industry Categories

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coating Copper forming Electrical and electronic components Electroplating Explosives manufacturing... chemicals manufacturing Paint and ink formulation Pesticides Petroleum refining Pharmaceutical preparations...

  17. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources

    DOE PAGES

    Mohanty, D.; Hockaday, E.; Li, J.; ...

    2016-02-21

    During LIB electrode manufacturing, it is difficult to avoid the certain defects that diminish LIB performance and shorten the life span of the batteries. This study provides a systematic investigation correlating the different plausible defects (agglomeration/blisters, pinholes/divots, metal particle contamination, and non-uniform coating) in a LiNi 0.5Mn 0.3Co 0.2O 2 positive electrode with its electrochemical performance. Additionally, an infrared thermography technique was demonstrated as a nondestructive tool to detect these defects. The findings show that cathode agglomerates aggravated cycle efficiency, and resulted in faster capacity fading at high current density. Electrode pinholes showed substantially lower discharge capacities at higher currentmore » densities than baseline NMC 532 electrodes. Metal particle contaminants have an extremely negative effect on performance, at higher C-rates. The electrodes with more coated and uncoated interfaces (non-uniform coatings) showed poor cycle life compared with electrodes with fewer coated and uncoated interfaces. Further, microstructural investigation provided evidence of presence of carbon-rich region in the agglomerated region and uneven electrode coating thickness in the coated and uncoated interfacial regions that may lead to the inferior electrochemical performance. In conclusion, this study provides the importance of monitoring and early detection of the electrode defects during LIB manufacturing processes to minimize the cell rejection rate after fabrication and testing.« less

  18. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, D.M.; Holt, J.B.

    1996-02-13

    A method is disclosed for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.

  19. METAL COATING BATHS

    DOEpatents

    Robinson, J.W.

    1958-08-26

    A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.

  20. New non-stick expoxy-silicone water-based coatings part 1: Physical and surface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garti, N.; Smith, J.

    In search for tomorrow`s technology for water-based coating, Decora Manufacturing and The Hebrew University of Jerusalem, have initiated an intensive research program for designing, developing and manufacturing new coatings based on cross-linked, room temperature-cured silicone-expoxy resins. The new water-borne coatings have most exciting characteristics such as: non-stick properties, effective release, high lubricity, corrosion protection and abrasion resistance. The coatings are environmentally-friendly and easy to use. These coatings are ideal for marine, agricultural, industrial and maintenance applications. This paper brings quantitative measurements related to the dispersion technology (particle size, stability, shelf-life), to the non-stick properties (deicing, low surface energy, easy-release andmore » non-stick), lubricity, adhesion to substrates, viscosity, dynamic and static friction coefficients and environmental impact (low VOC, non-toxicity, low-leaching). The coating was tested in various industrial coating systems and was found to exhibit excellent non-stick and release properties. Special attention was given to Zebra Mussels, Quagga Mussels and other bacterial and algeal bioforms. The coating proved to be efficient as foul-release coating with very low biofouling adhesion. The low adhesion applied to many other substances in which foul-release means easy-clean and low-wear.« less

  1. Topical meeting on optical interference coatings (OIC'2001): manufacturing problem.

    PubMed

    Dobrowolski, J A; Browning, Stephen; Jacobson, Michael; Nadal, Maria

    2002-06-01

    Measurements are presented of the experimental filters submitted to the first optical thin-film manufacturing problem posed in conjunction with the Topical Meeting on Optical Interference Coatings, in which the object was to produce multilayers with spectral transmittance and reflectance curves that were as close as possible to the target values that were specified in the 400- to 600-nm spectral region. No limit was set on the overall thickness of the solutions or the number of layers used in their construction. The participants were free to use the coating materials of their choice. Six different groups submitted a total of 11 different filters for evaluation. Three different physical vapor deposition processes were used for the manufacture of the coatings: magnetron sputtering, ion-beam sputtering, and plasma-ion-assisted, electron-beam gun evaporation. The solutions ranged in metric thickness from 758 to 4226 nm and consisted of between 8 and 27 layers. For all but two of the samples submitted, the average rms departure of the measured transmittances and reflectances from the target values in the spectral region of interest was between 0.98% and 1.55%.

  2. Evaluation of mechanical properties of Aluminum-Copper cold sprayed and alloy 625 wire arc sprayed coatings

    NASA Astrophysics Data System (ADS)

    Bashirzadeh, Milad

    This study examines microstructural-based mechanical properties of Al-Cu composite deposited by cold spraying and wire arc sprayed nickel-based alloy 625 coating using numerical modeling and experimental techniques. The microhardness and elastic modulus of samples were determined using the Knoop hardness technique. Hardness in both transverse and longitudinal directions on the sample cross-sections has been measured. An image-based finite element simulation algorithm was employed to determine the mechanical properties through an inverse analysis. In addition mechanical tests including, tensile, bending, and nano-indentation tests were performed on alloy 625 wire arc sprayed samples. Overall, results from the experimental tests are in relatively good agreement for deposited Al-Cu composites and alloy 625 coating. However, results obtained from numerical simulation are significantly higher in value than experimentally obtained results. Examination and comparison of the results are strong indications of the influence of microstructure characteristics on the mechanical properties of thermally spray deposited coatings.

  3. Effect of Copper Coated SiC Reinforcements on Microstructure, Mechanical Properties and Wear of Aluminium Composites

    NASA Astrophysics Data System (ADS)

    Kori, P. S.; Vanarotti, Mohan; Angadi, B. M.; Nagathan, V. V.; Auradi, V.; Sakri, M. I.

    2017-08-01

    Experimental investigations are carried out to study the influence of copper coated Silicon carbide (SiC) reinforcements in Aluminum (Al) based Al-SiC composites. Wear behavior and mechanical Properties like, ultimate tensile strength (UTS) and hardness are studied in the present work. Experimental results clearly revealed that, an addition of SiC particles (5, 10 and 15 Wt %) has lead in the improvement of hardness and ultimate tensile strength. Al-SiC composites containing the Copper coated SiC reinforcements showed better improvement in mechanical properties compared to uncoated ones. Characterization of Al-SiC composites are carried out using optical photomicrography and SEM analysis. Wear tests are carried out to study the effects of composition and normal pressure using Pin-On Disc wear testing machine. Results suggested that, wear rate decreases with increasing SiC composition, further an improvement in wear resistance is observed with copper coated SiC reinforcements in the Al-SiC metal matrix composites (MMC’s).

  4. Structure, tribological and electrochemical properties of low friction TiAlSiCN/MoSeC coatings

    NASA Astrophysics Data System (ADS)

    Bondarev, A. V.; Kiryukhantsev-Korneev, Ph. V.; Sheveyko, A. N.; Shtansky, D. V.

    2015-02-01

    The present paper is focused on the development of hard tribological coatings with low friction coefficient (CoF) in different environments (humid air, distilled water) and at elevated temperatures. TiAlSiCN/MoSeC coatings were deposited by magnetron sputtering of four-segment targets consisting of quarter circle TiAlSiCN segments, obtained by self-propagating high-temperature synthesis, and one or two cold pressed segments made of MoSe2 and C powders in a ratio 1:1 wt%. The structure and phase composition of coatings were investigated by means of X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The coatings were characterized in terms of their hardness, elastic modulus, and elastic recovery. The tribological properties of coatings were investigated first at room temperature against Al2O3 and WC-Co balls, after which studied in distilled water and during continuous heating in air in the temperature range of 25-400 °C against Al2O3 counterpart material. To evaluate their electrochemical characteristics, the coatings were tested in 1 N H2SO4 solution. The obtained results show that the coating hardness depends on the amount of MoSeC additives and decreased from 40 to 28 (one MoSeC segment) and 12 GPa (two MoSeC segments). Doping with MoSeC resulted in a significant reduction of CoF values measured in humid air (RH 60 ± 5%) from 0.8-0.9 to 0.05 and an increase of wear resistance by one or two orders of magnitude depending on counterpart material. This was attributed to the presence of MoSe2 and free carbon-based phases in the tribological contact. The TiAlSiCN/MoSeC coating with a maximal amount of MoSeC also demonstrated superior tribological characteristics in distilled water (CoF ∼ 0.1) and at moderate temperatures up to 300 °C (CoF < 0.1). The electrochemical tests showed that, in general, doping with MoSeC did not negatively affect the coating electrochemical behavior. On the contrary, the MoSeC phase demonstrated small positive effect on the anti-corrosive properties of TiAlSiCN coatings under small polarizations.

  5. Effect of Metal Ion Etching on the Tribological, Mechanical and Microstructural Properties of TiN-COATED d2 Tool Steel Using Cae Pvd Technique

    NASA Astrophysics Data System (ADS)

    Ali, Mubarak; Hamzah, Esah Binti; Hj. Mohd Toff, Mohd Radzi

    A study has been made on TiN coatings deposited on D2 tool steel substrates by using commercially available cathodic arc evaporation, physical vapor deposition technique. The goal of this work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness, coefficient of friction and surface roughness of TiN coating deposited on tool steel, which is vastly use in tool industry for various applications. A pin-on-disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating at various ion etching rates. The tribo-test showed that the minimum value recorded for friction coefficient was 0.386 and 0.472 with standard deviation of 0.056 and 0.036 for the coatings deposited at zero and 16 min ion etching. The differences in friction coefficient and surface roughness was mainly associated with the macrodroplets, which was produced during etching stage. The coating deposited for 16 min metal ion etching showed the maximum hardness, i.e., about five times higher than uncoated one and 1.24 times to the coating deposited at zero ion etching. After friction test, the wear track was observed by using field emission scanning electron microscope. The coating deposited for zero ion etching showed small amounts of macrodroplets as compared to the coating deposited for 16 min ion etching. The elemental composition on the wear scar were investigated by means of energy dispersive X-ray, indicate no further TiN coating on wear track. A considerable improvement in TiN coatings was recorded as a function of various ion etching rates.

  6. 40 CFR 59.109 - Circumvention.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Compound Emission Standards for Automobile Refinish Coatings § 59.109 Circumvention. Each manufacturer and importer of any automobile refinish coating or component subject to the provisions of this subpart must not...

  7. 40 CFR 59.109 - Circumvention.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Compound Emission Standards for Automobile Refinish Coatings § 59.109 Circumvention. Each manufacturer and importer of any automobile refinish coating or component subject to the provisions of this subpart must not...

  8. 40 CFR 427.80 - Applicability; description of the coating or finishing of asbestos textiles subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability...

  9. 40 CFR 427.80 - Applicability; description of the coating or finishing of asbestos textiles subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability; description...

  10. 40 CFR 427.80 - Applicability; description of the coating or finishing of asbestos textiles subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability...

  11. 40 CFR 427.80 - Applicability; description of the coating or finishing of asbestos textiles subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability...

  12. 40 CFR 427.80 - Applicability; description of the coating or finishing of asbestos textiles subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability; description...

  13. 40 CFR 60.720 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Industrial Surface Coating: Surface Coating of Plastic Parts for Business Machines § 60.720... in which plastic parts for use in the manufacture of business machines receive prime coats, color...

  14. CASE STUDIES: LOW-VOC/HAP WOOD FURNITURE COATINGS (PROJECT SUMMARY)

    EPA Science Inventory

    The report gives results of a study in which wood furniture manufacturing fa-cilities were identified that had converted at least one of their primary coating steps to low-volatile organic compound (VOC)/hazardous air pollut-ant (HAP) wood furniture coatings [high-solids, waterbo...

  15. Fatigue Behavior of a SiC/SiC Composite at 1000 deg C in Air and in Steam

    DTIC Science & Technology

    2010-12-01

    SiC dual-layer interphase. The composite was manufactured by a Polymer Infiltration and Pyrolysis (PIP... Polymer Infiltration and Pyrolysis (PIP) process. A seal coat of SiC and elemental boron was applied to the test specimens after machining. The tensile...manufactured by a Polymer Infiltration and Pyrolysis (PIP) process. A seal coat of SiC and elemental boron was applied to the test specimens

  16. Engine Lubricant

    NASA Technical Reports Server (NTRS)

    1993-01-01

    PS 212, a plasma-sprayed coating developed by NASA, is used to coat valves in a new rotorcam engine. The coating eliminates the need for a liquid lubricant in the rotorcam, which has no crankshaft, flywheel, distributor or water pump. Developed by Murray United Development Corporation, it is a rotary engine only 10 inches long with four cylinders radiating outward from a central axle. Company officials say the engine will be lighter, more compact and cheaper to manufacture than current engines and will feature cleaner exhaust emissions. A licensing arrangement with a manufacturer is under negotiation. Primary applications are for automobiles, but the engine may also be used in light aircraft.

  17. ICI optical data storage tape

    NASA Technical Reports Server (NTRS)

    Mclean, Robert A.; Duffy, Joseph F.

    1992-01-01

    Optical data storage tape is now a commercial reality. The world's first successful development of a digital optical tape system is complete. This is based on the Creo 1003 optical tape recorder with ICI 1012 write-once optical tape media. Flexible optical media offers many benefits in terms of manufacture; for a given capital investment, continuous, web-coating techniques produce more square meters of media than batch coating. The coated layers consist of a backcoat on the non-active side; on the active side there is a subbing layer, then reflector, dye/polymer, and transparent protective overcoat. All these layers have been tailored for ease of manufacture and specific functional characteristics.

  18. Detection of thermally grown oxides in thermal barrier coatings by nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Fahr, A.; Rogé, B.; Thornton, J.

    2006-03-01

    The thermal-barrier coatings (TBC) sprayed on hot-section components of aircraft turbine engines commonly consist of a partially stabilized zirconia top-coat and an intermediate bond-coat applied on the metallic substrate. The bond-coat is made of an aluminide alloy that at high engine temperatures forms thermally grown oxides (TGO). Although formation of a thin layer of aluminum oxide at the interface between the ceramic top-coat and the bond-coat has the beneficial effect of protecting the metallic substrate from hot gases, oxide formation at splat boundaries or pores within the bond-coat is a source of weakness. In this study, plasma-sprayed TBC specimens are manufactured from two types of bond-coat powders and exposed to elevated temperatures to form oxides at the ceramic-bond-coat boundary and within the bond-coat. The specimens are then tested using nondestructive evaluation (NDE) and destructive metallography and compared with the as-manufactured samples. The objective is to determine if NDE can identify the oxidation within the bond-coat and give indication of its severity. While ultrasonic testing can provide some indication of the degree of bond-coat oxidation, the eddy current (EC) technique clearly identifies severe oxide formation within the bond-coat. Imaging of the EC signals as the function of probe location provides information on the spatial variations in the degree of oxidation, and thereby identifies which components or areas are prone to premature damage.

  19. Wear studies on plasma-sprayed Al2O3 and 8mole% of Yttrium-stabilized ZrO2 composite coating on biomedical Ti-6Al-4V alloy for orthopedic joint application

    PubMed Central

    Ganapathy, Perumal; Manivasagam, Geetha; Rajamanickam, Asokamani; Natarajan, Alagumurthi

    2015-01-01

    This paper presents the wear characteristics of the composite ceramic coating made with Al2O3-40wt%8YSZ on the biomedical grade Ti-6Al-4V alloy (grade 5) used for total joint prosthetic components, with the aim of improving their tribological behavior. The coatings were deposited using a plasma spraying technique, and optimization of plasma parameters was performed using response surface methodology to obtain dense coating. The tribological behaviors of the coated and uncoated substrates were evaluated using a ball-on-plate sliding wear tester at 37°C in simulated body-fluid conditions. The microstructure of both the titanium alloy and coated specimen were examined using an optical microscope and scanning electron microscope. The hardness of the plasma-sprayed alumina–zirconia composite coatings was 2.5 times higher than that of the Ti-6Al-4V alloy, while the wear rate of Ti-6Al-4V alloy was 253 times higher than that of the composite-coated Ti-6Al-4V alloy. The superior wear resistance of the alumina–zirconia coated alloy is attributed to its enhanced hardness and intersplat bonding strength. Wear-track examination showed that the predominant wear mechanism of Ti-6Al-4V alloy was abrasive and adhesive wear, whereas, in the case of alumina–zirconia composite coated alloy, the wear was dominated by microchipping and microcracking. PMID:26491323

  20. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Wuxi; Zhou, Kesong; Li, Yuxi; Deng, Chunming; Zeng, Keli

    2017-09-01

    A novel Cr3C2-WC-NiCoCrMo and commercial Cr3C2-NiCr thermal spray-grade powders with particle size of -45 + 15 μm were prepared by an agglomeration and sintering process. Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr coatings were deposited by high velocity oxygen fuel (HVOF) spraying. The fundamental properties of both coatings were evaluated and friction wear test against Al2O3 counterbodies of both coatings at high temperatures (450 °C, 550 °C, 650 °C) were carried out ball-on-disk high temperature tribometer. All specimens were characterized by optical microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and 3D non-contact surface mapping profiler. The results have shown that the Cr3C2-WC-NiCoCrMo coating exhibited lower porosity, higher micro-hardness compared to the Cr3C2-NiCr coating. The Cr3C2-WC-NiCoCrMo coating also exhibited better wear resistance and higher friction coefficient compared to the Cr3C2-NiCr coating when sliding against the Al2O3 counterpart. Wear rates of both coatings increased with raising temperature. Both coatings experienced abrasive wear; hard phase particles (WC and Cr3C2) with different sizes, distributed in the matrix phase, will effectively improve the resistance against wear at high temperatures.

  1. 78 FR 41492 - Buy America Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... domestic manufacturing process for any steel or iron products (including protective coatings) that are... industry representatives in ensuring that Federal funds were used to support domestic manufacturing. While... in the manufacturing industry. Also, a bill has been introduced in the House of Representatives (HR...

  2. Development of Process Analytical Technology (PAT) methods for controlled release pellet coating.

    PubMed

    Avalle, P; Pollitt, M J; Bradley, K; Cooper, B; Pearce, G; Djemai, A; Fitzpatrick, S

    2014-07-01

    This work focused on the control of the manufacturing process for a controlled release (CR) pellet product, within a Quality by Design (QbD) framework. The manufacturing process was Wurster coating: firstly layering active pharmaceutical ingredient (API) onto sugar pellet cores and secondly a controlled release (CR) coating. For each of these two steps, development of a Process Analytical Technology (PAT) method is discussed and also a novel application of automated microscopy as the reference method. Ultimately, PAT methods should link to product performance and the two key Critical Quality Attributes (CQAs) for this CR product are assay and release rate, linked to the API and CR coating steps respectively. In this work, the link between near infra-red (NIR) spectra and those attributes was explored by chemometrics over the course of the coating process in a pilot scale industrial environment. Correlations were built between the NIR spectra and coating weight (for API amount), CR coating thickness and dissolution performance. These correlations allow the coating process to be monitored at-line and so better control of the product performance in line with QbD requirements. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Development of new maskless manufacturing method for anti-reflection structure and application to large-area lens with curved surface

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuya; Takaoka, Toshimitsu; Fukui, Hidetoshi; Haruta, Yasuyuki; Yamashita, Tomoya; Kitagawa, Seiichiro

    2016-03-01

    In general, thin-film coating process is widely applied on optical lens surface as anti-reflection function. In normal production process, at first lens is manufactured by molding, then anti-reflection is added by thin-film coating. In recent years, instead of thin-film coating, sub-wavelength structures adding on surface of molding die are widely studied and development to keep anti-reflection performance. As merits, applying sub-wavelength structure, coating process becomes unnecessary and it is possible to reduce man-hour costs. In addition to cost merit, these are some technical advantages on this study. Adhesion of coating depends on material of plastic, and it is impossible to apply anti-reflection function on arbitrary surface. Sub-wavelength structure can solve both problems. Manufacturing method of anti-reflection structure can be divided into two types mainly. One method is with the resist patterning, and the other is mask-less method that does not require patterning. What we have developed is new mask-less method which is no need for resist patterning and possible to impart an anti-reflection structure to large area and curved lens surface, and can be expected to apply to various market segments. We report developed technique and characteristics of production lens.

  4. Hydrophilic Polymer Embolism: Implications for Manufacturing, Regulation, and Postmarket Surveillance of Coated Intravascular Medical Devices.

    PubMed

    Mehta, Rashi I; Mehta, Rupal I

    2018-03-19

    Hydrophilic polymers are ubiquitously applied as surface coatings on catheters and intravascular medical technologies. Recent clinical literature has heightened awareness on the complication of hydrophilic polymer embolism, the phenomenon wherein polymer coating layers separate from catheter and device surfaces, and may be affiliated with a range of unanticipated adverse reactions. Significant system barriers have limited and delayed reporting on this iatrogenic complication, the full effects of which remain underrecognized by healthcare providers and manufacturers of various branded devices. In 2015, the United States Food and Drug Administration acknowledged rising clinical concerns and stated that the agency would work with stakeholders to further evaluate gaps that exist in current national and international device standards for coated intravascular medical technologies. The present article reviews current knowledge on this complication as well as factors that played a role in delaying detection and dissemination of information and new knowledge once hazards and clinical risks were identified. Furthermore, organ-specific effects and adverse reaction patterns are summarized, along with implications for device manufacturing, safety assurance, and regulation. Qualitative and quantitative particulate testing are needed to optimize coated intravascular device technologies. Moreover, general enhanced processes for medical device surveillance are required for timely adverse event management and to ensure patient safety.

  5. Disposal of waste computer hard disk drive: data destruction and resources recycling.

    PubMed

    Yan, Guoqing; Xue, Mianqiang; Xu, Zhenming

    2013-06-01

    An increasing quantity of discarded computers is accompanied by a sharp increase in the number of hard disk drives to be eliminated. A waste hard disk drive is a special form of waste electrical and electronic equipment because it holds large amounts of information that is closely connected with its user. Therefore, the treatment of waste hard disk drives is an urgent issue in terms of data security, environmental protection and sustainable development. In the present study the degaussing method was adopted to destroy the residual data on the waste hard disk drives and the housing of the disks was used as an example to explore the coating removal process, which is the most important pretreatment for aluminium alloy recycling. The key operation points of the degaussing determined were: (1) keep the platter plate parallel with the magnetic field direction; and (2) the enlargement of magnetic field intensity B and action time t can lead to a significant upgrade in the degaussing effect. The coating removal experiment indicated that heating the waste hard disk drives housing at a temperature of 400 °C for 24 min was the optimum condition. A novel integrated technique for the treatment of waste hard disk drives is proposed herein. This technique offers the possibility of destroying residual data, recycling the recovered resources and disposing of the disks in an environmentally friendly manner.

  6. Ultra-hard amorphous AlMgB14 films RF sputtered onto curved substrates

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.; Putrolaynen, V. V.; Yuzvyuk, M. H.

    2017-03-01

    Recently, hard AlMgB14 (BAM) coatings were deposited for the first time by RF magnetron sputtering using a single stoichiometric ceramic target. High target sputtering power and sufficiently short target-to-substrate distance were found to be critical processing conditions. They enabled fabrication of stoichiometric in-depth compositionally homogeneous films with the peak values of nanohardness 88 GPa and Young’s modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 GPa and 275 GPa at 200 nm depth in 2 µm thick film (Grishin et al 2014 JETP Lett. 100 680). The narrow range of sufficiently short target-to-substrate distance makes impossible to coat non flat specimens. To achieve ultimate BAM films’ characteristics onto curved surfaces we developed two-step sputtering process. The first thin layer is deposited as a template at low RF power that facilitates a layered Frank van der Merwe mode growth of smooth film occurs. The next layer is grown at high RF target sputtering power. The affinity of subsequent flow of sputtered atoms to already evenly condensed template fosters the development of smooth film surface. As an example, we made BAM coating onto hemispherical 5 mm in diameter ball made from a hard tool steel and used as a head of a special gauge. Very smooth (6.6 nm RMS surface roughness) and hard AlMgB14 films fabricated onto commercial ball-shaped items enhance hardness of tool steel specimens by a factor of four.

  7. Experimental investigation of various surface integrity aspects in hard turning of AISI 4340 alloy steel with coated and uncoated cermet

    NASA Astrophysics Data System (ADS)

    Das, Anshuman; Patel, S. K.; Sateesh Kumar, Ch.; Biswal, B. B.

    2018-03-01

    The newer technological developments are exerting immense pressure on domain of production. These fabrication industries are busy finding solutions to reduce the costs of cutting materials, enhance the machined parts quality and testing different materials, which can be made versatile for cutting materials, which are difficult for machining. High-speed machining has been the domain of paramount importance for mechanical engineering. In this study, the variation of surface integrity parameters of hardened AISI 4340 alloy steel was analyzed. The surface integrity parameters like surface roughness, micro hardness, machined surface morphology and white layer of hardened AISI 4340 alloy steel were compared using coated and uncoated cermet inserts under dry cutting condition. From the results, it was deduced that coated insert outperformed uncoated one in terms of different surface integrity characteristics.

  8. Preparation research of Nano-SiC/Ni-P composite coating under a compound field

    NASA Astrophysics Data System (ADS)

    Zhou, H. Z.; Wang, W. H.; Gu, Y. Q.; Liu, R.; Zhao, M. L.

    2016-07-01

    In this paper, the preparation process of Ni-P-SiC composite coatings on 45 steel surfaces with the assistance of magnetic and ultrasound fields was researched. The influence of external field on the surface morphology and performance of the composite layer is also discussed. Experimental results showed that when prepared under magnetic and ultrasonic fields, composite layers are significantly more dense and uniform than coatings made without external fields. Nano-SiC particles, dispersed uniformly in the layer, significantly improve the hardness of the composite layer, and the composite layer under the external field had the highest hardness at 680 HV The external fields can also accelerate deposition and increase the thickness of the layer. Compared to layers processed without the assistance of external fields, the thickness of the layers increased by nearly ten µm.

  9. 40 CFR 420.120 - Applicability; description of the hot coating subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the hot... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.120 Applicability; description of the hot coating subcategory. (a) The provisions of this...

  10. 40 CFR 420.120 - Applicability; description of the hot coating subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the hot... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.120 Applicability; description of the hot coating subcategory. (a) The provisions of this...

  11. 40 CFR 420.120 - Applicability; description of the hot coating subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the hot... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.120 Applicability; description of the hot coating subcategory. (a) The provisions of this...

  12. 40 CFR 420.120 - Applicability; description of the hot coating subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the hot... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.120 Applicability; description of the hot coating subcategory. (a) The provisions of this...

  13. 40 CFR 420.120 - Applicability; description of the hot coating subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the hot... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.120 Applicability; description of the hot coating subcategory. (a) The provisions of this...

  14. 40 CFR 63.3930 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manufacturer's formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating, thinner and/or other additive, and cleaning material, and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP...

  15. 40 CFR 63.4930 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic... mass fraction of organic HAP for each coating, thinner, and cleaning material used during each... such as manufacturer's formulation data for the materials used, or test data used to determine the mass...

  16. 40 CFR 63.3930 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufacturer's formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating, thinner and/or other additive, and cleaning material, and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP...

  17. 40 CFR 63.4930 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic... mass fraction of organic HAP for each coating, thinner, and cleaning material used during each... such as manufacturer's formulation data for the materials used, or test data used to determine the mass...

  18. 40 CFR 63.4930 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic... mass fraction of organic HAP for each coating, thinner, and cleaning material used during each... such as manufacturer's formulation data for the materials used, or test data used to determine the mass...

  19. 40 CFR 63.4930 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic... mass fraction of organic HAP for each coating, thinner, and cleaning material used during each... such as manufacturer's formulation data for the materials used, or test data used to determine the mass...

  20. 40 CFR 63.3930 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufacturer's formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating, thinner and/or other additive, and cleaning material, and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP...

  1. 40 CFR 59.501 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS... subpart? (a) The regulated entities for an aerosol coating product are the manufacturer or importer of an aerosol coating product and a distributor of an aerosol coating product if it is named on the label or if...

  2. Optical interference coatings for optics and photonics [Invited].

    PubMed

    Lee, Cheng-Chung

    2013-01-01

    Optical interference coatings play as an important role in the progress in optics and photonics. In this article we give a minireview of the evolution of optical interference coatings from the theory, the design, to the manufacture. Some interesting but challenging topics for the future are also discussed.

  3. Strain hardening behavior during manufacturing of tube shapes by hydroforming

    NASA Astrophysics Data System (ADS)

    Park, Hyun Kyu; Yi, Hyae Kyung; Van Tyne, Chester J.; Moon, Young Hoon

    2009-12-01

    Safe and robust process design relies on knowledge of the evolution of the mechanical properties in a tube during hydroforming. The manufacturing of tubular shapes generally consists of three main stages: bending, preforming, and expansion. The latter is usually called hydroforming. As a result of these three steps, the final product's strain hardening history is nonlinear. In the present study, the strain hardening behavior during hydroforming was experimentally investigated. The variation of local flow stress and/or local hardness was used as an index of the strain hardening during the various steps and the local flow stress and/or local hardness were used with respective correlations to determine the effective strain. The strain hardening behavior during hydroforming after preforming has been successfully analyzed by using the relationships between hardness, flow stress, and effective strain for variable pre-strains prior to hydroforming. The comparison of predicted hardness with measured hardness confirms that the methodology used in this study is feasible, and that the strain hardening behavior can be quantitatively estimated with good accuracy.

  4. Increased Surface Fatigue Lives of Spur Gears by Application of a Coating

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Cooper, Clark V.; Townsend, Dennis P.; Hansen, Bruce D.

    2003-01-01

    Hard coatings have potential for increasing gear surface fatigue lives. Experiments were conducted using gears both with and without a metal-containing, carbonbased coating. The gears were case-carburized AISI 9310 steel spur gears. Some gears were provided with the coating by magnetron sputtering. Lives were evaluated by accelerated life tests. For uncoated gears, all of fifteen tests resulted in fatigue failure before completing 275 million revolutions. For coated gears, eleven of the fourteen tests were suspended with no fatigue failure after 275 million revolutions. The improved life owing to the coating, approximately a six-fold increase, was a statistically significant result.

  5. Optically transparent, scratch-resistant, diamond-like carbon coatings

    DOEpatents

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  6. Fortifying the Bone-Implant Interface Part 1: An In Vitro Evaluation of 3D-Printed and TPS Porous Surfaces

    PubMed Central

    Lindsey, Derek P.; Bahney, Chelsea S.; Woods, Shane A.; Wolfe, Mark L.; Yerby, Scott A.

    2017-01-01

    Background An aging society and concomitant rise in the incidence of impaired bone health have led to the need for advanced osteoconductive spinal implant surfaces that promote greater biological fixation (e.g. for interbody fusion cages, sacroiliac joint fusion implants, and artificial disc replacements). Additive manufacturing, i.e. 3D-printing, may improve bone integration by generating biomimetic spinal implant surfaces that mimic bone morphology. Such surfaces may foster an enhanced cellular response compared to traditional implant surfacing processes. Methods This study investigated the response of human osteoblasts to additive manufactured (AM) trabecular-like titanium implant surfaces compared to traditionally machined base material with titanium plasma spray (TPS) coated surfaces, with and without a nanocrystalline hydroxyapatite (HA) coating. For TPS-coated discs, wrought Ti6Al4V ELI was machined and TPS-coating was applied. For AM discs, Ti6Al4V ELI powder was 3D-printed to form a solid base and trabecular-like porous surface. The HA-coating was applied via a precipitation dip-spin method. Surface porosity, pore size, thickness, and hydrophilicity were characterized. Initial cell attachment, proliferation, alkaline phosphatase (ALP) activity, and calcium production of hFOB cells (n=5 per group) were measured. Results Cells on AM discs exhibited expedited proliferative activity. While there were no differences in mean ALP expression and calcium production between TPS and AM discs, calcium production on the AM discs trended 48% higher than on TPS discs (p=0.07). Overall, HA-coating did not further enhance results compared to uncoated TPS and AM discs. Conclusions Results demonstrate that additive manufacturing allows for controlled trabecular-like surfaces that promote earlier cell proliferation and trends toward higher calcium production than TPS coating. Results further showed that nanocrystalline HA may not provide an advantage on porous titanium surfaces. Clinical Relevance Additive manufactured porous titanium surfaces may induce a more osteogenic environment compared to traditional TPS, and thus present as an attractive alternative to TPS-coating for orthopedic spinal implants. PMID:28765799

  7. Hierarchical adaptive nanostructured PVD coatings for extreme tribological applications: the quest for nonequilibrium states and emergent behavior.

    PubMed

    Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H; Dosbaeva, Goulnara; Endrino, Jose L

    2012-08-01

    Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions.

  8. Hierarchical adaptive nanostructured PVD coatings for extreme tribological applications: the quest for nonequilibrium states and emergent behavior

    PubMed Central

    Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H.; Dosbaeva, Goulnara; Endrino, Jose L

    2012-01-01

    Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions. PMID:27877499

  9. Relationships between spray parameters, microstructures and ultrasonic cavitation erosion behavior of HVOF sprayed Fe-based amorphous/nanocrystalline coatings.

    PubMed

    Qiao, Lei; Wu, Yuping; Hong, Sheng; Zhang, Jianfeng; Shi, Wei; Zheng, Yugui

    2017-11-01

    Fe-based amorphous/nanocrystalline coatings were prepared on the AISI 321 steel substrate by the high-velocity oxygen-fuel (HVOF) thermal spraying technology. The effect of selected parameters (oxygen flow, kerosene flow and spray distance) on the cavitation erosion resistance (denoted as Rc) of the coating were investigated by using the Taguchi method. Statistical tools such as design of experiments (DOE), signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were used to meet the expected objective. It was concluded that the kerosene flow had greater influence on the Rc of the coating and followed by the spray distance and the oxygen flow, respectively. The optimum spray parameters (OSP) were 963L/min for the oxygen flow, 28L/h for the kerosene flow, and 330mm for the spray distance. The Rc of the coating increased with the increase of hardness or the decrease of porosity, and the hardness had a greater influence on Rc than the porosity. The Fe-based coating deposited under the OSP exhibited the best cavitation erosion resistance in distilled water. The cracks initiated at the edge of the pores and the interfaces between the un-melted or half-melted particles, and finally leaded to the delamination of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The role of nano-particles in the field of thermal spray coating technology

    NASA Astrophysics Data System (ADS)

    Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas

    2005-06-01

    Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.

  11. Influence of Cu, Au and Ag on structural and surface properties of bioactive coatings based on titanium.

    PubMed

    Wojcieszak, D; Mazur, M; Kalisz, M; Grobelny, M

    2017-02-01

    In this work influence of copper, silver and gold additives on structural and surface properties of biologically active thin films based on titanium have been described. Coatings were prepared by magnetron sputtering method. During each process metallic discs (targets) - Ti and the additive (Cu, Ag or Au) were co-sputtered in argon atmosphere. Structural investigation of as-deposited coatings was performed with the aid of XRD and SEM/EDS method. It was found that all prepared thin films were homogenous. Addition of Cu, Ag and Au resulted in nanocrystalline structure. Moreover, influence of these additives on hardness and antibacterial activity of titanium coatings was also studied. Ti-Cu, Ti-Ag and Ti-Au films had lower hardness as-compared to Ti. According to AAS results the difference of their activity was related to the ion migration process. It was found that Ti-Ag and Ti-Au coatings had biocidal effect related to direct contact of their surface with microorganisms. In the case of Ti-Cu antimicrobial activity had direct and indirect nature due to efficient ion migration process from the film surface to the surrounding environment. Functional features of coatings such as wettability and corrosion resistance were also examined and included in the comprehensive analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Quantitative Analysis of Electroplated Nickel Coating on Hard Metal

    PubMed Central

    Wahab, Hassan A.; Noordin, M. Y.; Izman, S.

    2013-01-01

    Electroplated nickel coating on cemented carbide is a potential pretreatment technique for providing an interlayer prior to diamond deposition on the hard metal substrate. The electroplated nickel coating is expected to be of high quality, for example, indicated by having adequate thickness and uniformity. Electroplating parameters should be set accordingly for this purpose. In this study, the gap distances between the electrodes and duration of electroplating process are the investigated variables. Their effect on the coating thickness and uniformity was analyzed and quantified using design of experiment. The nickel deposition was carried out by electroplating in a standard Watt's solution keeping other plating parameters (current: 0.1 Amp, electric potential: 1.0 V, and pH: 3.5) constant. The gap distance between anode and cathode varied at 5, 10, and 15 mm, while the plating time was 10, 20, and 30 minutes. Coating thickness was found to be proportional to the plating time and inversely proportional to the electrode gap distance, while the uniformity tends to improve at a large electrode gap. Empirical models of both coating thickness and uniformity were developed within the ranges of the gap distance and plating time settings, and an optimized solution was determined using these models. PMID:23997678

  13. Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion.

    PubMed

    Pareta, Rajesh; Yang, Lei; Kothari, Abhishek; Sirinrath, Sirivisoot; Xiao, Xingcheng; Sheldon, Brian W; Webster, Thomas J

    2010-10-01

    Diamond coatings with superior chemical stability, antiwear, and cytocompatibility properties have been considered for lengthening the lifetime of metallic orthopedic implants for over a decade. In this study, an attempt to tailor the surface properties of diamond films on titanium to promote osteoblast (bone forming cell) adhesion was reported. The surface properties investigated here included the size of diamond surface features, topography, wettability, and surface chemistry, all of which were controlled during microwave plasma enhanced chemical-vapor-deposition (MPCVD) processes using CH4-Ar-H2 gas mixtures. The hardness and elastic modulus of the diamond films were also determined. H2 concentration in the plasma was altered to control the crystallinity, grain size, and topography of the diamond coatings, and specific plasma gases (O2 and NH3) were introduced to change the surface chemistry of the diamond coatings. To understand the impact of the altered surface properties on osteoblast responses, cell adhesion tests were performed on the various diamond-coated titanium. The results revealed that nanocrystalline diamond (grain sizes <100 nm) coated titanium dramatically increased surface hardness, and the introduction of O2 and NH3 during the MPCVD process promoted osteoblast adhesion on diamond and, thus, should be further studied for improving orthopedic applications. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  14. Metrology for Fuel Cell Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. Themore » objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.« less

  15. Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings

    NASA Astrophysics Data System (ADS)

    Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Skolianos, S.; Chrissafis, K.; Stergioudis, G.

    2009-01-01

    Coatings formed from NiCrBSi powder were deposited by thermal spray and pack cementation processes on low carbon steel. The microstructure and morphology of the coatings were studied by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Flame sprayed coatings exhibited high porosity and were mechanically bonded to the substrate while pack cementation coatings were more compact and chemically bonded to the substrate. The microhardness and the high temperature oxidation resistance of the coated samples were evaluated by a Vickers microhardness tester and by thermogravimetric measurements (TG), respectively. Pack cementation coatings showed higher hardness and were more protective to high temperature environments than the flame sprayed coatings.

  16. Study and modeling of the ironing process on a multi-layered polymer coated low-carbon steel

    NASA Astrophysics Data System (ADS)

    Selles Canto, Miguel Angel

    The ironing process is the most crucial step in the manufacture of cans. Sheet steel covered by three polymer layers can be used as the starting material, but this coating must neither break nor fail in any manner in order to be considered as a viable and effective alternative to traditional practice. During ironing, the deformations are severe and high pressures exist at the tool-workpiece interface. Thickness reductions inherent in ironing require a large amount of surface generation. Deterioration of the coating in this delicate operation might enable direct contact of the stored food or drink with the metal. As can be appreciated, the key to the use of polymer-coated steel sheets in the manufacture of cans lies in the survival of these layers during the ironing process. Another important issue is the roughness of the newly-generated surface, because it should be possible to decorate the can without any difficulty. Changing the traditional manufacture of metallic containers such as cans and using this new coated material permits great reduction in environmental contaminants produced as a result of avoiding the formation of Volatile Organic Compounds (VOCs) during the manufacture of the polymer layers. This reduction is even greater because of not using additional lubricants due to the self-lubricanting property of the solid polymer coating layers during the drawing process. These objectives, together with the improvement of the mechanical characteristics and the adhesion of the painting or decorative priming, are realized by the use of the proposed material. In the existing bibliography about ironing processes on coated materials, some authors propose the use of the Upper Bound Theorem for modeling the material behavior. The present research shows for the first time the modeling of the ironing process on a three-layer polymer coated material. In addition, it takes into account the cases in which successful ironing is produced and those in which ones the ironing is defective either by shaving or detachment of the upper layer of polymer. Arcelor-Mittal provided two similar materials, both consisting of a steel substrate coated by three polymer layers. They have been tested according to the theory of design of experiments, in order to determine the feasibility of their use in the manufacture of cans. An ironing process simulator has been designed and constructed that works under conditions similar to those in industry. Validation of the theoretically-generated models has been possible thanks to the use of the ironing simulator, providing results that show good agreement between the theoretical and real behaviors. Finally, after obtaining the different results from the theoretical and experimental work, they have been analyzed to determine the feasibility of using these materials for the manufacture of metal containers that need the ironing process. The information obtained from this analysis shows that, under certain conditions, it is perfectly possible to use one of these two materials for the proposed purpose, making the proposed goals possible. The die angle is the most critical variable among all the ones studied, and when it takes values greater than 7°, some of the coating polymer layers are damaged.

  17. Soft metal plating enables hard metal seal to operate successfully in low temperature, high pressure environment

    NASA Technical Reports Server (NTRS)

    Lamvermeyer, D. J.

    1967-01-01

    Soft metal plating of hard metal lip seal enables successful operation of seal in a cryogenic fluid line under high pressure. The seal is coated with a thin film of 24 carat gold on the lip area to provide antigall and seal properties.

  18. Facilities | Advanced Manufacturing Research | NREL

    Science.gov Websites

    , and black building with two people walking in front of it. Energy Systems Integration Facility Its projects. Photo of a large, warehouse-like, lab space with several people in hard hats operating equipment with a few people and manufacturing equipment, including spools and web lines. Manufacturing Laboratory

  19. Al2O3-ZrO2 Finely Structured Multilayer Architectures from Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Tingaud, Olivier; Montavon, Ghislain; Denoirjean, Alain; Coudert, Jean-François; Rat, Vincent; Fauchais, Pierre

    2010-01-01

    Suspension plasma spraying (SPS) is an alternative to conventional atmospheric plasma spraying (APS) aiming at manufacturing thinner layers (i.e., 10-100 μm) due to the specific size of the feedstock particles, from a few tens of nanometers to a few micrometers. The staking of lamellae and particles, which present a diameter ranging from 0.1 to 2.0 μm and an average thickness from 20 to 300 nm, permits to manufacture finely structured layers. Moreover, it appears as a versatile process able to manufacture different coating architectures according to the operating parameters (suspension properties, injection configuration, plasma properties, spray distance, torch scan velocity, scanning step, etc.). However, the different parameters controlling the properties of the coating, and their interdependences, are not yet fully identified. Thus, the aim of this paper is, on the one hand, to better understand the influence of operating parameters on the coating manufacturing mechanisms (in particular, the plasma gas mixture effect) and, on the other hand, to produce Al2O3-ZrO2 finely structured layers with large varieties of architectures. For this purpose, a simple theoretical model was used to describe the plasma torch operating conditions at the nozzle exit, based on experimental data (mass enthalpy, arc current intensity, thermophysical properties of plasma forming gases, etc.) and the influences of the spray parameters were determined by mean of the study of sizes and shapes of spray beads. The results enabled then to reach a better understanding of involved phenomena and their interactions on the final coating architectures permitting to manufacture several types of microstructures.

  20. Protective Coating

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Inorganic Coatings, Inc.'s K-Zinc 531 protective coating is water-based non-toxic, non-flammable and has no organic emissions. High ratio silicate formula bonds to steel, and in 30 minutes, creates a very hard ceramic finish with superior adhesion and abrasion resistance. Improved technology allows application over a minimal commercial sandblast, fast drying in high humidity conditions and compatibility with both solvent and water-based topcoats. Coating is easy to apply and provides long term protection with a single application. Zinc rich coating with water-based potassium silicate binder offers cost advantages in materials, labor hours per application, and fewer applications over a given time span.

Top