Sample records for hard component

  1. Structure and effective interactions in three-component hard sphere liquids.

    PubMed

    König, A; Ashcroft, N W

    2001-04-01

    Complete and simple analytical expressions for the partial structure factors of the ternary hard sphere mixture are obtained within the Percus-Yevick approximation and presented as functions of relative packing fractions and relative hard sphere diameters. These solutions follow from the Laplace transform method as applied to multicomponent systems by Lebowitz [Phys. Rev. 133, A895 (1964)]. As an important application, we examine effective interactions in hard sphere liquid mixtures using the microscopic information contained in their partial structure factors. Thus the ensuring pair potential for an effective one-component system is obtained from the correlation functions by using an approximate inversion, and examples of effective potentials for three-component hard sphere mixtures are given. These mixtures may be of particular interest for the study of the packing aspects of melts that form glasses or quasicrystals, since noncrystalline solids often emerge from melts with at least three atomic constituents.

  2. Method for producing hard-surfaced tools and machine components

    DOEpatents

    McHargue, Carl J.

    1985-01-01

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: A tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  3. Method for producing hard-surfaced tools and machine components

    DOEpatents

    McHargue, C.J.

    1981-10-21

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: a tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  4. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b

    PubMed Central

    Giroux, Michael J.; Morris, Craig F.

    1998-01-01

    “Soft” and “hard” are the two main market classes of wheat (Triticum aestivum L.) and are distinguished by expression of the Hardness gene. Friabilin, a marker protein for grain softness (Ha), consists of two proteins, puroindoline a and b (pinA and pinB, respectively). We previously demonstrated that a glycine to serine mutation in pinB is linked inseparably to grain hardness. Here, we report that the pinB serine mutation is present in 9 of 13 additional randomly selected hard wheats and in none of 10 soft wheats. The four exceptional hard wheats not containing the serine mutation in pinB express no pinA, the remaining component of the marker protein friabilin. The absence of pinA protein was linked inseparably to grain hardness among 44 near-isogenic lines created between the soft variety Heron and the hard variety Falcon. Both pinA and pinB apparently are required for the expression of grain softness. The absence of pinA protein and transcript and a glycine-to-serine mutation in pinB are two highly conserved mutations associated with grain hardness, and these friabilin genes are the suggested tightly linked components of the Hardness gene. A previously described grain hardness related gene termed “GSP-1” (grain softness protein) is not controlled by chromosome 5D and is apparently not involved in grain hardness. The association of grain hardness with mutations in both pinA or pinB indicates that these two proteins alone may function together to effect grain softness. Elucidation of the molecular basis for grain hardness opens the way to understanding and eventually manipulating this wheat endosperm property. PMID:9600953

  5. Disordered hyperuniformity in two-component nonadditive hard-disk plasmas

    NASA Astrophysics Data System (ADS)

    Lomba, Enrique; Weis, Jean-Jacques; Torquato, Salvatore

    2017-12-01

    We study the behavior of a classical two-component ionic plasma made up of nonadditive hard disks with additional logarithmic Coulomb interactions between them. Due to the Coulomb repulsion, long-wavelength total density fluctuations are suppressed and the system is globally hyperuniform. Short-range volume effects lead to phase separation or to heterocoordination for positive or negative nonadditivities, respectively. These effects compete with the hidden long-range order imposed by hyperuniformity. As a result, the critical behavior of the mixture is modified, with long-wavelength concentration fluctuations partially damped when the system is charged. It is also shown that the decrease of configurational entropy due to hyperuniformity originates from contributions beyond the two-particle level. Finally, despite global hyperuniformity, we show that in our system the spatial configuration associated with each component separately is not hyperuniform, i.e., the system is not "multihyperuniform."

  6. Comparison of hard X-ray spectra obtained by spectrometers on Hinotori and SMM and detection of 'superhot' component

    NASA Technical Reports Server (NTRS)

    Nitta, Nariaki

    1988-01-01

    Hard X-ray spectra in solar flares obtained by the broadband spectrometers aboard Hinotori and SMM are compared. Within the uncertainty brought about by assuming the typical energy of the background X-rays, spectra by the Hinotori spectrometer are usually consistent with those by the SMM spectrometer for flares in 1981. On the contrary, flares in 1982 persistently show 20-50-percent higher flux by Hinotori than by SMM. If this discrepancy is entirely attributable to errors in the calibration of energy ranges, the errors would be about 10 percent. Despite such a discrepancy in absolute flux, in the the decay phase of one flare, spectra revealed a hard X-ray component (probably a 'superhot' component) that could be explained neither by emission from a plasma at about 2 x 10 to the 7th K nor by a nonthermal power-law component. Imaging observations during this period show hard X-ray emission nearly cospatial with soft X-ray emission, in contrast with earlier times at which hard and soft X-rays come from different places.

  7. Uniform phases in fluids of hard isosceles triangles: One-component fluid and binary mixtures

    NASA Astrophysics Data System (ADS)

    Martínez-Ratón, Yuri; Díaz-De Armas, Ariel; Velasco, Enrique

    2018-05-01

    We formulate the scaled particle theory for a general mixture of hard isosceles triangles and calculate different phase diagrams for the one-component fluid and for certain binary mixtures. The fluid of hard triangles exhibits a complex phase behavior: (i) the presence of a triatic phase with sixfold symmetry, (ii) the isotropic-uniaxial nematic transition is of first order for certain ranges of aspect ratios, and (iii) the one-component system exhibits nematic-nematic transitions ending in critical points. We found the triatic phase to be stable not only for equilateral triangles but also for triangles of similar aspect ratios. We focus the study of binary mixtures on the case of symmetric mixtures: equal particle areas with aspect ratios (κi) symmetric with respect to the equilateral one, κ1κ2=3 . For these mixtures we found, aside from first-order isotropic-nematic and nematic-nematic transitions (the latter ending in a critical point): (i) a region of triatic phase stability even for mixtures made of particles that do not form this phase at the one-component limit, and (ii) the presence of a Landau point at which two triatic-nematic first-order transitions and a nematic-nematic demixing transition coalesce. This phase behavior is analogous to that of a symmetric three-dimensional mixture of rods and plates.

  8. Evaluation of HardSys/HardDraw, An Expert System for Electromagnetic Interactions Modelling

    DTIC Science & Technology

    1993-05-01

    interactions ir complex systems. This report gives a description of HardSys/HardDraw and reviews the main concepts used in its design. Various aspects of its ...HardDraw, an expert system for the modelling of electromagnetic interactions in complex systems. It consists of two main components: HardSys and HardDraw...HardSys is the advisor part of the expert system. It is knowledge-based, that is it contains a database of models and properties for various types of

  9. Fermi Observations of GRB 090510: A Short Hard Gamma-Ray Burst with an Additional, Hard Power-Law Component from 10 keV to GeV Energies

    DOE PAGES

    Ackermann, M.; Asano, K.; Atwood, W. B.; ...

    2010-05-27

    We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with E peak = 3.9 ± 0.3 MeV, which is the highest yet measured, and a hard power-law component with photon index –1.62 ± 0.03 that dominates the emission below ≈20more » keV and above ≈100 MeV. The onset of the high-energy spectral component appears to be delayed by ~0.1 s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5 s before the main pulse. During the prompt phase, the LAT detected a photon with energy 30.5 +5.8 –2.6 GeV, the highest ever measured from a short GRB. Observation of this photon sets a minimum bulk outflow Lorentz factor, Γ≳ 1200, using simple γγ opacity arguments for this GRB at redshift z = 0.903 and a variability timescale on the order of tens of ms for the ≈100 keV-few MeV flux. Stricter high confidence estimates imply Γ ≳ 1000 and still require that the outflows powering short GRBs are at least as highly relativistic as those of long-duration GRBs. Finally, implications of the temporal behavior and power-law shape of the additional component on synchrotron/synchrotron self-Compton, external-shock synchrotron, and hadronic models are considered.« less

  10. Hard water softening effect of a baby cleanser

    PubMed Central

    Walters, Russel M; Anim-Danso, Emmanuel; Amato, Stephanie M; Capone, Kimberly A; Mack, M Catherine; Telofski, Lorena S; Mays, David A

    2016-01-01

    Background Hard water is associated with atopic dermatitis (eczema). We wanted to determine if a baby cleanser and its individual components altered free ionized calcium (Ca2+) in a simulated hard water baby bath. For these studies, an in vitro determination of free Ca2+ in a simulated hard water baby bath, and an in vivo exploratory study of free Ca2+ absorption into skin from hard water were performed. Methods Free Ca2+ was measured with an ion-sensitive electrode in vitro in hard water (100–500 ppm, Ca2+) before and after addition of the cleanser and/or its components. In an exploratory study, absorption of Ca2+ into skin from hard water was determined in three female participants (aged 21–29 years). Results At an in-use dilution of 1%, the test cleanser reduced free Ca2+ from ~500 ppm to <200 ppm; a 10% in-use dilution bound virtually all free Ca2+. The anionic surfactant component contributed the most to this effect. In the exploratory in vivo study, we measured a reduction of ~15% in free Ca2+ from simulated hard water over 10 minutes. Conclusion Baby cleansers can bind free Ca2+ and reduce the effective water hardness of bath water. Reducing the amount of free Ca2+ in the water will reduce the availability of the ion for binding to the skin. Altering or reducing free Ca2+ concentrations in bath water may be an important parameter in creating the ideal baby bath. PMID:27789967

  11. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    PubMed

    Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S; Heitzmann, Daniel W W; Kretzer, J Philippe

    2013-01-01

    The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  12. Hard-on-Hard Lubrication in the Artificial Hip under Dynamic Loading Conditions

    PubMed Central

    Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S.; Heitzmann, Daniel W. W.; Kretzer, J. Philippe

    2013-01-01

    The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal. PMID:23940772

  13. Chemical Characterization of Beer Aging Products Derived from Hard Resin Components in Hops (Humulus lupulus L.).

    PubMed

    Taniguchi, Yoshimasa; Yamada, Makiko; Taniguchi, Harumi; Matsukura, Yasuko; Shindo, Kazutoshi

    2015-11-25

    The bitter taste of beer originates from resins in hops (Humulus lupulus L.), which are classified into two subtypes (soft and hard). Whereas the nature and reactivity of soft-resin-derived compounds, such as α-, β-, and iso-α-acids, are well studied, there is only a little information on the compounds in hard resin. For this work, hard resin was prepared from stored hops and investigated for its compositional changes in an experimental model of beer aging. The hard resin contained a series of α-acid oxides. Among them, 4'-hydroxyallohumulinones were unstable under beer storage conditions, and their transformation induced primary compositional changes of the hard resin during beer aging. The chemical structures of the products, including novel polycyclic compounds scorpiohumulinols A and B and dicyclohumulinols A and B, were determined by HRMS and NMR analyses. These compounds were proposed to be produced via proton-catalyzed cyclization reactions of 4'-hydroxyallohumulinones. Furthermore, they were more stable than their precursor 4'-hydroxyallohumulinones during prolonged storage periods.

  14. AMORPHOUS ALLOY SURFACE COATINGS FOR HARD CHROMIUM REPLACEMENT - PHASE I

    EPA Science Inventory

    Hard chromium coatings (0.25 to10 mil thick) are used extensively for imparting wear and erosion resistance to components in both industrial and military applications. The most common means of depositing hard chromium has been through the use of chromic acid baths containing ...

  15. Hard and soft acids and bases: structure and process.

    PubMed

    Reed, James L

    2012-07-05

    Under investigation is the structure and process that gives rise to hard-soft behavior in simple anionic atomic bases. That for simple atomic bases the chemical hardness is expected to be the only extrinsic component of acid-base strength, has been substantiated in the current study. A thermochemically based operational scale of chemical hardness was used to identify the structure within anionic atomic bases that is responsible for chemical hardness. The base's responding electrons have been identified as the structure, and the relaxation that occurs during charge transfer has been identified as the process giving rise to hard-soft behavior. This is in contrast the commonly accepted explanations that attribute hard-soft behavior to varying degrees of electrostatic and covalent contributions to the acid-base interaction. The ability of the atomic ion's responding electrons to cause hard-soft behavior has been assessed by examining the correlation of the estimated relaxation energies of the responding electrons with the operational chemical hardness. It has been demonstrated that the responding electrons are able to give rise to hard-soft behavior in simple anionic bases.

  16. Charpy Impact Energy and Microindentation Hardness of 60-NITINOL

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2012-01-01

    60-NITINOL (60 wt.% Ni 40 wt.% Ti) is being studied as a material for advanced aerospace components. The Charpy impact energy and microindentation hardness has been studied for this material, fabricated by vacuum induction skull melting (casting) and by hot isostatic pressing. Test specimens were prepared in various hardened and annealed heat treatment conditions. The average impact energy ranged from 0.33 to 0.49J for the hardened specimens while the annealed specimens had impact energies ranging from 0.89 to 1.18J. The average hardness values of the hardened specimens ranged from 590 to 676 HV while that of the annealed specimens ranged from 298 to 366 HV, suggesting an inverse relationship between impact energy and hardness. These results are expected to provide guidance in the selection of heat treatment processes for the design of mechanical components.

  17. When 1+1>2: Nanostructured composites for hard tissue engineering applications.

    PubMed

    Uskoković, Vuk

    2015-12-01

    Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. The major obstacles to creating collagen/apatite composites modeled after the structure of bone are mentioned, including the immunogenicity of xenogeneic collagen and continuously failing attempts to replicate the biomineralization process in vitro. Composites comprising a polymeric component and calcium phosphate are discussed in light of their ability to emulate the soft/hard composite structure of bone. Hard tissue engineering composites created using hard material components other than calcium phosphates, including silica, metals and several types of nanotubes, are also discoursed on, alongside additional components deliverable using these materials, such as cells, growth factors, peptides, antibiotics, antiresorptive and anabolic agents, pharmacokinetic conjugates and various cell-specific targeting moieties. It is concluded that a variety of hard tissue structures in the body necessitates a similar variety of biomaterials for their regeneration. The ongoing development of nanocomposites for bone restoration will result in smart, theranostic materials, capable of acting therapeutically in direct feedback with the outcome of in situ disease monitoring at the cellular and subcellular scales. Progress in this research direction is expected to take us to the next generation of biomaterials

  18. The Elusive Soft Emission from Hard X-ray Symbiotic System RT Cru

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2014-09-01

    RT Cru is a fascinating member of a new class of hard X-ray emitting symbiotic binaries showing X-ray emission extending to over 50keV. While its hard X-ray emission has been studied in detail, the soft component of the spectrum, including flares, remains elusive, since previous observations have focused on the high-energy regime. We propose Chandra HRC-S/LETG observations to determine the spatial, spectral, and temporal characteristics of the source of the soft X-ray emission with a goal to establish the origin of the soft component, and determine whether and how it is tied to the hard component. Determining the origin of the soft emission is a crucial piece of the puzzle to understanding the geometry, energetics, and the environment of WD accretion in this class of symbiotic systems.

  19. The isotropic-nematic phase transition of tangent hard-sphere chain fluids—Pure components

    NASA Astrophysics Data System (ADS)

    van Westen, Thijs; Oyarzún, Bernardo; Vlugt, Thijs J. H.; Gross, Joachim

    2013-07-01

    An extension of Onsager's second virial theory is developed to describe the isotropic-nematic phase transition of tangent hard-sphere chain fluids. Flexibility is introduced by the rod-coil model. The effect of chain-flexibility on the second virial coefficient is described using an accurate, analytical approximation for the orientation-dependent pair-excluded volume. The use of this approximation allows for an analytical treatment of intramolecular flexibility by using a single pure-component parameter. Two approaches to approximate the effect of the higher virial coefficients are considered, i.e., the Vega-Lago rescaling and Scaled Particle Theory (SPT). The Onsager trial function is employed to describe the orientational distribution function. Theoretical predictions for the equation of state and orientational order parameter are tested against the results from Monte Carlo (MC) simulations. For linear chains of length 9 and longer, theoretical results are in excellent agreement with MC data. For smaller chain lengths, small errors introduced by the approximation of the higher virial coefficients become apparent, leading to a small under- and overestimation of the pressure and density difference at the phase transition, respectively. For rod-coil fluids of reasonable rigidity, a quantitative comparison between theory and MC simulations is obtained. For more flexible chains, however, both the Vega-Lago rescaling and SPT lead to a small underestimation of the location of the phase transition.

  20. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOEpatents

    Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.

    1989-01-01

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.

  1. Hard sphere packings within cylinders.

    PubMed

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-03-07

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

  2. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOEpatents

    Prince, J.M.; Dodson, M.G.; Lechelt, W.M.

    1989-07-18

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis. 14 figs.

  3. Correlation structures from soft and semi-hard components in p-p collisions at √s =200 GeV

    DOE PAGES

    Porter, R. J.; Trainor, T. A.

    2005-02-01

    We present preliminary two-particle correlations for unidentified hadrons in p-p collisions at √s =200 GeV. On two-particle transverse rapidity space y t Ⓧ y t two distinct regions of correlated pairs are observed: a peaked structure at low y t (P t ≤ 0.4 GeV/c) and a broad structure at higher y t , where the correlation is distributed as a 2D Gaussian centered at y t1 = y t2 ≃ 2.8 (p t1 , p t2 ≃ 1.2 GeV/c). We select those regions separately, projecting correlations onto momentum- difference variables (ηΔ, φΔ), and observe structures interpretable in the contextmore » of string and parton fragmentations from soft and semi-hard components of p-p collisions.« less

  4. Inorganic particulates in pneumoconiotic lungs of hard metal grinders.

    PubMed Central

    Rüttner, J R; Spycher, M A; Stolkin, I

    1987-01-01

    Data from the analysis of lung dust in 16 metal grinders who had been exposed to hard metals between five and 44 years is reported. The mean latent time between the first exposure and analysis in biopsy or necropsy specimens was 33.6 years. Mineralogical and elementary analysis by a variety of techniques showed small or trace amounts of hard metal in all lungs. Many specimens, however, did not contain all hard metal components, cobalt, for example, being detected in four cases only. All the lungs contained quartz and silicates and in most of the necropsy cases carborundum and corundum could also be shown. Histologically no specific pattern was found. The appearances included mixed dust nodular pneumoconiosis, diffuse interstitial lung fibrosis, and foreign body and sarcoid like granulomatous changes. In view of the mixed dust exposure of the hard metal grinders and the variable histological appearance we think that the term "mixed dust pneumoconiosis in hard metal grinders" is more appropriate than "hard metal lung" to describe this condition. PMID:3676118

  5. Effects of lipophilic components on the compatibility of lipid-based formulations with hard gelatin capsules.

    PubMed

    Chen, Feng-Jing; Etzler, Frank M; Ubben, Johanna; Birch, Amy; Zhong, Li; Schwabe, Robert; Dudhedia, Mayur S

    2010-01-01

    The present study investigated the effect of lipophilic components on the compatibility of propylene glycol (PG)-containing lipid-based drug delivery system (LBDDS) formulations with hard gelatin capsules. The presence of a lipophilic active pharmaceutical ingredient (API) (log P approximately 6.1) and an additional lipophilic excipient (Capmul MCM) significantly affected the activity of PG in the fills and the equilibrium of PG between capsule shells and fills. These changes in activity and equilibrium of PG were furthermore correlated to the mechanical and thermal properties of the liquid-filled capsules and subsequently linked to the shelf-life of the capsules on stability with respect to capsule deformation. The present study also investigated the mechanism by which lipophilic component(s) might affect the activity of PG in the fill formulations and the equilibrium of PG between capsule shells and fills. The activities of PG in two series of "binary" mixtures with Capmul MCM and with Cremophor EL were measured, respectively. The mixtures of PG containing Capmul MCM were found to be more nearly ideal than those containing Cremophor EL. The observed negative deviation from Rauolt's law indicates that the excess free energies of mixing are less then zero indicating favorable interaction between PG and the other component. It is speculated that enhanced hydrogen bonding opportunities with Cremophor EL are responsible for the decreased excess free energy of mixing. Replacement of Cremophor EL with lipophilic API also reduces the hydrogen bonding opportunities for PG in the mixtures. This hypothesis may further explain the increased activity of PG in the fills and the shifted equilibrium of PG toward the capsule shells. Activity determination utilizing headspace gas chromatography (GC) using short 30 min incubation time seems to be a time-efficient approach for assessing capsule-fill compatibility. Direct measurements of PG migration and other physical properties of

  6. Ultrasonic material hardness depth measurement

    DOEpatents

    Good, M.S.; Schuster, G.J.; Skorpik, J.R.

    1997-07-08

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part. 12 figs.

  7. High hardness in the biocompatible intermetallic compound β-Ti3Au.

    PubMed

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M; Morosan, E

    2016-07-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti-Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials.

  8. The Hard X-Ray Emission from Scorpius X-1 Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, Steve; Shrader, C. R.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have investigated the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component and its possible correlations with the location of the source on the soft X-ray color-color diagram. We find that Sco X-1 follows two distinct spectral tracks when the 20-40 keV count rate is greater than 130 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows a much less significant high-energy component. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram. We have searched for similar behavior in 2 other Z sources: GX 17+2 and GX 5-1 with negative results.

  9. High hardness in the biocompatible intermetallic compound β-Ti3Au

    PubMed Central

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K.; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M.; Morosan, E.

    2016-01-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti–Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials. PMID:27453942

  10. Hot hardness of nickel-rich nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1976-01-01

    Rockwell A hardness of cast nickel-chromium-aluminum (NiCrAl) alloys was examined from ambient to 1150 K and compared to cast NiAl and IN-100. Alloy constitution was either gamma, gamma prime + gamma or gamma + beta + alpha + gamma prime. Below 1000 K beta containing NiCrAl alloys have hardnesses comparable to IN-100; above 1000 K they soften faster than IN-100. At 1150 K the hardness of beta-containing NiCrAl alloys decreases with increasing beta-content. The beta-containing NiCrAl alloys were harder than beta-NiAl. The ultimate tensile strengths of the NiCrAl alloys were estimated. The effects of NiCrAl coatings on strength and fatigue life of cooled turbine components were deduced.

  11. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings

    PubMed Central

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-01-01

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings. PMID:26924136

  12. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings.

    PubMed

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-02-29

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings.

  13. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-02-01

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings.

  14. Influence of different components in a TPV PP/EPDM based with low hardness

    NASA Astrophysics Data System (ADS)

    Gheller, J.; Jacobi, M. M.

    2014-05-01

    Thermoplastic vulcanizates (TPVs) are a class of polymeric material obtained by dynamic vulcanization of an elastomer in a melted thermoplastic matrix. This work intend to evaluate different variables in the production of low hardness TPVs made of polypropylene (PP) and ethylene propylene rubber (EPDM), as well the optimization of the variables looking for TPVs with improved performance. In the Study I the influence of PP crystallinity were evaluated, in the Study II the effects of different amounts of dicumyl peroxide (DCP) were evaluated and in the Study III the amount of the phenolic resin were evaluated. This extended abstract presents, in a more detailed way, the results considering the curative phenolic resin content (Study III). The others results and discussions are briefly described in the results and discussions section. The compounds were obtained in a closed mixing chamber and their processability properties, swelling, hardness and tensile strength were evaluated. With the results obtained were possible to evaluate the influence of different ingredients in the TPVs properties. The results were discussed and presented looking for a better understanding of the influence of this variable in the final product, as well the correlation between then.

  15. DETECTION OF VERY HARD γ -RAY SPECTRUM FROM THE TEV BLAZAR MRK 501

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, A.; Chitnis, V. R.; Acharya, B. S.

    2016-12-01

    The occasional hardening of the GeV-to-TeV spectrum observed from the blazar Mrk 501 has reopened the debate on the physical origin of radiation and particle acceleration processes in TeV blazars. We have used the ∼7 years of Fermi -LAT data to search for the time intervals with unusually hard spectra from the nearby TeV blazar Mrk 501. We detected hard spectral components above 10 GeV with photon index <1.5 at a significance level of more than 5 sigma on 17 occasions, each with 30 day integration time. The photon index of the hardest component reached a value of 0.89 ± 0.29. We interpretmore » these hard spectra as signatures of intermittent injection of sharply peaked and localized particle distributions from the base of the jet.« less

  16. Further links between the maximum hardness principle and the hard/soft acid/base principle: insights from hard/soft exchange reactions.

    PubMed

    Chattaraj, Pratim K; Ayers, Paul W; Melin, Junia

    2007-08-07

    Ayers, Parr, and Pearson recently showed that insight into the hard/soft acid/base (HSAB) principle could be obtained by analyzing the energy of reactions in hard/soft exchange reactions, i.e., reactions in which a soft acid replaces a hard acid or a soft base replaces a hard base [J. Chem. Phys., 2006, 124, 194107]. We show, in accord with the maximum hardness principle, that the hardness increases for favorable hard/soft exchange reactions and decreases when the HSAB principle indicates that hard/soft exchange reactions are unfavorable. This extends the previous work of the authors, which treated only the "double hard/soft exchange" reaction [P. K. Chattaraj and P. W. Ayers, J. Chem. Phys., 2005, 123, 086101]. We also discuss two different approaches to computing the hardness of molecules from the hardness of the composing fragments, and explain how the results differ. In the present context, it seems that the arithmetic mean of fragment softnesses is the preferable definition.

  17. The virial coefficients of hard hypersphere binary mixtures

    NASA Astrophysics Data System (ADS)

    Enciso, E.; Almarza, N. G.; Gonzalez, M. A.; Bermejo, F. J.

    The third, fourth and fifth virial coefficients of hard hypersphere binary mixtures with dimensionality d = 4, 5 have been calculated for size ratios R ≥0.1, R ı σ22 / σ11 , where σ ii is the diameter of component i . The composition independent partial virial coefficients have been evaluated by Monte Carlo integration of the corresponding Mayer modified star diagrams. The results are compared with the predictions of Santos, S., Yuste, S. B., and Lopez de Haro, M., 1999, Molec. Phys ., 96 , 1 of the equation of state of a multicomponent mixture of hard hyperspheres, and the good agreement gives strong support to the validity of that recipe.

  18. Design and Implementation of a Hall Effect Sensor Array Applied to Recycling Hard Drive Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisner, Roger; Lenarduzzi, Roberto; Killough, Stephen M

    Rare earths are an important resource for many electronic components and technologies. Examples abound including Neodymium magnets used in mobile devices and computer hard drives (HDDs), and a variety of renewable energy technologies (e.g., wind turbines). Approximately 21,000 metric tons of Neodymium is processed annually with less than 1% being recycled. An economic system to assist in the recycling of magnet material from post-consumer goods, such as Neodymium Iron Boron magnets commonly found in hard drives is presented. A central component of this recycling measurement system uses an array of 128 Hall Effect sensors arranged in two columns to detectmore » the magnetic flux lines orthogonal to the HDD. Results of using the system to scan planar shaped objects such as hard drives to identify and spatially locate rare-earth magnets for removal and recycling from HDDs are presented. Applications of the sensor array in other identification and localization of magnetic components and assemblies will be presented.« less

  19. Metallographic structure and hardness of titanium orthodontic brackets.

    PubMed

    Zinelis, Spiros; Annousaki, Olga; Eliades, Theodore; Makou, Margarita

    2003-11-01

    To determine the elemental composition, microstructure, and hardness of two different brands of titanium (Ti) orthodontic brackets. Four specimens of each brand were embedded in epoxy resin and, after metallographic grinding and polishing, were studied under a metallographic microscope. The bonding base morphology of each bracket was studied in as-received brackets by scanning electron microscopy. Energy dispersive x-ray microanalysis (EDS) was used on polished specimens to assess the elemental composition of base and wing bracket components, and the brackets were subjected to metallographic etching to reveal the metallurgical structure. The same specimen surfaces were used for assessment of the Vickers hardness. The results were statistically analyzed by two-way analysis of variance (ANOVA) with the bracket brand and bracket region (base, wing) serving as discriminating variables, whilst further group differences were investigated with Tukey's multiple comparison test at the alpha = 0.05 level of significance. Metallographic imaging revealed that the Orthos2 brackets (Ormco, Glendora, CA, USA) consist of two parts joined together by laser welding, with large gaps along the base wing interface, whereas Rematitan brackets (Dentaurum, Ispringen, Germany) are single-piece appliances. Ti was the only element identified in Rematitan and Orthos2 base materials, while aluminium (Al) and vanadium (V) were also found in the Orthos2 wing component. Metallographic analysis showed the presence of a + b phase for Orthos2 and plate-like grains for Rematitan. The results of the Vickers hardness testing were: Orthos2 (wing): 371 +/- 22, Rematitan (wing): 272 +/- 4, Rematitan (base): 271 +/- 16, Orthos2 (base): 165 +/- 2. The findings of the present study suggest that there are significant differences in composition, microstructure and hardness between the two commercial types of Ti brackets tested; the clinical implications of the findings are discussed.

  20. STATISTICAL STUDY of HARD X-RAY SPECTRAL CHARACTERISTICS OF SOLAR FLARES

    NASA Astrophysics Data System (ADS)

    Alaoui, M.; Krucker, S.; Saint-Hilaire, P.; Lin, R. P.

    2009-12-01

    We investigate the spectral characteristics of 75 solar flares at the hard X-ray peak time observed by RHESSI (Ramaty High Energy Solar Spectroscopic Imager) in the energy range 12-150keV. At energies above 40keV, the Hard X-ray emission is mostly produced by bremsstrahlung of suprathermal electrons as they interact with the ambient plasma in the chromosphere. The observed photon spectra therefore provide diagnostics of electron acceleration processes in Solar flares. We will present statistical results of spectral fitting using two models: a broken power law plus a thermal component which is a direct fit of the photon spectrum and a thick target model plus a thermal component which is a fit of the photon spectra with assumptions on the electrons emitting bremsstrahlung in the thick target approximation.

  1. Hardness and microstructure analysis of damaged gear caused by adhesive wear

    NASA Astrophysics Data System (ADS)

    Mahendra, Rizky Budi; Nugroho, Sri; Ismail, Rifky

    2018-03-01

    This study was a result from research on repairing project of damaged elevator gear box. The objective of this research is to analyze the failure part on elevator gearbox at flourmill factory. The equipment was damaged after one year installed and running on factory. Severe wear was occurred on high speed helical gear. These helical gear was one of main part of elevator gearbox in flour mill manufacture. Visually, plastic deformation didn't occurred and not visible on the failure helical gear shaft. Some test would be performed to check the chemical composition, microstructure and hardness of failure helical gear. The material of failure helical gear shaft was a medium carbon steel alloy. The microstructure was showed a martensitic phase formed on the surface to the center area of gear shaft. Otherwise, the depth of hardness layer slight formed on surface and lack depth of hardness layer was a main trigger of severe wear. It was not enough to resist wear due to friction caused by rolling and sliding on surface between high speed gear and low speed gear. Enhancement of hardness layer on surface and depth of hardness layer will make the component has more long life time. Furthermore, to perform next research is needed to analyze the reliability of enhanced hardness on layer and depth of hardness layer on helical gear shaft.

  2. Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media.

    PubMed

    Chen, W; Zhao, S L; Holovko, M; Chen, X S; Dong, W

    2016-06-23

    The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way.

  3. Galactic Black Holes in the Hard State: A Multi-Wavelength View of Accretion and Ejection

    NASA Technical Reports Server (NTRS)

    Kalemci; Tomsick, John A.; Migliari; Corbel; Markoff

    2010-01-01

    The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.

  4. Nanostructural Evolution of Hard Turning Layers in Carburized Steel

    NASA Astrophysics Data System (ADS)

    Bedekar, Vikram

    The mechanisms of failure for components subjected to contact fatigue are sensitive to the structure and properties of the material surface. Although, the bulk material properties are determined by the steel making, forming and the heat treatment; the near surface material properties are altered during final material removal processes such as hard turning or grinding. Therefore, the ability to optimize, modulate and predict the near surface properties during final metal removal operations would be extremely useful in the enhancement of service life of a component. Hard machining is known to induce severely deformed layers causing dramatic microstructural transformations. These transformations occur via grain refinement or thermal phenomena depending upon cutting conditions. The aim of this work is to engineer the near surface nanoscale structure and properties during hard turning by altering strain, strain rate, temperature and incoming microstructure. The near surface material transformations due to hard turning were studied on carburized SAE 8620 bearing steel. Variations in parent material microstructures were introduced by altering the retained austenite content. The strain, strain rate and temperature achieved during final metal cutting were altered by varying insert geometry, insert wear and cutting speed. The subsurface evolution was quantified by a series of advanced characterization techniques such as transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD), X-ray stress evaluation and nanoindentation which were coupled with numerical modeling. Results showed that the grain size of the nanocrystalline near surface microstructure can be effectively controlled by altering the insert geometry, insert wear, cutting speed and the incoming microstructure. It was also evident that the near surface retained austenite decreased at lower cutting speed indicating transformation due to plastic deformation, while it increased at higher cutting

  5. High resolution imaging and lithography with hard x rays using parabolic compound refractive lenses

    NASA Astrophysics Data System (ADS)

    Schroer, C. G.; Benner, B.; Günzler, T. F.; Kuhlmann, M.; Zimprich, C.; Lengeler, B.; Rau, C.; Weitkamp, T.; Snigirev, A.; Snigireva, I.; Appenzeller, J.

    2002-03-01

    Parabolic compound refractive lenses are high quality optical components for hard x rays. They are particularly suited for full field imaging, with applications in microscopy and x-ray lithography. Taking advantage of the large penetration depth of hard x rays, the interior of opaque samples can be imaged with submicrometer resolution. To obtain the three-dimensional structure of a sample, microscopy is combined with tomographic techniques. In a first hard x-ray lithography experiment, parabolic compound refractive lenses have been used to project the reduced image of a lithography mask onto a resist. Future developments are discussed.

  6. The NuSTAR view on Hard-TeV BL Lacs

    NASA Astrophysics Data System (ADS)

    Costamante, L.; Bonnoli, G.; Tavecchio, F.; Ghisellini, G.; Tagliaferri, G.; Khangulyan, D.

    2018-05-01

    Hard-TeV BL Lacs are a new type of blazars characterized by a hard intrinsic TeV spectrum, locating the peak of their gamma-ray emission in the spectral energy distribution (SED) above 2-10 TeV. Such high energies are problematic for the Compton emission, using a standard one-zone leptonic model. We study six examples of this new type of BL Lacs in the hard X-ray band with NuSTAR. Together with simultaneous observations with the Neil Gehrels Swift Observatory, we fully constrain the peak of the synchrotron emission in their SED, and test the leptonic synchrotron self-Compton (SSC) model. We confirm the extreme nature of 5 objects also in the synchrotron emission. We do not find evidence of additional emission components in the hard X-ray band. We find that a one-zone SSC model can in principle reproduce the extreme properties of both peaks in the SED, from X-ray up to TeV energies, but at the cost of i) extreme electron energies with very low radiative efficiency, ii) conditions heavily out of equipartition (by 3 to 5 orders of magnitude), and iii) not accounting for the simultaneous UV data, which then should belong to a different emission component, possibly the same as the far-IR (WISE) data. We find evidence of this separation of the UV and X-ray emission in at least two objects. In any case, the TeV electrons must not "see" the UV or lower-energy photons, even if coming from different zones/populations, or the increased radiative cooling would steepen the VHE spectrum.

  7. The NuSTAR view on hard-TeV BL Lacs

    NASA Astrophysics Data System (ADS)

    Costamante, L.; Bonnoli, G.; Tavecchio, F.; Ghisellini, G.; Tagliaferri, G.; Khangulyan, D.

    2018-07-01

    Hard-TeV BL Lacs are a new type of blazars characterized by a hard intrinsic TeV spectrum, locating the peak of their gamma-ray emission in the spectral energy distribution (SED) above 2-10 TeV. Such high energies are problematic for the Compton emission, using a standard one-zone leptonic model. We study six examples of this new type of BL Lacs in the hard X-ray band with NuSTAR. Together with simultaneous observations with the Neil Gehrels Swift Observatory, we fully constrain the peak of the synchrotron emission in their SED, and test the leptonic synchrotron self-Compton (SSC) model. We confirm the extreme nature of five objects also in the synchrotron emission. We do not find evidence of additional emission components in the hard X-ray band. We find that a one-zone SSC model can in principle reproduce the extreme properties of both peaks in the SED, from X-ray up to TeV energies, but at the cost of (i) extreme electron energies with very low radiative efficiency, (ii) conditions heavily out of equipartition (by three to five orders of magnitude), and (iii) not accounting for the simultaneous UV data, which then should belong to a different emission component, possibly the same as the far-IR (WISE) data. We find evidence of this separation of the UV and X-ray emission in at least two objects. In any case, the TeV electrons must not `see' the UV or lower energy photons, even if coming from different zones/populations, or the increased radiative cooling would steepen the very high energies spectrum.

  8. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Marco, B.; Ponti, G.; Nandra, K.

    2015-11-20

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4more » in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation.« less

  9. Combustion synthesis of low exothermic component rich composites

    DOEpatents

    Halverson, Danny C.; Lum, Beverly Y.; Munir, Zuhair A.

    1991-01-01

    A self-sustaining combustion synthesis process for producing hard, tough, lightweight, low exothermic potential product (LEPP)/high exothermic potential product (HEPP) composites is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the LEPP and HEPP reactants. For lightweight products the composition must be relatively rich in the LEPP component. LEPP rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component.

  10. Bond-orientational analysis of hard-disk and hard-sphere structures.

    PubMed

    Senthil Kumar, V; Kumaran, V

    2006-05-28

    We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.

  11. Autonomous Component Health Management with Failed Component Detection, Identification, and Avoidance

    NASA Technical Reports Server (NTRS)

    Davis, Robert N.; Polites, Michael E.; Trevino, Luis C.

    2004-01-01

    This paper details a novel scheme for autonomous component health management (ACHM) with failed actuator detection and failed sensor detection, identification, and avoidance. This new scheme has features that far exceed the performance of systems with triple-redundant sensing and voting, yet requires fewer sensors and could be applied to any system with redundant sensing. Relevant background to the ACHM scheme is provided, and the simulation results for the application of that scheme to a single-axis spacecraft attitude control system with a 3rd order plant and dual-redundant measurement of system states are presented. ACHM fulfills key functions needed by an integrated vehicle health monitoring (IVHM) system. It is: autonomous; adaptive; works in realtime; provides optimal state estimation; identifies failed components; avoids failed components; reconfigures for multiple failures; reconfigures for intermittent failures; works for hard-over, soft, and zero-output failures; and works for both open- and closed-loop systems. The ACHM scheme combines a prefilter that generates preliminary state estimates, detects and identifies failed sensors and actuators, and avoids the use of failed sensors in state estimation with a fixed-gain Kalman filter that generates optimal state estimates and provides model-based state estimates that comprise an integral part of the failure detection logic. The results show that ACHM successfully isolates multiple persistent and intermittent hard-over, soft, and zero-output failures. It is now ready to be tested on a computer model of an actual system.

  12. Studying radiation hardness of a cadmium tungstate crystal based radiation detector

    NASA Astrophysics Data System (ADS)

    Shtein, M. M.; Smekalin, L. F.; Stepanov, S. A.; Zatonov, I. A.; Tkacheva, T. V.; Usachev, E. Yu

    2016-06-01

    The given article considers radiation hardness of an X-ray detector used in production of non-destructive testing instruments and inspection systems. In the course of research, experiments were carried out to estimate radiation hardness of a detector based on cadmium tungstate crystal and its structural components individually. The article describes a layout of an experimental facility that was used for measurements of radiation hardness. The radiation dose dependence of the photodiode current is presented, when it is excited by a light flux of a scintillator or by an external light source. Experiments were carried out to estimate radiation hardness of two types of optical glue used in detector production; they are based on silicon rubber and epoxy. With the help of a spectrophotometer and cobalt gun, each of the glue samples was measured for a relative light transmission factor with different wavelengths, depending on the radiation dose. The obtained data are presented in a comprehensive analysis of the results. It was determined, which of the glue samples is most suitable for production of detectors working under exposure to strong radiation.

  13. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  14. A HARD X-RAY POWER-LAW SPECTRAL CUTOFF IN CENTAURUS X-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabarty, Deepto; Nowak, Michael A.; Tomsick, John A.

    2014-12-20

    The low-mass X-ray binary (LMXB) Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1×10{sup 33} D{sub kpc}{sup 2} erg s{sup –1}, with ≅60% in the thermalmore » component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with kT{sub e} = 18 keV, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively inefficient accretion flow. The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen X-4's behavior with PSR J1023+0038, IGR J18245–2452, and XSS J12270–4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.« less

  15. Too hard to swallow: a secret secondary defence of an aposematic insect.

    PubMed

    Wang, Lu-Yi; Huang, Wen-San; Tang, Hsin-Chieh; Huang, Lung-Chun; Lin, Chung-Ping

    2018-01-25

    Anti-predator strategies are significant components of adaptation in prey species. Aposematic prey are expected to possess effective defences that have evolved simultaneously with their warning colours. This study tested the hypothesis of the defensive function and ecological significance of the hard body in aposematic Pachyrhynchus weevils pioneered by Alfred Russel Wallace nearly 150 years ago. We used predation trials with Japalura tree lizards to assess the survivorship of 'hard' (mature) versus 'soft' (teneral) and 'clawed' (intact) versus 'clawless' (surgically removed) weevils. The ecological significance of the weevil's hard body was evaluated by assessing the hardness of the weevils, the local prey insects, and the bite forces of the lizard populations. The existence of toxins or deterrents in the weevil was examined by gas chromatography-mass spectrometry (GC-MS). All 'hard' weevils were instantly spat out after being bitten once and survived attacks by the lizards. In contrast, the 'soft' weevils were chewed and subsequently swallowed. The results were the same regardless of the presence or absence of the weevil's tarsal claws. The hardness of 'hard' Pachyrhynchus weevils was significantly higher than the average hardness of other prey insects in the same habitat and the mean bite forces of the local lizards. The four candidate compounds of the weevil identified by GC-MS had no known toxic or repellent functions against vertebrates. These results reveal that the hardness of aposematic prey functions as an effective secondary defence, and they provide a framework for understanding the spatio-temporal interactions between vertebrate predators and aposematic insect prey. © 2018. Published by The Company of Biologists Ltd.

  16. Hard X-ray Detectability of Small-Scale Coronal Heating Events

    NASA Astrophysics Data System (ADS)

    Marsh, A.; Glesener, L.; Klimchuk, J. A.; Bradshaw, S. J.; Smith, D. M.; Hannah, I. G.

    2016-12-01

    The nanoflare heating theory predicts the ubiquitous presence of hot ( >5 MK) plasma in the solar corona, but evidence for this high-temperature component has been scarce. Current hard x-ray instruments such as RHESSI lack the sensitivity to see the trace amounts of this plasma that are predicted by theoretical models. New hard X-ray instruments that use focusing optics, such as FOXSI (the Focusing Optics X-ray Solar Imager) and NuSTAR (the Nuclear Spectroscopic Telescope Array) can extend the visible parameter space of nanoflare "storms" that create hot plasma. We compare active-region data from FOXSI and NuSTAR with a series of EBTEL hydrodynamic simulations, and constrain nanoflare properties to give good agreement with observations.

  17. Ti1-xAux Alloys: Hard Biocompatible Metals and Their Possible Applications

    NASA Astrophysics Data System (ADS)

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevzi; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Morosan, Emilia

    2015-03-01

    The search for new hard materials is often challenging from both theoretical and experimental points of view. Furthermore, using materials for biomedical applications calls for alloys with high biocompatibility which are even more sparse. The Ti1-xAux (0 . 22 <= x <= 0 . 8) exhibit extreme hardness and strength values, elevated melting temperatures (compared to those of constituent elements), reduced density compared to Au, high malleability, bulk metallicity, high biocompatibility, low wear, reduced friction, potentially high radio opacity, as well as osseointegration. All these properties render the Ti1-xAux alloys particularly useful for orthopedic, dental, and prosthetic applications, where they could be used as both permanent and temporary components. Additionally, the ability of Ti1-xAux alloys to adhere to ceramic parts could reduce the weight and cost of these components. The work at Rice was supported by NSF DMR 0847681 (E.M. and E.S.).

  18. Effect of quantum dispersion on the radial distribution function of a one-component sticky-hard-sphere fluid

    NASA Astrophysics Data System (ADS)

    Fantoni, Riccardo

    2018-04-01

    In this short communication we present a possible scheme to study the radial distribution function of the quantum slightly polydisperse Baxter sticky hard sphere liquid at finite temperature thorugh a semi-analytical method devised by Chandler and Wolynes.

  19. Remember Hard But Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions.

    PubMed

    Xie, Jiushu; Lu, Zhi; Wang, Ruiming; Cai, Zhenguang G

    2016-01-01

    Previous studies have found that bodily stimulation, such as hardness biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between "hard" and "rigid" and between "soft" and "flexible" in Chinese, to investigate whether the experience of hardness affects cognitive functions whose performance depends prospectively on rigidity (memory) and flexibility (creativity). In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition) than a cushioned one (the soft condition). In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity or flexibility. They support the embodiment proposition that cognitive functions and representations can be grounded in bodily states via metaphorical associations.

  20. Prestressing Shock Resistant Mechanical Components and Mechanisms Made from Hard, Superelastic Materials

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher (Inventor)

    2014-01-01

    A method and an apparatus confer full superelastic properties to the active surface of a mechanical component constructed of a superelastic material prior to service. A compressive load is applied to the active surface of the mechanical component followed by removing the compressive load from the active surface whereby substantially all load strain is recoverable after applying and removing of subsequent compressive loads.

  1. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    NASA Astrophysics Data System (ADS)

    Rasouli, C.; Pourshahab, B.; Hosseini Pooya, S. M.; Orouji, T.; Rasouli, H.

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points - three TLDs per point - to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  2. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak.

    PubMed

    Rasouli, C; Pourshahab, B; Hosseini Pooya, S M; Orouji, T; Rasouli, H

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points--three TLDs per point--to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  3. The Hard X-ray Emission from Scorpius X-1 as Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Shrader, C. R.; Weidenspointner, G.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have concentrated on investigating the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component of the spectrum and its possible correlations with the location of the source on the X-ray color-color diagram. We find that Sco X-1 has two distinct spectral when the 20-40 keV count rate is greater than 140 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows no evidence for a powerlaw tail whatsoever. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram.

  4. Measurements of the hard-x-ray reflectivity of iridium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romaine, S.; Bruni, R.; Gorenstein, P.

    2007-01-10

    In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.

  5. Measurements of the hard-x-ray reflectivity of iridium.

    PubMed

    Romaine, S; Bruni, R; Gorenstein, P; Zhong, Z

    2007-01-10

    In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.

  6. Hard copies for digital medical images: an overview

    NASA Astrophysics Data System (ADS)

    Blume, Hartwig R.; Muka, Edward

    1995-04-01

    This paper is a condensed version of an invited overview on the technology of film hard-copies used in radiology. Because the overview was given to an essentially nonmedical audience, the reliance on film hard-copies in radiology is outlined in greater detail. The overview is concerned with laser image recorders generating monochrome prints on silver-halide films. The basic components of laser image recorders are sketched. The paper concentrates on the physical parameters - characteristic function, dynamic range, digitization resolution, modulation transfer function, and noise power spectrum - which define image quality and information transfer capability of the printed image. A preliminary approach is presented to compare the printed image quality with noise in the acquired image as well as with the noise of state-of- the-art cathode-ray-tube display systems. High-performance laser-image- recorder/silver-halide-film/light-box systems are well capable of reproducing acquired radiologic information. Most recently development was begun toward a display function standard for soft-copy display systems to facilitate similarity of image presentation between different soft-copy displays as well as between soft- and hard-copy displays. The standard display function is based on perceptional linearization. The standard is briefly reviewed to encourage the printer industry to adopt it, too.

  7. Hard X-ray Detectability of Small-Scale Coronal Heating Events

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Glesener, Lindsay; Klimchuk, James A.; Bradshaw, Stephen; Smith, David; Hannah, Iain

    2016-05-01

    The nanoflare heating theory predicts the ubiquitous presence of hot (~>5 MK) plasma in the solar corona, but evidence for this high-temperature component has been scarce. Current hard x-ray instruments such as RHESSI lack the sensitivity to see the trace amounts of this plasma that are predicted by theoretical models. New hard X-ray instruments that use focusing optics, such as FOXSI (the Focusing Optics X-ray Solar Imager) and NuSTAR (the Nuclear Spectroscopic Telescope Array) can extend the visible parameter space of nanoflare “storms” that create hot plasma. We compare active-region data from FOXSI and NuSTAR with a series of EBTEL hydrodynamic simulations, and constrain nanoflare properties to give good agreement with observations.

  8. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  9. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  10. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  11. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  12. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  13. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  14. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  15. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  16. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  17. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  18. Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition.

    PubMed

    Winzen, S; Schoettler, S; Baier, G; Rosenauer, C; Mailaender, V; Landfester, K; Mohr, K

    2015-02-21

    Here we demonstrate how a complementary analysis of nanocapsule-protein interactions with and without application media allows gaining insights into the so called hard and soft protein corona. We have investigated how both human plasma and individual proteins (human serum albumin (HSA), apolipoprotein A-I (ApoA-I)) adsorb and interact with hydroxyethyl starch (HES) nanocapsules possessing different functionalities. To analyse the hard protein corona we used sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and a protein quantitation assay. No significant differences were observed with regards to the hard protein corona. For analysis of the soft protein corona we characterized the nanocapsule-protein interaction with isothermal titration calorimetry (ITC) and dynamic light scattering (DLS). DLS and ITC measurements revealed that a high amount of plasma proteins were adsorbed onto the capsules' surface. Although HSA was not detected in the hard protein corona, ITC measurements indicated the adsorption of an HSA amount similar to plasma with a low binding affinity and reaction heat. In contrast, only small amounts of ApoA-I protein adsorb to the capsules with high binding affinities. Through a comparison of these methods we have identified ApoA-I to be a component of the hard protein corona and HSA as a component of the soft corona. We demonstrate a pronounced difference in the protein corona observed depending on the type of characterization technique applied. As the biological identity of a particle is given by the protein corona it is crucial to use complementary characterization techniques to analyse different aspects of the protein corona.

  19. Redox and Lewis acid-base activities through an electronegativity-hardness landscape diagram.

    PubMed

    Das, Ranjita; Vigneresse, Jean-Louis; Chattaraj, Pratim Kumar

    2013-11-01

    Chemistry is the science of bond making and bond breaking which requires redistribution of electron density among the reactant partners. Accordingly acid-base and redox reactions form cardinal components in all branches of chemistry, e.g., inorganic, organic, physical or biochemistry. That is the reason it forms an integral part of the undergraduate curriculum all throughout the globe. In an electronegativity (χ)- hardness (η) landscape diagram the diagonal χ = η line separates reducing agents from oxidizing agents as well as Lewis acids from Lewis bases. While electronegativity is related to the degree of electron transfer between two reactants, hardness is related to the resistance to that process. Accordingly the electronegativities of oxidizing agents/Lewis acids are generally greater than the corresponding hardness values and the reverse is true for reducing agents/Lewis bases. Electrophiles and nucleophiles are also expected to follow similar trends.

  20. Narrow-line Seyfert 1 galaxies at hard X-rays

    NASA Astrophysics Data System (ADS)

    Panessa, F.; de Rosa, A.; Bassani, L.; Bazzano, A.; Bird, A.; Landi, R.; Malizia, A.; Miniutti, G.; Molina, M.; Ubertini, P.

    2011-11-01

    Narrow-line Seyfert 1 (NLSy1) galaxies are a peculiar class of type 1 active galactic nuclei (broad-line Seyfert 1 galaxies, hereinafter BLSy1). The X-ray properties of individual objects belonging to this class are often extreme and associated with accretion at high Eddington ratios. Here, we present a study on a sample of 14 NLSy1 galaxies selected at hard X-rays (>20 keV) from the fourth INTEGRAL/IBIS catalogue. The 20-100 keV IBIS spectra show hard-X-ray photon indices flatly distributed (Γ20-100 keV ranging from ˜1.3 to ˜3.6) with an average value of <Γ20-100 keV>= 2.3 ± 0.7, compatible with a sample of hard-X-ray BLSy1 average slopes. Instead, NLSy1 galaxies show steeper spectral indices with respect to BLSy1 galaxies when broad-band spectra are considered. Indeed, we combine XMM-Newton and Swift/XRT with INTEGRAL/IBIS data sets to obtain a wide energy spectral coverage (0.3-100 keV). A constraint on the high energy cut-off and on the reflection component is achieved only in one source, SWIFT J2127.4+5654 (Ecut-off˜ 50 keV, R= 1.0+0.5- 0.4). Hard-X-ray-selected NLSy1 galaxies do not display particularly strong soft excess emission, while absorption fully or partially covering the continuum is often measured as well as Fe line emission features. Variability is a common trait in this sample, both at X-rays and at hard X-rays. The fraction of NLSy1 galaxies in the hard-X-ray sky is likely to be ˜15 per cent, in agreement with estimates derived in optically selected NLSy1 samples. We confirm the association of NLSy1 galaxies with small black hole masses with a peak at 107 M⊙ in the distribution; however, hard-X-ray NLSy1 galaxies seem to occupy the lower tail of the Eddington ratio distribution of classical NLSy1 galaxies. Based on observations obtained with the INTEGRAL/IBIS, XMM-Newton and Swift/XRT.

  1. Dynamic hardness of metals

    NASA Astrophysics Data System (ADS)

    Liang, Xuecheng

    Dynamic hardness (Pd) of 22 different pure metals and alloys having a wide range of elastic modulus, static hardness, and crystal structure were measured in a gas pulse system. The indentation contact diameter with an indenting sphere and the radius (r2) of curvature of the indentation were determined by the curve fitting of the indentation profile data. r 2 measured by the profilometer was compared with that calculated from Hertz equation in both dynamic and static conditions. The results indicated that the curvature change due to elastic recovery after unloading is approximately proportional to the parameters predicted by Hertz equation. However, r 2 is less than the radius of indenting sphere in many cases which is contradictory to Hertz analysis. This discrepancy is believed due to the difference between Hertzian and actual stress distributions underneath the indentation. Factors which influence indentation elastic recovery were also discussed. It was found that Tabor dynamic hardness formula always gives a lower value than that directly from dynamic hardness definition DeltaE/V because of errors mainly from Tabor's rebound equation and the assumption that dynamic hardness at the beginning of rebound process (Pr) is equal to kinetic energy change of an impact sphere over the formed crater volume (Pd) in the derivation process for Tabor's dynamic hardness formula. Experimental results also suggested that dynamic to static hardness ratio of a material is primarily determined by its crystal structure and static hardness. The effects of strain rate and temperature rise on this ratio were discussed. A vacuum rotating arm apparatus was built to measure Pd at 70, 127, and 381 mum sphere sizes, these results exhibited that Pd is highly depended on the sphere size due to the strain rate effects. P d was also used to substitute for static hardness to correlate with abrasion and erosion resistance of metals and alloys. The particle size effects observed in erosion were

  2. Mechanism by Which Magnesium Oxide Suppresses Tablet Hardness Reduction during Storage.

    PubMed

    Sakamoto, Takatoshi; Kachi, Shigeto; Nakamura, Shohei; Miki, Shinsuke; Kitajima, Hideaki; Yuasa, Hiroshi

    2016-01-01

    This study investigated how the inclusion of magnesium oxide (MgO) maintained tablet hardness during storage in an unpackaged state. Tablets were prepared with a range of MgO levels and stored at 40°C with 75% relative humidity for up to 14 d. The hardness of tablets prepared without MgO decreased over time. The amount of added MgO was positively associated with tablet hardness and mass from an early stage during storage. Investigation of the water sorption properties of the tablet components showed that carmellose water sorption correlated positively with the relative humidity, while MgO absorbed and retained moisture, even when the relative humidity was reduced. In tablets prepared using only MgO, a petal- or plate-like material was observed during storage. Fourier transform infrared spectrophotometry showed that this material was hydromagnesite, produced when MgO reacts with water and CO2. The estimated level of hydromagnesite at each time-point showed a significant negative correlation with tablet porosity. These results suggested that MgO suppressed storage-associated softening by absorbing moisture from the environment. The conversion of MgO to hydromagnesite results in solid bridge formation between the powder particles comprising the tablets, suppressing the storage-related increase in volume and increasing tablet hardness.

  3. The Hadronic Origin of the Hard Gamma-Ray Spectrum from Blazar 1ES 1101-232

    NASA Astrophysics Data System (ADS)

    Cao, Gang; Wang, Jiancheng

    2014-03-01

    The very hard γ-ray spectrum from distant blazars challenges the traditional synchrotron self-Compton (SSC) model, which may indicate that there is a contribution from an additional high-energy component beyond the SSC emission. In this paper, we study the possible origin of the hard γ-ray spectrum from distant blazars. We develop a model to explain the hard γ-ray spectrum from blazar 1ES 1101-232. In the model, the optical and X-ray radiation would come from the synchrotron radiation of primary electrons and secondary pairs and the GeV emission would be produced by the SSC process, however, the hard γ-ray spectrum would originate from the decay of neutral pion produced through proton-photon interactions with the synchrotron radiation photons within the jet. Our model can explain the observed spectral energy distribution of 1ES 1101-232 well, especially the very hard γ-ray spectrum. However, our model requires a very large proton power to efficiently produce the γ-ray through proton-photon interactions.

  4. Heuristic rule for binary superlattice coassembly: mixed plastic mesophases of hard polyhedral nanoparticles.

    PubMed

    Khadilkar, Mihir R; Escobedo, Fernando A

    2014-10-17

    Sought-after ordered structures of mixtures of hard anisotropic nanoparticles can often be thermodynamically unfavorable due to the components' geometric incompatibility to densely pack into regular lattices. A simple compatibilization rule is identified wherein the particle sizes are chosen such that the order-disorder transition pressures of the pure components match (and the entropies of the ordered phases are similar). Using this rule with representative polyhedra from the truncated-cube family that form pure-component plastic crystals, Monte Carlo simulations show the formation of plastic-solid solutions for all compositions and for a wide range of volume fractions.

  5. Discovery of a Kiloparsec Extended Hard X-Ray Continuum and Fe-Kα from the Compton Thick AGN ESO 428-G014

    NASA Astrophysics Data System (ADS)

    Fabbiano, G.; Elvis, M.; Paggi, A.; Karovska, M.; Maksym, W. P.; Raymond, J.; Risaliti, G.; Wang, Junfeng

    2017-06-01

    We report the discovery of kiloparsec-scale diffuse emission in both the hard continuum (3-6 keV) and in the Fe-Kα line in the Compton thick (CT) Seyfert galaxy ESO 428-G014. This extended hard component contains at least ˜24% of the observed 3-8 keV emission, and follows the direction of the extended optical line emission (ionization cone) and radio jet. The extended hard component has ˜0.5% of the intrinsic 2-10 keV luminosity within the bi-cones. A uniform scattering medium of density 1 {{cm}}-3 would produce this luminosity in a 1 kpc path length in the bi-cones. Alternatively, higher column density molecular clouds in the disk of ESO 428-G014 may be responsible for these components. The continuum may also be enhanced by the acceleration of charged particles in the radio jet. The steeper spectrum (Γ ˜ 1.7 ± 0.4) of the hard continuum outside of the central 1.″5 radius nuclear region suggests a contribution of scattered/fluorescent intrinsic Seyfert emission. Ultrafast nuclear outflows cannot explain the extended Fe-Kα emission. This discovery suggests that we may need to revise the picture at the base of our interpretation of CT AGN spectra.

  6. Research in the Hard Sciences, and in Very Hard "Softer" Domains

    ERIC Educational Resources Information Center

    Phillips, D. C.

    2014-01-01

    The author of this commentary argues that physical scientists are attempting to advance knowledge in the so-called hard sciences, whereas education researchers are laboring to increase knowledge and understanding in an "extremely hard" but softer domain. Drawing on the work of Popper and Dewey, this commentary highlights the relative…

  7. Must "Hard Problems" Be Hard?

    ERIC Educational Resources Information Center

    Kolata, Gina

    1985-01-01

    To determine how hard it is for computers to solve problems, researchers have classified groups of problems (polynomial hierarchy) according to how much time they seem to require for their solutions. A difficult and complex proof is offered which shows that a combinatorial approach (using Boolean circuits) may resolve the problem. (JN)

  8. Radiation Hardness Assurance (RHA): Challenges and New Considerations

    NASA Technical Reports Server (NTRS)

    Campola, Michael J.

    2017-01-01

    Radiation Hardness Assurance (RHA) challenges associated with the use of commercial-off-the-shelf (COTS) components and emerging technologies are cause for risk acceptance in space flight missions. The RHA flow includes environment definition, hazard evaluation, requirements definition, evaluation of design, and design trades to accommodate the risk a project or program takes. The varied missions profiles and environments don't necessarily benefit from the same risk reduction efforts or cost reduction attempts. The level of effort within the RHA flow can be tailored to minimize risk based on the environment or design criticality.

  9. Observations on the preparation of sections of dental hard and soft tissues without conventional embedding procedures.

    PubMed

    Mok, Y C; Fearnhead, R W

    1985-09-01

    Inexpensive thin copper discs loaded with diamonds embedded in small slits around the periphery, may be used to cut sections from unembedded tooth samples without disrupting the cellular and extracellular components intimately associated with hard tissue interfaces. The tissue may be unfixed, fixed or cut using fixation or dye solutions as the lubricant. The use of these discs therefore opens up new avenues of histochemical investigation of hard tissue unrestricted by those artefacts associated with conventional or traditional methods of preparation.

  10. Phase transitions in four-dimensional binary hard hypersphere mixtures

    NASA Astrophysics Data System (ADS)

    Bishop, Marvin; Whitlock, Paula A.

    2013-02-01

    Previous Monte Carlo investigations of binary hard hyperspheres in four-dimensional mixtures are extended to higher densities where the systems may solidify. The ratios of the diameters of the hyperspheres examined were 0.4, 0.5, and 0.6. Only the 0.4 system shows a clear two phase, solid-liquid transition and the larger component solidifies into a D4 crystal state. Its pair correlation function agrees with that of a one component fluid at an appropriately scaled density. The 0.5 systems exhibit states that are a mix of D4 and A4 regions. The 0.6 systems behave similarly to a jammed state rather than solidifying into a crystal. No demixing into two distinct fluid phases was observed for any of the simulations.

  11. Inhomogeneous hard homonuclear molecules

    NASA Astrophysics Data System (ADS)

    Quintana, Jacqueline

    A review is given of some features of theories for inhomogeneous fluids of nonspherical molecules that take as input the direct correlation function of the corresponding homogeneous system. Two different methods are described for defining the structure of hard homonuclear molecules close to a hard planar wall. A spherical harmonics expanison (SHE) within the integral equation (IE) method is presented and, for comparison, a version of density functional theory for orientable hard bodies. In both cases the Pynn-Lado model is employed and a comparison is made with Monte Carlo data. The results indicate that for hard molecules the IE approach does not always capture the effects of orientation due to the characteristics of the SHE for the step function. This disadvantage is particularly true in the case of the orientationally averaged density profile.

  12. Cold Spray Repair of Martensitic Stainless Steel Components

    NASA Astrophysics Data System (ADS)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  13. Establishment of Wear Resistant HVOF Coatings for 50CrMo4 Chromium Molybdenum Alloy Steel as an Alternative for Hard Chrome Plating

    NASA Astrophysics Data System (ADS)

    Karuppasamy, S.; Sivan, V.; Natarajan, S.; Kumaresh Babu, S. P.; Duraiselvam, M.; Dhanuskodi, R.

    2018-05-01

    High cost imported components of seamless steel tube manufacturing plants wear frequently and need replacement to ensure the quality of the product. Hard chrome plating, which is time consuming and hazardous, is conventionally used to restore the original dimension of the worn-out surface of the machine components. High Velocity Oxy-Fuel (HVOF) thermal spray coatings with NiCrBSi super alloy powder and Cr3C2 NiCr75/25 alloy powder applied on a 50CrMo4 (DIN-1.7228) chromium molybdenum alloy steel, the material of the wear prone machine component, were evaluated for use as an alternative for hard chrome plating in this present work. The coating characteristics are evaluated using abrasive wear test, sliding wear test and microscopic analysis, hardness test, etc. The study results revealed that the HVOF based NiCrBSi and Cr3C2NiCr75/25 coatings have hardness in the range of 800-900 HV0.3, sliding wear rate in the range of 50-60 µm and surface finish around 5 microns. Cr3C2 NiCr75/25 coating is observed to be a better option out of the two coatings evaluated for the selected application.

  14. Mapping hard magnetic recording disks by TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Spool, A.; Forrest, J.

    2008-12-01

    Mapping of hard magnetic recording disks by TOF-SIMS was performed both to produce significant analytical results for the understanding of the disk surface and the head disk interface in hard disk drives, and as an example of a macroscopic non-rectangular mapping problem for the technique. In this study, maps were obtained by taking discrete samples of the disk surface at set intervals in R and Θ. Because both in manufacturing, and in the disk drive, processes that may affect the disk surface are typically circumferential in nature, changes in the surface are likely to be blurred in the Θ direction. An algorithm was developed to determine the optimum relative sampling ratio in R and Θ. The results confirm what the experience of the analysts suggested, that changes occur more rapidly on disks in the radial direction, and that more sampling in the radial direction is desired. The subsequent use of statistical methods principle component analysis (PCA), maximum auto-correlation factors (MAF), and the algorithm inverse distance weighting (IDW) are explored.

  15. Hard x-ray nanoprobe of beamline P06 at PETRA III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroer, C. G., E-mail: christian.schroer@desy.de; Department Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg; Baumbach, C.

    2016-07-27

    The hard x-ray scanning microscope at beamline P06 of PETRA III at DESY in Hamburg serves a large user community, from physics, chemistry, and nanotechnology to the bio-medical, materials, environmental, and geosciences. It has been in user operation since 2012, and is mainly based on nanofocusing refractive x-ray lenses. Using refractive optics, nearly gaussian-limited nanobeams in the range from 50 to 100 nm can be generated in the hard x-ray energy range from 8 to 30 keV. The degree of coherence can be traded off against the flux in the nanobeam by a two-stage focusing scheme. We give a briefmore » overview on published results from this instrument and describe its most important components and parameters.« less

  16. Hard Water and Soft Soap: Dependence of Soap Performance on Water Hardness

    ERIC Educational Resources Information Center

    Osorio, Viktoria K. L.; de Oliveira, Wanda; El Seoud, Omar A.; Cotton, Wyatt; Easdon, Jerry

    2005-01-01

    The demonstration of the performance of soap in different aqueous solutions, which is due to water hardness and soap formulation, is described. The demonstrations use safe, inexpensive reagents and simple glassware and equipment, introduce important everyday topics, stimulates the students to consider the wider consequences of water hardness and…

  17. Studying Hardness Meter Spring Strength to Understand Hardness Distribution on Body Surfaces.

    PubMed

    Arima, Yoshitaka

    2017-10-01

    For developing a hardness multipoint measurement system for understanding hardness distribution on biological body surfaces, we investigated the spring strength of the contact portion main axis of a biological tissue hardness meter (product name: PEK). We measured the hardness of three-layered sheets of six types of gel sheets (90 mm × 60 mm × 6 mm) constituting the acupuncture practice pads, with PEK measurements of 1.96 N, 2.94 N, 3.92 N, 4.90 N, 5.88 N, 6.86 N, 7.84 N, 8.82 N, and 9.81 N of the main axis spring strength. We obtained measurements 10 times for the gel sheets and simultaneously measured the load using a digital scale. We measured the hardness distribution of induration embedded and breast cancer palpation models, with a main axis with 1.96 N, 4.90 N, and 9.81 N spring strengths, to create a two-dimensional Contour Fill Chart. Using 4.90 N spring strength, we could obtain measurement loads of ≤3.0 N, and the mean hardness was 5.14 mm. This was close to the median of the total measurement range 0.0-10.0 mm, making the measurement range the largest for this spring strength. We could image the induration of the induration-embedded model regardless of the spring strength. Overall, 4.90 N spring strength was best suited for imaging cancer in the breast cancer palpation model. Copyright © 2017. Published by Elsevier B.V.

  18. The application of cast SiC/Al to rotary engine components

    NASA Technical Reports Server (NTRS)

    Stoller, H. M.; Carluccio, J. R.; Norman, J. P.

    1986-01-01

    A silicon carbide reinforced aluminum (SiC/Al) material fabricated by Dural Aluminum Composites Corporation was tested for various components of rotary engines. Properties investigated included hardness, high temperature strength, wear resistance, fatigue resistance, thermal conductivity, and expansion. SiC/Al appears to be a viable candidate for cast rotors, and may be applicable to other components, primarily housings.

  19. Hard X-Ray-emitting Black Hole Fed by Accretion of Low Angular Momentum Matter

    NASA Astrophysics Data System (ADS)

    Igumenshchev, Igor V.; Illarionov, Andrei F.; Abramowicz, Marek A.

    1999-05-01

    Observed spectra of active galactic nuclei and luminous X-ray binaries in our Galaxy suggest that both hot (~109 K) and cold (~106 K) plasma components exist close to the central accreting black hole. The hard X-ray component of the spectra is usually explained by Compton upscattering of optical/UV photons from optically thick cold plasma by hot electrons. Observations also indicate that some of these objects are quite efficient in converting gravitational energy of accretion matter into radiation. Existing theoretical models have difficulties in explaining the two plasma components and high intensity of hard X-rays. Most of the models assume that the hot component emerges from the cold one because of some kind of instability, but no one offers a satisfactory physical explanation for this. Here we propose a solution to these difficulties that reverses what was imagined previously: in our model, the hot component forms first and afterward it cools down to form the cold component. In our model, the accretion flow initially has a small angular momentum, and thus it has a quasi-spherical geometry at large radii. Close to the black hole, the accreting matter is heated up in shocks that form because of the action of the centrifugal force. The hot postshock matter is very efficiently cooled down by Comptonization of low-energy photons and condensates into a thin and cool accretion disk. The thin disk emits the low-energy photons which cool the hot component. All the properties of our model, in particular the existence of hot and cold components, follow from an exact numerical solution of standard hydrodynamical equations--we postulate no unknown processes operating in the flow. In contrast to the recently discussed advection-dominated accretion flow, the particular type of accretion flow considered in this Letter is both very hot and quite radiatively efficient.

  20. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A.; Jackson, George

    2018-04-01

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  1. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement.

    PubMed

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A; Jackson, George

    2018-04-28

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  2. NuSTAR hard X-ray observations of the Jovian magnetosphere during Juno perijove and apojove intervals

    NASA Astrophysics Data System (ADS)

    Dunn, W.; Mori, K.; Hailey, C. J.; Branduardi-Raymont, G.; Grefenstette, B.; Jackman, C. M.; Hord, B. J.; Ray, L. C.

    2017-12-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing hard X-ray telescope operating in the 3-79 keV band with sub-arcminute angular resolution (18" FWHM). For the first time, NuSTAR provides sufficient sensitivity to detect/resolve hard X-ray emission from Jupiter above 10 keV, since the in-situ Ulysses observation failed to detect X-ray emission in the 27-48 keV band [Hurley et al. 1993]. The initial, exploratory NuSTAR observation of Jupiter was performed in February 2015 with 100 ksec exposure. NuSTAR detected hard X-ray emission (E > 10 keV) from the south polar region at a marginally significance of 3 sigma level [Mori et al. 2016, AAS meeting poster]. This hard X-ray emission is likely an extension of the non-thermal bremsstrahlung component detected up to 7 keV by XMM-Newton [Branduardi-Raymont et al. 2007]. The Ulysses non-detection suggests there should be a spectral cutoff between 7 and 27 keV. Most intriguingly, the NuSTAR detection of hard X-ray emission from the south aurora is in contrast to the 2003 XMM-Newton observations where soft X-ray emission below 8 keV was seen from both the north and south poles [Gladstone et al. 2002]. Given the marginal, but tantalizing, hard X-ray detection of the southern Jovian aurora, a series of NuSTAR observations with total exposure of nearly half a million seconds were approved in the NuSTAR GO and DDT program. These NuSTAR observations coincided with one Juno apojove (in June 2017) and three perijoves (in May, July and September 2017), also joining the multi-wavelength campaigns of observing Jupiter coordinating with Chandra and XMM-Newton X-ray telescope (below 10 keV) and HST. We will present NuSTAR imaging, spectral and timing analysis of Jupiter. NuSTAR imaging analysis will map hard X-ray emission in comparison with soft X-ray and UV images. In addition to investigating any distinctions between the soft and hard X-ray morphology of the Jovian aurorae, we will probe whether hard X

  3. Magnetic properties of hybrid elastomers with magnetically hard fillers: rotation of particles

    NASA Astrophysics Data System (ADS)

    Stepanov, G. V.; Borin, D. Yu; Bakhtiiarov, A. V.; Storozhenko, P. A.

    2017-03-01

    Hybrid magnetic elastomers belonging to the family of magnetorheological elastomers contain magnetically hard components and are of the utmost interest for the development of semiactive and active damping devices as well as actuators and sensors. The processes of magnetizing of such elastomers are accompanied by structural rearrangements inside the material. When magnetized, the elastomer gains its own magnetic moment resulting in changes of its magneto-mechanical properties, which remain permanent, even in the absence of external magnetic fields. Influenced by the magnetic field, magnetized particles move inside the matrix forming chain-like structures. In addition, the magnetically hard particles can rotate to align their magnetic moments with the new direction of the external field. Such an elastomer cannot be demagnetized by the application of a reverse field.

  4. Hard breakup of the deuteron into two Δ -isobars

    NASA Astrophysics Data System (ADS)

    Granados, Carlos; Sargsian, Misak

    2011-04-01

    Photodisintegration of the deuteron into two Δ-isobars at large center of mass angles is studied within the QCD hard rescattering model (HRM). According to the HRM, the reaction proceeds in three main steps: the photon knocks the quark from one of the nucleons in the deuteron; the struck quark rescatters off a quark from the other nucleon sharing the high energy of the photon; then the energetic quarks recombine into two outgoing baryons emerging at large transverse momenta. Within the HRM, the cross section is expressed through the amplitude of pn --> ΔΔ scattering which we evaluated based on the quark-interchange model of hard hadronic scattering. We predict that the cross section of the deuteron breakup to Δ++Δ- is 4-5 times larger than that of the breakup to the Δ+Δ0 channel. Also, the angular distributions for these two channels are markedly different. These can be compared with the predictions based on the assumption that two hard Δ-isobars are the result of the disintegration of initial ΔΔ components of the deuteron wave function. In this case, the angular distributions and cross sections of the breakup in both Δ++Δ- and Δ+Δ0 channels are expected to be similar. This work was supported by U.S. Department of Energy Grant under contract DE-FG02-01ER41172, and by the FIU DEA program.

  5. Long-Term Variability of AGN at Hard X-Rays

    NASA Technical Reports Server (NTRS)

    Soldi, S.; Beckmann, V.; Baumgartner W. H.; Ponti, G.; Shrader, C. R.; Lubinski, P.; Krimm, H. A.; Mattana, F.; Tueller, J.

    2013-01-01

    Variability at all observed wavelengths is a distinctive property of active galactic nuclei (AGN). Hard X-rays provide us with a view of the innermost regions of AGN, mostly unbiased by absorption along the line of sight. Characterizing the intrinsic hard X-ray variability of a large AGN sample and comparing it to the results obtained at lower X-ray energies can significantly contribute to our understanding of the mechanisms underlying the high-energy radiation. Methods. Swift/BAT provides us with the unique opportunity to follow, on time scales of days to years and with a regular sampling, the 14-195 keV emission of the largest AGN sample available up to date for this kind of investigation. As a continuation of an early work on the first 9 months of BAT data, we study the amplitude of the variations, and their dependence on sub-class and on energy, for a sample of 110 radio quiet and radio loud AGN selected from the BAT 58-month survey. About 80 of the AGN in the sample are found to exhibit significant variability on months to years time scales, radio loud sources being the most variable. The amplitude of the variations and their energy dependence are incompatible with variability being driven at hard X-rays by changes of the absorption column density. In general, the variations in the 14-24 and 35-100 keV bands are well correlated, suggesting a common origin of the variability across the BAT energy band. However, radio quiet AGN display on average 10 larger variations at 14-24 keV than at 35-100 keV and a softer-when-brighter behavior for most of the Seyfert galaxies with detectable spectral variability on month time scale. In addition, sources with harder spectra are found to be more variable than softer ones. These properties are generally consistent with a variable power law continuum, in flux and shape, pivoting at energies 50 keV, to which a constant reflection component is superposed. When the same time scales are considered, the timing properties of AGN at

  6. Communication: Virial coefficients and demixing in highly asymmetric binary additive hard-sphere mixtures.

    PubMed

    López de Haro, Mariano; Tejero, Carlos F; Santos, Andrés

    2013-04-28

    The problem of demixing in a binary fluid mixture of highly asymmetric additive hard spheres is revisited. A comparison is presented between the results derived previously using truncated virial expansions for three finite size ratios with those that one obtains with the same approach in the extreme case in which one of the components consists of point particles. Since this latter system is known not to exhibit fluid-fluid segregation, the similarity observed for the behavior of the critical constants arising in the truncated series in all instances, while not being conclusive, may cast serious doubts as to the actual existence of a demixing fluid-fluid transition in disparate-sized binary additive hard-sphere mixtures.

  7. Janka hardness using nonstandard specimens

    Treesearch

    David W. Green; Marshall Begel; William Nelson

    2006-01-01

    Janka hardness determined on 1.5- by 3.5-in. specimens (2×4s) was found to be equivalent to that determined using the 2- by 2-in. specimen specified in ASTM D 143. Data are presented on the relationship between Janka hardness and the strength of clear wood. Analysis of historical data determined using standard specimens indicated no difference between side hardness...

  8. Alternate approach for calculating hardness based on residual indentation depth: Comparison with experiments

    NASA Astrophysics Data System (ADS)

    Ananthakrishna, G.; K, Srikanth

    2018-03-01

    It is well known that plastic deformation is a highly nonlinear dissipative irreversible phenomenon of considerable complexity. As a consequence, little progress has been made in modeling some well-known size-dependent properties of plastic deformation, for instance, calculating hardness as a function of indentation depth independently. Here, we devise a method of calculating hardness by calculating the residual indentation depth and then calculate the hardness as the ratio of the load to the residual imprint area. Recognizing the fact that dislocations are the basic defects controlling the plastic component of the indentation depth, we set up a system of coupled nonlinear time evolution equations for the mobile, forest, and geometrically necessary dislocation densities. Within our approach, we consider the geometrically necessary dislocations to be immobile since they contribute to additional hardness. The model includes dislocation multiplication, storage, and recovery mechanisms. The growth of the geometrically necessary dislocation density is controlled by the number of loops that can be activated under the contact area and the mean strain gradient. The equations are then coupled to the load rate equation. Our approach has the ability to adopt experimental parameters such as the indentation rates, the geometrical parameters defining the Berkovich indenter, including the nominal tip radius. The residual indentation depth is obtained by integrating the Orowan expression for the plastic strain rate, which is then used to calculate the hardness. Consistent with the experimental observations, the increasing hardness with decreasing indentation depth in our model arises from limited dislocation sources at small indentation depths and therefore avoids divergence in the limit of small depths reported in the Nix-Gao model. We demonstrate that for a range of parameter values that physically represent different materials, the model predicts the three characteristic

  9. Determining the Effect of Material Hardness During the Hard Turning of AISI4340 Steel

    NASA Astrophysics Data System (ADS)

    Kambagowni, Venkatasubbaiah; Chitla, Raju; Challa, Suresh

    2018-05-01

    In the present manufacturing industries hardened steels are most widely used in the applications like tool design and mould design. It enhances the application range of hard turning of hardened steels in manufacturing industries. This study discusses the impact of workpiece hardness, feed and depth of cut on Arithmetic mean roughness (Ra), root mean square roughness (Rq), mean depth of roughness (Rz) and total roughness (Rt) during the hard turning. Experiments have been planned according to the Box-Behnken design and conducted on hardened AISI4340 steel at 45, 50 and 55 HRC with wiper ceramic cutting inserts. Cutting speed is kept constant during this study. The analysis of variance was used to determine the effects of the machining parameters. 3-D response surface plots drawn based on RSM were utilized to set up the input-output relationships. The results indicated that the feed rate has the most significant parameter for Ra, Rq and Rz and hardness has the most critical parameter for the Rt. Further, hardness shows its influence over all the surface roughness characteristics.

  10. Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhifei; Bommier, Clement; Chong, Zhi Sen

    Hard carbon is the candidate anode material for the commercialization of Na-ion batteries the batteries that by virtue of being constructed from inexpensive and abundant components open the door for massive scale up of battery-based storage of electrical energy. Holding back the development of these batteries is that a complete understanding of the mechanism of Na-ion storage in hard carbon has remained elusive. Although as an amorphous carbon, hard carbon possesses a subtle and complex structure composed of domains of layered rumpled sheets that have local order resembling graphene within each layer but complete disorder along the c-axis between layers.more » Here, we present two key discoveries: first that characteristics of hard carbon s structure can be modified systematically by heteroatom doping, and second, that these changes greatly affect Na-ion storage properties, which reveal the mechanisms for Na storage in hard carbon. Specifically, P, S and B doping was used to engineer the density of local defects in graphenic layers, and to modify the spacing between the layers. While opening the interlayer spacing through P or S doping extends the low-voltage capacity plateau, and increasing the defect concentration with P or B doping high first sodiation capacity is achieved. Furthermore, we observe that the highly defective B-doped hard carbon suffers a tremendous irreversible capacity in the first desodiation cycle. Our combined first principles calculations and experimental studies revealed a new trapping mechanism, showing that the high binding energies between B-doping induced defects and Na-ions are responsible for the irreversible capacity. The understanding generated in this work provides a totally new set of guiding principles for materials engineers working to optimize hard carbon for Na-ion battery applications.« less

  11. Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping

    DOE PAGES

    Li, Zhifei; Bommier, Clement; Chong, Zhi Sen; ...

    2017-05-23

    Hard carbon is the candidate anode material for the commercialization of Na-ion batteries the batteries that by virtue of being constructed from inexpensive and abundant components open the door for massive scale up of battery-based storage of electrical energy. Holding back the development of these batteries is that a complete understanding of the mechanism of Na-ion storage in hard carbon has remained elusive. Although as an amorphous carbon, hard carbon possesses a subtle and complex structure composed of domains of layered rumpled sheets that have local order resembling graphene within each layer but complete disorder along the c-axis between layers.more » Here, we present two key discoveries: first that characteristics of hard carbon s structure can be modified systematically by heteroatom doping, and second, that these changes greatly affect Na-ion storage properties, which reveal the mechanisms for Na storage in hard carbon. Specifically, P, S and B doping was used to engineer the density of local defects in graphenic layers, and to modify the spacing between the layers. While opening the interlayer spacing through P or S doping extends the low-voltage capacity plateau, and increasing the defect concentration with P or B doping high first sodiation capacity is achieved. Furthermore, we observe that the highly defective B-doped hard carbon suffers a tremendous irreversible capacity in the first desodiation cycle. Our combined first principles calculations and experimental studies revealed a new trapping mechanism, showing that the high binding energies between B-doping induced defects and Na-ions are responsible for the irreversible capacity. The understanding generated in this work provides a totally new set of guiding principles for materials engineers working to optimize hard carbon for Na-ion battery applications.« less

  12. NuSTAR Hard X-Ray Survey of the Galactic Center Region I: Hard X-Ray Morphology and Spectroscopy of the Diffuse Emission

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Hailey, Charles J.; Krivonos, Roman; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Tomsick, John A.; Alexander, David M.; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Grindlay, Jonathan E.; Harrison, Fiona A.; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Luu, Vy; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ˜ 1.3-2.3 up to ˜50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (˜1023 cm-2), primary X-ray spectra (power-laws with Γ ˜ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to LX ≳ 1038 erg s-1. Above ˜20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95-0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses MWD ˜ 0.9 M⊙. Spectral energy distribution analysis suggests that G359.95-0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745-290, strongly favoring a leptonic origin of the GC TeV emission.

  13. Broadband X-Ray Spectra of GX 339-4 and the Geometry of Accreting Black Holes in the Hard State

    NASA Technical Reports Server (NTRS)

    Tomsick; Kalemci; Kaaret; Markoff; Corbel; Migliari; Fender; Bailyn; Buxton

    2008-01-01

    A major question in the study of black hole binaries involves our understanding of the accretion geometry when the sources are in the "hard" state. In this state, the X-ray energy spectrum is dominated by a hard power-law component and radio observations indicate the presence of a steady and powerful "compact" jet. Although the common hard state picture is that the accretion disk is truncated, perhaps at hundreds of gravitational radii (R(sub g)) from the black hole, recent results for the recurrent transient GX 339-4 by Miller and co-workers show evidence for optically thick material very close to the black hole's innermost stable circular orbit. That work focused on an observation of GX 339-4 at a luminosity of about 5% of the Eddington limit (L(sub Edd)) and used parameters from a relativistic reflection model and the presence of a soft, thermal component as diagnostics. In this work, we use similar diagnostics, but extend the study to lower luminosities (2.3% and 0.8% L(sub Edd)) using Swift and RXTE observations of GX 339-4. We detect a thermal component with an inner disk temperature of approx.0.2 keV at 2.3% L(sub Edd). At 0.8% L(sub Edd), the spectrum is consistent with the presence of such a component, but the component is not required with high confidence. At both luminosities, we detect broad features due to iron Ka that are likely related to reflection of hard X-rays off the optically thick material. If these features are broadened by relativistic effects, they indicate that optically thick material resides within 10 R(sub g) down to 0.8% L(sub Edd), and the measurements are consistent with the inner radius of the disk remaining at approx.4 R(sub g) down to this level. However, we also discuss an alternative model for the broadening, and we note that the evolution of the thermal component is not entirely consistent with the constant inner radius interpretation. Finally, we discuss the results in terms of recent theoretical work by Liu and co-workers on

  14. Optimization of lipid profile and hardness of low-fat mortadella following a sequential strategy of experimental design.

    PubMed

    Saldaña, Erick; Siche, Raúl; da Silva Pinto, Jair Sebastião; de Almeida, Marcio Aurélio; Selani, Miriam Mabel; Rios-Mera, Juan; Contreras-Castillo, Carmen J

    2018-02-01

    This study aims to optimize simultaneously the lipid profile and instrumental hardness of low-fat mortadella. For lipid mixture optimization, the overlapping of surface boundaries was used to select the quantities of canola, olive, and fish oils, in order to maximize PUFAs, specifically the long-chain n-3 fatty acids (eicosapentaenoic-EPA, docosahexaenoic acids-DHA) using the minimum content of fish oil. Increased quantities of canola oil were associated with higher PUFA/SFA ratios. The presence of fish oil, even in small amounts, was effective in improving the nutritional quality of the mixture, showing lower n-6/n-3 ratios and significant levels of EPA and DHA. Thus, the optimal lipid mixture comprised of 20, 30 and 50% fish, olive and canola oils, respectively, which present PUFA/SFA (2.28) and n-6/n-3 (2.30) ratios within the recommendations of a healthy diet. Once the lipid mixture was optimized, components of the pre-emulsion used as fat replacer in the mortadella, such as lipid mixture (LM), sodium alginate (SA), and milk protein concentrate (PC), were studied to optimize hardness and springiness to target ranges of 13-16 N and 0.86-0.87, respectively. Results showed that springiness was not significantly affected by these variables. However, as the concentration of the three components increased, hardness decreased. Through the desirability function, the optimal proportions were 30% LM, 0.5% SA, and 0.5% PC. This study showed that the pre-emulsion decreases hardness of mortadella. In addition, response surface methodology was efficient to model lipid mixture and hardness, resulting in a product with improved texture and lipid quality.

  15. On the hardness of high carbon ferrous martensite

    NASA Astrophysics Data System (ADS)

    Mola, J.; Ren, M.

    2018-06-01

    Due to the presence of retained austenite in martensitic steels, especially steels with high carbon concentrations, it is difficult to estimate the hardness of martensite independent of the hardness of the coexisting austenite. In the present work, the hardness of ferrous martensite with carbon concentrations in the range 0.23-1.46 mass-% was estimated by the regression analysis of hardnesses for hardened martensitic-austenitic steels containing various martensite fractions. For a given carbon concentration, the hardness of martensitic-austenitic steels was found to increase exponentially with an increase in the fraction of the martensitic constituent. The hardness of the martensitic constituent was subsequently estimated by the exponential extrapolation of the hardness of phase mixtures to 100 vol.% martensite. For martensite containing 1.46 mass-% carbon, the hardness was estimated to be 1791 HV. This estimate of martensite hardness is significantly higher than the experimental hardness of 822 HV for a phase mixture of 68 vol.% martensite and 32 vol.% austenite. The hardness obtained by exponential extrapolation is also much higher than the hardness of 1104 HV based on the rule of mixtures. The underestimated hardness of high carbon martensite in the presence of austenite is due to the non-linear dependence of hardness on the martensite fraction. The latter is also a common observation in composite materials with a soft matrix and hard reinforcing particles.

  16. The Impact of Incentives to Recruit and Retain Teachers in "Hard-to-Staff" Subjects

    ERIC Educational Resources Information Center

    Feng, Li; Sass, Tim R.

    2018-01-01

    We investigate the effects of a statewide program designed to increase the supply of teachers in designated "hard-to-staff" areas, such as special education, math, and science. Employing a difference-in-difference estimator we find that the loan forgiveness component of the program was effective, reducing mean attrition rates for middle…

  17. Hard Break-Up of Two-Nucleons and QCD Dynamics of NN Interaction

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak; Granados, Carlos

    2009-05-01

    We investigate hard photodisintegration of two nucleons from ^3He nucleus within the framework of hard rescattering model (HRM). In HRM a quark of one nucleon knocked-out by incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with high relative momentum. HRM allows to express the amplitude of two-nucleon break-up reaction through the convolution of photon-quark scattering, NN hard scattering amplitude and nuclear spectral function which can be calculated using nonrelativistic ^3He wave function. HRM predicts several specific features for hard break-up reaction. First, the cross section will approximately scale as s-11. Also one predicts comparable or larger cross section for pp break up as compared to that of pn break-up, which is opposite to what is observed in low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn break-up cross sections. This is due to the fact that same-helicity pp-component is strongly suppressed in the ground state wave function of ^3He. Due to this suppression HRM predicts significantly different asymmetries for the cross section of polarization transfer NN break-up reactions for circularly polarized photons. For the pp break-up this asymmetry is predicted to be zero while for the pn it is close to 23.

  18. Hard-Core Unemployment: A Selected, Annotated Bibliography.

    ERIC Educational Resources Information Center

    Cameron, Colin, Comp.; Menon, Anila Bhatt, Comp.

    This annotated bibliography contains references to various films, articles, and books on the subject of hard-core unemployment, and is divided into the following sections: (1) The Sociology of the Hard-Core Milieu, (2) Training Programs, (3) Business and the Hard-Core, (4) Citations of Miscellaneous References on Hard-Core Unemployment, (5)…

  19. Mapping residual stress fields from Vickers hardness indents using Raman microprobe spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    Micro-Raman spectroscopy is used to map the residual stress fields in the vicinity of Vickers hardness indents. Both 514.5 and 488.0 nm, light is used to excite the effect and the resulting shifted and broadened Raman peaks are analyzed using computer deconvolution. Half-wave plates are used to vary the orientation of the incident later light`s polarization state with respect to crystal orientation. The Raman scattered light is then analyzed for polarization dependences which are indicative of the various components of the Raman scattering tensor. Such studies can yield valuable information about the orientation of stress components in a well knownmore » stress field. The results can then be applied to the determination of stress components in machined semiconductor materials.« less

  20. Short-lived solar burst spectral component at f approximately 100 GHz

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Correia, E.; Costa, J. E. R.; Vaz, A. M. Z.

    1986-01-01

    A new kind of burst emission component was discovered, exhibiting fast and distinct pulses (approx. 60 ms durations), with spectral peak emission at f approx. 100 GHz, and onset time coincident to hard X-rays to within approx. 128 ms. These features pose serious constraints for the interpretation using current models. One suggestion assumes the f approx. 100 GHz pulses emission by synchrotron mechanism of electrons accelerated to ultrarelativistic energies. The hard X-rays originate from inverse Compton scattering of the electrons on the synchrotron photons. Several crucial observational tests are needed for the understanding of the phenomenon, requiring high sensitivity and high time resolution (approx. 1 ms) simultaneous to high spatial resolution (0.1 arcsec) at f approx. 110 GHz and hard X-rays.

  1. Hard breakup of the deuteron into two Δ isobars

    NASA Astrophysics Data System (ADS)

    Granados, Carlos G.; Sargsian, Misak M.

    2011-05-01

    We study high-energy photodisintegration of the deuteron into two Δ isobars at large center of mass angles within the QCD hard rescattering model (HRM). According to the HRM, the process develops in three main steps: the photon knocks a quark from one of the nucleons in the deuteron; the struck quark rescatters off a quark from the other nucleon sharing the high energy of the photon; then the energetic quarks recombine into two outgoing baryons which have large transverse momenta. Within the HRM, the cross section is expressed through the amplitude of pn→ΔΔ scattering which we evaluated based on the quark-interchange model of hard hadronic scattering. Calculations show that the angular distribution and the strength of the photodisintegration is mainly determined by the properties of the pn→ΔΔ scattering. We predict that the cross section of the deuteron breakup to Δ++Δ- is 4-5 times larger than that of the breakup to the Δ+Δ0 channel. Also, the angular distributions for these two channels are markedly different. These can be compared with the predictions based on the assumption that two hard Δ isobars are the result of the disintegration of the preexisting ΔΔ components of the deuteron wave function. In this case, one expects the angular distributions and cross sections of the breakup in both Δ++Δ- and Δ+Δ0 channels to be similar.

  2. Polymer-Based Nanocomposites: An Internship Program for Deaf and Hard of Hearing Students

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Cherdack, Daniel; Seyhan Ince-Gunduz, B.; Guertin, Robert; Haas, Terry; Valluzzi, Regina

    2007-03-01

    We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanical properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.

  3. Determination of adhesion between thermoplastic and liquid silicone rubbers in hard-soft-combinations via mechanical peeling test

    NASA Astrophysics Data System (ADS)

    Kühr, C.; Spörrer, A.; Altstädt, V.

    2014-05-01

    The production of hard-soft-combinations via multi injection molding gained more and more importance in the last years. This is attributed to different factors. One principle reason is that the use of two-component injection molding technique has many advantages such as cancelling subsequent and complex steps and shortening the process chain. Furthermore this technique allows the combination of the properties of the single components like the high stiffness of the hard component and the elastic properties of the soft component. Because of the incompatibility of some polymers the adhesion on the interface has to be determined. Thereby adhesion is not only influenced by the applied polymers, but also by the injection molding parameters and the characteristics of the mold. Besides already known combinations of thermoplastics with thermoplastic elastomers (TPE), there consists the possibility to apply liquid silicone rubber (LSR) as soft component. A thermoplastic/LSR combination gains in importance due to the specific advantages of LSR to TPE. The faintly adhesion between LSR and thermoplastics is currently one of the key challenges when dealing with those combinations. So it is coercively necessary to improve adhesion between the two components by adding an adhesion promoter. To determine the promoters influence, it is necessary to develop a suitable testing method to investigate e.g. the peel resistance. The current German standard "VDI Richtlinie 2019', which is actually only employed for thermoplastic/TPE combinations, can serve as a model to determine the adhesion of thermoplastic/LSR combinations.

  4. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  5. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  6. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  7. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  8. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  9. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  10. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  11. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  12. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  13. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  14. Study of surface integrity AISI 4140 as result of hard, dry and high speed machining using CBN

    NASA Astrophysics Data System (ADS)

    Ginting, B.; Sembiring, R. W.; Manurung, N.

    2017-09-01

    The concept of hard, dry and high speed machining can be combined, to produce high productivity, with lower production costs in manufacturing industry. Hard lathe process can be a solution to reduce production time. In lathe hard alloy steels reported problems relating to the integrity of such surface roughness, residual stress, the white layer and the surface integrity. AISI 4140 material is used for high reliable hydraulic system components. This material includes in cold work tool steel. Consideration election is because this material is able to be hardened up to 55 HRC. In this research, the experimental design using CCD model fit with three factors, each factor is composed of two levels, and six central point, experiments were conducted with 1 replications. The experimental design research using CCD model fit.

  15. Warren G. Harding and the Press.

    ERIC Educational Resources Information Center

    Whitaker, W. Richard

    There are many parallels between the Richard M. Nixon administration and Warren G. Harding's term: both Republicans, both touched by scandal, and both having a unique relationship with the press. But in Harding's case the relationship was a positive one. One of Harding's first official acts as president was to restore the regular White House news…

  16. Is the 'superhot' hard X-ray component in solar flares consistent with a thermal source?

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon; Coffey, Victoria Newman; Schwartz, Richard A.

    1989-01-01

    It has been shown by Brown and Emslie (1988) that any optically thin thermal bremsstrahlung source must emit an energy spectrum L(epsilon)(keV/s per keV) which has the property that higher derivatives alternate in sign. In this short note, this test is applied to the 'superhot' component discussed by Lin et al. (1981) in order to determine whether a strictly thermal interpretation of this component is valid. All statistically significant higher derivatives do indeed have the correct sign; this strengthens the identification of this component as due to a thermal source.

  17. Broadband X-Ray Spectra of GX 339-4 and the Geometry of Accreting Black Holes in the Hard State

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Kalemci, Emrah; Kaaret, Philip; Markoff, Sera; Corbel, Stephane; Migliari, Simone; Fender, Rob; Bailyn, Charles D.; Buxton, Michelle M.

    2008-01-01

    A major question in the study of black hole binaries involves our understanding of the accretion geometry when the sources are in the "hard" state, with an X-ray energy spectrum dominated by a hard power-law component and radio emission coming from a steady "compact" jet. Although the common hard state picture is that the accretion disk is truncated, perhaps at hundreds of gravitational radii (Rg) from the black hole, recent results for the recurrent transient GX 339-4 by Miller and coworkers show evidence for disk material very close to the black hole's innermost stable circular orbit. That work studied GX 339-4 at a luminosity of approximately 5% of the Eddington limit (L(sub Edd) and used parameters from a relativistic reflection model and the presence of a thermal component as diagnostics. Here we use similar diagnostics but extend the study to lower luminosities (2.3% and 0.8% L(sub Edd)) using Swift and RXTE observations of GX 339-4. We detect a thermal component with an inner disk temperature of approximately 0.2 keV at 2.3% L (sub Edd). At both luminosities, we detect broad features due to iron K-alpha that are likely related to reflection of hard X-rays off disk material. If these features are broadened by relativistic effects, they indicate that the material resides within 10 Rg, and the measurements are consistent with the disk's inner radius remaining at approximately 4 Rg down to 0.8% L(sub Edd). However, we also discuss an alternative model for the broadening, and we note that the evolution of the thermal component is not entirely consistent with the constant inner radius interpretation. Finally, we discuss the results in terms of recent theoretical work by Liu and co-workers on the possibility that material may condense out of an Advection-Dominated Accretion Flow to maintain an inner optically thick disk.

  18. Influence of Gene Expression on Hardness in Wheat

    PubMed Central

    Nirmal, Ravi C.; Wrigley, Colin

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences. PMID:27741295

  19. Influence of Gene Expression on Hardness in Wheat.

    PubMed

    Nirmal, Ravi C; Furtado, Agnelo; Wrigley, Colin; Henry, Robert J

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences.

  20. How to predict the sugariness and hardness of melons: A near-infrared hyperspectral imaging method.

    PubMed

    Sun, Meijun; Zhang, Dong; Liu, Li; Wang, Zheng

    2017-03-01

    Hyperspectral imaging (HSI) in the near-infrared (NIR) region (900-1700nm) was used for non-intrusive quality measurements (of sweetness and texture) in melons. First, HSI data from melon samples were acquired to extract the spectral signatures. The corresponding sample sweetness and hardness values were recorded using traditional intrusive methods. Partial least squares regression (PLSR), principal component analysis (PCA), support vector machine (SVM), and artificial neural network (ANN) models were created to predict melon sweetness and hardness values from the hyperspectral data. Experimental results for the three types of melons show that PLSR produces the most accurate results. To reduce the high dimensionality of the hyperspectral data, the weighted regression coefficients of the resulting PLSR models were used to identify the most important wavelengths. On the basis of these wavelengths, each image pixel was used to visualize the sweetness and hardness in all the portions of each sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. NuSTAR HARD X-RAY SURVEY OF THE GALACTIC CENTER REGION. I. HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF THE DIFFUSE EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Kaya; Hailey, Charles J.; Perez, Kerstin

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456–2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ∼ 1.3–2.3 up to ∼50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4more » keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (∼10{sup 23} cm{sup −2}), primary X-ray spectra (power-laws with Γ ∼ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to L{sub X} ≳ 10{sup 38} erg s{sup −1}. Above ∼20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95–0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses M{sub WD} ∼ 0.9 M{sub ⊙}. Spectral energy distribution analysis suggests that G359.95–0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745–290, strongly favoring a leptonic origin of the GC TeV emission.« less

  2. Theoretical model of hardness anisotropy in brittle materials

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2012-07-01

    Anisotropy is prominent in the hardness test of single crystals. However, the anisotropic nature is not demonstrated quantitatively in previous hardness model. In this work, it is found that the electron transition energy per unit volume in the glide region and the orientation of glide region play critical roles in determining hardness value and hardness anisotropy for a single crystal material. We express the mathematical definition of hardness anisotropy through simple algebraic relations. The calculated Knoop hardnesses of the single crystals are in good agreement with observations. This theory, extended to polycrystalline materials by including hall-petch effect and quantum size effect, predicts that the polycrystalline diamond with low angle grain boundaries can be harder than single-crystal bulk diamond. Combining first-principles technique and the formula of hardness anisotropy the hardness of monoclinic M-carbon, orthorhombic W-carbon, Z-carbon, and T-carbon are predicted.

  3. Hard-hard coupling assisted anomalous magnetoresistance effect in amine-ended single-molecule magnetic junction

    NASA Astrophysics Data System (ADS)

    Tang, Y.-H.; Lin, C.-J.; Chiang, K.-R.

    2017-06-01

    We proposed a single-molecule magnetic junction (SMMJ), composed of a dissociated amine-ended benzene sandwiched between two Co tip-like nanowires. To better simulate the break junction technique for real SMMJs, the first-principles calculation associated with the hard-hard coupling between a amine-linker and Co tip-atom is carried out for SMMJs with mechanical strain and under an external bias. We predict an anomalous magnetoresistance (MR) effect, including strain-induced sign reversal and bias-induced enhancement of the MR value, which is in sharp contrast to the normal MR effect in conventional magnetic tunnel junctions. The underlying mechanism is the interplay between four spin-polarized currents in parallel and anti-parallel magnetic configurations, originated from the pronounced spin-up transmission feature in the parallel case and spiky transmission peaks in other three spin-polarized channels. These intriguing findings may open a new arena in which magnetotransport and hard-hard coupling are closely coupled in SMMJs and can be dually controlled either via mechanical strain or by an external bias.

  4. Hard breakup of two nucleons from the He3 nucleus

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.; Granados, Carlos

    2009-07-01

    We investigate a large angle photodisintegration of two nucleons from the He3 nucleus within the framework of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with large relative momentum. Assuming the dominance of the quark-interchange mechanism in a hard nucleon-nucleon scattering, the HRM allows the expression of the amplitude of a two-nucleon breakup reaction through the convolution of photon-quark scattering, NN hard scattering amplitude, and nuclear spectral function, which can be calculated using a nonrelativistic He3 wave function. The photon-quark scattering amplitude can be explicitly calculated in the high energy regime, whereas for NN scattering one uses the fit of the available experimental data. The HRM predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale as s-11. Second, the s11 weighted cross section will have the shape of energy dependence similar to that of s10 weighted NN elastic scattering cross section. Also one predicts an enhancement of the pp breakup relative to the pn breakup cross section as compared to the results from low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn breakup cross sections. This is due to the fact that the same-helicity pp-component is strongly suppressed in the ground state wave function of He3. Because of this suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer NN breakup reactions for circularly polarized photons. For the pp breakup this asymmetry is predicted to be zero while for the pn it is close to (2)/(3).

  5. An Internship Program for Deaf and Hard of Hearing Students in Polymer-Based Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cebe,P.; Cherdack, D.; Guertin, R.

    2006-01-01

    We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanicalmore » properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.« less

  6. Hard X-ray imaging from Explorer

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Murray, S. S.

    1981-01-01

    Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

  7. Automatic Cataract Hardness Classification Ex Vivo by Ultrasound Techniques.

    PubMed

    Caixinha, Miguel; Santos, Mário; Santos, Jaime

    2016-04-01

    To demonstrate the feasibility of a new methodology for cataract hardness characterization and automatic classification using ultrasound techniques, different cataract degrees were induced in 210 porcine lenses. A 25-MHz ultrasound transducer was used to obtain acoustical parameters (velocity and attenuation) and backscattering signals. B-Scan and parametric Nakagami images were constructed. Ninety-seven parameters were extracted and subjected to a Principal Component Analysis. Bayes, K-Nearest-Neighbours, Fisher Linear Discriminant and Support Vector Machine (SVM) classifiers were used to automatically classify the different cataract severities. Statistically significant increases with cataract formation were found for velocity, attenuation, mean brightness intensity of the B-Scan images and mean Nakagami m parameter (p < 0.01). The four classifiers showed a good performance for healthy versus cataractous lenses (F-measure ≥ 92.68%), while for initial versus severe cataracts the SVM classifier showed the higher performance (90.62%). The results showed that ultrasound techniques can be used for non-invasive cataract hardness characterization and automatic classification. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Ground hardness and injury in community level Australian football.

    PubMed

    Twomey, Dara M; Finch, Caroline F; Lloyd, David G; Elliott, Bruce C; Doyle, Tim L A

    2012-07-01

    To describe the risk and details of injuries associated with ground hardness in community level Australian football (AF). Prospective injury surveillance with periodic objective ground hardness measurement. 112 ground hardness assessments were undertaken using a Clegg hammer at nine locations across 20 grounds, over the 2007 and 2008 AF seasons. Details of 352 injuries sustained by community level players on those grounds were prospectively collected as part of a large randomised controlled trial. The ground location of the injury was matched to the nearest corresponding ground hardness Clegg hammer readings, in gravities (g), which were classified from unacceptably low (<30 g) to unacceptably high hardness (>120 g). Clegg hammer readings ranged from 25 to 301 g. Clegg hammer hardness categories from low/normal to high/normal were associated with the majority of injuries, with only 3.7% (13 injuries) on unacceptably high hardness and 0.3% (1 injury) on the unacceptably low hardness locations. Relative to the preferred range of hardness, the risk of sustaining an injury on low/normal hardness locations was 1.31 (95%CI: 1.06-1.62) times higher and 1.82 (95%CI: 1.17-2.85) times higher on locations with unacceptably high hardness. The more severe injuries occurred with low/normal ground hardness. Despite the low number of injuries, the risk of sustaining an injury on low/normal and unacceptably hard grounds was significantly greater than on the preferred range of hardness. Notably, the severity of the injuries sustained on unacceptably hard grounds was lower than for other categories of hardness. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Simple effective rule to estimate the jamming packing fraction of polydisperse hard spheres.

    PubMed

    Santos, Andrés; Yuste, Santos B; López de Haro, Mariano; Odriozola, Gerardo; Ogarko, Vitaliy

    2014-04-01

    A recent proposal in which the equation of state of a polydisperse hard-sphere mixture is mapped onto that of the one-component fluid is extrapolated beyond the freezing point to estimate the jamming packing fraction ϕJ of the polydisperse system as a simple function of M1M3/M22, where Mk is the kth moment of the size distribution. An analysis of experimental and simulation data of ϕJ for a large number of different mixtures shows a remarkable general agreement with the theoretical estimate. To give extra support to the procedure, simulation data for seventeen mixtures in the high-density region are used to infer the equation of state of the pure hard-sphere system in the metastable region. An excellent collapse of the inferred curves up to the glass transition and a significant narrowing of the different out-of-equilibrium glass branches all the way to jamming are observed. Thus, the present approach provides an extremely simple criterion to unify in a common framework and to give coherence to data coming from very different polydisperse hard-sphere mixtures.

  10. Mechanical design of multiple zone plates precision alignment apparatus for hard X-ray focusing in twenty-nanometer scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Deming; Liu, Jie; Gleber, Sophie C.

    An enhanced mechanical design of multiple zone plates precision alignment apparatus for hard x-ray focusing in a twenty-nanometer scale is provided. The precision alignment apparatus includes a zone plate alignment base frame; a plurality of zone plates; and a plurality of zone plate holders, each said zone plate holder for mounting and aligning a respective zone plate for hard x-ray focusing. At least one respective positioning stage drives and positions each respective zone plate holder. Each respective positioning stage is mounted on the zone plate alignment base frame. A respective linkage component connects each respective positioning stage and the respectivemore » zone plate holder. The zone plate alignment base frame, each zone plate holder and each linkage component is formed of a selected material for providing thermal expansion stability and positioning stability for the precision alignment apparatus.« less

  11. Synthesis of Stable Microcapsules from Trematode Eggshell Components

    DTIC Science & Technology

    1990-06-30

    NO Arlington, VA 22217-5000 61153N RR4106 11 TITLE (Include Security Classification) (u) Synthesis of Stable Microcapsules from Trematode Eggshell...Continue on reverse if necessary and identify by block number) The trematode Fasciola hepatica produces a unique protein eggshell or microcapsule the...proteins to produce a hard quinone tanned microcapsule with unusual properties. The focus of this project is to i) characterize the protein components

  12. Electrospark Deposition for Depot- and Field-Level Component Repair and Replacement of Hard Chromium Plating

    DTIC Science & Technology

    2006-09-07

    aircraft repairs, including: 1. Single crystal turbine blade for two gas turbine engines ( FAA approved repair) 2. Second stage gas turbine blade ...gas turbine engine components. These include (a) application of corrosion resistant coatings to turbine blade tips where protective diffusion...base materials on many functional components (e.g., Ni-base superalloys, stainless steels, Monel, titanium alloys), thus allowing for self-repair

  13. On the relationship between indentation hardness and modulus, and the damage resistance of biological materials.

    PubMed

    Labonte, David; Lenz, Anne-Kristin; Oyen, Michelle L

    2017-07-15

    The remarkable mechanical performance of biological materials is based on intricate structure-function relationships. Nanoindentation has become the primary tool for characterising biological materials, as it allows to relate structural changes to variations in mechanical properties on small scales. However, the respective theoretical background and associated interpretation of the parameters measured via indentation derives largely from research on 'traditional' engineering materials such as metals or ceramics. Here, we discuss the functional relevance of indentation hardness in biological materials by presenting a meta-analysis of its relationship with indentation modulus. Across seven orders of magnitude, indentation hardness was directly proportional to indentation modulus. Using a lumped parameter model to deconvolute indentation hardness into components arising from reversible and irreversible deformation, we establish criteria which allow to interpret differences in indentation hardness across or within biological materials. The ratio between hardness and modulus arises as a key parameter, which is related to the ratio between irreversible and reversible deformation during indentation, the material's yield strength, and the resistance to irreversible deformation, a material property which represents the energy required to create a unit volume of purely irreversible deformation. Indentation hardness generally increases upon material dehydration, however to a larger extent than expected from accompanying changes in indentation modulus, indicating that water acts as a 'plasticiser'. A detailed discussion of the role of indentation hardness, modulus and toughness in damage control during sharp or blunt indentation yields comprehensive guidelines for a performance-based ranking of biological materials, and suggests that quasi-plastic deformation is a frequent yet poorly understood damage mode, highlighting an important area of future research. Instrumented

  14. Traceability in hardness measurements: from the definition to industry

    NASA Astrophysics Data System (ADS)

    Germak, Alessandro; Herrmann, Konrad; Low, Samuel

    2010-04-01

    The measurement of hardness has been and continues to be of significant importance to many of the world's manufacturing industries. Conventional hardness testing is the most commonly used method for acceptance testing and production quality control of metals and metallic products. Instrumented indentation is one of the few techniques available for obtaining various property values for coatings and electronic products in the micrometre and nanometre dimensional scales. For these industries to be successful, it is critical that measurements made by suppliers and customers agree within some practical limits. To help assure this measurement agreement, a traceability chain for hardness measurement traceability from the hardness definition to industry has developed and evolved over the past 100 years, but its development has been complicated. A hardness measurement value not only requires traceability of force, length and time measurements but also requires traceability of the hardness values measured by the hardness machine. These multiple traceability paths are needed because a hardness measurement is affected by other influence parameters that are often difficult to identify, quantify and correct. This paper describes the current situation of hardness measurement traceability that exists for the conventional hardness methods (i.e. Rockwell, Brinell, Vickers and Knoop hardness) and for special-application hardness and indentation methods (i.e. elastomer, dynamic, portables and instrumented indentation).

  15. Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population

    USDA-ARS?s Scientific Manuscript database

    Grain hardness is a very important trait in determining wheat market class and also influences milling and baking traits. At the grain Hardness (Ha) locus on chromosome 5DS, there are two primary mutations responsible for conveying a harder kernel texture among U.S. hard red spring wheats: (1) the P...

  16. AstroSat /LAXPC Observation of Cygnus X-1 in the Hard State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Ranjeev; Pahari, Mayukh; Yadav, J S

    2017-02-01

    We report the first analysis of data from AstroSat /LAXPC observations of Cygnus X-1 in 2016 January. LAXPC spectra reveals that the source was in the canonical hard state, represented by a prominent thermal Comptonization component having a photon index of ∼1.8 and high temperature of kT{sub e} > 60 keV along with weak reflection and possible disk emission. The power spectrum can be characterized by two broad lorentzian functions centered at ∼0.4 and ∼3 Hz. The rms of the low-frequency component decreases from ∼15% at around 4 keV to ∼10% at around 50 keV, while that of the high-frequencymore » one varies less rapidly from ∼13.5% to ∼11.5% in the same energy range. The time lag between the hard (20–40 keV) and soft (5–10 keV) bands varies in a step-like manner being nearly constant at ∼50 milliseconds from 0.3 to 0.9 Hz, decreasing to ∼8 milliseconds from 2 to 5 Hz and finally dropping to ∼2 milliseconds for higher frequencies. The time lags increase with energy for both the low and high-frequency components. The event mode LAXPC data allows for flux resolved spectral analysis on a timescale of 1 s, which clearly shows that the photon index increased from ∼1.72 to ∼1.80 as the flux increased by nearly a factor of two. We discuss the results in the framework of the fluctuation propagation model.« less

  17. Measuring the Hardness of Minerals

    ERIC Educational Resources Information Center

    Bushby, Jessica

    2005-01-01

    The author discusses Moh's hardness scale, a comparative scale for minerals, whereby the softest mineral (talc) is placed at 1 and the hardest mineral (diamond) is placed at 10, with all other minerals ordered in between, according to their hardness. Development history of the scale is outlined, as well as a description of how the scale is used…

  18. "We Can Get Everything We Want if We Try Hard": Young People, Celebrity, Hard Work

    ERIC Educational Resources Information Center

    Mendick, Heather; Allen, Kim; Harvey, Laura

    2015-01-01

    Drawing on 24 group interviews on celebrity with 148 students aged 14-17 across six schools, we show that "hard work" is valued by young people in England. We argue that we should not simply celebrate this investment in hard work. While it opens up successful subjectivities to previously excluded groups, it reproduces neoliberal…

  19. Short-term hot hardness characteristics of rolling-element steels

    NASA Technical Reports Server (NTRS)

    Chevalier, J. L.; Dietrich, M. W.; Zaretsky, E. V.

    1972-01-01

    Short-term hot hardness studies were performed with five vacuum-melted steels at temperatures from 294 to 887 K (70 to 1140 F). Based upon a minimum Rockwell C hardness of 58, the temperature limitation on all materials studied was dependent on the initial room temperature hardness and the tempering temperature of each material. For the same room temperature hardness, the short-term hot hardness characteristics were identical and independent of material composition. An equation was developed to predict the short-term hardness at temperature as a function of initial room temperature hardness for AISI 52100, as well as the high-speed tool steels.

  20. Categorization of psychoactive substances into "hard drugs" and "soft drugs": a critical review of terminology used in current scientific literature.

    PubMed

    Janik, Peter; Kosticova, Michaela; Pecenak, Jan; Turcek, Michal

    2017-11-01

    Precise terminology and definitions are important components of scientific language. Although the terms "hard drugs" and "soft drugs" are used widely by professionals, neither the International Classification of Diseases nor the Diagnostic and Statistical Manual classify psychoactive substances into the categories "hard" and "soft." To analyze the occurrence of the terms "hard drugs" and "soft drugs" in recent scientific literature and to establish the degree of consensus in labeling psychoactive substances as "hard" or "soft." A critical review of scientific papers listed in PubMed and Scopus between 2011 and 2015. Three hundred thirty-four articles were initially identified as potentially relevant for review, 132 of which were included in the final analysis. One hundred twenty-four articles used the term "hard drugs" and 84.7% provided examples of substances considered "hard." Forty-four articles used the term "soft drugs" and 90.9% provided examples of substances considered "soft." Citations of relevant articles supporting categorization as "hard" or "soft" were not given in 90% of the articles. The authors often provided no or only very sparse information on their reasons for considering specific drugs as "hard" or "soft." Although it initially appeared that there is substantial agreement as to which psychoactive substances should be regarded as "hard" and "soft," closer inspection shows that the dividing line is blurred without clear criteria for categorization. At this time, it remains uncertain whether these terms should persist in the scientific literature. We therefore recommend these terms should be avoided or, if used, be clearly and precisely defined.

  1. 36 CFR 13.1308 - Harding Icefield Trail.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Harding Icefield Trail. 13... Provisions § 13.1308 Harding Icefield Trail. The Harding Icefield Trail from the junction with the main paved trail near Exit Glacier to the emergency hut near the terminus is closed to— (a) Camping within 1/8 mile...

  2. Experimental Investigation of White Layer formation in Hard Turning

    NASA Astrophysics Data System (ADS)

    Umbrello, D.; Rotella, G.; Crea, F.

    2011-05-01

    Hard turning with super hard cutting tools, like PCBN or Ceramics inserts, represents an interesting advance in the manufacturing industry, regarding the finishing of hardened steels. This innovative machining technique is considered an attractive alternative to traditional finish grinding operations because of the high flexibility, the ability to achieve higher metal removal rates, the possibility to operate without the use of coolants, and the capability to achieve comparable workpiece quality. However, the surface integrity effects of hard machining need to be taken into account due to their influence on the life of machined components. In particular, the formation of a usually undesirable white layer at the surface needs further investigation. Three different mechanisms have been proposed as main responsible of the white layer genesis: (i) microstructural phase transformation due to a rapid heating and quenching, (ii) severe plastic deformation resulting in a homogenous structure and/or a very fine grain size microstructure; (iii) surface reaction with the environment. In this research, an experimental campaign was carried out and several experimental techniques were used in order to analyzed the machined surface and to understand which of the above mentioned theories is the main cause of the white layer formation when AISI 52100 hardened steel is machined by PCBN inserts. In particular, the topography characterization has obtained by means of optical and scanning electron microscope (SEM) while microstructural phase composition and chemical characterization have been respectively detected using X-ray Diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDS) techniques. The results prove that the white layer is the result of microstructural alteration, i.e. the generation of a martensitic structure.

  3. Impact of color hard copy on instructional technology applications

    NASA Astrophysics Data System (ADS)

    Lantz, Christopher J.

    1995-04-01

    Hard copy is still preeminent in the form of textbooks or lab manuals in most training environments despite inroads made by microcomputer delivery. Cost per copy is still a major factor but one that is offset by convenience and the capability of including a small number of crucial color illustrations for low run laboratory manuals. Overhead transparencies and color displays are other major educational applications in which electronically generated color hardcopy is just starting to make an impact. Color hardcopy has been perceived as out of reach to the average educator because of probatively high costs in the recent past. Another reason for the underutilization of color in instruction is research that suggests that color distracts instead of directing attention among learners. Much of this research compares visuals which are designed to convey simple visual information, and in this case complexity does often get in the way of comprehension. Color can also act as an advanced organizer that directs visual perception and comprehension to specific instructional objectives. Color can elicit emotional responses from viewers which will assist them in remembering visual detail. Not unlike any other instructional tool, color can add or distract from instructional objectives. Now that color is more accessible in the hard copy format, there are many new ways it can be utilized to benefit the public or corporate educator. In the sections that follow color hard copy is considered in its present areas of application, in context to the suitability of visuals for instruction, as a important component of visual literacy and lastly in the development of measures of picture readability.

  4. Microwave, soft and hard X-ray imaging observations of two solar flares

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Erskine, F. T.; Schmahl, E. J.; Machado, M. E.; Rovira, M. G.

    1984-01-01

    A set of microwave and hard X-ray observations of two flares observed simultaneously with the Very Large Array (VLA) and the Solar Maximum Mission Hard X-ray Imaging Spectrometer (SMM-HXIS) are presented. The LVA was used at 6 cm to map the slowly varying and burst components in three neighboring solar active regions (Boulder Nos. 2522, 2530, and 2519) from approximately 14:00 UT until 01:00 UT on June 24-25, 1980. Six microwave bursts less than 30 sfu were observed, and for the strongest of these, two-dimensional 'snapshot' (10 s) maps with spatial resolution of 5 in. were synthesized. HXIS data show clear interconnections between regions 2522 and 2530. The X-ray observations present a global picture of flaring activity, while the VLA data show the complexity of the small magnetic structures associated with the impulsive phase phenomena. It is seen that energy release did not occur in a single isolated magnetic structure, but over a large area of intermingled loop structures.

  5. Application of hard sphere perturbation theory for thermodynamics of model liquid metals

    NASA Astrophysics Data System (ADS)

    Mon, K. K.

    2001-06-01

    Hard sphere perturbation theory (HSPT) has contributed toward the fundamental understanding of dense fluids for over 30 years. In recent decades, other techniques have been more popular. In this paper, we argue for the revival of hard sphere perturbation theory for the study of thermodynamics of dense liquid in general, and in liquid metal in particular. The weakness of HSPT is now well understood, and can be easily overcome by using a simple convenient Monte Carlo method to calculate the intrinsic error of HSPT free energy density. To demonstrate this approach, we consider models of liquid aluminum and sodium. We obtain the intrinsic error of HSPT with the Monte Carlo method. HSPT is shown to provide a lower free energy upper bound than one-component plasma (OCP) for alkali metals and polyvalent metals. We are thus able to provide insight into the long standing observation that a OCP is a better reference system than a HS for alkali metals.

  6. Mechanical Components from Highly Recoverable, Low Apparent Modulus Materials

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II (Inventor); Noebe, Ronald D. (Inventor); Stanford, Malcolm K. (Inventor); DellaCorte, Christopher (Inventor)

    2015-01-01

    A material for use as a mechanical component is formed of a superelastic intermetallic material having a low apparent modulus and a high hardness. The superelastic intermetallic material is conditioned to be dimensionally stable, devoid of any shape memory effect and have a stable superelastic response without irrecoverable deformation while exhibiting strains of at least 3%. The method of conditioning the superelastic intermetallic material is described. Another embodiment relates to lightweight materials known as ordered intermetallics that perform well in sliding wear applications using conventional liquid lubricants and are therefore suitable for resilient, high performance mechanical components such as gears and bearings.

  7. Hard and soft acids and bases: atoms and atomic ions.

    PubMed

    Reed, James L

    2008-07-07

    The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.

  8. Hard Copy Market Overview

    NASA Astrophysics Data System (ADS)

    Testan, Peter R.

    1987-04-01

    A number of Color Hard Copy (CHC) market drivers are currently indicating strong growth in the use of CHC technologies for the business graphics marketplace. These market drivers relate to product, software, color monitors and color copiers. The use of color in business graphics allows more information to be relayed than is normally the case in a monochrome format. The communicative powers of full-color computer generated output in the business graphics application area will continue to induce end users to desire and require color in their future applications. A number of color hard copy technologies will be utilized in the presentation graphics arena. Thermal transfer, ink jet, photographic and electrophotographic technologies are all expected to be utilized in the business graphics presentation application area in the future. Since the end of 1984, the availability of color application software packages has grown significantly. Sales revenue generated by business graphics software is expected to grow at a compound annual growth rate of just over 40 percent to 1990. Increased availability of packages to allow the integration of text and graphics is expected. Currently, the latest versions of page description languages such as Postscript, Interpress and DDL all support color output. The use of color monitors will also drive the demand for color hard copy in the business graphics market place. The availability of higher resolution screens is allowing color monitors to be easily used for both text and graphics applications in the office environment. During 1987, the sales of color monitors are expected to surpass the sales of monochrome monitors. Another major color hard copy market driver will be the color copier. In order to take advantage of the communications power of computer generated color output, multiple copies are required for distribution. Product introductions of a new generation of color copiers is now underway with additional introductions expected

  9. A Local Approximation of Fundamental Measure Theory Incorporated into Three Dimensional Poisson-Nernst-Planck Equations to Account for Hard Sphere Repulsion Among Ions

    NASA Astrophysics Data System (ADS)

    Qiao, Yu; Liu, Xuejiao; Chen, Minxin; Lu, Benzhuo

    2016-04-01

    The hard sphere repulsion among ions can be considered in the Poisson-Nernst-Planck (PNP) equations by combining the fundamental measure theory (FMT). To reduce the nonlocal computational complexity in 3D simulation of biological systems, a local approximation of FMT is derived, which forms a local hard sphere PNP (LHSPNP) model. In the derivation, the excess chemical potential from hard sphere repulsion is obtained with the FMT and has six integration components. For the integrands and weighted densities in each component, Taylor expansions are performed and the lowest order approximations are taken, which result in the final local hard sphere (LHS) excess chemical potential with four components. By plugging the LHS excess chemical potential into the ionic flux expression in the Nernst-Planck equation, the three dimensional LHSPNP is obtained. It is interestingly found that the essential part of free energy term of the previous size modified model (Borukhov et al. in Phys Rev Lett 79:435-438, 1997; Kilic et al. in Phys Rev E 75:021502, 2007; Lu and Zhou in Biophys J 100:2475-2485, 2011; Liu and Eisenberg in J Chem Phys 141:22D532, 2014) has a very similar form to one term of the LHS model, but LHSPNP has more additional terms accounting for size effects. Equation of state for one component homogeneous fluid is studied for the local hard sphere approximation of FMT and is proved to be exact for the first two virial coefficients, while the previous size modified model only presents the first virial coefficient accurately. To investigate the effects of LHS model and the competitions among different counterion species, numerical experiments are performed for the traditional PNP model, the LHSPNP model, the previous size modified PNP (SMPNP) model and the Monte Carlo simulation. It's observed that in steady state the LHSPNP results are quite different from the PNP results, but are close to the SMPNP results under a wide range of boundary conditions. Besides, in both

  10. FATIGUE OF BIOMATERIALS: HARD TISSUES

    PubMed Central

    Arola, D.; Bajaj, D.; Ivancik, J.; Majd, H.; Zhang, D.

    2009-01-01

    The fatigue and fracture behavior of hard tissues are topics of considerable interest today. This special group of organic materials comprises the highly mineralized and load-bearing tissues of the human body, and includes bone, cementum, dentin and enamel. An understanding of their fatigue behavior and the influence of loading conditions and physiological factors (e.g. aging and disease) on the mechanisms of degradation are essential for achieving lifelong health. But there is much more to this topic than the immediate medical issues. There are many challenges to characterizing the fatigue behavior of hard tissues, much of which is attributed to size constraints and the complexity of their microstructure. The relative importance of the constituents on the type and distribution of defects, rate of coalescence, and their contributions to the initiation and growth of cracks, are formidable topics that have not reached maturity. Hard tissues also provide a medium for learning and a source of inspiration in the design of new microstructures for engineering materials. This article briefly reviews fatigue of hard tissues with shared emphasis on current understanding, the challenges and the unanswered questions. PMID:20563239

  11. Residual stress control and design of next-generation ultra-hard gear steels

    NASA Astrophysics Data System (ADS)

    Qian, Yana

    optimized for desired carbon content profiles using carbon diffusion simulation in the multi-component system. After cyclic tempering with intermediate cryogenic treatment, a case hardness of 68.5 +/- 0.3Rc at 0.72 +/- 0.2wt% carbon content was achieved. The design demonstrated the effectiveness of cryogenic deformation in promoting martensite transformation for high carbon and high alloy steels. Good agreement between achieved and predicted case and core hardness supports the effectiveness of the computational design approach.

  12. Correlating particle hardness with powder compaction performance.

    PubMed

    Cao, Xiaoping; Morganti, Mikayla; Hancock, Bruno C; Masterson, Victoria M

    2010-10-01

    Assessing particle mechanical properties of pharmaceutical materials quickly and with little material can be very important to early stages of pharmaceutical research. In this study, a wide range of pharmaceutical materials were studied using atomic force microscopy (AFM) nanoindentation. A significant amount of particle hardness and elastic modulus data were provided. Moreover, powder compact mechanical properties of these materials were investigated in order to build correlation between the particle hardness and powder compaction performance. It was found that the materials with very low or high particle hardness most likely exhibit poor compaction performance while the materials with medium particle hardness usually have good compaction behavior. Additionally, the results from this study enriched Hiestand's special case concept on particle hardness and powder compaction performance. This study suggests that the use of AFM nanoindentation can help to screen mechanical properties of pharmaceutical materials at early development stages of pharmaceutical research.

  13. Double hard scattering without double counting

    NASA Astrophysics Data System (ADS)

    Diehl, Markus; Gaunt, Jonathan R.; Schönwald, Kay

    2017-06-01

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  14. Microstructural characterization and hardness properties of electric resistance welding titanium joints for dental applications.

    PubMed

    Ceschini, Lorella; Boromei, Iuri; Morri, Alessandro; Nardi, Diego; Sighinolfi, Gianluca; Degidi, Marco

    2015-06-01

    The electric resistance welding procedure is used to join a titanium bar with specific implant abutments in order to produce a framework directly in the oral cavity of the patient. This investigation studied the effects of the welding process on microstructure and hardness properties of commercially pure (CP2 and CP4) Ti components. Different welding powers and cooling procedures were applied to bars and abutments, normally used to produce the framework, in order to simulate the clinical intraoral welding procedure. The analyses highlighted that the joining process did not induce appreciable changes in the geometry of the abutments. However, because of unavoidable microstructural modifications in the welded zones, the hardness decreased to values lower than those of the unwelded CP2 and CP4 Ti grades, irrespective of the welding environments and parameters. © IMechE 2015.

  15. Facile fabrication of high-quality Ag/PS coaxial nanocables based on the mixed mode of soft/hard templates

    PubMed Central

    Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian

    2016-01-01

    A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components. PMID:27477888

  16. Facile fabrication of high-quality Ag/PS coaxial nanocables based on the mixed mode of soft/hard templates

    NASA Astrophysics Data System (ADS)

    Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian

    2016-08-01

    A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components.

  17. Non-Thermal Hard X-Ray Emission in Galaxy Clusters Observed with the BeppoSAX PDS

    NASA Technical Reports Server (NTRS)

    Nevalainen, Jukka H.; Oosterbroeck, T.; Bonamente, Max; Six, N. Frank (Technical Monitor)

    2002-01-01

    We studied the X-ray emission in a sample of clusters using the BeppoSAX PDS instrument in the 20 -- 80 keV energy band. We estimated the non-thermal cluster emission (HXR) by modeling the thermal contribution from the cluster gas and the non-thermal contamination from the AGN in the field, and propagating the corresponding uncertainties. We also evaluated and propagated the systematic uncertainties due to the background fluctuations. The resulting non-thermal component is detected at a sigma level in approx. 50 % of the non-significantly AGN-contaminated clusters, i.e. in clusters A2142, A2256, A3376, Coma, Ophiuchus and Virgo. Furthermore, Virgo is detected at a 4 sigma level. All the clusters detected at a 2 sigma level exhibit some degree of merger signatures, i.e. deviations from the azimuthally symmetric brightness and temperature distributions, while the relaxed clusters are detected at a lower confidence. The data are consistent with a scenario whereby relaxed clusters have no non-thermal hard X-ray component, whereas merger clusters do, with a 20 -- 80 keV luminosity of approx. 10(exp 42-44)((h(sub 50))(exp -2))(erg/s). Consistent with merger boosting of cluster temperatures, the non-thermal luminosity increases by 2-3 orders of magnitude between the average cluster temperatures 2 and 10 keV, as L(sub NTE) is proportional to T(sup j) with j = 2.4+/-0.3. These results corroborate the assumption which is the essential element in most non-thermal hard X-ray emission models. The co-added spectrum of all non-significantly AGN-contaminated clusters indicates a power-law spectrum for the non-thermal component with a photon index of 1.5+/-0.25 at 1 sigma confidence level. Unless there is a high energy cut-off in the electron velocity distribution, the total spectrum implies that Inverse Compton scatter of Cosmic Microwave Background photons from electron population dominates over the non-thermal bremsstrahlung in producing hard X-rays in clusters on the merger

  18. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  19. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  20. Injury risk associated with ground hardness in junior cricket.

    PubMed

    Twomey, Dara M; White, Peta E; Finch, Caroline F

    2012-03-01

    To establish if there is an association between ground hardness and injury risk in junior cricket. Nested case-series of players who played matches on specific grounds with objective ground hardness measures, within a prospective cohort study of junior community club cricket players. Monitoring of injuries and playing exposure occurred during 434 matches over the 2007/2008 playing season. Objective assessment of the hardness of 38 grounds was undertaken using a Clegg hammer at 13 sites on 19 different junior cricket grounds on the match eve across the season. Hardness readings were classified from unacceptably low (<30 g) to unacceptably high (>120 g) and two independent raters assessed the likelihood of each injury being related to ground hardness. Injuries sustained on tested grounds were related to the ground hardness measures. Overall, 31 match injuries were reported; 6.5% were rated as likely to be related to ground hardness, 16.1% as possibly related and 74.2% as unlikely to be related and 3.2% unknown. The two injuries likely to be related to ground hardness were sustained whilst diving to catch a ball resulting, in a graze/laceration from contact with hard ground. Overall, 31/38 (82%) ground assessments were rated as having 'unacceptably high' hardness and all others as 'high/normal' hardness. Only one injury occurred on an objectively tested ground. It remains unclear if ground hardness is a contributing factor to the most common injury mechanism of being struck by the ball, and needs to be confirmed in future larger-scale studies. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Effect of repeated cycles of chemical disinfection on the roughness and hardness of hard reline acrylic resins.

    PubMed

    Pinto, Luciana de Rezende; Acosta, Emílio José T Rodríguez; Távora, Flora Freitas Fernandes; da Silva, Paulo Maurício Batista; Porto, Vinícius Carvalho

    2010-06-01

    The aim of this study was to assess the effect of repeated cycles of five chemical disinfectant solutions on the roughness and hardness of three hard chairside reliners. A total of 180 circular specimens (30 mm x 6 mm) were fabricated using three hard chairside reliners (Jet; n = 60, Kooliner; n = 60, Tokuyama Rebase II Fast; n = 60), which were immersed in deionised water (control), and five disinfectant solutions (1%, 2%, 5.25% sodium hypochlorite; 2% glutaraldehyde; 4% chlorhexidine gluconate). They were tested for Knoop hardness (KHN) and surface roughness (microm), before and after 30 simulated disinfecting cycles. Data was analysed by the factorial scheme (6 x 2), two-way analysis of variance (anova), followed by Tukey's test. For Jet (from 18.74 to 13.86 KHN), Kooliner (from 14.09 to 8.72 KHN), Tokuyama (from 12.57 to 8.28 KHN) a significant decrease in hardness was observed irrespective of the solution used on all materials. For Jet (from 0.09 to 0.11 microm) there was a statistically significant increase in roughness. Kooliner (from 0.36 to 0.26 microm) presented a statistically significant decrease in roughness and Tokuyama (from 0.15 to 0.11 microm) presented no statistically significant difference after 30 days. This study showed that all disinfectant solutions promoted a statistically significant decrease in hardness, whereas with roughness, the materials tested showed a statistically significant increase, except for Tokuyama. Although statistically significant values were registered, these results could not be considered clinically significant.

  2. Macroindentation hardness measurement-Modernization and applications.

    PubMed

    Patel, Sarsvat; Sun, Changquan Calvin

    2016-06-15

    In this study, we first developed a modernized indentation technique for measuring tablet hardness. This technique is featured by rapid digital image capture, using a calibrated light microscope, and precise area-determination. We then systematically studied effects of key experimental parameters, including indentation force, speed, and holding time, on measured hardness of a very soft material, hydroxypropyl cellulose, and a very hard material, dibasic calcium phosphate, to cover a wide range of material properties. Based on the results, a holding period of 3min at the peak indentation load is recommended to minimize the effect of testing speed on H. Using this method, we show that an exponential decay function well describes the relationship between tablet hardness and porosity for seven commonly used pharmaceutical powders investigated in this work. We propose that H and H at zero porosity may be used to quantify the tablet deformability and powder plasticity, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Seismic signals hard clipping overcoming

    NASA Astrophysics Data System (ADS)

    Olszowa, Paula; Sokolowski, Jakub

    2018-01-01

    In signal processing the clipping is understand as the phenomenon of limiting the signal beyond certain threshold. It is often related to overloading of a sensor. Two particular types of clipping are being recognized: soft and hard. Beyond the limiting value soft clipping reduces the signal real gain while the hard clipping stiffly sets the signal values at the limit. In both cases certain amount of signal information is lost. Obviously if one possess the model which describes the considered signal and the threshold value (which might be slightly more difficult to obtain in the soft clipping case), the attempt of restoring the signal can be made. Commonly it is assumed that the seismic signals take form of an impulse response of some specific system. This may lead to belief that the sine wave may be the most appropriate to fit in the clipping period. However, this should be tested. In this paper the possibility of overcoming the hard clipping in seismic signals originating from a geoseismic station belonging to an underground mine is considered. A set of raw signals will be hard-clipped manually and then couple different functions will be fitted and compared in terms of least squares. The results will be then analysed.

  4. Effectiveness of a Time-Limited Incentive on Participation by Hard-to-Reach Respondents in a Panel Study

    ERIC Educational Resources Information Center

    Fomby, Paula; Sastry, Narayan; McGonagle, Katherine A.

    2017-01-01

    We describe an experiment to provide a time-limited incentive among a random sample of 594 hard-to-reach respondents, 200 of whom were offered the incentive to complete all survey components of a study during a three-week winter holiday period. Sample members were primary caregivers of children included in the 2014 Child Development Supplement to…

  5. Rotation of hard particles in a soft matrix

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Liu, Qingchang; Yue, Zhufeng; Li, Xiaodong; Xu, Baoxing

    Soft-hard materials integration is ubiquitous in biological materials and structures in nature and has also attracted growing attention in the bio-inspired design of advanced functional materials, structures and devices. Due to the distinct difference in their mechanical properties, the rotation of hard phases in soft matrixes upon deformation has been acknowledged, yet is lack of theory in mechanics. In this work, we propose a theoretical mechanics framework that can describe the rotation of hard particles in a soft matrix. The rotation of multiple arbitrarily shaped, located and oriented particles with perfectly bonded interfaces in an elastic soft matrix subjected to a far-field tensile loading is established and analytical solutions are derived by using complex potentials and conformal mapping methods. Strong couplings and competitions of the rotation of hard particles among each other are discussed by investigating numbers, relative locations and orientations of particles in the matrix at different loading directions. Extensive finite element analyses are performed to validate theoretical solutions and good agreement of both rotation and stress field between them are achieved. Possible extensions of the present theory to non-rigid particles, viscoelastic matrix and imperfect bonding are also discussed. Finally, by taking advantage of the rotation of hard particles, we exemplify an application in a conceptual design of soft-hard material integrated phononic crystal and demonstrate that phononic band gaps can be successfully tuned with a high accuracy through the mechanical tension-induced rotation of hard particles. The present theory established herein is expected to be of immediate interests to the design of soft-hard materials integration based functional materials, structures and devices with tunable performance via mechanical rotation of hard phases.

  6. Effects of the Acrylic Polyol Structure and the Selectivity of the Employed Catalyst on the Performance of Two-Component Aqueous Polyurethane Coatings

    PubMed Central

    Cakic, Suzana; Lacnjevac, Caslav; Stamenkovic, Jakov; Ristic, Nikola; Takic, Ljiljana; Barac, Miroljub; Gligoric, Miladin

    2007-01-01

    Two kinds of aqueous acrylic polyols (single step and multi step synthesis type) have been investigated for their performance in the two-component aqueous polyurethane application, by using more selective catalysts. The aliphatic polyfunctional isocyanates based on hexamethylen diisocyanates have been employed as suitable hardeners. The complex of zirconium, commercially known as K-KAT®XC-6212, and manganese (III) complexes with mixed ligands based on the derivative of maleic acid have been used as catalysts in this study. Both of the aqueous polyols give good results, in terms of application and hardness, when elevated temperatures and more selective catalysts are applied. A more selective catalyst promotes the reaction between the isocyanate and polyol component. This increases the percentage of urethane bonds and the degree of hardness in the films formed from the two components of aqueous polyurethane lacquers. The polyol based on the single step synthesis route is favourable concerning potlife and hardness. The obtained results show that the performance of the two-component aqueous polyurethane coatings depends on the polymer structure of the polyols as well as on the selectivity of the employed catalyst.

  7. Microstructural Analysis of Ti-6Al-4V Components Made by Electron Beam Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Coleman, Rashadd L.

    Electron Beam Additive Manufacturing (EBAM) is a relatively new additive manufacturing (AM) technology that uses a high-energy electron beam to melt and fuse powders to build full-density parts in a layer by layer fashion. EBAM can fabricate metallic components, particularly, of complex shapes, in an efficient and cost-effective manner compared to conventional manufacturing means. EBAM is an enabling technology for rapid manufacturing (RM) of metallic components, and thus, can efficiently integrate the design and manufacturing of aerospace components. However, EBAM for aerospace-related applications remain limited because the effect of the EBAM process on part characteristics is not fully understood. In this study, various techniques including microhardness, optical microscopy (OM), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and electron backscatter diffraction (EBSD) were used to characterize Ti-6Al-4V components processed using EBAM. The results were compared to Ti-6Al-4V components processed using conventional techniques. In this study it is shown that EBAM built Ti-64 components have increased hardness, elastic modulus, and yield strength compared to wrought Ti-6Al-4V. Further, it is also shown in this study that the horizontal build EBAM Ti-6Al-4V has increased hardness, elastic modulus, and yield strength compared to vertical build EBAM due to a preferential growth of the beta phase.

  8. Group electronegativity for prediction of materials hardness.

    PubMed

    Li, Keyan; Yang, Peng; Niu, Lingxiao; Xue, Dongfeng

    2012-06-28

    We have developed a method to predict the hardness of materials containing ultrastrong anionic polyhedra, dense atomic clusters, and layers stacked through van der Waals bonds on the basis of group electronegativity. By considering these polyhedra, clusters, and layers as groups that behave as rigid unities like superatoms bonding to other atoms or groups, the hardness values of materials such as oxysalts, T-carbon, and graphite were quantitatively calculated, and the results are consistent with the available experiments. We found that the hardness of materials containing these artificial groups is determined by the bonds between the groups and other atoms or groups, rather than by the weakest bonds. This work sheds light on the nature of materials hardness and the design of novel inorganic crystal materials.

  9. Novel hard compositions and methods of preparation

    DOEpatents

    Sheinberg, H.

    1981-02-03

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value.

  10. 21 CFR 133.150 - Hard cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hard cheeses. 133.150 Section 133.150 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.150 Hard cheeses. (a) The cheeses for which definitions and standards of identity are...

  11. 7 CFR 201.30 - Hard seed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hard seed. 201.30 Section 201.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard...

  12. 7 CFR 201.30 - Hard seed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hard seed. 201.30 Section 201.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard...

  13. 7 CFR 201.30 - Hard seed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hard seed. 201.30 Section 201.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard...

  14. 7 CFR 201.30 - Hard seed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hard seed. 201.30 Section 201.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard...

  15. 7 CFR 201.30 - Hard seed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hard seed. 201.30 Section 201.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard...

  16. Benefits and shortcomings of non-destructive benthic imagery for monitoring hard-bottom habitats.

    PubMed

    Beisiegel, Kolja; Darr, Alexander; Gogina, Mayya; Zettler, Michael L

    2017-08-15

    Hard-bottom habitats with complex topography and fragile epibenthic communities are still not adequately considered in benthic monitoring programs, despite their potential ecological importance. While indicators of ecosystem health are defined by major EU directives, methods commonly used to measure them are deficient in quantification of biota on hard surfaces. We address the suitability of seafloor imaging for monitoring activities. We compared the ability of high-resolution imagery and physical sampling methods (grab, dredge, SCUBA-diving) to detect taxonomic and functional components of epibenthos. Results reveal that (1) with minimal habitat disturbance on large spatial scales, imagery provides valuable, cost-effective assessment of rocky reef habitat features and community structure, (2) despite poor taxonomic resolution, image-derived data for habitat-forming taxa might be sufficient to infer richness of small sessile and mobile fauna, (3) physical collections are necessary to develop a robust record of species richness, including species-level taxonomic identifications, and to establish a baseline. Copyright © 2017. Published by Elsevier Ltd.

  17. Theory of hard diffraction and rapidity gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Duca, V.

    1996-02-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). {copyright} {ital 1996 American Institute of Physics.}

  18. Guidelines for the Administration of Educational Programs for Students Who Are Deaf/Hard of Hearing, Visually Impaired, or Deafblind

    ERIC Educational Resources Information Center

    Bruce, Susan; Ferrell, Kay; Luckner, John L.

    2016-01-01

    This paper presents the essential programming components resulting from a systematic review of research studies, legislation, and policy documents on the topic of administration issues in educational programming for students who are deaf/hard of hearing, visually impaired, or deafblind. It is recommended that educational teams should include a…

  19. PROBING THE TRANSITION BETWEEN THE SYNCHROTRON AND INVERSE-COMPTON SPECTRAL COMPONENTS OF 1ES 1959+650

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bottacini, E.; Schady, P.; Rau, A.

    1ES 1959+650 is one of the most remarkable high-peaked BL Lacertae objects (HBL). In 2002, it exhibited a TeV {gamma}-ray flare without a similar brightening of the synchrotron component at lower energies. This orphan TeV flare remained a mystery. We present the results of a multifrequency campaign, triggered by the INTEGRAL IBIS detection of 1ES 1959+650. Our data range from the optical to hard X-ray energies, thus covering the synchrotron and inverse-Compton components simultaneously. We observed the source with INTEGRAL, the Swift X-Ray Telescope, and the UV-Optical Telescope, and nearly simultaneously with a ground-based optical telescope. The steep spectral componentmore » at X-ray energies is most likely due to synchrotron emission, while at soft {gamma}-ray energies the hard spectral index may be interpreted as the onset of the high-energy component of the blazar spectral energy distribution (SED). This is the first clear measurement of a concave X-ray-soft {gamma}-ray spectrum for an HBL. The SED can be well modeled with a leptonic synchrotron self-Compton model. When the SED is fitted this model requires a very hard electron spectral index of q {approx} 1.85, possibly indicating the relevance of second-order Fermi acceleration.« less

  20. Computational Modeling Develops Ultra-Hard Steel

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Glenn Research Center's Mechanical Components Branch developed a spiral bevel or face gear test rig for testing thermal behavior, surface fatigue, strain, vibration, and noise; a full-scale, 500-horsepower helicopter main-rotor transmission testing stand; a gear rig that allows fundamental studies of the dynamic behavior of gear systems and gear noise; and a high-speed helical gear test for analyzing thermal behavior for rotorcraft. The test rig provides accelerated fatigue life testing for standard spur gears at speeds of up to 10,000 rotations per minute. The test rig enables engineers to investigate the effects of materials, heat treat, shot peen, lubricants, and other factors on the gear's performance. QuesTek Innovations LLC, based in Evanston, Illinois, recently developed a carburized, martensitic gear steel with an ultra-hard case using its computational design methodology, but needed to verify surface fatigue, lifecycle performance, and overall reliability. The Battelle Memorial Institute introduced the company to researchers at Glenn's Mechanical Components Branch and facilitated a partnership allowing researchers at the NASA Center to conduct spur gear fatigue testing for the company. Testing revealed that QuesTek's gear steel outperforms the current state-of-the-art alloys used for aviation gears in contact fatigue by almost 300 percent. With the confidence and credibility provided by the NASA testing, QuesTek is commercializing two new steel alloys. Uses for this new class of steel are limitless in areas that demand exceptional strength for high throughput applications.

  1. Potential Health Impacts of Hard Water

    PubMed Central

    Sengupta, Pallav

    2013-01-01

    In the past five decades or so evidence has been accumulating about an environmental factor, which appears to be influencing mortality, in particular, cardiovascular mortality, and this is the hardness of the drinking water. In addition, several epidemiological investigations have demonstrated the relation between risk for cardiovascular disease, growth retardation, reproductive failure, and other health problems and hardness of drinking water or its content of magnesium and calcium. In addition, the acidity of the water influences the reabsorption of calcium and magnesium in the renal tubule. Not only, calcium and magnesium, but other constituents also affect different health aspects. Thus, the present review attempts to explore the health effects of hard water and its constituents. PMID:24049611

  2. Potential health impacts of hard water.

    PubMed

    Sengupta, Pallav

    2013-08-01

    In the past five decades or so evidence has been accumulating about an environmental factor, which appears to be influencing mortality, in particular, cardiovascular mortality, and this is the hardness of the drinking water. In addition, several epidemiological investigations have demonstrated the relation between risk for cardiovascular disease, growth retardation, reproductive failure, and other health problems and hardness of drinking water or its content of magnesium and calcium. In addition, the acidity of the water influences the reabsorption of calcium and magnesium in the renal tubule. Not only, calcium and magnesium, but other constituents also affect different health aspects. Thus, the present review attempts to explore the health effects of hard water and its constituents.

  3. ALUMINUM BIOAVAILABILITY FROM DRINKING WATER IS VERY LOW AND IS NOT APPRECIABLY INFLUENCED BY STOMACH CONTENTS OR WATER HARDNESS. (R825357)

    EPA Science Inventory

    The objectives were to estimate aluminum (Al) oral bioavailability under conditions that model its consumption in drinking water, and to test the hypotheses that stomach contents and co-administration of the major components of hard water affect Al absorption. Rats received intra...

  4. Temporal correlations between impulsive ultraviolet and hard X-ray bursts in solar flares observed with high time resolution

    NASA Technical Reports Server (NTRS)

    Cheng, Chung-Chieh; Vanderveen, K.; Orwig, L. E.; Tandberg-Hanssen, E.

    1988-01-01

    The impulsive phase of solar flares has been simultaneously observed in the ultraviolet O V line, the UV continuum, and hard X-rays with a time resolution of 0.128 s by the SMM satellite. A close time correspondence between the three impulsive components is found, with the best correlation being at the peak of the impulsive phase. Individual bursts or fast features in the O V and the UV continuum are shown to lag behind the corresponding hard X-ray features. None of the considered energy transport mechanisms (thermal conduction, a nonthermal electron beam, electron hole boring, UV radiation, and Alfven waves) are able to consistently account for the observed temporal correlations.

  5. Novel hard compositions and methods of preparation

    DOEpatents

    Sheinberg, Haskell

    1983-08-23

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated.

  6. Novel hard compositions and methods of preparation

    DOEpatents

    Sheinberg, H.

    1983-08-23

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated. 3 figs.

  7. Haptic Search for Hard and Soft Spheres

    PubMed Central

    van Polanen, Vonne; Bergmann Tiest, Wouter M.; Kappers, Astrid M. L.

    2012-01-01

    In this study the saliency of hardness and softness were investigated in an active haptic search task. Two experiments were performed to explore these properties in different contexts. In Experiment 1, blindfolded participants had to grasp a bundle of spheres and determine the presence of a hard target among soft distractors or vice versa. If the difference in compliance between target and distractors was small, reaction times increased with the number of items for both features; a serial strategy was found to be used. When the difference in compliance was large, the reaction times were independent of the number of items, indicating a parallel strategy. In Experiment 2, blindfolded participants pressed their hand on a display filled with hard and soft items. In the search for a soft target, increasing reaction times with the number of items were found, but the location of target and distractors appeared to have a large influence on the search difficulty. In the search for a hard target, reaction times did not depend on the number of items. In sum, this showed that both hardness and softness are salient features. PMID:23056197

  8. Haptic search for hard and soft spheres.

    PubMed

    van Polanen, Vonne; Bergmann Tiest, Wouter M; Kappers, Astrid M L

    2012-01-01

    In this study the saliency of hardness and softness were investigated in an active haptic search task. Two experiments were performed to explore these properties in different contexts. In Experiment 1, blindfolded participants had to grasp a bundle of spheres and determine the presence of a hard target among soft distractors or vice versa. If the difference in compliance between target and distractors was small, reaction times increased with the number of items for both features; a serial strategy was found to be used. When the difference in compliance was large, the reaction times were independent of the number of items, indicating a parallel strategy. In Experiment 2, blindfolded participants pressed their hand on a display filled with hard and soft items. In the search for a soft target, increasing reaction times with the number of items were found, but the location of target and distractors appeared to have a large influence on the search difficulty. In the search for a hard target, reaction times did not depend on the number of items. In sum, this showed that both hardness and softness are salient features.

  9. Synthesis, Structure, and Properties of Refractory Hard-Metal Borides

    NASA Astrophysics Data System (ADS)

    Lech, Andrew Thomas

    As the limits of what can be achieved with conventional hard compounds, such as tungsten carbide, are nearing reach, super-hard materials are an area of increasing industrial interest. The refractory hard metal borides, such as ReB2 and WB4, offer an increasingly attractive alternative to diamond and cubic boron nitride as a next-generation tool material. In this Thesis, a thorough discussion is made of the progress achieved by our laboratory towards understanding the synthesis, structure, and properties of these extremely hard compounds. Particular emphasis is placed on structural manipulation, solid solution formation, and the unique crystallographic manifestations of what might also be called "super-hard metals".

  10. Monte Carlo study of four dimensional binary hard hypersphere mixtures

    NASA Astrophysics Data System (ADS)

    Bishop, Marvin; Whitlock, Paula A.

    2012-01-01

    A multithreaded Monte Carlo code was used to study the properties of binary mixtures of hard hyperspheres in four dimensions. The ratios of the diameters of the hyperspheres examined were 0.4, 0.5, 0.6, and 0.8. Many total densities of the binary mixtures were investigated. The pair correlation functions and the equations of state were determined and compared with other simulation results and theoretical predictions. At lower diameter ratios the pair correlation functions of the mixture agree with the pair correlation function of a one component fluid at an appropriately scaled density. The theoretical results for the equation of state compare well to the Monte Carlo calculations for all but the highest densities studied.

  11. Hard template synthesis of metal nanowires

    NASA Astrophysics Data System (ADS)

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-11-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  12. Hard template synthesis of metal nanowires.

    PubMed

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  13. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids

    PubMed Central

    Dai, Fu-Zhi; Zhou, Yanchun

    2016-01-01

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165

  14. High-frequency observations and source parameters of microearthquakes recorded at hard-rock sites

    USGS Publications Warehouse

    Cranswick, Edward; Wetmiller, Robert; Boatwright, John

    1985-01-01

    We have estimated the source parameters of 53 microearthquakes recorded in July 1983 which were aftershocks of the Miramichi, New Brunswick, earthquake that occurred on 9 January 1982. These events were recorded by local three-component digital seismographs at 400 sps/component from 2-Hz velocity transducers sited directly on glacially scoured crystalline basement outcrop. Hypocentral distances are typically less than 5 km, and the hypocenters and the seven digital seismograph stations established all lie essentially within the boundaries of a granitic pluton that encompasses the faults that ruptured during the main shock and major aftershocks. The P-wave velocity is typically 5 km/sec at the surface and at least 6 km/sec at depths greater than about 1 km.The events have S-wave corner frequencies in the band 10 to 40 Hz, and the calculated Brune model seismic moments range from 1015 to 1018 dyne-cm. The corresponding stress drops are generally less than 1.0 bars, but there is considerable evidence that the seismic-source signals have been modified by propagation and/or site-effects. The data indicate: (a) there is a velocity discontinuity at 0.5 km depth; (b) the top layer has strong scattering/attenuating properties; (c) some source-receiver paths differentiate the propagated signal; (d) there is a hard-rock-site P-wave “fmax” between 50 and 100 Hz; and (e) some hard-rock sites are characterized by P-wave resonance frequencies in the range 50 to 100 Hz. Comparison of this dataset with the January 1982 New Brunswick digital seismograms which were recorded at sites underlain by several meters of low-velocity surface sediments suggests that some of the hard-rock-site phenomena listed above can be explained in terms of a layer-over-a-half-space model. For microearthquakes, this result implies that spectrally determined source dimension scales with site dimension (thickness of the layer). More generally, it emphasizes that it is very difficult to accurately observe

  15. INTEGRAL SPI Observations of Cygnus X-1 in the Soft State: What about the Jet Contribution in Hard X-Rays?

    NASA Astrophysics Data System (ADS)

    Jourdain, E.; Roques, J. P.; Chauvin, M.

    2014-07-01

    During the first 7 yr of the INTEGRAL mission (2003-2009), Cyg X-1 has essentially been detected in its hard state (HS), with some incursions in intermediate HSs. This long, spectrally stable period allowed in particular the measurement of the polarization of the high-energy component that has long been observed above 200 keV in this peculiar object. This result strongly suggests that here we see the contribution of the jet, known to emit a strong synchrotron radio emission. In 2010 June, Cyg X-1 underwent a completed transition toward a soft state (SS). It gave us the unique opportunity to study in detail the corona emission in this spectral state, and to investigate in particular the behavior of the jet contribution. Indeed, during the SS, the hard X-ray emission decreases drastically, with its maximum energy shifted toward lower energy and its flux divided by a factor of ~5-10. Interestingly, the radio emission follows a similar drop, supporting the correlation between the jet emission and the hard component, even though the flux is too low to quantify the polarization characteristics. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), the Czech Republic and Poland with the participation of Russia and USA.

  16. Detection of a spectral break in the extra hard component of GRB 090926A

    DOE PAGES

    Ackermann, M.; Ajello, M.; Asano, K.; ...

    2011-02-16

    Here, we report on the observation of the bright, long gamma-ray burst, GRB 090926A, by the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. GRB 090926A shares several features with other bright LAT bursts. In particular, it clearly shows a short spike in the light curve that is present in all detectors that see the burst, and this in turn suggests that there is a common region of emission across the entire Fermi energy range. In addition, while a separate high-energy power-law component has already been observed in other gamma-ray bursts, heremore » we report for the first time the detection with good significance of a high-energy spectral break (or cutoff) in this power-law component around 1.4 GeV in the time-integrated spectrum. If the spectral break is caused by opacity to electron-positron pair production within the source, then this observation allows us to compute the bulk Lorentz factor for the outflow, rather than a lower limit.« less

  17. Detection of a Spectral Break in the Extra Hard Component of GRB 090926A

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Chaplin, V.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Connaughton, V.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Dingus, B. L.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Goldstein, A.; Granot, J.; Greiner, J.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashi, K.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kouveliotou, C.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Llena Garde, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McBreen, S.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Mehault, J.; Mészáros, P.; Michelson, P. F.; Mizuno, T.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakajima, H.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Porter, T. A.; Preece, R.; Racusin, J. L.; Rainò, S.; Rando, R.; Rau, A.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Reyes, L. C.; Ripken, J.; Ritz, S.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Stecker, F. W.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Tanaka, Y.; Thayer, J. B.; Thayer, J. G.; Tibaldo, L.; Tierney, D.; Toma, K.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Uehara, T.; Usher, T. L.; Vandenbroucke, J.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Wilson-Hodge, C.; Winer, B. L.; Wood, K. S.; Wu, X. F.; Yamazaki, R.; Yang, Z.; Ylinen, T.; Ziegler, M.

    2011-03-01

    We report on the observation of the bright, long gamma-ray burst, GRB 090926A, by the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. GRB 090926A shares several features with other bright LAT bursts. In particular, it clearly shows a short spike in the light curve that is present in all detectors that see the burst, and this in turn suggests that there is a common region of emission across the entire Fermi energy range. In addition, while a separate high-energy power-law component has already been observed in other gamma-ray bursts, here we report for the first time the detection with good significance of a high-energy spectral break (or cutoff) in this power-law component around 1.4 GeV in the time-integrated spectrum. If the spectral break is caused by opacity to electron-positron pair production within the source, then this observation allows us to compute the bulk Lorentz factor for the outflow, rather than a lower limit.

  18. A Novel Approach to Hardness Testing

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier; West, Harvey A.

    1996-01-01

    This paper gives a description of the application of a simple rebound time measuring device and relates the determination of relative hardness of a variety of common engineering metals. A relation between rebound time and hardness will be sought. The effect of geometry and surface condition will also be discussed in order to acquaint the student with the problems associated with this type of method.

  19. Hard particle effect on surface generation in nano-cutting

    NASA Astrophysics Data System (ADS)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The influence of the hard particle on the surface generation, plastic deformation and processing forces in nano-cutting of aluminum is investigated by means of molecular dynamics simulations. In this investigation, a hard particle which is simplified as a diamond ball is embedded under the free surface of workpiece with different depths. The influence of the position of the hard ball on the surface generation and other material removal mechanism, such as the movement of the ball under the action of cutting tool edge, is revealed. The results show that when the hard particle is removed, only a small shallow pit is left on the machined surface. Otherwise, it is pressed down to the subsurface of the workpiece left larger and deeper pit on the generated surface. Besides that, the hard particle in the workpiece would increase the processing force when the cutting tool edge or the plastic carriers interact with the hard particle. It is helpful to optimize the cutting parameters and material properties for obtaining better surface quality in nano-cutting of composites or other materials with micro/nanoscale hard particles in it.

  20. THE HOT HARDNESS OF TITANIUM AND TITANIUM ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, F.R.

    1958-07-01

    The hot hardness of 27 different heats of titanium and titunium alloys was studied. Tests were conducted on a modified Rockwell machine in an argon atmosphere. Results indicate that low alloy heats lose their hardnesses at a fairly high even rate. On thc other hand, high alloy heats hold their hardnesses well up to about 1100 d F, and then the hardness drops off very sharply with increasing temperature. The influence of alloying elements in promoting resistance to softening was evaluated at 900 d F. Iron was found to be the most effective with the other elements being arranged inmore » order of decreasing effect, as follows: manganese, (auth)« less

  1. Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration

    NASA Technical Reports Server (NTRS)

    DeGregorio, Kelly; Wilson, Dale G.

    2009-01-01

    Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand

  2. Transport coefficients and mechanical response in hard-disk colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Zhang, Bo-Kai; Li, Jian; Chen, Kang; Tian, Wen-De; Ma, Yu-Qiang

    2016-11-01

    We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 21374073 and, 21574096).

  3. Hard QCD rescattering in few nucleon systems

    NASA Astrophysics Data System (ADS)

    Maheswari, Dhiraj; Sargsian, Misak

    2017-01-01

    The theoretical framework of hard QCD rescattering mechanism (HRM) is extended to calculate the high energy γ3 He -> pd reaction at 900 center of mass angle. In HRM model , the incoming high energy photon strikes a quark from one of the nucleons in the target which subsequently undergoes hard rescattering with the quarks from the other nucleons generating hard two-body baryonic system in the final state of the reaction. Based on the HRM, a parameter free expression for the differential cross section for the reaction is derived, expressed through the 3 He -> pd transition spectral function, hard pd -> pd elastic scattering cross section and the effective charge of the quarks being interchanged in the hard rescattering process. The numerical estimates obtained from this expression for the differential cross section are in a good agreement with the data recently obtained at the Jefferson Lab experiment, showing the energy scaling of cross section with an exponent of s-17, also consistent with the quark counting rule. The angular and energy dependences of the cross section are also predicted within HRM which are in good agreement with the preliminary data of these distributions. Research is supported by the US Department of Energy.

  4. Hard template synthesis of metal nanowires

    PubMed Central

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed. PMID:25453031

  5. A Suzaku Study of Ejecta Structure and Origin of Hard X-ray Emission in the Supernova Remnant G156.2+5.7

    NASA Technical Reports Server (NTRS)

    Uchida, Hiroyuki; Tsunemi, Hiroshi; Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya

    2012-01-01

    We report an X-ray study of the evolved Galactic supernova remnant (SNR) G1S6.2+S.7 based on six pointing observations with Suzaku. The remnant's large extent (100' in diameter) allows us to investigate its radial structure in the northwestern and eastern directions from the apparent center. The X-ray spectra. were well fit with a two-component non-equilibrium ionization model representing the swept-up interstellar medium (ISM) and the metal-rich ejecta. We found prominent central concentrations of Si, S and Fe from the ejecta component; the lighter elements of O, Ne and Mg were distributed more uniformly. The temperature of the ISM component suggests a slow shock (610-960 km/s), hence the remnant's age is estimated to be 7,000-15,000 yr, assuming its distance to be approx. 1.1 kpc. G1S6.2+5.7 has also been thought to emit hard, non-thermal X-rays, despite being considerably older than any other such remnant. In response to a recent discovery of a background cluster of galaxies (2XMM J045637.2+522411), we carefully excluded its contribution, and reexamined the origin of the hard X-ray emission. We found that the residual hard X-ray emission is consistent with the expected level of the cosmic X-ray background. Thus, no robust evidence for the non-thermal emission was obtained from G156.2+5.7. These results are consistent with the picture of an evolved SNR.

  6. Systematic analysis of low/hard state RXTE spectra of GX 339–4 to constrain the geometry of the system

    NASA Astrophysics Data System (ADS)

    Bagri, Kalyani; Misra, Ranjeev; Rao, Anjali; Singh Yadav, Jagdish; Pandey, Shiv Kumar

    2018-05-01

    One of the popular models for the low/hard state of black hole binaries is that the standard accretion disk is truncated and the hot inner region produces, via Comptonization, hard X-ray flux. This is supported by the value of the high energy photon index, which is often found to be small, ∼ 1.7(< 2), implying that the hot medium is starved of seed photons. On the other hand, the suggestive presence of a broad relativistic Fe line during the hard state would suggest that the accretion disk is not truncated but extends all the way to the innermost stable circular orbit. In such a case, it is a puzzle why the hot medium would remain photon starved. The broad Fe line should be accompanied by a broad smeared reflection hump at ∼ 30 keV and it may be that this additional component makes the spectrum hard and the intrinsic photon index is larger, i.e. >2. This would mean that the medium is not photon deficient, reconciling the presence of a broad Fe line in the observed hard state. To test this hypothesis, we have analyzed the RXTE observations of GX 339–4 from the four outbursts during 2002–2011 and identify observations when the system was in the hard state and showed a broad Fe line. We have then attempted to fit these observationswith models,which include smeared reflection, to understandwhether the intrinsic photon index can indeed be large. We find that, while for some observations the inclusion of reflection does increase the photon index, there are hard state observations with a broad Fe line that have photon indices less than 2.

  7. An Extended Hardness Limit in Bulk Nanoceramics

    DTIC Science & Technology

    2014-01-01

    spinel as an archetypal hard ceramic, the hardness of this transparent ceramic armor is shown to rigorously follow the Hall–Petch relationship down...as a result of complex phenomena related to an unconven- tionally high ratio of atoms on interfaces, or grain bound- aries, to atoms in the grain

  8. Complete Hard X-Ray Surveys, AGN Luminosity Functions and the X-Ray Background

    NASA Technical Reports Server (NTRS)

    Tueller, Jack

    2011-01-01

    AGN are believed to make up most of the Cosmic X-Ray Background (CXB) above a few keV, but this background cannot be fully resolved at energies less than 10 keV due to absorption. The Swift/BAT and INTEGRAL missions are performing the first complete hard x-ray surveys with minimal bias due to absorption. The most recent results for both missions will be presented. Although the fraction of the CXB resolved by these surveys is small, it is possible to derive unbiased number counts and luminosity functions for AGN in the local universe. The survey energy range from 15-150 keV contains the important reflection and cutoff spectral features dominate the shape of the AGN contribution to the CXB. Average spectral characteristics of survey detected AGN will be presented and compared with model distributions. The numbers of hard x-ray blazars detected in these surveys are finally sufficient to estimate this important component's contribution the cosmic background. Constraints on CXB models and their significance will be discussed.

  9. Mucocele of the hard palate in children.

    PubMed

    Abdel-Aziz, Mosaad; Khalifa, Badawy; Nassar, Ahmed; Kamel, Ahmed; Naguib, Nader; El-Tahan, Abdel-Rahman

    2016-06-01

    Mucus retention cyst of the hard palate may result from obstruction of the ducts of the minor salivary glands, and it was defined as a mucocele. Although, the disease is not common in the hard palate, it was previously reported by many authors in the soft palate. The aim of our study was to present pediatric patients who were diagnosed to have mucocele of the hard palate, and to evaluate the outcome of the surgical excision of this lesion. This is a case series study included 8 pediatric patients who presented with cystic lesions on the hard palate which were removed surgically, and were diagnosed as mucoceles. Preoperative data, surgical procedures, and postoperative outcome were presented. Follow up of patients was performed for at least one year. The swelling was detected as a single isolated lesion, on the side of the hard palate, covered with healthy mucosa, not tender, oval or round in shape, and measuring 0.4 to 1.7cm in its greatest dimension. Computed tomography showed a well defined cavity which was not invading the bone, and not disrupting the muscles of the palate. Histopathological examination confirmed that the lesion was a cavity that is lined with an epithelial layer with pseudoepitheliomatous hyperplasia. No patients developed intraoperative or postoperative complications, and no recurrence was detected in any patient. Oral mucoceles can develop on the hard palate of the children, the lesions are mucus retention cysts. Complete surgical removal of the lesions with their cystic wall is a good treatment options, it carries no risk of recurrence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Characterization of New Hard X-ray Cataclysmic Variables

    NASA Technical Reports Server (NTRS)

    Bernardini, F.; deMartino, D.; Falanga, M.; Mukai, K.; Matt, G.; Bonnet-Bidaud, J.-M.; Masetti, N.; Mouchet, M.

    2012-01-01

    Aims. We aim at characterizing a sample of nine new hard X-ray selected Cataclysmic Variable (CVs), to unambiguously identify them as magnetic systems of the Intermediate Polar (IP) type. Methods. We performed detailed timing and spectral analysis by using X-ray, and simultaneous UV and optical data collected by XMM-Newton, complemented with hard X-ray data provided by INTEGRAL and Swift. The pulse arrival time were used to estimate the orbital periods. The broad band X-ray spectra were fitted using composite models consisting of different absorbing columns and emission components. Results. Strong X-ray pulses at the White Dwarf (WD) spin period are detected and found to decrease with energy. Most sources are spin-dominated systems in the X-rays, though four are beat dominated at optical wavelengths. We estimated the orbital period in all system (except for IGR J16500-3307), providing the first estimate for IGRJ08390-4833, IGRJ18308-1232, and IGR J18173-2509. All X-ray spectra are multi-temperature. V2069 Cyg and RX J0636+3535 poses a soft X-ray optically thick component at kT approx. 80 eV. An intense K (sub alpha) Fe line at 6.4 keV is detected in all sources. An absorption edge at 0.76 keV from OVII is detected in IGR J08390-4833. The WD masses and lower limits to the accretion rates are also estimated. Conclusions. We found all sources to be IPs. IGR J08390-4833, V2069 Cyg, and IGR J16500-3307 are pure disc accretors, while IGR J18308-1232, IGR J1509-6649, IGR J17195-4100, and RX J0636+3535 display a disc-overflow accretion mode. All sources show a temperature gradient in the post-shock regions and a highly absorbed emission from material located in the pre-shock flow which is also responsible for the X-ray pulsations. Reflection at the WD surface is likely the origin of the fluorescent iron line. There is an increasing evidence for the presence of a warm absorber in IPs, a feature that needs future exploration. The addition of two systems to the subgroup of

  11. 21 CFR 133.148 - Hard grating cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hard grating cheeses. 133.148 Section 133.148 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.148 Hard grating cheeses. (a) The cheeses for which definitions and standards of...

  12. Hard Spring Wheat Technical Committee 2016 Crop

    USDA-ARS?s Scientific Manuscript database

    Seven experimental lines of hard spring wheat were grown at up to five locations in 2016 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spri...

  13. Hardness of enamel exposed to Coca-Cola and artificial saliva.

    PubMed

    Devlin, H; Bassiouny, M A; Boston, D

    2006-01-01

    The purpose of this study was to determine the rate of change in indentation hardness of enamel in permanent teeth exposed to Coca-Cola. In a further experiment, the ability of a commercially available artificial saliva to remineralize enamel treated with Coca-Cola was tested. Ten enamel specimens were randomly chosen to be treated with Coca-Cola (experimental groups) and seven with water (control group). The fluids were applied for 1, 2, 3 h and overnight (15 h), washed off with a few drops of water and the moist enamel indentation hardness tested after each interval. With Coca-Cola treatment, the mean enamel hardness was 92.6% (s.d. = 7.9) of the original baseline hardness after 1 h, 93.25% (s.d. = 10.15) after 2 h, 85.7% (s.d. = 12.03) after 3 h and 80.3% after 15 h. The mean indentation hardness of control specimens treated with water was 108.7% (s.d. = 16.09) of the original hardness after 1 h, 99.09% (s.d. = 18.98) after 2 h, 98.97% (s.d. =11.24) after 3 h and 98.42% (s.d. = 22.78) after 15 h. In a separate experiment, the hardness of 9 enamel specimens was tested, as previously described, before and after treatment with Coca-Cola overnight and again after application of artificial saliva for 3 min. Coca-Cola reduced the mean indentation hardness of enamel in the teeth, but the hardness was partially restored with artificial saliva (Salivart) and increased by 18% from the demineralized enamel hardness.

  14. Association of ground hardness with injuries in rugby union

    PubMed Central

    Takemura, Masahiro; Schneiders, Anthony G; Bell, Melanie L; Milburn, Peter D

    2007-01-01

    Background Ground hardness is considered one of the possible risk factors associated with rugby injuries. Objectives To examine the contribution of ground hardness, rainfall and evapotranspiration to the incidence of injury, and to investigate seasonal injury bias throughout one full season of rugby union. Methods A prospective epidemiological study of rugby injuries was performed on 271 players from rugby union teams involved in the premier grade rugby competition in Dunedin, New Zealand. Ground hardness was measured before each match over 20 rounds with an industrial penetrometer, and local weather information was collected through the National Institute of Weather and Atmospheric Research and the Otago Regional Council. Poisson mixed models were used to describe injury incidence as a function of ground hardness throughout the season. Results The overall injury incidence during the season was 52 injuries per 1000 match player‐hours (95% CI 42 to 65). Although injury incidence decreased gradually by round with a rate ratio of 0.98 (95% CI 0.96 to 0.99) (p = 0.036), and the hardness of match grounds decreased significantly over the season (0.16 MPa/round, 95% CI 0.12 to 0.21, p<0.001), a non‐significant association was demonstrated between injury incidence and ground hardness. Injury incidence was not associated with a combination of ground hardness, rainfall and evapotranspiration on the day of the match or cumulative rainfall and evapotranspiration before each match. Conclusions Seasonal change in ground hardness and an early‐season bias of injuries was demonstrated. Although the contribution of ground hardness to injury incidence was not statistically significant, match round and injury incidence were highly correlated, confirming a seasonal bias, which may confound the relationship of injury to ground condition. PMID:17504786

  15. A methodology for hard/soft information fusion in the condition monitoring of aircraft

    NASA Astrophysics Data System (ADS)

    Bernardo, Joseph T.

    2013-05-01

    Condition-based maintenance (CBM) refers to the philosophy of performing maintenance when the need arises, based upon indicators of deterioration in the condition of the machinery. Traditionally, CBM involves equipping machinery with electronic sensors that continuously monitor components and collect data for analysis. The addition of the multisensory capability of human cognitive functions (i.e., sensemaking, problem detection, planning, adaptation, coordination, naturalistic decision making) to traditional CBM may create a fuller picture of machinery condition. Cognitive systems engineering techniques provide an opportunity to utilize a dynamic resource—people acting as soft sensors. The literature is extensive on techniques to fuse data from electronic sensors, but little work exists on fusing data from humans with that from electronic sensors (i.e., hard/soft fusion). The purpose of my research is to explore, observe, investigate, analyze, and evaluate the fusion of pilot and maintainer knowledge, experiences, and sensory perceptions with digital maintenance resources. Hard/soft information fusion has the potential to increase problem detection capability, improve flight safety, and increase mission readiness. This proposed project consists the creation of a methodology that is based upon the Living Laboratories framework, a research methodology that is built upon cognitive engineering principles1. This study performs a critical assessment of concept, which will support development of activities to demonstrate hard/soft information fusion in operationally relevant scenarios of aircraft maintenance. It consists of fieldwork, knowledge elicitation to inform a simulation and a prototype.

  16. A comparative approach for the investigation of biological information processing: An examination of the structure and function of computer hard drives and DNA

    PubMed Central

    2010-01-01

    Background The robust storage, updating and utilization of information are necessary for the maintenance and perpetuation of dynamic systems. These systems can exist as constructs of metal-oxide semiconductors and silicon, as in a digital computer, or in the "wetware" of organic compounds, proteins and nucleic acids that make up biological organisms. We propose that there are essential functional properties of centralized information-processing systems; for digital computers these properties reside in the computer's hard drive, and for eukaryotic cells they are manifest in the DNA and associated structures. Methods Presented herein is a descriptive framework that compares DNA and its associated proteins and sub-nuclear structure with the structure and function of the computer hard drive. We identify four essential properties of information for a centralized storage and processing system: (1) orthogonal uniqueness, (2) low level formatting, (3) high level formatting and (4) translation of stored to usable form. The corresponding aspects of the DNA complex and a computer hard drive are categorized using this classification. This is intended to demonstrate a functional equivalence between the components of the two systems, and thus the systems themselves. Results Both the DNA complex and the computer hard drive contain components that fulfill the essential properties of a centralized information storage and processing system. The functional equivalence of these components provides insight into both the design process of engineered systems and the evolved solutions addressing similar system requirements. However, there are points where the comparison breaks down, particularly when there are externally imposed information-organizing structures on the computer hard drive. A specific example of this is the imposition of the File Allocation Table (FAT) during high level formatting of the computer hard drive and the subsequent loading of an operating system (OS). Biological

  17. A comparative approach for the investigation of biological information processing: an examination of the structure and function of computer hard drives and DNA.

    PubMed

    D'Onofrio, David J; An, Gary

    2010-01-21

    The robust storage, updating and utilization of information are necessary for the maintenance and perpetuation of dynamic systems. These systems can exist as constructs of metal-oxide semiconductors and silicon, as in a digital computer, or in the "wetware" of organic compounds, proteins and nucleic acids that make up biological organisms. We propose that there are essential functional properties of centralized information-processing systems; for digital computers these properties reside in the computer's hard drive, and for eukaryotic cells they are manifest in the DNA and associated structures. Presented herein is a descriptive framework that compares DNA and its associated proteins and sub-nuclear structure with the structure and function of the computer hard drive. We identify four essential properties of information for a centralized storage and processing system: (1) orthogonal uniqueness, (2) low level formatting, (3) high level formatting and (4) translation of stored to usable form. The corresponding aspects of the DNA complex and a computer hard drive are categorized using this classification. This is intended to demonstrate a functional equivalence between the components of the two systems, and thus the systems themselves. Both the DNA complex and the computer hard drive contain components that fulfill the essential properties of a centralized information storage and processing system. The functional equivalence of these components provides insight into both the design process of engineered systems and the evolved solutions addressing similar system requirements. However, there are points where the comparison breaks down, particularly when there are externally imposed information-organizing structures on the computer hard drive. A specific example of this is the imposition of the File Allocation Table (FAT) during high level formatting of the computer hard drive and the subsequent loading of an operating system (OS). Biological systems do not have an

  18. Crystallization of Hard Sphere Colloids in Microgravity: Results of the Colloidal Disorder-Order Transition, CDOT on USML-2. Experiment 33

    NASA Technical Reports Server (NTRS)

    Zhu, Ji-Xiang; Chaikin, P. M.; Li, Min; Russel, W. B.; Ottewill, R. H.; Rogers, R.; Meyer, W. V.

    1998-01-01

    Classical hard spheres have long served as a paradigm for our understanding of the structure of liquids, crystals, and glasses and the transitions between these phases. Ground-based experiments have demonstrated that suspensions of uniform polymer colloids are near-ideal physical realizations of hard spheres. However, gravity appears to play a significant and unexpected role in the formation and structure of these colloidal crystals. In the microgravity environment of the Space Shuttle, crystals grow purely via random stacking of hexagonal close-packed planes, lacking any of the face-centered cubic (FCC) component evident in crystals grown in 1 g beyond melting and allowed some time to settle. Gravity also masks 33-539 the natural growth instabilities of the hard sphere crystals which exhibit striking dendritic arms when grown in microgravity. Finally, high volume fraction "glass" samples which fail to crystallize after more than a year in 1 g begin nucleation after several days and fully crystallize in less than 2 weeks on the Space Shuttle.

  19. Calcium nephrolithiasis: effect of water hardness on urinary electrolytes.

    PubMed

    Schwartz, Bradley F; Schenkman, Noah S; Bruce, Jeremy E; Leslie, Stephen W; Stoller, Marshall L

    2002-07-01

    To analyze the impact of water hardness from public water supplies on calcium stone incidence and 24-hour urine chemistries in patients with known calcium urinary stone formation. Patients are frequently concerned that their public water supply may contribute to urinary stone disease. Investigators have documented an inverse relationship between water hardness and calcium lithogenesis. Others have found no such association. Patients who form calcium stones (n = 4833) were identified geographically by their zip code. Water hardness information from distinct geographic public water supplies was obtained, and patient 24-hour urine chemistries were evaluated. Drinking water hardness was divided into decile rankings on the basis of the public water supply information obtained from the Environmental Protection Agency. These data were compared with patient questionnaires and 24-hour urine chemistries. The calcium and magnesium levels in the drinking water were analyzed as independent variables. The number of total lifetime stone episodes was similar between patients residing in areas with soft public water and hard public water. Patients consuming the softest water decile formed 3.4 lifetime stones and those who consumed the hardest water developed 3.0 lifetime stones (P = 0.0017). The 24-hour urine calcium, magnesium, and citrate levels increased directly with drinking water hardness, and no significant change was found in urinary oxalate, uric acid, pH, or volume. The impact of water hardness on urinary stone formation remains unclear, despite a weak correlation between water hardness and urinary calcium, magnesium, and citrate excretion. Tap water, however, can change urinary electrolytes in patients who form calcium stones.

  20. The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model

    NASA Astrophysics Data System (ADS)

    Thober, S.; Cuntz, M.; Mai, J.; Samaniego, L. E.; Clark, M. P.; Branch, O.; Wulfmeyer, V.; Attinger, S.

    2016-12-01

    Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The agility of the models to react to different meteorological conditions is artificially constrained by having hard-coded parameters in their equations. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options in addition to the 71 standard parameters. We performed a Sobol' global sensitivity analysis to variations of the standard and hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff, their component fluxes, as well as photosynthesis and sensible heat were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Latent heat and total runoff show very similar sensitivities towards standard and hard-coded parameters. They are sensitive to both soil and plant parameters, which means that model calibrations of hydrologic or land surface models should take both soil and plant parameters into account. Sensible and latent heat exhibit almost the same sensitivities so that calibration or sensitivity analysis can be performed with either of the two. Photosynthesis has almost the same sensitivities as transpiration, which are different from the sensitivities of latent heat. Including photosynthesis and latent heat in model calibration might therefore be beneficial. Surface runoff is sensitive to almost all hard-coded snow parameters. These sensitivities get, however, diminished in total

  1. Retraction of Hard, Lozano, and Tversky (2006)

    ERIC Educational Resources Information Center

    Hard, B. M.; Lozano, S. C.; Tversky, B.

    2008-01-01

    Reports a retraction of "Hierarchical encoding of behavior: Translating perception into action" by Bridgette Martin Hard, Sandra C. Lozano and Barbara Tversky (Journal of Experimental Psychology: General, 2006[Nov], Vol 135[4], 588-608). All authors retract this article. Co-author Tversky and co-author Hard believe that the research results cannot…

  2. Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes.

    PubMed

    McMorrow, Julian J; Cress, Cory D; Gaviria Rojas, William A; Geier, Michael L; Marks, Tobin J; Hersam, Mark C

    2017-03-28

    Increasingly complex demonstrations of integrated circuit elements based on semiconducting single-walled carbon nanotubes (SWCNTs) mark the maturation of this technology for use in next-generation electronics. In particular, organic materials have recently been leveraged as dopant and encapsulation layers to enable stable SWCNT-based rail-to-rail, low-power complementary metal-oxide-semiconductor (CMOS) logic circuits. To explore the limits of this technology in extreme environments, here we study total ionizing dose (TID) effects in enhancement-mode SWCNT-CMOS inverters that employ organic doping and encapsulation layers. Details of the evolution of the device transport properties are revealed by in situ and in operando measurements, identifying n-type transistors as the more TID-sensitive component of the CMOS system with over an order of magnitude larger degradation of the static power dissipation. To further improve device stability, radiation-hardening approaches are explored, resulting in the observation that SWNCT-CMOS circuits are TID-hard under dynamic bias operation. Overall, this work reveals conditions under which SWCNTs can be employed for radiation-hard integrated circuits, thus presenting significant potential for next-generation satellite and space applications.

  3. Dedicated outreach service for hard to reach patients with tuberculosis in London: observational study and economic evaluation.

    PubMed

    Jit, Mark; Stagg, Helen R; Aldridge, Robert W; White, Peter J; Abubakar, Ibrahim

    2011-09-14

    To assess the cost effectiveness of the Find and Treat service for diagnosing and managing hard to reach individuals with active tuberculosis. Economic evaluation using a discrete, multiple age cohort, compartmental model of treated and untreated cases of active tuberculosis. London, United Kingdom. Population Hard to reach individuals with active pulmonary tuberculosis screened or managed by the Find and Treat service (48 mobile screening unit cases, 188 cases referred for case management support, and 180 cases referred for loss to follow-up), and 252 passively presenting controls from London's enhanced tuberculosis surveillance system. Incremental costs, quality adjusted life years (QALYs), and cost effectiveness ratios for the Find and Treat service. The model estimated that, on average, the Find and Treat service identifies 16 and manages 123 active cases of tuberculosis each year in hard to reach groups in London. The service has a net cost of £1.4 million/year and, under conservative assumptions, gains 220 QALYs. The incremental cost effectiveness ratio was £6400-£10,000/QALY gained (about €7300-€11,000 or $10,000-$16 000 in September 2011). The two Find and Treat components were also cost effective, even in unfavourable scenarios (mobile screening unit (for undiagnosed cases), £18,000-£26,000/QALY gained; case management support team, £4100-£6800/QALY gained). Both the screening and case management components of the Find and Treat service are likely to be cost effective in London. The cost effectiveness of the mobile screening unit in particular could be even greater than estimated, in view of the secondary effects of infection transmission and development of antibiotic resistance.

  4. Methodological problems with gamma-ray burst hardness/intensity correlations

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1993-01-01

    The hardness and intensity are easily measured quantities for all gamma-ray bursts (GRBs), and so, many past and current studies have sought correlations between them. This Letter presents many serious methodological problems with the practical definitions for both hardness and intensity. These difficulties are such that significant correlations can be easily introduced as artifacts of the reduction procedure. In particular, cosmological models of GRBs cannot be tested with hardness/intensity correlations with current instrumentation and the time evolution of the hardness in a given burst may be correlated with intensity for reasons that are unrelated to intrinsic change in the spectral shape.

  5. Monkey search algorithm for ECE components partitioning

    NASA Astrophysics Data System (ADS)

    Kuliev, Elmar; Kureichik, Vladimir; Kureichik, Vladimir, Jr.

    2018-05-01

    The paper considers one of the important design problems – a partitioning of electronic computer equipment (ECE) components (blocks). It belongs to the NP-hard class of problems and has a combinatorial and logic nature. In the paper, a partitioning problem formulation can be found as a partition of graph into parts. To solve the given problem, the authors suggest using a bioinspired approach based on a monkey search algorithm. Based on the developed software, computational experiments were carried out that show the algorithm efficiency, as well as its recommended settings for obtaining more effective solutions in comparison with a genetic algorithm.

  6. CSI: Hard Drive

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2008-01-01

    Acting on information from students who reported seeing a classmate looking at inappropriate material on a school computer, school officials used forensics software to plunge the depths of the PC's hard drive, searching for evidence of improper activity. Images were found in a deleted Internet Explorer cache as well as deleted file space.…

  7. Efficacy of massage treatment technique in masseter muscle hardness: robotic experimental approach.

    PubMed

    Hiraiwa, Yuichiro; Ariji, Yoshiko; Kise, Yoshitaka; Sakuma, Shigemitsu; Kurita, Kenichi; Ariji, Eiichiro

    2013-10-01

    The study aimed to clarify the masseter muscle hardness in patients with myofascial pain, to examine their changes after massage, and to analyze whether the hardness can be an index for massage treatment. Sixteen patients with myofascial pain (12 with unilateral and 4 with bilateral masseter muscle pain) and 24 healthy volunteers were enrolled in this study. The masseter hardness between patients and the healthy volunteers was compared. The changes in the hardness in patients after massage were examined. The relation of the hardness with massage regimens and efficacies was analyzed. There was a significant right-and-left difference of the hardness in patients, although there was no difference in the healthy volunteers. The hardness decreased after massage. The pretreatment asymmetry index of the hardness showed a significant correlation with the massage pressure. It was concluded that there was a significant difference between the right and left masseter hardness in patients with myofascial pain. After massage treatment, the masseter hardness and right-and-left difference decreased. The hardness may be an index for determining the massage pressure.

  8. Improved palatability and bio-functionality of super-hard rice by soaking in a barley-koji miso suspension.

    PubMed

    Nakamura, Sumiko; Nakano, Yohei; Satoh, Hikaru; Ohtsubo, Ken'ichi

    2013-01-01

    Cooked grains of ae rice cultivars are too hard and non-sticky due to the presence of long-chain amylopectin, and ae rice cultivars are therefore called ``super-hard rice'' and cannot be used as table rice. However, they are promising in terms of their bio-functionality such as preventing diabetes. Miso (soybean paste) is a yeast-fermented food, made from steamed soybeans, salt, and inoculated cereals known as koji, made from rice, barley, or soybeans.We investigated the effects of soaking ae mutant rice cultivars in a miso suspension. Their chemical components, physical properties, and enzyme activities were measured under different conditions (milled rice before or after soaking in a 5% barley-koji miso suspension). Rice grains cooked after soaking in the miso suspension were less hard and more sticky than those cooked after soaking in water. Rice grains cooked after soaking in a 5% barley-koji miso suspension maintained high amounts of resistant starch and dietary fiber, and were fortified with polyphenols and isoflavones. Palatable and bio-functional ae rice could therefore be produced by cooking after soaking in a 5% barley-koji miso suspension.

  9. "Hard Science" for Gifted 1st Graders

    ERIC Educational Resources Information Center

    DeGennaro, April

    2006-01-01

    "Hard Science" is designed to teach 1st grade gifted students accurate and high level science concepts. It is based upon their experience of the world and attempts to build a foundation for continued love and enjoyment of science. "Hard Science" provides field experiences and opportunities for hands-on discovery working beside experts in the field…

  10. Monitoring system for testing the radiation hardness of a KINTEX-7 FPGA

    NASA Astrophysics Data System (ADS)

    Cojocariu, L. N.; Placinta, V. M.; Dumitru, L.

    2016-03-01

    A much more efficient Ring Imaging Cherenkov sub-detector system will be rebuilt in the second long shutdown of Large Hadron Collider for the LHCb experiment. Radiation-hard electronic components together with Commercial Off-The-Shelf ones will be used in the new Cherenkov photon detection system architecture. An irradiation program was foreseen to determine the radiation tolerance for the new electronic devices, including a Field Programmable Gate Array from KINTEX-7 family of XILINX. An automated test bench for online monitoring of the XC7K70T KINTEX-7 device operation in radiation conditions was designed and implemented by the LHCb Romanian group.

  11. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    PubMed Central

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-01-01

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering. PMID:28773924

  12. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering.

    PubMed

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-09-27

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  13. Laser Ablatin of Dental Hard Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seka, W.; Rechmann, P.; Featherstone, J.D.B.

    This paper discusses ablation of dental hard tissue using pulsed lasers. It focuses particularly on the relevant tissue and laser parameters and some of the basic ablation processes that are likely to occur. The importance of interstitial water and its phase transitions is discussed in some detail along with the ablation processes that may or may not directly involve water. The interplay between tissue parameters and laser parameters in the outcome of the removal of dental hard tissue is discussed in detail.

  14. Hardness of AISI type 410 martensitic steels after high temperature irradiation via nanoindentation

    NASA Astrophysics Data System (ADS)

    Waseem, Owais Ahmed; Jeong, Jong-Ryul; Park, Byong-Guk; Maeng, Cheol-Soo; Lee, Myoung-Goo; Ryu, Ho Jin

    2017-11-01

    The hardness of irradiated AISI type 410 martensitic steel, which is utilized in structural and magnetic components of nuclear power plants, is investigated in this study. Proton irradiation of AISI type 410 martensitic steel samples was carried out by exposing the samples to 3 MeV protons up to a 1.0 × 1017 p/cm2 fluence level at a representative nuclear reactor coolant temperature of 350 °C. The assessment of deleterious effects of irradiation on the micro-structure and mechanical behavior of the AISI type 410 martensitic steel samples via transmission electron microscopy-energy dispersive spectroscopy and cross-sectional nano-indentation showed no significant variation in the microscopic or mechanical characteristics. These results ensure the integrity of the structural and magnetic components of nuclear reactors made of AISI type 410 martensitic steel under high-temperature irradiation damage levels up to approximately 5.2 × 10-3 dpa.

  15. Hard ceramic coatings: an experimental study on a novel damping treatment

    NASA Astrophysics Data System (ADS)

    Patsias, Sophoclis; Tassini, Nicola; Stanway, Roger

    2004-07-01

    This paper describes a novel damping treatment, namely hard ceramic coatings. These materials can be applied on almost any surface (internal or external) of a component. Their effect is the significant reduction of vibration levels and hence the extension of life expectancy of the component. The damping features of air-plasma-sprayed ceramic coatings (for example amplitude dependence, influence of initial amplitude) are discussed and the experimental procedure employed for testing and characterising such materials is also described. This test procedure is based around a custom-developed rig that allows one to measure the damping (internal friction) of specimens at controlled frequencies, strain amplitudes and, if required, various temperatures. A commonly used Thermal Barrier Coating, Yttria Stabilised Zirconia (8%), is used to demonstrate the above mentioned features. The damping effectiveness of this coating is then compared against two established damping treatments: polymer Free Layer Damping (FLD) and Constrained Layer Damping (CLD). The paper discusses the major issues in characterising ceramic damping coatings and their damping effectiveness when compared against the "traditional" approaches. Finally, the paper concludes with suggestions for further research.

  16. TWO DISTINCT-ABSORPTION X-RAY COMPONENTS FROM TYPE IIn SUPERNOVAE: EVIDENCE FOR ASPHERICITY IN THE CIRCUMSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsuda, Satoru; Tsuboi, Yohko; Maeda, Keiichi

    2016-12-01

    We present multi-epoch X-ray spectral observations of three Type IIn supernovae (SNe), SN 2005kd, SN 2006jd, and SN 2010jl, acquired with Chandra , XMM-Newton , Suzaku , and Swift . Previous extensive X-ray studies of SN 2010jl have revealed that X-ray spectra are dominated by thermal emission, which likely arises from a hot plasma heated by a forward shock propagating into a massive circumstellar medium (CSM). Interestingly, an additional soft X-ray component was required to reproduce the spectra at a period of ∼1–2 years after the SN explosion. Although this component is likely associated with the SN, its origin remained an open question. Wemore » find a similar, additional soft X-ray component from the other two SNe IIn as well. Given this finding, we present a new interpretation for the origin of this component; it is thermal emission from a forward shock essentially identical to the hard X-ray component, but directly reaches us from a void of the dense CSM. Namely, the hard and soft components are responsible for the heavily and moderately absorbed components, respectively. The co-existence of the two components with distinct absorptions as well as the delayed emergence of the moderately absorbed X-ray component could be evidence for asphericity of the CSM. We show that the X-ray spectral evolution can be qualitatively explained by considering a torus-like geometry for the dense CSM. Based on our X-ray spectral analyses, we estimate the radius of the torus-like CSM to be on the order of ∼5 × 10{sup 16} cm.« less

  17. Does hard insertion and space improve shock absorption ability of mouthguard?

    PubMed

    Takeda, Tomotaka; Ishigami, Keiichi; Handa, Jun; Naitoh, Kaoru; Kurokawa, Katsuhide; Shibusawa, Mami; Nakajima, Kazunori; Kawamura, Shintaro

    2006-04-01

    Mouthguards are expected to reduce sports-related orofacial injuries. Numerous studies have been conduced to improve the shock absorption ability of mouthguards using air cells, sorbothane, metal wire, or hard material insertion. Most of these were shown to be effective; however, the result of each study has not been applied to clinical use. The aim of this study was to develop mouthguards that have sufficient prevention ability and ease of clinical application with focus on a hard insertion and space. Ethylene vinyl acetate (EVA) mouthguard blank used was Drufosoft and the acrylic resin was Biolon (Dreve-Dentamid GMBH, Unna, Germany). Three types of mouthguard samples tested were constructed by means of a Dreve Drufomat (Type SO, Dreve-Dentamid) air pressure machine: the first was a conventional laminated type of EVA mouthguard material; the second was a three layer type with acrylic resin inner layer (hard-insertion); the third was the same as the second but with space that does not come into contact with tooth surfaces (hard + space). As a control, without any mouthguard condition (NOMG) was measured. A pendulum type impact testing machine with interchangeable impact object (steel ball and baseball) and dental study model (D17FE-NC.7PS, Nissin, Tokyo, Japan) with the strain gages (KFG-1-120-D171-11N30C2: Kyowa, Tokyo, Japan) applied to teeth and the accelerometer to the dentition (AS-A YG-2768 100G, Kyowa) were used to measure transmitted forces. Statistical analysis (anova, P < 0.01) showed significant differences among four conditions of NOMG and three different mouthguards in both objects and sensor. About acceleration: in a steel ball which was a harder impact object, shock absorption ability of about 40% was shown with conventional EVA and hard-insertion and about 50% with hard + space. In a baseball that was softer compared with steel ball, a decrease rate is smaller, reduction (EVA = approximately 4%, hard-insertion = approximately 12%, hard + space

  18. Hard-Boiled for Hard Times in Leonardo Padura Fuentes's Detective Fiction

    ERIC Educational Resources Information Center

    Song, H. Rosi

    2009-01-01

    Focusing on Leonardo Padura Fuentes's hard-boiled fiction, this essay traces the origin and evolution of the genre in Cuba. Padura Fuentes has challenged the officially sanctioned socialist "literatura policial" that became popular in the 1970s and 1980s. creating a new model of criticism that is not afraid to confront the island's socio-economic…

  19. Hard exudates segmentation based on learned initial seeds and iterative graph cut.

    PubMed

    Kusakunniran, Worapan; Wu, Qiang; Ritthipravat, Panrasee; Zhang, Jian

    2018-05-01

    (Background and Objective): The occurrence of hard exudates is one of the early signs of diabetic retinopathy which is one of the leading causes of the blindness. Many patients with diabetic retinopathy lose their vision because of the late detection of the disease. Thus, this paper is to propose a novel method of hard exudates segmentation in retinal images in an automatic way. (Methods): The existing methods are based on either supervised or unsupervised learning techniques. In addition, the learned segmentation models may often cause miss-detection and/or fault-detection of hard exudates, due to the lack of rich characteristics, the intra-variations, and the similarity with other components in the retinal image. Thus, in this paper, the supervised learning based on the multilayer perceptron (MLP) is only used to identify initial seeds with high confidences to be hard exudates. Then, the segmentation is finalized by unsupervised learning based on the iterative graph cut (GC) using clusters of initial seeds. Also, in order to reduce color intra-variations of hard exudates in different retinal images, the color transfer (CT) is applied to normalize their color information, in the pre-processing step. (Results): The experiments and comparisons with the other existing methods are based on the two well-known datasets, e_ophtha EX and DIARETDB1. It can be seen that the proposed method outperforms the other existing methods in the literature, with the sensitivity in the pixel-level of 0.891 for the DIARETDB1 dataset and 0.564 for the e_ophtha EX dataset. The cross datasets validation where the training process is performed on one dataset and the testing process is performed on another dataset is also evaluated in this paper, in order to illustrate the robustness of the proposed method. (Conclusions): This newly proposed method integrates the supervised learning and unsupervised learning based techniques. It achieves the improved performance, when compared with the

  20. Extraordinarily soft, medium-hard and hard Indian wheat varieties: Composition, protein profile, dough and baking properties.

    PubMed

    Katyal, Mehak; Singh, Narpinder; Virdi, Amardeep Singh; Kaur, Amritpal; Chopra, Nidhi; Ahlawat, Arvind Kumar; Singh, Anju Mahendru

    2017-10-01

    Hard wheat (HW), medium-hard wheat (MHW) and extraordinarily soft wheat (Ex-SW) varieties with grain hardness index (GHI) of 83 to 95, 72 to 80, 17 to 29 were evaluated for pasting, protein molecular weight (MW) distribution, dough rheology and baking properties. Flours from varieties with higher GHI had more protein content, ash content and paste viscosities. Ex-SW had more glutenins proportion as compared to HW and MHW. Flours from Ex-SW varieties showed lower NaSRC, WA and mixographic parameters as compared to HW and MHW. Dough from flours milled from Ex-SW had higher Intermolecular-β-sheets (IM-β-sheets) than those from MHW and HW. Muffins volume increased with decrease in GHI, Ex-SW varieties had more muffin volume and less air space. The accumulation of polypeptides (PPs) varied significantly in different varieties. Ex-SW variety (QBP12-10) showed accumulation of 98, 90, 81 and 79kDa PPs, which was unique and was different from other varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Long-term hot-hardness characteristics of five through-hardened bearing steels

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.

    1978-01-01

    Five vacuum-melted bearing steels tempered to various room temperature hardnesses: AISI 52100 and the tool steels AISI M-1, AISI M-50, Halmo, and WB-49 were studied. Hardness measurements were taken on AISI 52100 at room temperature and at elevated temperatures after soaking it at temperatures to 478 K (400 F) for as long as 1000 hours. Hardness measurements were also taken on the tool steels after soaking them at temperatures to 700 K (800 F) for as long at 1000 hours. None of the tool steel tempered during soaking and AISI 52100 did not temper when soaked at 366 K (200 F) for 1000 hours. However, AISI 52100 that was initially hardened to room temperature hardness of 62.5 or 64.5 lost hardness during the first 500 hours of the 1000-hour soak tests at temperatures greater than 394 K (250 F), but it maintained its hardness during the final 500 hours of soaking. Similarly, AISI 52100 initially hardened to room temperature hardness of 60.5 lost hardness during the first 500 hours of the 1000-hour soaking at temperatures greater than 422 K (300 F), but it maintained its hardness during the final 500 hours of soaking.

  2. Short-term hot-hardness characteristics of five case hardened steels

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Zaretsky, E. V.

    1975-01-01

    Short-term hot-hardness studies were performed with carburized and hardened AISI 8620, CBS 1000, CBS 1000M, CBS 600, and Vasco X-2 steels. Case and core hardness measurements were made at temperatures from 294 to 811 K (70 to 1000 F). The data were compared with data for high-speed tool steels and AISI 52100. The materials tested can be ranked as follows in order of decreasing hot-hardness retention: (1) Vasco X-2; equivalent to through-hardened tool steels up to 644 K (700 F) above which Vasco X-2 is inferior; (2) CBS 1000, (3) CBS 1000M; (4) CBS 6000; better hardness retention at elevated temperatures than through-hardened AISI 52100; and (5) AISI 8620. For the carburized steels, the change in hardness with temperature of the case and core are similar for a given material. The short-term hot hardness of these materials can be predicted with + or - 1 point Rockwell C.

  3. Hard X-ray Wiggler Front End Filter Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte-Schrepping, Horst; Hahn, Ulrich

    2007-01-19

    The front end filter design and implementation for the new HARWI-II hard X-ray wiggler at DORIS-III at HASYLAB/DESY is presented. The device emits a total power of 30 kW at 150mA storage ring current. The beam has a horizontal width of 3.8mrad and a central power density of 54 W/mm2 at 26m distance to the source. The filter section located in the ring tunnel has been introduced to tailor the thermal loads at the downstream optical components. The high power density and the high total power at the filter section are handled with a layered design. Glassy carbon filters convertmore » the absorbed power into thermal radiation to lower the heat load to an acceptable level for water cooled copper filters. The requirements in beam size and filtering are addressed by separating the filter functions in three units which are switched individually into the beam.« less

  4. Is there a hard-to-reach audience?

    PubMed Central

    Freimuth, V S; Mettger, W

    1990-01-01

    The "hard-to-reach" label has been applied to many different audiences. Persons who have a low socioeconomic status (SES), members of ethnic minorities, and persons who have a low level of literacy often are tagged as "hard-to-reach." The authors identify reasons why these groups have been labelled "hard-to-reach," discuss preconceptions associated with the "hard-to-reach" label, propose alternative conceptualizations of these audiences, and present implications of such conceptualizations for health communication campaigns. Pejorative labels and preconceptions about various groups may lead to depicting these audiences as powerless, apathetic, and isolated. The authors discuss alternative conceptualizations, which highlight the strengths of different audience segments and encourage innovative approaches to the communication process. These alternative conceptualizations emphasize interactive communication, a view of society in which individuals are seen as members of equivalent--albeit different--cultures, and a shift of responsibility for health problems from individuals to social systems. Recommendations for incorporating these alternative concepts into health campaigns include formative research techniques that create a dialogue among participants, more sophisticated segmentation techniques to capture audience diversity, and new roles for mass media that are more interactive and responsive to individual needs. PMID:2113680

  5. Hard Photodisintegration of 3He

    NASA Astrophysics Data System (ADS)

    Granados, Carlos

    2011-02-01

    Large angle photodisintegration of two nucleons from the 3He nucleus is studied within the framework of the hard rescattering model (HRM). In the HRM the incoming photon is absorbed by one nucleon's valence quark that then undergoes a hard rescattering reaction with a valence quark from the second nucleon producing two nucleons emerging at large transverse momentum . Parameter free cross sections for pp and pn break up channels are calculated through the input of experimental cross sections on pp and pn elastic scattering. The calculated cross section for pp breakup and its predicted energy dependency are in good agreement with recent experimental data. Predictions on spectator momentum distributions and helicity transfer are also presented.

  6. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  7. NuSTAR Detection of a Hard X-Ray Source in the Supernova Remnant-molecular Cloud Interaction Site of IC 443

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Tang, Xiaping; Zhang, Xiao; Sun, Lei; Gotthelf, Eric V.; Zhang, Zhi-Yu; Li, Hui; Cheng, Allen; Pasham, Dheeraj; Baganoff, Frederick K.; Perez, Kerstin; Hailey, Charles J.; Mori, Kaya

    2018-06-01

    We report on a broadband study of a complex X-ray source (1SAX J0618.0+2227) associated with the interaction site of the supernova remnant (SNR) IC 443 and ambient molecular cloud (MC) using NuSTAR, XMM-Newton, and Chandra observations. Its X-ray spectrum is composed of both thermal and nonthermal components. The thermal component can be equally well represented by either a thin plasma model with kT = 0.19 keV or a blackbody model with kT = 0.11 keV. The nonthermal component can be fit with either a power law with Γ ∼ 1.7 or a cutoff power law with Γ ∼ 1.5 and a cutoff energy at E cut ∼ 18 keV. Using the newly obtained NuSTAR data set, we test three possible scenarios for isolated X-ray sources in the SNR–MC interaction site: (1) a pulsar wind nebula (PWN); (2) an SNR ejecta fragment; and (3) a shocked molecular clump. We conclude that this source is most likely composed of an SNR ejecta (or a PWN) and surrounding shocked molecular clumps. The nature of this hard X-ray source in the SNR–MC interaction site of IC 443 may shed light on unidentified X-ray sources with hard X-ray spectra in rich environments for star-forming regions, such as the Galactic center.

  8. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties

    PubMed Central

    Kumar, Rohit; Kumar, Aman; Sharma, Nand Kishor; Kaur, Navneet; Chunduri, Venkatesh; Chawla, Meenakshi; Sharma, Saloni; Singh, Kashmir; Garg, Monika

    2016-01-01

    Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch

  9. Rapid X-ray variability properties during the unusual very hard state in neutron-star low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wijnands, R.; Parikh, A. S.; Altamirano, D.; Homan, J.; Degenaar, N.

    2017-11-01

    Here, we study the rapid X-ray variability (using XMM-Newton observations) of three neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) during their recently proposed very hard spectral state. All our systems exhibit a strong to very strong noise component in their power density spectra (rms amplitudes ranging from 34 per cent to 102 per cent) with very low characteristic frequencies (as low as 0.01 Hz). These properties are more extreme than what is commonly observed in the canonical hard state of neutron-star low-mass X-ray binaries observed at X-ray luminosities similar to those we observe from our sources. This suggests that indeed the very hard state is a spectral-timing state distinct from the hard state, although we argue that the variability behaviour of IGR J18245-2452 is very extreme and possibly this source was in a very unusual state. We also compare our results with the rapid X-ray variability of the accreting millisecond X-ray pulsars IGR J00291+5934 and Swift J0911.9-6452 (also using XMM-Newton data) for which previously similar variability phenomena were observed. Although their energy spectra (as observed using the Swift X-ray telescope) were not necessarily as hard (i.e. for Swift J0911.9-6452) as for our other three sources, we conclude that likely both sources were also in very similar state during their XMM-Newton observations. This suggests that different sources that are found in this new state might exhibit different spectral hardness and one has to study both the spectral and the rapid variability to identify this unusual state.

  10. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties.

    PubMed

    Kumar, Rohit; Kumar, Aman; Sharma, Nand Kishor; Kaur, Navneet; Chunduri, Venkatesh; Chawla, Meenakshi; Sharma, Saloni; Singh, Kashmir; Garg, Monika

    2016-01-01

    Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch

  11. Impact of the hard-coded parameters on the hydrologic fluxes of the land surface model Noah-MP

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Attinger, Sabine; Thober, Stephan

    2016-04-01

    Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The process descriptions contain a number of parameters that can be soil or plant type dependent and are typically read from tabulated input files. Land surface models may have, however, process descriptions that contain fixed, hard-coded numbers in the computer code, which are not identified as model parameters. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the importance of the fixed values on restricting the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options, which are mostly spatially constant values. This is in addition to the 71 standard parameters of Noah-MP, which mostly get distributed spatially by given vegetation and soil input maps. We performed a Sobol' global sensitivity analysis of Noah-MP to variations of the standard and hard-coded parameters for a specific set of process options. 42 standard parameters and 75 hard-coded parameters were active with the chosen process options. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated. These sensitivities were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the

  12. Dedicated outreach service for hard to reach patients with tuberculosis in London: observational study and economic evaluation

    PubMed Central

    Jit, Mark; Stagg, Helen R; Aldridge, Robert W; White, Peter J

    2011-01-01

    Objective To assess the cost effectiveness of the Find and Treat service for diagnosing and managing hard to reach individuals with active tuberculosis. Design Economic evaluation using a discrete, multiple age cohort, compartmental model of treated and untreated cases of active tuberculosis. Setting London, United Kingdom. Population Hard to reach individuals with active pulmonary tuberculosis screened or managed by the Find and Treat service (48 mobile screening unit cases, 188 cases referred for case management support, and 180 cases referred for loss to follow-up), and 252 passively presenting controls from London’s enhanced tuberculosis surveillance system. Main outcome measures Incremental costs, quality adjusted life years (QALYs), and cost effectiveness ratios for the Find and Treat service. Results The model estimated that, on average, the Find and Treat service identifies 16 and manages 123 active cases of tuberculosis each year in hard to reach groups in London. The service has a net cost of £1.4 million/year and, under conservative assumptions, gains 220 QALYs. The incremental cost effectiveness ratio was £6400-£10 000/QALY gained (about €7300-€11 000 or $10 000-$16 000 in September 2011). The two Find and Treat components were also cost effective, even in unfavourable scenarios (mobile screening unit (for undiagnosed cases), £18 000-£26 000/QALY gained; case management support team, £4100-£6800/QALY gained). Conclusions Both the screening and case management components of the Find and Treat service are likely to be cost effective in London. The cost effectiveness of the mobile screening unit in particular could be even greater than estimated, in view of the secondary effects of infection transmission and development of antibiotic resistance. PMID:22067473

  13. Interpretable functional principal component analysis.

    PubMed

    Lin, Zhenhua; Wang, Liangliang; Cao, Jiguo

    2016-09-01

    Functional principal component analysis (FPCA) is a popular approach to explore major sources of variation in a sample of random curves. These major sources of variation are represented by functional principal components (FPCs). The intervals where the values of FPCs are significant are interpreted as where sample curves have major variations. However, these intervals are often hard for naïve users to identify, because of the vague definition of "significant values". In this article, we develop a novel penalty-based method to derive FPCs that are only nonzero precisely in the intervals where the values of FPCs are significant, whence the derived FPCs possess better interpretability than the FPCs derived from existing methods. To compute the proposed FPCs, we devise an efficient algorithm based on projection deflation techniques. We show that the proposed interpretable FPCs are strongly consistent and asymptotically normal under mild conditions. Simulation studies confirm that with a competitive performance in explaining variations of sample curves, the proposed FPCs are more interpretable than the traditional counterparts. This advantage is demonstrated by analyzing two real datasets, namely, electroencephalography data and Canadian weather data. © 2015, The International Biometric Society.

  14. Fault-Tolerant, Radiation-Hard DSP

    NASA Technical Reports Server (NTRS)

    Czajkowski, David

    2011-01-01

    Commercial digital signal processors (DSPs) for use in high-speed satellite computers are challenged by the damaging effects of space radiation, mainly single event upsets (SEUs) and single event functional interrupts (SEFIs). Innovations have been developed for mitigating the effects of SEUs and SEFIs, enabling the use of very-highspeed commercial DSPs with improved SEU tolerances. Time-triple modular redundancy (TTMR) is a method of applying traditional triple modular redundancy on a single processor, exploiting the VLIW (very long instruction word) class of parallel processors. TTMR improves SEU rates substantially. SEFIs are solved by a SEFI-hardened core circuit, external to the microprocessor. It monitors the health of the processor, and if a SEFI occurs, forces the processor to return to performance through a series of escalating events. TTMR and hardened-core solutions were developed for both DSPs and reconfigurable field-programmable gate arrays (FPGAs). This includes advancement of TTMR algorithms for DSPs and reconfigurable FPGAs, plus a rad-hard, hardened-core integrated circuit that services both the DSP and FPGA. Additionally, a combined DSP and FPGA board architecture was fully developed into a rad-hard engineering product. This technology enables use of commercial off-the-shelf (COTS) DSPs in computers for satellite and other space applications, allowing rapid deployment at a much lower cost. Traditional rad-hard space computers are very expensive and typically have long lead times. These computers are either based on traditional rad-hard processors, which have extremely low computational performance, or triple modular redundant (TMR) FPGA arrays, which suffer from power and complexity issues. Even more frustrating is that the TMR arrays of FPGAs require a fixed, external rad-hard voting element, thereby causing them to lose much of their reconfiguration capability and in some cases significant speed reduction. The benefits of COTS high

  15. Hydration entropy change from the hard sphere model.

    PubMed

    Graziano, Giuseppe; Lee, Byungkook

    2002-12-10

    The gas to liquid transfer entropy change for a pure non-polar liquid can be calculated quite accurately using a hard sphere model that obeys the Carnahan-Starling equation of state. The same procedure fails to produce a reasonable value for hydrogen bonding liquids such as water, methanol and ethanol. However, the size of the molecules increases when the hydrogen bonds are turned off to produce the hard sphere system and the volume packing density rises. We show here that the hard sphere system that has this increased packing density reproduces the experimental transfer entropy values rather well. The gas to water transfer entropy values for small non-polar hydrocarbons is also not reproduced by a hard sphere model, whether one uses the normal (2.8 A diameter) or the increased (3.2 A) size for water. At least part of the reason that the hard sphere model with 2.8 A size water produces too small entropy change is that the size of water is too small for a system without hydrogen bonds. The reason that the 3.2 A model also produces too small entropy values is that this is an overly crowded system and that the free volume introduced in the system by the addition of a solute molecule produces too much of a relief to this crowding. A hard sphere model, in which the free volume increase is limited by requiring that the average surface-to-surface distance between the solute and water molecules is the same as that between the increased-size water molecules, does approximately reproduce the experimental hydration entropy values. Copyright 2002 Elsevier Science B.V.

  16. Positional ordering of hard adsorbate particles in tubular nanopores

    NASA Astrophysics Data System (ADS)

    Gurin, Péter; Varga, Szabolcs; Martínez-Ratón, Yuri; Velasco, Enrique

    2018-05-01

    The phase behavior and structural properties of a monolayer of hard particles is examined in such a confinement where the adsorbed particles are constrained to the surface of a narrow hard cylindrical pore. The diameter of the pore is chosen such that only first- and second-neighbor interactions occur between the hard particles. The transfer operator method of [Percus and Zhang, Mol. Phys. 69, 347 (1990), 10.1080/00268979000100241] is reformulated to obtain information about the structure of the monolayer. We have found that a true phase transition is not possible in the examined range of pore diameters. The monolayer of hard spheres undergoes a structural change from fluidlike order to a zigzaglike solid one with increasing surface density. The case of hard cylinders is different in the sense that a layering takes place continuously between a low-density one-row and a high-density two-row monolayer. Our results reveal a clear discrepancy with classical density functional theories, which do not distinguish smecticlike ordering in bulk from that in narrow periodic pores.

  17. On the impossibility of defining adhesive hard spheres as sticky limit of a hard-sphere-Yukawa potential.

    PubMed

    Gazzillo, Domenico

    2011-03-28

    For fluids of molecules with short-ranged hard-sphere-Yukawa (HSY) interactions, it is proven that the Noro-Frenkel "extended law of corresponding states" cannot be applied down to the vanishing attraction range, since the exact HSY second virial coefficient diverges in such a limit. It is also shown that, besides Baxter's original approach, a fully correct alternative definition of "adhesive hard spheres" can be obtained by taking the vanishing-range-limit (sticky limit) not of a Yukawa tail, as is commonly done, but of a slightly different potential with a logarithmic-Yukawa attraction.

  18. Mongoose: Creation of a Rad-Hard MIPS R3000

    NASA Technical Reports Server (NTRS)

    Lincoln, Dan; Smith, Brian

    1993-01-01

    This paper describes the development of a 32 Bit, full MIPS R3000 code-compatible Rad-Hard CPU, code named Mongoose. Mongoose progressed from contract award, through the design cycle, to operational silicon in 12 months to meet a space mission for NASA. The goal was the creation of a fully static device capable of operation to the maximum Mil-883 derated speed, worst-case post-rad exposure with full operational integrity. This included consideration of features for functional enhancements relating to mission compatibility and removal of commercial practices not supported by Rad-Hard technology. 'Mongoose' developed from an evolution of LSI Logic's MIPS-I embedded processor, LR33000, code named Cobra, to its Rad-Hard 'equivalent', Mongoose. The term 'equivalent' is used to infer that the core of the processor is functionally identical, allowing the same use and optimizations of the MIPS-I Instruction Set software tool suite for compilation, software program trace, etc. This activity was started in September of 1991 under a contract from NASA-Goddard Space Flight Center (GSFC)-Flight Data Systems. The approach affected a teaming of NASA-GSFC for program development, LSI Logic for system and ASIC design coupled with the Rad-Hard process technology, and Harris (GASD) for Rad-Hard microprocessor design expertise. The program culminated with the generation of Rad-Hard Mongoose prototypes one year later.

  19. Simulation and Laboratory results of the Hard X-ray Polarimeter: X-Calibur

    NASA Astrophysics Data System (ADS)

    Guo, Qingzhen; Beilicke, M.; Kislat, F.; Krawczynski, H.

    2014-01-01

    X-ray polarimetry promises to give qualitatively new information about high-energy sources, such as binary black hole (BH) systems, Microquasars, active galactic nuclei (AGN), GRBs, etc. We designed, built and tested a hard X-ray polarimeter 'X-Calibur' to be flown in the focal plane of the InFOCuS grazing incidence hard X-ray telescope in 2014. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20- 80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the E field orientation. X-Calibur achieves a high detection efficiency of order unity. We optimized of the design of the instrument based on Monte Carlo simulations of polarized and unpolarized X-ray beams and of the most important background components. We have calibrated and tested X-Calibur extensively in the laboratory at Washington University and at the Cornell High-Energy Synchrotron Source (CHESS). Measurements using the highly polarized synchrotron beam at CHESS confirm the polarization sensitivity of the instrument. In this talk we report on the optimization of the design of the instrument based on Monte Carlo simulations, as well as results of laboratory calibration measurements characterizing the performance of the instrument.

  20. On the phase behavior of hard aspherical particles

    NASA Astrophysics Data System (ADS)

    Miller, William L.; Cacciuto, Angelo

    2010-12-01

    We use numerical simulations to understand how random deviations from the ideal spherical shape affect the ability of hard particles to form fcc crystalline structures. Using a system of hard spheres as a reference, we determine the fluid-solid coexistence pressures of both shape-polydisperse and monodisperse systems of aspherical hard particles. We find that when particles are sufficiently isotropic, the coexistence pressure can be predicted from a linear relation involving the product of two simple geometric parameters characterizing the asphericity of the particles. Finally, our results allow us to gain direct insight into the crystallizability limits of these systems by rationalizing empirical data obtained for analogous monodisperse systems.

  1. Dendritic Growth of Hard-Sphere Crystals. Experiment 34

    NASA Technical Reports Server (NTRS)

    Russel, W. B.; Chaikin, P. M.; Zhu, Ji-Xiang; Meyer, W. V.; Rogers, R.

    1998-01-01

    Recent observations of the disorder-order transition for colloidal hard spheres under microgravity revealed dendritic crystallites roughly 1-2 mm in size for samples in the coexistence region of the phase diagram. Order-of-magnitude estimates rationalize the absence of large or dendritic crystals under normal gravity and their stability to annealing in microgravity. A linear stability analysis of the Ackerson and Schaetzel model for crystallization of hard spheres establishes the domain of instability for diffusion-limited growth at small supersaturations. The relationship between hard-sphere and molecular crystal growth is established and exploited to relate the predicted linear instability to the well-developed dendrites observed.

  2. New Hardness Results for Diophantine Approximation

    NASA Astrophysics Data System (ADS)

    Eisenbrand, Friedrich; Rothvoß, Thomas

    We revisit simultaneous Diophantine approximation, a classical problem from the geometry of numbers which has many applications in algorithms and complexity. The input to the decision version of this problem consists of a rational vector α ∈ ℚ n , an error bound ɛ and a denominator bound N ∈ ℕ + . One has to decide whether there exists an integer, called the denominator Q with 1 ≤ Q ≤ N such that the distance of each number Q ·α i to its nearest integer is bounded by ɛ. Lagarias has shown that this problem is NP-complete and optimization versions have been shown to be hard to approximate within a factor n c/ loglogn for some constant c > 0. We strengthen the existing hardness results and show that the optimization problem of finding the smallest denominator Q ∈ ℕ + such that the distances of Q·α i to the nearest integer are bounded by ɛ is hard to approximate within a factor 2 n unless {textrm{P}} = NP.

  3. Surgical lasers and hard dental tissue.

    PubMed

    Parker, S

    2007-04-28

    The cutting of dental hard tissue during restorative procedures presents considerable demands on the ability to selectively remove diseased carious tissue, obtain outline and retention form and maintain the integrity of supporting tooth tissue without structural weakening. In addition, the requirement to preserve healthy tissue and prevent further breakdown of the restoration places the choice of instrumentation and clinical technique as prime factors for the dental surgeon. The quest for an alternative treatment modality to the conventional dental turbine has been, essentially, patient-driven and has led to the development of various mechanical and chemical devices. The review of the literature has endorsed the beneficial effects of current laser machines. However utopian, there is additional evidence to support the development of ultra-short (nano- and femto-second) pulsed lasers that are stable in use and commercially viable, to deliver more efficient hard tissue ablation with less risk of collateral thermal damage. This paper explores the interaction of laser energy with dental hard tissues and bone and the integration of current laser wavelengths into restorative and surgical dentistry.

  4. How to estimate hardness of crystals on a pocket calculator

    NASA Astrophysics Data System (ADS)

    Šimůnek, Antonín

    2007-05-01

    A generalization of the semiempirical microscopic model of hardness is presented and applied to currently studied borides, carbides, and nitrides of heavy transition metals. The hardness of OsB, OsC, OsN, PtN, RuC, RuB2 , ReB2 , OsB2 , IrN2 , PtN2 , and OsN2 crystals in various structural phases is predicted. It is found that none of the transition metal crystals is superhard, i.e., with hardness greater than 40GPa . The presented method provides materials researchers with a practical tool in the search for new hard materials.

  5. Hard Break-Up of Two-Nucleons and QCD Dynamics of NN Interaction

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak

    2008-10-01

    We discus recent developments in theory of high energy two-body break-up of few-nucleon systems. The characteristics of these reactions are such that the hard two-body quasielastic subprocess can be clearly separated from the accompanying soft subprocesses. We discuss in details the hard rescattering model (HRM) in which hard photodisintegration develops in two stages. At first, photon knocks-out an energetic quark which rescatters subsequently with a quark of the other nucleon. The latter provides a mechanism of sharing the initial high momentum of the photon between two outgoing nucleons. This final state hard rescattering can be expressed through the hard NN scattering amplitude. Within HRM we discuss hard break-up reactions involving D and 3He targets and demonstrate how these reactions are sensitive to the dynamics of hard pn and pp interaction. Another development of HRM is the prediction of new helicity selection mechanism for hard two-body reactions, which was apparently confirmed in the recent JLab experiment.

  6. Friction and hardness of gold films deposited by ion plating and evaporation

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.

  7. Spectral and Timing Properties of the Black Hole X-Ray Binary H1743-322 in the Low/Hard State Studied with Suzaku

    NASA Astrophysics Data System (ADS)

    Shidatsu, M.; Ueda, Y.; Yamada, S.; Done, C.; Hori, T.; Yamaoka, K.; Kubota, A.; Nagayama, T.; Moritani, Y.

    2014-07-01

    We report on the results from Suzaku observations of the Galactic black hole X-ray binary H1743-322 in the low/hard state during its outburst in 2012 October. We appropriately take into account the effects of dust scattering to accurately analyze the X-ray spectra. The time-averaged spectra in the 1-200 keV band are dominated by a hard power-law component of a photon index of ≈1.6 with a high-energy cutoff at ≈60 keV, which is well described with the Comptonization of the disk emission by the hot corona. We estimate the inner disk radius from the multi-color disk component, and find that it is 1.3-2.3 times larger than the radius in the high/soft state. This suggests that the standard disk was not extended to the innermost stable circular orbit. A reflection component from the disk is detected with R = Ω/2π ≈ 0.6 (Ω is the solid angle). We also successfully estimate the stable disk component independent of the time-averaged spectral modeling by analyzing short-term spectral variability on a ~1 s timescale. A weak low-frequency quasi-periodic oscillation at 0.1-0.2 Hz is detected, whose frequency is found to correlate with the X-ray luminosity and photon index. This result may be explained by the evolution of the disk truncation radius.

  8. Hard X-ray emission from the solar corona

    NASA Astrophysics Data System (ADS)

    Krucker, S.; Battaglia, M.; Cargill, P. J.; Fletcher, L.; Hudson, H. S.; MacKinnon, A. L.; Masuda, S.; Sui, L.; Tomczak, M.; Veronig, A. L.; Vlahos, L.; White, S. M.

    2008-10-01

    This review surveys hard X-ray emissions of non-thermal electrons in the solar corona. These electrons originate in flares and flare-related processes. Hard X-ray emission is the most direct diagnostic of electron presence in the corona, and such observations provide quantitative determinations of the total energy in the non-thermal electrons. The most intense flare emissions are generally observed from the chromosphere at footpoints of magnetic loops. Over the years, however, many observations of hard X-ray and even γ-ray emission directly from the corona have also been reported. These coronal sources are of particular interest as they occur closest to where the electron acceleration is thought to occur. Prior to the actual direct imaging observations, disk occultation was usually required to study coronal sources, resulting in limited physical information. Now RHESSI has given us a systematic view of coronal sources that combines high spatial and spectral resolution with broad energy coverage and high sensitivity. Despite the low density and hence low bremsstrahlung efficiency of the corona, we now detect coronal hard X-ray emissions from sources in all phases of solar flares. Because the physical conditions in such sources may differ substantially from those of the usual “footpoint” emission regions, we take the opportunity to revisit the physics of hard X-radiation and relevant theories of particle acceleration.

  9. Soft electroactive actuators and hard ratchet-wheels enable unidirectional locomotion of hybrid machine

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong

    2017-01-01

    Combining synergistically the muscle-like actuation of soft materials and load-carrying and locomotive capability of hard mechanical components results in hybrid soft machines that can exhibit specific functions. Here, we describe the design, fabrication, modeling and experiment of a hybrid soft machine enabled by marrying unidirectionally actuated dielectric elastomer (DE) membrane-spring system and ratchet wheels. Subjected to an applied voltage 8.2 kV at ramping velocity 820 V/s, the hybrid machine prototype exhibits monotonic uniaxial locomotion with an averaged velocity 0.5mm/s. The underlying physics and working mechanisms of the soft machine are verified and elucidated by finite element simulation.

  10. The thermal expansion of hard magnetic materials of the Nd-Fe-B system

    NASA Astrophysics Data System (ADS)

    Savchenko, Igor; Kozlovskii, Yurii; Samoshkin, Dmitriy; Yatsuk, Oleg

    2017-10-01

    The results of dilatometric measurement of the thermal expansion of hard magnetic materials brands N35M, N35H and N35SH containing as a main component the crystalline phase of Nd2Fe14B type are presented. The temperature range from 200 to 750 K has been investigated by the method of dilatometry with an error of 1.5-2×10-7 K-1. The approximation dependences of the linear thermal expansion coefficient have been obtained. The character of changes of the thermal coefficient of linear expansion in the region of the Curie point has been specified, its critical indices and critical amplitudes have been defined.

  11. Retention of the Hard-to-Employ. Perspectives on Training the Disadvantaged--The Hard-to-Employ. Personnel Services Review Series 2.

    ERIC Educational Resources Information Center

    Harrison, Don K.; Brown, Dorothy R.

    Although calculated by various statistical methods, retention (in this monograph) refers to the time that a former hard core member stays on the job. These rates may be tallied from the first day of pre-vocational training at a center, from the first day of a plant's vestibule training, or the first day of work at the job site. The hard core need…

  12. Gelation in a model 1-component system with adhesive hard-sphere interactions

    NASA Astrophysics Data System (ADS)

    Kim, Jung Min; Eberle, Aaron; Fang, Jun; Wagner, Norman

    2012-02-01

    Colloidal dispersions can undergo a dynamical arrest of the disperse phase leading to a system with solid-like properties when either the volume fraction or the interparticle potential is varied. Systems that contain low to moderate particulate concentrations form gels whereas higher concentrations lead to glassy states in which caging by nearest neighbors can be a significant contributor to the arrested long-time dynamics. Colloid polymer mixtures have been the prevalent model system for studying the effect of attraction, where attractions are entropically driven by depletion effects, in which gelation has been shown to be a result of phase separation [1]. Using the model 1-component octadecyl coated silica nanoparticle system, Eberle et al. [2] found the gel-line to intersect the spinodal to the left of the critical point, and at higher concentrations extended toward the mode coupling theory attractive driven glass line. . We continue this study by varying the particle diameter and find quantitative differences which we explain by gravity. 1. Lu, P.J., et al., Nature, 2008. 453(7194): p. 499-504.2. Eberle, A.P.R., N.J. Wagner, and R. Castaneda-Priego, Physical Review Letters, 2011. 106(10).

  13. Electrospark Deposition for Depot- and Field-Level Component Repair and Replacement of Hard Chromium Plating

    DTIC Science & Technology

    2008-02-01

    with an ASAP proprietary process. Corrosion applications frequently are addressed with iron- aluminide and nickel alloys such as Inconel 625 alloy...IN625) and Hastelloy C-22. Wear applications commonly treated with ESD include cutting edges of chipper knives, saw teeth, and mower blades ; wear...Applications for ESD repair include components of steel, stainless steel, nickel- and cobalt-based superalloys, aluminum, Monel, titanium , and magnesium

  14. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Smith, D. M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Harrison, F. A.; Grefenstette, B. W.; Stern, D.

    2012-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. Around the time of this meeting, the Nuclear Spectroscopic Telescope ARray (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. Three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux; 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating; 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum; 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes; 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched; 6) Study of particles at the coronal reconnection site when flare footpoints and loops are occulted; 7) Search for weak high-temperature coronal plasmas in active regions that are not flaring; and 8) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  15. A new, bright and hard aluminum surface produced by anodization

    NASA Astrophysics Data System (ADS)

    Hou, Fengyan; Hu, Bo; Tay, See Leng; Wang, Yuxin; Xiong, Chao; Gao, Wei

    2017-07-01

    Anodized aluminum (Al) and Al alloys have a wide range of applications. However, certain anodized finishings have relatively low hardness, dull appearance and/or poor corrosion resistance, which limited their applications. In this research, Al was first electropolished in a phosphoric acid-based solution, then anodized in a sulfuric acid-based solution under controlled processing parameters. The anodized specimen was then sealed by two-step sealing method. A systematic study including microstructure, surface morphology, hardness and corrosion resistance of these anodized films has been conducted. Results show that the hardness of this new anodized film was increased by a factor of 10 compared with the pure Al metal. Salt spray corrosion testing also demonstrated the greatly improved corrosion resistance. Unlike the traditional hard anodized Al which presents a dull-colored surface, this newly developed anodized Al alloy possesses a very bright and shiny surface with good hardness and corrosion resistance.

  16. Models of the hard X-ray spectrum of AM Herculis and implications for the accretion rate

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; Fabian, A. C.; Ross, R. R.

    1983-01-01

    Phenomenological fits to the hard X-ray spectrum of AM Herculis left unexplained the high equivalent width (0.8 + or - 0.1 keV) of Fe K alpha emission. A purely thermal origin implies a much steeper spectrum than was observed. With Monte Carlo calculations, scattering and fluorescent line production in a cold or partially ionized accretion column of hard X-rays emitted at the base were investigated. The strength of the iron emission and the flat spectral continuum can be explained by the effects of fluorescence and absorption within the accretion column and the surface of the white dwarf on a thermal X-ray spectrum. Thomson optical depths across the column in the range 0.2 to 0.7 are acceptable. The accretion rate and gravitational power can be deduced from the optical depth across the column, if the column size is known, and, together with the observed hard X-ray and polarized light luminosities, imply a lower limit for the luminosity in the UV to soft X-ray range, for which the observations give model-dependent values. Estimates of the column size differ by a factor of 40. Small spot sizes and low luminosities would be consistent with the soft component being the expected reprocessed bremsstrahlung and cyclotron radiation, although the constraint of matching the spectrum confines one to solutions with fluxes exceeding 20% the Eddington limits.

  17. Very hard states in neutron star low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Parikh, A. S.; Wijnands, R.; Degenaar, N.; Altamirano, D.; Patruno, A.; Gusinskaia, N. V.; Hessels, J. W. T.

    2017-07-01

    We report on unusually very hard spectral states in three confirmed neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) at a luminosity between ˜1036 and 1037 erg s-1. When fitting the Swift X-ray spectra (0.5-10 keV) in those states with an absorbed power-law model, we found photon indices of Γ ˜ 1, significantly lower than the Γ = 1.5-2.0 typically seen when such systems are in their so called hard state. For individual sources, very hard spectra were already previously identified, but here we show for the first time that likely our sources were in a distinct spectral state (I.e. different from the hard state) when they exhibited such very hard spectra. It is unclear how such very hard spectra can be formed; if the emission mechanism is similar to that operating in their hard states (I.e. up-scattering of soft photons due to hot electrons), then the electrons should have higher temperatures or a higher optical depth in the very hard state compared to those observed in the hard state. By using our obtained Γ as a tracer for the spectral evolution with luminosity, we have compared our results with those obtained by Wijnands et al. Our sample of sources follows the same track as the other neutron star systems in Wijnands et al., confirming their general results. However, we do not find that the accreting millisecond pulsars are systematically harder than the non-pulsating systems.

  18. The phenomenon of cathodoluminescence in tooth hard tissues

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Matasov, Maxim D.

    2012-03-01

    The phenomenon of luminescence in tooth hard tissues under the hits of electrons accelerated up to 3keV has been investigated and the nature of luminescence has been described. It has been discovered that the change in luminescence color depends on the place of the impingement of primary electrons. The latter could be explained by different chemical compositions of compounds and complexes where luminescence is observed. Based on the analysis of RGB color bar charts, the correlation between the color of luminescence and calcium-phosphorus ratio in tooth hard tissues has been investigated. Thus, cathodoluminescence can be considered as a tool for in vitro quantitative assessment of tooth hard tissues compositions.

  19. Brownian versus Newtonian devitrification of hard-sphere glasses

    NASA Astrophysics Data System (ADS)

    Montero de Hijes, Pablo; Rosales-Pelaez, Pablo; Valeriani, Chantal; Pusey, Peter N.; Sanz, Eduardo

    2017-08-01

    In a recent molecular dynamics simulation work it has been shown that glasses composed of hard spheres crystallize via cooperative, stochastic particle displacements called avalanches [E. Sanz et al., Proc. Natl. Acad. Sci. USA 111, 75 (2014), 10.1073/pnas.1308338110]. In this Rapid Communication we investigate if such a devitrification mechanism is also present when the dynamics is Brownian rather than Newtonian. The research is motivated in part by the fact that colloidal suspensions, an experimental realization of hard-sphere systems, undergo Brownian motion. We find that Brownian hard-sphere glasses do crystallize via avalanches with very similar characteristics to those found in the Newtonian case. We briefly discuss the implications of these findings for experiments on colloids.

  20. Multi-Component T2 Relaxation Studies of the Avian Egg

    PubMed Central

    Mitsouras, Dimitris; Mulkern, Robert V.; Maier, Stephan E.

    2015-01-01

    Purpose To investigate the tissue-like multiexponential T2 signal decays in avian eggs. Methods Transverse relaxation studies of raw, soft-boiled and hard-boiled eggs were performed at 3 Tesla using a 3D Carr-Purcell-Meiboom-Gill (CPMG) imaging sequence. Signal decays over a TE range of 11 to 354 ms were fitted assuming single- and multi-component signal decays with up to three separately decaying components. Fat saturation was used to facilitate spectral assignment of observed decay components. Results Egg white, yolk and the centrally located latebra all demonstrate nonmonoexponential T2 decays. Specifically, egg white exhibits two-component decays with intermediate and long T2 times. Meanwhile, yolk and latebra are generally best characterized with triexponential decays, with short, intermediate and very long T2 decay times. Fat saturation revealed that the intermediate component of yolk could be attributed to lipids. Cooking of the egg profoundly altered the decay curves. Conclusion Avian egg T2 decay curves cover a wide range of decay times. Observed T2 components in yolk and latebra as short as 10 ms, may prove valuable for testing clinical sequences designed to measure short T2 components, such as myelin-associated water in the brain. Thus we propose that the egg can be a versatile and widely available MR transverse relaxation phantom. PMID:26037128

  1. A Component-based Programming Model for Composite, Distributed Applications

    NASA Technical Reports Server (NTRS)

    Eidson, Thomas M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The nature of scientific programming is evolving to larger, composite applications that are composed of smaller element applications. These composite applications are more frequently being targeted for distributed, heterogeneous networks of computers. They are most likely programmed by a group of developers. Software component technology and computational frameworks are being proposed and developed to meet the programming requirements of these new applications. Historically, programming systems have had a hard time being accepted by the scientific programming community. In this paper, a programming model is outlined that attempts to organize the software component concepts and fundamental programming entities into programming abstractions that will be better understood by the application developers. The programming model is designed to support computational frameworks that manage many of the tedious programming details, but also that allow sufficient programmer control to design an accurate, high-performance application.

  2. Hardness and Microstructure of Binary and Ternary Nitinol Compounds

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2016-01-01

    The hardness and microstructure of twenty-six binary and ternary Nitinol (nickel titanium, nickel titanium hafnium, nickel titanium zirconium and nickel titanium tantalum) compounds were studied. A small (50g) ingot of each compound was produced by vacuum arc remelting. Each ingot was homogenized in vacuum for 48 hr followed by furnace cooling. Specimens from the ingots were then heat treated at 800, 900, 1000 or 1100 degree C for 2 hr followed by water quenching. The hardness and microstructure of each specimen was compared to the baseline material (55-Nitinol, 55 at.% nickel - 45 at.% titanium, after heat treatment at 900 degC). The results show that eleven of the studied compounds had higher hardness values than the baseline material. Moreover, twelve of the studied compounds had measured hardness values greater 600HV at heat treatments from 800 to 900 degree C.

  3. Effect of Loading Rate Upon Conventional Ceramic Microindentation Hardness

    PubMed Central

    Quinn, George D.; Patel, Parimal J.; Lloyd, Isabel

    2002-01-01

    The world standards for conventional ceramic hardness have varying requirements for control of loading rate during the indentation cycle. A literature review suggests that loading rate may affect measured hardness in some instances. In view of the uncertainty over this issue, new experiments over a range of indentation loading rates were performed on a steel, sintered silicon carbide, and an aluminum oxynitride. There was negligible effect upon Vickers hardness when loading rate was varied by almost four orders of magnitude from approximately 0.03 N/s to 10 N/s. PMID:27446732

  4. Novel platens to measure the hardness of a pentagonal shaped tablet.

    PubMed

    Malladi, Jaya; Sidik, Kurex; Wu, Sutan; McCann, Ryan; Dougherty, Jeffrey; Parab, Prakash; Carragher, Thomas

    2017-03-01

    Tablet hardness, a measure of the breaking force of a tablet, is based on numerous factors. These include the shape of the tablet and the mode of the application of force. For instance, when a pentagonal-shaped tablet was tested with a traditional hardness tester with flat platens, there was a large variation in hardness measurements. This was due to the propensity of vertices of the tablet to crush, referred to as an "improper break". This article describes a novel approach to measure the hardness of pentagonal-shaped tablets using modified platens. The modified platens have more uniform loading than flat platens. This is because they reduce loading on the vertex of the pentagon and apply forces on tablet edges to generate reproducible tablet fracture. The robustness of modified platens was assessed using a series of studies, which included feasibility and Gauge Repeatability & Reproducibility (R&R) studies. A key finding was that improper breaks, generated frequently with a traditional hardness tester using flat platens, were eliminated. The Gauge R&R study revealed that the tablets tested with novel platens generated consistent values in hardness measurements, independent of batch, hardness level, and day of testing, operator and tablet dosage strength.

  5. Verification and Validation of KBS with Neural Network Components

    NASA Technical Reports Server (NTRS)

    Wen, Wu; Callahan, John

    1996-01-01

    Artificial Neural Network (ANN) play an important role in developing robust Knowledge Based Systems (KBS). The ANN based components used in these systems learn to give appropriate predictions through training with correct input-output data patterns. Unlike traditional KBS that depends on a rule database and a production engine, the ANN based system mimics the decisions of an expert without specifically formulating the if-than type of rules. In fact, the ANNs demonstrate their superiority when such if-then type of rules are hard to generate by human expert. Verification of traditional knowledge based system is based on the proof of consistency and completeness of the rule knowledge base and correctness of the production engine.These techniques, however, can not be directly applied to ANN based components.In this position paper, we propose a verification and validation procedure for KBS with ANN based components. The essence of the procedure is to obtain an accurate system specification through incremental modification of the specifications using an ANN rule extraction algorithm.

  6. Influence of contouring and hardness of foot orthoses on ratings of perceived comfort.

    PubMed

    Mills, Kathryn; Blanch, Peter; Vicenzino, Bill

    2011-08-01

    Comfort is a vital component of orthosis therapy. The purpose of this study was to examine what features of orthoses (design or hardness) influence the perception of comfort by using previously established footwear comfort measures: 100-mm visual analog scale (VAS) and ranking scale. Twenty subjects were consecutively allocated to two experiments consisting of five sessions of repeated measures. Comfort measures were taken from four prefabricated orthosis in each session using the VAS (experiment 1) and ranking scale (experiment 2). Subjects in experiment 1 were also asked to rate each orthosis relative to their shoe using a criterion scale. Measures were taken in both walking and jogging. A soft-flat orthosis was found to be significantly more comfortable than all contoured orthoses, including one of the same hardness using both the VAS and ranking scale. Using the VAS, differences between the soft-flat and contoured orthoses were also found to be clinically meaningful for dimensions of overall comfort and arch cushioning (>10.2 mm). Perceived comfort of orthoses significantly differed between walking and jogging on the VAS but was not clinically meaningful. Comparisons between the VAS and criterion scale detected a VAS difference of 11.34 mm between orthoses judged as comfortable as my shoe and slightly more comfortable than my shoe. There was a VAS difference of 17.49 mm between orthoses judged as comfortable as my shoe and slightly less comfortable than my shoe. Healthy subjects prioritize contouring over hardness when judging the comfort of orthoses. Clinically meaningful changes were required to change or enhance the comfort of orthoses standardized in material type and fabrication.

  7. Running in Hard Times

    ERIC Educational Resources Information Center

    Berry, John N., III

    2009-01-01

    Roberta Stevens and Kent Oliver are campaigning hard for the presidency of the American Library Association (ALA). Stevens is outreach projects and partnerships officer at the Library of Congress. Oliver is executive director of the Stark County District Library in Canton, Ohio. They have debated, discussed, and posted web sites, Facebook pages,…

  8. Hard Constraints in Optimization Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Giesy, Daniel P.; Kenny, Sean P.

    2008-01-01

    This paper proposes a methodology for the analysis and design of systems subject to parametric uncertainty where design requirements are specified via hard inequality constraints. Hard constraints are those that must be satisfied for all parameter realizations within a given uncertainty model. Uncertainty models given by norm-bounded perturbations from a nominal parameter value, i.e., hyper-spheres, and by sets of independently bounded uncertain variables, i.e., hyper-rectangles, are the focus of this paper. These models, which are also quite practical, allow for a rigorous mathematical treatment within the proposed framework. Hard constraint feasibility is determined by sizing the largest uncertainty set for which the design requirements are satisfied. Analytically verifiable assessments of robustness are attained by comparing this set with the actual uncertainty model. Strategies that enable the comparison of the robustness characteristics of competing design alternatives, the description and approximation of the robust design space, and the systematic search for designs with improved robustness are also proposed. Since the problem formulation is generic and the tools derived only require standard optimization algorithms for their implementation, this methodology is applicable to a broad range of engineering problems.

  9. Reduced tissue hardness of trabecular bone is associated with severe osteoarthritis.

    PubMed

    Dall'Ara, Enrico; Ohman, Caroline; Baleani, Massimiliano; Viceconti, Marco

    2011-05-17

    This study investigated whether changes in hardness of human trabecular bone are associated with osteoarthritis. Twenty femoral heads extracted from subjects without musculoskeletal diseases (subject age: 49-83 years) and twenty femoral heads extracted from osteoarthritic subjects (subject age: 42-85 years) were tested. Sixty indentations were performed along the main trabecular direction of each sample at a fixed relative distance. Two microstructures were found on the indenting locations: packs of parallel-lamellae (PL) and secondary osteons (SO). A 25gf load was applied for 15s and the Vickers Hardness (HV) was assessed. Trabecular tissue extracted from osteoarthritic subjects was found to be about 13% less hard compared to tissue extracted from non-pathologic subjects. However, tissue hardness was not significantly affected by gender or age. The SO was 10% less hard than the PL for both pathologic and non-pathologic tissues. A hardness of 34.1HV for PL and 30.8HV for SO was found for the non-pathologic tissue. For osteoarthritic tissue, the hardness was 30.2HV for PL and 27.1HV for SO. In the bone tissue extracted from osteoarthritic subjects the occurrence of indenting a SO (28%) was higher than that observed in the non-pathological tissue (15%). Osteoarthritis is associated with reduced tissue hardness and alterations in microstructure of the trabecular bone tissue. Gender does not significantly affect trabecular bone hardness either in non-pathological or osteoarthritic subjects. A similar conclusion can be drawn for age, although a larger donor sample size would be necessary to definitively exclude the existence of a slight effect. Copyright © 2011. Published by Elsevier Ltd.

  10. Robust hard-solder packaging of conduction cooled laser diode bars

    NASA Astrophysics Data System (ADS)

    Schleuning, David; Griffin, Mike; James, Phillip; McNulty, John; Mendoza, Dan; Morales, John; Nabors, David; Peters, Mike; Zhou, Hailong; Reed, Murray

    2007-02-01

    We present the reliability of high-power laser diodes utilizing hard solder (AuSn) on a conduction-cooled package (HCCP). We present results of 50 W hard-pulse operation at 8xx nm and demonstrate a reliability of MTTF > 27 khrs (90% CL), which is an order of magnitude improvement over traditional packaging. We also present results at 9xx nm with a reliability of MTTF >17 khrs (90% CL) at 75 W. We discuss finite element analysis (FEA) modeling and time dependent temperature measurements combined with experimental life-test data to quantify true hard-pulse operation. We also discuss FEA and measured stress profiles across laser bars comparing soft and hard solder packaging.

  11. Radiation and Temperature Hard Multi-Pixel Avalanche Photodiodes

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)

    2017-01-01

    The structure and method of fabricating a radiation and temperature hard avalanche photodiode with integrated radiation and temperature hard readout circuit, comprising a substrate, an avalanche region, an absorption region, and a plurality of Ohmic contacts are presented. The present disclosure provides for tuning of spectral sensitivity and high device efficiency, resulting in photon counting capability with decreased crosstalk and reduced dark current.

  12. Hardness characteristic of dental porcelain synthesized from Indonesian natural sand

    NASA Astrophysics Data System (ADS)

    Gunawan, J.; Taufik, D.; Takarini, V.; Hasratiningsih, Z.; Ramelan, A.

    2018-02-01

    Porcelain has been one of dental biomaterials which can be used to restore tooth structure. Veneer and jacket crown were the examples of dental porcelain restoration. Since wear resistance is related to the strength on its surface, then Vickers Hardness Test of the synthesized porcelain was applied subsequently. If the porcelain hardness number is too high, it should be considered that an abrasion of the opposing teeth could occur. On previous research, dental porcelain had been successfully synthesized from Indonesian natural sand. In this experiment, 5 samples were prepared from a mixture of 65w/o Pangaribuan feldspar, 25w/o Belitung silica, 5w/o Sukabumi kaolinite, and 5w/o potassium salt. This synthesized porcelain samples were invested on 5 cm diameter resin each. A kilogram of load was placed on top of each sample for 10 seconds on 7 different indented areas using ZwickRoell Indentec ZHVμ Micro Vickers. The average hardness number of synthesized dental porcelain made from Indonesian natural sand was 936.06 VHN which was higher than the average hardness number of porcelain restoration. In conclusion of the hardness test, synthesized dental porcelain made from Indonesian natural sand can potentially be used as a core, which shall support hardness and strength of the crown restoration.

  13. Solving the Mystery of the Short-Hard Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Fox, Derek

    2004-07-01

    Seven years after the afterglow detections that revolutionized studies of the long-soft gamma-ray bursts, not even one afterglow of a short-hard GRB has been seen, and the nature of these events has become one of the most important problems in GRB research. The forthcoming Swift satellite will report few-arcsecond localizations for short-hard bursts in minutes, however, enabling prompt, deep optical afterglow searches for the first time. Discovery and observation of the first short-hard optical afterglows will answer most of the critical questions about these events: What are their distances and energies? Do they occur in distant galaxies, and if so, in which regions of those galaxies? Are they the result of collimated or quasi-spherical explosions? In combination with an extensive rapid-response ground-based campaign, we propose to make the critical high-sensitivity HST TOO observations that will allow us to answer these questions. If theorists are correct in attributing the short-hard bursts to binary neutron star coalescence events, then the short-hard bursts are signposts to the primary targeted source population for ground-based gravitational-wave detectors, and short-hard burst studies will have a vital role to play in guiding their observations.

  14. Radiation Hardness Assurance (RHA): Challenges and New Considerations

    NASA Technical Reports Server (NTRS)

    Campola, Michael J.

    2017-01-01

    Use of commercial-off-the-shelf (COTS) components and emerging technologies often require space flight missions to accept elevated risk. The Radiation Hardness Assurance (RHA) flow includes environment definition, hazard evaluation, requirements definition, evaluation of design, and design trades to accommodate and mitigate the risk a project or program takes. Depending on the mission profile and environment, different missions may not necessarily benefit from the same risk reduction efforts or cost reduction attempts. While this poses challenges for the radiation engineer, it also presents opportunities to tailor the RHA flow to minimize risk based on the environment or design criticality while remaining within budget. This presentation will focus on an approach to RHA amidst the present challenges, using the same RHA flow as in the past, with examples from recent radiation test results. The current challenges and the types of risk will be identified. How these risks drive requirements development and realization will be explained with examples of device results and data for single event effects (SEE) and in one case total ionizing dose (TID).

  15. Hard-tip, soft-spring lithography.

    PubMed

    Shim, Wooyoung; Braunschweig, Adam B; Liao, Xing; Chai, Jinan; Lim, Jong Kuk; Zheng, Gengfeng; Mirkin, Chad A

    2011-01-27

    Nanofabrication strategies are becoming increasingly expensive and equipment-intensive, and consequently less accessible to researchers. As an alternative, scanning probe lithography has become a popular means of preparing nanoscale structures, in part owing to its relatively low cost and high resolution, and a registration accuracy that exceeds most existing technologies. However, increasing the throughput of cantilever-based scanning probe systems while maintaining their resolution and registration advantages has from the outset been a significant challenge. Even with impressive recent advances in cantilever array design, such arrays tend to be highly specialized for a given application, expensive, and often difficult to implement. It is therefore difficult to imagine commercially viable production methods based on scanning probe systems that rely on conventional cantilevers. Here we describe a low-cost and scalable cantilever-free tip-based nanopatterning method that uses an array of hard silicon tips mounted onto an elastomeric backing. This method-which we term hard-tip, soft-spring lithography-overcomes the throughput problems of cantilever-based scanning probe systems and the resolution limits imposed by the use of elastomeric stamps and tips: it is capable of delivering materials or energy to a surface to create arbitrary patterns of features with sub-50-nm resolution over centimetre-scale areas. We argue that hard-tip, soft-spring lithography is a versatile nanolithography strategy that should be widely adopted by academic and industrial researchers for rapid prototyping applications.

  16. From Hard Times to Better Times: College Majors, Unemployment, and Earnings

    ERIC Educational Resources Information Center

    Carnevale, Anthony P.; Cheah, Ban

    2015-01-01

    This third installment of "Hard Times" updates the previous analyses of college majors, unemployment, and earnings over the Great Recession. While there is wide variation by college majors, hard times have become better times for most college graduates, but the recovery is far from complete. Hard times are becoming better times for most…

  17. Computational search for rare-earth free hard-magnetic materials

    NASA Astrophysics Data System (ADS)

    Flores Livas, José A.; Sharma, Sangeeta; Dewhurst, John Kay; Gross, Eberhard; MagMat Team

    2015-03-01

    It is difficult to over state the importance of hard magnets for human life in modern times; they enter every walk of our life from medical equipments (NMR) to transport (trains, planes, cars, etc) to electronic appliances (for house hold use to computers). All the known hard magnets in use today contain rare-earth elements, extraction of which is expensive and environmentally harmful. Rare-earths are also instrumental in tipping the balance of world economy as most of them are mined in limited specific parts of the world. Hence it would be ideal to have similar characteristics as a hard magnet but without or at least with reduced amount of rare-earths. This is the main goal of our work: search for rare-earth-free magnets. To do so we employ a combination of density functional theory and crystal prediction methods. The quantities which define a hard magnet are magnetic anisotropy energy (MAE) and saturation magnetization (Ms), which are the quantities we maximize in search for an ideal magnet. In my talk I will present details of the computation search algorithm together with some potential newly discovered rare-earth free hard magnet. J.A.F.L. acknowledge financial support from EU's 7th Framework Marie-Curie scholarship program within the ``ExMaMa'' Project (329386).

  18. Nanoplasma Formation by High Intensity Hard X-rays

    PubMed Central

    Tachibana, T.; Jurek, Z.; Fukuzawa, H.; Motomura, K.; Nagaya, K.; Wada, S.; Johnsson, P.; Siano, M.; Mondal, S.; Ito, Y.; Kimura, M.; Sakai, T.; Matsunami, K.; Hayashita, H.; Kajikawa, J.; Liu, X.-J.; Robert, E.; Miron, C.; Feifel, R.; Marangos, J. P.; Tono, K.; Inubushi, Y.; Yabashi, M.; Son, S.-K.; Ziaja, B.; Yao, M.; Santra, R.; Ueda, K.

    2015-01-01

    Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo- and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays. PMID:26077863

  19. Development of a Hybrid Gas Detector/Phoswich for Hard X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Pimperl, M. M.; Ramsey, B. D.; Austin, R. A.; Minamitani, T.; Weisskopf, M. C.; Grindlay, J. E.; Lum, K. S. K.; Manandhar, R. P.

    1994-01-01

    A hybrid detector is under development for use as a balloon-borne instrument in hard x-ray astronomy. The detector provides broad band coverage by coupling an optical avalanche chamber to a phoswich. The optical avalanche chamber yields superior instrument response at low energies while the scintillator takes over at the higher energies where the gas becomes transparent: at 25 keV, the addition of the gas chamber improves the energy resolution by a factor of 2.5 and the spatial resolution by a factor of 10 as compared to the stand-alone response of the phoswich. A half-scale prototype instrument is being constructed for test purposes and to help resolve a number of design questions involving the coupling of the two components.

  20. Hard X-Ray And Wide Focusing Telescopes

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Johnson, William B. (Technical Monitor)

    2001-01-01

    The development of a hard X-ray telescope requires new technology for both substrates and coatings. Our activities in these two areas were carried out virtually in parallel during most of the past few years. They are converging on the production of our first integral conical, substrate electroformed mirror that will be coated with a graded d-spacing multilayer. Its imaging properties and effective area will be measured in hard X-ray beams. We discuss each of these activities separately in the following two sections.

  1. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Smith, David M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Stern, D.; Grefenstette, B. W.; Harrison, F. A.

    2011-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. In 2012, the Nuclear Spectroscopic Telescope Array (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. NuSTAR is capable of solar pointing, and three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes, and comparison of these events with observations of 3He and other particles in interplanetary space 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched 6) Study of particles at the coronal reconnection site when flare footpoints are occulted; and 7) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  2. Titanium orthodontic brackets: structure, composition, hardness and ionic release.

    PubMed

    Gioka, Christiana; Bourauel, Christoph; Zinelis, Spiros; Eliades, Theodore; Silikas, Nikolaos; Eliades, George

    2004-09-01

    The aim of the present study was to investigate the composition, morphology, bulk structure and ionic release of two brands of titanium orthodontic brackets: Orthos2 (Ormco, USA) and Rematitan (Dentaurum, Germany). Five specimens of each group were examined with computerized X-ray microtomography, to reveal the morphology and structure of brackets, whilst resin-embedded and metallographically polished specimens were subjected to SEM/EDS analysis and Vickers microhardness measurements. Brackets were also maintained in 0.9% saline for 2 months and the ionic release in the immersion medium was determined with Inductively Coupled Plasma Atomic Emission Spectroscopy. The results of the hardness and ionic release measurements were statistically analyzed with two-way ANOVA and Tukey's test (alpha = 0.05). Orthos2 brackets consisted of two parts, the base (commercially pure Ti grade II) and the wing (Ti-6Al-4V alloy), joined together by laser welding, producing large gaps along the base-wing interface. The base was of lower hardness (Hv = 145), than the wing (Hv = 392) and incorporated a standard foil base-mesh pad. Rematitan brackets consisted of commercially pure Ti grade IV, with a single-piece manufacturing pattern of virtually identical hardness (p > 0.05) at the base and wings, featuring a laser-etched base-mesh pad. The hardness of the Rematitan brackets was significantly lower than the hardness of the Orthos2 wings, but double the hardness of the Orthos2 base. Released Ti levels were below the threshold level (1 ng/ml) of analysis for both materials, whilst traces of Al (3 ppm) and V (2 ppm) were found in the immersion media for Ti-6Al-4V alloy. The structural and hardness differences found may influence the torque transfer characteristics from activated archwires to the brackets and the crevice corrosion potential at the base-wing interface (Orthos2). The detection of Al and V in the immersion medium (Orthos2) may imply a different biological response from the two

  3. Estimating Janka hardness from specific gravity for tropical and temperate species

    Treesearch

    Michael C. Wiemann; David W. Green

    2007-01-01

    Using mean values for basic (green) specific gravity and Janka side hardness for individual species obtained from the world literature, regression equations were developed to predict side hardness from specific gravity. Statistical and graphical methods showed that the hardness–specific gravity relationship is the same for tropical and temperate hardwoods, but that the...

  4. CdTe Based Hard X-ray Imager Technology For Space Borne Missions

    NASA Astrophysics Data System (ADS)

    Limousin, Olivier; Delagnes, E.; Laurent, P.; Lugiez, F.; Gevin, O.; Meuris, A.

    2009-01-01

    CEA Saclay has recently developed an innovative technology for CdTe based Pixelated Hard X-Ray Imagers with high spectral performance and high timing resolution for efficient background rejection when the camera is coupled to an active veto shield. This development has been done in a R&D program supported by CNES (French National Space Agency) and has been optimized towards the Simbol-X mission requirements. In the latter telescope, the hard X-Ray imager is 64 cm² and is equipped with 625µm pitch pixels (16384 independent channels) operating at -40°C in the range of 4 to 80 keV. The camera we demonstrate in this paper consists of a mosaic of 64 independent cameras, divided in 8 independent sectors. Each elementary detection unit, called Caliste, is the hybridization of a 256-pixel Cadmium Telluride (CdTe) detector with full custom front-end electronics into a unique 1 cm² component, juxtaposable on its four sides. Recently, promising results have been obtained from the first micro-camera prototypes called Caliste 64 and will be presented to illustrate the capabilities of the device as well as the expected performance of an instrument based on it. The modular design of Caliste enables to consider extended developments toward IXO type mission, according to its specific scientific requirements.

  5. Delta-Isobar Production in the Hard Photodisintegration of a Deuteron

    NASA Astrophysics Data System (ADS)

    Granados, Carlos; Sargsian, Misak

    2010-02-01

    Hard photodisintegration of the deuteron in delta-isobar production channels is proposed as a useful process in identifying the quark structure of hadrons and of hadronic interactions at large momentum and energy transfer. The reactions are modeled using the hard re scattering model, HRM, following previous works on hard breakup of a nucleon nucleon (NN) system in light nuclei. Here,quantitative predictions through the HRM require the numerical input of fits of experimental NN hard elastic scattering cross sections. Because of the lack of data in hard NN scattering into δ-isobar channels, the cross section of the corresponding photodisintegration processes cannot be predicted in the same way. Instead, the corresponding NN scattering process is modeled through the quark interchange mechanism, QIM, leaving an unknown normalization parameter. The observables of interest are ratios of differential cross sections of δ-isobar production channels to NN breakup in deuteron photodisintegration. Both entries in these ratios are derived through the HRM and QIM so that normalization parameters cancel out and numerical predictions can be obtained. )

  6. Hard and flexible optical printed circuit board

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, Hyun Sik; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.

    2007-02-01

    We report on the design and fabrication of hard and flexible optical printed circuit boards (O-PCBs). The objective is to realize generic and application-specific O-PCBs, either in hard form or flexible form, that are compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly, for low-cost and high-volume universal applications. The O-PCBs consist of 2-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate micro/nano-scale photonic devices. The micro/nano-optical functional devices include lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices. For flexible boards, the optical waveguide arrays are fabricated on flexible poly-ethylen terephthalate (PET) substrates by UV embossing. Electrical layer carrying VCSEL and PD array is laminated with the optical layer carrying waveguide arrays. Both hard and flexible electrical lines are replaced with high speed optical interconnection between chips over four waveguide channels up to 10Gbps on each. We discuss uses of hard or flexible O-PCBs for telecommunication systems, computer systems, transportation systems, space/avionic systems, and bio-sensor systems.

  7. Grain characterization and milling behaviour of near-isogenic lines differing by hardness.

    PubMed

    Greffeuille, V; Abecassis, J; Rousset, M; Oury, F-X; Faye, A; L'Helgouac'h, C Bar; Lullien-Pellerin, V

    2006-12-01

    Wheat grain hardness is a major factor affecting the milling behaviour and end-product quality although its exact structural and biochemical basis is still not understood. This study describes the development of new near-isogenic lines selected on hardness. Hard and soft sister lines were characterised by near infrared reflectance (NIR) and particle size index (PSI) hardness index, grain protein content, thousand kernel weight and vitreousness. The milling behaviour of these wheat lines was evaluated on an instrumented micromill which also measures the grinding energy and flour particle size distribution was investigated by laser diffraction. Endosperm mechanical properties were measured using compression tests. Results pointed out the respective effect of hardness and vitreousness on those characteristics. Hardness was shown to influence both the mode of fracture and the mechanical properties of the whole grain and endosperm. Thus, this parameter also acts on milling behaviour. On the other hand, vitreousness was found to mainly play a role on the energy required to break the grain. This study allows us to distinguish between consequences of hardness and vitreousness. Hardness is suggested to influence the adhesion forces between starch granules and protein matrix whereas vitreousness would rather be related to the endosperm microstructure.

  8. Analysis of failed and nickel-coated 3093 beam clamp components at the East Tennessee Technology Park (ETTP).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, D.; Pappacena, K.; Gaviria, J.

    2010-10-11

    corrosion was also explored as a failure mechanism. Corroded and failed yoke samples had hydrogen concentrations of 20-60 ppm. However, the hydrogen content reduced to 4-11 ppm (similar to baseline as-received yoke samples) when the corrosion products were polished off. The hydrogen content in the scraped off corrosion product powders was >7000 ppm. These results indicate that hydrogen is primarily present in the corrosion products and not in the underlying steel. Rockwell hardness values on the corroded yoke and D-rings were R{sub c} {approx} 41-46. It was recommended to the beam clamp manufacturer that the beam clamp components be annealed to reduce the hardness values so that they are less susceptible to brittle failure. Upon annealing, hardness values of the beam clamp components reduced to R{sub c} {approx} 25. Several strategies were recommended and put in place to mitigate failure of the beam clamp components: (a) maintain hardness levels of both yokes and D-rings at R{sub c} < 35, (b) coat the yoke and D-rings with a dual coating of nickel (with 10% phosphorus) to delay corrosion and aluminum to prevent galvanic corrosion since it is more anodic to zinc, and (c) optimize coating thicknesses for nickel and aluminum while maintaining the physical integrity of the coatings. Evaluation of the Al- and Ni-coated yoke and D-ring specimens indicated they appear to have met the recommendations. Average hardness values of the dual-coated yokes were R{sub c} {approx} 25-35. Hardness values of dual-coated D-ring were R{sub c} {approx} 32. Measured average coating thicknesses for the aluminum and nickel coatings for yoke samples were 22 {micro}m (0.9 mils) and 80 {micro}m (3 mils), respectively. The D-rings also showed similar coating thicknesses. Microscopic examination showed that the aluminum coating was well bonded to the underlying nickel coating. Some observed damage was believed to be an artifact of the cutting-and-polishing steps during sample preparation for microscopy.« less

  9. Comparison of time-dependent changes in the surface hardness of different composite resins

    PubMed Central

    Ozcan, Suat; Yikilgan, Ihsan; Uctasli, Mine Betul; Bala, Oya; Kurklu, Zeliha Gonca Bek

    2013-01-01

    Objective: The aim of this study was to evaluate the change in surface hardness of silorane-based composite resin (Filtek Silorane) in time and compare the results with the surface hardness of two methacrylate-based resins (Filtek Supreme and Majesty Posterior). Materials and Methods: From each composite material, 18 wheel-shaped samples (5-mm diameter and 2-mm depth) were prepared. Top and bottom surface hardness of these samples was measured using a Vicker's hardness tester. The samples were then stored at 37°C and 100% humidity. After 24 h and 7, 30 and 90 days, the top and bottom surface hardness of the samples was measured. In each measurement, the rate between the hardness of the top and bottom surfaces were recorded as the hardness rate. Statistical analysis was performed by one-way analysis of variance, multiple comparisons by Tukey's test and binary comparisons by t-test with a significance level of P = 0.05. Results: The highest hardness values were obtained from each two surfaces of Majesty Posterior and the lowest from Filtek Silorane. Both the top and bottom surface hardness of the methacrylate based composite resins was high and there was a statistically significant difference between the top and bottom hardness values of only the silorane-based composite, Filtek Silorane (P < 0.05). The lowest was obtained with Filtek Silorane. The hardness values of all test groups increased after 24 h (P < 0.05). Conclusion: Although silorane-based composite resin Filtek Silorane showed adequate hardness ratio, the use of incremental technic during application is more important than methacrylate based composites. PMID:24966724

  10. Parts and Components Reliability Assessment: A Cost Effective Approach

    NASA Technical Reports Server (NTRS)

    Lee, Lydia

    2009-01-01

    System reliability assessment is a methodology which incorporates reliability analyses performed at parts and components level such as Reliability Prediction, Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) to assess risks, perform design tradeoffs, and therefore, to ensure effective productivity and/or mission success. The system reliability is used to optimize the product design to accommodate today?s mandated budget, manpower, and schedule constraints. Stand ard based reliability assessment is an effective approach consisting of reliability predictions together with other reliability analyses for electronic, electrical, and electro-mechanical (EEE) complex parts and components of large systems based on failure rate estimates published by the United States (U.S.) military or commercial standards and handbooks. Many of these standards are globally accepted and recognized. The reliability assessment is especially useful during the initial stages when the system design is still in the development and hard failure data is not yet available or manufacturers are not contractually obliged by their customers to publish the reliability estimates/predictions for their parts and components. This paper presents a methodology to assess system reliability using parts and components reliability estimates to ensure effective productivity and/or mission success in an efficient manner, low cost, and tight schedule.

  11. Estimating Hardness from the USDC Tool-Bit Temperature Rise

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart

    2008-01-01

    A method of real-time quantification of the hardness of a rock or similar material involves measurement of the temperature, as a function of time, of the tool bit of an ultrasonic/sonic drill corer (USDC) that is being used to drill into the material. The method is based on the idea that, other things being about equal, the rate of rise of temperature and the maximum temperature reached during drilling increase with the hardness of the drilled material. In this method, the temperature is measured by means of a thermocouple embedded in the USDC tool bit near the drilling tip. The hardness of the drilled material can then be determined through correlation of the temperature-rise-versus-time data with time-dependent temperature rises determined in finite-element simulations of, and/or experiments on, drilling at various known rates of advance or known power levels through materials of known hardness. The figure presents an example of empirical temperature-versus-time data for a particular 3.6-mm USDC bit, driven at an average power somewhat below 40 W, drilling through materials of various hardness levels. The temperature readings from within a USDC tool bit can also be used for purposes other than estimating the hardness of the drilled material. For example, they can be especially useful as feedback to control the driving power to prevent thermal damage to the drilled material, the drill bit, or both. In the case of drilling through ice, the temperature readings could be used as a guide to maintaining sufficient drive power to prevent jamming of the drill by preventing refreezing of melted ice in contact with the drill.

  12. Vacancy-stabilized crystalline order in hard cubes

    PubMed Central

    Smallenburg, Frank; Filion, Laura; Marechal, Matthieu; Dijkstra, Marjolein

    2012-01-01

    We examine the effect of vacancies on the phase behavior and structure of systems consisting of hard cubes using event-driven molecular dynamics and Monte Carlo simulations. We find a first-order phase transition between a fluid and a simple cubic crystal phase that is stabilized by a surprisingly large number of vacancies, reaching a net vacancy concentration of approximately 6.4% near bulk coexistence. Remarkably, we find that vacancies increase the positional order in the system. Finally, we show that the vacancies are delocalized and therefore hard to detect. PMID:23012241

  13. Thermodynamic properties of a hard/soft-magnetic bilayer model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taaev, T. A., E-mail: taaev89@mail.ru; Khizriev, K. Sh.; Murtazaev, A. K.

    2016-05-15

    A model for describing the thermodynamic properties of a hard/soft-magnetic bilayer is proposed and thoroughly studied using the Monte Carlo method. Temperature dependences of the heat capacity, total magnetization, magnetizations of the hard- and soft-magnetic layers, total magnetic susceptibility, and susceptibilities of the hard- and soft-magnetic layers have been calculated by this method in the framework of the proposed model. The obtained temperature dependences of the heat capacity and magnetic susceptibility display double maxima that result from the two phase transitions that take place in the system. The influence of system dimensions on the thermodynamic properties of the model hasmore » been considered.« less

  14. Magnetic hyperthermia with hard-magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kashevsky, Bronislav E.; Kashevsky, Sergey B.; Korenkov, Victor S.; Istomin, Yuri P.; Terpinskaya, Tatyana I.; Ulashchik, Vladimir S.

    2015-04-01

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner-Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner-Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body.

  15. Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative

    DTIC Science & Technology

    2014-11-01

    1 ASETSDefense 2014 Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative Ruben A. Prado, CEF...COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative...coatings as a Hard Chrome (EHC) electroplating alternative for DoD manufacturing and repair. – Fully define deposition parameters and properties

  16. Hard Times Hit Schools

    ERIC Educational Resources Information Center

    McNeil, Michele

    2008-01-01

    Hard-to-grasp dollar amounts are forcing real cuts in K-12 education at a time when the cost of fueling buses and providing school lunches is increasing and the demands of the federal No Child Left Behind Act still loom larger over states and districts. "One of the real challenges is to continue progress in light of the economy," said…

  17. Microstructural architecture developed in the fabrication of solid and open-cellular copper components by additive manufacturing using electron beam melting

    NASA Astrophysics Data System (ADS)

    Ramirez, Diana Alejandra

    The fabrication of Cu components were first built by additive manufacturing using electron beam melting (EBM) from low-purity, atomized Cu powder containing a high density of Cu2O precipitates leading to a novel example of precipitate-dislocation architecture. These microstructures exhibit cell-like arrays (1-3microm) in the horizontal reference plane perpendicular to the build direction with columnar-like arrays extending from ~12 to >60 microm in length and corresponding spatial dimensions of 1-3 microm. These observations were observed by the use of optical metallography, and scanning and transmission electron microscopy. The hardness measurements were taken both on the atomized powder and the Cu components. The hardness for these architectures ranged from ~HV 83 to 88, in contrast to the original Cu powder microindentation hardness of HV 72 and the commercial Cu base plate hardness of HV 57. These observations were utilized for the fabrication of open-cellular copper structures by additive manufacturing using EBM and illustrated the ability to fabricate some form of controlled microstructural architecture by EBM parameter alteration or optimizing. The fabrication of these structures ranged in densities from 0.73g/cm3 to 6.67g/cm3. These structures correspond to four different articulated mesh arrays. While these components contained some porosity as a consequence of some unmelted regions, the Cu2O precipitates also contributed to a reduced density. Using X-ray Diffraction showed the approximate volume fraction estimated to be ~2%. The addition of precipitates created in the EBM melt scan formed microstructural arrays which contributed to hardening contributing to the strength of mesh struts and foam ligaments. The measurements of relative stiffness versus relative density plots for Cu compared very closely with Ti-6Al-4V open cellular structures - both mesh and foams. The Cu reticulated mesh structures exhibit a slope of n = 2 in contrast to a slope of n = 2

  18. On the constituent counting rule for hard exclusive processes involving multi-quark states

    NASA Astrophysics Data System (ADS)

    Guo, Feng-Kun; Meißner, Ulf-G.; Wang, Wei

    2017-05-01

    At high energy, the cross section at finite scattering angle of a hard exclusive process falls off as a power of the Manderstam variable s. If all involved quark-gluon compositions undergo hard momentum transfers, the fall-off scaling is determined by the underlying valence structures of the initial and final hadrons, known as the constituent counting rule. In spite of the complication due to helicity conservation, it has been argued that when applied to exclusive process with exotic multiquark states, the counting rule is a powerful way to determine the valence degrees of freedom inside hadron exotics. In this work, we demonstrate that for hadrons with hidden flavors, the naive application of the constituent counting rule to exclusive process with hadron exotic multiquark states is problematic, since it is not mandatory for all components to participate in hard scattering at the scale . We illustrate the problems in the viewpoint based on effective field theory. We clarify the misleading results that may be obtained from the constituent counting rule in exclusive processes with exotic candidates such as , , X(3872), etc. Supported in part by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 11261130311), Thousand Talents Plan for Young Professionals, Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) (2015VMA076), National Natural Science Foundation of China (11575110, 11655002), Natural Science Foundation of Shanghai (15DZ2272100, 15ZR1423100), Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF111CJ1), and by Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education.

  19. Assessing degradation of composite resin cements during artificial aging by Martens hardness.

    PubMed

    Bürgin, Stefan; Rohr, Nadja; Fischer, Jens

    2017-05-19

    Aim of the study was to verify the efficiency of Martens hardness measurements in detecting the degradation of composite resin cements during artificial aging. Four cements were used: Variolink II (VL2), RelyX Unicem 2 Automix (RUN), PermaFlo DC (PDC), and DuoCem (DCM). Specimens for Martens hardness measurements were light-cured and stored in water at 37 °C for 1 day to allow complete polymerization (baseline). Subsequently the specimens were artificially aged by water storage at 37 °C or thermal cycling (n = 6). Hardness was measured at baseline as well as after 1, 4, 9 and 16 days of aging. Specimens for indirect tensile strength measurements were produced in a similar manner. Indirect tensile strength was measured at baseline and after 16 days of aging (n = 10). The results were statistically analyzed using one-way ANOVA (α = 0.05). After water storage for 16 days hardness was significantly reduced for VL2, RUN and DCM while hardness of PDC as well as indirect tensile strength of all cements were not significantly affected. Thermal cycling significantly reduced both, hardness and indirect tensile strength for all cements. No general correlation was found between Martens hardness and indirect tensile strength. However, when each material was analyzed separately, relative change of hardness and of indirect tensile strength revealed a strong linear correlation. Martens hardness is a sensible test method to assess aging of resin composite cements during thermal cycling that is easy to perform.

  20. Effect of water hardness on cardiovascular mortality: an ecological time series approach.

    PubMed

    Lake, I R; Swift, L; Catling, L A; Abubakar, I; Sabel, C E; Hunter, P R

    2010-12-01

    Numerous studies have suggested an inverse relationship between drinking water hardness and cardiovascular disease. However, the weight of evidence is insufficient for the WHO to implement a health-based guideline for water hardness. This study followed WHO recommendations to assess the feasibility of using ecological time series data from areas exposed to step changes in water hardness to investigate this issue. Monthly time series of cardiovascular mortality data, subdivided by age and sex, were systematically collected from areas reported to have undergone step changes in water hardness, calcium and magnesium in England and Wales between 1981 and 2005. Time series methods were used to investigate the effect of water hardness changes on mortality. No evidence was found of an association between step changes in drinking water hardness or drinking water calcium and cardiovascular mortality. The lack of areas with large populations and a reasonable change in magnesium levels precludes a definitive conclusion about the impact of this cation. We use our results on the variability of the series to consider the data requirements (size of population, time of water hardness change) for such a study to have sufficient power. Only data from areas with large populations (>500,000) are likely to be able to detect a change of the size suggested by previous studies (rate ratio of 1.06). Ecological time series studies of populations exposed to changes in drinking water hardness may not be able to provide conclusive evidence on the links between water hardness and cardiovascular mortality unless very large populations are studied. Investigations of individuals may be more informative.

  1. Regeneration of soft and hard tissue periodontal defects.

    PubMed

    Caffesse, Raúl G; de la Rosa, Manuel; Mota, Luis F

    2002-10-01

    Periodontitis is characterized by the formation of periodontal pockets and bone loss. Although the basic treatment emphasizes the control of bacterial plaque, the clinician is confronted with the need to correct soft and/or hard tissue defects that develop as a consequence of the disease. This article reviews the current status of regenerative approaches in treating soft and hard tissue defects (based mainly on findings from our own laboratory) and assessed the global applicability of these procedures. Many different techniques have been suggested to treat those defects with, in general, a high degree of success. From the present knowledge it can be concluded that periodontal soft and hard tissue regeneration is possible. Treatment of areas with localized gingival recession or insufficient keratinized gingiva can be achieved with soft tissue grafts or pedicle flaps, as well as with the use of dermal allografts. The treatment of hard tissue defects around teeth and implants can be approached using different types of bone grafts, guided tissue or bone regeneration, or a combination of these. The predictability of many of these therapies, however, still needs to be improved. Since most of these techniques are sensitive, specific, and expensive, their present universal application is limited.

  2. Video modeling for children with dual diagnosis of deafness or hard of hearing and autism spectrum disorder to promote peer interaction.

    PubMed

    Thrasher, Amy

    2014-11-01

    This article describes an intervention program offered at the University of Colorado Boulder that supports peer interaction among young children with autism spectrum disorders and their typical peers using a multicomponent approach, including video modeling. Characteristics of autism that may interfere with the development of peer interaction in young children will be discussed. Components of the approach will be described and the evidence base for the application of these components examined in regards to children with autism and for the potential application to children with the dual diagnosis of autism and deafness or hard of hearing. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Financial Incentives for Staffing Hard Places.

    ERIC Educational Resources Information Center

    Prince, Cynthia D.

    2002-01-01

    Describes examples of financial incentives used to recruit teachers for low-achieving and hard-to-staff schools. Includes targeted salary increases, housing incentives, tuition assistance, and tax credits. (PKP)

  4. Hard Knocks in Tyrrhena Terra

    NASA Image and Video Library

    2017-02-02

    NASA Mars Reconnaissance Orbiter observed a small portion of a dark crater floor in the Tyrrhena Terra region of Mars. This is largely ancient hard bedrock that has been cratered by numerous impacts over the eons. http://photojournal.jpl.nasa.gov/catalog/PIA11179

  5. Hard metal composition

    DOEpatents

    Sheinberg, H.

    1983-07-26

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  6. Aluminum bioavailability from drinking water is very low and is not appreciably influenced by stomach contents or water hardness.

    PubMed

    Yokel, R A; Rhineheimer, S S; Brauer, R D; Sharma, P; Elmore, D; McNamara, P J

    2001-03-21

    The objectives were to estimate aluminum (Al) oral bioavailability under conditions that model its consumption in drinking water, and to test the hypotheses that stomach contents and co-administration of the major components of hard water affect Al absorption. Rats received intragastric 26Al in the absence and presence of food in the stomach and with or without concomitant calcium (Ca) and magnesium (Mg) at concentrations found in hard drinking water. The use of 26Al enables the study of Al pharmacokinetics at physiological Al concentrations without interference from 27Al in the environment or the subject. 27Al was intravenously administered throughout the study. Repeated blood withdrawal enabled determination of oral 26Al bioavailability from the area under its serum concentrationxtime curve compared to serum 27Al concentration in relation to its infusion rate. Oral Al bioavailability averaged 0.28%. The presence of food in the stomach and Ca and Mg in the water that contained the orally dosed 26Al appeared to delay but not significantly alter the extent of 26Al absorption. The present and published results suggest oral bioavailability of Al from drinking water is very low, about 0.3%. The present results suggest it is independent of stomach contents and water hardness.

  7. A study on hardness behavior of geopolymer paste in different condition

    NASA Astrophysics Data System (ADS)

    Zainal, Farah Farhana; Hussin, Kamarudin; Rahmat, Azmi; Abdullah, Mohd Mustafa Al Bakri; Shamsudin, Shaiful Rizam

    2016-07-01

    This study has been conducted to understand the hardness behavior of geopolymer paste in different conditions; with and without being immersed in water. Geopolymer paste has been used nowadays as an alternative way to reduce global warming pollution by carbon dioxide (CO2) released to the air caused from the production of Ordinary Portland Cement (OPC). Geopolymer has many advantages such as high compressive strength, lower water absorption and lower porosity. Geopolymer paste in this study was made from a mixture of fly ash and alkaline activators. The alkaline activators that have been used were sodium hydroxide (NaOH) solution and sodium silicate (Na2SiO3) solution. Then the mixture was allowed to harden for 24hrs at ambient temperature and then placed in the oven for 24hrs with 60°C for the curing process. The hardness testing was conducted after a few months when the samples already achieved the optimum design. The samples were divided to two conditions; without immersion which was placed at ambient temperature (S1) and immersed in water for one week (S2). The samples then are divided into two at the center and testing was conducted into 4 parts which are part 1, part 2, part 3 and part 4. Various methods of non-destructively testing concrete and mortar have been in use for many years such as Vickers hardness test, Rockwell hardness test, Brinell hardness test and many more. The Rockwell hardness test method as defined in ASTM E-18 is the most commonly used hardness test method which is also used in this study. From the results, S1 has higher hardness value than S2 for all parts with the maximum value of S1 is 118.6 and the minimum value is 71.8. The maximum value of S2 is 114.4 and the minimum value is 0. The central part of the geopolymer paste also showed greater hardness values than the edge area of the samples.

  8. The material co-construction of hard science fiction and physics

    NASA Astrophysics Data System (ADS)

    Hasse, Cathrine

    2015-12-01

    This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of doing science. There are many kinds of fiction within the science fiction genre. In the presented empirical exploration physics students seem particularly fond of what is called `hard science fiction': a particular type of science fiction dealing with technological developments (Hartwell and Cramer in The hard SF renaissance, Orb/TOR, New York, 2002). Especially hard science fiction as a motivating fantasy may, however, also come with a gender bias. The locally materialized techno-fantasies spurring dreams of the terraforming of planets like Mars and travels in time and space may not be shared by all physics students. Especially female students express a need for other concerns in science. The entanglement of physics with hard science fiction may thus help develop some students' interest in learning school physics and help create an interest for studying physics at university level. But research indicates that especially female students are not captured by the hard techno-fantasies to the same extent as some of their male colleagues. Other visions (e.g. inspired by soft science fiction) are not materialized as a resource in the local educational culture. It calls for an argument of how teaching science is also teaching cultural values, ethics and concerns, which may be gendered. Teaching materials, like the use of hard science fiction in education, may not just be (yet another) gender bias in science education but also carrier of particular visions for scientific endeavours.

  9. Hardness map of human meta tarsals and phalanges of toes.

    PubMed

    Manarvi, Irfan

    2016-08-01

    Predicting location of fracture in human bones has been a keen area of research for the past few decades. A variety of tests for hardness, deformation and strain field measurement have been conducted in the past; but considered insufficient due to various limitations. Researchers therefore have proposed further studies due to inaccuracies in measurement methods, testing machines and experimental errors. Advancement and availability of hardware, measuring instrumentation and testing machines can now provide remedies to these limitations. Human foot is a critical part of body exposed to various forces throughout its life. A number of products are developed for using over it for protection and care. Which many times do not provide sufficient protection and may itself become a source of stress due to non-consideration of the delicacy of bones in the feet. A continuous strain or overloading on feet may occur resulting to discomfort and even fracture. Not knowing how the hardness is spread all over the Meta tarsals and phalanges is one of major contributory factor for unsatisfactory design of foot protection products. This paper provides a complete hardness distribution map developed by experimental testing of all the Meta tarsals and Phalanges of toes for a typical human foot. The bones were taken from two left feet of a 40 and 42 year old male cadaver. These were dehydrated prior to measurements of hardness using Leeb hardness testing method. Hardness was measured around the circumference of a bone as well as along its length. Hardness values can be related to tensile strength of the bones to predict possible values of stress that could be borne by these bones. Results may also be used for design and developing various accessories for human feet health care and comfort.

  10. Outdoor weathering of facial prosthetic elastomers differing in Durometer hardness.

    PubMed

    Willett, Emily S; Beatty, Mark W

    2015-03-01

    Facial prosthetic elastomers with wide ranges in hardness are available, yet material weatherability is unknown. The purpose of this study was to assess color, Durometer hardness, and tensile property changes after 3000 hours of outdoor weathering. Unpigmented elastomers with Durometer hardness 5, 30, 50, 70, and A-2186 were polymerized into dumbbells (ASTM D412) and disks, 34 mm in diameter by 6 mm thick. Materials were subjected to outdoor or time passage environments for 3000 hours. CIELab color (n=5), Durometer hardness (n=5), and tensile mechanical properties (n=10) were measured at 0 and 3000 hours, and group differences were assessed by material and weathering condition (ANOVA/Tukey, α=.05). Except for A-2186, the mean Durometer changes for all materials were 1 unit or less, with no significant differences observed between time passage and weathered groups (P≥.05). Three-thousand-hour tensile mechanical property results demonstrated nonsignificant differences between time passage and weathered materials but significantly changed properties from immediately tested materials (P<.001). Outdoor weathering induced perceptible but acceptable color changes (1.7≤ΔE*≤2.6) for elastomers with Durometer hardness 5 and 30 and A-2186. With a few exceptions, outdoor weathering produced relatively small changes in color, Durometer hardness, or tensile properties compared with time passage. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Hard photodisintegration of 3He into a p d pair

    NASA Astrophysics Data System (ADS)

    Maheswari, Dhiraj; Sargsian, Misak M.

    2017-02-01

    The recent measurements of high energy photodisintegration of a 3He nucleus to a p d pair at 90∘ center of mass demonstrated an energy scaling consistent with the quark counting rule with an unprecedentedly large exponent of s-17. To understand the underlying mechanism of this process, we extended the theoretical formalism of the hard rescattering mechanism (HRM) to calculate the γ 3He→p d reaction. In HRM the incoming high energy photon strikes a quark from one of the nucleons in the target which subsequently undergoes hard rescattering with the quarks from the other nucleons, generating a hard two-body system in the final state of the reaction. Within the HRM we derived the parameter-free expression for the differential cross section of the reaction, which is expressed through the 3He→p d transition spectral function, the cross section of hard p d →p d scattering, and the effective charge of the quarks being interchanged during the hard rescattering process. The numerical estimates of all these factors resulted in the magnitude of the cross section, which is surprisingly in good agreement with the data.

  12. Effect of sintering atmosphere on the hardness of ThO2

    NASA Astrophysics Data System (ADS)

    Baena, Angela; Cardinaels, Thomas; Van Eyken, Jelle; Puzzolante, Jean Louis; Binnemans, Koen; Verwerft, Marc

    2016-08-01

    The hardness and toughness of ThO2 sintered under reducing and oxidizing conditions has been investigated and, quite unexpectedly, a significant difference in hardness was observed for the entire range of porosities studied. Reducing conditions systematically yielded higher hardness values than oxidizing conditions. Extrapolated to zero porosity, the hardness for ThO2 is H0 = 10.5 ± 0.3 GPa for oxidizing conditions and H0 = 12.4 ± 0.7 GPa for reducing conditions. Toughness values have been derived from Vickers indentations; differences in toughness were insignificant and only a single value is proposed: KIC = 0.97 ± 0.12 MPa √m. The difference in hardness is attributed to the presence of point defects, also acting as color centers and causing grey coloration of ThO2 sintered under reducing conditions. Furthermore, and of interest for nuclear fuel production, is the finding that ThO2 sintered under reducing conditions is significantly easier to grind compared to material sintered under oxidizing conditions.

  13. Feature extraction for ultrasonic sensor based defect detection in ceramic components

    NASA Astrophysics Data System (ADS)

    Kesharaju, Manasa; Nagarajah, Romesh

    2014-02-01

    High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.

  14. A year-long AGILE observation of Cygnus X-1 in hard spectral state

    NASA Astrophysics Data System (ADS)

    Del Monte, E.; Feroci, M.; Evangelista, Y.; Costa, E.; Donnarumma, I.; Lapshov, I.; Lazzarotto, F.; Pacciani, L.; Rapisarda, M.; Soffitta, P.; Argan, A.; Barbiellini, G.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P. W.; Chen, A.; D'Ammando, F.; Di Cocco, G.; Fuschino, F.; Galli, M.; Gianotti, F.; Giuliani, A.; Labanti, C.; Lipari, P.; Longo, F.; Marisaldi, M.; Mereghetti, S.; Moretti, E.; Morselli, A.; Pellizzoni, A.; Perotti, F.; Piano, G.; Picozza, P.; Pilia, M.; Prest, M.; Pucella, G.; Rappoldi, A.; Sabatini, S.; Striani, E.; Tavani, M.; Trifoglio, M.; Trois, A.; Vallazza, E.; Vercellone, S.; Vittorini, V.; Zambra, A.; Antonelli, L. A.; Cutini, S.; Pittori, C.; Preger, B.; Santolamazza, P.; Verrecchia, F.; Giommi, P.; Salotti, L.

    2010-09-01

    Context. Cygnus X-1 (Cyg X-1) is a high mass X-ray binary system, known to be a black hole candidate and one of the brightest sources in the X-ray sky, which shows both variability on all timescales and frequent flares. The source spends most of the time in a hard spectral state, dominated by a power-law emission, with occasional transitions to the soft and intermediate states, where a strong blackbody component emerges. Aims: We present the observation of Cyg X-1 in a hard spectral state performed during the AGILE science verification phase and observing cycle 1 in hard X-rays (with SuperAGILE) and gamma rays (with the gamma ray imaging detector) and lasting for about 160 days with a live time of ~6 Ms. Methods: We investigated the variability of Cyg X-1 in hard X-rays on different timescales, from ~300 s up to one day, and we applied different tools of timing analysis, such as the autocorrelation function, the first-order structure function, and the Lomb-Scargle periodogram, to our data (from SuperAGILE) and to the simultaneous data in soft X-rays (from RXTE/ASM). We concluded our investigation with a search for emission in the energy range above 100 MeV with the maximum likelihood technique. Results: In the hard X-ray band, the flux of Cyg X-1 shows its typical erratic fluctuations on all timescales with variations of about a factor of two that do not significantly affect the shape of the energy spectrum. From the first-order structure function, we find that the X-ray emission of Cyg X-1 is characterized by antipersistence (anticorrelation in the time series, with an increase in the emission likely followed by a decrease), indicative of a negative feedback mechanism at work. In the gamma ray data a statistically significant point-like source at the position of Cyg X-1 is not found, and the upper limit on the flux is 5 × 10-8 ph cm-2 s-1 over the whole observation (160 days). Finally we compared our upper limit in gamma rays with the expectation of various

  15. Relative hardness measurement of soft objects by a new fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Ahmadi, Roozbeh; Ashtaputre, Pranav; Abou Ziki, Jana; Dargahi, Javad; Packirisamy, Muthukumaran

    2010-06-01

    The measurement of relative hardness of soft objects enables replication of human finger tactile perception capabilities. This ability has many applications not only in automation and robotics industry but also in many other areas such as aerospace and robotic surgery where a robotic tool interacts with a soft contact object. One of the practical examples of interaction between a solid robotic instrument and a soft contact object occurs during robotically-assisted minimally invasive surgery. Measuring the relative hardness of bio-tissue, while contacting the robotic instrument, helps the surgeons to perform this type of surgery more reliably. In the present work, a new optical sensor is proposed to measure the relative hardness of contact objects. In order to measure the hardness of a contact object, like a human finger, it is required to apply a small force/deformation to the object by a tactile sensor. Then, the applied force and resulting deformation should be recorded at certain points to enable the relative hardness measurement. In this work, force/deformation data for a contact object is recorded at certain points by the proposed optical sensor. Recorded data is used to measure the relative hardness of soft objects. Based on the proposed design, an experimental setup was developed and experimental tests were performed to measure the relative hardness of elastomeric materials. Experimental results verify the ability of the proposed optical sensor to measure the relative hardness of elastomeric samples.

  16. Enthalpy versus entropy: What drives hard-particle ordering in condensed phases?

    DOE PAGES

    Anthamatten, Mitchell; Ou, Jane J.; Weinfeld, Jeffrey A.; ...

    2016-07-27

    In support of mesoscopic-scale materials processing, spontaneous hard-particle ordering has been actively pursued for over a half-century. The generally accepted view that entropy alone can drive hard particle ordering is evaluated. Furthermore, a thermodynamic analysis of hard particle ordering was conducted and shown to agree with existing computations and experiments. Conclusions are that (i) hard particle ordering transitions between states in equilibrium are forbidden at constant volume but are allowed at constant pressure; (ii) spontaneous ordering transitions at constant pressure are driven by enthalpy, and (iii) ordering under constant volume necessarily involves a non-equilibrium initial state which has yet tomore » be rigorously defined.« less

  17. Polarization observables in hard rescattering mechanism of deuteron photodisintegration

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.

    2004-05-01

    Polarization properties of high energy photodisintegration of the deuteron are studied within the framework of the hard rescattering mechanism (HRM). In HRM, a quark of one nucleon knocked-out by the incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with high relative momentum. Summation of all relevant quark rescattering amplitudes allows us to express the scattering amplitude of the reaction through the convolution of a hard photon-quark interaction vertex, the large angle p-n scattering amplitude and the low momentum deuteron wave function. Within HRM, it is demonstrated that the polarization observables in hard photodisintegration of the deuteron can be expressed through the five helicity amplitudes of NN scattering at high momentum transfer. At 90° CM scattering HRM predicts the dominance of the isovector channel of hard pn rescattering, and it explains the observed smallness of induced, Py and transfered, Cx polarizations without invoking the argument of helicity conservation. Namely, HRM predicts that Py and Cx are proportional to the φ5 helicity amplitude which vanishes at θcm=90° due to symmetry reasons. HRM predicts also a nonzero value for Cz in the helicity-conserving regime and a positive Σ asymmetry which is related to the dominance of the isovector channel in the hard reinteraction. We extend our calculations to the region where large polarization effects are observed in pp scattering as well as give predictions for angular dependences.

  18. Structural characterization of biomedical Co-Cr-Mo components produced by direct metal laser sintering.

    PubMed

    Barucca, G; Santecchia, E; Majni, G; Girardin, E; Bassoli, E; Denti, L; Gatto, A; Iuliano, L; Moskalewicz, T; Mengucci, P

    2015-03-01

    Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co-Cr-Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111}γ planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Hard metal composition

    DOEpatents

    Sheinberg, Haskell

    1986-01-01

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  20. Correlation of impression removal force with elastomeric impression material rigidity and hardness.

    PubMed

    Walker, Mary P; Alderman, Nick; Petrie, Cynthia S; Melander, Jennifer; McGuire, Jacob

    2013-07-01

    Difficult impression removal has been linked to high rigidity and hardness of elastomeric impression materials. In response to this concern, manufacturers have reformulated their materials to reduce rigidity and hardness to decrease removal difficulty; however, the relationship between impression removal and rigidity or hardness has not been evaluated. The purpose of this study was to determine if there is a positive correlation between impression removal difficulty and rigidity or hardness of current elastomeric impression materials. Light- and medium-body polyether (PE), vinylpolysiloxane (VPS), and hybrid vinyl polyether siloxane (VPES) impression materials were tested (n = 5 for each material/consistency/test method). Rigidity (elastic modulus) was measured via tensile testing of dumbbell-shaped specimens (Die C, ASTM D412). Shore A hardness was measured using disc specimens according to ASTM D2240-05 test specifications. Impressions were also made of a custom stainless steel model using a custom metal tray that could be attached to a universal tester to measure associated removal force. Within each impression material consistency, one-factor ANOVA and Tukey's post hoc analyses (α = 0.05) were used to compare rigidity, hardness, and removal force of the three types of impression materials. A Pearson's correlation (α = 0.05) was used to evaluate the association between impression removal force and rigidity or hardness. With medium-body materials, VPS exhibited significantly higher (p ≤ 0.05) rigidity and hardness than VPES or PE, while PE impressions required significantly higher (p ≤ 0.05) removal force than VPS or VPES impressions. With light-body materials, VPS again demonstrated significantly higher (p ≤ 0.05) hardness than VPES or PE, while the rigidity of the light-body materials did not significantly differ between materials (p > 0.05); however, just as with the medium-body materials, light-body PE impressions required significantly higher (p

  1. Hard diffraction and deep inelastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjorken, J.D.

    1994-04-01

    Since the advent of hard-collision physics, the study of diffractive processes - shadow physics - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word diffraction is sometimes used by high-energy physicists in a loose way. The author defines this term to mean: A diffractive process occurs if and only if theremore » is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the {open_quotes}lego{close_quotes} phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width {Delta}{eta} does not have a power-law decrease with increasing subenergy s=e{sup {Delta}{eta}}, but behaves at most like some power of pseudorapidity {Delta}{eta}{approx}log(s). The term hard diffraction shall simply refer to those diffractive process which have jets in the final-state phase-space.« less

  2. In situ synchrotron high-energy X-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Junsong; Hao, Shijie; Jiang, Daqiang

    This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrixmore » and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.« less

  3. VS Characterization of Hard-Rock DAM Sites in British Columbia

    NASA Astrophysics Data System (ADS)

    Addo, K. O.; Catchings, R.; Yong, A.; Goldman, M.; Chan, J. H.; Martin, A. J.

    2017-12-01

    We present results consisting of shear-wave velocity (VS) profiles and the time-averaged VS in the uppermost 30 m (VS30) measured with multiple noninvasive seismic methods and acquired at five hydro dam locations in British Columbia, Canada. VS30 is typically the main parameter used to account for site amplification in ground motion models (GMMs), including models for western (WNA) and central/eastern North America (CENA). As VS30 quantifies soil shear stiffness, which affects frequency content and damping within shallow sediments, it correlates with the shallow-crustal damping parameter, kappa (k), and particularly the site component of kappa (k0). The upper limit on k0-VS30-scaling is in the range of 1100 to 1500 m/s (or less) and the lack of data from stiffer sites reflects the scarcity of direct VS measurements for such site conditions in North America. Hard-rock sites (VS30 > 1500 m/s) are of great engineering interest, but the lack of such measurements increases epistemic uncertainties in the GMMs. Moreover, it is currently not possible to correlate site-to-site variations in k0 with VS30 for such conditions because most hard-rock sites are assigned a generic VS30 of 2000 m/s, due to the lack of measured VS30 values. For the British Columbia sites, our preliminary analysis of field records indicates near-surface shear-wave velocities in excess of 2500 m/s in the upper few meters. Additional analysis of body- and surface-waves will include: refraction tomography, multi-channel analysis of surface waves (MASW), reflection, extended-spatial-autocorrelation, horizontal-to-vertical spectral ratio, and multi-spectral analysis of surface waves

  4. Importance of Matching Physical Friction, Hardness, and Texture in Creating Realistic Haptic Virtual Surfaces.

    PubMed

    Culbertson, Heather; Kuchenbecker, Katherine J

    2017-01-01

    Interacting with physical objects through a tool elicits tactile and kinesthetic sensations that comprise your haptic impression of the object. These cues, however, are largely missing from interactions with virtual objects, yielding an unrealistic user experience. This article evaluates the realism of virtual surfaces rendered using haptic models constructed from data recorded during interactions with real surfaces. The models include three components: surface friction, tapping transients, and texture vibrations. We render the virtual surfaces on a SensAble Phantom Omni haptic interface augmented with a Tactile Labs Haptuator for vibration output. We conducted a human-subject study to assess the realism of these virtual surfaces and the importance of the three model components. Following a perceptual discrepancy paradigm, subjects compared each of 15 real surfaces to a full rendering of the same surface plus versions missing each model component. The realism improvement achieved by including friction, tapping, or texture in the rendering was found to directly relate to the intensity of the surface's property in that domain (slipperiness, hardness, or roughness). A subsequent analysis of forces and vibrations measured during interactions with virtual surfaces indicated that the Omni's inherent mechanical properties corrupted the user's haptic experience, decreasing realism of the virtual surface.

  5. The Hard Problem of Cooperation

    PubMed Central

    Eriksson, Kimmo; Strimling, Pontus

    2012-01-01

    Based on individual variation in cooperative inclinations, we define the “hard problem of cooperation” as that of achieving high levels of cooperation in a group of non-cooperative types. Can the hard problem be solved by institutions with monitoring and sanctions? In a laboratory experiment we find that the answer is affirmative if the institution is imposed on the group but negative if development of the institution is left to the group to vote on. In the experiment, participants were divided into groups of either cooperative types or non-cooperative types depending on their behavior in a public goods game. In these homogeneous groups they repeatedly played a public goods game regulated by an institution that incorporated several of the key properties identified by Ostrom: operational rules, monitoring, rewards, punishments, and (in one condition) change of rules. When change of rules was not possible and punishments were set to be high, groups of both types generally abided by operational rules demanding high contributions to the common good, and thereby achieved high levels of payoffs. Under less severe rules, both types of groups did worse but non-cooperative types did worst. Thus, non-cooperative groups profited the most from being governed by an institution demanding high contributions and employing high punishments. Nevertheless, in a condition where change of rules through voting was made possible, development of the institution in this direction was more often voted down in groups of non-cooperative types. We discuss the relevance of the hard problem and fit our results into a bigger picture of institutional and individual determinants of cooperative behavior. PMID:22792282

  6. The Relationship Between Solar Radio and Hard X-Ray Emission

    NASA Technical Reports Server (NTRS)

    White, S. M.; Benz, A. O.; Christe, S.; Farnik, F.; Kundu, M. R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Valio, A. V. R.; Saint-Hilaire, P.; hide

    2011-01-01

    This review discusses the complementary relationship between radio and hard Xray observations of the Sun using primarily results from the era of the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite. A primary focus of joint radio and hard X-ray studies of solar flares uses observations of nonthermal gyrosynchrotron emission at radio wavelengths and bremsstrahlung hard X-rays to study the properties of electrons accelerated in the main flare site, since it is well established that these two emissions show very similar temporal behavior. A quantitative prescription is given for comparing the electron energy distributions derived separately from the two wavelength ranges: this is an important application with the potential for measuring the magnetic field strength in the flaring region, and reveals significant differences between the electrons in different energy ranges. Examples of the use of simultaneous data from the two wavelength ranges to derive physical conditions are then discussed, including the case of microflares, and the comparison of images at radio and hard X-ray wavelengths is presented. There have been puzzling results obtained from observations of solar flares at millimeter and submillimeter wavelengths, and the comparison of these results with corresponding hard X-ray data is presented. Finally, the review discusses the association of hard X-ray releases with radio emission at decimeter and meter wavelengths, which is dominated by plasma emission (at lower frequencies) and electron cyclotron maser emission (at higher frequencies), both coherent emission mechanisms that require small numbers of energetic electrons. These comparisons show broad general associations but detailed correspondence remains more elusive.

  7. A synthetic dataset for evaluating soft and hard fusion algorithms

    NASA Astrophysics Data System (ADS)

    Graham, Jacob L.; Hall, David L.; Rimland, Jeffrey

    2011-06-01

    There is an emerging demand for the development of data fusion techniques and algorithms that are capable of combining conventional "hard" sensor inputs such as video, radar, and multispectral sensor data with "soft" data including textual situation reports, open-source web information, and "hard/soft" data such as image or video data that includes human-generated annotations. New techniques that assist in sense-making over a wide range of vastly heterogeneous sources are critical to improving tactical situational awareness in counterinsurgency (COIN) and other asymmetric warfare situations. A major challenge in this area is the lack of realistic datasets available for test and evaluation of such algorithms. While "soft" message sets exist, they tend to be of limited use for data fusion applications due to the lack of critical message pedigree and other metadata. They also lack corresponding hard sensor data that presents reasonable "fusion opportunities" to evaluate the ability to make connections and inferences that span the soft and hard data sets. This paper outlines the design methodologies, content, and some potential use cases of a COIN-based synthetic soft and hard dataset created under a United States Multi-disciplinary University Research Initiative (MURI) program funded by the U.S. Army Research Office (ARO). The dataset includes realistic synthetic reports from a variety of sources, corresponding synthetic hard data, and an extensive supporting database that maintains "ground truth" through logical grouping of related data into "vignettes." The supporting database also maintains the pedigree of messages and other critical metadata.

  8. Radiation Hardness Assurance for Space Systems

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Day, John H. (Technical Monitor)

    2002-01-01

    The space radiation environment can lead to extremely harsh operating conditions for on-board electronic box and systems. The characteristics of the radiation environment are highly dependent on the type of mission (date, duration and orbit). Radiation accelerates the aging of the electronic parts and material and can lead to a degradation of electrical performance; it can also create transient phenomena on parts. Such damage at the part level can induce damage or functional failure at electronic box, subsystem, and system levels. A rigorous methodology is needed to ensure that the radiation environment does not compromise the functionality and performance of the electronics during the system life. This methodology is called hardness assurance. It consists of those activities undertaken to ensure that the electronic piece parts placed in the space system perform to their design specifications after exposure to the space environment. It deals with system requirements, environmental definitions, part selection, part testing, shielding and radiation tolerant design. All these elements should play together in order to produce a system tolerant to.the radiation environment. An overview of the different steps of a space system hardness assurance program is given in section 2. In order to define the mission radiation specifications and compare these requirements to radiation test data, a detailed knowledge of the space environment and the corresponding electronic device failure mechanisms is required. The presentation by J. Mazur deals with the Earth space radiation environment as well as the internal environment of a spacecraft. The presentation by J. Schwank deals with ionization effects, and the presentation by T. Weatherford deals with Single particle Event Phenomena (SEP) in semiconductor devices and microcircuits. These three presentations provide more detailed background to complement the sections 3 and 4. Part selection and categorization are discussed in section

  9. Development of high performance scientific components for interoperability of computing packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulabani, Teena Pratap

    2008-01-01

    Three major high performance quantum chemistry computational packages, NWChem, GAMESS and MPQC have been developed by different research efforts following different design patterns. The goal is to achieve interoperability among these packages by overcoming the challenges caused by the different communication patterns and software design of each of these packages. A chemistry algorithm is hard to develop as well as being a time consuming process; integration of large quantum chemistry packages will allow resource sharing and thus avoid reinvention of the wheel. Creating connections between these incompatible packages is the major motivation of the proposed work. This interoperability is achievedmore » by bringing the benefits of Component Based Software Engineering through a plug-and-play component framework called Common Component Architecture (CCA). In this thesis, I present a strategy and process used for interfacing two widely used and important computational chemistry methodologies: Quantum Mechanics and Molecular Mechanics. To show the feasibility of the proposed approach the Tuning and Analysis Utility (TAU) has been coupled with NWChem code and its CCA components. Results show that the overhead is negligible when compared to the ease and potential of organizing and coping with large-scale software applications.« less

  10. Hardness - Yield Strength Relation of Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Praveen Sekhar, Aluru; Nandy, Supriya; Ray, Kalyan Kumar; Das, Debdulal

    2018-03-01

    Assessing the mechanical properties of materials through indentation hardness test is an attractive method, rather than obtaining the properties through destructive approach like tensile testing. The present work emphasizes on the relation between hardness and yield strength of Al-Mg-Si alloys considering Tabor type equations. Al-0.5Mg-0.4Si alloy has been artificially aged at various temperatures (100 to 250 °C) for different time durations (0.083 to 1000 h) and the ageing response has been assessed by measuring the Vickers hardness and yield strength. Correlations of the existing data from the open literature have also been reviewed. Lastly, it has been explained that the deviation in obtained relation from Tabor’s equation is owing to the dislocation accumulation during indentation.

  11. Spotlight on Deaf and Hard-of-Hearing Youth in Canada and beyond

    ERIC Educational Resources Information Center

    Erlich, Shoshana

    2012-01-01

    With approximately 310,000 Deaf Canadians, and another approximately 2.8 million hard-of-hearing Canadians, Deaf and hard-of-hearing people make up a significant portion of the Canadian population. This population is hard to quantify and describe due to its inherent diversity. Generally, the community is divided into those who follow an oral…

  12. Hard-to-fill vacancies.

    PubMed

    Williams, Ruth

    2010-09-29

    Skills for Health has launched a set of resources to help healthcare employers tackle hard-to-fill entry-level vacancies and provide sustainable employment for local unemployed people. The Sector Employability Toolkit aims to reduce recruitment and retention costs for entry-level posts and repare people for employment through pre-job training programmes, and support employers to develop local partnerships to gain access to wider pools of candidates and funding streams.

  13. First Images from HERO: A Hard-X-Ray Focusing Telescope

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Benson, Carl M.; Dietz, Kurtis L.; Elsner, Ronald F.; Engelhaupt, Darell E.; Ghosh, Kajal K.; Kolodziejczak, Jeffery J.; ODell, Stephen L.; hide

    2001-01-01

    We are developing a balloon-borne hard-x-ray telescope that utilizes grazing incidence optics. Termed HERO, for High-Energy Replicated Optics, the instrument will provide unprecented sensitivity in the hard-x-ray region and will achieve milliCrab-level sensitivity in a typical 3-hour balloon-flight observation and 50 microCrab sensitivity on ultra-long-duration flights. A recent proof-of-concept flight, featuring a small number of mirror shells captured the first focused hard-x-ray images of galactic x-ray sources. Full details of the payload, its expected future performance and its recent measurements are provided.

  14. Electroerosion micro- and nanopowders for the production of hard alloys

    NASA Astrophysics Data System (ADS)

    Latypov, R. A.; Ageeva, E. V.; Kruglyakov, O. V.; Latypova, G. R.

    2016-06-01

    The shape and the surface morphology of the powder particles fabricated by the electroerosion dispersion of tungsten-containing wastes in illuminating oil are studied. The hard alloy fabricated from these powder particles is analyzed by electron-probe microanalysis. The powder synthesized by the electroerosion dispersion of the wastes of sintered hard alloys is found to consist of particles of a spherical or elliptical shape, an irregular shape (conglomerates), and a fragment shape. It is shown that W, Ti, and Co are the main elements in the hard alloy fabricated from the powder synthesized by electroerosion dispersion in illuminating oil.

  15. Improvement in hardness of soda-lime-silica glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Riya; De, Moumita; Roy, Sudakshina

    2012-06-05

    Hardness is a key design parameter for structural application of brittle solids like glass. Here we report for the first time the significant improvement of about 10% in Vicker's hardness of a soda-lime-silica glass with loading rate in the range of 0.1-10 N.s{sup -1}. Corroborative dark field optical and scanning electron microscopy provided clue to this improvement through evidence of variations in spatial density of shear deformation band formation as a function of loading rate.

  16. Hard X-ray mirrors for Nuclear Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Descalle, M. A.; Brejnholt, N.; Hill, R.

    Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a newmore » type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed

  17. Hard Spheres on the Primitive Surface

    NASA Astrophysics Data System (ADS)

    Dotera, Tomonari; Takahashi, Yusuke

    2015-03-01

    Recently hierarchical structures associated with the gyroid in several soft-matter systems have been reported. One of fundamental questions is regular arrangement or tiling on minimal surfaces. We have found certain numbers of hard spheres per unit cell on the gyroid surface are entropically self-organized. Here, new results for the primitive surface are presented. 56/64/72 per unit cell on the primitive minimal surface are entropically self-organized. Numerical evidences for the fluid-solid transition as a function of hard sphere radius are obtained in terms of the acceptance ratio of Monte Carlo moves and order parameters. These arrangements, which are the extensions of the hexagonal arrangement on a flat surface, can be viewed as hyperbolic tiling on the Poincaré disk with a negative Gaussian curvature.

  18. Solving the Mystery of the Short-Hard Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Fox, Derek

    2005-07-01

    Eight years after the afterglow detections that revolutionized studies of the long-soft gamma-ray bursts, not even one afterglow of a short-hard GRB has been seen, and the nature of these events has become one of the most important problems in GRB research. The Swift satellite, expected to be in full operation throughout Cycle 14, will report few-arcsecond localizations for short-hard bursts in minutes, enabling prompt, deep optical afterglow searches for the first time. Discovery and observation of the first short-hard optical afterglows will answer most of the critical questions about these events: What are their distances and energies? Do they occur in distant galaxies, and if so, in which regions of those galaxies? Are they the result of collimated or quasi-spherical explosions? In combination with an extensive rapid-response ground-based campaign, we propose to make the critical high-sensitivity HST TOO observations that will allow us to answer these questions. If theorists are correct in attributing the short-hard bursts to binary neutron star coalescence events, then they will serve as signposts to the primary targeted source population for ground-based gravitational-wave detectors, and short-hard burst studies will have a vital role to play in guiding those observations.

  19. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-12-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.

  20. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed Central

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-01-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations. PMID:29643592

  1. Extended hard-X-ray emission in the inner few parsecs of the Galaxy.

    PubMed

    Perez, Kerstin; Hailey, Charles J; Bauer, Franz E; Krivonos, Roman A; Mori, Kaya; Baganoff, Frederick K; Barrière, Nicolas M; Boggs, Steven E; Christensen, Finn E; Craig, William W; Grefenstette, Brian W; Grindlay, Jonathan E; Harrison, Fiona A; Hong, Jaesub; Madsen, Kristin K; Nynka, Melania; Stern, Daniel; Tomsick, John A; Wik, Daniel R; Zhang, Shuo; Zhang, William W; Zoglauer, Andreas

    2015-04-30

    The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre.

  2. Application of hard coatings to substrates at low temperatures

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1993-01-01

    BIRL, the industrial research laboratory of Northwestern University, has conducted unique and innovative research, under sponsorship from the NASA Marshall Space Flight Center (MSFC), in the application of hard, wear resistant coatings to bearing steels using the high-rate reactive sputtering (HRRS) process that was pioneered by Dr. William Sproul, the principal investigator on this program. Prior to this program, Dr. Sproul had demonstrated that it is possible to apply hard coatings such as titanium nitride (TiN) to alloy steels at low temperatures via the HRRS process without changing the metallurgical properties of the steel. The NASA MSFC program at BIRL had the specific objectives to: apply TiN to 440C stainless steel without changing the metallurgical properties of the steel; prepare rolling contact fatigue (RCF) test samples coated with binary hard coatings of TiN, zirconium nitride (ZrN), hafnium nitride (HfN), chromium nitride (CrN), and molybdenum nitride (MoN), and metal coatings of copper (Cu) and gold (Au); and develop new alloyed hard coatings of titanium aluminum nitride (Ti(0.5)Al(0.5)N), titanium zirconium nitride (Ti(0.5)Zr(0.5)N), and titanium aluminum vanadium nitride.

  3. Mental health and self-image among deaf and hard of hearing children.

    PubMed

    Mejstad, Lena; Heiling, Kerstin; Svedin, Carl Göran

    2009-01-01

    Mental health and self-image among deaf and hard of hearing children (ages 11-18 years) in southern Sweden was investigated. The children (N = 111) attended special schools for the deaf (n = 28), special schools for the hard of hearing (n = 23), and regular schools where hard of hearing children were mainstreamed (n = 60). The Strengths and Difficulties Questionnaire (Goodman, 1997) was used to screen mental health and the "I Think I Am" questionnaire Ouvinen-Birgerstam (1982, 1984) to measure self-esteem. The study shows that hard of hearing children seem to do as well, as a group, as other children in Swedish society. Mean SDQ and ITIA scores indicated that the mainstreamed students and the students in special schools for the hard of hearing had higher levels of rated mental health and self-image than the students in schools for the deaf.

  4. Anodizing of High Electrically Stressed Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores, P.; Henderson, D. J.; Good, D. E.

    2013-06-01

    Anodizing creates an aluminum oxide coating that penetrates into the surface as well as builds above the surface of aluminum creating a very hard ceramic-type coating with good dielectric properties. Over time and use, the electrical carrying components (or spools in this case) experience electrical breakdown, yielding undesirable x-ray dosages or failure. The spool is located in the high vacuum region of a rod pinch diode section of an x-ray producing machine. Machine operators have recorded decreases in x-ray dosages over numerous shots using the reusable spool component, and re-anodizing the interior surface of the spool does not provide themore » expected improvement. A machine operation subject matter expert coated the anodized surface with diffusion pump oil to eliminate electrical breakdown as a temporary fix. It is known that an anodized surface is very porous, and it is because of this porosity that the surface may trap air that becomes a catalyst for electrical breakdown. In this paper we present a solution of mitigating electrical breakdown by oiling. We will also present results of surface anodizing improvements achieved by surface finish preparation and surface sealing. We conclude that oiling the anodized surface and using anodized hot dip sealing processes will have similar results.« less

  5. The Spatial Assessment of the Current Seismic Hazard State for Hard Rock Underground Mines

    NASA Astrophysics Data System (ADS)

    Wesseloo, Johan

    2018-06-01

    Mining-induced seismic hazard assessment is an important component in the management of safety and financial risk in mines. As the seismic hazard is a response to the mining activity, it is non-stationary and variable both in space and time. This paper presents an approach for implementing a probabilistic seismic hazard assessment to assess the current hazard state of a mine. Each of the components of the probabilistic seismic hazard assessment is considered within the context of hard rock underground mines. The focus of this paper is the assessment of the in-mine hazard distribution and does not consider the hazard to nearby public or structures. A rating system and methodologies to present hazard maps, for the purpose of communicating to different stakeholders in the mine, i.e. mine managers, technical personnel and the work force, are developed. The approach allows one to update the assessment with relative ease and within short time periods as new data become available, enabling the monitoring of the spatial and temporal change in the seismic hazard.

  6. A versatile fabrication strategy of three-dimensional foams for soft and hard tissue engineering.

    PubMed

    Xu, Changlu; Bai, Yanjie; Yang, Shaofeng; Yang, Huilin; Stout, David A; Tran, Phong; Yang, Lei

    2017-12-15

    The fabrication strategies of three-dimensional porous biomaterials have been extensively studied and well established in the past decades, yet the biocompatibility and versatility in preparing porous architecture still lacks. Herewith, we present a novel and green fabrication technique of 3D porous foams for both soft and hard engineering. By utilizing the gelatinization and retrogradation property of starches, stabilized porous constructs made of various building blocks from living cells to ceramic particles were created for the first time. In soft tissue engineering applications, 3D cultured tissue foam (CTF) with controlled release property of cells was developed and the foams constituted by osteoblasts, fibroblasts and vascular endothelial cells all exhibited high mechanical stability and preservation of cell viability or functions. More importantly, the CTF achieved sustained self-release of cells controlled by serum (containing amylase) concentration and the released cells also maintained high viability and functions. In the context of hard tissue engineering applications, ceramic/bioglass (BG) foam scaffolds were developed by the similar starch-assisted foaming strategy where the resultant bone scaffolds of hydroxyapatite (HA)/BG and Si3N4/BG possessed>70% porosity with interconnected macropores (sizes 200~400μm) and fine pores (sizes1~10 μm) and superior mechanical properties despite the high porosity. Additionally, in vitro and in vivo evaluations on the biological properties revealed that porous HA/BG foam exhibited desired biocompatibility and osteogenesis. The in vivo study indicated new bone ingrowth after 1 week and significant increases in new bone volume after 2 weeks. In conclusion, the presented foaming strategy provides opportunities for biofabricating CTF with different cells for different target soft tissues and preparing porous ceramic/BG foams with different material components and high strengths-showing great versatility in soft and

  7. Performance of Er:YAG laser ablation of hard bone under different irrigation water cooling conditions

    NASA Astrophysics Data System (ADS)

    Beltrán Bernal, Lina M.; Shayeganrad, Gholamreza; Kosa, Gabor; Zelechowski, Marek; Rauter, Georg; Friederich, Niklaus; Cattin, Philippe C.; Zam, Azhar

    2018-02-01

    The biological applicability of the Erbium-doped Yttrium Aluminum Garnet (Er:YAG) laser in surgical processes is so far limited to hard dental tissues. Using the Er:YAG laser for bone ablation is being studied since it has shown good performance for ablating dental hard tissues at the wavelength 2.94 μm, which coincides with the absorption peak of water, one of the main components of hard tissue, like teeth and bone. To obtain a decent performance of the laser in the cutting process, we aim at examining the influence of sequenced water jet irrigation on both, the ablation rate and the prevention of carbonization while performing laser ablation of bone with fixed laser parameters. An Er:YAG laser at 2.94 μm wavelength, 940 mJ energy per pulse, 400 μs pulse width, and 10 Hz repetition rate is used for the ablation of a porcine femur bone under different pulsed water jet irrigation conditions. We used micro-computed tomography (micro-CT) scans to determine the geometry of the ablated areas. In addition, scanning electron microscopy (SEM) is used for qualitative observations for the presence of carbonization and micro-fractures on the ablated surfaces. We evaluate the performance of the laser ablation process for the different water jet conditions in terms of the ablation rate, quantified by the ablated volume per second and the ablation efficiency, calculated as the ablated volume per pulse energy. We provide an optimized system for laser ablation which delivers the appropriate amount of water to the bone and consequently, the bone is ablated in the most efficient way possible without carbonization.

  8. The Emerging Population of Pulsar Wind Nebulae in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Mattana, F.; Götz, D.; Terrier, R.; Renaud, M.; Falanga, M.

    2009-05-01

    The hard X-ray synchrotron emission from Pulsar Wind Nebulae probes energetic particles, closely related to the pulsar injection power at the present time. INTEGRAL has disclosed the yet poorly known population of hard X-ray pulsar/PWN systems. We summarize the properties of the class, with emphasys on the first hard X-ray bow-shock (CTB 80 powered by PSR B1951+32), and highlight some prospects for the study of Pulsar Wind Nebulae with the Simbol-X mission.

  9. The Hardness and Strength Properties of WC-Co Composites

    PubMed Central

    Armstrong, Ronald W.

    2011-01-01

    The industrially-important WC-Co composite materials provide a useful, albeit complicated materials system for understanding the combined influences on hardness and strength properties of the constituent WC particle strengths, the particle sizes, their contiguities, and of Co binder hardness and mean free paths, and in total, the volume fraction of constituents. A connection is made here between the composite material properties, especially including the material fracture toughness, and the several materials-type considerations of: (1) related hardness stress-strain behaviors; (2) dislocation (viscoplastic) thermal activation characterizations; (3) Hall-Petch type reciprocal square root of particle or grain size dependencies; and (4) indentation and conventional fracture mechanics results. Related behaviors of MgO and Al2O3 crystal and polycrystal materials are also described for the purpose of making comparisons. PMID:28824143

  10. Peer Support for the Hardly Reached: A Systematic Review.

    PubMed

    Sokol, Rebeccah; Fisher, Edwin

    2016-07-01

    Health disparities are aggravated when prevention and care initiatives fail to reach those they are intended to help. Groups can be classified as hardly reached according to a variety of circumstances that fall into 3 domains: individual (e.g., psychological factors), demographic (e.g., socioeconomic status), and cultural-environmental (e.g., social network). Several reports have indicated that peer support is an effective means of reaching hardly reached individuals. However, no review has explored peer support effectiveness in relation to the circumstances associated with being hardly reached or across diverse health problems. To conduct a systematic review assessing the reach and effectiveness of peer support among hardly reached individuals, as well as peer support strategies used. Three systematic searches conducted in PubMed identified studies that evaluated peer support programs among hardly reached individuals. In aggregate, the searches covered articles published from 2000 to 2015. Eligible interventions provided ongoing support for complex health behaviors, including prioritization of hardly reached populations, assistance in applying behavior change plans, and social-emotional support directed toward disease management or quality of life. Studies were excluded if they addressed temporally isolated behaviors, were limited to protocol group classes, included peer support as the dependent variable, did not include statistical tests of significance, or incorporated comparison conditions that provided appreciable social support. We abstracted data regarding the primary health topic, categorizations of hardly reached groups, program reach, outcomes, and strategies employed. We conducted a 2-sample t test to determine whether reported strategies were related to reach. Forty-seven studies met our inclusion criteria, and these studies represented each of the 3 domains of circumstances assessed (individual, demographic, and cultural-environmental). Interventions

  11. The composition of tea infusions examined in relation to the association between mortality and water hardness

    PubMed Central

    Anderson, W.; Hollins, J. G.; Bond, Pamela S.

    1971-01-01

    Recent epidemiological studies have shown that death-rates from certain chronic diseases are higher in areas with soft than in areas with hard drinking-water. In the striking negative correlation found in the county boroughs of England and Wales between cardiovascular mortality and water hardness the important underlying factor is apparently the water calcium. Interest is therefore focused on the dietary significance of calcium present in drinking-water. In relation to that interest, the present report gives a quantitative account of the composition of tea infusions prepared with waters containing different amounts of calcium. It is shown that a substantial part of water calcium is taken up by the tea leaf during the preparation of infusions. The analysis of the infusions covers a wide range of individual components, including trace metals and polyphenolic substances. It appears that the principal change caused in infusion composition by the presence of calcium in the water is a substantial reduction in the relatively high oxalate content. The question is raised whether there may be some connexion between the `water factor' in cardiovascular disease and the absorption of oxalates from foods. PMID:5291748

  12. The interpretation of hard X-ray polarization measurements in solar flares

    NASA Technical Reports Server (NTRS)

    Leach, J.; Emslie, A. G.; Petrosian, V.

    1983-01-01

    Observations of polarization of moderately hard X-rays in solar flares are reviewed and compared with the predictions of recent detailed modeling of hard X-ray bremsstrahlung production by non-thermal electrons. The recent advances in the complexity of the modeling lead to substantially lower predicted polarizations than in earlier models and more fully highlight how various parameters play a role in determining the polarization of the radiation field. The new predicted polarizations are comparable to those predicted by thermal modeling of solar flare hard X-ray production, and both are in agreement with the observations. In the light of these results, new polarization observations with current generation instruments are proposed which could be used to discriminate between non-thermal and thermal models of hard X-ray production in solar flares.

  13. Microstructure and hardness of bovine enamel in roselle extract solution

    NASA Astrophysics Data System (ADS)

    Dame, M. T.; Noerdin, A.; Indrani, D. J.

    2017-08-01

    The aim of this study was to analyze the effect of roselle extract solution on the microstructure and hardness of bovine enamel. Ten bovine teeth and a 5% concentration of roselle extract solution were prepared. Immersions of each bovine tooth in roselle extract solution were conducted up to 60 minutes. The bovine enamel surface was characterized in hardness and microscopy. It was apparent that the initial hardness was 328 KHN, and after immersion in 15 and 60 min, the values decrease to 57.4 KHN and 11 KHN, respectively. Scanning electron microscopy (SEM) revealed changes in enamel rods after immersion in the roselle extract solution.

  14. Results of endocapsular phacofracture debulking of hard cataracts.

    PubMed

    Davison, James A

    2015-01-01

    To present a phacoemulsification technique for hard cataracts and compare postoperative results using two different ultrasonic tip motions during quadrant removal. A phacoemulsification technique which employs in situ fracture and endocapsular debulking for hard cataracts is presented. The prospective study included 56 consecutive cases of hard cataract (LOCS III NC [Lens Opacification Classification System III, nuclear color], average 4.26), which were operated using the Infiniti machine and the Partial Kelman tip. Longitudinal tip movement was used for sculpting for all cases which were randomized to receive longitudinal or torsional/interjected longitudinal (Intelligent Phaco [IP]) strategies for quadrant removal. Measurements included cumulative dissipated energy (CDE), 3 months postoperative surgically induced astigmatism (SIA), and corneal endothelial cell density (ECD) losses. No complications were recorded in any of the cases. Respective overall and longitudinal vs IP means were as follows: CDE, 51.6±15.6 and 55.7±15.5 vs 48.6±15.1; SIA, 0.36±0.2 D and 0.4±0.2 D vs 0.3±0.2 D; and mean ECD loss, 4.1%±10.8% and 5.9%±13.4% vs 2.7%±7.8%. The differences between longitudinal and IP were not significant for any of the three categories. The endocapsular phacofracture debulking technique is safe and effective for phacoemulsification of hard cataracts using longitudinal or torsional IP strategies for quadrant removal with the Infiniti machine and Partial Kelman tip.

  15. Target: Alcohol Abuse in the Hard-to-Reach Work Force. Ideas and Resources for Responding to Problems of the Hard-to-Reach Work Force.

    ERIC Educational Resources Information Center

    Informatics, Inc., Rockville, MD.

    This guide is designed as a source of ideas and information for individuals and organizations interested in occupational alcoholism programs for the hard-to-reach work force. Following a brief overview of the problem and a report on progress in occupational alcoholism programming, a working definition of the hard-to-reach work force is offered;…

  16. Human Performance on Hard Non-Euclidean Graph Problems: Vertex Cover

    ERIC Educational Resources Information Center

    Carruthers, Sarah; Masson, Michael E. J.; Stege, Ulrike

    2012-01-01

    Recent studies on a computationally hard visual optimization problem, the Traveling Salesperson Problem (TSP), indicate that humans are capable of finding close to optimal solutions in near-linear time. The current study is a preliminary step in investigating human performance on another hard problem, the Minimum Vertex Cover Problem, in which…

  17. Traumatization in Deaf and Hard-of-Hearing Adult Psychiatric Outpatients

    ERIC Educational Resources Information Center

    Øhre, Beate; Uthus, Mette Perly; von Tetzchner, Stephen; Falkum, Erik

    2015-01-01

    Deaf and hard-of-hearing persons are at risk for experiencing traumatic events and such experiences are associated with symptoms of mental disorder. We investigated the prevalence of traumatic events and subsequent traumatization in adults referred to specialized psychiatric outpatient units for deaf and hard-of-hearing patients. Sixty-two…

  18. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2015 Crop

    USDA-ARS?s Scientific Manuscript database

    Nine experimental lines of hard spring wheat were grown at up to five locations in 2015 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Sprin...

  19. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2017 Crop

    USDA-ARS?s Scientific Manuscript database

    Nine experimental lines of hard spring wheat were grown at up to six locations in 2017 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spring...

  20. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2014 Crop

    USDA-ARS?s Scientific Manuscript database

    Eleven experimental lines of hard spring wheat were grown at up to five locations in 2014 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spr...

  1. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  2. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  3. Professional concerns of beginning teachers of deaf and hard of hearing students.

    PubMed

    Guteng, Simon I

    2005-01-01

    The professional concerns of beginning teachers of students who are deaf or hard of hearing were examined. Five first-year teachers of deaf and hard of hearing students served as participants. Two of the participants were itinerant teachers; three taught in self-contained classrooms. Participants were selected from programs serving deaf and hard of hearing students in rural and urban areas of the midwestern and southwestern United States. To interview the study participants, the researcher used an in-depth phenomenological method employing semi-structured questions and guided by a constructivist paradigm. Data were analyzed using qualitative analysis strategies (Bogdan & Biklen, 1992; Miles & Huberman, 1994). Results showed that concerns of beginning teachers of deaf and hard of hearing students are specific to service delivery models and geography. Participants provided specific recommendations for addressing the concerns of beginning teachers of deaf and hard of hearing students.

  4. Unified Research on Network-Based Hard/Soft Information Fusion

    DTIC Science & Technology

    2016-02-02

    types). There are a number of search tree run parameters which must be set depending on the experimental setting. A pilot study was run to identify...Unlimited Final Report: Unified Research on Network-Based Hard/Soft Information Fusion The views, opinions and/or findings contained in this report...Final Report: Unified Research on Network-Based Hard/Soft Information Fusion Report Title The University at Buffalo (UB) Center for Multisource

  5. Dressed Hard States and Black Hole Soft Hair.

    PubMed

    Mirbabayi, Mehrdad; Porrati, Massimo

    2016-11-18

    A recent, intriguing Letter by Hawking, Perry, and Strominger suggests that soft photons and gravitons can be regarded as black hole hair and may be relevant to the black hole information paradox. In this Letter we make use of factorization theorems for infrared divergences of the S matrix to argue that by appropriately dressing in and out hard states, the soft-quanta-dependent part of the S matrix becomes essentially trivial. The information paradox can be fully formulated in terms of dressed hard states, which do not depend on soft quanta.

  6. Application of Rapid Visco Analyser (RVA) viscograms and chemometrics for maize hardness characterisation.

    PubMed

    Guelpa, Anina; Bevilacqua, Marta; Marini, Federico; O'Kennedy, Kim; Geladi, Paul; Manley, Marena

    2015-04-15

    It has been established in this study that the Rapid Visco Analyser (RVA) can describe maize hardness, irrespective of the RVA profile, when used in association with appropriate multivariate data analysis techniques. Therefore, the RVA can complement or replace current and/or conventional methods as a hardness descriptor. Hardness modelling based on RVA viscograms was carried out using seven conventional hardness methods (hectoliter mass (HLM), hundred kernel mass (HKM), particle size index (PSI), percentage vitreous endosperm (%VE), protein content, percentage chop (%chop) and near infrared (NIR) spectroscopy) as references and three different RVA profiles (hard, soft and standard) as predictors. An approach using locally weighted partial least squares (LW-PLS) was followed to build the regression models. The resulted prediction errors (root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP)) for the quantification of hardness values were always lower or in the same order of the laboratory error of the reference method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Particle/fluid simulations of an eruptive flare: Identifying the field-aligned currents responsible for the hard x-rays

    NASA Astrophysics Data System (ADS)

    Winglee, R. M.

    1994-09-01

    While magnetohydrodynamics (MHD) can provide a reasonable description of the overall magnetic reconnection that is believed to drive flares, additional, and often separate processes have to be envoked to in order to explain the electron acceleration that is responsible for many of the observed flare emissions. A new model that incorporates the dynamic coronal current sheets, the reconnection site, and possible electron acceleration processes is developed through the use of two-dimensional particle and modified two-fluid simulations. The specific example of an eruptive flare driven by the coalescence of flux tubes supported by prescribed photospheric current elements is evaluated. It is shown that the electrons and ions have differential trajectories through the coronal current sheet which leads to the development of additonal plasma currents that flow around the surface of the current sheet. These surface currents are explicitly neglected in MHD but they are vital to the flare dynamics because they divert current from the coronal current sheet into the chromosphere, producing an effective resistivity that aids the development of fast reconnection. Because the surface currents are in the plane of the magnetic field, electrons in them experience strong acceleration and can account for the observed hard X-ray emissions. Model predictions are compared with observed time profiles of hard X-ray emissions and Doppler shifts seen in soft X-ray line emissions and are able to account for such features as (1) the asymmetry in the rise and decay time of the hard X-rays, (2) the apparent delay between the largest Doppler shifts and the hard X-ray peak, and (3) the relatively low intensity of the blue-shifted component. The use of particle and fluid simulations is important because it provides different, but complementary treatments of the electron acceleration, the global magnetic morphology, and the flare current system.

  8. Fast Decomposition of Three-Component Spectra of Fluorescence Quenching by White and Grey Methods of Data Modeling.

    PubMed

    Kałka, Andrzej J; Turek, Andrzej M

    2018-04-03

    'White' and 'grey' methods of data modeling have been employed to resolve the heterogeneous fluorescence from a fluorophore mixture of 9-cyanoanthracene (CNA), 10-chloro-9-cyanoanthracene (ClCNA) and 9,10-dicyanoanthracene (DCNA) into component individual fluorescence spectra. The three-component spectra of fluorescence quenching in methanol were recorded for increasing amounts of lithium bromide used as a quencher. The associated intensity decay profiles of differentially quenched fluorescence of single components were modeled on the basis of a linear Stern-Volmer plot. These profiles are necessary to initiate the fitting procedure in both 'white' and 'grey' modeling of the original data matrices. 'White' methods of data modeling, called also 'hard' methods, are based on chemical/physical laws expressed in terms of some well-known or generally accepted mathematical equations. The parameters of these models are not known and they are estimated by least squares curve fitting. 'Grey' approaches to data modeling, also known as hard-soft modeling techniques, make use of both hard-model and soft-model parts. In practice, the difference between 'white' and 'grey' methods lies in the way in which the 'crude' fluorescence intensity decays of the mixture components are estimated. In the former case they are given in a functional form while in the latter as digitized curves which, in general, can only be obtained by using dedicated techniques of factor analysis. In the paper, the initial values of the Stern-Volmer constants of pure components were evaluated by both 'point-by-point' and 'matrix' versions of the method making use of the concept of wavelength dependent intensity fractions as well as by the rank annihilation factor analysis applied to the data matrices of the difference fluorescence spectra constructed in two ways: from the spectra recorded for a few excitation lines at the same concentration of a fluorescence quencher or classically from a series of the spectra

  9. The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Branch, Oliver; Attinger, Sabine; Thober, Stephan

    2016-09-01

    Land surface models incorporate a large number of process descriptions, containing a multitude of parameters. These parameters are typically read from tabulated input files. Some of these parameters might be fixed numbers in the computer code though, which hinder model agility during calibration. Here we identified 139 hard-coded parameters in the model code of the Noah land surface model with multiple process options (Noah-MP). We performed a Sobol' global sensitivity analysis of Noah-MP for a specific set of process options, which includes 42 out of the 71 standard parameters and 75 out of the 139 hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated at 12 catchments within the United States with very different hydrometeorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its applicable standard parameters (i.e., Sobol' indexes above 1%). The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for direct evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities because of their tight coupling via the water balance. A calibration of Noah-MP against either of these fluxes should therefore give comparable results. Moreover, these fluxes are sensitive to both plant and soil parameters. Calibrating, for example, only soil parameters hence limit the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were

  10. Performance of ASTRO-H Hard X-Ray Telescope (HXT)

    NASA Technical Reports Server (NTRS)

    Awaki, Hisamitsu; Kunieda, Hideyo; Ishida, Manabu; Matsumoto, Hironori; Furuzawa, Akihiro; Haba, Yohsito; Hayashi, Takayuki; Iizuka, Ryo; Ishibashi, Kazunori; Itoh, Masayuki; hide

    2016-01-01

    The Japanese X-ray Astronomy Satellite, Hitomi (ASTRO-H) carries hard X-ray imaging system, covering the energy band from 5 keV to 80 keV. The hard X-ray imaging system consists of two hard X-ray telescopes (HXT) and two hard X-ray imagers (HXI). The HXT employs tightly-nested, conically-approximated thin foil Wolter-I optics. The mirror surfaces of HXT were coated with PtC depth-graded multilayers. We carried out ground calibrations of HXTs at the synchrotron radiation facility SPring-8 BL20B2 in Japan, and found that total effective area of two HXTs was about 350 sq cm at 30 keV, and the half power diameter of HXT was about 1.9. After the launch of Hitomi, Hitomi observed several targets during the initial functional verification of the onboard instruments. The Hitomi software and calibration team (SCT) provided the Hitomis data of G21.5-0.9, a pulsar wind nebula, to the hardware team for the purpose of the instrument calibration. Through the analysis of the in-flight data, we have confirmed that the X-ray performance of HXTs in orbit was consistent with that estimated by the ground calibrations.

  11. Bite force measurements with hard and soft bite surfaces.

    PubMed

    Serra, C M; Manns, A E

    2013-08-01

    Bite force has been measured by different methods and over a wide variety of designs. In several instruments, the fact that bite surface has been manufactured with stiff materials might interfere in obtaining reliable data, by a more prompt activation of inhibitory reflex mechanisms. The purpose of this study was to compare the maximum voluntary bite force measured by a digital occlusal force gauge (GM10 Nagano Keiki, Japan) between different opponent teeth, employing semi-hard or soft bite surfaces. A sample of 34 young adults with complete natural dentition was studied. The original semi-hard bite surface was exchanged by a soft one, made of leather and rubber. Maximum voluntary bite force recordings were made for each tooth group and for both bite surfaces. Statistical analyses (Student's t-test) revealed significant differences, with higher scores while using the soft surface across sexes and tooth groups (P < 0·05). Differential activation of periodontal mechanoreceptors of a specific tooth group is mainly conditioned by the hardness of the bite surface; a soft surface induces greater activation of elevator musculature, while a hard one induces inhibition more promptly. Thus, soft bite surfaces are recommended for higher reliability in maximum voluntary bite force recordings. © 2013 John Wiley & Sons Ltd.

  12. A Preliminary Research on the Development of the Hard X-Ray Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Zheng, C. X.; Cai, M. S.; Hu, Y. M.; Huang, Y. Y.; Gong, Y. Z.

    2014-03-01

    Since the 1860s, astronomers have explored a new field with the discovery of X-ray. Instead of the conventional imaging technique by using mirrors or lens, which can not work in the high-energy bands, direct imaging, coded aperture, and Fourier transform are used for the high-energy imaging. It can be implemented in various hardware configurations, among which the spatial modulation collimator are widely used. We adopt the grating collimator based on Fourier transform that is discussed in detail. This paper makes an investigation on the fabrication process of grating. The key components of the hard X-ray telescope based on the spatial modulation are developed, which contains 8 CsI-detector modules, 8-channel shaping amplifiers, and data acquisition system. The preliminary test results of readout electronics system are obtained.

  13. Self Assembly of Hard, Space-Filling Polytopes

    NASA Astrophysics Data System (ADS)

    Schultz, Benjamin; Damasceno, Pablo; Engel, Michael; Glotzer, Sharon

    2012-02-01

    The thermodynamic behavior of systems of hard particles in the limit of infinite pressure is known to yield the densest possible packing [1,2]. Hard polytopes that tile or fill space in two or three spatial dimensions are guaranteed to obtain packing fractions of unity in the infinite pressure limit. Away from this limit, however, other structures may be possible [3]. We present the results of a simulation study of the thermodynamic self-assembly of hard, space-filling particles from disordered initial conditions. We show that for many polytopes, the infinite pressure structure readily assembles at intermediate pressures and packing fractions significantly less than one; in others, assembly of the infinite pressure structure is foiled by mesophases, jamming and phase separation. Common features of these latter systems are identified and strategies for enhancing assembly of the infinite pressure structure at intermediate pressures through building block modification are discussed.[4pt] [1] P. F. Damasceno, M. Engel, S.C. Glotzer arXiv:1109.1323v1 [cond-mat.soft][0pt] [2] A. Haji-Akbari, M. Engel, S.C. Glotzer arXiv:1106.4765v2 [cond-mat.soft][0pt] [3] U. Agarwal, F.A. Escobedo, Nature Materials 10, 230--235 (2011)

  14. Micromagnetic simulations with periodic boundary conditions: Hard-soft nanocomposites

    DOE PAGES

    Wysocki, Aleksander L.; Antropov, Vladimir P.

    2016-12-01

    Here, we developed a micromagnetic method for modeling magnetic systems with periodic boundary conditions along an arbitrary number of dimensions. The main feature is an adaptation of the Ewald summation technique for evaluation of long-range dipolar interactions. The method was applied to investigate the hysteresis process in hard-soft magnetic nanocomposites with various geometries. The dependence of the results on different micromagnetic parameters was studied. We found that for layered structures with an out-of-plane hard phase easy axis the hysteretic properties are very sensitive to the strength of the interlayer exchange coupling, as long as the spontaneous magnetization for the hardmore » phase is significantly smaller than for the soft phase. The origin of this behavior was discussed. Additionally, we investigated the soft phase size optimizing the energy product of hard-soft nanocomposites.« less

  15. Tuning hardness in calcite by incorporation of amino acids

    NASA Astrophysics Data System (ADS)

    Kim, Yi-Yeoun; Carloni, Joseph D.; Demarchi, Beatrice; Sparks, David; Reid, David G.; Kunitake, Miki E.; Tang, Chiu C.; Duer, Melinda J.; Freeman, Colin L.; Pokroy, Boaz; Penkman, Kirsty; Harding, John H.; Estroff, Lara A.; Baker, Shefford P.; Meldrum, Fiona C.

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit--mineral single crystals containing embedded macromolecules--remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

  16. Tuning hardness in calcite by incorporation of amino acids.

    PubMed

    Kim, Yi-Yeoun; Carloni, Joseph D; Demarchi, Beatrice; Sparks, David; Reid, David G; Kunitake, Miki E; Tang, Chiu C; Duer, Melinda J; Freeman, Colin L; Pokroy, Boaz; Penkman, Kirsty; Harding, John H; Estroff, Lara A; Baker, Shefford P; Meldrum, Fiona C

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit-mineral single crystals containing embedded macromolecules-remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

  17. Optimization to Develop Multiple Response Microstructure and Hardness of Ductile Iron Casting by using GRA

    NASA Astrophysics Data System (ADS)

    Kabnure, Bahubali Bhupal; Shinde, Vasudev Dhondiram; Kolhapure, Rakesh Ramchandra

    2018-05-01

    Ductile irons are important engineering materials because of its high strength to weight ratio and castability. The ductile iron castings are used widely for automobile applications due to their wide spectrum of property range. Weight reduction is important in automobile to improve its fuel efficiency which can be achieved by thinning down the casting sections without altering its functionality. Generally, automobile castings are having varying section thickness. Varying thickness castings offers different cooling rates while solidification of the casting. The solidification cooling rate decides the final microstructure of the cast components. Cooling rate was found to affect directly the amount of pearlite and ultimately the as cast properties in varying thickness ductile iron castings. In view of this, the automobile impeller casting is selected for study in the present work as it consists of varying section thickness in which small sections are connected to central hub. The casting solidification simulations were performed and analyzed. The solidification cooling rates were analyzed further to correlate the experimental processing parameters. The samples from poured castings were analyzed for microstructure and hardness at different section thickness. Multiple response optimization of microstructure and hardness was carried out by combined Taguchi and Grey Relational Analysis (GRA). Contribution of input variables on the output variables is attained using ANOVA.

  18. Educating Hard of Hearing Children. Special Education in Transition 2.

    ERIC Educational Resources Information Center

    Ross, Mark, Ed.; Nober, Linda W., Ed.

    Viewpoints of an audiologist, speech-language pathologist, special educator, classroom teacher, and parent are presented in the book on the implications of P.L. 94-142, the Education for All Handicapped Children Act, for hard of hearing students. In the introduction, M. Ross considers the status of many hard of hearing students, noting the…

  19. Hard-sphere fluid adsorbed in an annular wedge: The depletion force of hard-body colloidal physics

    NASA Astrophysics Data System (ADS)

    Herring, A. R.; Henderson, J. R.

    2007-01-01

    Many important issues of colloidal physics can be expressed in the context of inhomogeneous fluid phenomena. When two large colloids approach one another in solvent, they interact at least partly by the response of the solvent to finding itself adsorbed in the annular wedge formed between the two colloids. At shortest range, this fluid mediated interaction is known as the depletion force/interaction because solvent is squeezed out of the wedge when the colloids approach closer than the diameter of a solvent molecule. An equivalent situation arises when a single colloid approaches a substrate/wall. Accurate treatment of this interaction is essential for any theory developed to model the phase diagrams of homogeneous and inhomogeneous colloidal systems. The aim of our paper is a test of whether or not we possess sufficient knowledge of statistical mechanics that can be trusted when applied to systems of large size asymmetry and the depletion force in particular. When the colloid particles are much larger than a solvent diameter, the depletion force is dominated by the effective two-body interaction experienced by a pair of solvated colloids. This low concentration limit of the depletion force has therefore received considerable attention. One route, which can be rigorously based on statistical mechanical sum rules, leads to an analytic result for the depletion force when evaluated by a key theoretical tool of colloidal science known as the Derjaguin approximation. A rival approach has been based on the assumption that modern density functional theories (DFT) can be trusted for systems of large size asymmetry. Unfortunately, these two theoretical predictions differ qualitatively for hard sphere models, as soon as the solvent density is higher than about 2/3 that at freezing. Recent theoretical attempts to understand this dramatic disagreement have led to the proposal that the Derjaguin and DFT routes represent opposite limiting behavior, for very large size asymmetry

  20. Design and implementation of reliability evaluation of SAS hard disk based on RAID card

    NASA Astrophysics Data System (ADS)

    Ren, Shaohua; Han, Sen

    2015-10-01

    Because of the huge advantage of RAID technology in storage, it has been widely used. However, the question associated with this technology is that the hard disk based on the RAID card can not be queried by Operating System. Therefore how to read the self-information and log data of hard disk has been a problem, while this data is necessary for reliability test of hard disk. In traditional way, this information can be read just suitable for SATA hard disk, but not for SAS hard disk. In this paper, we provide a method by using LSI RAID card's Application Program Interface, communicating with RAID card and analyzing the feedback data to solve the problem. Then we will get the necessary information to assess the SAS hard disk.

  1. Development of methodology for component testing under impact loading for space applications

    NASA Astrophysics Data System (ADS)

    Church, Phillip; Taylor, Nicholas; Perkinson, Marie-Claire; Wishart, Alex; Vijendran, Sanjay; Braithwaite, Chris

    2017-06-01

    A number of recent studies have highlighted the scientific benefits of penetrator technology in conducting exploration on other planetary bodies and moons within the solar system. Such a ``hard landing'' approach is cheaper and easier than the traditional ``soft landing'' method. However it is necessary for the science package of such a mission to withstand the rapid decelerations that will occur upon impact. This paper outlines an approach that has been developed to simulate the loading appropriate to Europa and also to monitor component performance before, during and after the impact.

  2. Assessment and d/Deaf and Hard of Hearing Multilingual Learners: Considerations and Promising Practices.

    PubMed

    Pizzo, Lianna; Chilvers, Amanda

    2016-01-01

    The authors address considerations and promising practices relating to assessment of d/Deaf and Hard of Hearing Multilingual Learners. DMLs' unique culture(s), language(s), and learning needs must be considered when assessments of this population are being planned, conducted, and interpreted. The authors address theory and research on (a) general considerations for the overarching assessment process, (b) specific assessment approaches used to assess DMLs, and (c) assessment of language proficiency for diverse language learners. In addition, basic recommendations for the assessment of DMLs are made, including increased availability of assessments in various languages, use of multiple sources of individual and family data, assessment of all languages, and incorporation of a strong assessment component (that includes nondiscrimination practices) into teacher preparation programs.

  3. Applications of NTNU/SINTEF Drillability Indices in Hard Rock Tunneling

    NASA Astrophysics Data System (ADS)

    Zare, S.; Bruland, A.

    2013-01-01

    Drillability indices, i.e., the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), Cutter Life Index™ (CLI), and Vickers Hardness Number Rock (VHNR), are indirect measures of rock drillability. These indices are recognized as providing practical characterization of rock properties used in the Norwegian University of Science and Technology (NTNU) time and cost prediction models available for hard rock tunneling and surface excavation. The tests form the foundation of various hard rock equipment capacity and performance prediction methods. In this paper, application of the tests for tunnel boring machine (TBM) and drill and blast (D&B) tunneling is investigated and the impact of the indices on excavation time and costs is presented.

  4. Radiation hardness of lead glasses TF1 and TF101

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masaaki; Prokoshkin, Yuri; Singovsky, Alexandre; Takamatsu, Kunio

    1994-06-01

    We have measured the radiation hardness of two types of lead glasses, TF1 and TF101, for low energy γ-rays from 60Co. TF101 containing cerium is a few tens times radiation harder than TF1 which contains no cerium. The radiation hardness, or the tolerable accumulated dose, of TF101 is 2 × 10 3 rad when the degradation of the transmittance is required to be less than 1% for the unit radiation length X0 = 2.8 cm. When the present result is compared with the work of Inyakin et al., the radiation hardness of TF101 glass should be similar for both γ-rays and for high energy hadrons.

  5. Selective attention impairments in Alzheimer's disease: evidence for dissociable components.

    PubMed

    Levinoff, Elise J; Li, Karen Z H; Murtha, Susan; Chertkow, Howard

    2004-07-01

    Tasks emphasizing 3 different aspects of selective attention-inhibition, visuospatial selective attention, and decision making-were administered to subjects with mild Alzheimer's disease (AD) and to healthy elderly control (HEC) subjects to determine which components of selective attention were impaired in AD subjects and whether selective attention could be dissociated into different components. The tasks were administered with easy versus hard levels of difficulty to assess proportional slowing as the key variable across tasks. The results indicated that the inhibitory and visual search tasks showed greater proportional slowing in subjects with AD than in HEC subjects, and that the task involving inhibition was significantly more affected in subjects with AD. Furthermore, there were no significant intertask correlations, and the results cannot be explained simply in terms of generalized cognitive slowing. These results provide evidence that inhibition is the most strikingly affected aspect of selective attention that is observed to be impaired in early stages of AD.

  6. Effect of gamma irradiation on high temperature hardness of low-density polyethylene

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Yun; Yang, Fuqian; Lee, Sanboh

    2015-11-01

    Gamma irradiation can cause the change of microstructure and molecular structure of polymer, resulting in the change of mechanical properties of polymers. Using the hardness measurement, the effect of gamma irradiation on the high temperature hardness of low-density polyethylene (LDPE) was investigated. The gamma irradiation caused the increase in the melting point, the enthalpy of fusion, and the portion of crystallinity of LDPE. The Vickers hardness of the irradiated LDPE increases with increasing the irradiation dose, annealing temperature, and annealing time. The activation energy for the rate process controlling the reaction between defects linearly decreases with the irradiation dose. The process controlling the hardness evolution in LDPE is endothermic because LDPE is semi-crystalline.

  7. Effect of cow and soy milk on enamel hardness of immersed teeth

    NASA Astrophysics Data System (ADS)

    Widanti, H. A.; Herda, E.; Damiyanti, M.

    2017-08-01

    Cow milk and soy milk have different mineral contents and this can affect the tooth remineralization process. The aim of this study was to determine the effect of cow and soy milk on immersed teeth after demineralization. Twenty-one specimens, of human maxillary premolars, were measured for enamel hardness before immersion and demineralization in orange juice. The teeth were divided into three groups (n = 7) with each group immersed in either distilled water, cow milk, or soy milk. There was a significant increase in enamel hardness in all groups (p < 0.05). Cow milk provided the highest increase in enamel hardness, of all the three groups, but was not able to restore the initial enamel hardness.

  8. Physical stability and resistance to peroxidation of a range of liquid-fill hard gelatin capsule products on extreme long-term storage.

    PubMed

    Bowtle, William; Kanyowa, Lionel; Mackenzie, Mark; Higgins, Paul

    2011-06-01

    The industrial take-up of liquid-fill hard capsule technology is limited in part by lack of published long-term physical and chemical stability data which demonstrate the robustness of the system. To assess the effects of extreme long-term storage on liquid-fill capsule product quality and integrity, with respect to both the capsules per se and a standard blister-pack type (foil-film blister). Fourteen sets of stored peroxidation-sensitive liquid-fill hard gelatin capsule product samples, originating ~20 years from the current study, were examined with respect to physical and selected chemical properties, together with microbiological evaluation. All sets retained physical integrity of capsules and blister-packs. Capsules were free of leaks, gelatin cross-linking, and microbiological growth. Eight samples met a limit (anisidine value, 20) commonly used as an index of peroxidation for lipid-based products with shelf lives of 2-3 years. Foil-film blister-packs using PVC or PVC-PVdC as the thermoforming film were well-suited packaging components for the liquid-fill capsule format. The study confirms the long-term physical robustness of the liquid-fill hard capsule format, together with its manufacturing and banding processes. It also indicates that various peroxidation-sensitive products using the capsule format may be maintained satisfactorily over very prolonged storage periods.

  9. Light and redox switchable molecular components for molecular electronics.

    PubMed

    Browne, Wesley R; Feringa, Ben L

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen numerous unexpected challenges that have slowed progress and the initial promise of complex molecular-based computers has not yet been realised. Primarily this has been due to the realisation at an early stage that molecular-based nano-electronics brings with it the interface between the hard (semiconductor) and soft (molecular) worlds and the challenges which accompany working in such an environment. Issues such as addressability, cross-talk, molecular stability and perturbation of molecular properties (e.g., inhibition of photochemistry) have nevertheless driven development in molecular design and synthesis as well as our ability to interface molecular components with bulk metal contacts to a very high level of sophistication. Numerous groups have played key roles in progressing this field not least teams such as those led by Whitesides, Aviram, Ratner, Stoddart and Heath. In this short review we will however focus on the contributions from our own group and those of our collaborators, in employing diarylethene based molecular components.

  10. Evaluation of Open-Source Hard Real Time Software Packages

    NASA Technical Reports Server (NTRS)

    Mattei, Nicholas S.

    2004-01-01

    Reliable software is, at times, hard to find. No piece of software can be guaranteed to work in every situation that may arise during its use here at Glenn Research Center or in space. The job of the Software Assurance (SA) group in the Risk Management Office is to rigorously test the software in an effort to ensure it matches the contract specifications. In some cases the SA team also researches new alternatives for selected software packages. This testing and research is an integral part of the department of Safety and Mission Assurance. Real Time operation in reference to a computer system is a particular style of handing the timing and manner with which inputs and outputs are handled. A real time system executes these commands and appropriate processing within a defined timing constraint. Within this definition there are two other classifications of real time systems: hard and soft. A soft real time system is one in which if the particular timing constraints are not rigidly met there will be no critical results. On the other hand, a hard real time system is one in which if the timing constraints are not met the results could be catastrophic. An example of a soft real time system is a DVD decoder. If the particular piece of data from the input is not decoded and displayed to the screen at exactly the correct moment nothing critical will become of it, the user may not even notice it. However, a hard real time system is needed to control the timing of fuel injections or steering on the Space Shuttle; a delay of even a fraction of a second could be catastrophic in such a complex system. The current real time system employed by most NASA projects is Wind River's VxWorks operating system. This is a proprietary operating system that can be configured to work with many of NASA s needs and it provides very accurate and reliable hard real time performance. The down side is that since it is a proprietary operating system it is also costly to implement. The prospect of

  11. Assessment of surface hardness of acrylic resins submitted to accelerated artificial aging.

    PubMed

    Tornavoi, D C; Agnelli, J A M; Lepri, C P; Mazzetto, M O; Botelho, A L; Soares, R G; Dos Reis, A C

    2012-06-01

    The aim of this study was to assess the influence of accelerated artificial aging (AAA) on the surface hardness of acrylic resins. The following three commercial brands of acrylic resins were tested: Vipi Flash (autopolymerized resin), Vipi Wave (microwave heat-polymerized resin) and Vipi Cril (conventional heat-polymerized resin). To perform the tests, 21 test specimens (65x10x3 mm) were made, 7 for each resin. Three surface hardness readings were performed for each test specimen, before and after AAA, and the means were submitted to the following tests: Kolmogorov-Smirnov (P>0.05), Levene Statistic, Two-way ANOVA, Tukey Post Hoc (P<0.05) with the SPSS Statistical Software 17.0. The analysis of the factors showed significant differences in the hardness values (P<0.05). Before aging, the autopolymerized acrylic resin Vipi Flash showed lower hardness values when compared with the heat-polymerized resin Vipi Cril (P=0.001). After aging, the 3 materials showed similar performance when compared among them. The Vipi Cril was the only one affected by AAA and showed lower hardness values after this procedure (Pp=0.003). It may be concluded that accelerated artificial aging influenced surface hardness of heat-polymerized acrylic resin Vipi Cril.

  12. Hard X-ray Emission along the Z Track in GX 17 + 2

    NASA Astrophysics Data System (ADS)

    Ding, G. Q.; Huang, C. P.

    2015-09-01

    Using the data from the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE) on board Rossi X-Ray Timing Explorer for Z source GX 17 + 2, we investigate the evolution of its PCA spectra and HEXTE spectra along a `Z' track on its hardness-intensity diagram. A hard X-ray tail is detected in the HEXTE spectra. The detected hard X-ray tails are discontinuously scattered throughout the Z track. The found hard X-ray tail hardens from the horizontal branch, through the normal branch, to the flaring branch in principle and it contributes ˜(20-50)% of the total flux in 20-200 keV. Our joint fitting results of the PCA + HEXTE spectra in 3-200 keV show that the portion of Comptonization in the Bulk-Motion Comptonization (BMC) model accounts for the hard X-ray tail, which indicates that the BMC process could be responsible for the detected hard tail. The temperature of the seed photons for BMC is ˜2.7 keV, implying that these seed photons might be emitted from the surface of the neutron star (NS) or the boundary layer between the NS and the disk and, therefore, this process could take place around the NS or in the boundary layer.

  13. Electrodeposition of Low Stress Nickel Phosphorous Alloys for Precision Component Fabrication

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell; Ramsey, Brian; Speegle, Chet; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Nickel alloys are favored for electroforming precision components. Nickel phosphorous and nickel cobalt phosphorous are studied in this work. A completely new and innovative electrolytic process eliminates the fumes present in electroless processes and is suitable for electroforming nickel phosphorous and nickel cobalt phosphorous alloys to any desirable thickness, using soluble anodes, without stripping of tanks. Solutions show excellent performance for extended throughput. Properties include, cleaner low temperature operation (40 - 45 C), high Faradaic efficiency, low stress, Rockwell C 52 - 54 hardness and as much as 2000 N per square millimeter tensile strength. Performance is compared to nickel and nickel cobalt electroforming.

  14. Equation of state and critical point behavior of hard-core double-Yukawa fluids.

    PubMed

    Montes, J; Robles, M; López de Haro, M

    2016-02-28

    A theoretical study on the equation of state and the critical point behavior of hard-core double-Yukawa fluids is presented. Thermodynamic perturbation theory, restricted to first order in the inverse temperature and having the hard-sphere fluid as the reference system, is used to derive a relatively simple analytical equation of state of hard-core multi-Yukawa fluids. Using such an equation of state, the compressibility factor and phase behavior of six representative hard-core double-Yukawa fluids are examined and compared with available simulation results. The effect of varying the parameters of the hard-core double-Yukawa intermolecular potential on the location of the critical point is also analyzed using different perspectives. The relevance of this analysis for fluids whose molecules interact with realistic potentials is also pointed out.

  15. Results of endocapsular phacofracture debulking of hard cataracts

    PubMed Central

    Davison, James A

    2015-01-01

    Purpose/aim of the study To present a phacoemulsification technique for hard cataracts and compare postoperative results using two different ultrasonic tip motions during quadrant removal. Materials and methods A phacoemulsification technique which employs in situ fracture and endocapsular debulking for hard cataracts is presented. The prospective study included 56 consecutive cases of hard cataract (LOCS III NC [Lens Opacification Classification System III, nuclear color], average 4.26), which were operated using the Infiniti machine and the Partial Kelman tip. Longitudinal tip movement was used for sculpting for all cases which were randomized to receive longitudinal or torsional/interjected longitudinal (Intelligent Phaco [IP]) strategies for quadrant removal. Measurements included cumulative dissipated energy (CDE), 3 months postoperative surgically induced astigmatism (SIA), and corneal endothelial cell density (ECD) losses. Results No complications were recorded in any of the cases. Respective overall and longitudinal vs IP means were as follows: CDE, 51.6±15.6 and 55.7±15.5 vs 48.6±15.1; SIA, 0.36±0.2 D and 0.4±0.2 D vs 0.3±0.2 D; and mean ECD loss, 4.1%±10.8% and 5.9%±13.4% vs 2.7%±7.8%. The differences between longitudinal and IP were not significant for any of the three categories. Conclusion The endocapsular phacofracture debulking technique is safe and effective for phacoemulsification of hard cataracts using longitudinal or torsional IP strategies for quadrant removal with the Infiniti machine and Partial Kelman tip. PMID:26203213

  16. Searching for Dual AGNs in Galaxy Mergers: Understanding Double-Peaked [O III] and Ultra Hard X-rays as Selection Method

    NASA Astrophysics Data System (ADS)

    McGurk, Rosalie C.; Max, Claire E.; Medling, Anne; Shields, Gregory A.

    2015-01-01

    When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O III] or of ultra hard X-rays have been proposed as techniques to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O III] emitting AGNs from SDSS DR7. By obtaining new and archival high spatial resolution images taken with the Keck 2 Laser Guide Star Adaptive Optics system and the near-infrared (IR) camera NIRC2, we showed that 30% of double-peaked [O III] emission line SDSS AGNs have two spatial components within a 3' radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up these spatially-double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and Gemini GMOS and with long-slit spectroscopy from Keck NIRSPEC and Shane Kast Double Spectrograph. We find double-peaked emitters are caused sometimes by dual AGN and sometimes by outflows or narrow line kinematics. We also performed Chandra X-ray ACIS-S observations on 12 double-peaked candidate dual AGNs. Using our observations and 8 archival observations, we compare the distribution of X-ray photons to our spatially double near-IR images, measure X-ray luminosities and hardness ratios, and estimate column densities. By assessing what fraction of double-peaked emission line SDSS AGNs are true dual AGNs, we can better determine whether double-peaked [O III] is an efficient dual AGN indicator and constrain the statistics of dual AGNs. A second technique to find dual AGN is the detection of ultra hard X-rays by the Swift Burst Alert Telescope. We use CARMA observations to measure and map the CO(1-0) present in nearby ultra-hard X-ray Active Galactic Nuclei (AGNs) merging with either a quiescent companion

  17. Tactile sensor of hardness recognition based on magnetic anomaly detection

    NASA Astrophysics Data System (ADS)

    Xue, Lingyun; Zhang, Dongfang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Hardness, as one kind of tactile sensing, plays an important role in the field of intelligent robot application such as gripping, agricultural harvesting, prosthetic hand and so on. Recently, with the rapid development of magnetic field sensing technology with high performance, a number of magnetic sensors have been developed for intelligent application. The tunnel Magnetoresistance(TMR) based on magnetoresistance principal works as the sensitive element to detect the magnetic field and it has proven its excellent ability of weak magnetic detection. In the paper, a new method based on magnetic anomaly detection was proposed to detect the hardness in the tactile way. The sensor is composed of elastic body, ferrous probe, TMR element, permanent magnet. When the elastic body embedded with ferrous probe touches the object under the certain size of force, deformation of elastic body will produce. Correspondingly, the ferrous probe will be forced to displace and the background magnetic field will be distorted. The distorted magnetic field was detected by TMR elements and the output signal at different time can be sampled. The slope of magnetic signal with the sampling time is different for object with different hardness. The result indicated that the magnetic anomaly sensor can recognize the hardness rapidly within 150ms after the tactile moment. The hardness sensor based on magnetic anomaly detection principal proposed in the paper has the advantages of simple structure, low cost, rapid response and it has shown great application potential in the field of intelligent robot.

  18. Hard decoding algorithm for optimizing thresholds under general Markovian noise

    NASA Astrophysics Data System (ADS)

    Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond

    2017-04-01

    Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.

  19. MANAGEMENT AND TREATMENT OF WATER FROM HARD-ROCK MINES {ENGINEERING ISSUE}

    EPA Science Inventory

    This Engineering Issue document on treatment of mining waters is a practical guide to understanding and selecting technologies for the environmental management of waste materials and effluents at hard-rock mines. For the purposes of this discussion, hard-rock mining primarily ref...

  20. 39 CFR 3004.40 - Hard copy requests for records and for expedited processing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Hard copy requests for records and for expedited... FREEDOM OF INFORMATION ACT § 3004.40 Hard copy requests for records and for expedited processing. (a) A hard copy request for records must: (1) Be in writing; (2) Include the name and address of the...

  1. 39 CFR 3004.40 - Hard copy requests for records and for expedited processing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 39 Postal Service 1 2013-07-01 2013-07-01 false Hard copy requests for records and for expedited... FREEDOM OF INFORMATION ACT § 3004.40 Hard copy requests for records and for expedited processing. (a) A hard copy request for records must: (1) Be in writing; (2) Include the name and address of the...

  2. 39 CFR 3004.40 - Hard copy requests for records and for expedited processing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 39 Postal Service 1 2014-07-01 2014-07-01 false Hard copy requests for records and for expedited... FREEDOM OF INFORMATION ACT § 3004.40 Hard copy requests for records and for expedited processing. (a) A hard copy request for records must: (1) Be in writing; (2) Include the name and address of the...

  3. 39 CFR 3004.40 - Hard copy requests for records and for expedited processing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 39 Postal Service 1 2012-07-01 2012-07-01 false Hard copy requests for records and for expedited... FREEDOM OF INFORMATION ACT § 3004.40 Hard copy requests for records and for expedited processing. (a) A hard copy request for records must: (1) Be in writing; (2) Include the name and address of the...

  4. 39 CFR 3004.40 - Hard copy requests for records and for expedited processing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 39 Postal Service 1 2011-07-01 2011-07-01 false Hard copy requests for records and for expedited... FREEDOM OF INFORMATION ACT § 3004.40 Hard copy requests for records and for expedited processing. (a) A hard copy request for records must: (1) Be in writing; (2) Include the name and address of the...

  5. Ductile Binder Phase For Use With Almgb14 And Other Hard Ceramic Materials

    DOEpatents

    Cook, Bruce A.; Russell, Alan; Harringa, Joel

    2005-07-26

    This invention relates to a ductile binder phase for use with AlMgB14 and other hard materials. The ductile binder phase, a cobalt-manganese alloy, is used in appropriate quantities to tailor good hardness and reasonable fracture toughness for hard materials so they can be used suitably in industrial machining and grinding applications.

  6. Effects of coating materials on nanoindentation hardness of enamel and adjacent areas.

    PubMed

    Alsayed, Ehab Z; Hariri, Ilnaz; Nakashima, Syozi; Shimada, Yasushi; Bakhsh, Turki A; Tagami, Junji; Sadr, Alireza

    2016-06-01

    Materials that can be applied as thin coatings and actively release fluoride or other bioavailable ions for reinforcing dental hard tissue deserve further investigation. In this study we assessed the potential of resin coating materials in protection of underlying and adjacent enamel against demineralization challenge using nanoindentation. Enamel was coated using Giomer (PRG Barrier Coat, PBC), resin-modified glass-ionomer (Clinpro XT Varnish, CXT), two-step self-etch adhesive (Clearfil SE Protect, SEP) or no coating (control). After 5000 thermal cycles and one-week demineralization challenge, Martens hardness of enamel beneath the coating, uncoated area and intermediate areas was measured using a Berkovich tip under 2mN load up to 200μm depth. Integrated hardness and 10-μm surface zone hardness were compared among groups. Nanoindentation and scanning electron microscopy suggested that all materials effectively prevented demineralization in coated area. Uncoated areas presented different hardness trends; PBC showed a remarkable peak at the surface zone before reaching as low as the control, while CXT showed relatively high hardness values at all depths. Ion-release from coating materials affects different layers of enamel. Coatings with fluoride-releasing glass fillers contributed to reinforcement of adjacent enamel. Surface prereacted glass filler-containing PBC superficially protected neighboring enamel against demineralization, while resin-modified glass-ionomer with calcium (CXT) improved in-depth protection. Cross-sectional hardness mapping of enamel on a wide range of locations revealed minute differences in its structure. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Hard X-Ray Emission from Partially Occulted Solar Flares: RHESSI Observations in Two Solar Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Effenberger, Frederic; Costa, Fatima Rubio da; Petrosian, Vahé

    2017-02-01

    Flares close to the solar limb, where the footpoints are occulted, can reveal the spectrum and structure of the coronal looptop source in X-rays. We aim at studying the properties of the corresponding energetic electrons near their acceleration site, without footpoint contamination. To this end, a statistical study of partially occulted flares observed with Reuven Ramaty High-Energy Solar Spectroscopic Imager is presented here, covering a large part of solar cycles 23 and 24. We perform detailed spectra, imaging, and light curve analyses for 116 flares and include contextual observations from SDO and STEREO when available, providing further insights into flaremore » emission that were previously not accessible. We find that most spectra are fitted well with a thermal component plus a broken power-law, non-thermal component. A thin-target kappa distribution model gives satisfactory fits after the addition of a thermal component. X-ray imaging reveals small spatial separation between the thermal and non-thermal components, except for a few flares with a richer coronal source structure. A comprehensive light curve analysis shows a very good correlation between the derivative of the soft X-ray flux (from GOES ) and the hard X-rays for a substantial number of flares, indicative of the Neupert effect. The results confirm that non-thermal particles are accelerated in the corona and estimated timescales support the validity of a thin-target scenario with similar magnitudes of thermal and non-thermal energy fluxes.« less

  8. Electronegativity and hardness as coordinates in structure stability diagrams.

    PubMed Central

    Shankar, S; Parr, R G

    1985-01-01

    With electronegativity and hardness of an atom defined as 1/2(I + A) and 1/2(I - A), respectively, where I and A are the ionization potential and electron affinity, electronegativity difference and hardness sum are proposed as coordinates in structure stability diagrams. With these coordinates a successful topological classification of the crystal structures of octet and suboctet binary compounds is obtained, and a clear delineation of the structural classes portraying chemical periodicity is found. PMID:3855552

  9. Designing a fuzzy scheduler for hard real-time systems

    NASA Technical Reports Server (NTRS)

    Yen, John; Lee, Jonathan; Pfluger, Nathan; Natarajan, Swami

    1992-01-01

    In hard real-time systems, tasks have to be performed not only correctly, but also in a timely fashion. If timing constraints are not met, there might be severe consequences. Task scheduling is the most important problem in designing a hard real-time system, because the scheduling algorithm ensures that tasks meet their deadlines. However, the inherent nature of uncertainty in dynamic hard real-time systems increases the problems inherent in scheduling. In an effort to alleviate these problems, we have developed a fuzzy scheduler to facilitate searching for a feasible schedule. A set of fuzzy rules are proposed to guide the search. The situation we are trying to address is the performance of the system when no feasible solution can be found, and therefore, certain tasks will not be executed. We wish to limit the number of important tasks that are not scheduled.

  10. On Maximal Hard-Core Thinnings of Stationary Particle Processes

    NASA Astrophysics Data System (ADS)

    Hirsch, Christian; Last, Günter

    2018-02-01

    The present paper studies existence and distributional uniqueness of subclasses of stationary hard-core particle systems arising as thinnings of stationary particle processes. These subclasses are defined by natural maximality criteria. We investigate two specific criteria, one related to the intensity of the hard-core particle process, the other one being a local optimality criterion on the level of realizations. In fact, the criteria are equivalent under suitable moment conditions. We show that stationary hard-core thinnings satisfying such criteria exist and are frequently distributionally unique. More precisely, distributional uniqueness holds in subcritical and barely supercritical regimes of continuum percolation. Additionally, based on the analysis of a specific example, we argue that fluctuations in grain sizes can play an important role for establishing distributional uniqueness at high intensities. Finally, we provide a family of algorithmically constructible approximations whose volume fractions are arbitrarily close to the maximum.

  11. Radiation Hard 0.13 Micron CMOS Library at IHP

    NASA Astrophysics Data System (ADS)

    Jagdhold, U.

    2013-08-01

    To support space applications we have developed an 0.13 micron CMOS library which should be radiation hard up to 200 krad. The article describes the concept to come to a radiation hard digital circuit and was introduces in 2010 [1]. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latch-up (SEL). To reduce single event upset (SEU) we add two p-MOS transistors to all flip flops. For reliability reasons we use double contacts in all library elements. The additional rules and the library elements are integrated in our Cadence mixed signal design kit, “Virtuoso” IC6.1 [2]. A test chip is produced with our in house 0.13 micron BiCMOS technology, see Ref. [3]. As next step we will doing radiation tests according the european space agency (ESA) specifications, see Ref. [4], [5].

  12. Modeling hard clinical end-point data in economic analyses.

    PubMed

    Kansal, Anuraag R; Zheng, Ying; Palencia, Roberto; Ruffolo, Antonio; Hass, Bastian; Sorensen, Sonja V

    2013-11-01

    The availability of hard clinical end-point data, such as that on cardiovascular (CV) events among patients with type 2 diabetes mellitus, is increasing, and as a result there is growing interest in using hard end-point data of this type in economic analyses. This study investigated published approaches for modeling hard end-points from clinical trials and evaluated their applicability in health economic models with different disease features. A review of cost-effectiveness models of interventions in clinically significant therapeutic areas (CV diseases, cancer, and chronic lower respiratory diseases) was conducted in PubMed and Embase using a defined search strategy. Only studies integrating hard end-point data from randomized clinical trials were considered. For each study included, clinical input characteristics and modeling approach were summarized and evaluated. A total of 33 articles (23 CV, eight cancer, two respiratory) were accepted for detailed analysis. Decision trees, Markov models, discrete event simulations, and hybrids were used. Event rates were incorporated either as constant rates, time-dependent risks, or risk equations based on patient characteristics. Risks dependent on time and/or patient characteristics were used where major event rates were >1%/year in models with fewer health states (<7). Models of infrequent events or with numerous health states generally preferred constant event rates. The detailed modeling information and terminology varied, sometimes requiring interpretation. Key considerations for cost-effectiveness models incorporating hard end-point data include the frequency and characteristics of the relevant clinical events and how the trial data is reported. When event risk is low, simplification of both the model structure and event rate modeling is recommended. When event risk is common, such as in high risk populations, more detailed modeling approaches, including individual simulations or explicitly time-dependent event rates

  13. The role of radiation hard solar cells in minimizing the costs of global satellite communication systems

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.

    1996-01-01

    An analysis embodied in a PC computer program is presented, which quantitatively demonstrates how the availability of radiation hard solar cells can help minimize the cost of a global satellite communications system. An important distinction between the currently proposed systems, such as Iridium, Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation at orbital altitudes within the earth's radiation belts (10(exp 3) to 10(exp 4)km) can reduce the total cost of a system by several hundred percent, so long as radiation hard components including solar cells can be used. A detailed evaluation of the predicted performance of photovoltaic arrays using several different planar solar cell technologies is given, including commercially available Si and GaAs/Ge, and InP/Si which is currently under development. Several examples of applying the program are given, which show that the end of life (EOL) power density of different technologies can vary by a factor of ten for certain missions. Therefore, although a relatively radiation-soft technology can usually provide the required EOL power by simply increasing the size of the array, the impact upon the total system budget could be unacceptable, due to increased launch and hardware costs. In aggregate, these factors can account for more than a 10% increase in the total system cost. Since the estimated total costs of proposed global-coverage systems range from $1B to $9B, the availability of radiation-hard solar cells could make a decisive difference in the selection of a particular constellation architecture.

  14. The Effect of Pile-Up and Contact Area on Hardness Test by Nanoindentation

    NASA Astrophysics Data System (ADS)

    Miyake, Koji; Fujisawa, Satoru; Korenaga, Atsushi; Ishida, Takao; Sasaki, Shinya

    2004-07-01

    We used atomic force microscopy (AFM) for the indentation test evaluating the indentation hardness of materials in the nanometer range. BK7, fused silica, and single-crystal silicon were used as test sample materials. The data analysis processes used to determine the contact area were important in evaluating the indentation hardness of the materials. The direct measurement of the size of the residual hardness impression was useful in evaluating the contact area even in the nanometer region. The results led us to conclude that AFM indentation using a sharp indenter is a powerful method for estimating the indentation hardness in the nanometer range.

  15. Don't Get Rode Hard and Put Away Wet

    ERIC Educational Resources Information Center

    Galloway, Robin

    2012-01-01

    Back in the old days, some folks reckoned an equine was just a disposable tool to get their jobs done. They might ride a horse hard, so it was sweaty, panting, and broken down. When done they would throw it out to pasture without proper grooming. This is probably the origin of the expression to "get rode hard and put away wet." As…

  16. The effect of three whitening oral rinses on enamel micro-hardness.

    PubMed

    Potgieter, E; Osman, Y; Grobler, S R

    2014-05-01

    The purpose of this study was to determine the effect on human enamel micro-hardness of three over-the-counter whitening oral rinses available in South Africa. Enamel fragments were gathered into three groups of 15 each. One group was exposed to Colgate Plax Whitening Blancheur, the second group to White Glo 2 in 1 and the third to Plus White, in each case for periods recommended by the respective manufacturers. Surface micro-hardness of all groups was measured before and after a 14 day treatment period. pH levels of the oral rinses were also determined with a combination pH electrode. Pre- and post- treatment data were analysed by the Wilcoxon Signed Rank Sum Test. According to the micro-hardness values no significant (p > 0.05) enamel damage was found as a result of treatment. However, it was observed that Colgate Pax and White Glo decreased the enamel hardness, an early sign of enamel damage, while Plus White showed a small increase in hardness. The three whitening oral rinses on the South African market do not damage the tooth enamel significantly when used as recommended by the manufacturers. However, extending the contact period and increasing the frequency of application might lead to damage of enamel.

  17. Universal method to calculate the stability, electronegativity, and hardness of dianions.

    PubMed

    von Szentpály, László

    2010-10-14

    The electronic stability of gas-phase dianions of arbitrary size, X(2-), is determined by the first universal method to calculate second electron affinities, A(2). The model expresses A(2,calc) = A(1) - (7/6)η(0) by the first electron affinity, A(1), and chemical hardness, η(0), of the neutral "grandparent" species. A comparison with 37 reference data of atoms, molecules, superatoms, and clusters yields A(2,ref) = 1.004A(2,calc) - 0.023 eV, with a mean unsigned deviation of MUD = 0.095 eV and a correlation coefficient of R = 0.9987. Predictions of second electron affinities are given for a further 24 species. The universality of the model is apparent from the broad variety of compounds formed by 30 diverse elements. The electronegativity and hardness of dianions are determined for the first time as χ(X(2-)) = A(2) and η(X(2-)) = (7/12)η(0), respectively. Pearson and Parr's operational assumption regarding the hardness of anionic bases for the hard-soft acid-base (HSAB) principle is rationalized, and predictions for hard and soft dianionic bases are presented. For trianions, first criteria and predictions for electronic stability are given and require A(1) > (7/4)η(0).

  18. Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.

    2009-05-01

    A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.

  19. Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar

    NASA Technical Reports Server (NTRS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; hide

    2016-01-01

    We present a broadband (approx.0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by approx.1.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau approx. = 1.2, NH approx. 1.5×10(exp 24)/sq cm. We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at approx..30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH < or = 2×10(exp 23)/sq cm over long (approx.3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  20. The differentiation of oral soft- and hard tissues using laser induced breakdown spectroscopy - a prospect for tissue specific laser surgery.

    PubMed

    Rohde, Maximilian; Mehari, Fanuel; Klämpfl, Florian; Adler, Werner; Neukam, Friedrich-Wilhelm; Schmidt, Michael; Stelzle, Florian

    2017-10-01

    Compared to conventional techniques, Laser surgery procedures provide a number of advantages, but may be associated with an increased risk of iatrogenic damage to important anatomical structures. The type of tissue ablated in the focus spot is unknown. Laser-Induced Breakdown-Spectroscopy (LIBS) has the potential to gain information about the type of material that is being ablated by the laser beam. This may form the basis for tissue selective laser surgery. In the present study, 7 different porcine tissues (cortical and cancellous bone, nerve, mucosa, enamel, dentine and pulp) from 6 animals were analyzed for their qualitative and semiquantitative molecular composition using LIBS. The so gathered data was used to first differentiate between the soft- and hard-tissues using a Calcium-Carbon emission based classifier. The tissues were then further classified using emission-ratio based analysis, principal component analysis (PCA) and linear discriminant analysis (LDA). The relatively higher concentration of Calcium in the hard tissues allows for an accurate first differentiation of soft- and hard tissues (100% sensitivity and specificity). The ratio based statistical differentiation approach yields results in the range from 65% (enamel-dentine pair) to 100% (nerve-pulp, cancellous bone-dentine, cancellous bone-enamel pairs) sensitivity and specificity. Experimental LIBS measuring setup. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hard-rock GMPEs versus Vs30-Kappa Host-to-Target Adjustment Techniques : Why so Large Differences in High Frequency Hard-Rock Motion ?

    NASA Astrophysics Data System (ADS)

    Bard, P. Y.; Laurendeau, A.; Hollender, F.; Perron, V.; Hernandez, B.; Foundotos, L.

    2016-12-01

    Assessment of local seismic hazard on hard rock sites (1000 < VS30 < 3000 m/s) is needed either for installations built on such hard rock, or as a reference motion for site response computation. Empirical ground motion prediction equations (GMPEs) are the traditional basis for estimating ground motion, but most of them are poorly constrained for VS30 larger than 1000 m/s. The presently used approach for estimating hard rock hazard consists of "host-to-target" adjustment techniques (HTTA) based on VS30 and κ0 values. Recent studies have investigated alternative methods to estimate reference motions on very hard rock through an original processing of the Japanese KiK-net recordings from stiff sites (500 < VS30 < 1350 m/s). The pairs of recordings at surface and depth, together with the knowledge of the velocity profile, allowed to derive two sets of "virtual" outcropping, hard-rock motion data for sites having velocities in the range [1000 - 3000 m/s]. The corrections are based either on a transformation of deep, within-motion to outcropping motion, or on a deconvolution of surface recordings using the velocity profile and 1D simulation, which has been performed both in the response spectrum and Fourier domains. Each of these virtual "outcropping hard-rock motion" data sets has then been used to derive GMPEs with simple functional forms, using as site condition proxy the S-wave velocity at depth (VSDH), ranging from 1000 to 3000 m/s. Both sets provide very similar predictions, which are much smaller at high frequencies (f > 10 Hz) than those estimated with the traditional HTTA technique - by a factor up to 3-4,. These differences decrease for decreasing frequency, and become negligible at low frequency (f < 1 Hz). The main focus will be to discuss the possible reasons of such differences, in relation with the implicit or explicit assumptions of either approach. Our present interpretation is related to the existence of a significant, high-frequency amplification on

  2. Hard and Soft Safety Verifications

    NASA Technical Reports Server (NTRS)

    Wetherholt, Jon; Anderson, Brenda

    2012-01-01

    The purpose of this paper is to examine the differences between and the effects of hard and soft safety verifications. Initially, the terminology should be defined and clarified. A hard safety verification is datum which demonstrates how a safety control is enacted. An example of this is relief valve testing. A soft safety verification is something which is usually described as nice to have but it is not necessary to prove safe operation. An example of a soft verification is the loss of the Solid Rocket Booster (SRB) casings from Shuttle flight, STS-4. When the main parachutes failed, the casings impacted the water and sank. In the nose cap of the SRBs, video cameras recorded the release of the parachutes to determine safe operation and to provide information for potential anomaly resolution. Generally, examination of the casings and nozzles contributed to understanding of the newly developed boosters and their operation. Safety verification of SRB operation was demonstrated by examination for erosion or wear of the casings and nozzle. Loss of the SRBs and associated data did not delay the launch of the next Shuttle flight.

  3. Effects of hardness and alkalinity in culture and test waters on reproduction of Ceriodaphnia dubia

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Hardin, I.R.

    2006-01-01

    Ceriodaphnia dubia were cultured in four reconstituted water formulations with hardness and alkalinity concentrations ranging from soft to the moderately hard water that is required by whole-effluent toxicity (WET) testing methods for culturing test organisms. The effects of these culture formulations alone and in combination with two levels of Cl-, SO42, and HCO3- on reproduction of C. dubia were evaluated with the standard three-brood test. Reproduction was significantly reduced when test waters had lower hardness than culture waters. However, reproduction was not significantly different when animals cultured in low-hardness waters were exposed to moderately hard waters. The hardness of the culture water did not significantly affect the sensitivity of C. dubia to the three anions. Conversely, increased hardness in test waters significantly reduced the toxicities of Cl- and SO42-, with HCO3- toxicity following the same pattern. Alkalinity exhibited no consistent effect on Cl- and SO42- toxicity. The physiological stress of placing animals cultured in moderately hard water into softer test waters might contribute to marginal failures of otherwise nontoxic effluents. The standard WET protocol should be revised to allow the culture of C. dubia under lower hardness conditions to better represent local surface water chemistries.

  4. Halogen and LED light curing of composite: temperature increase and Knoop hardness.

    PubMed

    Schneider, L F; Consani, S; Correr-Sobrinho, L; Correr, A B; Sinhoreti, M A

    2006-03-01

    This study assessed the Knoop hardness and temperature increase provided by three light curing units when using (1) the manufacturers' recommended times of photo-activation and (2) standardizing total energy density. One halogen--XL2500 (3M/ESPE)--and two light-emitting diode (LED) curing units--Freelight (3M/ESPE) and Ultrablue IS (DMC)--were used. A type-K thermocouple registered the temperature change produced by the composite photo-activation in a mold. Twenty-four hours after the photo-activation procedures, the composite specimens were submitted to a hardness test. Both temperature increase and hardness data were submitted to ANOVA and Tukey's test (5% significance). Using the first set of photo-activation conditions, the halogen unit produced a statistically higher temperature increase than did both LED units, and the Freelight LED resulted in a lower hardness than did the other curing units. When applying the second set of photo-activation conditions, the two LED units produced statistically greater temperature increase than did the halogen unit, whereas there were no statistical differences in hardness among the curing units.

  5. Comparison of hardness variation of ion irradiated borosilicate glasses with different projected ranges

    NASA Astrophysics Data System (ADS)

    Sun, M. L.; Peng, H. B.; Duan, B. H.; Liu, F. F.; Du, X.; Yuan, W.; Zhang, B. T.; Zhang, X. Y.; Wang, T. S.

    2018-03-01

    Borosilicate glass has potential application for vitrification of high-level radioactive waste, which attracts extensive interest in studying its radiation durability. In this study, sodium borosilicate glass samples were irradiated with 4 MeV Kr17+ ion, 5 MeV Xe26+ ion and 0.3 MeV P+ ion, respectively. The hardness of irradiated borosilicate glass samples was measured with nanoindentation in continuous stiffness mode and quasi continuous stiffness mode, separately. Extrapolation method, mean value method, squared extrapolation method and selected point method are used to obtain hardness of irradiated glass and a comparison among these four methods is conducted. The extrapolation method is suggested to analyze the hardness of ion irradiated glass. With increasing irradiation dose, the values of hardness for samples irradiated with Kr, Xe and P ions dropped and then saturated at 0.02 dpa. Besides, both the maximum variations and decay constants for three kinds of ions with different energies are similar indicates the similarity behind the hardness variation in glasses after irradiation. Furthermore, the hardness variation of low energy P ion irradiated samples whose range is much smaller than those of high energy Kr and Xe ions, has the same trend as that of Kr and Xe ions. It suggested that electronic energy loss did not play a significant role in hardness decrease for irradiation of low energy ions.

  6. Experimental investigation and modelling of surface roughness and resultant cutting force in hard turning of AISI H13 Steel

    NASA Astrophysics Data System (ADS)

    Boy, M.; Yaşar, N.; Çiftçi, İ.

    2016-11-01

    In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.

  7. 5 CFR 532.249 - Minimum rates for hard-to-fill positions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Minimum rates for hard-to-fill positions. 532.249 Section 532.249 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.249 Minimum rates for hard-to-fill...

  8. 5 CFR 532.249 - Minimum rates for hard-to-fill positions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Minimum rates for hard-to-fill positions. 532.249 Section 532.249 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.249 Minimum rates for hard-to-fill...

  9. 5 CFR 532.249 - Minimum rates for hard-to-fill positions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Minimum rates for hard-to-fill positions. 532.249 Section 532.249 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.249 Minimum rates for hard-to-fill...

  10. Hard Real-Time: C++ Versus RTSJ

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel L.; Reinholtz, William K.

    2004-01-01

    In the domain of hard real-time systems, which language is better: C++ or the Real-Time Specification for Java (RTSJ)? Although ordinary Java provides a more productive programming environment than C++ due to its automatic memory management, that benefit does not apply to RTSJ when using NoHeapRealtimeThread and non-heap memory areas. As a result, RTSJ programmers must manage non-heap memory explicitly. While that's not a deterrent for veteran real-time programmers-where explicit memory management is common-the lack of certain language features in RTSJ (and Java) makes that manual memory management harder to accomplish safely than in C++. This paper illustrates the problem for practitioners in the context of moving data and managing memory in a real-time producer/consumer pattern. The relative ease of implementation and safety of the C++ programming model suggests that RTSJ has a struggle ahead in the domain of hard real-time applications, despite its other attractive features.

  11. Theory of the interface between a classical plasma and a hard wall

    NASA Astrophysics Data System (ADS)

    Ballone, P.; Pastore, G.; Tosi, M. P.

    1983-09-01

    The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody selfconsistently into the theory a contact theorem, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. The interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.

  12. Theory of the interface between a classical plasma and a hard wall

    NASA Astrophysics Data System (ADS)

    Ballone, P.; Pastore, G.; Tosi, M. P.

    1984-12-01

    The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody self-consistently into the theory a “contact theorem”, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. It is also shown that the interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.

  13. Pancreatic hardness: Correlation of surgeon's palpation, durometer measurement and preoperative magnetic resonance imaging features.

    PubMed

    Hong, Tae Ho; Choi, Joon-Il; Park, Michael Yong; Rha, Sung Eun; Lee, Young Joon; You, Young Kyoung; Choi, Moon Hyung

    2017-03-21

    To evaluate the correlation between subjective assessments of pancreatic hardness based on the palpation, objective measurements using a durometer, and magnetic resonance imaging (MRI) findings for assessing pancreatic hardness. Eighty-three patients undergoing pancreatectomies were enrolled. An experienced surgeon subjectively evaluated the pancreatic hardness in the surgical field by palpation. The pancreatic hardness was also objectively evaluated using a durometer. Preoperative MRI findings were evaluated by a radiologist in terms of the apparent diffusion coefficient (ADC) values, the relative signal intensity decrease (RSID) of the pancreatic parenchyma, and the diameter of the pancreatic parenchyma and duct. Durometer measurement results, ADC values, RSID, pancreatic duct and parenchyma diameters, and the ratio of the diameters of the duct and parenchyma were compared between pancreases judged to be soft or hard pancreas on the palpation. A correlation analysis was also performed between the durometer and MRI measurements. The palpation assessment classified 44 patients as having a soft pancreas and 39 patients as having a hard pancreas. ADC values were significantly lower in the hard pancreas group. The ductal diameter and duct-to-pancreas ratio were significantly higher in the hard pancreas group. For durometer measurements, a correlation analysis showed a positive correlation with the ductal diameter and the duct-to-pancreas ratio and a negative correlation with ADC values. Hard pancreases showed lower ADC values, a wider pancreatic duct diameter and a higher duct-to-pancreas ratio than soft pancreases. Additionally, the ADC values, diameter of the pancreatic duct and duct-to-pancreas ratio were closely correlated with the durometer results.

  14. A New Relativistic Component of the Accretion Disk Wind in PDS 456

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Braito, V.; Nardini, E.; Lobban, A. P.; Matzeu, G. A.; Costa, M. T.

    2018-02-01

    Past X-ray observations of the nearby luminous quasar PDS 456 (at z = 0.184) have revealed a wide angle accretion disk wind, with an outflow velocity of ∼‑0.25c. Here, we unveil a new, relativistic component of the wind through hard X-ray observations with NuSTAR and XMM-Newton, obtained in 2017 March when the quasar was in a low-flux state. This very fast wind component, with an outflow velocity of ‑0.46 ± 0.02c, is detected in the iron K band, in addition to the ‑0.25c wind zone. The relativistic component may arise from the innermost disk wind, launched from close to the black hole at a radius of ∼10 gravitational radii. The opacity of the fast wind also increases during a possible obscuration event lasting for 50 ks. We suggest that the very fast wind may only be apparent during the lowest X-ray flux states of PDS 456, becoming overly ionized as the luminosity increases. Overall, the total wind power may even approach the Eddington value.

  15. Identification of quantitative trait loci associated with boiled seed hardness in soybean

    PubMed Central

    Hirata, Kaori; Masuda, Ryoichi; Tsubokura, Yasutaka; Yasui, Takeshi; Yamada, Tetsuya; Takahashi, Koji; Nagaya, Taiko; Sayama, Takashi; Ishimoto, Masao; Hajika, Makita

    2014-01-01

    Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, quantitative trait locus (QTL) analysis was performed to reveal the genetic factors associated with boiled seed hardness using a recombinant inbred line population developed from a cross between two Japanese cultivars, ‘Natto-shoryu’ and ‘Hyoukei-kuro 3’, which differ largely in boiled seed hardness, which in ‘Natto-shoryu’ is about twice that of ‘Hyoukei-kuro 3’. Two significantly stable QTLs, qHbs3-1 and qHbs6-1, were identified on chromosomes 3 and 6, for which the ‘Hyoukei-kuro 3’ alleles contribute to decrease boiled seed hardness for both QTLs. qHbs3-1 also showed significant effects in progeny of a residual heterozygous line and in a different segregating population. Given its substantial effect on boiled seed hardness, SSR markers closely linked to qHbs3-1, such as BARCSOYSSR_03_0165 and BARCSOYSSR_03_0185, could be useful for marker-assisted selection in soybean breeding. PMID:25914591

  16. Disposal of waste computer hard disk drive: data destruction and resources recycling.

    PubMed

    Yan, Guoqing; Xue, Mianqiang; Xu, Zhenming

    2013-06-01

    An increasing quantity of discarded computers is accompanied by a sharp increase in the number of hard disk drives to be eliminated. A waste hard disk drive is a special form of waste electrical and electronic equipment because it holds large amounts of information that is closely connected with its user. Therefore, the treatment of waste hard disk drives is an urgent issue in terms of data security, environmental protection and sustainable development. In the present study the degaussing method was adopted to destroy the residual data on the waste hard disk drives and the housing of the disks was used as an example to explore the coating removal process, which is the most important pretreatment for aluminium alloy recycling. The key operation points of the degaussing determined were: (1) keep the platter plate parallel with the magnetic field direction; and (2) the enlargement of magnetic field intensity B and action time t can lead to a significant upgrade in the degaussing effect. The coating removal experiment indicated that heating the waste hard disk drives housing at a temperature of 400 °C for 24 min was the optimum condition. A novel integrated technique for the treatment of waste hard disk drives is proposed herein. This technique offers the possibility of destroying residual data, recycling the recovered resources and disposing of the disks in an environmentally friendly manner.

  17. High pressure processing and storage of blueberries: effect on fruit hardness

    NASA Astrophysics Data System (ADS)

    Scheidt, Tiago B.; Silva, Filipa V. M.

    2018-01-01

    Non-thermal preservation technologies such as high pressure processing (HPP) have low impact in original fruit flavours. The objective of this study was to process the whole blueberries by HPP and investigate the effect on its hardness after processing and during 7 and 28 days storage. Whole blueberry immersed in water was the best packaging option. The blueberries submitted to 200 and 600 MPa for 5-60 min and were stored at 3°C for 1 week. In another experiment, HPP blueberries (200 and 600 MPa for 10 min) were stored for 28 days. No difference in sensorial texture was observed between HPP and fresh unprocessed blueberry, although the instrumental hardness decreased significantly. Hardness was not affected by the processing time and was similar just after HPP and one-week storage. The hardness of HPP-processed blueberries was kept along 28 days storage without considerable weight loss as opposed to fresh fruits which collapsed.

  18. Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoguang; Li, Qiang; Liu, Tao; Kang, Renke; Jin, Zhuji; Guo, Dongming

    2017-03-01

    Hard and brittle materials, such as silicon, SiC, and optical glasses, are widely used in aerospace, military, integrated circuit, and other fields because of their excellent physical and chemical properties. However, these materials display poor machinability because of their hard and brittle properties. Damages such as surface micro-crack and subsurface damage often occur during machining of hard and brittle materials. Ultra-precision machining is widely used in processing hard and brittle materials to obtain nanoscale machining quality. However, the theoretical mechanism underlying this method remains unclear. This paper provides a review of present research on the molecular dynamics simulation of ultra-precision machining of hard and brittle materials. The future trends in this field are also discussed.

  19. [Analysis of 2 patients with occupational hard mental lung disease].

    PubMed

    Ding, Bangmei; Ding, Lu; Yu, Bin; Fan, Cunhua; Han, Lei; Hu, Jinmei; Zhu, Baoli

    2015-01-01

    We sought to master the clinical characteristics and prognosis of hard mental lung disease, improving this disease's diagnosis and treatment quality. We recruited two suspected patients with hard mental lung disease and collected their occupational history, examination results of occupational health, and past medical records. By virtue of laboratory tests, high Kv chest radiography, CT and HRCT of chest, fiberoptic bronchoscopy and ECG examination, diagnostic report was synthesized respectively by respiratory physicians and pathologist from three different agencies. Then the report was submitted to diagnosis organizations of occupational disease, and diagnostic conclusion of occupational disease was drawn after discussion by at least three diagnosticians of occupational disease. We found that both of the two suspected patients were exposed to dusts of hard metal, and length of exposure service ranged from 8 to 9 years. Clinical manifestations were dominated by dry cough, wheezing after activities, and pathological manifestation was characteristic giant cell interstitial pneumonia. The prognosis and outcome of the disease were different. According to exact occupational exposure history, clinical manifestations, combined with the results of high Kv chest radiography, CT of chest and pathological manifestation, it can be diagnosed with hard mental lung disease.

  20. [Determination of Hard Rate of Alfalfa (Medicago sativa L.) Seeds with Near Infrared Spectroscopy].

    PubMed

    Wang, Xin-xun; Chen, Ling-ling; Zhang, Yun-wei; Mao, Pei-sheng

    2016-03-01

    Alfalfa (Medicago sativa L.) is the most commonly grown forage crop due to its better quality characteristics and high adaptability in China. However, there was 20%-80% hard seeds in alfalfa which could not be identified easily from non hard seeds which would cause the loss of seed utilization value and plant production. This experiment was designed for 121 samples of alfalfa. Seeds were collected according to different regions, harvested year and varieties. 31 samples were artificial matched as hard rates ranging from 20% to 80% to establish a model for hard seed rate by near infrared spectroscopy (NIRS) with Partial Least Square (PLS). The objective of this study was to establish a model and to estimate the efficiency of NIRS for determining hard rate of alfalfa seeds. The results showed that the correlation coefficient (R2(cal)) of calibration model was 0.981 6, root mean square error of cross validation (RMSECV) was 5.32, and the ratio of prediction to deviation (RPD) was 3.58. The forecast model in this experiment presented the satisfied precision. The proposed method using NIRS technology is feasible for identification and classification of hard seed in alfalfa. A new method, as nondestructive testing of hard seed rate, was provided to theoretical basis for fast nondestructive detection of hard seed rates in alfalfa.

  1. Rad-Hard/HI-REL FPGA

    NASA Technical Reports Server (NTRS)

    Wang, Jih-Jong; Cronquist, Brian E.; McGowan, John E.; Katz, Richard B.

    1997-01-01

    The goals for a radiation hardened (RAD-HARD) and high reliability (HI-REL) field programmable gate array (FPGA) are described. The first qualified manufacturer list (QML) radiation hardened RH1280 and RH1020 were developed. The total radiation dose and single event effects observed on the antifuse FPGA RH1280 are reported on. Tradeoffs and the limitations in the single event upset hardening are discussed.

  2. Hard and low friction nitride coatings and methods for forming the same

    DOEpatents

    Erdemir, Ali; Urgen, Mustafa; Cakir, Ali Fuat; Eryilmaz, Osman Levent; Kazmanli, Kursat; Keles, Ozgul

    2007-05-01

    An improved coating material possessing super-hard and low friction properties and a method for forming the same. The improved coating material includes the use of a noble metal or soft metal homogeneously distributed within a hard nitride material. The addition of small amounts of such metals into nitrides such as molybdenum nitride, titanium nitride, and chromium nitride results in as much as increasing of the hardness of the material as well as decreasing the friction coefficient and increasing the oxidation resistance.

  3. Observational techniques for solar flare gamma-rays, hard X-rays, and neutrons

    NASA Technical Reports Server (NTRS)

    Lin, Robert P.

    1989-01-01

    The development of new instrumentation and techniques for solar hard X-ray, gamma ray and neutron observations from spacecraft and/or balloon-borne platforms is examined. The principal accomplishments are: (1) the development of a two segment germanium detector which is near ideal for solar hard X-ray and gamma ray spectroscopy; (2) the development of long duration balloon flight techniques and associated instrumentation; and (3) the development of innovative new position sensitive detectors for hard X-ray and gamma rays.

  4. Relative contribution of combined kinetic and exchange energy terms vs the electronic component of molecular electrostatic potential in hardness potential derivatives.

    PubMed

    Bhattacharjee, Rituparna; Roy, Ram Kinkar

    2013-11-14

    The relative contribution of the sum of kinetic [(10/9)CFρ(r)2/3] and exchange energy [(4/9)CXρ(r)1/3] terms to that of the electronic part of the molecular electrostatic potential [Vel(r)] in the variants of hardness potential is investigated to assess the proposed definition of Δ+h(k) = −[VelN+1(k) – VelN(k)] and Δ–h(k) = −[VelN(k) – VelN–1(k)] (Saha; et al. J. Comput. Chem. 2013, 34, 662). Some substituted benzenes and polycyclic aromatic hydrocarbons (PAHs) (undergoing electrophilic aromatic substitution), carboxylic acids, and their derivatives are chosen to carry out the theoretical investigation as stated above. Intra- and intermolecular reactivity trends generated by Δ+h(k) and Δ–h(k) are found to be satisfactory and are correlated reasonably well with experimental results.

  5. Influences of pretreatment and hard baking on the mechanical reliability of SU-8 microstructures

    NASA Astrophysics Data System (ADS)

    Morikaku, Toshiyuki; Kaibara, Yoshinori; Inoue, Masatoshi; Miura, Takuya; Suzuki, Takaaki; Oohira, Fumikazu; Inoue, Shozo; Namazu, Takahiro

    2013-10-01

    In this paper, the influences of pretreatment and hard baking on the mechanical characteristics of SU-8 microstructures are described. Four types of samples with different combinations of O2 plasma ashing, primer coating and hard baking were prepared for shear strength tests and uniaxial tensile tests. Specially developed shear test equipment was used to experimentally measure the shear adhesion strength of SU-8 micro posts on a glass substrate. The adhesiveness was strengthened by hard baking at 200 °C for 60 min, whereas other pretreatment processes hardly affected the strength. The pretreatment and hard baking effects on the adhesive strength were compared with those on the fracture strength measured by uniaxial tensile testing. There were no influences of O2 plasma ashing on both the strengths, and primer coating affected only tensile strength. The primer coating effect as well as the hard baking effect on stress relaxation phenomena in uniaxial tension was observed as well. Fourier transform infrared spectroscopy demonstrated that surface degradation and epoxide-ring opening polymerization would have given rise to the primer coating effect and the hard baking effect on the mechanical characteristics, respectively.

  6. Steady Shear Viscosities of Two Hard Sphere Colloidal Dispersions

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengdong; Chaikin, Paul M.; Phan, See-Eng; Russel, William B.; Zhu, Jixiang

    1996-03-01

    Though hard spheres have the simplest inter-particle potential, the many body hydrodynamic interactions are complex and the rheological properties of dispersions are not fully understood in the concentrated regime. We studied two model systems: colloidal poly-(Methyl Methacrylate) spheres with a grafted layer of poly-(12-hydroxy stearic acid) (PMMA/PHSA) and spherical Silica particles (PST-5, Nissan Chemical Industries, Ltd, Tokyo, Japan). Steady shear viscosities were measured by a Zimm viscometer. The high shear relative viscosity of the dispersions compares well with other hard sphere systems, but the low shear relative viscosity of PMMA/PHSA dispersions is η / η 0 = 50 at φ = 0.5 , higher than η / η 0 = 22 for other hard sphere systems, consistent with recently published data (Phys. Rev. Lett. 75(1995)958). Bare Silica spheres are used to clarify the effect of the grafted layer. With the silica spheres, volume fraction can be determined independent of intrinsic viscosity measurements; also, higher concentrated dispersions can be made.

  7. Hard x-ray imager for the NeXT mission

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuhiro; Fukazawa, Yasushi; Kamae, Tuneyoshi; Kataoka, Jun; Kokubun, Motohide; Makishima, Kazuo; Mizuno, Tsunefumi; Murakami, Toshio; Nomachi, Masaharu; Tajima, Hiroyasu; Takahashi, Tadayuki; Tashiro, Makoto; Tamagawa, Toru; Terada, Yukikatsu; Watanabe, Shin; Yamaoka, Kazutaka; Yonetoku, Daisuke

    2006-06-01

    The hard X-ray imager (HXI) is the primary detector of the NeXT mission, proposed to explore high-energy non-thermal phenomena in the universe. Combined with a novel hard X-ray mirror optics, the HXI is designed to provide better than arc-minutes imaging capability with 1 keV level spectroscopy, and more than 30 times higher sensitivity compared with any existing hard X-ray instruments. The base-line design of the HXI is improving to secure high sensitivity. The key is to reduce the detector background as far as possible. Based on the experience of the Suzaku satellite launched in July 2005, the current design has a well-type tight active shield and multi layered, multi material imaging detector made of Si and CdTe. Technology has been under development for a few years so that we have reached the level where a basic detector performance is satisfied. Design tuning to further improve the sensitivity and reliability is on-going.

  8. Effort and Displeasure in People Who Are Hard of Hearing.

    PubMed

    Matthen, Mohan

    2016-01-01

    Listening effort helps explain why people who are hard of hearing are prone to fatigue and social withdrawal. However, a one-factor model that cites only effort due to hardness of hearing is insufficient as there are many who lead happy lives despite their disability. This article explores other contributory factors, in particular motivational arousal and pleasure. The theory of rational motivational arousal predicts that some people forego listening comprehension because they believe it to be impossible and hence worth no effort at all. This is problematic. Why should the listening task be rated this way, given the availability of aids that reduce its difficulty? Two additional factors narrow the explanatory gap. First, we separate the listening task from the benefit derived as a consequence. The latter is temporally more distant, and is discounted as a result. The second factor is displeasure attributed to the listening task, which increases listening cost. Many who are hard of hearing enjoy social interaction. In such cases, the actual activity of listening is a benefit, not a cost. These people also reap the benefits of listening, but do not have to balance these against the displeasure of the task. It is suggested that if motivational harmony can be induced by training in somebody who is hard of hearing, then the obstacle to motivational arousal would be removed. This suggests a modified goal for health care professionals. Do not just teach those who are hard of hearing how to use hearing assistance devices. Teach them how to do so with pleasure and enjoyment.

  9. Relaxation dynamics in a binary hard-ellipse liquid.

    PubMed

    Xu, Wen-Sheng; Sun, Zhao-Yan; An, Li-Jia

    2015-01-21

    Structural relaxation in binary hard spherical particles has been shown recently to exhibit a wealth of remarkable features when size disparity or mixture composition is varied. In this paper, we test whether or not similar dynamical phenomena occur in glassy systems composed of binary hard ellipses. We demonstrate via event-driven molecular dynamics simulation that a binary hard-ellipse mixture with an aspect ratio of two and moderate size disparity displays characteristic glassy dynamics upon increasing density in both the translational and the rotational degrees of freedom. The rotational glass transition density is found to be close to the translational one for the binary mixtures investigated. More importantly, we assess the influence of size disparity and mixture composition on the relaxation dynamics. We find that an increase of size disparity leads, both translationally and rotationally, to a speed up of the long-time dynamics in the supercooled regime so that both the translational and the rotational glass transition shift to higher densities. By increasing the number concentration of the small particles, the time evolution of both translational and rotational relaxation dynamics at high densities displays two qualitatively different scenarios, i.e., both the initial and the final part of the structural relaxation slow down for small size disparity, while the short-time dynamics still slows down but the final decay speeds up in the binary mixture with large size disparity. These findings are reminiscent of those observed in binary hard spherical particles. Therefore, our results suggest a universal mechanism for the influence of size disparity and mixture composition on the structural relaxation in both isotropic and anisotropic particle systems.

  10. 7 CFR 201.21 - Hard seed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hard seed. 201.21 Section 201.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.21...

  11. 7 CFR 201.21 - Hard seed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hard seed. 201.21 Section 201.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.21...

  12. 7 CFR 201.57 - Hard seeds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hard seeds. 201.57 Section 201.57 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administratio...

  13. 7 CFR 201.21 - Hard seed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hard seed. 201.21 Section 201.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.21...

  14. 7 CFR 201.57 - Hard seeds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hard seeds. 201.57 Section 201.57 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administratio...

  15. 7 CFR 201.57 - Hard seeds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hard seeds. 201.57 Section 201.57 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administratio...

  16. 7 CFR 201.21 - Hard seed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hard seed. 201.21 Section 201.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.21...

  17. 7 CFR 201.57 - Hard seeds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hard seeds. 201.57 Section 201.57 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administratio...

  18. 7 CFR 201.21 - Hard seed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hard seed. 201.21 Section 201.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.21...

  19. 7 CFR 201.57 - Hard seeds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hard seeds. 201.57 Section 201.57 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administratio...

  20. Effect of Alloying Type and Lean Sintering Atmosphere on the Performance of PM Components

    NASA Astrophysics Data System (ADS)

    Sundaram, M. Vattur; Shvab, R.; Millot, S.; Hryha, E.; Nyborg, L.

    2017-12-01

    In order to be cost effective and to meet increasing performance demands, powder metallurgy steel components require continuous improvement in terms of materials and process development. This study demonstrates the feasibility of manufacturing structural components using two different alloys systems, i.e. lean Cr-prealloyed and diffusion bonded water atomised powders with different processing conditions. The components were sintered at two different temperatures, i.e. 1120 and 1250 °C for 30 minutes in three different atmospheres: vacuum, N2- 10%H2 atmosphere as well as lean N2-5%H2-0.5%CO-(0.1-0.4)%CH4 sintering atmosphere. Components after sintering were further processed by either low pressure carburizing, sinterhardening or case hardening. All trials were performed in the industrial furnaces to simulate the actual production of the components. Microstructure, fractography, apparent and micro hardness analyses were performed close to the surface and in the middle of the sample to characterize the degree of sintering (temperature and atmosphere) and the effect of heat treatment. In all cases, components possess mostly martensitic microstructure with a few bainitic regions. The fracture surface shows well developed sinter necks. Inter- and trans-granular ductile and cleavage fracture modes are dominant and their fraction is determined by the alloy and processing route.