Sample records for hard coral communities

  1. Community-level destruction of hard corals by the sea urchin Diadema setosum.

    PubMed

    Qiu, Jian-Wen; Lau, Dickey C C; Cheang, Chi-chiu; Chow, Wing-kuen

    2014-08-30

    Sea urchins are common herbivores and bioeroders of coral ecosystems, but rarely have they been reported as corallivores. We determined the spatial pattern of hard coral damage due to corallivory and bioerosion by the sea urchin Diadema setosum Leske in Hong Kong waters. Coral damage was common at the northeastern sites, with 23.7 - 90.3% colonies being either collapsed or severely damaged with >25% tissue loss. Many genera of corals were impacted by the sea urchin but the damage was most obvious for the structure forming genus Platygyra. The percentage of severely damaged and collapsed coral had significant positive correlation with the abundance of D. setosum, which ranged from 0.01 to 5.2 individuals per coral head or 0.1 - 21.1 individuals m(-2) across the study sites. Remedial management actions such as sea urchin removal are urgently needed to save these fringing coral communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Decadal trends in a coral community and evidence of changed disturbance regime

    NASA Astrophysics Data System (ADS)

    Wakeford, M.; Done, T. J.; Johnson, C. R.

    2008-03-01

    A 23 year data set (1981 2003 inclusive) and the spatially explicit individual-based model “Compete©” were used to investigate the implications of changing disturbance frequency on cover and taxonomic composition of a shallow coral community at Lizard Island, Australia. Near-vertical in situ stereo-photography was used to estimate rates of coral growth, mortality, recruitment and outcomes of pair-wise competitive interactions for 17 physiognomic groups of hard and soft corals. These data were used to parameterise the model, and to quantify impacts of three acute disturbance events that caused significant coral mortality: 1982—a combination of coral bleaching and Crown-of-Thorns starfish; 1990—cyclone waves; and 1996—Crown-of-Thorns starfish. Predicted coral community trajectories were not sensitive to the outcomes of competitive interactions (probably because average coral cover was only 32% and there was strong vertical separation among established corals) or to major changes in recruitment rates. The model trajectory of coral cover matched the observed trajectory accurately until the 1996 disturbance, but only if all coral mortality was confined to the 3 years of acute disturbance. Beyond that date (1997 2003), when the observed community failed to recover, it was necessary to introduce annual chronic background mortality to obtain a good match between modelled and observed coral cover. This qualitative switch in the model may reflect actual loss of resilience in the real community. Simulated over a century, an 8 year disturbance frequency most closely reproduced the mean community composition observed in the field prior to major disturbance events. Shorter intervals between disturbances led to reduced presence of the dominant hard coral groups, and a gradual increase in the slow growing, more resilient soft corals, while longer intervals (up to 16 years) resulted in monopolization by the fastest growing table coral, Acropora hyacinthus.

  3. Relative Importance of Coral Cover, Habitat Complexity and Diversity in Determining the Structure of Reef Fish Communities

    PubMed Central

    Komyakova, Valeriya; Munday, Philip L.; Jones, Geoffrey P.

    2013-01-01

    The structure of coral reef habitat has a pronounced influence on the diversity, composition and abundance of reef-associated fishes. However, the particular features of the habitat that are most critical are not always known. Coral habitats can vary in many characteristics, notably live coral cover, topographic complexity and coral diversity, but the relative effects of these habitat characteristics are often not distinguished. Here, we investigate the strength of the relationships between these habitat features and local fish diversity, abundance and community structure in the lagoon of Lizard Island, Great Barrier Reef. In a spatial comparison using sixty-six 2m2 quadrats, fish species richness, total abundance and community structure were examined in relation to a wide range of habitat variables, including topographic complexity, habitat diversity, coral diversity, coral species richness, hard coral cover, branching coral cover and the cover of corymbose corals. Fish species richness and total abundance were strongly associated with coral species richness and cover, but only weakly associated with topographic complexity. Regression tree analysis showed that coral species richness accounted for most of the variation in fish species richness (63.6%), while hard coral cover explained more variation in total fish abundance (17.4%), than any other variable. In contrast, topographic complexity accounted for little spatial variation in reef fish assemblages. In degrading coral reef environments, the potential effects of loss of coral cover and topographic complexity are often emphasized, but these findings suggest that reduced coral biodiversity may ultimately have an equal, or greater, impact on reef-associated fish communities. PMID:24349455

  4. Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities.

    PubMed

    Komyakova, Valeriya; Munday, Philip L; Jones, Geoffrey P

    2013-01-01

    The structure of coral reef habitat has a pronounced influence on the diversity, composition and abundance of reef-associated fishes. However, the particular features of the habitat that are most critical are not always known. Coral habitats can vary in many characteristics, notably live coral cover, topographic complexity and coral diversity, but the relative effects of these habitat characteristics are often not distinguished. Here, we investigate the strength of the relationships between these habitat features and local fish diversity, abundance and community structure in the lagoon of Lizard Island, Great Barrier Reef. In a spatial comparison using sixty-six 2m(2) quadrats, fish species richness, total abundance and community structure were examined in relation to a wide range of habitat variables, including topographic complexity, habitat diversity, coral diversity, coral species richness, hard coral cover, branching coral cover and the cover of corymbose corals. Fish species richness and total abundance were strongly associated with coral species richness and cover, but only weakly associated with topographic complexity. Regression tree analysis showed that coral species richness accounted for most of the variation in fish species richness (63.6%), while hard coral cover explained more variation in total fish abundance (17.4%), than any other variable. In contrast, topographic complexity accounted for little spatial variation in reef fish assemblages. In degrading coral reef environments, the potential effects of loss of coral cover and topographic complexity are often emphasized, but these findings suggest that reduced coral biodiversity may ultimately have an equal, or greater, impact on reef-associated fish communities.

  5. How does the proliferation of the coral-killing sponge Terpios hoshinota affect benthic community structure on coral reefs?

    NASA Astrophysics Data System (ADS)

    Elliott, Jennifer; Patterson, Mark; Summers, Natalie; Miternique, Céline; Montocchio, Emma; Vitry, Eugene

    2016-09-01

    Terpios hoshinota is an encrusting sponge and a fierce space competitor. It kills stony corals by overgrowing them and can impact reefs on the square kilometer scale. We investigated an outbreak of T. hoshinota in 2014 at the island of Mauritius to determine its impacts on coral community structure. Surveys were conducted at the putative outbreak center, an adjacent area, and around the island to determine the extent of spread of the sponge and which organisms it impacted. In addition, quadrats were monitored for 5 months (July-December) to measure the spreading rates of T. hoshinota and Acropora austera in areas both with and without T. hoshinota. The photosynthetic capabilities of T. hoshinota and A. austera were also measured. Terpios hoshinota was well established, covering 13% of an estimated 416 m2 of available hard coral substrate at the putative outbreak center, and 10% of an estimated 588 m2 of available hard coral substrate at the adjacent area. The sponge was observed at only one other site around Mauritius. Terpios hoshinota and A. austera increased their planar areas by 26.9 and 13.9%, respectively, over five months. No new colonies of T. hoshinota were recorded in adjacent sponge-free control areas, suggesting that sponge recruitment is very low during austral winter and spring. The sponge was observed to overgrow five stony corals; however, it showed a preference for branching corals, especially A. austera. This is the first time that a statistically significant coral substrate preference by T. hoshinota has been reported. Terpios hoshinota also had a significantly higher photosynthetic capacity than A. austera at irradiance >500 μmol photons m-2 s-1, a possible explanation for its high spreading rate. We discuss the long-term implications of the proliferation of T. hoshinota on community structure and dynamics of our study site.

  6. Long-term dynamics of a high-latitude coral reef community at Sodwana Bay, South Africa

    NASA Astrophysics Data System (ADS)

    Porter, S. N.; Schleyer, M. H.

    2017-06-01

    Dynamics in reef cover, mortality and recruitment success of a high-latitude coral community in South Africa were studied over 20 yr with the aim to detect the effects of climate change. Coral communities at this locality are the southernmost on the African continent, non-accretive, attain high biodiversity and are dominated by soft corals. Long-term monitoring within fixed transects on representative reef was initiated in 1993 and has entailed annual photo-quadrat surveys and hourly temperature logging. Although sea temperatures rose by 0.15 °C p.a. at the site up to 2000, they have subsequently been decreasing, and the overall trend based on monthly means has been a significant decrease of 0.03 °C p.a. Despite this, minor bleaching was encountered in the region during the 1998 El Niño-Southern Oscillation event, again in the summer of 2000/2001 and in 2005. A significant decreasing trend of 0.95% p.a. in soft coral cover has been evident throughout the monitoring period, attributable to significant decreases in Sinularia and Lobophytum spp. cover. In contrast, hard coral cover gradually and significantly increased up to 2005, this being largely attributable to increases in cover by Acropora spp. Recruitment success and mortality of both soft and hard corals has displayed high inter-annual variability with increasing but non-significant trends in the last 5 yr. The reduction in soft coral cover has been more consistent and greater than that of hard corals, but it is difficult at this stage to attribute this to changes in water quality, acidification-linked accretion or temperature.

  7. Changes in coral-associated microbial communities during a bleaching event.

    PubMed

    Bourne, David; Iida, Yuki; Uthicke, Sven; Smith-Keune, Carolyn

    2008-04-01

    Environmental stressors such as increased sea surface temperatures are well-known for contributing to coral bleaching; however, the effect of increased temperatures and subsequent bleaching on coral-associated microbial communities is poorly understood. Colonies of the hard coral Acropora millepora were tagged on a reef flat off Magnetic Island (Great Barrier Reef) and surveyed over 2.5 years, which included a severe bleaching event in January/February 2002. Daily average water temperatures exceeded the previous 10-year average by more than 1 degrees C for extended periods with field-based visual surveys recording all tagged colonies displaying signs of bleaching. During the bleaching period, direct counts of coral zooxanthellae densities decreased by approximately 64%, before recovery to pre-bleaching levels after the thermal stress event. A subset of three tagged coral colonies were sampled through the bleaching event and changes in the microbial community elucidated. Denaturing gradient gel electrophoresis (DGGE) analysis demonstrated conserved bacterial banding profiles between the three coral colonies, confirming previous studies highlighting specific microbial associations. As coral colonies bleached, the microbial community shifted and redundancy analysis (RDA) of DGGE banding patterns revealed a correlation of increasing temperature with the appearance of Vibrio-affiliated sequences. Interestingly, this shift to a Vibrio-dominated community commenced prior to visual signs of bleaching. Clone libraries hybridized with Vibrio-specific oligonucleotide probes confirmed an increase in the fraction of Vibrio-affiliated clones during the bleaching period. Post bleaching, the coral microbial associations again shifted, returning to a profile similar to the fingerprints prior to bleaching. This provided further evidence for corals selecting and shaping their microbial partners. For non-bleached samples, a close association with Spongiobacter-related sequences were

  8. Functionally diverse reef-fish communities ameliorate coral disease.

    PubMed

    Raymundo, Laurie J; Halford, Andrew R; Maypa, Aileen P; Kerr, Alexander M

    2009-10-06

    Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs.

  9. Community change and evidence for variable warm-water temperature adaptation of corals in Northern Male Atoll, Maldives.

    PubMed

    McClanahan, T R; Muthiga, N A

    2014-03-15

    This study provides a descriptive analysis of the North Male, Maldives seven years after the 1998 bleaching disturbance to determine the state of the coral community composition, the recruitment community, evidence for recovery, and adaptation to thermal stress. Overall, hard coral cover recovered at a rate commonly reported in the literature but with high spatial variability and shifts in taxonomic composition. Massive Porites, Pavona, Synarea, and Goniopora were unusually common in both the recruit and adult communities. Coral recruitment was low and some coral taxa, namely Tubipora, Seriatopora, and Stylophora, were rarer than expected. A study of the bleaching response to a thermal anomaly in 2005 indicated that some taxa, including Leptoria, Platygyra, Favites, Fungia, Hydnophora, and Galaxea astreata, bleached as predicted while others, including Acropora, Pocillopora, branching Porites, Montipora, Stylophora, and Alveopora, bleached less than predicted. This indicates variable-adaptation potentials among the taxa and considerable potential for ecological reorganization of the coral community. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. 43 CFR 9266.4 - Viable coral communities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Viable coral communities. 9266.4 Section... § 9266.4 Viable coral communities. (a) Requirement for a permit. No person shall engage in any operation which directly causes damage or injury to a viable coral community that is located on the Outer...

  11. 43 CFR 9266.4 - Viable coral communities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Viable coral communities. 9266.4 Section... § 9266.4 Viable coral communities. (a) Requirement for a permit. No person shall engage in any operation which directly causes damage or injury to a viable coral community that is located on the Outer...

  12. 43 CFR 9266.4 - Viable coral communities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Viable coral communities. 9266.4 Section... § 9266.4 Viable coral communities. (a) Requirement for a permit. No person shall engage in any operation which directly causes damage or injury to a viable coral community that is located on the Outer...

  13. 43 CFR 9266.4 - Viable coral communities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Viable coral communities. 9266.4 Section... § 9266.4 Viable coral communities. (a) Requirement for a permit. No person shall engage in any operation which directly causes damage or injury to a viable coral community that is located on the Outer...

  14. Benthic communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns.

    PubMed

    Williams, Gareth J; Smith, Jennifer E; Conklin, Eric J; Gove, Jamison M; Sala, Enric; Sandin, Stuart A

    2013-01-01

    Kingman Reef and Palmyra Atoll in the central Pacific are among the most remote coral reefs on the planet. Here we describe spatial patterns in their benthic communities across reef habitats and depths, and consider these in the context of oceanographic gradients. Benthic communities at both locations were dominated by calcifying organisms (54-86% cover), namely hard corals (20-74%) and crustose coralline algae (CCA) (10-36%). While turf algae were relatively common at both locations (8-22%), larger fleshy macroalgae were virtually absent at Kingman (<1%) and rare at Palmyra (0.7-9.3%). Hard coral cover was higher, but with low diversity, in more sheltered habitats such as Palmyra's backreef and Kingman's patch reefs. Almost exclusive dominance by slow-growing Porites on Kingman's patch reefs provides indirect evidence of competitive exclusion, probably late in a successional sequence. In contrast, the more exposed forereef habitats at both Kingman and Palmyra had higher coral diversity and were characterized by fast-growing corals (e.g., Acropora and Pocillopora), indicative of more dynamic environments. In general at both locations, soft coral cover increased with depth, likely reflecting increasingly efficient heterotrophic abilities. CCA and fleshy macroalgae cover decreased with depth, likely due to reduced light. Cover of other calcified macroalgae, predominantly Halimeda, increased with depth. This likely reflects the ability of many calcifying macroalgae to efficiently harvest light at deeper depths, in combination with an increased nutrient supply from upwelling promoting growth. At Palmyra, patterns of hard coral cover with depth were inconsistent, but cover peaked at mid-depths at Kingman. On Kingman's forereef, benthic community composition was strongly related to wave energy, with hard coral cover decreasing and becoming more spatially clustered with increased wave energy, likely as a result of physical damage leading to patches of coral in localized

  15. Benthic communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns

    PubMed Central

    Conklin, Eric J.; Gove, Jamison M.; Sala, Enric; Sandin, Stuart A.

    2013-01-01

    Kingman Reef and Palmyra Atoll in the central Pacific are among the most remote coral reefs on the planet. Here we describe spatial patterns in their benthic communities across reef habitats and depths, and consider these in the context of oceanographic gradients. Benthic communities at both locations were dominated by calcifying organisms (54–86% cover), namely hard corals (20–74%) and crustose coralline algae (CCA) (10–36%). While turf algae were relatively common at both locations (8–22%), larger fleshy macroalgae were virtually absent at Kingman (<1%) and rare at Palmyra (0.7–9.3%). Hard coral cover was higher, but with low diversity, in more sheltered habitats such as Palmyra’s backreef and Kingman’s patch reefs. Almost exclusive dominance by slow-growing Porites on Kingman’s patch reefs provides indirect evidence of competitive exclusion, probably late in a successional sequence. In contrast, the more exposed forereef habitats at both Kingman and Palmyra had higher coral diversity and were characterized by fast-growing corals (e.g., Acropora and Pocillopora), indicative of more dynamic environments. In general at both locations, soft coral cover increased with depth, likely reflecting increasingly efficient heterotrophic abilities. CCA and fleshy macroalgae cover decreased with depth, likely due to reduced light. Cover of other calcified macroalgae, predominantly Halimeda, increased with depth. This likely reflects the ability of many calcifying macroalgae to efficiently harvest light at deeper depths, in combination with an increased nutrient supply from upwelling promoting growth. At Palmyra, patterns of hard coral cover with depth were inconsistent, but cover peaked at mid-depths at Kingman. On Kingman’s forereef, benthic community composition was strongly related to wave energy, with hard coral cover decreasing and becoming more spatially clustered with increased wave energy, likely as a result of physical damage leading to patches of

  16. Molluscan assemblages on coral reefs and associated hard substrata in the northern Red Sea

    NASA Astrophysics Data System (ADS)

    Zuschin, M.; Hohenegger, J.; Steininger, F.

    2001-09-01

    Information on spatial variability and distribution patterns of organisms in coral reef environments is necessary to evaluate the increasing anthropogenic disturbance of marine environments (Richmond 1993; Wilkinson 1993; Dayton 1994). Therefore different types of subtidal, reef-associated hard substrata (reef flats, reef slopes, coral carpets, coral patches, rock grounds), each with different coral associations, were investigated to determine the distribution pattern of molluscs and their life habits (feeding strategies and substrate relations). The molluscs were strongly dominated by taxa with distinct relations to corals, and five assemblages were differentiated. The Dendropoma maxima assemblage on reef flats is a discrete entity, strongly dominated by this encrusting and suspension-feeding gastropod. All other assemblages are arranged along a substrate gradient of changing coral associations and potential molluscan habitats. The Coralliophila neritoidea- Barbatia foliata assemblage depends on the presence of Porites and shows a dominance of gastropods feeding on corals and of bivalves associated with living corals. The Chamoidea- Cerithium spp. assemblage on rock grounds is strongly dominated by encrusting bivalves. The Drupella cornus-Pteriidae assemblage occurs on Millepora- Acropora reef slopes and is strongly dominated by bivalves associated with living corals. The Barbatia setigera- Ctenoides annulata assemblage includes a broad variety of taxa, molluscan life habits and bottom types, but occurs mainly on faviid carpets and is transitional among the other three assemblages. A predicted degradation of coral coverage to rock bottoms due to increasing eutrophication and physical damage in the study area (Riegl and Piller 2000) will result in a loss of coral-associated molluscs in favor of bivalve crevice dwellers in dead coral heads and of encrusters on dead hard substrata.

  17. Ocean acidification accelerates dissolution of experimental coral reef communities

    NASA Astrophysics Data System (ADS)

    Comeau, S.; Carpenter, R. C.; Lantz, C. A.; Edmunds, P. J.

    2015-01-01

    Ocean acidification (OA) poses a severe threat to tropical coral reefs, yet much of what is know about these effects comes from individual corals and algae incubated in isolation under high pCO2. Studies of similar effects on coral reef communities are scarce. To investigate the response of coral reef communities to OA, we used large outdoor flumes in which communities composed of calcified algae, corals, and sediment were combined to match the percentage cover of benthic communities in the shallow back reef of Moorea, French Polynesia. Reef communities in the flumes were exposed to ambient (~ 400 μatm) and high pCO2 (~ 1300 μatm) for 8 weeks, and calcification rates measured for the constructed communities including the sediments. Community calcification was reduced by 59% under high pCO2, with sediment dissolution explaining ~ 50% of this decrease; net calcification of corals and calcified algae remained positive but was reduced by 29% under elevated pCO2. These results show that, despite the capacity of coral reef calcifiers to maintain positive net accretion of calcium carbonate under OA conditions, reef communities might transition to net dissolution as pCO2 increases, particularly at night, due to enhanced sediment dissolution.

  18. Ocean acidification accelerates dissolution of experimental coral reef communities

    NASA Astrophysics Data System (ADS)

    Comeau, S.; Carpenter, R. C.; Lantz, C. A.; Edmunds, P. J.

    2014-08-01

    Ocean acidification (OA) poses a severe threat to tropical coral reefs, yet much of what is know about these effects comes from individual corals and algae incubated in isolation under high pCO2. Studies of similar effects on coral reef communities are scarce. To investigate the response of coral reef communities to OA, we used large outdoor flumes in which communities composed of calcified algae, corals, and sediment were combined to match the percentage cover of benthic communities in the shallow back reef of Moorea, French Polynesia. Reef communities in the flumes were exposed to ambient (~400 μatm) and high pCO2 (~1300 μatm) for 8 weeks, and calcification rates measured for the constructed communities including the sediments. Community calcification was depressed 59% under high pCO2, with sediment dissolution explaining ~50% of this decrease; net calcification of corals and calcified algae remained positive, but was reduced 29% under elevated pCO2. These results show that despite the capacity of coral reef calcifiers to maintain positive net accretion of calcium carbonate under OA conditions, reef communities might switch to net dissolution as pCO2 increases, particularly at night, due to enhanced sediment dissolution.

  19. An Overview of Coral Community Development on Offshore Platforms in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Sammarco, P. W.

    2016-02-01

    Oil platforms in the N. Gulf of Mexico (GOM) number 1,750, providing hard substratum for settlement of marine fauna, including corals, where little existed in shallow water prior to the 1940s. The introduction of hard substratum has facilitated the biogeographic expansion of Caribbean reef corals. We surveyed scleractinian corals, hermatypic and ahermatypic, on 48 platforms around the Flower Garden Banks (FGB) and across the continental shelf, from Corpus Christi, Texas to Mobile, Alabama, USA. We also assessed coral populations on platforms and the FGB for genetic affinities using AFLPs. The western limit for hermatypes was the shelf edge off Corpus Christi. The highest hermatypic densities occurred at the shelf edge, 200 km from shore in the north-central GOM. Mobile was the eastern limit for some hermatypic corals. Ahermatypes (i.e., Tubastraea coccinea, Oculina diffusa, Phyllangia americana) were absent inshore and in the north-central GOM. Species richness of hermatypic corals peaked near the FGB. Genetic analyses revealed high self-recognition and site fidelity on the platforms and the FGB in Madracis decactis, particularly in the eastern GOM. Platform populations exhibited a strong genetic affinity to those on the FGB, indicating that the FGB are the likely larval source for many corals on the platforms. There was little or no genetic affinity of coral populations across the mouth of the Mississippi River, although in T. coccinea (invasive species), cross-recognition between populations was higher between platforms on a given side. The Mississippi is a strong geographic barrier to east-west dispersal. Brooders were found to be more effective at colonizing patchy habitats at this meso-scale than broadcasters (Diploria strigosa and Montastraea cavernosa). Broadcaster recruits were rarely found, indicating less effective dispersal capabilities. Oil/gas platforms have facilitated the development of coral communities across the northern GOM.

  20. Regional hard coral distribution within geomorphic and reef flat ecological zones determined by satellite imagery of the Xisha Islands, South China Sea

    NASA Astrophysics Data System (ADS)

    Zuo, Xiuling; Su, Fenzhen; Zhao, Huanting; Zhang, Junjue; Wang, Qi; Wu, Di

    2017-05-01

    Coral reefs in the Xisha Islands (also known as the Paracel Islands in English), South China Sea, have experienced dramatic declines in coral cover. However, the current regional scale hard coral distribution of geomorphic and ecological zones, essential for reefs management in the context of global warming and ocean acidification, is not well documented. We analyzed data from field surveys, Landsat-8 and GF-1 images to map the distribution of hard coral within geomorphic zones and reef flat ecological zones. In situ surveys conducted in June 2014 on nine reefs provided a complete picture of reef status with regard to live coral diversity, evenness of coral cover and reef health (live versus dead cover) for the Xisha Islands. Mean coral cover was 12.5% in 2014 and damaged reefs seemed to show signs of recovery. Coral cover in sheltered habitats such as lagoon patch reefs and biotic dense zones of reef flats was higher, but there were large regional differences and low diversity. In contrast, the more exposed reef slopes had high coral diversity, along with high and more equal distributions of coral cover. Mean hard coral cover of other zones was <10%. The total Xisha reef system was estimated to cover 1 060 km2, and the emergent reefs covered 787 m2. Hard corals of emergent reefs were considered to cover 97 km2. The biotic dense zone of the reef flat was a very common zone on all simple atolls, especially the broader northern reef flats. The total cover of live and dead coral can reach above 70% in this zone, showing an equilibrium between live and dead coral as opposed to coral and algae. This information regarding the spatial distribution of hard coral can support and inform the management of Xisha reef ecosystems.

  1. Life histories predict coral community disassembly under multiple stressors.

    PubMed

    Darling, Emily S; McClanahan, Timothy R; Côté, Isabelle M

    2013-06-01

    Climate change is reshaping biological communities against a background of existing human pressure. Evaluating the impacts of multiple stressors on community dynamics can be particularly challenging in species-rich ecosystems, such as coral reefs. Here, we investigate whether life-history strategies and cotolerance to different stressors can predict community responses to fishing and temperature-driven bleaching using a 20-year time series of coral assemblages in Kenya. We found that the initial life-history composition of coral taxa largely determined the impacts of bleaching and coral loss. Prior to the 1998 bleaching event, coral assemblages within no-take marine reserves were composed of three distinct life histories - competitive, stress-tolerant and weedy- and exhibited strong declines following bleaching with limited subsequent recovery. In contrast, fished reefs had lower coral cover, fewer genera and were composed of stress-tolerant and weedy corals that were less affected by bleaching over the long term. Despite these general patterns, we found limited evidence for cotolerance as coral genera and life histories were variable in their sensitivities to fishing and bleaching. Overall, fishing and bleaching have reduced coral diversity and led to altered coral communities of 'survivor' species with stress-tolerant and weedy life histories. Our findings are consistent with expectations that climate change interacting with existing human pressure will result in the loss of coral diversity and critical reef habitat. © 2013 Blackwell Publishing Ltd.

  2. [Changes in fish communities of coral reefs at Sabana-Camagüey Archipelago, Cuba].

    PubMed

    Claro, Rodolfo; Cantelar, Karel; Amargós, Fabián Pina; García-Arteaga, Juan P

    2007-06-01

    A comparison of fish community structure in the Sabana-Camagüey Archipelago (1988-1989 and 2000) using visual census surveys (eight belt transects 2x50 m in each site) suggests a notable decrease on species richness, and a two thirds reduction in fish density and biomass on coral reefs. This decrease in fish populations may be related to the alarming decrease of scleractinian coral cover, and an enormous proliferation of algae, which currently covers 70-80% of the hard substrate, impeding the recovery of corals and other benthic organisms. High coral mortalities occurred between the study periods, which correlate with the high temperatures caused by the ENSO events of 1995, 1997 and 1998. These events caused massive bleaching of corals and subsequent algae overgrowth. Evidence of nutrient enrichment from the inner lagoons and overfishing are also present. Collectively, these effects have provoked a marked degradation of reef habitats. These changes appear to have affected the availability of refuges and food for fishes, and may be constraining individual growth potential and population size.

  3. Coral community response to bleaching on a highly disturbed reef

    PubMed Central

    Guest, J. R.; Low, J.; Tun, K.; Wilson, B.; Ng, C.; Raingeard, D.; Ulstrup, K. E.; Tanzil, J. T. I.; Todd, P. A.; Toh, T. C.; McDougald, D.; Chou, L. M.; Steinberg, P. D.

    2016-01-01

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress. PMID:26876092

  4. Coral community response to bleaching on a highly disturbed reef.

    PubMed

    Guest, J R; Low, J; Tun, K; Wilson, B; Ng, C; Raingeard, D; Ulstrup, K E; Tanzil, J T I; Todd, P A; Toh, T C; McDougald, D; Chou, L M; Steinberg, P D

    2016-02-15

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress.

  5. Coral community response to bleaching on a highly disturbed reef

    NASA Astrophysics Data System (ADS)

    Guest, J. R.; Low, J.; Tun, K.; Wilson, B.; Ng, C.; Raingeard, D.; Ulstrup, K. E.; Tanzil, J. T. I.; Todd, P. A.; Toh, T. C.; McDougald, D.; Chou, L. M.; Steinberg, P. D.

    2016-02-01

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress.

  6. Lower Mesophotic Coral Communities (60-125 m Depth) of the Northern Great Barrier Reef and Coral Sea

    PubMed Central

    Englebert, Norbert; Bongaerts, Pim; Muir, Paul R.; Hay, Kyra B.; Pichon, Michel; Hoegh-Guldberg, Ove

    2017-01-01

    Mesophotic coral ecosystems in the Indo-Pacific remain relatively unexplored, particularly at lower mesophotic depths (≥60 m), despite their potentially large spatial extent. Here, we used a remotely operated vehicle to conduct a qualitative assessment of the zooxanthellate coral community at lower mesophotic depths (60–125 m) at 10 different locations in the Great Barrier Reef Marine Park and the Coral Sea Commonwealth Marine Reserve. Lower mesophotic coral communities were present at all 10 locations, with zooxanthellate scleractinian corals extending down to ~100 metres on walls and ~125 m on steep slopes. Lower mesophotic coral communities were most diverse in the 60–80 m zone, while at depths of ≥100 m the coral community consisted almost exclusively of the genus Leptoseris. Collections of coral specimens (n = 213) between 60 and 125 m depth confirmed the presence of at least 29 different species belonging to 18 genera, including several potential new species and geographic/depth range extensions. Overall, this study highlights that lower mesophotic coral ecosystems are likely to be ubiquitous features on the outer reefs of the Great Barrier Reef and atolls of the Coral Sea, and harbour a generic and species richness of corals that is much higher than thus far reported. Further research efforts are urgently required to better understand and manage these ecosystems as part of the Great Barrier Reef Marine Park and Coral Sea Commonwealth Marine Reserve. PMID:28146574

  7. Lower Mesophotic Coral Communities (60-125 m Depth) of the Northern Great Barrier Reef and Coral Sea.

    PubMed

    Englebert, Norbert; Bongaerts, Pim; Muir, Paul R; Hay, Kyra B; Pichon, Michel; Hoegh-Guldberg, Ove

    2017-01-01

    Mesophotic coral ecosystems in the Indo-Pacific remain relatively unexplored, particularly at lower mesophotic depths (≥60 m), despite their potentially large spatial extent. Here, we used a remotely operated vehicle to conduct a qualitative assessment of the zooxanthellate coral community at lower mesophotic depths (60-125 m) at 10 different locations in the Great Barrier Reef Marine Park and the Coral Sea Commonwealth Marine Reserve. Lower mesophotic coral communities were present at all 10 locations, with zooxanthellate scleractinian corals extending down to ~100 metres on walls and ~125 m on steep slopes. Lower mesophotic coral communities were most diverse in the 60-80 m zone, while at depths of ≥100 m the coral community consisted almost exclusively of the genus Leptoseris. Collections of coral specimens (n = 213) between 60 and 125 m depth confirmed the presence of at least 29 different species belonging to 18 genera, including several potential new species and geographic/depth range extensions. Overall, this study highlights that lower mesophotic coral ecosystems are likely to be ubiquitous features on the outer reefs of the Great Barrier Reef and atolls of the Coral Sea, and harbour a generic and species richness of corals that is much higher than thus far reported. Further research efforts are urgently required to better understand and manage these ecosystems as part of the Great Barrier Reef Marine Park and Coral Sea Commonwealth Marine Reserve.

  8. Regulation and control of intracellular algae (= zooxanthellae) in hard corals

    PubMed Central

    Jones, R. J.; Yellowlees, D.

    1997-01-01

    To examine algal (= zooxanthellae) regulation and control, and the factors determining algal densities in hard corals, the zooxanthellae mitotic index and release rates were regularly determined in branch tips from a colony of a staghorn coral, Acropora formosa, recovering from a coral 'bleaching' event (the stress-related dissociation of the coral–algal symbiosis). Mathematical models based upon density-dependent decreases in the algal division frequency and increases in algal release rates during the post-bleaching recovery period accurately predict the observed recovery period (ca. 20 weeks). The models suggest that (i) the colony recovered its algal population from the division of the remaining zooxanthellae, and (ii) the continual loss of zooxanthellae significantly slowed the recovery of the coral. Possible reasons for the 'paradoxical' loss of healthy zooxanthellae from the bleached coral are discussed in terms of endodermal processes occurring in the recovering coral and the redistribution of newly formed zooxanthellae to aposymbiotic host cells. At a steady-state algal density of 2.1 x 106 zooxanthellae cm-2 at the end of the recovery period, the zooxanthellae would have to form a double layer of cells in the coral tissues, consistent with microscopic observations. Neighbouring colonies of A. formosa with inherently higher algal densities possess proportionately smaller zooxanthellae. Results suggest that space availability and the size of the algal symbionts determines the algal densities in the coral colonies. The large increases in the algal densities reported in corals exposed to elevated nutrient concentrations (i.e between a two- and five-fold increase in the algal standing stock) are not consistent with this theory. We suggest that increases of this magnitude are a product of the experimental conditions: reasons for this statement are discussed. We propose that the stability of the coral–algal symbiosis under non-stress conditions, and the

  9. Geographical variations in bacterial communities associated with soft coral Scleronephthya gracillimum.

    PubMed

    Woo, Seonock; Yang, Shan-Hua; Chen, Hsing-Ju; Tseng, Yu-Fang; Hwang, Sung-Jin; De Palmas, Stephane; Denis, Vianney; Imahara, Yukimitsu; Iwase, Fumihito; Yum, Seungshic; Tang, Sen-Lin

    2017-01-01

    Environmental impacts can alter relationships between a coral and its symbiotic microbial community. Furthermore, changes in the microbial community associated with increased seawater temperatures can cause opportunistic infections, coral disease and death. Interactions between soft corals and their associated microbes are not well understood. The species Scleronephthya gracillimum is distributed in tropical to temperate zones in coral assemblages along the Kuroshio Current region. In this study we collected S. gracillimum from various sites at different latitudes, and compared composition of their bacterial communities using Next Generation Sequencing. Coral samples from six geographically distinct areas (two sites each in Taiwan, Japan, and Korea) had considerable variation in their associated bacterial communities and diversity. Endozoicimonaceae was the dominant group in corals from Korea and Japan, whereas Mycoplasma was dominant in corals from Taiwan corals. Interestingly, the latter corals had lower relative abundance of Endozoicimonaceae, but greater diversity. These biogeographic differences in bacterial composition may have been due to varying environmental conditions among study locations, or because of host responses to prevailing environmental conditions. This study provided a baseline for future studies of soft coral microbiomes, and assessment of functions of host metabolites and soft coral holobionts.

  10. Geographical variations in bacterial communities associated with soft coral Scleronephthya gracillimum

    PubMed Central

    Chen, Hsing-Ju; Tseng, Yu-Fang; Hwang, Sung-Jin; De Palmas, Stephane; Denis, Vianney; Imahara, Yukimitsu; Iwase, Fumihito; Yum, Seungshic; Tang, Sen-Lin

    2017-01-01

    Environmental impacts can alter relationships between a coral and its symbiotic microbial community. Furthermore, changes in the microbial community associated with increased seawater temperatures can cause opportunistic infections, coral disease and death. Interactions between soft corals and their associated microbes are not well understood. The species Scleronephthya gracillimum is distributed in tropical to temperate zones in coral assemblages along the Kuroshio Current region. In this study we collected S. gracillimum from various sites at different latitudes, and compared composition of their bacterial communities using Next Generation Sequencing. Coral samples from six geographically distinct areas (two sites each in Taiwan, Japan, and Korea) had considerable variation in their associated bacterial communities and diversity. Endozoicimonaceae was the dominant group in corals from Korea and Japan, whereas Mycoplasma was dominant in corals from Taiwan corals. Interestingly, the latter corals had lower relative abundance of Endozoicimonaceae, but greater diversity. These biogeographic differences in bacterial composition may have been due to varying environmental conditions among study locations, or because of host responses to prevailing environmental conditions. This study provided a baseline for future studies of soft coral microbiomes, and assessment of functions of host metabolites and soft coral holobionts. PMID:28859111

  11. Mine waste disposal leads to lower coral cover, reduced species richness and a predominance of simple coral growth forms on a fringing coral reef in Papua New Guinea.

    PubMed

    Haywood, M D E; Dennis, D; Thomson, D P; Pillans, R D

    2016-04-01

    A large gold mine has been operating at the Lihir Island Group, Papua New Guinea since 1997. The mine disposes of waste rock in nearshore waters, impacting nearby coral communities. During 2010, 2012 we conducted photographic surveys at 73 sites within 40 km of the mine to document impacts of mining operations on the hard coral communities. Coral communities close to the mine (∼2 km to the north and south of the mine) were depaurperate, but surprisingly, coral cover and community composition beyond this range appeared to be relatively similar, suggesting that the mine impacts were limited spatially. In particular, we found mining operations have resulted in a significant decrease in coral cover (4.4% 1.48 km from the disposal site c.f. 66.9% 10.36 km from the disposal site), decreased species richness and a predominance of less complex growth forms within ∼2 km to the north and south of the mine waste disposal site. In contrast to the two 'snapshot' surveys of corals performed in 2010 and 2012, long term data (1999-2012) based on visual estimates of coral cover suggested that impacts on coral communities may have been more extensive than this. With global pressures on the world's coral reefs increasing, it is vital that local, direct anthropogenic pressures are reduced, in order to help offset the impacts of climate change, disease and predation. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  12. Analysis of the coral associated bacterial community structures in healthy and diseased corals from off-shore of southern Taiwan.

    PubMed

    Chiou, Shu-Fen; Kuo, Jimmy; Wong, Tit-Yee; Fan, Tung-Yung; Tew, Kwee Siong; Liu, Jong-Kang

    2010-07-01

    The methods of denaturing gradient gel electrophoresis (DGGE) and DNA sequencing were used to analyze the ribotypes of microbial communities associated with corals. Both healthy and diseased coral of different species were collected at three locations off the southern coast of Taiwan. Ribotyping results suggested that the microbial communities were diverse. The microbial community profiles, even among the same species of corals from different geographical locations, differ significantly. The coral-associated bacterial communities contain many bacteria common to the habitants of various invertebrates. However, some bacteria were unexpected. The presence of some unusual species, such as Staphylococcus, Clostridium and Legionella, associated with corals that were likely the results of human activities. Human activities, such as thermal pollution from the nearby nuclear plant, active fishing and tourism industries in the region might have all contributed to the change in bacterial communities and the death of coral colonies around the region.

  13. Biogeography and Change among Regional Coral Communities across the Western Indian Ocean

    PubMed Central

    McClanahan, Timothy R.; Ateweberhan, Mebrahtu; Darling, Emily S.; Graham, Nicholas A. J.; Muthiga, Nyawira A.

    2014-01-01

    Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998. We surveyed 291 coral reef sites in 11 countries and over 30° of latitude between 2004 and 2011 to evaluate variations in coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids, faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral communities. We found strong latitudinal and geographic gradients in coral community structure and composition that supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of resistance to climate disturbances and remains a priority for future regional

  14. Biogeography and change among regional coral communities across the Western Indian Ocean.

    PubMed

    McClanahan, Timothy R; Ateweberhan, Mebrahtu; Darling, Emily S; Graham, Nicholas A J; Muthiga, Nyawira A

    2014-01-01

    Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998. We surveyed 291 coral reef sites in 11 countries and over 30° of latitude between 2004 and 2011 to evaluate variations in coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids, faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral communities. We found strong latitudinal and geographic gradients in coral community structure and composition that supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of resistance to climate disturbances and remains a priority for future regional

  15. Discordant coral-symbiont structuring: factors shaping geographical variation of Symbiodinium communities in a facultative zooxanthellate coral genus, Oculina

    NASA Astrophysics Data System (ADS)

    Leydet, Karine Posbic; Hellberg, Michael E.

    2016-06-01

    Understanding the factors that help shape the association between corals and their algal symbionts, zooxanthellae ( Symbiodinium), is necessary to better understand the functional diversity and acclimatization potential of the coral host. However, most studies focus on tropical zooxanthellate corals and their obligate algal symbionts, thus limiting our full comprehension of coral-algal symbiont associations. Here, we examine algal associations in a facultative zooxanthellate coral. We survey the Symbiodinium communities associated with Oculina corals in the western North Atlantic and the Mediterranean using one clade-level marker ( psbA coding region) and three fine-scale markers ( cp23S- rDNA, b7sym15 flanking region, and b2sym17). We ask whether Oculina spp. harbor geographically different Symbiodinium communities across their geographic range and, if so, whether the host's genetics or habitat differences are correlated with this geographical variation. We found that Oculina corals harbor different Symbiodinium communities across their geographical range. Of the habitat differences (including chlorophyll a concentration and depth), sea surface temperature is better correlated with this geographical variation than the host's genetics, a pattern most evident in the Mediterranean. Our results suggest that although facultative zooxanthellate corals may be less dependent on their algal partners compared to obligate zooxanthellate corals, the Symbiodinium communities that they harbor may nevertheless reflect acclimatization to environmental variation among habitats.

  16. Extreme Longevity in Proteinaceous Deep-Sea Corals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roark, E B; Guilderson, T P; Dunbar, R B

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelrymore » trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.« less

  17. Bacterial community dynamics are linked to patterns of coral heat tolerance

    NASA Astrophysics Data System (ADS)

    Ziegler, Maren; Seneca, Francois O.; Yum, Lauren K.; Palumbi, Stephen R.; Voolstra, Christian R.

    2017-02-01

    Ocean warming threatens corals and the coral reef ecosystem. Nevertheless, corals can be adapted to their thermal environment and inherit heat tolerance across generations. In addition, the diverse microbes that associate with corals have the capacity for more rapid change, potentially aiding the adaptation of long-lived corals. Here, we show that the microbiome of reef corals is different across thermally variable habitats and changes over time when corals are reciprocally transplanted. Exposing these corals to thermal bleaching conditions changes the microbiome for heat-sensitive corals, but not for heat-tolerant corals growing in habitats with natural high heat extremes. Importantly, particular bacterial taxa predict the coral host response in a short-term heat stress experiment. Such associations could result from parallel responses of the coral and the microbial community to living at high natural temperatures. A competing hypothesis is that the microbial community and coral heat tolerance are causally linked.

  18. Resilience of coral-associated bacterial communities exposed to fish farm effluent.

    PubMed

    Garren, Melissa; Raymundo, Laurie; Guest, James; Harvell, C Drew; Azam, Farooq

    2009-10-06

    The coral holobiont includes the coral animal, algal symbionts, and associated microbial community. These microbes help maintain the holobiont homeostasis; thus, sustaining robust mutualistic microbial communities is a fundamental part of long-term coral reef survival. Coastal pollution is one major threat to reefs, and intensive fish farming is a rapidly growing source of this pollution. We investigated the susceptibility and resilience of the bacterial communities associated with a common reef-building coral, Porites cylindrica, to coastal pollution by performing a clonally replicated transplantation experiment in Bolinao, Philippines adjacent to intensive fish farming. Ten fragments from each of four colonies (total of 40 fragments) were followed for 22 days across five sites: a well-flushed reference site (the original fragment source); two sites with low exposure to milkfish (Chanos chanos) aquaculture effluent; and two sites with high exposure. Elevated levels of dissolved organic carbon (DOC), chlorophyll a, total heterotrophic and autotrophic bacteria abundance, virus like particle (VLP) abundances, and culturable Vibrio abundance characterized the high effluent sites. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed rapid, dramatic changes in the coral-associated bacterial communities within five days of high effluent exposure. The community composition on fragments at these high effluent sites shifted towards known human and coral pathogens (i.e. Arcobacter, Fusobacterium, and Desulfovibrio) without the host corals showing signs of disease. The communities shifted back towards their original composition by day 22 without reduction in effluent levels. This study reveals fish farms as a likely source of pathogens with the potential to proliferate on corals and an unexpected short-term resilience of coral-associated bacterial communities to eutrophication pressure. These data highlight a need for

  19. Resilience of Coral-Associated Bacterial Communities Exposed to Fish Farm Effluent

    PubMed Central

    Garren, Melissa; Raymundo, Laurie; Guest, James; Harvell, C. Drew; Azam, Farooq

    2009-01-01

    Background The coral holobiont includes the coral animal, algal symbionts, and associated microbial community. These microbes help maintain the holobiont homeostasis; thus, sustaining robust mutualistic microbial communities is a fundamental part of long-term coral reef survival. Coastal pollution is one major threat to reefs, and intensive fish farming is a rapidly growing source of this pollution. Methodology & Principal Findings We investigated the susceptibility and resilience of the bacterial communities associated with a common reef-building coral, Porites cylindrica, to coastal pollution by performing a clonally replicated transplantation experiment in Bolinao, Philippines adjacent to intensive fish farming. Ten fragments from each of four colonies (total of 40 fragments) were followed for 22 days across five sites: a well-flushed reference site (the original fragment source); two sites with low exposure to milkfish (Chanos chanos) aquaculture effluent; and two sites with high exposure. Elevated levels of dissolved organic carbon (DOC), chlorophyll a, total heterotrophic and autotrophic bacteria abundance, virus like particle (VLP) abundances, and culturable Vibrio abundance characterized the high effluent sites. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed rapid, dramatic changes in the coral-associated bacterial communities within five days of high effluent exposure. The community composition on fragments at these high effluent sites shifted towards known human and coral pathogens (i.e. Arcobacter, Fusobacterium, and Desulfovibrio) without the host corals showing signs of disease. The communities shifted back towards their original composition by day 22 without reduction in effluent levels. Significance This study reveals fish farms as a likely source of pathogens with the potential to proliferate on corals and an unexpected short-term resilience of coral-associated bacterial communities to

  20. Is coral richness related to community resistance to and recovery from disturbance?

    PubMed

    Zhang, Stacy Y; Speare, Kelly E; Long, Zachary T; McKeever, Kimberly A; Gyoerkoe, Megan; Ramus, Aaron P; Mohorn, Zach; Akins, Kelsey L; Hambridge, Sarah M; Graham, Nicholas A J; Nash, Kirsty L; Selig, Elizabeth R; Bruno, John F

    2014-01-01

    More diverse communities are thought to be more stable-the diversity-stability hypothesis-due to increased resistance to and recovery from disturbances. For example, high diversity can make the presence of resilient or fast growing species and key facilitations among species more likely. How natural, geographic biodiversity patterns and changes in biodiversity due to human activities mediate community-level disturbance dynamics is largely unknown, especially in diverse systems. For example, few studies have explored the role of diversity in tropical marine communities, especially at large scales. We tested the diversity-stability hypothesis by asking whether coral richness is related to resistance to and recovery from disturbances including storms, predator outbreaks, and coral bleaching on tropical coral reefs. We synthesized the results of 41 field studies conducted on 82 reefs, documenting changes in coral cover due to disturbance, across a global gradient of coral richness. Our results indicate that coral reefs in more species-rich regions were marginally less resistant to disturbance and did not recover more quickly. Coral community resistance was also highly dependent on pre-disturbance coral cover, probably due in part to the sensitivity of fast-growing and often dominant plating acroporid corals to disturbance. Our results suggest that coral communities in biodiverse regions, such as the western Pacific, may not be more resistant and resilient to natural and anthropogenic disturbances. Further analyses controlling for disturbance intensity and other drivers of coral loss and recovery could improve our understanding of the influence of diversity on community stability in coral reef ecosystems.

  1. An assessment of Qatar's coral communities in a regional context.

    PubMed

    Burt, John A; Smith, Edward G; Warren, Christopher; Dupont, Jennifer

    2016-04-30

    Qatar's once extensive coral communities have undergone considerable change in recent decades. We quantitatively surveyed three coral assemblages in Qatar to assess current status, and compared these against 14 sites in Bahrain and the United Arab Emirates to evaluate Qatar in a larger biogeographic context. Umm Al-Arshan had the highest species richness of 17 sites examined in the southern Arabian Gulf, as well as the highest coral cover and the only Acropora observed on sites in Qatar. Coral cover and richness were more modest at Fuwayrit and Al-Ashat, reflecting greater impacts from earlier stress events. Two distinct communities were identified across the southern Gulf, with Umm Al-Arshan clustering with high-cover, mixed merulinid/poritid assemblages that were less impacted by earlier bleaching and long-term stress, while Fuwayrit and Al-Ashat grouped with a lower-cover, stress-tolerant community characteristic of more extreme environments in the southern Gulf. We recommend implementation of a nation-wide baseline assessment of coral communities to guide development of an MPA network and long-term coral monitoring program for Qatar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization.

    PubMed

    Jones, A M; Berkelmans, R; van Oppen, M J H; Mieog, J C; Sinclair, W

    2008-06-22

    The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of zooxanthellae they harbour and, when multiple types are present, the relative abundance of types can be experimentally manipulated to increase the thermal limits of individual corals. Although the potential exists for this to translate into substantial thermal acclimatization of coral communities, to date there is no evidence to show that this takes place under natural conditions. In this study, we show field evidence of a dramatic change in the symbiont community of Acropora millepora, a common and widespread Indo-Pacific hard coral species, after a natural bleaching event in early 2006 in the Keppel Islands (Great Barrier Reef). Before bleaching, 93.5% (n=460) of the randomly sampled and tagged colonies predominantly harboured the thermally sensitive Symbiodinium type C2, while the remainder harboured a tolerant Symbiodinium type belonging to clade D or mixtures of C2 and D. After bleaching, 71% of the surviving tagged colonies that were initially C2 predominant changed to D or C1 predominance. Colonies that were originally C2 predominant suffered high mortality (37%) compared with D-predominant colonies (8%). We estimate that just over 18% of the original A. millepora population survived unchanged leaving 29% of the population C2 and 71% D or C1 predominant six months after the bleaching event. This change in the symbiont community structure, while it persists, is likely to have substantially increased the thermal tolerance of this coral population. Understanding the processes that underpin the temporal changes in symbiont communities is key to assessing the acclimatization potential of reef corals.

  3. A quantification of the standing stock of macro-debris in Majuro lagoon and its effect on hard coral communities.

    PubMed

    Richards, Zoe T; Beger, Maria

    2011-08-01

    The accumulation of debris is an insidious problem throughout the world's oceans. Here we document 234.24 items of macro-debris/km2 in the shallow populated parts of Majuro lagoon (Republic of the Marshall Islands) which is the second highest standing stock of macro-debris recorded to date in any benthic marine habitat in the world. The majority of macro-debris was from household sources (78.7%) with the peak abundance recorded in areas of medium affluence. Marine debris causes suffocation, shading, tissue abrasion and mortality of corals and we show a significant negative correlation exists between the level of hard coral cover and coverage of marine debris. Given long decomposition times, even if the input of rubbish to Majuro lagoon is stopped immediately, the standing stock of debris will persist for centuries. Multiple new initiatives are needed to curtail the direct and indirect dumping of waste in Majuro lagoon. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  4. Localised hydrodynamics influence vulnerability of coral communities to environmental disturbances

    NASA Astrophysics Data System (ADS)

    Shedrawi, George; Falter, James L.; Friedman, Kim J.; Lowe, Ryan J.; Pratchett, Morgan S.; Simpson, Christopher J.; Speed, Conrad W.; Wilson, Shaun K.; Zhang, Zhenlin

    2017-09-01

    The movement of water can have a significant influence on the vulnerability of hermatypic corals to environmental disturbances such as cyclone damage, heat stress and anoxia. Here, we explore the relationship between small reef-scale water circulation patterns and measured differences in the abundance, composition and vulnerability of coral assemblages over decades. Changes in coral cover and community structure within Bill's Bay (Ningaloo Reef, Western Australia) over a 22-yr period, during which multiple disturbance events (including mass bleaching, anoxia, and tropical cyclones) have impacted the area, were compared with spatial variation in water residence times (WRT). We found that reef sites associated with longer water residence times (WRT >15 h) experienced higher rates of coral mortality during acute environmental disturbances compared to reef sites with shorter WRT. Shifts in coral community composition from acroporid to faviid-dominated assemblages were also more prominent at sites with long WRT compared to reef sites with shorter WRT, although shifts in community composition were also observed at sites close to shore. Interestingly, these same long-WRT sites also tended to have the fastest recovery rates so that coral cover was returned to original levels of approximately 20% over two decades. This study provides empirical evidence that spatial patterns in water circulation and flushing can influence the resilience of coral communities, thus identifying areas sensitive to emerging threats associated with global climate change.

  5. A comparison of proxy performance in coral biodiversity monitoring

    NASA Astrophysics Data System (ADS)

    Richards, Zoe T.

    2013-03-01

    The productivity and health of coral reef habitat is diminishing worldwide; however, the effect that habitat declines have on coral reef biodiversity is not known. Logistical and financial constraints mean that surveys of hard coral communities rarely collect data at the species level; hence it is important to know if there are proxy metrics that can reliably predict biodiversity. Here, the performances of six proxy metrics are compared using regression analyses on survey data from a location in the northern Great Barrier Reef. Results suggest generic richness is a strong explanatory variable for spatial patterns in species richness (explaining 82 % of the variation when measured on a belt transect). The most commonly used metric of reef health, percentage live coral cover, is not positively or linearly related to hard coral species richness. This result raises doubt as to whether management actions based on such reefscape information will be effective for the conservation of coral biodiversity.

  6. Gross and microscopic pathology of hard and soft corals in New Caledonia

    USGS Publications Warehouse

    Work, Thierry M.; Aeby, Greta S.; Lasne, Gregory; Tribollet, Aline

    2014-01-01

    We surveyed the reefs of Grande Terre, New Caledonia, for coral diseases in 2010 and 2013. Lesions encountered in hard and soft corals were systematically described at the gross and microscopic level. We sampled paired and normal tissues from 101 and 65 colonies in 2010 and 2013, respectively, comprising 51 species of corals from 27 genera. Tissue loss was the most common gross lesion sampled (40%) followed by discoloration (28%), growth anomalies (13%), bleaching (10%), and flatworm infestation (1%). When grouped by gross lesions, the diversity of microscopic lesions as measured by Shannon–Wiener index was highest for tissue loss, followed by discoloration, bleaching, and growth anomaly. Our findings document an extension of the range of certain diseases such as Porites trematodiasis and endolithic hypermycosis (dark spots) to the Western Pacific as well as the presence of a putative cnidarian endosymbiont. We also expand the range of species infected by cell-associated microbial aggregates, and confirm the trend that these aggregates predominate in dominant genera of corals in the Indo-Pacific. This study highlights the importance of including histopathology as an integral component of baseline coral disease surveys, because a given gross lesion might be associated with multiple potential causative agents.

  7. A microsampling method for genotyping coral symbionts

    NASA Astrophysics Data System (ADS)

    Kemp, D. W.; Fitt, W. K.; Schmidt, G. W.

    2008-06-01

    Genotypic characterization of Symbiodinium symbionts in hard corals has routinely involved coring, or the removal of branches or a piece of the coral colony. These methods can potentially underestimate the complexity of the Symbiodinium community structure and may produce lesions. This study demonstrates that microscale sampling of individual coral polyps provided sufficient DNA for identifying zooxanthellae clades by RFLP analyses, and subclades through the use of PCR amplification of the ITS-2 region of rDNA and denaturing-gradient gel electrophoresis. Using this technique it was possible to detect distinct ITS-2 types of Symbiodinium from two or three adjacent coral polyps. These methods can be used to intensely sample coral-symbiont population/communities while causing minimal damage. The effectiveness and fine scale capabilities of these methods were demonstrated by sampling and identifying phylotypes of Symbiodinium clades A, B, and C that co-reside within a single Montastraea faveolata colony.

  8. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities.

    PubMed

    Leal, Isabela Carolina Silva; de Araújo, Maria Elisabeth; da Cunha, Simone Rabelo; Pereira, Pedro Henrique Cipresso

    2015-07-01

    Branching hydrocorals from the genus Millepora play an important ecological role in South Atlantic reefs, where branching scleractinian corals are absent. Previous studies have shown a high proportion of reef fish species using branching fire-coral colonies as shelter, breeding, and feeding sites. However, the effects of Millepora spp. colony size and how the agonistic behaviour of a competitive damselfish affect the associated reef fish community are still unknown. The present study examined how fire-coral colony volume and the presence of a highly territorial and aggressive damselfish (Brazilian endemic Stegastes fuscus) affects the reef fish community associated with the fire-coral Millepora alcicornis. M. alcicornis colonies were surveyed from September 2012 to April 2013 at Tamandaré Reefs off Northeast Brazil. Our results show that the abundance and richness of coral associated fish was positively correlated with M. alcicornis coral colony volume. Additionally, behaviour of S. fuscus, the most abundant reef fish species found associated with fire-coral colonies (almost 57% of the fish community), was also influenced by fire-coral colony volume. There was a clear trend of increased agonistic behaviour and feeding on coral polyps as colony volume increased. This trend was reversed for the non-occupational swimming category, which decreased as M. alcicornis colony volume increased. Behavioural ontogenetic changes were also detected for S. fuscus individuals. Juveniles mainly showed two distinct behaviours: sheltered on coral branches and feeding on coral polyps. In contrast, adults presented greater equitability among the behavioural categories, mostly non-occupational swimming around coral colonies and agonistic behaviour. Lastly, S. fuscus individuals actively defended fire-coral colonies from intruders. A large number of agonistic interactions occurred against potential food competitors, which were mainly roving herbivores, omnivores, and sessile

  9. Skeletal records of community-level bleaching in Porites corals from Palau

    NASA Astrophysics Data System (ADS)

    Barkley, Hannah C.; Cohen, Anne L.

    2016-12-01

    Tropical Pacific sea surface temperature is projected to rise an additional 2-3 °C by the end of this century, driving an increase in the frequency and intensity of coral bleaching. With significant global coral reef cover already lost due to bleaching-induced mortality, efforts are underway to identify thermally tolerant coral communities that might survive projected warming. Massive, long-lived corals accrete skeletal bands of anomalously high density in response to episodes of thermal stress. These "stress bands" are potentially valuable proxies for thermal tolerance, but to date their application to questions of community bleaching history has been limited. Ecological surveys recorded bleaching of coral communities across the Palau archipelago during the 1998 and 2010 warm events. Between 2011 and 2015, we extracted skeletal cores from living Porites colonies at 10 sites spanning barrier reef and lagoon environments and quantified the proportion of stress bands present in each population during bleaching years. Across Palau, the prevalence of stress bands tracked the severity of thermal stress, with more stress bands occurring in 1998 (degree heating weeks = 13.57 °C-week) than during the less severe 2010 event (degree heating weeks = 4.86 °C-week). Stress band prevalence also varied by reef type, as more corals on the exposed barrier reef formed stress bands than did corals from sheltered lagoon environments. Comparison of Porites stress band prevalence with bleaching survey data revealed a strong correlation between percent community bleaching and the proportion of colonies with stress bands in each year. Conversely, annual calcification rates did not decline consistently during bleaching years nor did annually resolved calcification histories always track interannual variability in temperature. Our data suggest that stress bands in massive corals contain valuable information about spatial and temporal trends in coral reef bleaching and can aid in

  10. Exploration of Fungal Association From Hard Coral Against Pathogen MDR Staphylococcus haemolyticus

    NASA Astrophysics Data System (ADS)

    Cristianawati, O.; Radjasa, O. K.; Sabdono, A.; Trianto, A.; Sabdaningsih, A.; Sibero, M. T.; Nuryadi, H.

    2017-02-01

    Staphylococcus haemolyticus are opportunistic bacteria and as the second leading cause of nosocomial infections. It is a disease causing septicemia, peritonitis, otitis, and urinary tract infections and infections of the eye. It also a phenotype resistant to multiple antibiotics commercial. There is now an urgency to find an alternative antibiotics to combat this bacteria. It has been widely reported that many bioactive marine natural products from marine invertebrate have striking similarities to metabolites of their associated microorganisms including fungi. Hard coral associated microorganisms are among of the most interesting and promising marine natural product sources, which produce with various biological activities. The proposed work focused on the discovery of bioactive compounds and also estimated the phylogenetic diversity from fungal association of hard coral against pathogen MDR Staphylococcus haemolyticus. A total of 32 fungal association, FHP 7 which were isolated from Favia sp. capable of inhibiting the growth MDR. Molecular identification based on 18S rRNA gene sequences revealed that the active fungal association belonged 100% to the members from one of the genera Trichoderma longibrachiatum. Accession Number LC185084.1.

  11. Footprint of Deepwater Horizon blowout impact to deep-water coral communities

    PubMed Central

    Fisher, Charles R.; Hsing, Pen-Yuan; Kaiser, Carl L.; Yoerger, Dana R.; Roberts, Harry H.; Shedd, William W.; Cordes, Erik E.; Shank, Timothy M.; Berlet, Samantha P.; Saunders, Miles G.; Larcom, Elizabeth A.; Brooks, James M.

    2014-01-01

    On April 20, 2010, the Deepwater Horizon (DWH) blowout occurred, releasing more oil than any accidental spill in history. Oil release continued for 87 d and much of the oil and gas remained in, or returned to, the deep sea. A coral community significantly impacted by the spill was discovered in late 2010 at 1,370 m depth. Here we describe the discovery of five previously unknown coral communities near the Macondo wellhead and show that at least two additional coral communities were impacted by the spill. Although the oil-containing flocullent material that was present on corals when the first impacted community was discovered was largely gone, a characteristic patchy covering of hydrozoans on dead portions of the skeleton allowed recognition of impacted colonies at the more recently discovered sites. One of these communities was 6 km south of the Macondo wellhead and over 90% of the corals present showed the characteristic signs of recent impact. The other community, 22 km southeast of the wellhead between 1,850 and 1,950 m depth, was more lightly impacted. However, the discovery of this site considerably extends the distance from Macondo and depth range of significant impact to benthic macrofaunal communities. We also show that most known deep-water coral communities in the Gulf of Mexico do not appear to have been acutely impacted by the spill, although two of the newly discovered communities near the wellhead apparently not impacted by the spill have been impacted by deep-sea fishing operations. PMID:25071200

  12. Coral communities of the remote atoll reefs in the Nansha Islands, southern South China Sea.

    PubMed

    Zhao, M X; Yu, K F; Shi, Q; Chen, T R; Zhang, H L; Chen, T G

    2013-09-01

    During the months of May and June in the year 2007, a survey was conducted regarding coral reef communities in the remote atolls (Zhubi Reef and Meiji Reef) of Nansha Islands, southern South China Sea. The goals of the survey were to: (1) for the first time, compile a scleractinian coral check-list; (2) estimate the total richness, coral cover, and growth forms of the community; and (3) describe preliminary patterns of community structure according to geomorphological units. Findings of this survey revealed a total of 120 species of scleractinia belonging to 40 genera, while the average coral cover was 21 %, ranging from less than 10 % to higher than 50 %. Branching and massive corals were also found to be the most important growth forms of the whole coral community, while Acropora, Montipora, and Porites were the three dominant genera in the overall region, with their contributions to total coral cover measuring 21, 22, and 23 %, respectively. Overall, coral communities of the Nansha Islands were in a relative healthy condition with high species diversity and coral cover. Spatial pattern of coral communities existed among various geomorphological units. Mean coral cover was highest in the patch reef within the lagoon, followed by the fore reef slope, reef flat, and lagoon slope. The greatest contributors to total coral cover were branching Acropora (45 %) in the lagoon slope, branching Montipora (44 %) in the reef flat, and massive Porites (51 %) in the patch reef. Coral cover in the fore reef revealed a greater range of genera than in other habitats. The leeward fore reef slope had higher coral cover (> 50 %) when compared with the windward slope (< 10 %). The coral communities of the inner reef flat were characterized by higher coral cover (27 %) and dominant branching Montipora corals, while lower coral cover (4 %) was dominated by Psammocora with massive growth forms on the outer reef flat. Destructive fishing and coral bleaching were two major threats to

  13. Seasonal changes in bacterial communities associated with healthy and diseased Porites coral in southern Taiwan.

    PubMed

    Lin, Chorng-Horng; Chuang, Chih-Hsiang; Twan, Wen-Hung; Chiou, Shu-Fen; Wong, Tit-Yee; Liu, Jong-Kang; Kao, Chyuan-Yao; Kuo, Jimmy

    2016-12-01

    We compared the bacterial communities associated with healthy scleractinian coral Porites sp. with those associated with coral infected with pink spot syndrome harvested during summer and winter from waters off the coast of southern Taiwan. Members of the bacterial community associated with the coral were characterized by means of denaturing gradient gel electrophoresis (DGGE) of a short region of the 16S rRNA gene and clone library analysis. Of 5 different areas of the 16S rRNA gene, we demonstrated that the V3 hypervariable region is most suited to represent the coral-associated bacterial community. The DNA sequences of 26 distinct bands extracted from DGGE gels and 269 sequences of the 16S rRNA gene from clone libraries were determined. We found that the communities present in diseased coral were more heterogeneous than the bacterial communities of uninfected coral. In addition, bacterial communities associated with coral harvested in the summer were more diverse than those associated with coral collected in winter, regardless of the health status of the coral. Our study suggested that the compositions of coral-associated bacteria communities are complex, and the population of bacteria varies greatly between seasons and in coral of differing health status.

  14. Water flow modulates the response of coral reef communities to ocean acidification

    NASA Astrophysics Data System (ADS)

    Comeau, S.; Edmunds, P. J.; Lantz, C. A.; Carpenter, R. C.

    2014-10-01

    By the end of the century coral reefs likely will be affected negatively by ocean acidification (OA), but both the effects of OA on coral communities and the crossed effects of OA with other physical environmental variables are lacking. One of the least considered physical parameters is water flow, which is surprising considering its strong role in modulating the physiology of reef organisms and communities. In the present study, the effects of flow were tested on coral reef communities maintained in outdoor flumes under ambient pCO2 and high pCO2 (1300 μatm). Net calcification of coral communities, including sediments, was affected by both flow and pCO2 with calcification correlated positively with flow under both pCO2 treatments. The effect of flow was less evident for sediments where dissolution exceeded precipitation of calcium carbonate under all flow speeds at high pCO2. For corals and calcifying algae there was a strong flow effect, particularly at high pCO2 where positive net calcification was maintained at night in the high flow treatment. Our results demonstrate the importance of water flow in modulating the coral reef community response to OA and highlight the need to consider this parameter when assessing the effects of OA on coral reefs.

  15. Water flow modulates the response of coral reef communities to ocean acidification.

    PubMed

    Comeau, S; Edmunds, P J; Lantz, C A; Carpenter, R C

    2014-10-20

    By the end of the century coral reefs likely will be affected negatively by ocean acidification (OA), but both the effects of OA on coral communities and the crossed effects of OA with other physical environmental variables are lacking. One of the least considered physical parameters is water flow, which is surprising considering its strong role in modulating the physiology of reef organisms and communities. In the present study, the effects of flow were tested on coral reef communities maintained in outdoor flumes under ambient pCO2 and high pCO2 (1300 μatm). Net calcification of coral communities, including sediments, was affected by both flow and pCO2 with calcification correlated positively with flow under both pCO2 treatments. The effect of flow was less evident for sediments where dissolution exceeded precipitation of calcium carbonate under all flow speeds at high pCO2. For corals and calcifying algae there was a strong flow effect, particularly at high pCO2 where positive net calcification was maintained at night in the high flow treatment. Our results demonstrate the importance of water flow in modulating the coral reef community response to OA and highlight the need to consider this parameter when assessing the effects of OA on coral reefs.

  16. Rapid transition in the structure of a coral reef community: the effects of coral bleaching and physical disturbance.

    PubMed

    Ostrander, G K; Armstrong, K M; Knobbe, E T; Gerace, D; Scully, E P

    2000-05-09

    Coral reef communities are in a state of change throughout their geographical range. Factors contributing to this change include bleaching (the loss of algal symbionts), storm damage, disease, and increasing abundance of macroalgae. An additional factor for Caribbean reefs is the aftereffects of the epizootic that reduced the abundance of the herbivorous sea urchin, Diadema antillarum. Although coral reef communities have undergone phase shifts, there are few studies that document the details of such transitions. We report the results of a 40-month study that documents changes in a Caribbean reef community affected by bleaching, hurricane damage, and an increasing abundance of macroalgae. The study site was in a relatively pristine area of the reef surrounding the island of San Salvador in the Bahamas. Ten transects were sampled every 3-9 months from November 1994 to February 1998. During this period, the corals experienced a massive bleaching event resulting in a significant decline in coral abundance. Algae, especially macroalgae, increased in abundance until they effectively dominated the substrate. The direct impact of Hurricane Lili in October 1996 did not alter the developing community structure and may have facilitated increasing algal abundance. The results of this study document the rapid transition of this reef community from one in which corals and algae were codominant to a community dominated by macroalgae. The relatively brief time period required for this transition illustrates the dynamic nature of reef communities.

  17. Coral recruitment and potential recovery of eutrophied and blast fishing impacted reefs in Spermonde Archipelago, Indonesia.

    PubMed

    Sawall, Yvonne; Jompa, Jamaluddin; Litaay, Magdalena; Maddusila, Andi; Richter, Claudio

    2013-09-15

    Coral recruitment was assessed in highly diverse and economically important Spermonde Archipelago, a reef system subjected to land-based sources of siltation/pollution and destructive fishing, over a period of 2 years. Recruitment on settlement tiles reached up to 705 spat m(-2) yr(-1) and was strongest in the dry season (July-October), except off-shore, where larvae settled earlier. Pocilloporidae dominated near-shore, while a more diverse community of Acroporidae, Poritidae and others settled in the less polluted mid-shelf and off-shore reefs. Non-coral fouling community appeared to hardly influence initial coral settlement on the tiles, although, this does not necessarily infer low coral post-settlement mortality, which may be enhanced at the near- and off-shore reefs as indicated by increased abundances of potential space competitors on natural substrate. Blast fishing showed no local reduction in coral recruitment and live hard coral cover increased in oligotrophic reefs, indicating potential for coral recovery, if managed effectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Rapid change with depth in megabenthic structure-forming communities of the Makapu'u deep-sea coral bed

    NASA Astrophysics Data System (ADS)

    Long, Dustin J.; Baco, Amy R.

    2014-01-01

    Seamounts are largely unexplored undersea mountains rising abruptly from the ocean floor, which can support an increased abundance and diversity of organisms. Deep-sea corals are important benthic structure-formers on current-swept hard substrates in these habitats. While depth is emerging as a factor structuring the fauna of seamounts on a large spatial scale, most work addressing deep-sea coral and seamount community structure has not considered the role of small-scale variation in species distributions. Video from six ROV dives over a depth range of ~320-530 m were analyzed to assess the diversity and density of benthic megafaunal invertebrates across the Makapu'u deep-sea coral bed, offshore of Oahu, Hawaii. At the same time, the physical environment along the dive track was surveyed to relate biotic patterns with abiotic variables including depth, aspect, rugosity, substrate, slope and relief to test the factors structuring community assemblages. Despite the narrow range examined, depth was found to be the strongest structuring gradient, and six unique macrobenthic communities were found, with a 93% faunal dissimilarity over the depth surveyed. Relief, rugosity and slope were also factors in the final model. Alcyonacean octocorals were the dominant macrofaunal invertebrates at all but the deepest depth zone. The commercially harvested precious coral C. secundum was the dominant species at depths 370-470 m, with a distribution that is on average deeper than similar areas. This may be artificial due to the past harvesting of this species on the shallower portion of its range. Primnoid octocorals were the most abundant octocoral family overall. This work yields new insight on the spatial ecology of seamounts, pointing out that community changes can occur over narrow depth ranges and that communities can be structured by small-scale physiography.

  19. Monitoring of coastal coral reefs near Dahab (Gulf of Aqaba, Red Sea) indicates local eutrophication as potential cause for change in benthic communities.

    PubMed

    Naumann, Malik S; Bednarz, Vanessa N; Ferse, Sebastian C A; Niggl, Wolfgang; Wild, Christian

    2015-02-01

    Coral reef ecosystems fringing the coastline of Dahab (South Sinai, Egypt) have experienced increasing anthropogenic disturbance as an emergent international tourism destination. Previous reports covering tourism-related impacts on coastal environments, particularly mechanical damage and destructive fishing, have highlighted the vital necessity for regular ecosystem monitoring of coral reefs near Dahab. However, a continuous scientific monitoring programme of permanent survey sites has not been established to date. Thus, this study conducted in situ monitoring surveys to investigate spatio-temporal variability of benthic reef communities and selected reef-associated herbivores along with reef health indicator organisms by revisiting three of the locally most frequented dive sites during expeditions in March 2010, September 2011 and February 2013. In addition, inorganic nutrient concentrations in reef-surrounding waters were determined to evaluate bottom-up effects of key environmental parameters on benthic reef community shifts in relation to grazer-induced top-down control. Findings revealed that from 2010 to 2013, live hard coral cover declined significantly by 12 % at the current-sheltered site Three Pools (TP), while showing negative trends for the Blue Hole (BH) and Lighthouse (LH) sites. Hard coral cover decline was significantly and highly correlated to a substantial increase in turf algae cover (up to 57 % at TP) at all sites, replacing hard corals as dominant benthic space occupiers in 2013. These changes were correlated to ambient phosphate and ammonium concentrations that exhibited highest values (0.64 ± 0.07 μmol PO4 (3-) l(-1), 1.05 ± 0.07 μmol NH4 (+) l(-1)) at the degraded site TP. While macroalgae appeared to respond to both bottom-up and top-down factors, change in turf algae was consistent with expected indications for bottom-up control. Temporal variability measured in herbivorous reef fish stocks reflected seasonal impacts by

  20. Distinct Bacterial Communities Associated with Massive and Branching Scleractinian Corals and Potential Linkages to Coral Susceptibility to Thermal or Cold Stress

    PubMed Central

    Liang, Jiayuan; Yu, Kefu; Wang, Yinghui; Huang, Xueyong; Huang, Wen; Qin, Zhenjun; Pan, Ziliang; Yao, Qiucui; Wang, Wenhuan; Wu, Zhengchao

    2017-01-01

    It is well known that different coral species have different tolerances to thermal or cold stress, which is presumed to be related to the density of Symbiodinium. However, the intrinsic factors between stress-tolerant characteristics and coral-associated bacteria are rarely studied. In this study, 16 massive coral and 9 branching coral colonies from 6 families, 10 genera, and 18 species were collected at the same time and location (Xinyi Reef) in the South China Sea to investigate the bacterial communities. The results of an alpha diversity analysis showed that bacterial diversities associated with massive corals were generally higher than those with branching corals at different taxonomic levels (phylum, class, order, and so on). In addition, hierarchical clustering tree and PCoA analyses showed that coral species were clustered into two large groups according to the similarity of bacterial communities. Group I consisted of massive Goniastrea, Plesiastrea, Leptastrea, Platygyra, Echinopora, Porites, and Leptoria, and group II consisted of branching Acropora and Pocillopora. These findings suggested that both massive corals and branching corals have their own preference for the choice of associated bacteria, which may be involved in observed differences in thermal/cold tolerances. Further analysis found that 55 bacterial phyla, including 43 formally described phyla and 12 candidate phyla, were detected in these coral species. Among them, 52 phyla were recovered from the massive coral group, and 46 phyla were recovered from the branching coral group. Formally described coral pathogens have not been detected in these coral species, suggesting that they are less likely to be threatened by disease in this geographic area. This study highlights a clear relationship between the high complexity of bacterial community associated with coral, skeletal morphology of coral and potentially tolerances to thermal or cold stress. PMID:28642738

  1. Changes in coral reef communities across a natural gradient in seawater pH

    PubMed Central

    Barkley, Hannah C.; Cohen, Anne L.; Golbuu, Yimnang; Starczak, Victoria R.; DeCarlo, Thomas M.; Shamberger, Kathryn E. F.

    2015-01-01

    Ocean acidification threatens the survival of coral reef ecosystems worldwide. The negative effects of ocean acidification observed in many laboratory experiments have been seen in studies of naturally low-pH reefs, with little evidence to date for adaptation. Recently, we reported initial data suggesting that low-pH coral communities of the Palau Rock Islands appear healthy despite the extreme conditions in which they live. Here, we build on that observation with a comprehensive statistical analysis of benthic communities across Palau’s natural acidification gradient. Our analysis revealed a shift in coral community composition but no impact of acidification on coral richness, coralline algae abundance, macroalgae cover, coral calcification, or skeletal density. However, coral bioerosion increased 11-fold as pH decreased from the barrier reefs to the Rock Island bays. Indeed, a comparison of the naturally low-pH coral reef systems studied so far revealed increased bioerosion to be the only consistent feature among them, as responses varied across other indices of ecosystem health. Our results imply that whereas community responses may vary, escalation of coral reef bioerosion and acceleration of a shift from net accreting to net eroding reef structures will likely be a global signature of ocean acidification. PMID:26601203

  2. Changes in coral reef communities across a natural gradient in seawater pH.

    PubMed

    Barkley, Hannah C; Cohen, Anne L; Golbuu, Yimnang; Starczak, Victoria R; DeCarlo, Thomas M; Shamberger, Kathryn E F

    2015-06-01

    Ocean acidification threatens the survival of coral reef ecosystems worldwide. The negative effects of ocean acidification observed in many laboratory experiments have been seen in studies of naturally low-pH reefs, with little evidence to date for adaptation. Recently, we reported initial data suggesting that low-pH coral communities of the Palau Rock Islands appear healthy despite the extreme conditions in which they live. Here, we build on that observation with a comprehensive statistical analysis of benthic communities across Palau's natural acidification gradient. Our analysis revealed a shift in coral community composition but no impact of acidification on coral richness, coralline algae abundance, macroalgae cover, coral calcification, or skeletal density. However, coral bioerosion increased 11-fold as pH decreased from the barrier reefs to the Rock Island bays. Indeed, a comparison of the naturally low-pH coral reef systems studied so far revealed increased bioerosion to be the only consistent feature among them, as responses varied across other indices of ecosystem health. Our results imply that whereas community responses may vary, escalation of coral reef bioerosion and acceleration of a shift from net accreting to net eroding reef structures will likely be a global signature of ocean acidification.

  3. Changes in coral microbial communities in response to a natural pH gradient.

    PubMed

    Meron, Dalit; Rodolfo-Metalpa, Riccardo; Cunning, Ross; Baker, Andrew C; Fine, Maoz; Banin, Ehud

    2012-09-01

    Surface seawater pH is currently 0.1 units lower than pre-industrial values and is projected to decrease by up to 0.4 units by the end of the century. This acidification has the potential to cause significant perturbations to the physiology of ocean organisms, particularly those such as corals that build their skeletons/shells from calcium carbonate. Reduced ocean pH could also have an impact on the coral microbial community, and thus may affect coral physiology and health. Most of the studies to date have examined the impact of ocean acidification on corals and/or associated microbiota under controlled laboratory conditions. Here we report the first study that examines the changes in coral microbial communities in response to a natural pH gradient (mean pH(T) 7.3-8.1) caused by volcanic CO(2) vents off Ischia, Gulf of Naples, Italy. Two Mediterranean coral species, Balanophyllia europaea and Cladocora caespitosa, were examined. The microbial community diversity and the physiological parameters of the endosymbiotic dinoflagellates (Symbiodinium spp.) were monitored. We found that pH did not have a significant impact on the composition of associated microbial communities in both coral species. In contrast to some earlier studies, we found that corals present at the lower pH sites exhibited only minor physiological changes and no microbial pathogens were detected. Together, these results provide new insights into the impact of ocean acidification on the coral holobiont.

  4. Marine protected areas increase resilience among coral reef communities.

    PubMed

    Mellin, Camille; Aaron MacNeil, M; Cheal, Alistair J; Emslie, Michael J; Julian Caley, M

    2016-06-01

    With marine biodiversity declining globally at accelerating rates, maximising the effectiveness of conservation has become a key goal for local, national and international regulators. Marine protected areas (MPAs) have been widely advocated for conserving and managing marine biodiversity yet, despite extensive research, their benefits for conserving non-target species and wider ecosystem functions remain unclear. Here, we demonstrate that MPAs can increase the resilience of coral reef communities to natural disturbances, including coral bleaching, coral diseases, Acanthaster planci outbreaks and storms. Using a 20-year time series from Australia's Great Barrier Reef, we show that within MPAs, (1) reef community composition was 21-38% more stable; (2) the magnitude of disturbance impacts was 30% lower and (3) subsequent recovery was 20% faster that in adjacent unprotected habitats. Our results demonstrate that MPAs can increase the resilience of marine communities to natural disturbance possibly through herbivory, trophic cascades and portfolio effects. © 2016 John Wiley & Sons Ltd/CNRS.

  5. Sedimentation rapidly induces an immune response and depletes energy stores in a hard coral

    NASA Astrophysics Data System (ADS)

    Sheridan, C.; Grosjean, Ph.; Leblud, J.; Palmer, C. V.; Kushmaro, A.; Eeckhaut, I.

    2014-12-01

    High sedimentation rates have been linked to reduced coral health within multiple systems; however, whether this is a direct result of compromised coral immunity has not been previously investigated. The potential effects of sedimentation on immunity of the hard coral Montipora patula were examined by comparing physiological responses of coral fragments inoculated with sterilized marine sediments and those under control conditions. Sediments were collected from terrestrial runoff-affected reefs in SW Madagascar and applied cyclically for a total of 24 h at a rate observed during precipitation-induced sedimentation events. Coral health was determined 24 h after the onset of the sedimentation stress through measuring metabolic proxies of O2 budget and lipid ratios. Immune response of the melanin synthesis pathway was measured by quantifying phenoloxidase activity and melanin deposits. Sedimentation induced both immune and metabolic responses in M. patula. Both phenoloxidase activity and melanin deposition were significantly higher in the sediment treatment compared to controls, indicating an induced immune response. Sediment-treated corals also showed a tendency towards increased respiration (during the night) and decreased photosynthesis (during the day) and a significant depletion of energy reserves as compared to controls. These data highlight that short-term (24 h) sedimentation, free of live microorganisms, compromises the health of M. patula. The energetically costly immune response, potentially elicited by residual endotoxins and other inflammatory particles associated with the sterile sediments, likely contributes to the energy depletion. Overall, exposure to sedimentation adversely affects coral health and continued exposure may lead to resource depletion and an increased susceptibility to disease.

  6. Effects of seawater acidification on a coral reef meiofauna community

    NASA Astrophysics Data System (ADS)

    Sarmento, V. C.; Souza, T. P.; Esteves, A. M.; Santos, P. J. P.

    2015-09-01

    Despite the increasing risk that ocean acidification will modify benthic communities, great uncertainty remains about how this impact will affect the lower trophic levels, such as members of the meiofauna. A mesocosm experiment was conducted to investigate the effects of water acidification on a phytal meiofauna community from a coral reef. Community samples collected from the coral reef subtidal zone (Recife de Fora Municipal Marine Park, Porto Seguro, Bahia, Brazil), using artificial substrate units, were exposed to a control pH (ambient seawater) and to three levels of seawater acidification (pH reductions of 0.3, 0.6, and 0.9 units below ambient) and collected after 15 and 30 d. After 30 d of exposure, major changes in the structure of the meiofauna community were observed in response to reduced pH. The major meiofauna groups showed divergent responses to acidification. Harpacticoida and Polychaeta densities did not show significant differences due to pH. Nematoda, Ostracoda, Turbellaria, and Tardigrada exhibited their highest densities in low-pH treatments (especially at the pH reduction of 0.6 units, pH 7.5), while harpacticoid nauplii were strongly negatively affected by low pH. This community-based mesocosm study supports previous suggestions that ocean acidification induces important changes in the structure of marine benthic communities. Considering the importance of meiofauna in the food web of coral reef ecosystems, the results presented here demonstrate that the trophic functioning of coral reefs is seriously threatened by ocean acidification.

  7. Coral Reef Community Composition in the Context of Disturbance History on the Great Barrier Reef, Australia

    PubMed Central

    Graham, Nicholas A. J.; Chong-Seng, Karen M.; Huchery, Cindy; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  8. The impact of reduced pH on the microbial community of the coral Acropora eurystoma

    PubMed Central

    Meron, Dalit; Atias, Elinor; Iasur Kruh, Lilach; Elifantz, Hila; Minz, Dror; Fine, Maoz; Banin, Ehud

    2011-01-01

    Rising concentrations of atmospheric carbon dioxide are acidifying the world's oceans. Surface seawater pH is 0.1 units lower than pre-industrial values and is predicted to decrease by up to 0.4 units by the end of the century. This change in pH may result in changes in the physiology of ocean organisms, in particular, organisms that build their skeletons/shells from calcium carbonate, such as corals. This physiological change may also affect other members of the coral holobiont, for example, the microbial communities associated with the coral, which in turn may affect the coral physiology and health. In the present study, we examined changes in bacterial communities in the coral mucus, tissue and skeleton following exposure of the coral Acropora eurystoma to two different pH conditions: 7.3 and 8.2 (ambient seawater). The microbial community was different at the two pH values, as determined by denaturing gradient gel electrophoresis and 16S rRNA gene sequence analysis. Further analysis of the community in the corals maintained at the lower pH revealed an increase in bacteria associated with diseased and stressed corals, such as Vibrionaceae and Alteromonadaceae. In addition, an increase in the number of potential antibacterial activity was recorded among the bacteria isolated from the coral maintained at pH 7.3. Taken together, our findings highlight the impact that changes in the pH may have on the coral-associated bacterial community and their potential contribution to the coral host. PMID:20668489

  9. A high-latitude coral community with an uncertain future: Stetson Bank, northwestern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    DeBose, J. L.; Nuttall, M. F.; Hickerson, E. L.; Schmahl, G. P.

    2013-03-01

    Limited data exist that detail trends in benthic community composition of high-latitude coral communities. As anthropogenic stressors are projected to increase in number and intensity, long-term monitoring datasets are essential to understanding community stability and ecosystem resilience. In 1993, a long-term monitoring program was initiated at Stetson Bank, in the Gulf of Mexico. Over the course of this monitoring, a major shift in community structure occurred, in which the coral-sponge community was replaced by an algal-dominated community. During the initial years of this study, the coral community at Stetson Bank was relatively stable. Beginning in the late 1990s, sponge cover began a steady decline from over 30 % to less than 25 %. Then, in 2005, the benthic community underwent a further significant change when living coral cover declined from 30 % to less than 8 % and sponges declined to less than 20 % benthic cover. This abrupt shift corresponded with a Caribbean-wide bleaching event in 2005 that caused major mortality of Stetson Bank corals. Previous bleaching events at Stetson Bank did not result in wide-scale coral mortality. Several environmental parameters may have contributed to the rapid decline in this benthic community. We suggest that the combined effects of coastal runoff and elevated temperatures contributed to the observed shift. We present an analysis of 15 years of monitoring data spanning from 1993 to 2008; this dataset provides both a biological baseline and a multiyear trend analysis of the community structure for a high-latitude coral-sponge community in the face of changing climatic conditions.

  10. Carbon dioxide addition to coral reef waters suppresses net community calcification.

    PubMed

    Albright, Rebecca; Takeshita, Yuichiro; Koweek, David A; Ninokawa, Aaron; Wolfe, Kennedy; Rivlin, Tanya; Nebuchina, Yana; Young, Jordan; Caldeira, Ken

    2018-03-22

    Coral reefs feed millions of people worldwide, provide coastal protection and generate billions of dollars annually in tourism revenue. The underlying architecture of a reef is a biogenic carbonate structure that accretes over many years of active biomineralization by calcifying organisms, including corals and algae. Ocean acidification poses a chronic threat to coral reefs by reducing the saturation state of the aragonite mineral of which coral skeletons are primarily composed, and lowering the concentration of carbonate ions required to maintain the carbonate reef. Reduced calcification, coupled with increased bioerosion and dissolution, may drive reefs into a state of net loss this century. Our ability to predict changes in ecosystem function and associated services ultimately hinges on our understanding of community- and ecosystem-scale responses. Past research has primarily focused on the responses of individual species rather than evaluating more complex, community-level responses. Here we use an in situ carbon dioxide enrichment experiment to quantify the net calcification response of a coral reef flat to acidification. We present an estimate of community-scale calcification sensitivity to ocean acidification that is, to our knowledge, the first to be based on a controlled experiment in the natural environment. This estimate provides evidence that near-future reductions in the aragonite saturation state will compromise the ecosystem function of coral reefs.

  11. Carbon dioxide addition to coral reef waters suppresses net community calcification

    NASA Astrophysics Data System (ADS)

    Albright, Rebecca; Takeshita, Yuichiro; Koweek, David A.; Ninokawa, Aaron; Wolfe, Kennedy; Rivlin, Tanya; Nebuchina, Yana; Young, Jordan; Caldeira, Ken

    2018-03-01

    Coral reefs feed millions of people worldwide, provide coastal protection and generate billions of dollars annually in tourism revenue. The underlying architecture of a reef is a biogenic carbonate structure that accretes over many years of active biomineralization by calcifying organisms, including corals and algae. Ocean acidification poses a chronic threat to coral reefs by reducing the saturation state of the aragonite mineral of which coral skeletons are primarily composed, and lowering the concentration of carbonate ions required to maintain the carbonate reef. Reduced calcification, coupled with increased bioerosion and dissolution, may drive reefs into a state of net loss this century. Our ability to predict changes in ecosystem function and associated services ultimately hinges on our understanding of community- and ecosystem-scale responses. Past research has primarily focused on the responses of individual species rather than evaluating more complex, community-level responses. Here we use an in situ carbon dioxide enrichment experiment to quantify the net calcification response of a coral reef flat to acidification. We present an estimate of community-scale calcification sensitivity to ocean acidification that is, to our knowledge, the first to be based on a controlled experiment in the natural environment. This estimate provides evidence that near-future reductions in the aragonite saturation state will compromise the ecosystem function of coral reefs.

  12. Fish-derived nutrient hotspots shape coral reef benthic communities.

    PubMed

    Shantz, Andrew A; Ladd, Mark C; Schrack, Elizabeth; Burkepile, Deron E

    2015-12-01

    Animal-derived nutrients play an important role in structuring nutrient regimes within and between ecosystems. When animals undergo repetitive, aggregating behavior through time, they can create nutrient hotspots where rates of biogeochemical activity are higher than those found in the surrounding environment. In turn, these hotspots can influence ecosystem processes and community structure. We examined the potential for reef fishes from the family Haemulidae (grunts) to create nutrient hotspots and the potential impact of these hotspots on reef communities. To do so, we tracked the schooling locations of diurnally migrating grunts, which shelter at reef sites during the day but forage off reef each night, and measured the impact of these fish schools on benthic communities. We found that grunt schools showed a high degree of site fidelity, repeatedly returning to the same coral heads. These aggregations created nutrient hotspots around coral heads where nitrogen and phosphorus delivery was roughly 10 and 7 times the respective rates of delivery to structurally similar sites that lacked schools of these fishes. In turn, grazing rates of herbivorous fishes at grunt-derived hotspots were approximately 3 times those of sites where grunts were rare. These differences in nutrient delivery and grazing led to distinct benthic communities with higher cover of crustose coralline algae and less total algal abundance at grunt aggregation sites. Importantly, coral growth was roughly 1.5 times greater at grunt hotspots, likely due to the important nutrient subsidy. Our results suggest that schooling reef fish and their nutrient subsidies play an important role in mediating community structure on coral reefs and that overfishing may have important negative consequences on ecosystem functions. As such, management strategies must consider mesopredatory fishes in addition to current protection often offered to herbivores and top-tier predators. Furthermore, our results suggest that

  13. Resilience of Florida Keys coral communities following large scale disturbances

    EPA Science Inventory

    The decline of coral reefs in the Caribbean over the last 40 years has been attributed to multiple chronic stressors and episodic large-scale disturbances. This study assessed the resilience of coral communities in two different regions of the Florida Keys reef system between 199...

  14. Differential modification of seawater carbonate chemistry by major coral reef benthic communities

    NASA Astrophysics Data System (ADS)

    Page, Heather N.; Andersson, Andreas J.; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Lebrato, Mario; Yeakel, Kiley; Davidson, Charlie; D'Angelo, Sydney; Bahr, Keisha D.

    2016-12-01

    Ocean acidification (OA) resulting from uptake of anthropogenic CO2 may negatively affect coral reefs by causing decreased rates of biogenic calcification and increased rates of CaCO3 dissolution and bioerosion. However, in addition to the gradual decrease in seawater pH and Ω a resulting from anthropogenic activities, seawater carbonate chemistry in these coastal ecosystems is also strongly influenced by the benthic metabolism which can either exacerbate or alleviate OA through net community calcification (NCC = calcification - CaCO3 dissolution) and net community organic carbon production (NCP = primary production - respiration). Therefore, to project OA on coral reefs, it is necessary to understand how different benthic communities modify the reef seawater carbonate chemistry. In this study, we used flow-through mesocosms to investigate the modification of seawater carbonate chemistry by benthic metabolism of five distinct reef communities [carbonate sand, crustose coralline algae (CCA), corals, fleshy algae, and a mixed community] under ambient and acidified conditions during summer and winter. The results showed that different communities had distinct influences on carbonate chemistry related to the relative importance of NCC and NCP. Sand, CCA, and corals exerted relatively small influences on seawater pH and Ω a over diel cycles due to closely balanced NCC and NCP rates, whereas fleshy algae and mixed communities strongly elevated daytime pH and Ω a due to high NCP rates. Interestingly, the influence on seawater pH at night was relatively small and quite similar across communities. NCC and NCP rates were not significantly affected by short-term acidification, but larger diel variability in pH was observed due to decreased seawater buffering capacity. Except for corals, increased net dissolution was observed at night for all communities under OA, partially buffering against nighttime acidification. Thus, algal-dominated areas of coral reefs and increased

  15. Living with marginal coral communities: Diversity and host-specificity in coral-associated barnacles in the northern coral distribution limit of the East China Sea.

    PubMed

    Chan, Benny K K; Xu, Guang; Kim, Hyun Kyong; Park, Jin-Ho; Kim, Won

    2018-01-01

    Corals and their associated fauna are extremely diverse in tropical waters and form major reefs. In the high-latitude temperate zone, corals living near their distribution limit are considered marginal communities because they are particularly extremely sensitive to environmental and climatic changes. In this study, we examined the diversity and host usage of coral-associated barnacles on Jeju Island, Korea, the northern coral distribution limit in the East China Sea. In this study, only three coral-associated barnacles-from two genera in two subfamilies-were collected. The Pyrgomatinid barnacles Cantellius arcuatus and Cantellius cf. euspinulosum were found only on the corals Montipora millepora and Alveopora japonica, respectively. The Megatrematinid barnacle Pyrgomina oulastreae, relatively a generalist, was found on Psammocora spp. (both profundacella and albopicta) and Oulastrea crispata corals. The host usage of these three barnacles does not overlap. DNA barcode sequences of the C. arcuatus specimens collected in the present study matched those collected in Kochi in Japan, Taiwan, Malaysia and Papua New Guinea, suggesting that this species has a wide geographical distribution. C. arcuatus covers a wider host range in Taiwan waters, inhabiting Montipora spp. and Porites spp., which suggests that the host specificity of coral-associated barnacles varies with host availability. C. cf. euspinulosum probably has a very narrow distribution and host usage. The sequences of C. cf. euspinulosum on Jeju Island do not match those of any known sequences of Cantellius barnacles in the Indo-Pacific region. P. oulastreae probably prefers cold water because it has been reported in temperate regions. Coral-associated barnacles in marginal communities have considerably lower diversity than their subtropical and tropical counterparts. When host availability is limited, marginal coral-associated barnacles exhibit higher host specificity than those in subtropical and tropical

  16. Morphological and community changes of turf algae in competition with corals

    NASA Astrophysics Data System (ADS)

    Cetz-Navarro, Neidy P.; Quan-Young, Lizette I.; Espinoza-Avalos, Julio

    2015-08-01

    The morphological plasticity and community responses of algae competing with corals have not been assessed. We evaluated eight morphological characters of four species of stoloniferous clonal filamentous turf algae (FTA), including Lophosiphonia cristata (Lc) and Polysiphonia scopulorum var. villum (Psv), and the composition and number of turf algae (TA) in competition for space with the coral Orbicella spp. under experimental and non-manipulated conditions. All FTA exhibited morphological responses, such as increasing the formation of new ramets (except for Psv when competing with O. faveolata). Opposite responses in the space between erect axes were found when Psv competed with O. faveolata and when Lc competed with O. annularis. The characters modified by each FTA species, and the number and composition of TA species growing next to coral tissue differed from that of the TA growing at ≥3 cm. The specific and community responses indicate that some species of TA can actively colonise coral tissue and that fundamental competitive interactions between the two types of organisms occur within the first millimetres of the coral-algal boundary. These findings suggest that the morphological plasticity, high number, and functional redundancy of stoloniferous TA species favour their colonisation of coral tissue and resistance against coral invasion.

  17. Morphological and community changes of turf algae in competition with corals.

    PubMed

    Cetz-Navarro, Neidy P; Quan-Young, Lizette I; Espinoza-Avalos, Julio

    2015-08-05

    The morphological plasticity and community responses of algae competing with corals have not been assessed. We evaluated eight morphological characters of four species of stoloniferous clonal filamentous turf algae (FTA), including Lophosiphonia cristata (Lc) and Polysiphonia scopulorum var. villum (Psv), and the composition and number of turf algae (TA) in competition for space with the coral Orbicella spp. under experimental and non-manipulated conditions. All FTA exhibited morphological responses, such as increasing the formation of new ramets (except for Psv when competing with O. faveolata). Opposite responses in the space between erect axes were found when Psv competed with O. faveolata and when Lc competed with O. annularis. The characters modified by each FTA species, and the number and composition of TA species growing next to coral tissue differed from that of the TA growing at ≥ 3 cm. The specific and community responses indicate that some species of TA can actively colonise coral tissue and that fundamental competitive interactions between the two types of organisms occur within the first millimetres of the coral-algal boundary. These findings suggest that the morphological plasticity, high number, and functional redundancy of stoloniferous TA species favour their colonisation of coral tissue and resistance against coral invasion.

  18. Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing.

    PubMed

    Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2012-10-01

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals.

  19. Spatial and Species Variations in Bacterial Communities Associated with Corals from the Red Sea as Revealed by Pyrosequencing

    PubMed Central

    Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz

    2012-01-01

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals. PMID:22865078

  20. Coral microbial communities, zooxanthellae and mucus along gradients of seawater depth and coastal pollution.

    PubMed

    Klaus, James S; Janse, Ingmar; Heikoop, Jeffrey M; Sanford, Robert A; Fouke, Bruce W

    2007-05-01

    The high incidence of coral disease in shallow coastal marine environments suggests seawater depth and coastal pollution have an impact on the microbial communities inhabiting healthy coral tissues. A study was undertaken to determine how bacterial communities inhabiting tissues of the coral Montastraea annularis change at 5 m, 10 m and 20 m water depth in varying proximity to the urban centre and seaport of Willemstad, Curaçao, Netherlands Antilles. Analyses of terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA gene sequences show significant differences in bacterial communities of polluted and control localities only at the shallowest seawater depth. Furthermore, distinct differences in bacterial communities were found with increasing water depth. Comparisons of TRFLP peaks with sequenced clone libraries indicate the black band disease cyanobacterium clone CD1C11 is common and most abundant on healthy corals in less than 10 m water depth. Similarly, sequences belonging to a previously unrecognized group of likely phototrophic bacteria, herein referred to as CAB-I, were also more common in shallow water. To assess the influence of environmental and physiologic factors on bacterial community structure, canonical correspondence analysis was performed using explanatory variables associated with: (i) light availability; (ii) seawater pollution; (iii) coral mucus composition; (iv) the community structure of symbiotic algae; and (v) the photosynthetic activity of symbiotic algae. Eleven per cent of the variation in bacterial communities was accounted for by covariation with these variables; the most important being photosynthetically active radiation (sunlight) and the coral uptake of sewage-derived compounds as recorded by the delta(15)N of coral tissue.

  1. Structure and temporal dynamics of the bacterial communities associated to microhabitats of the coral Oculina patagonica.

    PubMed

    Rubio-Portillo, Esther; Santos, Fernando; Martínez-García, Manuel; de Los Ríos, Asunción; Ascaso, Carmen; Souza-Egipsy, Virginia; Ramos-Esplá, Alfonso A; Anton, Josefa

    2016-12-01

    Corals are known to contain a diverse microbiota that plays a paramount role in the physiology and health of holobiont. However, few studies have addressed the variability of bacterial communities within the coral host. In this study, bacterial community composition from the mucus, tissue and skeleton of the scleractinian coral Oculina patagonica were investigated seasonally at two locations in the Western Mediterranean Sea, to further understand how environmental conditions and the coral microbiome structure are related. We used denaturing gradient gel electrophoresis in combination with next-generation sequencing and electron microscopy to characterize the bacterial community. The bacterial communities were significantly different among coral compartments, and coral tissue displayed the greatest changes related to environmental conditions and coral health status. Species belonging to the Rhodobacteraceae and Vibrionaceae families form part of O. patagonica tissues core microbiome and may play significant roles in the nitrogen cycle. Furthermore, sequences related to the coral pathogens, Vibrio mediterranei and Vibrio coralliilyticus, were detected not only in bleached corals but also in healthy ones, even during cold months. This fact opens a new view onto unveiling the role of pathogens in the development of coral diseases in the future. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities.

    PubMed

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-02-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery.

  3. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities

    PubMed Central

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-01-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery. PMID:24634720

  4. Symbiont community stability through severe coral bleaching in a thermally extreme lagoon.

    PubMed

    Smith, E G; Vaughan, G O; Ketchum, R N; McParland, D; Burt, J A

    2017-05-25

    Coral reefs are threatened by climate change as coral-algal symbioses are currently living close to their upper thermal limits. The resilience of the algal partner plays a key role in determining the thermal tolerance of the coral holobiont and therefore, understanding the acclimatory limits of present day coral-algal symbioses is fundamental to forecasting corals' responses to climate change. This study characterised the symbiont community in a highly variable and thermally extreme (Max = 37.5 °C, Min = 16.8 °C) lagoon located in the southern Persian/Arabian Gulf using next generation sequencing of ITS2 amplicons. Despite experiencing extreme temperatures, severe bleaching and many factors that would be expected to promote the presence of, or transition to clade D dominance, the symbiont communities of the lagoon remain dominated by the C3 variant, Symbiodinium thermophilum. The stability of this symbiosis across multiple genera with different means of symbiont transmission highlights the importance of Symbiodinium thermophilum for corals living at the acclimatory limits of modern day corals. Corals in this extreme environment did not undergo adaptive bleaching, suggesting they are living at the edge of their acclimatory potential and that this valuable source of thermally tolerant genotypes may be lost in the near future under climate change.

  5. Monitoring Growth of Hard Corals as Performance Indicators for Coral Reefs

    ERIC Educational Resources Information Center

    Crabbe, M. James; Karaviotis, Sarah; Smith, David J.

    2004-01-01

    Digital videophotography, computer image analysis and physical measurements have been used to monitor sedimentation rates, coral cover, genera richness, rugosity, and estimated recruitment dates of massive corals at three different sites in the Wakatobi Marine National Park, Indonesia, and on the reefs around Discovery Bay, Jamaica.…

  6. Ocean acidification accelerates net calcium carbonate loss in a coral rubble community

    NASA Astrophysics Data System (ADS)

    Stubler, Amber D.; Peterson, Bradley J.

    2016-09-01

    Coral rubble communities are an important yet often overlooked component of a healthy reef ecosystem. The organisms inhabiting reef rubble are primarily bioeroders that contribute to the breakdown and dissolution of carbonate material. While the effects of ocean acidification on calcifying communities have been well studied, there are few studies investigating the response of bioeroding communities to future changes in pH and calcium carbonate saturation state. Using a flow-through pH-stat system, coral rubble pieces with a naturally occurring suite of organisms, along with bleached control rubble pieces, were subjected to three different levels of acidification over an 8-week period. Rates of net carbonate loss in bleached control rubble doubled in the acidification treatments (0.02 vs. 0.04% CaCO3 d-1 in ambient vs. moderate and high acidification), and living rubble communities experienced significantly increased rates of net carbonate loss from ambient to high acidification conditions (0.06 vs. 0.10% CaCO3 d-1, respectively). Although more experimentation is necessary to understand the long-term response and succession of coral rubble communities under projected conditions, these results suggest that rates of carbonate loss will increase in coral rubble as pH and calcium carbonate saturation states are reduced. This study demonstrates a need to thoroughly investigate the contribution of coral rubble to the overall carbonate budget, reef resilience, recovery, and function under future conditions.

  7. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea.

    PubMed

    Ziegler, Maren; Roik, Anna; Porter, Adam; Zubier, Khalid; Mudarris, Mohammed S; Ormond, Rupert; Voolstra, Christian R

    2016-04-30

    Coral-associated bacteria play an increasingly recognized part in coral health. We investigated the effect of local anthropogenic impacts on coral microbial communities on reefs near Jeddah, the largest city on the Saudi Arabian coast of the central Red Sea. We analyzed the bacterial community structure of water and corals (Pocillopora verrucosa and Acropora hemprichii) at sites that were relatively unimpacted, exposed to sedimentation & local sewage, or in the discharge area of municipal wastewaters. Coral microbial communities were significantly different at impacted sites: in both corals the main symbiotic taxon decreased in abundance. In contrast, opportunistic bacterial families, such as e.g. Vibrionaceae and Rhodobacteraceae, were more abundant in corals at impacted sites. In conclusion, microbial community response revealed a measurable footprint of anthropogenic impacts to coral ecosystems close to Jeddah, even though the corals appeared visually healthy. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Burrowing hard corals occurring on the sea floor since 80 million years ago.

    PubMed

    Sentoku, Asuka; Tokuda, Yuki; Ezaki, Yoichi

    2016-04-14

    We describe a previously unknown niche for hard corals in the small, bowl-shaped, solitary scleractinian, Deltocyathoides orientalis (Family Turbinoliidae), on soft-bottom substrates. Observational experiments were used to clarify how the sea floor niche is exploited by turbinoliids. Deltocyathoides orientalis is adapted to an infaunal mode of life and exhibits behaviours associated with automobility that include burrowing into sediments, vertical movement through sediments to escape burial, and recovery of an upright position after being overturned. These behaviours were achieved through repeated expansion and contraction of their peripheral soft tissues, which constitute a unique muscle-membrane system. Histological analysis showed that these muscle arrangements were associated with deeply incised inter-costal spaces characteristic of turbinoliid corals. The oldest known turbinoliid, Bothrophoria ornata, which occurred in the Cretaceous (Campanian), also possessed a small, conical skeleton with highly developed costae. An infaunal mode of life became available to turbinoliids due to the acquisition of automobility through the muscle-membrane system at least 80 million years ago. The newly discovered active burrowing strategies described herein provide new insights into the use of an unattached mode of life by corals inhabiting soft-bottom substrates throughout the Phanerozoic.

  9. Burrowing hard corals occurring on the sea floor since 80 million years ago

    NASA Astrophysics Data System (ADS)

    Sentoku, Asuka; Tokuda, Yuki; Ezaki, Yoichi

    2016-04-01

    We describe a previously unknown niche for hard corals in the small, bowl-shaped, solitary scleractinian, Deltocyathoides orientalis (Family Turbinoliidae), on soft-bottom substrates. Observational experiments were used to clarify how the sea floor niche is exploited by turbinoliids. Deltocyathoides orientalis is adapted to an infaunal mode of life and exhibits behaviours associated with automobility that include burrowing into sediments, vertical movement through sediments to escape burial, and recovery of an upright position after being overturned. These behaviours were achieved through repeated expansion and contraction of their peripheral soft tissues, which constitute a unique muscle-membrane system. Histological analysis showed that these muscle arrangements were associated with deeply incised inter-costal spaces characteristic of turbinoliid corals. The oldest known turbinoliid, Bothrophoria ornata, which occurred in the Cretaceous (Campanian), also possessed a small, conical skeleton with highly developed costae. An infaunal mode of life became available to turbinoliids due to the acquisition of automobility through the muscle-membrane system at least 80 million years ago. The newly discovered active burrowing strategies described herein provide new insights into the use of an unattached mode of life by corals inhabiting soft-bottom substrates throughout the Phanerozoic.

  10. Baseline assessments for coral reef community structure and demographics on West Maui

    USGS Publications Warehouse

    Vargas-Angel, Bernardo; White, Darla; Storlazzi, Curt; Callender, Tova; Maurin, Paulo

    2017-01-01

    The coastal and upslope terrains of West Maui have had a long history of impacts owing to more than a century of human activities. Resource extraction, agriculture, as well as residential and resort development have caused land-based pollution that impairs water quality and adversely impact the adjacent marine ecosystem. Today, West Maui’s coral reefs are chronically impacted by the effects of land-based pollution, mainly sedimentation and nutrients, with documented losses of 30 – 75% in coral cover over the last 20 years. Nonetheless, despite their current status and levels of environmental impact, these coral reef communities represent a key local resource and a counterpoint to the overall low coral reef development levels both island- and state-wide. This is of high relevance because the occurrence of coral-rich assemblages and accreted reef complexes statewide is sparse. Only limited segments along the coastlines of Maui, Hawai‘i, Lana‘i, Moloka‘i, and Kaho‘olawe, harbor mature, fringing coral reefs; and unfortunately, many of them are seriously threatened by terrestrial runoff. This report describes the results of baseline assessment surveys of coral reef benthic structure, coral community demographics, and coral condition. These surveys are intended to provide benchmarks for continued monitoring efforts and provide a gauge for comparing and evaluating the effectiveness of management actions to reduce land-based sources of pollution in priority watersheds on West Maui. Within this context, 12 permanent, long-term monitoring sites were strategically established adjacent to the 7 primary stream drainages (Wahikuli, Honokōwai, Mahinahina, Kahana/Ka‘opala, Honokeana, Honokahua, and Honolua) within the five priority watersheds (Wahikuli, Honokōwai, Kahana, Honokahua, and Honolua). Herein, benthic cover and composition, coral demographics, and coral condition of the monitoring sites are described and contrasted in the “Benthic Characterization

  11. Bacterial Community Associated with the Reef Coral Mussismilia braziliensis's Momentum Boundary Layer over a Diel Cycle.

    PubMed

    Silveira, Cynthia B; Gregoracci, Gustavo B; Coutinho, Felipe H; Silva, Genivaldo G Z; Haggerty, John M; de Oliveira, Louisi S; Cabral, Anderson S; Rezende, Carlos E; Thompson, Cristiane C; Francini-Filho, Ronaldo B; Edwards, Robert A; Dinsdale, Elizabeth A; Thompson, Fabiano L

    2017-01-01

    Corals display circadian physiological cycles, changing from autotrophy during the day to heterotrophy during the night. Such physiological transition offers distinct environments to the microbial community associated with corals: an oxygen-rich environment during daylight hours and an oxygen-depleted environment during the night. Most studies of coral reef microbes have been performed on samples taken during the day, representing a bias in the understanding of the composition and function of these communities. We hypothesized that coral circadian physiology alters the composition and function of microbial communities in reef boundary layers. Here, we analyzed microbial communities associated with the momentum boundary layer (MBL) of the Brazilian endemic reef coral Mussismilia braziliensis during a diurnal cycle, and compared them to the water column. We determined microbial abundance and nutrient concentration in samples taken within a few centimeters of the coral's surface every 6 h for 48 h, and sequenced microbial metagenomes from a subset of the samples. We found that dominant taxa and functions in the coral MBL community were stable over the time scale of our sampling, with no significant shifts between night and day samples. Interestingly, the two water column metagenomes sampled 1 m above the corals were also very similar to the MBL metagenomes. When all samples were analyzed together, nutrient concentration significantly explained 40% of the taxonomic dissimilarity among dominant genera in the community. Functional profiles were highly homogenous and not significantly predicted by any environmental variables measured. Our data indicated that water flow may overrule the effects of coral physiology in the MBL bacterial community, at the scale of centimeters, and suggested that sampling resolution at the scale of millimeters may be necessary to address diurnal variation in community composition.

  12. Persistence and Change in Community Composition of Reef Corals through Present, Past, and Future Climates

    PubMed Central

    Edmunds, Peter J.; Adjeroud, Mehdi; Baskett, Marissa L.; Baums, Iliana B.; Budd, Ann F.; Carpenter, Robert C.; Fabina, Nicholas S.; Fan, Tung-Yung; Franklin, Erik C.; Gross, Kevin; Han, Xueying; Jacobson, Lianne; Klaus, James S.; McClanahan, Tim R.; O'Leary, Jennifer K.; van Oppen, Madeleine J. H.; Pochon, Xavier; Putnam, Hollie M.; Smith, Tyler B.; Stat, Michael; Sweatman, Hugh; van Woesik, Robert; Gates, Ruth D.

    2014-01-01

    The reduction in coral cover on many contemporary tropical reefs suggests a different set of coral community assemblages will dominate future reefs. To evaluate the capacity of reef corals to persist over various time scales, we examined coral community dynamics in contemporary, fossil, and simulated future coral reef ecosystems. Based on studies between 1987 and 2012 at two locations in the Caribbean, and between 1981 and 2013 at five locations in the Indo-Pacific, we show that many coral genera declined in abundance, some showed no change in abundance, and a few coral genera increased in abundance. Whether the abundance of a genus declined, increased, or was conserved, was independent of coral family. An analysis of fossil-reef communities in the Caribbean revealed changes in numerical dominance and relative abundances of coral genera, and demonstrated that neither dominance nor taxon was associated with persistence. As coral family was a poor predictor of performance on contemporary reefs, a trait-based, dynamic, multi-patch model was developed to explore the phenotypic basis of ecological performance in a warmer future. Sensitivity analyses revealed that upon exposure to thermal stress, thermal tolerance, growth rate, and longevity were the most important predictors of coral persistence. Together, our results underscore the high variation in the rates and direction of change in coral abundances on contemporary and fossil reefs. Given this variation, it remains possible that coral reefs will be populated by a subset of the present coral fauna in a future that is warmer than the recent past. PMID:25272143

  13. Five Cities, One Vision. CORAL: Linking Communities, Children and Learning.

    ERIC Educational Resources Information Center

    James G. Irvine Foundation, San Francisco, CA.

    This booklet describes the CORAL (Communities Organizing Resources To Advance Learning) program within five California communities: Pasadena, Long Beach, San Jose, Fresno, and Sacramento. This initiative, begun in 1999, is committed to a community-based and community-building approach to supporting learning and focuses on improving academic…

  14. Metagenomic analysis of the microbial community associated with the coral Porites astreoides.

    PubMed

    Wegley, Linda; Edwards, Robert; Rodriguez-Brito, Beltran; Liu, Hong; Rohwer, Forest

    2007-11-01

    The coral holobiont is a dynamic assemblage of the coral animal, zooxanthellae, endolithic algae and fungi, Bacteria,Archaea and viruses. Zooxanthellae and some Bacteria form relatively stable and species-specific associations with corals. Other associations are less specific; coral-associated Archaea differ from those in the water column, but the same archaeal species may be found on different coral species. It has been hypothesized that the coral animal can adapt to differing ecological niches by 'switching' its microbial associates. In the case of corals and zooxanthellae, this has been termed adaptive bleaching and it has important implications for carbon cycling within the coral holobiont and ultimately the survival of coral reefs. However, the roles of other components of the coral holobiont are essentially unknown. To better understand these other coral associates, a fractionation procedure was used to separate the microbes, mitochondria and viruses from the coral animal cells and zooxanthellae. The resulting metagenomic DNA was sequenced using pyrosequencing. Fungi, Bacteria and phage were the most commonly identified organisms in the metagenome. Three of the four fungal phyla were represented, including a wide diversity of fungal genes involved in carbon and nitrogen metabolism, suggesting that the endolithic community is more important than previously appreciated. In particular, the data suggested that endolithic fungi could be converting nitrate and nitrite to ammonia, which would enable fixed nitrogen to cycle within the coral holobiont. The most prominent bacterial groups were Proteobacteria (68%), Firmicutes (10%), Cyanobacteria (7%) and Actinobacteria (6%). Functionally, the bacterial community was primarily heterotrophic and included a number of pathways for the degradation of aromatic compounds, the most abundant being the homogentisate pathway. The most abundant phage family was the ssDNA Microphage and most of the eukaryotic viruses were most

  15. Morphological and community changes of turf algae in competition with corals

    PubMed Central

    Cetz-Navarro, Neidy P.; Quan-Young, Lizette I.; Espinoza-Avalos, Julio

    2015-01-01

    The morphological plasticity and community responses of algae competing with corals have not been assessed. We evaluated eight morphological characters of four species of stoloniferous clonal filamentous turf algae (FTA), including Lophosiphonia cristata (Lc) and Polysiphonia scopulorum var. villum (Psv), and the composition and number of turf algae (TA) in competition for space with the coral Orbicella spp. under experimental and non-manipulated conditions. All FTA exhibited morphological responses, such as increasing the formation of new ramets (except for Psv when competing with O. faveolata). Opposite responses in the space between erect axes were found when Psv competed with O. faveolata and when Lc competed with O. annularis. The characters modified by each FTA species, and the number and composition of TA species growing next to coral tissue differed from that of the TA growing at ≥3 cm. The specific and community responses indicate that some species of TA can actively colonise coral tissue and that fundamental competitive interactions between the two types of organisms occur within the first millimetres of the coral−algal boundary. These findings suggest that the morphological plasticity, high number, and functional redundancy of stoloniferous TA species favour their colonisation of coral tissue and resistance against coral invasion. PMID:26244816

  16. Metagenomic characterization of viral communities in corals: mining biological signal from methodological noise.

    PubMed

    Wood-Charlson, Elisha M; Weynberg, Karen D; Suttle, Curtis A; Roux, Simon; van Oppen, Madeleine J H

    2015-10-01

    Reef-building corals form close associations with organisms from all three domains of life and therefore have many potential viral hosts. Yet knowledge of viral communities associated with corals is barely explored. This complexity presents a number of challenges in terms of the metagenomic assessments of coral viral communities and requires specialized methods for purification and amplification of viral nucleic acids, as well as virome annotation. In this minireview, we conduct a meta-analysis of the limited number of existing coral virome studies, as well as available coral transcriptome and metagenome data, to identify trends and potential complications inherent in different methods. The analysis shows that the method used for viral nucleic acid isolation drastically affects the observed viral assemblage and interpretation of the results. Further, the small number of viral reference genomes available, coupled with short sequence read lengths might cause errors in virus identification. Despite these limitations and potential biases, the data show that viral communities associated with corals are diverse, with double- and single-stranded DNA and RNA viruses. The identified viruses are dominated by double-stranded DNA-tailed bacteriophages, but there are also viruses that infect eukaryote hosts, likely the endosymbiotic dinoflagellates, Symbiodinium spp., host coral and other eukaryotes in close association. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Multiple anthropogenic stressors exert complex, interactive effects on a coral reef community

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, Ranjan; Fong, Peggy

    2014-12-01

    Multiple natural and anthropogenic stressors impact coral reefs across the globe leading to declines of coral populations, but the relative importance of different stressors and the ways they interact remain poorly understood. Because coral reefs exist in environments commonly impacted by multiple stressors simultaneously, understanding their interactions is of particular importance. To evaluate the role of multiple stressors we experimentally manipulated three stressors (herbivore abundance, nutrient supply, and sediment loading) in plots on a natural reef in the Gulf of Panamá in the Eastern Tropical Pacific. Monitoring of the benthic community (coral, macroalgae, algal turf, and crustose coralline algae) showed complex responses with all three stressors impacting the community, but at different times, in different combinations, and with varying effects on different community members. Reduction of top-down control in combination with sediment addition had the strongest effect on the community, and led to approximately three times greater algal biomass. Coral cover was reduced in all experimental units with a negative effect of nutrients over time and a synergistic interaction between herbivore exclosures and sediment addition. In contrast, nutrient and sediment additions interacted antagonistically in their impacts on crustose coralline algae and turf algae so that in combination the treatments limited each other's effects. Interactions between stressors and temporal variability indicated that, while each stressor had the potential to impact community structure, their combinations and the broader environmental conditions under which they acted strongly influenced their specific effects. Thus, it is critical to evaluate the effects of stressors on community dynamics not only independently but also under different combinations or environmental conditions to understand how those effects will be played out in more realistic scenarios.

  18. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems.

    PubMed

    Allgeier, Jacob E; Layman, Craig A; Mumby, Peter J; Rosemond, Amy D

    2014-08-01

    Corals thrive in low nutrient environments and the conservation of these globally imperiled ecosystems is largely dependent on mitigating the effects of anthropogenic nutrient enrichment. However, to better understand the implications of anthropogenic nutrients requires a heightened understanding of baseline nutrient dynamics within these ecosystems. Here, we provide a novel perspective on coral reef nutrient dynamics by examining the role of fish communities in the supply and storage of nitrogen (N) and phosphorus (P). We quantified fish-mediated nutrient storage and supply for 144 species and modeled these data onto 172 fish communities (71 729 individual fish), in four types of coral reefs, as well as seagrass and mangrove ecosystems, throughout the Northern Antilles. Fish communities supplied and stored large quantities of nutrients, with rates varying among ecosystem types. The size structure and diversity of the fish communities best predicted N and P supply and storage and N : P supply, suggesting that alterations to fish communities (e.g., overfishing) will have important implications for nutrient dynamics in these systems. The stoichiometric ratio (N : P) for storage in fish mass (~8 : 1) and supply (~20 : 1) was notably consistent across the four coral reef types (but not seagrass or mangrove ecosystems). Published nutrient enrichment studies on corals show that deviations from this N : P supply ratio may be associated with poor coral fitness, providing qualitative support for the hypothesis that corals and their symbionts may be adapted to specific ratios of nutrient supply. Consumer nutrient stoichiometry provides a baseline from which to better understand nutrient dynamics in coral reef and other coastal ecosystems, information that is greatly needed if we are to implement more effective measures to ensure the future health of the world's oceans. © 2014 John Wiley & Sons Ltd.

  19. Community Structure Of Coral Reefs In Saebus Island, Sumenep District, East Java

    NASA Astrophysics Data System (ADS)

    Rizmaadi, Mada; Riter, Johannes; Fatimah, Siti; Rifaldi, Riyan; Yoga, Arditho; Ramadhan, Fikri; Ambariyanto, Ambariyanto

    2018-02-01

    Increasing degradation coral reefs ecosystem has created many concerns. Reduction of this damage can only be done with good and proper management of coral reef ecosystem based on existing condition. The condition of coral reef ecosystem can be determined by assessing its community structure. This study investigates community structure of coral reef ecosystems around Saebus Island, Sumenep District, East Java, by using satellite imagery analysis and field observations. Satellite imagery analysis by Lyzenga methods was used to determine the observation stations and substrate distribution. Field observations were done by using Line Intercept Transect method at 4 stations, at the depth of 3 and 10 meters. The results showed that the percentage of coral reef coverage at the depth of 3 and 10 meters were 64.36% and 59.29%, respectively, and included in fine coverage category. This study found in total 25 genera from 13 families of corals at all stations. The most common species found were Acropora, Porites, and Pocillopora, while the least common species were Favites and Montastrea. Average value of Diversity, Uniformity and Dominancy indices were 2.94, 0.8 and 0.18 which include as medium, high, and low category, respectively. These results suggest that coral reef ecosystems around Saebus Island is in a good condition.

  20. Epizoic communities of prokaryotes on healthy and diseased scleractinian corals in Lingayen Gulf, Philippines.

    PubMed

    Arboleda, Mark; Reichardt, Wolfgang

    2009-01-01

    In search for microbiological indicators of coral health and coral diseases, community profiles of coral-associated epizoic prokaryotes were investigated because of their dual potential as a source of coral pathogens and their antagonists. In pairwise samples of visually healthy and diseased coral specimens from Bolinao Bay (Pangasinan, Philippines), mixed biofilm communities of ectoderm- and mucus-colonizing epizoic prokaryotes were compared using fluorescent in situ hybridization (FISH). Oligonucleotide probes targeted 13 phylotypes representing the main taxonomic groups of marine prokaryotes. Coral taxa tended to show specific community profiles. An attempt to separate the profiles of healthy and diseased specimens by applying principal component analysis (PCA) to a (nonselective) collection of corals (affected by various diseases) proved unsuccessful. On the other hand, separate PCA clusters were obtained from healthy and diseased corals belonging to a single species (Pocillopora damicornis) only. This cluster formation was dominated by principal component 1 with the genus Vibrio accounting for 18%. At the same time, reef-site-specific clusters were formed as well. At a reef site exposed to pollution from intensive fish cage (Chanos chanos) farming, healthy P. damicornis were mainly (93%) colonized by unicellular cyanobacteria. The formal calculation of diversity parameters suggested that evenness in particular was driven by both health status and reef site location. Despite the low resolution of taxonomic levels achieved with FISH probes targeting only large phylotype groups, significant differences between healthy and diseased corals and also between polluted and nonpolluted reef sites were observed.

  1. Local variability but landscape stability in coral reef communities following repeated hurricane impacts

    USGS Publications Warehouse

    Bythell, John C.; Hillis-Star, Zandy M; Rogers, Caroline S.

    2000-01-01

    Coral reef community structure has remained remarkably stable over a 10 yr period within a small protected marine area despite repeated hurricane impacts. Local community dynamics have been highly variable, however. Sites that were destroyed by disease in the 1970s are showing little or no recovery, while sites less than a kilometre away that were devastated by Hurricane Hugo in 1989 are recovering well. Strong coral recruitment has occurred in shallow, exposed areas that showed the greatest hurricane impacts, and these areas are now more species rich than in 1988, although coral cover has not reached pre-hurricane levels. Coral colony survivorship has been high throughout most of the study area. Partial mortality rates were elevated for several years following Hurricane Hugo, but significant whole coral-head mortality only occurred during periods with hurricane impacts and only at the most exposed sites. Overall, the coral community has proved resilient to closely repeated major hurricane impacts. From a single case study we cannot attribute this resilience to the relatively low level of human impacts, but grazing fish populations have apparently remained high enough to keep macroalgae in check despite the mass mortality of the herbivore Diadema antillarum in the 1980s.

  2. Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites astreoides

    PubMed Central

    Vega Thurber, Rebecca; Burkepile, Deron E.; Correa, Adrienne M. S.; Thurber, Andrew R.; Shantz, Andrew A.; Welsh, Rory; Pritchard, Catharine; Rosales, Stephanie

    2012-01-01

    With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs. PMID:22957055

  3. Macroalgae decrease growth and alter microbial community structure of the reef-building coral, Porites astreoides.

    PubMed

    Vega Thurber, Rebecca; Burkepile, Deron E; Correa, Adrienne M S; Thurber, Andrew R; Shantz, Andrew A; Welsh, Rory; Pritchard, Catharine; Rosales, Stephanie

    2012-01-01

    With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs.

  4. Chemoreception drives plastic consumption in a hard coral.

    PubMed

    Allen, Austin S; Seymour, Alexander C; Rittschof, Daniel

    2017-11-15

    The drivers behind microplastic (up to 5mm in diameter) consumption by animals are uncertain and impacts on foundational species are poorly understood. We investigated consumption of weathered, unfouled, biofouled, pre-production and microbe-free National Institute of Standards plastic by a scleractinian coral that relies on chemosensory cues for feeding. Experiment one found that corals ingested many plastic types while mostly ignoring organic-free sand, suggesting that plastic contains phagostimulents. Experiment two found that corals ingested more plastic that wasn't covered in a microbial biofilm than plastics that were biofilmed. Additionally, corals retained ~8% of ingested plastic for 24h or more and retained particles appeared stuck in corals, with consequences for energetics, pollutant toxicity and trophic transfer. The potential for chemoreception to drive plastic consumption in marine taxa has implications for conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations.

    PubMed

    Adam, Thomas C; Brooks, Andrew J; Holbrook, Sally J; Schmitt, Russell J; Washburn, Libe; Bernardi, Giacomo

    2014-09-01

    Global climate change is rapidly altering disturbance regimes in many ecosystems including coral reefs, yet the long-term impacts of these changes on ecosystem structure and function are difficult to predict. A major ecosystem service provided by coral reefs is the provisioning of physical habitat for other organisms, and consequently, many of the effects of climate change on coral reefs will be mediated by their impacts on habitat structure. Therefore, there is an urgent need to understand the independent and combined effects of coral mortality and loss of physical habitat on reef-associated biota. Here, we use a unique series of events affecting the coral reefs around the Pacific island of Moorea, French Polynesia to differentiate between the impacts of coral mortality and the degradation of physical habitat on the structure of reef fish communities. We found that, by removing large amounts of physical habitat, a tropical cyclone had larger impacts on reef fish communities than an outbreak of coral-eating sea stars that caused widespread coral mortality but left the physical structure intact. In addition, the impacts of declining structural complexity on reef fish assemblages accelerated as structure became increasingly rare. Structure provided by dead coral colonies can take up to decades to erode following coral mortality, and, consequently, our results suggest that predictions based on short-term studies are likely to grossly underestimate the long-term impacts of coral decline on reef fish communities.

  6. Highly heterogeneous bacterial communities associated with the South China Sea reef corals Porites lutea, Galaxea fascicularis and Acropora millepora.

    PubMed

    Li, Jie; Chen, Qi; Zhang, Si; Huang, Hui; Yang, Jian; Tian, Xin-Peng; Long, Li-Juan

    2013-01-01

    Coral harbor diverse and specific bacteria play significant roles in coral holobiont function. Bacteria associated with three of the common and phylogenetically divergent reef-building corals in the South China Sea, Porites lutea, Galaxea fascicularis and Acropora millepora, were investigated using 454 barcoded-pyrosequencing. Three colonies of each species were sampled, and 16S rRNA gene libraries were constructed individually. Analysis of pyrosequencing libraries showed that bacterial communities associated with the three coral species were more diverse than previous estimates based on corals from the Caribbean Sea, Indo-Pacific reefs and the Red Sea. Three candidate phyla, including BRC1, OD1 and SR1, were found for the first time in corals. Bacterial communities were separated into three groups: P. lutea and G. fascicular, A. millepora and seawater. P. lutea and G. fascicular displayed more similar bacterial communities, and bacterial communities associated with A. millepora differed from the other two coral species. The three coral species shared only 22 OTUs, which were distributed in Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Chloroflexi, Actinobacteria, Acidobacteria and an unclassified bacterial group. The composition of bacterial communities within each colony of each coral species also showed variation. The relatively small common and large specific bacterial communities in these corals implies that bacterial associations may be structured by multiple factors at different scales and that corals may associate with microbes in terms of similar function, rather than identical species.

  7. Pattern and intensity of human impact on coral reefs depend on depth along the reef profile and on the descriptor adopted

    NASA Astrophysics Data System (ADS)

    Nepote, Ettore; Bianchi, Carlo Nike; Chiantore, Mariachiara; Morri, Carla; Montefalcone, Monica

    2016-09-01

    Coral reefs are threatened by multiple global and local disturbances. The Maldives, already heavily hit by the 1998 mass bleaching event, are currently affected also by growing tourism and coastal development that may add to global impacts. Most of the studies investigating effects of local disturbances on coral reefs assessed the response of communities along a horizontal distance from the impact source. This study investigated the status of a Maldivian coral reef around an island where an international touristic airport has been recently (2009-2011) built, at different depths along the reef profile (5-20 m depth) and considering the change in the percentage of cover of five different non-taxonomic descriptors assessed through underwater visual surveys: hard corals, soft corals, other invertebrates, macroalgae and abiotic attributes. Eight reefs in areas not affected by any coastal development were used as controls and showed a reduction of hard coral cover and an increase of abiotic attributes (i.e. sand, rock, coral rubble) at the impacted reef. However, hard coral cover, the most widely used descriptor of coral reef health, was not sufficient on its own to detect subtle indirect effects that occurred down the reef profile. Selecting an array of descriptors and considering different depths, where corals may find a refuge from climate impacts, could guide the efforts of minimising local human pressures on coral reefs.

  8. The potential roles of bacterial communities in coral defence: A case study at Talang-talang reef

    NASA Astrophysics Data System (ADS)

    Kuek, Felicity W. I.; Lim, Li-Fang; Ngu, Lin-Hui; Mujahid, Aazani; Lim, Po-Teen; Leaw, Chui-Pin; Müller, Moritz

    2015-06-01

    Complex microbial communities are known to exert significant influence over coral reef ecosystems. The Talang- Satang National Park is situated off the coast of Sematan and is one of the most diverse ecosystems found off-Sarawak. Interestingly, the Talang-talang reef thrives at above-average temperatures of 28- 30°C throughout the year. Through isolation and identification (16S rRNA) of native microbes from the coral, the surface mucus layer (SML), as well as the surrounding sediment and waters, we were able to determine the species composition and abundance of the culturable bacteria in the coral reef ecosystem. Isolates found attached to the coral are related mostly to Vibrio spp., presumably attached to the mucus from the water column and surrounding sediment. Pathogenic Vibrio spp. and Bacillus spp. were dominant amongst the isolates from the water column and sediment, while known coral pathogens responsible for coral bleaching, Vibrio coralliilyticus and Vibrio shiloi, were isolated from the coral SML and sediment samples respectively. Coral SML isolates were found to be closely related to known nitrogen fixers and antibiotic producers with tolerance towards elevated temperatures and heavy metal contamination, offering a possible explanation why the local corals are able to thrive in higher than usual temperatures. This specialized microbiota may be important for protecting the corals from pathogens by occupying entry niches and/or through the production of secondary metabolites such as antibiotics. The communities from the coral SML were tested against each other at 28, 30 and 32°C, and were also assessed for the presence of type I modular polyketides synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes which are both involved in the production of antibiotic compounds. The bacterial community from the SML exhibited antimicrobial properties under normal temperatures while pathogenic strains appeared toxic at elevated temperatures and our results

  9. Dynamics in benthic community composition and influencing factors in an upwelling-exposed coral reef on the Pacific coast of Costa Rica

    PubMed Central

    Sánchez-Noguera, Celeste; Roth, Florian; Jiménez, Carlos; Rixen, Tim; Cortés, Jorge; Wild, Christian

    2015-01-01

    Seasonal upwelling at the northern Pacific coast of Costa Rica offers the opportunity to investigate the effects of pronounced changes in key water parameters on fine-scale dynamics of local coral reef communities. This study monitored benthic community composition at Matapalo reef (10.539°N, 85.766°W) by weekly observations of permanent benthic quadrats from April 2013 to April 2014. Monitoring was accompanied by surveys of herbivore abundance and biomass and measurements of water temperature and inorganic nutrient concentrations. Findings revealed that the reef-building corals Pocillopora spp. exhibited an exceptional rapid increase from 22 to 51% relative benthic cover. By contrast, turf algae cover decreased from 63 to 24%, resulting in a corresponding increase in crustose coralline algae cover. The macroalga Caulerpa sertularioides covered up to 15% of the reef in April 2013, disappeared after synchronized gamete release in May, and subsequently exhibited slow regrowth. Parallel monitoring of influencing factors suggest that C. sertularioides cover was mainly regulated by their reproductive cycle, while that of turf algae was likely controlled by high abundances of herbivores. Upwelling events in February and March 2014 decreased mean daily seawater temperatures by up to 7 °C and increased nutrient concentrations up to 5- (phosphate) and 16-fold (nitrate) compared to mean values during the rest of the year. Changes in benthic community composition did not appear to correspond to the strong environmental changes, but rather shifted from turf algae to hard coral dominance over the entire year of observation. The exceptional high dynamic over the annual observation period encourages further research on the adaptation potential of coral reefs to environmental variability. PMID:26623190

  10. Fishing degrades size structure of coral reef fish communities.

    PubMed

    Robinson, James P W; Williams, Ivor D; Edwards, Andrew M; McPherson, Jana; Yeager, Lauren; Vigliola, Laurent; Brainard, Russell E; Baum, Julia K

    2017-03-01

    Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra and biomass of coral reef fish communities at 38 US-affiliated Pacific islands that ranged in human presence from near pristine to human population centers. Size spectra 'steepened' steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. Reef fish biomass was substantially lower on inhabited islands than uninhabited ones, even at inhabited islands with the lowest levels of human presence. We found that on populated islands size spectra exponents decreased (analogous to size spectra steepening) linearly with declining biomass, whereas on uninhabited islands there was no relationship. Size spectra were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to oceanographic conditions, being influenced by both oceanic productivity and sea surface temperature. Our results suggest that community size structure may be a more robust indicator than fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems. © 2016

  11. 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore.

    PubMed

    Guest, J R; Tun, K; Low, J; Vergés, A; Marzinelli, E M; Campbell, A H; Bauman, A G; Feary, D A; Chou, L M; Steinberg, P D

    2016-11-08

    Coral cover on reefs is declining globally due to coastal development, overfishing and climate change. Reefs isolated from direct human influence can recover from natural acute disturbances, but little is known about long term recovery of reefs experiencing chronic human disturbances. Here we investigate responses to acute bleaching disturbances on turbid reefs off Singapore, at two depths over a period of 27 years. Coral cover declined and there were marked changes in coral and benthic community structure during the first decade of monitoring at both depths. At shallower reef crest sites (3-4 m), benthic community structure recovered towards pre-disturbance states within a decade. In contrast, there was a net decline in coral cover and continuing shifts in community structure at deeper reef slope sites (6-7 m). There was no evidence of phase shifts to macroalgal dominance but coral habitats at deeper sites were replaced by unstable substrata such as fine sediments and rubble. The persistence of coral dominance at chronically disturbed shallow sites is likely due to an abundance of coral taxa which are tolerant to environmental stress. In addition, high turbidity may interact antagonistically with other disturbances to reduce the impact of thermal stress and limit macroalgal growth rates.

  12. 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore

    PubMed Central

    Guest, J. R.; Tun, K.; Low, J.; Vergés, A.; Marzinelli, E. M.; Campbell, A. H.; Bauman, A. G.; Feary, D. A.; Chou, L. M.; Steinberg, P. D.

    2016-01-01

    Coral cover on reefs is declining globally due to coastal development, overfishing and climate change. Reefs isolated from direct human influence can recover from natural acute disturbances, but little is known about long term recovery of reefs experiencing chronic human disturbances. Here we investigate responses to acute bleaching disturbances on turbid reefs off Singapore, at two depths over a period of 27 years. Coral cover declined and there were marked changes in coral and benthic community structure during the first decade of monitoring at both depths. At shallower reef crest sites (3–4 m), benthic community structure recovered towards pre-disturbance states within a decade. In contrast, there was a net decline in coral cover and continuing shifts in community structure at deeper reef slope sites (6–7 m). There was no evidence of phase shifts to macroalgal dominance but coral habitats at deeper sites were replaced by unstable substrata such as fine sediments and rubble. The persistence of coral dominance at chronically disturbed shallow sites is likely due to an abundance of coral taxa which are tolerant to environmental stress. In addition, high turbidity may interact antagonistically with other disturbances to reduce the impact of thermal stress and limit macroalgal growth rates. PMID:27824083

  13. Coral Bleaching Assessment Through Remote Sensing and Integrated Citizen Science (CoralBASICS): Engaging Dive Instructors on Reef Characterization in Southwest, Puerto Rico Coupled with the Analysis of Water Quality Using NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Torres-Perez, J. L.; Armstrong, R.; Detres, Y.; Aragones-Fred, C.; Melendez, J.

    2017-12-01

    As recurrences of extreme sea water thermal events increase with climate change, the need for continuous monitoring of coral reefs becomes even more evident. Enabling properly trained members from the local communities to actively participate in scientific programs/research projects, provides for such monitoring at little cost once the citizens are properly trained and committed. Further, the possibility of obtaining high temporal resolution data with citizen scientists can provide for new venues to answer questions that may not be answered with traditional research approaches. The CoralBASICS project engages members of the local diving industry in Puerto Rico on the assessment of coastal water quality and the status of Puerto Rico's coral reefs in an age of climate change and in particular, an increase in the frequency and magnitude of coral bleaching events. The project complements remote sensing data with community-based field assessments strictly supervised by the PI's. The study focuses on training citizen scientists (dive instructors) on the collection of benthic information related to the state of coral reefs using the Reef Check (fish and invertebrates ID and substrate composition) and video transects methodologies, monitoring of coral bleaching events, and collecting of water quality data using a smartphone ocean color application. The data collected by citizen scientists complements the validation of Landsat-8 (OLI) imagery for water quality assessment. At the same time, researchers from the University of Puerto Rico conduct field assessment of the bio-optical properties of waters surrounding the coral reef study areas. Dive instructors have been collecting benthic and water quality data for the past 4 months. Initial analysis using the Coral Point Count with excel extension (CPCe) software showed a dominance of gorgonians at most sites (up to 32.8%) with hard coral cover ranging between 5.5-13.2% of the hard substrates. No coral diseases or bleaching

  14. Structure of Caribbean coral reef communities across a large gradient of fish biomass.

    PubMed

    Newman, Marah J H; Paredes, Gustavo A; Sala, Enric; Jackson, Jeremy B C

    2006-11-01

    The collapse of Caribbean coral reefs has been attributed in part to historic overfishing, but whether fish assemblages can recover and how such recovery might affect the benthic reef community has not been tested across appropriate scales. We surveyed the biomass of reef communities across a range in fish abundance from 14 to 593 g m(-2), a gradient exceeding that of any previously reported for coral reefs. Increased fish biomass was correlated with an increased proportion of apex predators, which were abundant only inside large marine reserves. Increased herbivorous fish biomass was correlated with a decrease in fleshy algal biomass but corals have not yet recovered.

  15. Ciliate communities consistently associated with coral diseases

    NASA Astrophysics Data System (ADS)

    Sweet, M. J.; Séré, M. G.

    2016-07-01

    Incidences of coral disease are increasing. Most studies which focus on diseases in these organisms routinely assess variations in bacterial associates. However, other microorganism groups such as viruses, fungi and protozoa are only recently starting to receive attention. This study aimed at assessing the diversity of ciliates associated with coral diseases over a wide geographical range. Here we show that a wide variety of ciliates are associated with all nine coral diseases assessed. Many of these ciliates such as Trochilia petrani and Glauconema trihymene feed on the bacteria which are likely colonizing the bare skeleton exposed by the advancing disease lesion or the necrotic tissue itself. Others such as Pseudokeronopsis and Licnophora macfarlandi are common predators of other protozoans and will be attracted by the increase in other ciliate species to the lesion interface. However, a few ciliate species (namely Varistrombidium kielum, Philaster lucinda, Philaster guamense, a Euplotes sp., a Trachelotractus sp. and a Condylostoma sp.) appear to harbor symbiotic algae, potentially from the coral themselves, a result which may indicate that they play some role in the disease pathology at the very least. Although, from this study alone we are not able to discern what roles any of these ciliates play in disease causation, the consistent presence of such communities with disease lesion interfaces warrants further investigation.

  16. Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia

    PubMed Central

    Januar, Indra; Wild, Christian; Kunzmann, Andreas

    2016-01-01

    Declining water quality is one of the main reasons of coral reef degradation in the Thousand Islands off the megacity Jakarta, Indonesia. Shifts in benthic community composition to higher soft coral abundances have been reported for many degraded reefs throughout the Indo-Pacific. However, it is not clear to what extent soft coral abundance and physiology are influenced by water quality. In this study, live benthic cover and water quality (i.e. dissolved inorganic nutrients (DIN), turbidity (NTU), and sedimentation) were assessed at three sites (< 20 km north of Jakarta) in Jakarta Bay (JB) and five sites along the outer Thousand Islands (20–60 km north of Jakarta). This was supplemented by measurements of photosynthetic yield and, for the first time, respiratory electron transport system (ETS) activity of two dominant soft coral genera, Sarcophyton spp. and Nephthea spp. Findings revealed highly eutrophic water conditions in JB compared to the outer Thousand Islands, with 44% higher DIN load (7.65 μM/L), 67% higher NTU (1.49 NTU) and 47% higher sedimentation rate (30.4 g m−2 d−1). Soft corals were the dominant type of coral cover within the bay (2.4% hard and 12.8% soft coral cover) compared to the outer Thousand Islands (28.3% hard and 6.9% soft coral cover). Soft coral abundances, photosynthetic yield, and ETS activity were highly correlated with key water quality parameters, particularly DIN and sedimentation rates. The findings suggest water quality controls the relative abundance and physiology of dominant soft corals in JB and may thus contribute to phase shifts from hard to soft coral dominance, highlighting the need to better manage water quality in order to prevent or reverse phase shifts. PMID:27904802

  17. Community metabolism in shallow coral reef and seagrass ecosystems, lower Florida Keys

    USGS Publications Warehouse

    Turk, Daniela; Yates, Kimberly K.; Vega-Rodriguez, Maria; Toro-Farmer, Gerardo; L'Esperance, Chris; Melo, Nelson; Ramsewak, Deanesch; Estrada, S. Cerdeira; Muller-Karger, Frank E.; Herwitz, Stan R.; McGillis, Wade

    2016-01-01

    Diurnal variation of net community production (NEP) and net community calcification (NEC) were measured in coral reef and seagrass biomes during October 2012 in the lower Florida Keys using a mesocosm enclosure and the oxygen gradient flux technique. Seagrass and coral reef sites showed diurnal variations of NEP and NEC, with positive values at near-seafloor light levels >100–300 µEinstein m-2 s-1. During daylight hours, we detected an average NEP of 12.3 and 8.6 mmol O2 m-2 h-1 at the seagrass and coral reef site, respectively. At night, NEP at the seagrass site was relatively constant, while on the coral reef, net respiration was highest immediately after dusk and decreased during the rest of the night. At the seagrass site, NEC values ranged from 0.20 g CaCO3 m-2 h-1 during daylight to -0.15 g CaCO3 m-2 h-1 at night, and from 0.17 to -0.10 g CaCO3 m-2 h-1 at the coral reef site. There were no significant differences in pH and aragonite saturation states (Ωar) between the seagrass and coral reef sites. Decrease in light levels during thunderstorms significantly decreased NEP, transforming the system from net autotrophic to net heterotrophic.

  18. Assessing the effects of non-point source pollution on American Samoa's coral reef communities.

    PubMed

    Houk, Peter; Didonato, Guy; Iguel, John; Van Woesik, Robert

    2005-08-01

    Surveys were completed on Tutuila Island, American Samoa, to characterize reef development and assess the impacts of non-point source pollution on adjacent coral reefs at six sites. Multivariate analyses of benthic and coral community data found similar modern reef development at three locations; Aoa, Alofau, and Leone. These sites are situated in isolated bays with gentle sloping foundations. Aoa reefs had the highest estimates of crustose coralline algae cover and coral species richness, while Leone and Alofau showed high abundances of macroalgae and Porites corals. Aoa has the largest reef flat between watershed discharge and the reef slope, and the lowest human population density. Masefau and Fagaalu have a different geomorphology consisting of cemented staghorn coral fragments and steep slopes, however, benthic and coral communities were not similar. Benthic data suggest Fagaalu is heavily impacted compared with all other sites. Reef communities were assessed as bio-criteria indicators for waterbody health, using the EPA aquatic life use support designations of (1) fully supportive, (2) partially supportive, and (3) non-supportive for aquatic life. All sites resulted in a partially supportive ranking except Fagaalu, which was non-supportive. The results of this rapid assessment based upon relative benthic community measures are less desirable than long-term dataset analyses from monitoring programs, however it fills an important role for regulatory agencies required to report annual waterbody assessments. Future monitoring sites should be established to increase the number of replicates within each geological and physical setting to allow for meaningful comparisons along a gradient of hypothesized pollution levels.

  19. Benthic community structure on coral reefs exposed to intensive recreational snorkeling.

    PubMed

    Renfro, Bobbie; Chadwick, Nanette E

    2017-01-01

    Chronic anthropogenic disturbances on coral reefs in the form of overfishing and pollution can shift benthic community composition away from stony corals and toward macroalgae. The use of reefs for recreational snorkeling and diving potentially can lead to similar ecological impacts if not well-managed, but impacts of snorkeling on benthic organisms are not well understood. We quantified variation in benthic community structure along a gradient of snorkeling frequency in an intensively-visited portion of the Mesoamerican Barrier Reef. We determined rates of snorkeling in 6 water sections and rates of beach visitation in 4 adjacent land sections at Akumal Bay, Mexico. For each in-water section at 1-3 m depth, we also assessed the percent cover of benthic organisms including taxa of stony corals and macroalgae. Rates of recreational snorkeling varied from low in the southwestern to very high (>1000 snorkelers d-1) in the northeastern sections of the bay. Stony coral cover decreased and macroalgal cover increased significantly with levels of snorkeling, while trends varied among taxa for other organisms such as gorgonians, fire corals, and sea urchins. We conclude that benthic organisms appear to exhibit taxon-specific variation with levels of recreational snorkeling. To prevent further degradation, we recommend limitation of snorkeler visitation rates, coupled with visitor education and in-water guides to reduce reef-damaging behaviors by snorkelers in high-use areas. These types of management activities, integrated with reef monitoring and subsequent readjustment of management, have the potential to reverse the damage potentially inflicted on coral reefs by the expansion of reef-based recreational snorkeling.

  20. Selective Impact of Disease on Coral Communities: Outbreak of White Syndrome Causes Significant Total Mortality of Acropora Plate Corals

    PubMed Central

    Hobbs, Jean-Paul A.; Frisch, Ashley J.; Newman, Stephen J.; Wakefield, Corey B.

    2015-01-01

    Coral diseases represent a significant and increasing threat to coral reefs. Among the most destructive diseases is White Syndrome (WS), which is increasing in distribution and prevalence throughout the Indo-Pacific. The aim of this study was to determine taxonomic and spatial patterns in mortality rates of corals following the 2008 outbreak of WS at Christmas Island in the eastern Indian Ocean. WS mainly affected Acropora plate corals and caused total mortality of 36% of colonies across all surveyed sites and depths. Total mortality varied between sites but was generally much greater in the shallows (0–96% of colonies at 5 m depth) compared to deeper waters (0–30% of colonies at 20 m depth). Site-specific mortality rates were a reflection of the proportion of corals affected by WS at each site during the initial outbreak and were predicted by the initial cover of live Acropora plate cover. The WS outbreak had a selective impact on the coral community. Following the outbreak, live Acropora plate coral cover at 5 m depth decreased significantly from 7.0 to 0.8%, while the cover of other coral taxa remained unchanged. Observations five years after the initial outbreak revealed that total Acropora plate cover remained low and confirmed that corals that lost all their tissue due to WS did not recover. These results demonstrate that WS represents a significant and selective form of coral mortality and highlights the serious threat WS poses to coral reefs in the Indo-Pacific. PMID:26147291

  1. Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community.

    PubMed

    Bongaerts, Pim; Frade, Pedro R; Hay, Kyra B; Englebert, Norbert; Latijnhouwers, Kelly R W; Bak, Rolf P M; Vermeij, Mark J A; Hoegh-Guldberg, Ove

    2015-01-07

    The composition, ecology and environmental conditions of mesophotic coral ecosystems near the lower limits of their bathymetric distributions remain poorly understood. Here we provide the first in-depth assessment of a lower mesophotic coral community (60-100 m) in the Southern Caribbean through visual submersible surveys, genotyping of coral host-endosymbiont assemblages, temperature monitoring and a growth experiment. The lower mesophotic zone harbored a specialized coral community consisting of predominantly Agaricia grahamae, Agaricia undata and a "deep-water" lineage of Madracis pharensis, with large colonies of these species observed close to their lower distribution limit of ~90 m depth. All three species associated with "deep-specialist" photosynthetic endosymbionts (Symbiodinium). Fragments of A. grahamae exhibited growth rates at 60 m similar to those observed for shallow Agaricia colonies (~2-3 cm yr(-1)), but showed bleaching and (partial) mortality when transplanted to 100 m. We propose that the strong reduction of temperature over depth (Δ5°C from 40 to 100 m depth) may play an important contributing role in determining lower depth limits of mesophotic coral communities in this region. Rather than a marginal extension of the reef slope, the lower mesophotic represents a specialized community, and as such warrants specific consideration from science and management.

  2. Differential response of coral communities to Caulerpa spp. bloom in the reefs of Indian Ocean.

    PubMed

    Manikandan, B; Ravindran, J

    2017-02-01

    Coral reef ecosystems are disturbed in tandem by climatic and anthropogenic stressors. A number of factors act synergistically to reduce the live coral cover and threaten the existence of reefs. Continuous monitoring of the coral communities during 2012-2014 captured an unprecedented growth of macroalgae as a bloom at Gulf of Mannar (GoM) and Palk Bay (PB) which are protected and unprotected reefs, respectively. The two reefs varying in their protection level enabled to conduct an assessment on the response of coral communities and their recovery potential during and after the macroalgal bloom. Surveys in 2012 revealed a live coral cover of 36.8 and 14.6% in GoM and PB, respectively. Live coral cover was lost at an annual rate of 4% in PB due to the Caulerpa racemosa blooms that occurred in 2013 and 2014. In GoM, the loss of live coral cover was estimated to be 16.5% due to C. taxifolia bloom in 2013. Tissue regeneration by the foliose and branching coral morphotypes aided the recovery of live coral cover in GoM, whereas the chances for the recovery of live coral cover in PB reef were low, primarily due to frequent algal blooms, and the existing live coral cover was mainly due to the abundance of slow-growing massive corals. In combination, results of this study suggested that the recovery of a coral reef after a macroalgal bloom largely depends on coral species composition and the frequency of stress events. A further study linking macroalgal bloom to its specific cause is essential for the successful intervention and management.

  3. Species-area relationships in coral communities: evaluating mechanisms for a commonly observed pattern

    NASA Astrophysics Data System (ADS)

    Huntington, B. E.; Lirman, D.

    2012-12-01

    Landscape-scale attributes of patch size, spatial isolation, and topographic complexity are known to influence diversity and abundance in terrestrial and marine systems, but remain collectively untested for reef-building corals. To investigate the relationship between the coral assemblage and seascape variation in reef habitats, we took advantage of the distinct boundaries, spatial configurations, and topographic complexities among artificial reef patches to overcome the difficulties of manipulating natural reefs. Reef size (m2) was found to be the foremost predictor of coral richness in accordance with species-area relationship predictions. Larger reefs were also found to support significantly higher colony densities, enabling us to reject the null hypothesis of random placement (a sampling artifact) in favor of target area predictions that suggest greater rates of immigration on larger reefs. Unlike the pattern previously documented for reef fishes, topographic complexity was not a significant predictor of any coral assemblage response variable, despite the range of complexity values sampled. Lastly, coral colony density was best explained by both increasing reef size and decreasing reef spatial isolation, a pattern found exclusively among brooding species with shorter larval dispersal distances. We conclude that seascape attributes of reef size and spatial configuration within the seascape can influence the species richness and abundance of the coral community at relatively small spatial scales (<1 km). Specifically, we demonstrate how patterns in the coral communities that have naturally established on these manipulated reefs agree with the target area and island biogeography mechanisms to drive species-area relationships in reef-building corals. Based on the patterns documented in artificial reefs, habitat degradation that results in smaller, more isolated natural reefs may compromise coral diversity.

  4. Environmental and ecological controls of coral community metabolism on Palmyra Atoll

    NASA Astrophysics Data System (ADS)

    Koweek, David; Dunbar, Robert B.; Rogers, Justin S.; Williams, Gareth J.; Price, Nichole; Mucciarone, David; Teneva, Lida

    2015-03-01

    Accurate predictions of how coral reefs may respond to global climate change hinge on understanding the natural variability to which these ecosystems are exposed and to which they contribute. We present high-resolution estimates of net community calcification (NCC) and net community production (NCP) from Palmyra Atoll, an uninhabited, near-pristine coral reef ecosystem in the central Pacific. In August-October 2012, we employed a combination of Lagrangian and Eulerian frameworks to establish high spatial (~2.5 km2) and temporal (hourly) resolution coral community metabolic estimates. Lagrangian drifts, all conducted during daylight hours, resulted in NCC estimates of -51 to 116 mmol C m-2 h-1, although most NCC estimates were in the range of 0-40 mmol C m-2 h-1. Lagrangian drift NCP estimates ranged from -7 to 67 mmol C m-2 h-1. In the Eulerian setup, we present carbonate system parameters (dissolved inorganic carbon, total alkalinity, pH, and pCO2) at sub-hourly resolution through several day-night cycles and provide hourly NCC and NCP rate estimates. We compared diel cycles of all four carbonate system parameters to the offshore surface water (0-50 m depth) and show large departures from offshore surface water chemistry. Hourly Eulerian estimates of NCC aggregated over the entire study ranged from 14 to 53 mmol C m-2 h-1, showed substantial variability during daylight hours, and exhibited a diel cycle with elevated NCC in the afternoons and depressed, but positive, NCC at night. The Eulerian NCP range was very high (-55 to 177 mmol C m-2 h-1) and exhibited strong variability during daylight hours. Principal components analysis revealed that NCC and NCP were most closely aligned with diel cycle forcing, whereas the NCC/NCP ratio was most closely aligned with reef community composition. Our analysis demonstrates that ecological community composition is the primary determinant of coral reef biogeochemistry on a near-pristine reef and that reef biogeochemistry is

  5. Impacts of the Deepwater Horizon oil spill on deep-sea coral-associated sediment communities

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Bourque, Jill R.; Cordes, Erik E.; Stamler, Katherine

    2016-01-01

    Cold-water corals support distinct populations of infauna within surrounding sediments that provide vital ecosystem functions and services in the deep sea. Yet due to their sedentary existence, infauna are vulnerable to perturbation and contaminant exposure because they are unable to escape disturbance events. While multiple deep-sea coral habitats were injured by the 2010 Deepwater Horizon (DWH) oil spill, the extent of adverse effects on coral-associated sediment communities is unknown. In 2011, sediments were collected adjacent to several coral habitats located 6 to 183 km from the wellhead in order to quantify the extent of impact of the DWH spill on infaunal communities. Higher variance in macrofaunal abundance and diversity, and different community structure (higher multivariate dispersion) were associated with elevated hydrocarbon concentrations and contaminants at sites closest to the wellhead (MC294, MC297, and MC344), consistent with impacts from the spill. In contrast, variance in meiofaunal diversity was not significantly related to distance from the wellhead and no other community metric (e.g. density or multivariate dispersion) was correlated with contaminants or hydrocarbon concentrations. Concentrations of polycyclic aromatic hydrocarbons (PAH) provided the best statistical explanation for observed macrofaunal community structure, while depth and presence of fine-grained mud best explained meiofaunal community patterns. Impacts associated with contaminants from the DWH spill resulted in a patchwork pattern of infaunal community composition, diversity, and abundance, highlighting the role of variability as an indicator of disturbance. These data represent a useful baseline for tracking post-spill recovery of these deep-sea communities.

  6. Benthic community structure on coral reefs exposed to intensive recreational snorkeling

    PubMed Central

    Renfro, Bobbie

    2017-01-01

    Chronic anthropogenic disturbances on coral reefs in the form of overfishing and pollution can shift benthic community composition away from stony corals and toward macroalgae. The use of reefs for recreational snorkeling and diving potentially can lead to similar ecological impacts if not well-managed, but impacts of snorkeling on benthic organisms are not well understood. We quantified variation in benthic community structure along a gradient of snorkeling frequency in an intensively-visited portion of the Mesoamerican Barrier Reef. We determined rates of snorkeling in 6 water sections and rates of beach visitation in 4 adjacent land sections at Akumal Bay, Mexico. For each in-water section at 1–3 m depth, we also assessed the percent cover of benthic organisms including taxa of stony corals and macroalgae. Rates of recreational snorkeling varied from low in the southwestern to very high (>1000 snorkelers d-1) in the northeastern sections of the bay. Stony coral cover decreased and macroalgal cover increased significantly with levels of snorkeling, while trends varied among taxa for other organisms such as gorgonians, fire corals, and sea urchins. We conclude that benthic organisms appear to exhibit taxon-specific variation with levels of recreational snorkeling. To prevent further degradation, we recommend limitation of snorkeler visitation rates, coupled with visitor education and in-water guides to reduce reef-damaging behaviors by snorkelers in high-use areas. These types of management activities, integrated with reef monitoring and subsequent readjustment of management, have the potential to reverse the damage potentially inflicted on coral reefs by the expansion of reef-based recreational snorkeling. PMID:28873449

  7. Effects of terrestrial runoff on the coral communities in Santiago Bay, Colima, Mexican Pacific Coast.

    PubMed

    Liñán-Cabello, Marco Agustín; Olivos-Ortiz, Aramis; Quijano-Scheggia, Sonia; Muñiz Anguiano, Daniela; Reséndiz-Flores, María Luisa; Ortega-Ortíz, Christian D

    2016-09-01

    Coral reef ecosystems are under stress of different origins, from factors including sedimentation, fragmentation, overfishing, and tourism, depending on their geographical location, depth, and proximity to recreation areas. In this study of Juluapan Lagoon, we examined the relationship between various water-quality attributes and the status indicators of the coral community at La Boquita reef. During 2011 (12 months of sampling), six monitoring stations in the Juluapan lagoon were established in order to observe the gradient of the distribution of the physicochemical parameters: three stations on the upper part, or BI, (S4 to S6) and three more in the lower part, or BII, (S1 to S3). A control station (CS) was located in the coral reef close to the lagoon channel, and where dissolved inorganic nutrients and cellular carbon content were determined. Additionally, we considered the monitoring of three of the eight largest coral structures/headlands of this community: the first was the station closest to the channel communicating with Juluapan lagoon (C1), the second was in the intermediate region with respect to that lagoon (C2), and the third was farthest from the channel (C3). Three line intercept transects (LIT) 30 m in length and perpendicular to the coast provenance were established in each station, and the parameters indicative of the status of corals were evaluated in an area of 60 m2 on each transect (180 m2 by the station). Turbidity, evidence of fishing, signs of settling, algal coverage, abundance of fish, rate of sediment, and coral health records (as for CoralWach chart) were determined in situ and from digital photographs and videos. Considering various community status indicators used in the reef area, we could recognize a state of general deterioration, which was reflected in the loss of 17 % of coral coverage. The main anthropogenic disturbances in adjacent areas to La Boquita reef included wastewater discharges into the lagoon, tourist developments in

  8. Coral Symbiodinium Community Composition Across the Belize Mesoamerican Barrier Reef System is Influenced by Host Species and Thermal Variability.

    PubMed

    Baumann, J H; Davies, S W; Aichelman, H E; Castillo, K D

    2018-05-01

    Reef-building corals maintain a symbiotic relationship with dinoflagellate algae of the genus Symbiodinium, and this symbiosis is vital for the survival of the coral holobiont. Symbiodinium community composition within the coral host has been shown to influence a coral's ability to resist and recover from stress. A multitude of stressors including ocean warming, ocean acidification, and eutrophication have been linked to global scale decline in coral health and cover in recent decades. Three distinct thermal regimes (high TP , mod TP , and low TP ) following an inshore-offshore gradient of declining average temperatures and thermal variation were identified on the Belize Mesoamerican Barrier Reef System (MBRS). Quantitative metabarcoding of the ITS-2 locus was employed to investigate differences and similarities in Symbiodinium genetic diversity of the Caribbean corals Siderastrea siderea, S. radians, and Pseudodiploria strigosa between the three thermal regimes. A total of ten Symbiodinium lineages were identified across the three coral host species. S. siderea was associated with distinct Symbiodinium communities; however, Symbiodinium communities of its congener, S. radians and P. strigosa, were more similar to one another. Thermal regime played a role in defining Symbiodinium communities in S. siderea but not S. radians or P. strigosa. Against expectations, Symbiodinium trenchii, a symbiont known to confer thermal tolerance, was dominant only in S. siderea at one sampled offshore site and was rare inshore, suggesting that coral thermal tolerance in more thermally variable inshore habitats is achieved through alternative mechanisms. Overall, thermal parameters alone were likely not the only primary drivers of Symbiodinium community composition, suggesting that environmental variables unrelated to temperature (i.e., light availability or nutrients) may play key roles in structuring coral-algal communities in Belize and that the relative importance of these

  9. Maternal effects and Symbiodinium community composition drive differential patterns in juvenile survival in the coral Acropora tenuis

    PubMed Central

    Willis, Bette L.; Bay, Line K.

    2016-01-01

    Coral endosymbionts in the dinoflagellate genus Symbiodinium are known to impact host physiology and have led to the evolution of reef-building, but less is known about how symbiotic communities in early life-history stages and their interactions with host parental identity shape the structure of coral communities on reefs. Differentiating the roles of environmental and biological factors driving variation in population demographic processes, particularly larval settlement, early juvenile survival and the onset of symbiosis is key to understanding how coral communities are structured and to predicting how they are likely to respond to climate change. We show that maternal effects (that here include genetic and/or effects related to the maternal environment) can explain nearly 24% of variation in larval settlement success and 5–17% of variation in juvenile survival in an experimental study of the reef-building scleractinian coral, Acropora tenuis. After 25 days on the reef, Symbiodinium communities associated with juvenile corals differed significantly between high mortality and low mortality families based on estimates of taxonomic richness, composition and relative abundance of taxa. Our results highlight that maternal and familial effects significantly explain variation in juvenile survival and symbiont communities in a broadcast-spawning coral, with Symbiodinium type A3 possibly a critical symbiotic partner during this early life stage. PMID:27853562

  10. Metatranscriptome Sequencing of a Reef-building Coral Elucidates Holobiont Community Gene Functions in Health and Disease

    NASA Astrophysics Data System (ADS)

    Timberlake, S.; Helbig, T.; Fernando, S.; Penn, K.; Alm, E.; Thompson, F.; Thompson, J. R.

    2012-12-01

    The coral reefs of the Abrolhos Bank of Brazil play a vital ecological role in the health of the Southern Atlantic Ocean, but accelerating rates of disease, particularly white plague, threaten this ecosystem. Thus, an understanding of white plague disease and diagnostic tests for it are urgently needed. The coral animal is associated with a distinct microbiome, a diverse assemblage of eukaryotes, bacteria, and viruses. That these microbes have a great influence on the health of the coral has been long known, however, most of their functions are still mysterious. While recent studies have contrasted healthy and white-plague-associated communities, the causative agents and mechanisms of the disease remain unknown. We collected fragments of healthy and diseased corals, as well as post-disease skeleton, from 12 colonies of the genus Mussismilia, the major component of the reef structure in the Abrolhos bank, and increasingly, a victim of white-plague disease. Fragments were flash-frozen in situ, and prepped for culture-free high throughput sequencing of gene transcripts with the Illumina II-G. While the membership of the microbial communities associated with coral has been previously described, the a coral holobiont community's gene function has, to date, never been assayed by this powerful approach. We designed a bioinformatics pipeline to analyze the short-read data from this complex sample: identifying the functions of genes expressed in the holobiont, and describing the active community's taxonomic composition. We show that gene functions expressed by the coral's bacterial assemblage are distinct from those of the underlying skeleton, and we highlight differences in the disease samples. We find that gene markers for the dissimilatory sulfate reduction pathway more abundant in the disease state, and we further quantify this difference with qPCR. Finally, we report the abundant expression of highly repetitive transcripts in the diseased coral samples, and highlight

  11. Simulations of Long-Term Community Dynamics in Coral Reefs - How Perturbations Shape Trajectories

    PubMed Central

    Kubicek, Andreas; Muhando, Christopher; Reuter, Hauke

    2012-01-01

    Tropical coral reefs feature extraordinary biodiversity and high productivity rates in oligotrophic waters. Due to increasing frequencies of perturbations – anthropogenic and natural – many reefs are under threat. Such perturbations often have devastating effects on these unique ecosystems and especially if they occur simultaneously and amplify each other's impact, they might trigger a phase shift and create irreversible conditions. We developed a generic, spatially explicit, individual-based model in which competition drives the dynamics of a virtual benthic reef community – comprised of scleractinian corals and algae – under different environmental settings. Higher system properties, like population dynamics or community composition arise through self-organization as emergent properties. The model was parameterized for a typical coral reef site at Zanzibar, Tanzania and features coral bleaching and physical disturbance regimes as major sources of perturbations. Our results show that various types and modes (intensities and frequencies) of perturbations create diverse outcomes and that the switch from high diversity to single species dominance can be evoked by small changes in a key parameter. Here we extend the understanding of coral reef resilience and the identification of key processes, drivers and respective thresholds, responsible for changes in local situations. One future goal is to provide a tool which may aid decision making processes in management of coral reefs. PMID:23209397

  12. Can resistant coral-Symbiodinium associations enable coral communities to survive climate change? A study of a site exposed to long-term hot water input

    PubMed Central

    Keshavmurthy, Shashank; Meng, Pei-Jie; Wang, Jih-Terng; Kuo, Chao-Yang; Yang, Sung-Yin; Hsu, Chia-Min; Gan, Chai-Hsia; Dai, Chang-Feng

    2014-01-01

    Climate change has led to a decline in the health of corals and coral reefs around the world. Studies have shown that, while some corals can cope with natural and anthropogenic stressors either through resistance mechanisms of coral hosts or through sustainable relationships with Symbiodinium clades or types, many coral species cannot. Here, we show that the corals present in a reef in southern Taiwan, and exposed to long-term elevated seawater temperatures due to the presence of a nuclear power plant outlet (NPP OL), are unique in terms of species and associated Symbiodinium types. At shallow depths (<3 m), eleven coral genera elsewhere in Kenting predominantly found with Symbiodinium types C1 and C3 (stress sensitive) were instead hosting Symbiodinium type D1a (stress tolerant) or a mixture of Symbiodinium type C1/C3/C21a/C15 and Symbiodinium type D1a. Of the 16 coral genera that dominate the local reefs, two that are apparently unable to associate with Symbiodinium type D1a are not present at NPP OL at depths of <3 m. Two other genera present at NPP OL and other locations host a specific type of Symbiodinium type C15. These data imply that coral assemblages may have the capacity to maintain their presence at the generic level against long-term disturbances such as elevated seawater temperatures by acclimatization through successful association with a stress-tolerant Symbiodinium over time. However, at the community level it comes at the cost of some coral genera being lost, suggesting that species unable to associate with a stress-tolerant Symbiodinium are likely to become extinct locally and unfavorable shifts in coral communities are likely to occur under the impact of climate change. PMID:24765567

  13. The effects of top-down versus bottom-up control on benthic coral reef community structure.

    PubMed

    Smith, Jennifer E; Hunter, Cynthia L; Smith, Celia M

    2010-06-01

    While climate change and associated increases in sea surface temperature and ocean acidification, are among the most important global stressors to coral reefs, overfishing and nutrient pollution are among the most significant local threats. Here we examined the independent and interactive effects of reduced grazing pressure and nutrient enrichment using settlement tiles on a coral-dominated reef via long-term manipulative experimentation. We found that unique assemblages developed in each treatment combination confirming that both nutrients and herbivores are important drivers of reef community structure. When herbivores were removed, fleshy algae dominated, while crustose coralline algae (CCA) and coral were more abundant when herbivores were present. The effects of fertilization varied depending on herbivore treatment; without herbivores fleshy algae increased in abundance and with herbivores, CCA increased. Coral recruits only persisted in treatments exposed to grazers. Herbivore removal resulted in rapid changes in community structure while there was a lag in response to fertilization. Lastly, re-exposure of communities to natural herbivore populations caused reversals in benthic community trajectories but the effects of fertilization remained for at least 2 months. These results suggest that increasing herbivore populations on degraded reefs may be an effective strategy for restoring ecosystem structure and function and in reversing coral-algal phase-shifts but that this strategy may be most effective in the absence of other confounding disturbances such as nutrient pollution.

  14. Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community

    PubMed Central

    Bongaerts, Pim; Frade, Pedro R.; Hay, Kyra B.; Englebert, Norbert; Latijnhouwers, Kelly R. W.; Bak, Rolf P. M.; Vermeij, Mark J. A.; Hoegh-Guldberg, Ove

    2015-01-01

    The composition, ecology and environmental conditions of mesophotic coral ecosystems near the lower limits of their bathymetric distributions remain poorly understood. Here we provide the first in-depth assessment of a lower mesophotic coral community (60–100 m) in the Southern Caribbean through visual submersible surveys, genotyping of coral host-endosymbiont assemblages, temperature monitoring and a growth experiment. The lower mesophotic zone harbored a specialized coral community consisting of predominantly Agaricia grahamae, Agaricia undata and a “deep-water” lineage of Madracis pharensis, with large colonies of these species observed close to their lower distribution limit of ~90 m depth. All three species associated with “deep-specialist” photosynthetic endosymbionts (Symbiodinium). Fragments of A. grahamae exhibited growth rates at 60 m similar to those observed for shallow Agaricia colonies (~2–3 cm yr−1), but showed bleaching and (partial) mortality when transplanted to 100 m. We propose that the strong reduction of temperature over depth (Δ5°C from 40 to 100 m depth) may play an important contributing role in determining lower depth limits of mesophotic coral communities in this region. Rather than a marginal extension of the reef slope, the lower mesophotic represents a specialized community, and as such warrants specific consideration from science and management. PMID:25564461

  15. Measuring coral reef community metabolism using new benthic chamber technology

    USGS Publications Warehouse

    Yates, K.K.; Halley, R.B.

    2003-01-01

    Accurate measurement of coral reef community metabolism is a necessity for process monitoring and in situ experimentation on coral reef health. Traditional methodologies used for these measurements are effective but limited by location and scale constraints. We present field trial results for a new benthic chamber system called the Submersible Habitat for Analyzing Reef Quality (SHARQ). This large, portable incubation system enables in situ measurement and experimentation on community- scale metabolism. Rates of photosynthesis, respiration, and calcification were measured using the SHARQ for a variety of coral reef substrate types on the reef flat of South Molokai, Hawaii, and in Biscayne National Park, Florida. Values for daily gross production, 24-h respiration, and net calcification ranged from 0.26 to 6.45 g O2 m-2 day-1, 1.96 to 8.10 g O2 m-2 24 h-1, and 0.02 to 2.0 g CaCO3 m -2 day-1, respectively, for all substrate types. Field trials indicate that the SHARQ incubation chamber is an effective tool for in situ isolation of a water mass over a variety of benthic substrate types for process monitoring, experimentation, and other applications.

  16. 76 FR 66273 - Snapper-Grouper Fishery Off the Southern Atlantic States and Coral and Coral Reefs Fishery in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ...-Grouper Fishery Off the Southern Atlantic States and Coral and Coral Reefs Fishery in the South Atlantic... the South Atlantic Region and the FMP for Coral, Coral Reefs, and Live/Hard Bottom Habitats of the... Aquariums to collect, with certain conditions, various species of reef fish and live rock in Federal waters...

  17. [Community structure of zooxanthellate corals (Anthozoa: Scleractinia) in Carrizales coral reef, Pacific coast, Mexico].

    PubMed

    Reyes-Bonilla, Hector; Escobosa-González, Laura Elena; Cupul-Magaña, Amilcar L; Medina-Rosas, Pedro; Calderón-Aguilera, Luis E

    2013-06-01

    Coral reefs in the Mexican Pacific and notably those of the continental coastline of Colima state are still poorly studied. Fortunately, recent efforts have been carried out by researchers from different Mexican institutions to fill up these information gaps. The aim of this study was to determine the ecological structure of the rich and undisturbed coral building communities of Carrizales by using the point transect interception method (25m-long). For this, three survey expeditions were conducted between June and October 2005 and September 2006; and for comparison purposes, the reef was subdivided according to its position in the bay, and depth (0 to 5 m, and 6 to 10 m). Thirteen coral species were observed in the area, with Pocillopora verrucosa as the most abundant, contributing up to 32.8% of total cover, followed by Porites panamensis and Pocillopora capitata with 11% and 7%, respectively. Other species, Pocillopora damicornis, Pavona gigantea, Pocillopora eydouxi and Pocillopora inflata accounted for 1.5% to 2% of coral cover whereas the remaining five species had cover of less than 1%. Seven of the observed species represented new records for Colima state coastline: Pocillopora eydouxi, P inflata, P meandrina, Pavona duerdeni, P varians, Psammocora stellata and P contigua. This last species is a relevant record, because it has never been observed before in the Eastern Pacific. Although there was no significant difference (ANOVA, p = 0.478) neither in the abundance between the sides of the bay, nor between the depths considered, and the shallow zone observed the higher coral cover. Live coral cover was up to 61%, one of the highest ever reported for the Mexican Pacific, including the Gulf of California. The observed values of diversity (H' = 0.44 +/- 0.02), uniformity (J' = 0.76 +/- 0.02), and taxonomic distinctness index (delta* = 45.87 +/- 3.16), showed that currently this is the most important coral reef of Colima coastline. Currently, this region does not

  18. Community structure and coral status across reef fishing intensity gradients in Palk Bay reef, southeast coast of India.

    PubMed

    Manikandan, B; Ravindran, J; Shrinivaasu, S; Marimuthu, N; Paramasivam, K

    2014-10-01

    Coral reef fishes are exploited without the knowledge of their sustainability and their possible effect in altering the community structure of a coral reef ecosystem. Alteration of the community structure could cause a decline in the health of coral reefs and its services. We documented the coral community structure, status of live corals and reef fish assemblages in Palk Bay at the reef fishing hotspots and its nearby reef area with minimum fishing pressure and compared it with a control reef area where reef fishing was banned for more than two decades. The comparison was based on the percent cover of different forms of live corals, their diversity and the density and diversity of reef fishes. The reef fish stock in the reef fishing hotspots and its neighbouring reef was lower by 61 and 38%, respectively compared to the control reef. The herbivore fish Scarus ghobban and Siganus javus were exploited at a rate of 250 and 105 kg month(-1) fishermen(-1), respectively, relatively high comparing the small reef area. Live and dead corals colonized by turf algae were predominant in both the reef fishing hotspots and its nearby coral ecosystems. The percent cover of healthy live corals and live corals colonized by turf algae was <10 and >80%, respectively, in the intensively fished coral ecosystems. The corals were less diverse and the massive Porites and Favia colonies were abundant in the intensive reef fishing sites. Results of this study suggest that the impact of reef fish exploitation was not solely restricted to the intensively fished reefs, but also to the nearby reefs which play a critical role in the resilience of degraded reef ecosystems.

  19. Density-associated recruitment mediates coral population dynamics on a coral reef

    NASA Astrophysics Data System (ADS)

    Bramanti, Lorenzo; Edmunds, Peter J.

    2016-06-01

    Theory suggests that density-associated processes can modulate community resilience following declines in population size. Here, we demonstrate density-associated processes in two scleractinian populations on the outer reef of Moorea, French Polynesia, that are rapidly increasing in size following the effects of two catastrophic disturbances. Between 2006 and 2010, predation by the corallivorous crown-of-thorns sea star reduced coral cover by 93 %; in 2010, the dead coral skeletons were removed by a cyclone, and in 2011 and 2012, high coral recruitment initiated population recovery. Coral recruitment was associated with coral cover, but the relationship differed between two coral genera that are almost exclusively broadcast spawners in Moorea. Acroporids recruited at low densities, and the density of recruits was positively associated with cover of Acropora, whereas pocilloporids recruited at high densities, and densities of their recruits were negatively associated with cover of Pocillopora. Together, our results suggest that associations between adult cover and density of both juveniles and recruits can mediate rapid coral community recovery after large disturbances. The difference between taxa in sign of the relationships between recruit density and coral cover indicate that they reflect contrasting mechanisms with the potential to mediate temporal shifts in taxonomic composition of coral communities.

  20. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    PubMed

    Frade, Pedro R; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.

  1. Current status of coral reefs in the United Arab Emirates: Distribution, extent, and community structure with implications for management.

    PubMed

    Grizzle, Raymond E; Ward, Krystin M; AlShihi, Rashid M S; Burt, John A

    2016-04-30

    Coral reefs of the United Arab Emirates were once extensive, but have declined dramatically in recent decades. Marine management and policy have been hampered by outdated and inaccurate habitat maps and habitat quality information. We combined existing recent datasets with our newly mapped coral habitats to provide a current assessment of nation-wide extent, and performed quantitative surveys of communities at 23 sites to assess coral cover and composition. Over 132 km(2) of coral habitat was mapped, averaging 28.6 ± 3.8% live coral cover at surveyed sites. In the Arabian Gulf low cover, low richness Porites dominated communities characterized western Abu Dhabi, while reefs northeast of Abu Dhabi city generally contained higher richness and cover, and were dominated by merulinids (formerly faviids). Distinct communities occur in the Sea of Oman, where cover and richness were low. We provide management recommendations to enhance conservation of vulnerable coral reefs in the UAE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages

    PubMed Central

    Waheed, Zarinah; van Mil, Harald G. J.; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W.

    2015-01-01

    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park. PMID:26719987

  3. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages.

    PubMed

    Waheed, Zarinah; van Mil, Harald G J; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W

    2015-01-01

    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park.

  4. Ocean acidification alters early successional coral reef communities and their rates of community metabolism.

    PubMed

    Noonan, Sam H C; Kluibenschedl, Anna; Fabricius, Katharina E

    2018-01-01

    Ocean acidification is expected to alter community composition on coral reefs, but its effects on reef community metabolism are poorly understood. Here we document how early successional benthic coral reef communities change in situ along gradients of carbon dioxide (CO2), and the consequences of these changes on rates of community photosynthesis, respiration, and light and dark calcification. Ninety standardised benthic communities were grown on PVC tiles deployed at two shallow-water volcanic CO2 seeps and two adjacent control sites in Papua New Guinea. Along the CO2 gradient, both the upward facing phototrophic and the downward facing cryptic communities changed in their composition. Under ambient CO2, both communities were dominated by calcifying algae, but with increasing CO2 they were gradually replaced by non-calcifying algae (predominantly green filamentous algae, cyanobacteria and macroalgae, which increased from ~30% to ~80% cover). Responses were weaker in the invertebrate communities, however ascidians and tube-forming polychaetes declined with increasing CO2. Differences in the carbonate chemistry explained a far greater amount of change in communities than differences between the two reefs and successional changes from five to 13 months, suggesting community successions are established early and are under strong chemical control. As pH declined from 8.0 to 7.8, rates of gross photosynthesis and dark respiration of the 13-month old reef communities (upper and cryptic surfaces combined) significantly increased by 10% and 20%, respectively, in response to altered community composition. As a consequence, net production remained constant. Light and dark calcification rates both gradually declined by 20%, and low or negative daily net calcification rates were observed at an aragonite saturation state of <2.3. The study demonstrates that ocean acidification as predicted for the end of this century will strongly alter reef communities, and will significantly

  5. Ocean acidification alters early successional coral reef communities and their rates of community metabolism

    PubMed Central

    Kluibenschedl, Anna; Fabricius, Katharina E.

    2018-01-01

    Ocean acidification is expected to alter community composition on coral reefs, but its effects on reef community metabolism are poorly understood. Here we document how early successional benthic coral reef communities change in situ along gradients of carbon dioxide (CO2), and the consequences of these changes on rates of community photosynthesis, respiration, and light and dark calcification. Ninety standardised benthic communities were grown on PVC tiles deployed at two shallow-water volcanic CO2 seeps and two adjacent control sites in Papua New Guinea. Along the CO2 gradient, both the upward facing phototrophic and the downward facing cryptic communities changed in their composition. Under ambient CO2, both communities were dominated by calcifying algae, but with increasing CO2 they were gradually replaced by non-calcifying algae (predominantly green filamentous algae, cyanobacteria and macroalgae, which increased from ~30% to ~80% cover). Responses were weaker in the invertebrate communities, however ascidians and tube-forming polychaetes declined with increasing CO2. Differences in the carbonate chemistry explained a far greater amount of change in communities than differences between the two reefs and successional changes from five to 13 months, suggesting community successions are established early and are under strong chemical control. As pH declined from 8.0 to 7.8, rates of gross photosynthesis and dark respiration of the 13-month old reef communities (upper and cryptic surfaces combined) significantly increased by 10% and 20%, respectively, in response to altered community composition. As a consequence, net production remained constant. Light and dark calcification rates both gradually declined by 20%, and low or negative daily net calcification rates were observed at an aragonite saturation state of <2.3. The study demonstrates that ocean acidification as predicted for the end of this century will strongly alter reef communities, and will significantly

  6. Symbiotic specificity, association patterns, and function determine community responses to global changes: defining critical research areas for coral-Symbiodinium symbioses.

    PubMed

    Fabina, Nicholas S; Putnam, Hollie M; Franklin, Erik C; Stat, Michael; Gates, Ruth D

    2013-11-01

    Climate change-driven stressors threaten the persistence of coral reefs worldwide. Symbiotic relationships between scleractinian corals and photosynthetic endosymbionts (genus Symbiodinium) are the foundation of reef ecosystems, and these associations are differentially impacted by stress. Here, we couple empirical data from the coral reefs of Moorea, French Polynesia, and a network theoretic modeling approach to evaluate how patterns in coral-Symbiodinium associations influence community stability under climate change. To introduce the effect of climate perturbations, we simulate local 'extinctions' that represent either the loss of coral species or the ability to engage in symbiotic interactions. Community stability is measured by determining the duration and number of species that persist through the simulated extinctions. Our results suggest that four factors greatly increase coral-Symbiodinium community stability in response to global changes: (i) the survival of generalist hosts and symbionts maximizes potential symbiotic unions; (ii) elevated symbiont diversity provides redundant or complementary symbiotic functions; (iii) compatible symbiotic assemblages create the potential for local recolonization; and (iv) the persistence of certain traits associate with symbiotic diversity and redundancy. Symbiodinium may facilitate coral persistence through novel environmental regimes, but this capacity is mediated by symbiotic specificity, association patterns, and the functional performance of the symbionts. Our model-based approach identifies general trends and testable hypotheses in coral-Symbiodinium community responses. Future studies should consider similar methods when community size and/or environmental complexity preclude experimental approaches. © 2013 John Wiley & Sons Ltd.

  7. Net loss of CaCO3 from coral reef communities due to human induced seawater acidification

    USGS Publications Warehouse

    Andersson, A.J.; Kuffner, I.B.; MacKenzie, F.T.; Jokiel, P.L.; Rodgers, K.S.; Tan, A.

    2009-01-01

    Acidification of seawater owing to oceanic uptake of atmospheric CO2 originating from human activities such as burning of fossil fuels and land-use changes has raised serious concerns regarding its adverse effects on corals and calcifying communities. Here we demonstrate a net loss of calcium carbonate (CaCO3) material as a result of decreased calcification and increased carbonate dissolution from replicated subtropical coral reef communities (n=3) incubated in continuous-flow mesocosms subject to future seawater conditions. The calcifying community was dominated by the coral Montipora capitata. Daily average community calcification or Net Ecosystem Calcification (NEC=CaCO3 production – dissolution) was positive at 3.3 mmol CaCO3 m−2 h−1 under ambient seawater pCO2 conditions as opposed to negative at −0.04 mmol CaCO3 m−2h−1 under seawater conditions of double the ambient pCO2. These experimental results provide support for the conclusion that some net calcifying communities could become subject to net dissolution in response to anthropogenic ocean acidification within this century. Nevertheless, individual corals remained healthy, actively calcified (albeit slower than at present rates), and deposited significant amounts of CaCO3 under the prevailing experimental seawater conditions of elevated pCO2.

  8. Linking benthic community structure to terrestrial runoff and upwelling in the coral reefs of northeastern Hainan Island

    NASA Astrophysics Data System (ADS)

    Li, Xiubao; Wang, Daoru; Huang, Hui; Zhang, Jing; Lian, Jiansheng; Yuan, Xiangcheng; Yang, Jianhui; Zhang, Guoseng

    2015-04-01

    Near-shore coral reefs in northeastern Hainan Island are close to river mouths and aquaculture ponds, and also located at the center of the Qiongdong Upwelling (QDU). However, it is still unclear how terrestrial runoff and upwelling influence the community composition and spatial distribution of the benthos. During three cruises in 2010 and 2011 in Wenchang, northeastern Hainan Island, we determined a subset of environmental parameters in seawater (e.g. temperature, salinity, DO, dissolved inorganic nutrient (DIN), turbidity and transparency) and macroalgal δ15N and investigated the benthic communities (e.g. live coral cover, coral species richness, juvenile coral density, macroalgal cover and coverage of calcified algae) by video transect and visual census techniques at 10 stations (i.e. 1S-6D). The results showed that the QDU has influenced the reef waters in Wenchang. In 2011, the upwelling started in early May, peaked in July and disappeared in September and most upwelling events lasted for 1-2 weeks between May and July. The results also demonstrated that the reef water was nutrient enriched. Stations close to the river mouth and aquaculture ponds had higher levels of DIN and a higher percentage of ammonia in DIN, and there was consistently lower live coral cover, juvenile coral density and higher macroalgal cover. At some stations in this study, live coral cover was negatively correlated with macroalgal cover (i.e. 2S-6D). Live coral cover, species richness, and juvenile coral density all increased with the distance away from the river outlet and decreased with the rise of DIN. These results suggest that terrestrial runoff and upwelling stimulate nutrient enrichment, and that overgrowing macroalgae has an important influence on the coral communities in northeastern Hainan Island.

  9. Non-Random Variability in Functional Composition of Coral Reef Fish Communities along an Environmental Gradient.

    PubMed

    Plass-Johnson, Jeremiah G; Taylor, Marc H; Husain, Aidah A A; Teichberg, Mirta C; Ferse, Sebastian C A

    2016-01-01

    Changes in the coral reef complex can affect predator-prey relationships, resource availability and niche utilisation in the associated fish community, which may be reflected in decreased stability of the functional traits present in a community. This is because particular traits may be favoured by a changing environment, or by habitat degradation. Furthermore, other traits can be selected against because degradation can relax the association between fishes and benthic habitat. We characterised six important ecological traits for fish species occurring at seven sites across a disturbed coral reef archipelago in Indonesia, where reefs have been exposed to eutrophication and destructive fishing practices for decades. Functional diversity was assessed using two complementary indices (FRic and RaoQ) and correlated to important environmental factors (live coral cover and rugosity, representing local reef health, and distance from shore, representing a cross-shelf environmental gradient). Indices were examined for both a change in their mean, as well as temporal (short-term; hours) and spatial (cross-shelf) variability, to assess whether fish-habitat association became relaxed along with habitat degradation. Furthermore, variability in individual traits was examined to identify the traits that are most affected by habitat change. Increases in the general reef health indicators, live coral cover and rugosity (correlated with distance from the mainland), were associated with decreases in the variability of functional diversity and with community-level changes in the abundance of several traits (notably home range size, maximum length, microalgae, detritus and small invertebrate feeding and reproductive turnover). A decrease in coral cover increased variability of RaoQ while rugosity and distance both inversely affected variability of FRic; however, averages for these indices did not reveal patterns associated with the environment. These results suggest that increased

  10. Non-Random Variability in Functional Composition of Coral Reef Fish Communities along an Environmental Gradient

    PubMed Central

    Plass-Johnson, Jeremiah G.; Taylor, Marc H.; Husain, Aidah A. A.; Teichberg, Mirta C.; Ferse, Sebastian C. A.

    2016-01-01

    Changes in the coral reef complex can affect predator-prey relationships, resource availability and niche utilisation in the associated fish community, which may be reflected in decreased stability of the functional traits present in a community. This is because particular traits may be favoured by a changing environment, or by habitat degradation. Furthermore, other traits can be selected against because degradation can relax the association between fishes and benthic habitat. We characterised six important ecological traits for fish species occurring at seven sites across a disturbed coral reef archipelago in Indonesia, where reefs have been exposed to eutrophication and destructive fishing practices for decades. Functional diversity was assessed using two complementary indices (FRic and RaoQ) and correlated to important environmental factors (live coral cover and rugosity, representing local reef health, and distance from shore, representing a cross-shelf environmental gradient). Indices were examined for both a change in their mean, as well as temporal (short-term; hours) and spatial (cross-shelf) variability, to assess whether fish-habitat association became relaxed along with habitat degradation. Furthermore, variability in individual traits was examined to identify the traits that are most affected by habitat change. Increases in the general reef health indicators, live coral cover and rugosity (correlated with distance from the mainland), were associated with decreases in the variability of functional diversity and with community-level changes in the abundance of several traits (notably home range size, maximum length, microalgae, detritus and small invertebrate feeding and reproductive turnover). A decrease in coral cover increased variability of RaoQ while rugosity and distance both inversely affected variability of FRic; however, averages for these indices did not reveal patterns associated with the environment. These results suggest that increased

  11. The Shifts of Diazotrophic Communities in Spring and Summer Associated with Coral Galaxea astreata, Pavona decussata, and Porites lutea.

    PubMed

    Zhang, Yanying; Yang, Qingsong; Ling, Juan; Van Nostrand, Joy D; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2016-01-01

    The coral holobiont often resides in oligotrophic waters; both coral cells and their symbiotic dinoflagellates possess ammonium assimilation enzymes and potentially benefit from the nitrogen fixation of coral-associated diazotrophs. However, the seasonal dynamics of coral-associated diazotrophs are not well characterized. Here, the seasonal variations of diazotrophic communities associated with three corals, Galaxea astreata, Pavona decussata , and Porites lutea , were studied using nifH gene amplicon pyrosequencing techniques. Our results revealed a great diversity of coral-associated diazotrophs. nifH sequences related to Alphaproteobacteria, Deltaproteobacteria , and Gammaproteobacteria were ubiquitous and dominant in all corals in two seasons. In contrast with the coral P. decussata , both G. astreata and P. lutea showed significant seasonal changes in the diazotrophic communities and nifH gene abundance. Variable diazotroph groups accounted for a range from 11 to 49% within individual coral samples. Most of the variable diazotrophic groups from P. decussata were species-specific, however, the majority of overlapping variable groups in G. astreata and P. lutea showed the same seasonal variation characteristics. Rhodopseudomonas palustris - and Gluconacetobacter diazotrophicus -affiliated sequences were relatively abundant in the summer, whereas a nifH sequence related to Halorhodospira halophila was relatively abundant in spring G. astreata and P. lutea . The seasonal variations of all diazotrophic communities were significantly correlated with the seasonal shifts of ammonium and nitrate, suggesting that diazotrophs play an important role in the nitrogen cycle of the coral holobiont.

  12. The Shifts of Diazotrophic Communities in Spring and Summer Associated with Coral Galaxea astreata, Pavona decussata, and Porites lutea

    PubMed Central

    Zhang, Yanying; Yang, Qingsong; Ling, Juan; Van Nostrand, Joy D.; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2016-01-01

    The coral holobiont often resides in oligotrophic waters; both coral cells and their symbiotic dinoflagellates possess ammonium assimilation enzymes and potentially benefit from the nitrogen fixation of coral-associated diazotrophs. However, the seasonal dynamics of coral-associated diazotrophs are not well characterized. Here, the seasonal variations of diazotrophic communities associated with three corals, Galaxea astreata, Pavona decussata, and Porites lutea, were studied using nifH gene amplicon pyrosequencing techniques. Our results revealed a great diversity of coral-associated diazotrophs. nifH sequences related to Alphaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria were ubiquitous and dominant in all corals in two seasons. In contrast with the coral P. decussata, both G. astreata and P. lutea showed significant seasonal changes in the diazotrophic communities and nifH gene abundance. Variable diazotroph groups accounted for a range from 11 to 49% within individual coral samples. Most of the variable diazotrophic groups from P. decussata were species-specific, however, the majority of overlapping variable groups in G. astreata and P. lutea showed the same seasonal variation characteristics. Rhodopseudomonas palustris- and Gluconacetobacter diazotrophicus-affiliated sequences were relatively abundant in the summer, whereas a nifH sequence related to Halorhodospira halophila was relatively abundant in spring G. astreata and P. lutea. The seasonal variations of all diazotrophic communities were significantly correlated with the seasonal shifts of ammonium and nitrate, suggesting that diazotrophs play an important role in the nitrogen cycle of the coral holobiont. PMID:27920768

  13. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease

    PubMed Central

    Cárdenas, Anny; Rodriguez-R, Luis M; Pizarro, Valeria; Cadavid, Luis F; Arévalo-Ferro, Catalina

    2012-01-01

    Coral reefs are deteriorating at an alarming rate mainly as a consequence of the emergence of coral diseases. The white plague disease (WPD) is the most prevalent coral disease in the southwestern Caribbean, affecting dozens of coral species. However, the identification of a single causal agent has proved problematic. This suggests more complex etiological scenarios involving alterations in the dynamic interaction between environmental factors, the coral immune system and the symbiotic microbial communities. Here we compare the microbiome of healthy and WPD-affected corals from the two reef-building species Diploria strigosa and Siderastrea siderea collected at the Tayrona National Park in the Caribbean of Colombia. Microbiomes were analyzed by combining culture-dependent methods and pyrosequencing of 16S ribosomal DNA (rDNA) V5-V6 hypervariable regions. A total of 20 410 classifiable 16S rDNA sequences reads were obtained including all samples. No significant differences in operational taxonomic unit diversity were found between healthy and affected tissues; however, a significant increase of Alphaproteobacteria and a concomitant decrease in the Beta- and Gammaproteobacteria was observed in WPD-affected corals of both species. Significant shifts were also observed in the orders Rhizobiales, Caulobacteriales, Burkholderiales, Rhodobacterales, Aleteromonadales and Xanthomonadales, although they were not consistent between the two coral species. These shifts in the microbiome structure of WPD-affected corals suggest a loss of community-mediated growth control mechanisms on bacterial populations specific for each holobiont system. PMID:21955993

  14. Genetic Diversity and Geographical Gene Flow Patterns of Spawning Broadcast Coral Lobophyllia corymbosa in The Sulawesi Waters as A Coral Triangle Area

    NASA Astrophysics Data System (ADS)

    Umar, Widyastuti; Jompa, Jamaluddin; Tassakka, Asmi Citra Malina A. R.

    2018-02-01

    The existence of hard coral is one of the keys to maintain the suistainability of ecosystem in the waters. Currently, the hard coral keeps declining over time due to various disturbances. In addition, hard coral where fish and other organisms live in will directly affect the ecosystem sustainability if the damage still happens. Molecular approach, such as knowing the genetic variation information of coral population can be an informative study to estimate the condition of waters, so that, conservation efforts can be easily done. In this study, we use Lobophyllia corymbosa as a spawning broadcast coral to be the sample which is collected from Sinjai and Luwuk Banggai. The study areas are selected based on geographical patterns which are in the South and East of Sulawesi waters. Since they have a considerable distance, it is likely for them to produce high genetic variations. Genome DNA uses mitochondrial genome that is extracted from coral tissue. The result shows that the genetic diversity is high. From the two major groups provided, there have been 8 haplotypes for all locations. In addition, the L.corymbosa distribution between Sinjai and Luwuk banggai has a high genetic connectivity with 0.6 fixation index.

  15. Identifying Suitable Locations for Mesophotic Hard Corals Offshore of Maui, Hawai‘i

    PubMed Central

    Costa, Bryan; Kendall, Matthew S.; Parrish, Frank A.; Rooney, John; Boland, Raymond C.; Chow, Malia; Lecky, Joey; Montgomery, Anthony; Spalding, Heather

    2015-01-01

    Mesophotic hard corals (MHC) are increasingly threatened by a growing number of anthropogenic stressors, including impacts from fishing, land-based sources of pollution, and ocean acidification. However, little is known about their geographic distributions (particularly around the Pacific islands) because it is logistically challenging and expensive to gather data in the 30 to 150 meter depth range where these organisms typically live. The goal of this study was to begin to fill this knowledge gap by modelling and predicting the spatial distribution of three genera of mesophotic hard corals offshore of Maui in the Main Hawaiian Islands. Maximum Entropy modeling software was used to create separate maps of predicted probability of occurrence and uncertainty for: (1) Leptoseris, (2) Montipora, and (3) Porites. Genera prevalence was derived from the in situ presence/absence data, and used to convert relative habitat suitability to probability of occurrence values. Approximately 1,300 georeferenced records of the occurrence of MHC, and 34 environmental predictors were used to train the model ensembles. Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) values were between 0.89 and 0.97, indicating excellent overall model performance. Mean uncertainty and mean absolute error for the spatial predictions ranged from 0.006% to 0.05% and 3.73% to 17.6%, respectively. Depth, distance from shore, euphotic depth (mean and standard deviation) and sea surface temperature (mean and standard deviation) were identified as the six most influential predictor variables for partitioning habitats among the three genera. MHC were concentrated between Hanaka‘ō‘ō and Papawai Points offshore of western Maui most likely because this area hosts warmer, clearer and calmer water conditions almost year round. While these predictions helped to fill some knowledge gaps offshore of Maui, many information gaps remain in the Hawaiian Archipelago and Pacific Islands. This

  16. Identifying Suitable Locations for Mesophotic Hard Corals Offshore of Maui, Hawai'i.

    PubMed

    Costa, Bryan; Kendall, Matthew S; Parrish, Frank A; Rooney, John; Boland, Raymond C; Chow, Malia; Lecky, Joey; Montgomery, Anthony; Spalding, Heather

    2015-01-01

    Mesophotic hard corals (MHC) are increasingly threatened by a growing number of anthropogenic stressors, including impacts from fishing, land-based sources of pollution, and ocean acidification. However, little is known about their geographic distributions (particularly around the Pacific islands) because it is logistically challenging and expensive to gather data in the 30 to 150 meter depth range where these organisms typically live. The goal of this study was to begin to fill this knowledge gap by modelling and predicting the spatial distribution of three genera of mesophotic hard corals offshore of Maui in the Main Hawaiian Islands. Maximum Entropy modeling software was used to create separate maps of predicted probability of occurrence and uncertainty for: (1) Leptoseris, (2) Montipora, and (3) Porites. Genera prevalence was derived from the in situ presence/absence data, and used to convert relative habitat suitability to probability of occurrence values. Approximately 1,300 georeferenced records of the occurrence of MHC, and 34 environmental predictors were used to train the model ensembles. Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) values were between 0.89 and 0.97, indicating excellent overall model performance. Mean uncertainty and mean absolute error for the spatial predictions ranged from 0.006% to 0.05% and 3.73% to 17.6%, respectively. Depth, distance from shore, euphotic depth (mean and standard deviation) and sea surface temperature (mean and standard deviation) were identified as the six most influential predictor variables for partitioning habitats among the three genera. MHC were concentrated between Hanaka'ō'ō and Papawai Points offshore of western Maui most likely because this area hosts warmer, clearer and calmer water conditions almost year round. While these predictions helped to fill some knowledge gaps offshore of Maui, many information gaps remain in the Hawaiian Archipelago and Pacific Islands. This approach

  17. Variable Responses of Benthic Communities to Anomalously Warm Sea Temperatures on a High-Latitude Coral Reef

    PubMed Central

    Bryson, Mitch; Hovey, Renae; Figueira, Will F.; Williams, Stefan B.; Pizarro, Oscar; Harborne, Alastair R.; Byrne, Maria

    2014-01-01

    High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m2 plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies) prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes. PMID:25426718

  18. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef.

    PubMed

    Bridge, Tom C L; Ferrari, Renata; Bryson, Mitch; Hovey, Renae; Figueira, Will F; Williams, Stefan B; Pizarro, Oscar; Harborne, Alastair R; Byrne, Maria

    2014-01-01

    High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m(2) plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies) prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.

  19. Catastrophic impact of typhoon waves on coral communities in the Ryukyu Islands under global warming

    NASA Astrophysics Data System (ADS)

    Hongo, Chuki; Kawamata, Hideki; Goto, Kazuhisa

    2012-06-01

    Typhoon-generated storm waves generally cause mechanical damage to coral communities on present-day reefs, and the magnitude and extent of damage is predicted to increase in the near future as a result of global warming. Therefore, a comprehensive understanding of potential future scenarios of reef ecosystems is of prime interest. This study assesses the current status of coral communities on Ibaruma reef, Ryukyu Islands, on the basis of field observations, engineering and fluid dynamic models, and calculations of wave motion, and predicts the potential effects of a super-extreme typhoon (incident wave height,H = 20 m; wave period, T = 20 s) on the reef. On the present-day reef, massive corals occur in shallow lagoons and tabular corals occur from the reef crest to the reef slope. The observed distribution of corals, which is frequently attacked by moderate (H = 10 m, T = 10 s) and extreme (H = 10 m, T = 15 s) typhoons, is consistent with the predictions of engineering models. Moreover, this study indicates that if a super-extreme typhoon attacks the reef in the near future, massive corals will survive in the shallow lagoons but tabular corals on the reef crest and reef slope will be severely impacted. The findings imply that super-extreme typhoons will cause a loss of species diversity, as the tabular corals are important reef builders and are critical to the maintenance of reef ecosystems. Consequently, reef restoration is a key approach to maintaining reef ecosystems in the wake of super-extreme typhoons.

  20. Community assembly and diversification in Indo-Pacific coral reef fishes

    PubMed Central

    Hubert, Nicolas; Paradis, Emmanuel; Bruggemann, Henrich; Planes, Serge

    2011-01-01

    Theories of species coexistence have played a central role in ecology and evolutionary studies of the origin and maintenance of biodiversity in highly diverse communities. The concept of niche and associated theories predict that competition for available ecological space leads to a ceiling in species richness that influences further diversification patterns. By contrast, the neutral theory supports that speciation is stochastic and diversity independent. We examined the phylogenetic community structure and diversification rates in three families and 14 sites within coral reef fish communities from the Indian and Pacific oceans. Using the phylogenetic relationships among 157 species estimated with 2300 bp of mitochondrial DNA, we tested predictions in terms of species coexistence from the neutral and niche theories. At the regional scale, our findings suggest that phylogenetic community structure shifts during community assembly to a pattern of dispersion as a consequence of allopatric speciation in recent times but overall, variations in diversification rates did not relate with sea level changes. At the local scale, the phylogenetic community structure is consistent with a neutral model of community assembly since no departure from a random sorting of species was observed. The present results support a neutral model of community assembly as a consequence of the stochastic and unpredictable nature of coral reefs favoring generalist and sedentary species competing for living space rather than trophic resources. As a consequence, the observed decrease in diversification rates may be seen as the result of a limited supply of living space as expected in a finite island model. PMID:22393499

  1. Proximate environmental drivers of coral communities at Palmyra Atoll: establishing baselines prior to removing a WWII military causeway.

    PubMed

    Williams, Gareth J; Knapp, Ingrid S; Maragos, James E; Davy, Simon K

    2011-08-01

    A management proposal aims to partly remove a WWII military causeway at Palmyra Atoll to improve lagoon water circulation and alleviate sedimentation stress on the southeast backreef, an area of high coral cover and diversity. This action could result in a shift in sedimentation across reef sites. To provide management advice, we quantified the proximate environmental factors driving scleractinian coral cover and community patterns at Palmyra. The proportion of fine sedimentation was the optimal predictor of coral cover and changes in community structure, explaining 23.7% and 24.7% of the variation between sites, respectively. Scleractinian coral cover was negatively correlated with increases in fine sedimentation. Removing the causeway could negatively affect the Montipora corals that dominate the western reef terrace, as this genus was negatively correlated with levels of fine sedimentation. The tolerance limits of corals, and sediment re-distribution patterns, should be determined prior to complete removal of the causeway. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change

    NASA Astrophysics Data System (ADS)

    Yates, K. K.; Rogers, C. S.; Herlan, J. J.; Brooks, G. R.; Smiley, N. A.; Larson, R. A.

    2014-08-01

    Risk analyses indicate that more than 90% of the world's reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under "business-as-usual" climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. Here we characterize the first natural, non-reef coral refuge from thermal stress and ocean acidification and identify resiliency factors for mangrove-coral habitats. We measured diurnal and seasonal variations in temperature, salinity, photosynthetically active radiation (PAR), and seawater chemistry; characterized substrate parameters; and examined water circulation patterns in mangrove communities where scleractinian corals are growing attached to and under mangrove prop roots in Hurricane Hole, St. John, US Virgin Islands. Additionally, we inventoried the coral species and quantified incidences of coral bleaching, mortality, and recovery for two major reef-building corals, Colpophyllia natans and Diploria labyrinthiformis, growing in mangrove-shaded and exposed (unshaded) areas. Over 30 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies were living shaded by mangroves, and no shaded colonies were bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies were bleached. A combination of substrate and habitat heterogeneity, proximity of different habitat types, hydrographic

  3. Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995-2009).

    PubMed

    Osborne, Kate; Dolman, Andrew M; Burgess, Scott C; Johns, Kerryn A

    2011-03-10

    Coral reef ecosystems worldwide are under pressure from chronic and acute stressors that threaten their continued existence. Most obvious among changes to reefs is loss of hard coral cover, but a precise multi-scale estimate of coral cover dynamics for the Great Barrier Reef (GBR) is currently lacking. Monitoring data collected annually from fixed sites at 47 reefs across 1300 km of the GBR indicate that overall regional coral cover was stable (averaging 29% and ranging from 23% to 33% cover across years) with no net decline between 1995 and 2009. Subregional trends (10-100 km) in hard coral were diverse with some being very dynamic and others changing little. Coral cover increased in six subregions and decreased in seven subregions. Persistent decline of corals occurred in one subregion for hard coral and Acroporidae and in four subregions in non-Acroporidae families. Change in Acroporidae accounted for 68% of change in hard coral. Crown-of-thorns starfish (Acanthaster planci) outbreaks and storm damage were responsible for more coral loss during this period than either bleaching or disease despite two mass bleaching events and an increase in the incidence of coral disease. While the limited data for the GBR prior to the 1980's suggests that coral cover was higher than in our survey, we found no evidence of consistent, system-wide decline in coral cover since 1995. Instead, fluctuations in coral cover at subregional scales (10-100 km), driven mostly by changes in fast-growing Acroporidae, occurred as a result of localized disturbance events and subsequent recovery.

  4. End to End Digitisation and Analysis of Three-Dimensional Coral Models, from Communities to Corallites.

    PubMed

    Gutierrez-Heredia, Luis; Benzoni, Francesca; Murphy, Emma; Reynaud, Emmanuel G

    2016-01-01

    Coral reefs hosts nearly 25% of all marine species and provide food sources for half a billion people worldwide while only a very small percentage have been surveyed. Advances in technology and processing along with affordable underwater cameras and Internet availability gives us the possibility to provide tools and softwares to survey entire coral reefs. Holistic ecological analyses of corals require not only the community view (10s to 100s of meters), but also the single colony analysis as well as corallite identification. As corals are three-dimensional, classical approaches to determine percent cover and structural complexity across spatial scales are inefficient, time-consuming and limited to experts. Here we propose an end-to-end approach to estimate these parameters using low-cost equipment (GoPro, Canon) and freeware (123D Catch, Meshmixer and Netfabb), allowing every community to participate in surveys and monitoring of their coral ecosystem. We demonstrate our approach on 9 species of underwater colonies in ranging size and morphology. 3D models of underwater colonies, fresh samples and bleached skeletons with high quality texture mapping and detailed topographic morphology were produced, and Surface Area and Volume measurements (parameters widely used for ecological and coral health studies) were calculated and analysed. Moreover, we integrated collected sample models with micro-photogrammetry models of individual corallites to aid identification and colony and polyp scale analysis.

  5. End to End Digitisation and Analysis of Three-Dimensional Coral Models, from Communities to Corallites

    PubMed Central

    Gutierrez-Heredia, Luis; Benzoni, Francesca; Murphy, Emma; Reynaud, Emmanuel G.

    2016-01-01

    Coral reefs hosts nearly 25% of all marine species and provide food sources for half a billion people worldwide while only a very small percentage have been surveyed. Advances in technology and processing along with affordable underwater cameras and Internet availability gives us the possibility to provide tools and softwares to survey entire coral reefs. Holistic ecological analyses of corals require not only the community view (10s to 100s of meters), but also the single colony analysis as well as corallite identification. As corals are three-dimensional, classical approaches to determine percent cover and structural complexity across spatial scales are inefficient, time-consuming and limited to experts. Here we propose an end-to-end approach to estimate these parameters using low-cost equipment (GoPro, Canon) and freeware (123D Catch, Meshmixer and Netfabb), allowing every community to participate in surveys and monitoring of their coral ecosystem. We demonstrate our approach on 9 species of underwater colonies in ranging size and morphology. 3D models of underwater colonies, fresh samples and bleached skeletons with high quality texture mapping and detailed topographic morphology were produced, and Surface Area and Volume measurements (parameters widely used for ecological and coral health studies) were calculated and analysed. Moreover, we integrated collected sample models with micro-photogrammetry models of individual corallites to aid identification and colony and polyp scale analysis. PMID:26901845

  6. Coral transplantation triggers shift in microbiome and promotion of coral disease associated potential pathogens

    PubMed Central

    Casey, Jordan M.; Connolly, Sean R.; Ainsworth, Tracy D.

    2015-01-01

    By cultivating turf algae and aggressively defending their territories, territorial damselfishes in the genus Stegastes play a major role in shaping coral-algal dynamics on coral reefs. The epilithic algal matrix (EAM) inside Stegastes’ territories is known to harbor high abundances of potential coral disease pathogens. To determine the impact of territorial grazers on coral microbial assemblages, we established a coral transplant inside and outside of Stegastes’ territories. Over the course of one year, the percent mortality of transplanted corals was monitored and coral samples were collected for microbial analysis. As compared to outside damselfish territories, Stegastes were associated with a higher rate of mortality of transplanted corals. However, 16S rDNA sequencing revealed that territorial grazers do not differentially impact the microbial assemblage of corals exposed to the EAM. Regardless of Stegastes presence or absence, coral transplantation resulted in a shift in the coral-associated microbial community and an increase in coral disease associated potential pathogens. Further, transplanted corals that suffer low to high mortality undergo a microbial transition from a microbiome similar to that of healthy corals to that resembling the EAM. These findings demonstrate that coral transplantation significantly impacts coral microbial communities, and transplantation may increase susceptibility to coral disease. PMID:26144865

  7. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico.

    PubMed

    White, Helen K; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M; Cordes, Erik E; Quattrini, Andrea M; Nelson, Robert K; Camilli, Richard; Demopoulos, Amanda W J; German, Christopher R; Brooks, James M; Roberts, Harry H; Shedd, William; Reddy, Christopher M; Fisher, Charles R

    2012-12-11

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals' ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.

  8. The importance of sponges and mangroves in supporting fish communities on degraded coral reefs in Caribbean Panama.

    PubMed

    Seemann, Janina; Yingst, Alexandra; Stuart-Smith, Rick D; Edgar, Graham J; Altieri, Andrew H

    2018-01-01

    Fish communities associated with coral reefs worldwide are threatened by habitat degradation and overexploitation. We assessed coral reefs, mangrove fringes, and seagrass meadows on the Caribbean coast of Panama to explore the influences of their proximity to one another, habitat cover, and environmental characteristics in sustaining biomass, species richness and trophic structure of fish communities in a degraded tropical ecosystem. We found 94% of all fish across all habitat types were of small body size (≤10 cm), with communities dominated by fishes that usually live in habitats of low complexity, such as Pomacentridae (damselfishes) and Gobiidae (gobies). Total fish biomass was very low, with the trend of small fishes from low trophic levels over-represented, and top predators under-represented, relative to coral reefs elsewhere in the Caribbean. For example, herbivorous fishes comprised 27% of total fish biomass in Panama relative to 10% in the wider Caribbean, and the small parrotfish Scarus iseri comprised 72% of the parrotfish biomass. We found evidence that non-coral biogenic habitats support reef-associated fish communities. In particular, the abundance of sponges on a given reef and proximity of mangroves were found to be important positive correlates of reef fish species richness, biomass, abundance and trophic structure. Our study indicates that a diverse fish community can persist on degraded coral reefs, and that the availability and arrangement within the seascape of other habitat-forming organisms, including sponges and mangroves, is critical to the maintenance of functional processes in such ecosystems.

  9. The importance of sponges and mangroves in supporting fish communities on degraded coral reefs in Caribbean Panama

    PubMed Central

    Yingst, Alexandra; Stuart-Smith, Rick D.; Edgar, Graham J.; Altieri, Andrew H.

    2018-01-01

    Fish communities associated with coral reefs worldwide are threatened by habitat degradation and overexploitation. We assessed coral reefs, mangrove fringes, and seagrass meadows on the Caribbean coast of Panama to explore the influences of their proximity to one another, habitat cover, and environmental characteristics in sustaining biomass, species richness and trophic structure of fish communities in a degraded tropical ecosystem. We found 94% of all fish across all habitat types were of small body size (≤10 cm), with communities dominated by fishes that usually live in habitats of low complexity, such as Pomacentridae (damselfishes) and Gobiidae (gobies). Total fish biomass was very low, with the trend of small fishes from low trophic levels over-represented, and top predators under-represented, relative to coral reefs elsewhere in the Caribbean. For example, herbivorous fishes comprised 27% of total fish biomass in Panama relative to 10% in the wider Caribbean, and the small parrotfish Scarus iseri comprised 72% of the parrotfish biomass. We found evidence that non-coral biogenic habitats support reef-associated fish communities. In particular, the abundance of sponges on a given reef and proximity of mangroves were found to be important positive correlates of reef fish species richness, biomass, abundance and trophic structure. Our study indicates that a diverse fish community can persist on degraded coral reefs, and that the availability and arrangement within the seascape of other habitat-forming organisms, including sponges and mangroves, is critical to the maintenance of functional processes in such ecosystems. PMID:29610704

  10. Physiological Response of the Hard Coral Pocillopora verrucosa from Lombok, Indonesia, to Two Common Pollutants in Combination with High Temperature.

    PubMed

    Kegler, Pia; Baum, Gunilla; Indriana, Lisa F; Wild, Christian; Kunzmann, Andreas

    2015-01-01

    Knowledge on interactive effects of global (e.g. ocean warming) and local stressors (e.g. pollution) is needed to develop appropriate management strategies for coral reefs. Surfactants and diesel are common coastal pollutants, but knowledge of their effects on hard corals as key reef ecosystem engineers is scarce. This study thus investigated the physiological reaction of Pocillopora verrucosa from Lombok, Indonesia, to exposure with a) the water-soluble fraction of diesel (determined by total polycyclic aromatic hydrocarbons (PAH); 0.69 ± 0.14 mg L-1), b) the surfactant linear alkylbenzene sulfonate (LAS; 0.95 ± 0.02 mg L-1) and c) combinations of each pollutant with high temperature (+3°C). To determine effects on metabolism, respiration, photosynthetic efficiency and coral tissue health were measured. Findings revealed no significant effects of diesel, while LAS resulted in severe coral tissue losses (16-95% after 84 h). High temperature led to an increase in photosynthetic yield of corals after 48 h compared to the control treatment, but no difference was detected thereafter. In combination, diesel and high temperature significantly increased coral dark respiration, whereas LAS and high temperature caused higher tissue losses (81-100% after 84 h) and indicated a severe decline in maximum quantum yield. These results confirm the hypothesized combined effects of high temperature with either of the two investigated pollutants. Our study demonstrates the importance of reducing import of these pollutants in coastal areas in future adaptive reef management, particularly in the context of ocean warming.

  11. Physiological Response of the Hard Coral Pocillopora verrucosa from Lombok, Indonesia, to Two Common Pollutants in Combination with High Temperature

    PubMed Central

    Kegler, Pia; Baum, Gunilla; Indriana, Lisa F.; Wild, Christian; Kunzmann, Andreas

    2015-01-01

    Knowledge on interactive effects of global (e.g. ocean warming) and local stressors (e.g. pollution) is needed to develop appropriate management strategies for coral reefs. Surfactants and diesel are common coastal pollutants, but knowledge of their effects on hard corals as key reef ecosystem engineers is scarce. This study thus investigated the physiological reaction of Pocillopora verrucosa from Lombok, Indonesia, to exposure with a) the water-soluble fraction of diesel (determined by total polycyclic aromatic hydrocarbons (PAH); 0.69 ± 0.14 mg L-1), b) the surfactant linear alkylbenzene sulfonate (LAS; 0.95 ± 0.02 mg L-1) and c) combinations of each pollutant with high temperature (+3°C). To determine effects on metabolism, respiration, photosynthetic efficiency and coral tissue health were measured. Findings revealed no significant effects of diesel, while LAS resulted in severe coral tissue losses (16–95% after 84 h). High temperature led to an increase in photosynthetic yield of corals after 48 h compared to the control treatment, but no difference was detected thereafter. In combination, diesel and high temperature significantly increased coral dark respiration, whereas LAS and high temperature caused higher tissue losses (81–100% after 84 h) and indicated a severe decline in maximum quantum yield. These results confirm the hypothesized combined effects of high temperature with either of the two investigated pollutants. Our study demonstrates the importance of reducing import of these pollutants in coastal areas in future adaptive reef management, particularly in the context of ocean warming. PMID:26555818

  12. Community Shifts in the Surface Microbiomes of the Coral Porites astreoides with Unusual Lesions

    PubMed Central

    Meyer, Julie L.; Paul, Valerie J.; Teplitski, Max

    2014-01-01

    Apical lesions on Porites astreoides were characterized by the appearance of a thin yellow band, which was preceded by bleaching of the coral tissues and followed by a completely denuded coral skeleton, which often harbored secondary macroalgal colonizers. These characteristics have not been previously described in Porites and do not match common Caribbean coral diseases. The lesions were observed only in warmer months and at shallow depths on the fore reef in Belize. Analysis of the microbial community composition based on the V4 hypervariable region of 16S ribosomal RNA genes revealed that the surface microbiomes associated with nonsymptomatic corals were dominated by the members of the genus Endozoicomonas, consistent with other studies. Comparison of the microbiomes of nonsymptomatic and lesioned coral colonies sampled in July and September revealed two distinct groups, inconsistently related to the disease state of the coral, but showing some temporal signal. The loss of Endozoicomonas was characteristic of lesioned corals, which also harbored potential opportunistic pathogens such as Alternaria, Stenotrophomonas, and Achromobacter. The presence of lesions in P. astreoides coincided with a decrease in the relative abundance of Endozoicomonas, rather than the appearance of specific pathogenic taxa. PMID:24937478

  13. Coral communities as indicators of ecosystem-level impacts of the Deepwater Horizon spill

    USGS Publications Warehouse

    Fisher, Charles R.; Demopoulos, Amanda W.J.; Cordes, Erik E.; Baums, Iliana B.; White, Helen K.; Bourque, Jill R.

    2014-01-01

    The Macondo oil spill released massive quantities of oil and gas from a depth of 1500 meters. Although a buoyant plume carried released hydrocarbons to the sea surface, as much as half stayed in the water column and much of that in the deep sea. After the hydrocarbons reached the surface, weathering processes, burning, and the use of a dispersant caused hydrocarbon-rich marine snow to sink into the deep sea. As a result, this spill had a greater potential to affect deep-sea communities than had any previous spill. Here, we review the literature on impacts on deep-sea communities from the Macondo blowout and provide additional data on sediment hydrocarbon loads and the impacts on sediment infauna in areas with coral communities around the Macondo well. We review the literature on the genetic connectivity of deep-sea species in the Gulf of Mexico and discuss the potential for wider effects on deep Gulf coral communities.

  14. Facilitation in Caribbean coral reefs: high densities of staghorn coral foster greater coral condition and reef fish composition.

    PubMed

    Huntington, Brittany E; Miller, Margaret W; Pausch, Rachel; Richter, Lee

    2017-05-01

    Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.

  15. Association of coral algal symbionts with a diverse viral community responsive to heat shock.

    PubMed

    Brüwer, Jan D; Agrawal, Shobhit; Liew, Yi Jin; Aranda, Manuel; Voolstra, Christian R

    2017-08-17

    Stony corals provide the structural foundation of coral reef ecosystems and are termed holobionts given they engage in symbioses, in particular with photosynthetic dinoflagellates of the genus Symbiodinium. Besides Symbiodinium, corals also engage with bacteria affecting metabolism, immunity, and resilience of the coral holobiont, but the role of associated viruses is largely unknown. In this regard, the increase of studies using RNA sequencing (RNA-Seq) to assess gene expression provides an opportunity to elucidate viral signatures encompassed within the data via careful delineation of sequence reads and their source of origin. Here, we re-analyzed an RNA-Seq dataset from a cultured coral symbiont (Symbiodinium microadriaticum, Clade A1) across four experimental treatments (control, cold shock, heat shock, dark shock) to characterize associated viral diversity, abundance, and gene expression. Our approach comprised the filtering and removal of host sequence reads, subsequent phylogenetic assignment of sequence reads of putative viral origin, and the assembly and analysis of differentially expressed viral genes. About 15.46% (123 million) of all sequence reads were non-host-related, of which <1% could be classified as archaea, bacteria, or virus. Of these, 18.78% were annotated as virus and comprised a diverse community consistent across experimental treatments. Further, non-host related sequence reads assembled into 56,064 contigs, including 4856 contigs of putative viral origin that featured 43 differentially expressed genes during heat shock. The differentially expressed genes included viral kinases, ubiquitin, and ankyrin repeat proteins (amongst others), which are suggested to help the virus proliferate and inhibit the algal host's antiviral response. Our results suggest that a diverse viral community is associated with coral algal endosymbionts of the genus Symbiodinium, which prompts further research on their ecological role in coral health and resilience.

  16. Mangroves enhance the biomass of coral reef fish communities in the Caribbean.

    PubMed

    Mumby, Peter J; Edwards, Alasdair J; Arias-González, J Ernesto; Lindeman, Kenyon C; Blackwell, Paul G; Gall, Angela; Gorczynska, Malgosia I; Harborne, Alastair R; Pescod, Claire L; Renken, Henk; Wabnitz, Colette C C; Llewellyn, Ghislane

    2004-02-05

    Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs.

  17. Mangroves enhance the biomass of coral reef fish communities in the Caribbean

    NASA Astrophysics Data System (ADS)

    Mumby, Peter J.; Edwards, Alasdair J.; Ernesto Arias-González, J.; Lindeman, Kenyon C.; Blackwell, Paul G.; Gall, Angela; Gorczynska, Malgosia I.; Harborne, Alastair R.; Pescod, Claire L.; Renken, Henk; C. C. Wabnitz, Colette; Llewellyn, Ghislane

    2004-02-01

    Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs.

  18. Spatial and Temporal Changes in Coral Community Responses to Ocean Warming

    NASA Astrophysics Data System (ADS)

    Barkley, H.; Cohen, A. L.

    2016-02-01

    Tropical Pacific sea surface temperature is projected to rise 2-3°C by the end of this century, fueling efforts to identify thermally-tolerant reef communities that have the best chance of surviving future climate change. We used skeletal indicators of thermal stress in massive Porites corals collected across the Palau archipelago to document spatial and temporal changes in community-scale tolerance to anomalous warm events associated with the 1998 and 2010 Pacific ENSOs. Within communities where bleaching was documented by visual surveys, we find a strong correlation between percent bleaching and the proportion of surviving Porites colonies exhibiting skeletal density anomalies or "stress bands". Using this relationship, we reconstructed the intensity and spatial patterns of bleaching during the 1998 ENSO event when survey data are limited. On exposed barrier reefs and inshore fringing reefs, the proportion of corals with 1998 stress bands (60% and 40% respectively) was consistent with that expected from DHW predictions and post-bleaching surveys. Conversely, in the Rock Island bays, where ambient temperatures were highest, no 1998 stress bands were recorded. However, these corals did respond to the 2010 thermal anomaly with the appearance of stress bands and an abrupt decline in calcification. The reasons for this apparent shift in thermal tolerance in response to the relatively weak 2010 warming are not yet clear. While the interplay of temperature with other environmental variables including light and flow cannot yet be ruled out, stressors associated with an increase in human activities, including tourism, on Palau are also considered.

  19. Changes in microbial communities, photosynthesis and calcification of the coral Acropora gemmifera in response to ocean acidification.

    PubMed

    Zhou, Guowei; Yuan, Tao; Cai, Lin; Zhang, Weipeng; Tian, Renmao; Tong, Haoya; Jiang, Lei; Yuan, Xiangcheng; Liu, Sheng; Qian, Peiyuan; Huang, Hui

    2016-10-27

    With the increasing anthropogenic CO 2 concentration, ocean acidification (OA) can have dramatic effects on coral reefs. However, the effects of OA on coral physiology and the associated microbes remain largely unknown. In the present study, reef-building coral Acropora gemmifera collected from a reef flat with highly fluctuating environmental condition in the South China Sea were exposed to three levels of partial pressure of carbon dioxide (pCO 2 ) (i.e., 421, 923, and 2070 μatm) for four weeks. The microbial community structures associated with A. gemmifera under these treatments were analyzed using 16S rRNA gene barcode sequencing. The results revealed that the microbial community associated with A. gemmifera was highly diverse at the genus level and dominated by Alphaproteobacteria. More importantly, the microbial community structure remained rather stable under different pCO 2 treatments. Photosynthesis and calcification in A. gemmifera, as indicated by enrichment of δ 18 O and increased depletion of δ 13 C in the coral skeleton, were significantly impaired only at the high pCO 2 (2070 μatm). These results suggest that A. gemmifera can maintain a high degree of stable microbial communities despite of significant physiological changes in response to extremely high pCO 2 .

  20. Changes in microbial communities, photosynthesis and calcification of the coral Acropora gemmifera in response to ocean acidification

    NASA Astrophysics Data System (ADS)

    Zhou, Guowei; Yuan, Tao; Cai, Lin; Zhang, Weipeng; Tian, Renmao; Tong, Haoya; Jiang, Lei; Yuan, Xiangcheng; Liu, Sheng; Qian, Peiyuan; Huang, Hui

    2016-10-01

    With the increasing anthropogenic CO2 concentration, ocean acidification (OA) can have dramatic effects on coral reefs. However, the effects of OA on coral physiology and the associated microbes remain largely unknown. In the present study, reef-building coral Acropora gemmifera collected from a reef flat with highly fluctuating environmental condition in the South China Sea were exposed to three levels of partial pressure of carbon dioxide (pCO2) (i.e., 421, 923, and 2070 μatm) for four weeks. The microbial community structures associated with A. gemmifera under these treatments were analyzed using 16S rRNA gene barcode sequencing. The results revealed that the microbial community associated with A. gemmifera was highly diverse at the genus level and dominated by Alphaproteobacteria. More importantly, the microbial community structure remained rather stable under different pCO2 treatments. Photosynthesis and calcification in A. gemmifera, as indicated by enrichment of δ18O and increased depletion of δ13C in the coral skeleton, were significantly impaired only at the high pCO2 (2070 μatm). These results suggest that A. gemmifera can maintain a high degree of stable microbial communities despite of significant physiological changes in response to extremely high pCO2.

  1. Changes in microbial communities, photosynthesis and calcification of the coral Acropora gemmifera in response to ocean acidification

    PubMed Central

    Zhou, Guowei; Yuan, Tao; Cai, Lin; Zhang, Weipeng; Tian, Renmao; Tong, Haoya; Jiang, Lei; Yuan, Xiangcheng; Liu, Sheng; Qian, Peiyuan; Huang, Hui

    2016-01-01

    With the increasing anthropogenic CO2 concentration, ocean acidification (OA) can have dramatic effects on coral reefs. However, the effects of OA on coral physiology and the associated microbes remain largely unknown. In the present study, reef-building coral Acropora gemmifera collected from a reef flat with highly fluctuating environmental condition in the South China Sea were exposed to three levels of partial pressure of carbon dioxide (pCO2) (i.e., 421, 923, and 2070 μatm) for four weeks. The microbial community structures associated with A. gemmifera under these treatments were analyzed using 16S rRNA gene barcode sequencing. The results revealed that the microbial community associated with A. gemmifera was highly diverse at the genus level and dominated by Alphaproteobacteria. More importantly, the microbial community structure remained rather stable under different pCO2 treatments. Photosynthesis and calcification in A. gemmifera, as indicated by enrichment of δ18O and increased depletion of δ13C in the coral skeleton, were significantly impaired only at the high pCO2 (2070 μatm). These results suggest that A. gemmifera can maintain a high degree of stable microbial communities despite of significant physiological changes in response to extremely high pCO2. PMID:27786309

  2. Biodiversity and spatial patterns of benthic habitat and associated demersal fish communities at two tropical submerged reef ecosystems

    NASA Astrophysics Data System (ADS)

    Abdul Wahab, Muhammad Azmi; Radford, Ben; Cappo, Mike; Colquhoun, Jamie; Stowar, Marcus; Depczynski, Martial; Miller, Karen; Heyward, Andrew

    2018-06-01

    Submerged reef ecosystems can be very diverse and may serve as important refugia for shallow-water conspecifics. This study quantified the benthic and fish communities of two proximate, predominantly mesophotic coral ecosystems (MCEs), Glomar Shoal and Rankin Bank, which are geographically isolated from other similar features in the region. Glomar Shoal is identified as a key ecological feature (KEF) in the North West Marine Region of Australia. Multibeam surveys were performed to characterise the seafloor and to derive secondary environmental variables, used to explain patterns in benthic and fish communities. Towed video surveys quantified benthic cover, and stereo baited remote underwater stations were used to survey fish abundance and diversity. Surveys were completed in depths of 20-115 m. The two MCEs exhibited distinct communities; Rankin Bank consistently had higher cover (up to 30×) of benthic taxa across depths, and fish communities that were twice as abundant and 1.5× more diverse than Glomar Shoal. The location of the MCEs, depth and rugosity were most influential in structuring benthic communities. Phototrophic taxa, specifically macroalgae and hard corals, had up to 22 × higher cover at Rankin Bank than at Glomar Shoal and were dominant to 80 m (compared to 60 m at Glomar Shoal), presumably due to greater light penetration (lower turbidity) and lower sand cover at greater depths. The 20% coral cover at Rankin Bank was comparable to that reported for shallow reefs. The cover of sand, hard corals and sponges influenced fish communities, with higher abundance and diversity of fish associated with shallow hard coral habitats. This study demonstrated that the two MCEs were unique within the local context, and when coupled with their geographical isolation and biodiversity, presents compelling support for the additional recognition of Rankin Bank as a KEF.

  3. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico

    PubMed Central

    White, Helen K.; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M.; Cordes, Erik E.; Quattrini, Andrea M.; Nelson, Robert K.; Camilli, Richard; Demopoulos, Amanda W. J.; German, Christopher R.; Brooks, James M.; Roberts, Harry H.; Shedd, William; Reddy, Christopher M.; Fisher, Charles R.

    2012-01-01

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems. PMID:22454495

  4. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico

    USGS Publications Warehouse

    White, Helen K.; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M.; Cordes, Erik E.; Quattrini, Andrea M.; Nelson, Robert K.; Camilli, Richard; Demopoulos, Amanda W.J.; German, Christopher R.; Brooks, James M.; Roberts, Harry H.; Shedd, William; Reddy, Christopher M.; Fisher, Charles R.

    2012-01-01

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.

  5. Additive diversity partitioning of fish in a Caribbean coral reef undergoing shift transition.

    PubMed

    Acosta-González, Gilberto; Rodríguez-Zaragoza, Fabián A; Hernández-Landa, Roberto C; Arias-González, Jesús E

    2013-01-01

    Shift transitions in dominance on coral reefs from hard coral cover to fleshy macroalgae are having negative effects on Caribbean coral reef communities. Data on spatiotemporal changes in biodiversity during these modifications are important for decision support for coral reef biodiversity protection. The main objective of this study is to detect the spatiotemporal patterns of coral reef fish diversity during this transition using additive diversity-partitioning analysis. We examined α, β and γ fish diversity from 2000 to 2010, during which time a shift transition occurred at Mahahual Reef, located in Quintana Roo, Mexico. Data on coral reef fish and benthic communities were obtained from 12 transects per geomorphological unit (GU) in two GUs (reef slope and terrace) over six years (2000, 2005, 2006, 2007, 2008, 2010). Spatial analysis within and between the GUs indicated that the γ-diversity was primarily related to higher β-diversity. Throughout the six study years, there were losses of α, β and γ-diversity associated spatially with the shallow (reef slope) and deeper (reef terrace) GUs and temporally with the transition in cover from mound corals to fleshy macroalgae and boulder corals. Despite a drastic reduction in the number of species over time, β-diversity continues to be the highest component of γ-diversity. The shift transition had a negative effect on α, β and γ-diversity, primarily by impacting rare species, leading a group of small and less vulnerable fish species to become common and an important group of rare species to become locally extinct. The maintenance of fish heterogeneity (β-diversity) over time may imply the abetment of vulnerability in the face of local and global changes.

  6. Habitat degradation and fishing effects on the size structure of coral reef fish communities.

    PubMed

    Wilson, S K; Fisher, R; Pratchett, M S; Graham, N A J; Dulvy, N K; Turner, R A; Cakacaka, A; Polunin, N V C

    2010-03-01

    Overfishing and habitat degradation through climate change pose the greatest threats to sustainability of marine resources on coral reefs. We examined how changes in fishing pressure and benthic habitat composition influenced the size spectra of island-scale reef fish communities in Lau, Fiji. Between 2000 and 2006 fishing pressure declined in the Lau Islands due to declining human populations and reduced demand for fresh fish. At the same time, coral cover declined and fine-scale architectural complexity eroded due to coral bleaching and outbreaks of crown-of-thorns starfish, Acanthaster planci. We examined the size distribution of reef fish communities using size spectra analysis, the linearized relationship between abundance and body size class. Spatial variation in fishing pressure accounted for 31% of the variation in the slope of the size spectra in 2000, higher fishing pressure being associated with a steeper slope, which is indicative of fewer large-bodied fish and/or more small-bodied fish. Conversely, in 2006 spatial variation in habitat explained 53% of the variation in the size spectra slopes, and the relationship with fishing pressure was much weaker (approximately 12% of variation) than in 2000. Reduced cover of corals and lower structural complexity was associated with less steep size spectra slopes, primarily due to reduced abundance of fish < 20 cm. Habitat degradation will compound effects of fishing on coral reefs as increased fishing reduces large-bodied target species, while habitat loss results in fewer small-bodied juveniles and prey that replenish stocks and provide dietary resources for predatory target species. Effective management of reef resources therefore depends on both reducing fishing pressure and maintaining processes that encourage rapid recovery of coral habitat.

  7. Ground hardness and injury in community level Australian football.

    PubMed

    Twomey, Dara M; Finch, Caroline F; Lloyd, David G; Elliott, Bruce C; Doyle, Tim L A

    2012-07-01

    To describe the risk and details of injuries associated with ground hardness in community level Australian football (AF). Prospective injury surveillance with periodic objective ground hardness measurement. 112 ground hardness assessments were undertaken using a Clegg hammer at nine locations across 20 grounds, over the 2007 and 2008 AF seasons. Details of 352 injuries sustained by community level players on those grounds were prospectively collected as part of a large randomised controlled trial. The ground location of the injury was matched to the nearest corresponding ground hardness Clegg hammer readings, in gravities (g), which were classified from unacceptably low (<30 g) to unacceptably high hardness (>120 g). Clegg hammer readings ranged from 25 to 301 g. Clegg hammer hardness categories from low/normal to high/normal were associated with the majority of injuries, with only 3.7% (13 injuries) on unacceptably high hardness and 0.3% (1 injury) on the unacceptably low hardness locations. Relative to the preferred range of hardness, the risk of sustaining an injury on low/normal hardness locations was 1.31 (95%CI: 1.06-1.62) times higher and 1.82 (95%CI: 1.17-2.85) times higher on locations with unacceptably high hardness. The more severe injuries occurred with low/normal ground hardness. Despite the low number of injuries, the risk of sustaining an injury on low/normal and unacceptably hard grounds was significantly greater than on the preferred range of hardness. Notably, the severity of the injuries sustained on unacceptably hard grounds was lower than for other categories of hardness. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Monitoring the coral disease, plague type II, on coral reefs in St. John, U.S. Virgin Islands

    USGS Publications Warehouse

    Miller, J.; Rogers, C.; Waara, R.

    2003-01-01

    In July 1997, conspicuous white patches of necrotic tissue and bare skeleton began to appear on scleractinian corals in several bays around St. John, US Virgin Islands. Analysis of diseased coral tissue from five different species confirmed the presence of a Sphingomonas-like bacterium, the pathogen for plague type II. To date, 14 species of hard corals have been affected by plague type II around St. John. This disease was monitored at Haulover and Tektite Reefs at depths of 7-12 meters. The study site at Tektite Reef has >50% cover by scleractinian corals with 90% of hard corals being composed of Montastraea annular is. Monthly surveys at Tektite Reef from December 1997 to May 2001 documented new incidence of disease (bare white patches of skeleton) every month with associated loss of living coral and 90.5% of all disease patches occurred on M. annularis. The frequency of disease within transects ranged from 3 to 58%, and the area of disease patches ranged from 0.25 to 9000 cm2. The average percent cover by the disease within 1 m2 ranged from 0.01% (?? 0.04 SD) to 1.74% (?? 9.08 SD). Photo-monitoring of 28 diseased corals of 9 species begun in September 1997 at Haulover Reef revealed no recovery of diseased portions with all necrotic tissue being overgrown rapidly by turf algae, usually within less than one month. Most coral colonies suffered partial mortality. Very limited recruitment (e.g., of Agaricia spp., Favia spp. and sponges) has been noted on the diseased areas. This coral disease has the potential to cause more loss of live coral on St. John reefs than any other stress to date because it targets the dominant reef building species, M. annularis.

  9. Sensitivity of coral recruitment to subtle shifts in early community succession.

    PubMed

    Doropoulos, Christopher; Roff, George; Visser, Mart-Simone; Mumby, Peter J

    2017-02-01

    Community succession following disturbance depends on positive and negative interactions, the strength of which change along environmental gradients. To investigate how early succession affects coral reef recovery, we conducted an 18-month experiment in Palau, using recruitment tiles and herbivore exclusion cages. One set of reefs has higher wave exposure and had previously undergone a phase shift to macroalgae following a major typhoon, whereas the other set of reefs have lower wave exposure and did not undergo a macroalgal phase shift. Similar successional trajectories were observed at all sites when herbivores were excluded: turf algae dominated early succession, followed by shifts to foliose macroalgae and heterotrophic invertebrates. However, trajectories differed in the presence of herbivores. At low wave exposure reefs, herbivores promoted coralline algae and limited turf and encrusting fleshy algae in crevice microhabitats, facilitating optimal coral recruitment. Under medium wave exposure, relatively higher but still low coverage of turf and encrusting fleshy algae (15-25%) found in crevice microhabitats inhibited coral recruitment, persisting throughout multiple recruitment events. Our results indicate that altered interaction strength in different wave environments following disturbance can drive subtle changes in early succession that cascade to alter secondary succession to coral recruitment and system recovery. © 2016 by the Ecological Society of America.

  10. The impacts of tourism on coral reef conservation awareness and support in coastal communities in Belize

    NASA Astrophysics Data System (ADS)

    Diedrich, A.

    2007-12-01

    Marine recreational tourism is one of a number of threats to the Belize Barrier Reef but, conversely, represents both a motivation and source of resources for its conservation. The growth of tourism in Belize has resulted in the fact that many coastal communities are in varying stages of a socio-economic shift from dependence on fishing to dependence on tourism. In a nation becoming increasingly dependent on the health of its coral reef ecosystems for economic prosperity, a shift from extractive uses to their preservation is both necessary and logical. Through examining local perception data in five coastal communities in Belize, each attracting different levels of coral reef related tourism, this analysis is intended to explore the relationship between tourism development and local coral reef conservation awareness and support. The results of the analysis show a positive correlation between tourism development and coral reef conservation awareness and support in the study communities. The results also show a positive correlation between tourism development and local perceptions of quality of life, a trend that is most likely the source of the observed relationship between tourism and conservation. The study concludes that, because the observed relationship may be dependent on continued benefits from tourism as opposed to a perceived crisis in coral reef health, Belize must pay close attention to tourism impacts in the future. Failure to do this could result in a destructive feedback loop that would contribute to the degradation of the reef and, ultimately, Belize’s diminished competitiveness in the ecotourism market.

  11. Deepwater Program: Exploration and Research of Northern Gulf of Mexico Deepwater Natural and Artificial Hard Bottom Habitats with Emphasis on Coral Communities: Reefs, Rigs and Wrecks

    DTIC Science & Technology

    2012-01-01

    Coral Communities: Reefs, Rigs and Wrecks Project Director - James Brooks TDI-Brooks International, 1902 Pinon, College Station, TX 77845 Phone...Reefs, Rigs and Wrecks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...geological/geophysical and oceanographic studies, Mr. Dan Warren and Mr. Rob Church from C&C Technology coordinate the wrecks studies along with, Dr

  12. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions

    PubMed Central

    Cardini, Ulisse; Bednarz, Vanessa N.; Naumann, Malik S.; van Hoytema, Nanne; Rix, Laura; Foster, Rachel A.; Al-Rshaidat, Mamoon M. D.; Wild, Christian

    2015-01-01

    Functional traits define species by their ecological role in the ecosystem. Animals themselves are host–microbe ecosystems (holobionts), and the application of ecophysiological approaches can help to understand their functioning. In hard coral holobionts, communities of dinitrogen (N2)-fixing prokaryotes (diazotrophs) may contribute a functional trait by providing bioavailable nitrogen (N) that could sustain coral productivity under oligotrophic conditions. This study quantified N2 fixation by diazotrophs associated with four genera of hermatypic corals on a northern Red Sea fringing reef exposed to high seasonality. We found N2 fixation activity to be 5- to 10-fold higher in summer, when inorganic nutrient concentrations were lowest and water temperature and light availability highest. Concurrently, coral gross primary productivity remained stable despite lower Symbiodinium densities and tissue chlorophyll a contents. In contrast, chlorophyll a content per Symbiodinium cell increased from spring to summer, suggesting that algal cells overcame limitation of N, an essential element for chlorophyll synthesis. In fact, N2 fixation was positively correlated with coral productivity in summer, when its contribution was estimated to meet 11% of the Symbiodinium N requirements. These results provide evidence of an important functional role of diazotrophs in sustaining coral productivity when alternative external N sources are scarce. PMID:26511052

  13. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs.

    PubMed

    Loh, Tse-Lynn; Pawlik, Joseph R

    2014-03-18

    Ecological studies have rarely been performed at the community level across a large biogeographic region. Sponges are now the primary habitat-forming organisms on Caribbean coral reefs. Recent species-level investigations have demonstrated that predatory fishes (angelfishes and some parrotfishes) differentially graze sponges that lack chemical defenses, while co-occurring, palatable species heal, grow, reproduce, or recruit at faster rates than defended species. Our prediction, based on resource allocation theory, was that predator removal would result in a greater proportion of palatable species in the sponge community on overfished reefs. We tested this prediction by performing surveys of sponge and fish community composition on reefs having different levels of fishing intensity across the Caribbean. A total of 109 sponge species was recorded from 69 sites, with the 10 most common species comprising 51.0% of sponge cover (3.6-7.7% per species). Nonmetric multidimensional scaling indicated that the species composition of sponge communities depended more on the abundance of sponge-eating fishes than geographic location. Across all sites, multiple-regression analyses revealed that spongivore abundance explained 32.8% of the variation in the proportion of palatable sponges, but when data were limited to geographically adjacent locations with strongly contrasting levels of fishing pressure (Cayman Islands and Jamaica; Curaçao, Bonaire, and Martinique), the adjusted R(2) values were much higher (76.5% and 94.6%, respectively). Overfishing of Caribbean coral reefs, particularly by fish trapping, removes sponge predators and is likely to result in greater competition for space between faster-growing palatable sponges and endangered reef-building corals.

  14. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs

    PubMed Central

    Loh, Tse-Lynn; Pawlik, Joseph R.

    2014-01-01

    Ecological studies have rarely been performed at the community level across a large biogeographic region. Sponges are now the primary habitat-forming organisms on Caribbean coral reefs. Recent species-level investigations have demonstrated that predatory fishes (angelfishes and some parrotfishes) differentially graze sponges that lack chemical defenses, while co-occurring, palatable species heal, grow, reproduce, or recruit at faster rates than defended species. Our prediction, based on resource allocation theory, was that predator removal would result in a greater proportion of palatable species in the sponge community on overfished reefs. We tested this prediction by performing surveys of sponge and fish community composition on reefs having different levels of fishing intensity across the Caribbean. A total of 109 sponge species was recorded from 69 sites, with the 10 most common species comprising 51.0% of sponge cover (3.6–7.7% per species). Nonmetric multidimensional scaling indicated that the species composition of sponge communities depended more on the abundance of sponge-eating fishes than geographic location. Across all sites, multiple-regression analyses revealed that spongivore abundance explained 32.8% of the variation in the proportion of palatable sponges, but when data were limited to geographically adjacent locations with strongly contrasting levels of fishing pressure (Cayman Islands and Jamaica; Curaçao, Bonaire, and Martinique), the adjusted R2 values were much higher (76.5% and 94.6%, respectively). Overfishing of Caribbean coral reefs, particularly by fish trapping, removes sponge predators and is likely to result in greater competition for space between faster-growing palatable sponges and endangered reef-building corals. PMID:24567392

  15. Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef.

    PubMed

    Marcelino, Vanessa Rossetto; Morrow, Kathleen M; van Oppen, Madeleine J H; Bourne, David G; Verbruggen, Heroen

    2017-10-01

    The health and functioning of reef-building corals is dependent on a balanced association with prokaryotic and eukaryotic microbes. The coral skeleton harbours numerous endolithic microbes, but their diversity, ecological roles and responses to environmental stress, including ocean acidification (OA), are not well characterized. This study tests whether pH affects the diversity and structure of prokaryotic and eukaryotic algal communities associated with skeletons of Porites spp. using targeted amplicon (16S rRNA gene, UPA and tufA) sequencing. We found that the composition of endolithic communities in the massive coral Porites spp. inhabiting a naturally high pCO 2 reef (avg. pCO 2 811 μatm) is not significantly different from corals inhabiting reference sites (avg. pCO 2 357 μatm), suggesting that these microbiomes are less disturbed by OA than previously thought. Possible explanations may be that the endolithic microhabitat is highly homeostatic or that the endolithic micro-organisms are well adapted to a wide pH range. Some of the microbial taxa identified include nitrogen-fixing bacteria (Rhizobiales and cyanobacteria), algicidal bacteria in the phylum Bacteroidetes, symbiotic bacteria in the family Endozoicomoniaceae, and endolithic green algae, considered the major microbial agent of reef bioerosion. Additionally, we test whether host species has an effect on the endolithic community structure. We show that the endolithic community of massive Porites spp. is substantially different and more diverse than that found in skeletons of the branching species Seriatopora hystrix and Pocillopora damicornis. This study reveals highly diverse and structured microbial communities in Porites spp. skeletons that are possibly resilient to OA. © 2017 John Wiley & Sons Ltd.

  16. Heavy metals distribution in the coral reef ecosystems of the Northern Red Sea

    NASA Astrophysics Data System (ADS)

    Ali, Abdel-Hamid A. M.; Hamed, Mohamed A.; Abd El-Azim, Hoda

    2011-03-01

    Concentrations of seven heavy metals (Cu, Zn, Pb, Cd, Ni, Co and Fe) were measured in the seawater, sediments, common scleractinian reef-building corals and soft corals (Octocorallia : Alcyonacea) at seven reef sites in the Northern Red Sea: I (Hurghada), II (Ras Za'farana), III (El-Ain Al-Sukhna), IV (El-Tur), V (Sha'b Rashdan), VI (Sharm El-Sheikh) and VII (Dahab). Levels of heavy metals were considerably elevated in seawater, sediments and corals collected from reef sites exposed to increased environmental contamination, as a result of diversified natural and anthropogenic inputs. Soft corals of genera Lithophyton, Sarcophyton and Sinularia showed higher concentrations of Zn, Pb, Cd and Ni than hard coral genera Acropora and Stylophora. Soft coral Sarcophyton trocheliophorum collected from El Ain Al-Suhkna (Gulf of Suez) had greater concentration of Cu, followed by hard corals Acropora pharaonis and Acropora hemprichi. The elevated levels of Zn, Cd and Ni were reported in the dry tissue of soft coral Sinularia spp. On the other hand, the soft coral Lithophyton arboreum displayed the highest concentration of Pb at Sha'b Rashdan (Gulf of Suez) and elevated concentration of Zn at Sharm El-Sheikh. Sediments showed significantly higher concentration of Fe than corals. The higher levels of Fe in hard corals than soft corals reflected the incorporation of Fe into the aragonite and the chelation with the organic matrix of the skeleton. The greater abundance of soft corals in metal-contaminated reef sites and the elevated levels of metals in their tissue suggesting that the soft corals could develop a tolerance mechanism to relatively high concentrations of metals. Although the effects of heavy metals on reef corals were not isolated from the possible effects of other stresses, the percentage cover of dead corals were significantly higher as the concentrations of heavy metals increased.

  17. Net Ecosystem Calcification by a Coral Reef Community under Natural Acidification

    NASA Astrophysics Data System (ADS)

    Shamberger, K.; Lentz, S. J.; Cohen, A. L.

    2016-02-01

    Net Ecosystem Calcification (NEC) is a measure of the balance between calcium carbonate production (calcification) and loss (dissolution) within a coral reef system. Establishing baseline NEC estimates for a broad range of coral reef systems today provides much needed information to constrain spatial and temporal variability within and amongst different systems, investigate the sensitivity of ecosystem scale calcification to environmental forcing, and improve projections of coral reef futures under ocean acidification throughout this century. Previous NEC studies have been limited to coral reefs with unidirectional (Lagrangian and flow respirometry studies) or negligible (slack water Eulerian studies) water flow across the reef for at least part of the day, usually on the order of hours. Here, we present NEC rates in a naturally low pH, semi-enclosed coral reef lagoon with high coral cover and diversity and tidally driven flow within the Palau Rock Islands. NEC was determined from data collected over the full diel cycle for four consecutive days, during two successive years and different seasons, using total alkalinity (TA), salinity, and volume budgets. Two different methods used to calculate NEC are in good agreement and show that the coral community is net calcifying despite high rates of bioerosion and pH (mean pH = 7.88 ± 0.02) and aragonite saturation state (Ωar = 2.66 ± 0.11) levels close to those projected for the end of this century. Critically, NEC rates in year 1 (17.0 - 23.7 mmol m-2 d-1) were half those of year 2 (42.0 - 48.1 mmol m-2 d-1), though the carbonate chemistry of the source water did not change between years. This suggests that single occupations and short term measurements do not adequately capture the full range of NEC variability within a system and that factors other than ocean acidification play an important role in modulating NEC rates.

  18. Dietary shift in juvenile coral trout ( Plectropomus maculatus) following coral reef degradation from a flood plume disturbance

    NASA Astrophysics Data System (ADS)

    Wen, Colin K. C.; Bonin, Mary C.; Harrison, Hugo B.; Williamson, David H.; Jones, Geoffrey P.

    2016-06-01

    Acute environmental disturbances impact on habitat quality and resource availability, which can reverberate through trophic levels and become apparent in species' dietary composition. In this study, we observed a distinct dietary shift of newly settled and juvenile coral trout ( Plectropomus maculatus) following severe coral reef habitat degradation after a river flood plume affected the Keppel Islands, Australia. Hard coral cover declined by ~28 % in the 2 yr following the 2010-2011 floods, as did the abundance of young coral trout. Gut contents analysis revealed that diets had shifted from largely crustacean-based to non-preferred prey fishes following the disturbances. These results suggest that newly settled and juvenile coral trout modify their diet and foraging strategy in response to coral habitat degradation. This bottom-up effect of habitat degradation on the diet of a top coral reef predator may incur a metabolic cost, with subsequent effects on growth and survival.

  19. Mortality, recovery, and community shifts of scleractinian corals in Puerto Rico one decade after the 2005 regional bleaching event.

    PubMed

    García-Sais, Jorge R; Williams, Stacey M; Amirrezvani, Ali

    2017-01-01

    This work analyzes the mortality, recovery, and shifts in the composition of scleractinian corals from Puerto Rico one decade after the 2005 regional coral bleaching event. Temporal and spatial patterns of coral community structure were examined using a stratified, non-random sampling approach based on five permanent transects per reef at 16 reef stations. A negative correlation between percent coral cover loss and light attenuation coefficient (Kd 490 ) was observed, suggesting that light attenuation, as influenced by water turbidity and depth, played a major role in coral protection during the bleaching event ("sunblock effect"). Responses of coral assemblages varied after the bleaching event, including shifts of cover from massive corals ( Orbicella spp.) to opportunistic ( Porites astreoides ) and branching corals ( Madracis auretenra , P. porites ) and/or turf algae; partial recovery of reef substrate cover by O. annularis complex; and no measurable changes in coral assemblages before and after the event.

  20. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem.

    PubMed

    Wild, Christian; Huettel, Markus; Klueter, Anke; Kremb, Stephan G; Rasheed, Mohammed Y M; Jørgensen, Bo B

    2004-03-04

    Zooxanthellae, endosymbiotic algae of reef-building corals, substantially contribute to the high gross primary production of coral reefs, but corals exude up to half of the carbon assimilated by their zooxanthellae as mucus. Here we show that released coral mucus efficiently traps organic matter from the water column and rapidly carries energy and nutrients to the reef lagoon sediment, which acts as a biocatalytic mineralizing filter. In the Great Barrier Reef, the dominant genus of hard corals, Acropora, exudes up to 4.8 litres of mucus per square metre of reef area per day. Between 56% and 80% of this mucus dissolves in the reef water, which is filtered through the lagoon sands. Here, coral mucus is degraded at a turnover rate of at least 7% per hour. Detached undissolved mucus traps suspended particles, increasing its initial organic carbon and nitrogen content by three orders of magnitude within 2 h. Tidal currents concentrate these mucus aggregates into the lagoon, where they rapidly settle. Coral mucus provides light energy harvested by the zooxanthellae and trapped particles to the heterotrophic reef community, thereby establishing a recycling loop that supports benthic life, while reducing loss of energy and nutrients from the reef ecosystem.

  1. Community Composition and Transcriptional Activity of Ammonia-Oxidizing Prokaryotes of Seagrass Thalassia hemprichii in Coral Reef Ecosystems.

    PubMed

    Ling, Juan; Lin, Xiancheng; Zhang, Yanying; Zhou, Weiguo; Yang, Qingsong; Lin, Liyun; Zeng, Siquan; Zhang, Ying; Wang, Cong; Ahmad, Manzoor; Long, Lijuan; Dong, Junde

    2018-01-01

    Seagrasses in coral reef ecosystems play important ecological roles by enhancing coral reef resilience under ocean acidification. However, seagrass primary productivity is typically constrained by limited nitrogen availability. Ammonia oxidation is an important process conducted by ammonia-oxidizing archaea (AOA) and bacteria (AOB), yet little information is available concerning the community structure and potential activity of seagrass AOA and AOB. Therefore, this study investigated the variations in the abundance, diversity and transcriptional activity of AOA and AOB at the DNA and transcript level from four sample types: the leaf, root, rhizosphere sediment and bulk sediment of seagrass Thalassia hemprichii in three coral reef ecosystems. DNA and complementary DNA (cDNA) were used to prepare clone libraries and DNA and cDNA quantitative PCR ( q PCR) assays, targeting the ammonia monooxygenase-subunit ( amo A) genes as biomarkers. Our results indicated that the closest relatives of the obtained archaeal and bacterial amo A gene sequences recovered from DNA and cDNA libraries mainly originated from the marine environment. Moreover, all the obtained AOB sequences belong to the Nitrosomonadales cluster. Nearly all the AOA communities exhibited higher diversity than the AOB communities at the DNA level, but the q PCR data demonstrated that the abundances of AOB communities were higher than that of AOA communities based on both DNA and RNA transcripts. Collectively, most of the samples shared greater community composition similarity with samples from the same location rather than sample type. Furthermore, the abundance of archaeal amo A gene in rhizosphere sediments showed significant relationships with the ammonium concentration of sediments and the nitrogen content of plant tissue (leaf and root) at the DNA level ( P < 0.05). Conversely, no such relationships were found for the AOB communities. This work provides new insight into the nitrogen cycle, particularly

  2. Spatial Homogeneity of Bacterial Communities Associated with the Surface Mucus Layer of the Reef-Building Coral Acropora palmata.

    PubMed

    Kemp, Dustin W; Rivers, Adam R; Kemp, Keri M; Lipp, Erin K; Porter, James W; Wares, John P

    2015-01-01

    Coral surface mucus layer (SML) microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions--uppermost (high irradiance), underside (low irradiance), and the colony base--representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD) values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations.

  3. Distributions and habitat associations of deep-water corals in Norfolk and Baltimore Canyons, Mid-Atlantic Bight, USA

    NASA Astrophysics Data System (ADS)

    Brooke, S. D.; Watts, M. W.; Heil, A. D.; Rhode, M.; Mienis, F.; Duineveld, G. C. A.; Davies, A. J.; Ross, S. W.

    2017-03-01

    A multi-disciplinary study of two major submarine canyons, Baltimore Canyon and Norfolk Canyon, off the US mid-Atlantic coast focused on the ecology and biology of canyon habitats, particularly those supporting deep-sea corals. Historical data on deep-sea corals from these canyons were sparse with less than 750 records for the mid-Atlantic region, with most being soft sediment species. This study substantially increased the number of deep-sea coral records for the target canyons and the region. Large gorgonians were the dominant structure-forming coral taxa on exposed hard substrates, but several species of scleractinians were also documented, including first observations of Lophelia pertusa in the mid-Atlantic Bight region. Coral distribution varied within and between the two canyons, with greater abundance of the octocoral Paragorgia arborea in Baltimore Canyon, and higher occurrence of stony corals in Norfolk Canyon; these observations reflect the differences in environmental conditions, particularly turbidity, between the canyons. Some species have a wide distribution (e.g., P. arborea, Primnoa resedaeformis, Anthothela grandiflora), while others are limited to certain habitat types and/or depth zones (e.g., Paramuricea placomus, L. pertusa, Solenosmilia variabilis). The distribution of a species is driven by a combination of factors, which include availability of appropriate physical structure and environmental conditions. Although the diversity of the structure-forming corals (gorgonians, branching scleractinians and large anemones) was low, many areas of both canyons supported high coral abundance and a diverse coral-associated community. The canyons provide suitable habitat for the development of deep-sea coral communities that is not readily available elsewhere on the sedimented shelf and slope of the Mid-Atlantic Bight.

  4. Bacterial communities associated with Porites white patch syndrome (PWPS) on three western Indian Ocean (WIO) coral reefs.

    PubMed

    Séré, Mathieu G; Tortosa, Pablo; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H

    2013-01-01

    The scleractinian coral Porites lutea, an important reef-building coral on western Indian Ocean reefs (WIO), is affected by a newly-reported white syndrome (WS) the Porites white patch syndrome (PWPS). Histopathology and culture-independent molecular techniques were used to characterise the microbial communities associated with this emerging disease. Microscopy showed extensive tissue fragmentation generally associated with ovoid basophilic bodies resembling bacterial aggregates. Results of 16S rRNA sequence analysis revealed a high variability between bacterial communities associated with PWPS-infected and healthy tissues in P. lutea, a pattern previously reported in other coral diseases such as black band disease (BBD), white band disease (WBD) and white plague diseases (WPD). Furthermore, substantial variations in bacterial communities were observed at the different sampling locations, suggesting that there is no strong bacterial association in Porites lutea on WIO reefs. Several sequences affiliated with potential pathogens belonging to the Vibrionaceae and Rhodobacteraceae were identified, mainly in PWPS-infected coral tissues. Among them, only two ribotypes affiliated to Shimia marina (NR043300.1) and Vibrio hepatarius (NR025575.1) were consistently found in diseased tissues from the three geographically distant sampling localities. The role of these bacterial species in PWPS needs to be tested experimentally.

  5. In-situ Effects of Eutrophication and Overfishing on Physiology and Bacterial Diversity of the Red Sea Coral Acropora hemprichii

    PubMed Central

    Jessen, Christian; Villa Lizcano, Javier Felipe; Bayer, Till; Roder, Cornelia; Aranda, Manuel; Wild, Christian; Voolstra, Christian R

    2013-01-01

    Coral reefs of the Central Red Sea display a high degree of endemism, and are increasingly threatened by anthropogenic effects due to intense local coastal development measures. Overfishing and eutrophication are among the most significant local pressures on these reefs, but there is no information available about their potential effects on the associated microbial community. Therefore, we compared holobiont physiology and 16S-based bacterial communities of tissue and mucus of the hard coral Acropora hemprichii after 1 and 16 weeks of in-situ inorganic nutrient enrichment (via fertilizer diffusion) and/or herbivore exclusion (via caging) in an offshore reef of the Central Red Sea. Simulated eutrophication and/or overfishing treatments did not affect coral physiology with respect to coral respiration rates, chlorophyll a content, zooxanthellae abundance, or δ 15N isotopic signatures. The bacterial community of A. hemprichii was rich and uneven, and diversity increased over time in all treatments. While distinct bacterial species were identified as a consequence of eutrophication, overfishing, or both, two bacterial species that could be classified to the genus Endozoicomonas were consistently abundant and constituted two thirds of bacteria in the coral. Several nitrogen-fixing and denitrifying bacteria were found in the coral specimens that were exposed to experimentally increased nutrients. However, no particular bacterial species was consistently associated with the coral under a given treatment and the single effects of manipulated eutrophication and overfishing could not predict the combined effect. Our data underlines the importance of conducting field studies in a holobiont framework, taking both, physiological and molecular measures into account. PMID:23630625

  6. In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the red sea coral Acropora hemprichii.

    PubMed

    Jessen, Christian; Villa Lizcano, Javier Felipe; Bayer, Till; Roder, Cornelia; Aranda, Manuel; Wild, Christian; Voolstra, Christian R

    2013-01-01

    Coral reefs of the Central Red Sea display a high degree of endemism, and are increasingly threatened by anthropogenic effects due to intense local coastal development measures. Overfishing and eutrophication are among the most significant local pressures on these reefs, but there is no information available about their potential effects on the associated microbial community. Therefore, we compared holobiont physiology and 16S-based bacterial communities of tissue and mucus of the hard coral Acropora hemprichii after 1 and 16 weeks of in-situ inorganic nutrient enrichment (via fertilizer diffusion) and/or herbivore exclusion (via caging) in an offshore reef of the Central Red Sea. Simulated eutrophication and/or overfishing treatments did not affect coral physiology with respect to coral respiration rates, chlorophyll a content, zooxanthellae abundance, or δ (15)N isotopic signatures. The bacterial community of A. hemprichii was rich and uneven, and diversity increased over time in all treatments. While distinct bacterial species were identified as a consequence of eutrophication, overfishing, or both, two bacterial species that could be classified to the genus Endozoicomonas were consistently abundant and constituted two thirds of bacteria in the coral. Several nitrogen-fixing and denitrifying bacteria were found in the coral specimens that were exposed to experimentally increased nutrients. However, no particular bacterial species was consistently associated with the coral under a given treatment and the single effects of manipulated eutrophication and overfishing could not predict the combined effect. Our data underlines the importance of conducting field studies in a holobiont framework, taking both, physiological and molecular measures into account.

  7. Algal Turf Recruitment and Early Growth did not Differ Across Sites that Varied Greatly in Herbivore and Coral Community Structure.

    NASA Astrophysics Data System (ADS)

    Gaynus, C.

    2016-02-01

    Worldwide losses of coral with accompanying phase shifts to algae have been attributed to human alterations of major ecological processes, especially top down (herbivory) and bottom up (nutrients) forces. While positive effects on macroalgae have received some attention, less is known about turf algae. Closely cropped turf algae (< 1cm) are a major component of pristine coral reefs, providing trophic support, aiding in nutrient cycling, and providing high rates of photosynthesis. We hypothesized that enhanced nutrient supplies from developed watersheds and reduced herbivory from overfishing would result in longer turf, and possibly development of macroalgae. The goals of this study were to quantify top down and bottom up forces in conjunction with assessments of turf algae recruitment and growth on a fringing reef in Mo'orea French Polynesia. While this study will continue for 2 years, data here are for 5 weeks. We chose 3 sites in Cooks Bay that likely varied in nutrients and 3 along the north shore, presumably higher in herbivory. At each site 10 recruitment tiles were deployed. Turf communities accumulated over five-weeks while benthic and herbivorous fish communities were quantified at each site. Herbivorous fish communities consisted of juveniles and adults from the families Acanthuridae and Scaridae with both adult and juvenile acanthurids, comprising > 50% of all herbivorous fish. Sites within the bay, however, contained at least 66.7% less fish than sites along the north shore. In contrast benthic surveys portrayed little difference between sites, with turf making up > 70% of total hard bottom cover. Similarly, there was little difference among sites in the recruitment and growth rate ( 0.2-0.3 mm/week) of turf on tiles. While turf recruitment and early development appeared to be unaffected by herbivory or nutrients over the short time, we predict that longer-term effects will occur as this community develops.

  8. Homogeneity of coral reef communities across 8 degrees of latitude in the Saudi Arabian Red Sea.

    PubMed

    Roberts, May B; Jones, Geoffrey P; McCormick, Mark I; Munday, Philip L; Neale, Stephen; Thorrold, Simon; Robitzch, Vanessa S N; Berumen, Michael L

    2016-04-30

    Coral reef communities between 26.8 °N and 18.6 °N latitude in the Saudi Arabian Red Sea were surveyed to provide baseline data and an assessment of fine-scale biogeography of communities in this region. Forty reefs along 1100 km of coastline were surveyed using depth-stratified visual transects of fish and benthic communities. Fish abundance and benthic cover data were analyzed using multivariate approaches to investigate whether coral reef communities differed with latitude. A total of 215 fish species and 90 benthic categories were recorded on the surveys. There were no significant differences among locations in fish abundance, species richness, or among several diversity indices. Despite known environmental gradients within the Red Sea, the communities remained surprisingly similar. The communities do, however, exhibit subtle changes across this span of reefs that likely reflect the constrained distributions of several species of reef fish and benthic fauna. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities.

    PubMed

    Kayal, Mohsen; Vercelloni, Julie; Lison de Loma, Thierry; Bosserelle, Pauline; Chancerelle, Yannick; Geoffroy, Sylvie; Stievenart, Céline; Michonneau, François; Penin, Lucie; Planes, Serge; Adjeroud, Mehdi

    2012-01-01

    Outbreaks of the coral-killing seastar Acanthaster planci are intense disturbances that can decimate coral reefs. These events consist of the emergence of large swarms of the predatory seastar that feed on reef-building corals, often leading to widespread devastation of coral populations. While cyclic occurrences of such outbreaks are reported from many tropical reefs throughout the Indo-Pacific, their causes are hotly debated, and the spatio-temporal dynamics of the outbreaks and impacts to reef communities remain unclear. Based on observations of a recent event around the island of Moorea, French Polynesia, we show that Acanthaster outbreaks are methodic, slow-paced, and diffusive biological disturbances. Acanthaster outbreaks on insular reef systems like Moorea's appear to originate from restricted areas confined to the ocean-exposed base of reefs. Elevated Acanthaster densities then progressively spread to adjacent and shallower locations by migrations of seastars in aggregative waves that eventually affect the entire reef system. The directional migration across reefs appears to be a search for prey as reef portions affected by dense seastar aggregations are rapidly depleted of living corals and subsequently left behind. Coral decline on impacted reefs occurs by the sequential consumption of species in the order of Acanthaster feeding preferences. Acanthaster outbreaks thus result in predictable alteration of the coral community structure. The outbreak we report here is among the most intense and devastating ever reported. Using a hierarchical, multi-scale approach, we also show how sessile benthic communities and resident coral-feeding fish assemblages were subsequently affected by the decline of corals. By elucidating the processes involved in an Acanthaster outbreak, our study contributes to comprehending this widespread disturbance and should thus benefit targeted management actions for coral reef ecosystems.

  10. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up.

    PubMed

    Pawlik, Joseph R; Loh, Tse-Lynn; McMurray, Steven E; Finelli, Christopher M

    2013-01-01

    Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down) or by the availability of picoplankton to suspension-feeding sponges (bottom-up). We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth). There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals.

  11. Sponge Communities on Caribbean Coral Reefs Are Structured by Factors That Are Top-Down, Not Bottom-Up

    PubMed Central

    Pawlik, Joseph R.; Loh, Tse-Lynn; McMurray, Steven E.; Finelli, Christopher M.

    2013-01-01

    Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down) or by the availability of picoplankton to suspension-feeding sponges (bottom-up). We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth). There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals. PMID:23667492

  12. Mortality, recovery, and community shifts of scleractinian corals in Puerto Rico one decade after the 2005 regional bleaching event

    PubMed Central

    Amirrezvani, Ali

    2017-01-01

    This work analyzes the mortality, recovery, and shifts in the composition of scleractinian corals from Puerto Rico one decade after the 2005 regional coral bleaching event. Temporal and spatial patterns of coral community structure were examined using a stratified, non-random sampling approach based on five permanent transects per reef at 16 reef stations. A negative correlation between percent coral cover loss and light attenuation coefficient (Kd490) was observed, suggesting that light attenuation, as influenced by water turbidity and depth, played a major role in coral protection during the bleaching event (“sunblock effect”). Responses of coral assemblages varied after the bleaching event, including shifts of cover from massive corals (Orbicella spp.) to opportunistic (Porites astreoides) and branching corals (Madracis auretenra, P. porites) and/or turf algae; partial recovery of reef substrate cover by O. annularis complex; and no measurable changes in coral assemblages before and after the event. PMID:28761791

  13. Relationships between Host Phylogeny, Host Type and Bacterial Community Diversity in Cold-Water Coral Reef Sponges

    PubMed Central

    Schöttner, Sandra; Hoffmann, Friederike; Cárdenas, Paco; Rapp, Hans Tore; Boetius, Antje; Ramette, Alban

    2013-01-01

    Cold-water coral reefs are known to locally enhance the diversity of deep-sea fauna as well as of microbes. Sponges are among the most diverse faunal groups in these ecosystems, and many of them host large abundances of microbes in their tissues. In this study, twelve sponge species from three cold-water coral reefs off Norway were investigated for the relationship between sponge phylogenetic classification (species and family level), as well as sponge type (high versus low microbial abundance), and the diversity of sponge-associated bacterial communities, taking also geographic location and water depth into account. Community analysis by Automated Ribosomal Intergenic Spacer Analysis (ARISA) showed that as many as 345 (79%) of the 437 different bacterial operational taxonomic units (OTUs) detected in the dataset were shared between sponges and sediments, while only 70 (16%) appeared purely sponge-associated. Furthermore, changes in bacterial community structure were significantly related to sponge species (63% of explained community variation), sponge family (52%) or sponge type (30%), whereas mesoscale geographic distances and water depth showed comparatively small effects (<5% each). In addition, a highly significant, positive relationship between bacterial community dissimilarity and sponge phylogenetic distance was observed within the ancient family of the Geodiidae. Overall, the high diversity of sponges in cold-water coral reefs, combined with the observed sponge-related variation in bacterial community structure, support the idea that sponges represent heterogeneous, yet structured microbial habitats that contribute significantly to enhancing bacterial diversity in deep-sea ecosystems. PMID:23393586

  14. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific.

    PubMed

    Smith, Jennifer E; Brainard, Rusty; Carter, Amanda; Grillo, Saray; Edwards, Clinton; Harris, Jill; Lewis, Levi; Obura, David; Rohwer, Forest; Sala, Enric; Vroom, Peter S; Sandin, Stuart

    2016-01-13

    Numerous studies have documented declines in the abundance of reef-building corals over the last several decades and in some but not all cases, phase shifts to dominance by macroalgae have occurred. These assessments, however, often ignore the remainder of the benthos and thus provide limited information on the present-day structure and function of coral reef communities. Here, using an unprecedentedly large dataset collected within the last 10 years across 56 islands spanning five archipelagos in the central Pacific, we examine how benthic reef communities differ in the presence and absence of human populations. Using islands as replicates, we examine whether benthic community structure is associated with human habitation within and among archipelagos and across latitude. While there was no evidence for coral to macroalgal phase shifts across our dataset we did find that the majority of reefs on inhabited islands were dominated by fleshy non-reef-building organisms (turf algae, fleshy macroalgae and non-calcifying invertebrates). By contrast, benthic communities from uninhabited islands were more variable but in general supported more calcifiers and active reef builders (stony corals and crustose coralline algae). Our results suggest that cumulative human impacts across the central Pacific may be causing a reduction in the abundance of reef builders resulting in island scale phase shifts to dominance by fleshy organisms. © 2016 The Author(s).

  15. Temporal Sampling of White Band Disease Infected Corals Reveals Complex and Dynamic Bacterial Communities

    NASA Astrophysics Data System (ADS)

    Gignoux-Wolfsohn, S.; Vollmer, S. V.; Aronson, F. M.

    2016-02-01

    White band disease (WBD) is a coral disease that is currently decimating populations of the endangered staghorn coral, Acropora cervicornis and elkhorn coral, A. palmata across the Caribbean. Since it was first reported in 1979, WBD has killed 95% of these critical reef-building Caribbean corals. WBD is infectious; it can be transmitted through the water column or by a corallivorous snail. While previous research shows that WBD is likely caused by bacteria, identification of a specific pathogen or pathogens has remained elusive. Much of the difficulty of understanding the etiology of the disease comes from a lack of information about how existing bacterial communities respond to disease and separating initial from secondary colonizers. In order to address this lack of information, we performed a fully-crossed tank infection experiment. We exposed healthy corals from two different sites to disease and healthy (control) homogenates from both sites, replicating genotype across tanks. We sampled every coral at three time points: before inoculation with the homogenate, after inoculation, and when the coral showed signs of disease. We then performed 16S rRNA gene sequencing on the Illumina HiSeq 2000. We saw significant differences between time points and disease state. Interestingly, at the first time point (time one) we observed differences between genotypes: every fragment from some genotypes was dominated by Endozoicomonas, while other genotypes were not dominated by one family. At time two we saw an increase in abundance of Alteromonadaceae and Flavobacteriaceae in all corals, and a larger increase in disease-exposed corals. At time three, we saw another increase in Flavobacteriaceae abundance in diseased corals, as well as an introduction of Francisella to diseased corals. While Flavobacteriaceae and Francisella were proposed as potential pathogens, their increase at time three suggests they may be secondary colonizers or opportunists. In genotypes that were

  16. Community Structure of Decapod Inhabit Dead Coral Pocillopora sp. in Pemuteran, Bali

    NASA Astrophysics Data System (ADS)

    Pertiwi, N. P. D.; Malik, M. D. A.; Kholilah, N.; Kurniasih, E. M.; Sembiring, A.; Anggoro, A. W.; Ambariyanto; Meyer, C.

    2018-02-01

    Decapod is one of the cryptic fauna associated with coral reefs, which play an important role and accounts for a major part of the biodiversity in the reef ecosystem. However, this biodiversity is largely overlooked and assessment regarding this biodiversity has not been conducted thoroughly due to lack of resources and the difficulties of sample collection. This research used semi-quantitative sampling methods to assess the community structure of decapod species inhabit dead Pocillopora sp. in Pemuteran, Bali. Two dead coral head of Pocillopora sp. were used as pilot study and sampled at the 8-12 m depth. All decapod found were collected and identify into family level. The result showed 214 decapods found consisting 12 families, with Xanthidae as the most abundant family. Community Index which consisting diversity, uniformity, and dominancy, indicated medium diversity, stable uniformity, and low dominancy of decapod community. This result also indicated no dominancy between families of decapod. Meanwhile, Species Density Index showed the value of 84.58 ± 2.04 individual per m3, with mean diversity of 7.05 ± 2.04 individual per m3 for each family.

  17. Palaeoecological records of coral community development on a turbid, nearshore reef complex: baselines for assessing ecological change

    NASA Astrophysics Data System (ADS)

    Johnson, J. A.; Perry, C. T.; Smithers, S. G.; Morgan, K. M.; Santodomingo, N.; Johnson, K. G.

    2017-09-01

    Understanding past coral community development and reef growth is crucial for placing contemporary ecological and environmental change within appropriate reef-building timescales. On Australia's Great Barrier Reef (GBR), coral reefs situated within coastal inner-shelf zones are a particular priority. This is due to their close proximity to river point sources, and therefore susceptibility to reduced water quality discharged from coastal catchments, many of which have been modified following European settlement (ca. 1850 AD). However, the extent of water-quality decline and its impacts on the GBR's inner-shelf reefs remain contentious. In this study, palaeoecological coral assemblage records were developed for five proximal coral reefs situated within a nearshore turbid-zone reef complex on the central GBR. A total of 29 genera of Scleractinia were identified from the palaeoecological inventory of the reef complex, with key contributions to reef-building made by Acropora, Montipora, and Turbinaria. Discrete intervals pre- and post-dating European settlement, but associated with equivalent water depths, were identified using Bayesian age-depth modelling, enabling investigation of competing ideas of the main drivers of nearshore coral assemblage change. Specifically, we tested the hypotheses that changes in the composition of nearshore coral assemblages are: (1) intrinsically driven and linked to vertical reef development towards sea level, and (2) the result of changes in water quality associated with coastal river catchment modification. Our records found no discernible evidence of change in the generic composition of coral assemblages relative to European settlement. Instead, two distinctive depth-stratified assemblages were identified. This study demonstrates the robust nature of nearshore coral communities under reported water-quality decline and provides a useful context for the monitoring and assessment of ecological change on reefs located within the most

  18. Sunscreens Cause Coral Bleaching by Promoting Viral Infections

    PubMed Central

    Danovaro, Roberto; Bongiorni, Lucia; Corinaldesi, Cinzia; Giovannelli, Donato; Damiani, Elisabetta; Astolfi, Paola; Greci, Lucedio; Pusceddu, Antonio

    2008-01-01

    Background Coral bleaching (i.e., the release of coral symbiotic zooxanthellae) has negative impacts on biodiversity and functioning of reef ecosystems and their production of goods and services. This increasing world-wide phenomenon is associated with temperature anomalies, high irradiance, pollution, and bacterial diseases. Recently, it has been demonstrated that personal care products, including sunscreens, have an impact on aquatic organisms similar to that of other contaminants. Objectives Our goal was to evaluate the potential impact of sunscreen ingredients on hard corals and their symbiotic algae. Methods In situ and laboratory experiments were conducted in several tropical regions (the Atlantic, Indian, and Pacific Oceans, and the Red Sea) by supplementing coral branches with aliquots of sunscreens and common ultraviolet filters contained in sunscreen formula. Zooxanthellae were checked for viral infection by epifluorescence and transmission electron microscopy analyses. Results Sunscreens cause the rapid and complete bleaching of hard corals, even at extremely low concentrations. The effect of sunscreens is due to organic ultraviolet filters, which are able to induce the lytic viral cycle in symbiotic zooxanthellae with latent infections. Conclusions We conclude that sunscreens, by promoting viral infection, potentially play an important role in coral bleaching in areas prone to high levels of recreational use by humans. PMID:18414624

  19. Understanding the Spatio-Temporal Response of Coral Reef Fish Communities to Natural Disturbances: Insights from Beta-Diversity Decomposition

    PubMed Central

    Lamy, Thomas; Legendre, Pierre; Chancerelle, Yannick; Siu, Gilles; Claudet, Joachim

    2015-01-01

    Understanding how communities respond to natural disturbances is fundamental to assess the mechanisms of ecosystem resistance and resilience. However, ecosystem responses to natural disturbances are rarely monitored both through space and time, while the factors promoting ecosystem stability act at various temporal and spatial scales. Hence, assessing both the spatial and temporal variations in species composition is important to comprehensively explore the effects of natural disturbances. Here, we suggest a framework to better scrutinize the mechanisms underlying community responses to disturbances through both time and space. Our analytical approach is based on beta diversity decomposition into two components, replacement and biomass difference. We illustrate this approach using a 9-year monitoring of coral reef fish communities off Moorea Island (French Polynesia), which encompassed two severe natural disturbances: a crown-of-thorns starfish outbreak and a hurricane. These disturbances triggered a fast logistic decline in coral cover, which suffered a 90% decrease on all reefs. However, we found that the coral reef fish composition remained largely stable through time and space whereas compensatory changes in biomass among species were responsible for most of the temporal fluctuations, as outlined by the overall high contribution of the replacement component to total beta diversity. This suggests that, despite the severity of the two disturbances, fish communities exhibited high resistance and the ability to reorganize their compositions to maintain the same level of total community biomass as before the disturbances. We further investigated the spatial congruence of this pattern and showed that temporal dynamics involved different species across sites; yet, herbivores controlling the proliferation of algae that compete with coral communities were consistently favored. These results suggest that compensatory changes in biomass among species and spatial

  20. Understanding the Spatio-Temporal Response of Coral Reef Fish Communities to Natural Disturbances: Insights from Beta-Diversity Decomposition.

    PubMed

    Lamy, Thomas; Legendre, Pierre; Chancerelle, Yannick; Siu, Gilles; Claudet, Joachim

    2015-01-01

    Understanding how communities respond to natural disturbances is fundamental to assess the mechanisms of ecosystem resistance and resilience. However, ecosystem responses to natural disturbances are rarely monitored both through space and time, while the factors promoting ecosystem stability act at various temporal and spatial scales. Hence, assessing both the spatial and temporal variations in species composition is important to comprehensively explore the effects of natural disturbances. Here, we suggest a framework to better scrutinize the mechanisms underlying community responses to disturbances through both time and space. Our analytical approach is based on beta diversity decomposition into two components, replacement and biomass difference. We illustrate this approach using a 9-year monitoring of coral reef fish communities off Moorea Island (French Polynesia), which encompassed two severe natural disturbances: a crown-of-thorns starfish outbreak and a hurricane. These disturbances triggered a fast logistic decline in coral cover, which suffered a 90% decrease on all reefs. However, we found that the coral reef fish composition remained largely stable through time and space whereas compensatory changes in biomass among species were responsible for most of the temporal fluctuations, as outlined by the overall high contribution of the replacement component to total beta diversity. This suggests that, despite the severity of the two disturbances, fish communities exhibited high resistance and the ability to reorganize their compositions to maintain the same level of total community biomass as before the disturbances. We further investigated the spatial congruence of this pattern and showed that temporal dynamics involved different species across sites; yet, herbivores controlling the proliferation of algae that compete with coral communities were consistently favored. These results suggest that compensatory changes in biomass among species and spatial

  1. Influence of Coral Community Structure and Thermal Stress Exposure on Observed Patterns of Bleaching across the Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Johnston, L.; Heron, S. F.; Johnson, S.; Okano, R.; Benavente, D.; Iguel, J.; Perez, D. I.; Liu, G.; Geiger, E.; Eakin, C. M.

    2016-02-01

    In 2013 and 2014, the Mariana Archipelago experienced consecutive thermal stress events that resulted in widespread coral bleaching and mortality. Using in situ survey data collected across seven of the Northern Mariana Islands during the 2014 event, we undertook the first quantitative comparison between the National Oceanic and Atmospheric Administration's Coral Reef Watch 5 km satellite monitoring products and coral bleaching observations. Analysis of coral community characteristics, historical temperature conditions and thermal stress revealed a strong influence of coral biodiversity in the patterns of observed bleaching. This illustrates the importance of using local benthic characteristics to interpret the level of impact from thermal stress exposure. In an era of continuing climate change, accurate monitoring of thermal stress and prediction of coral bleaching are essential for resource managers and stakeholders to direct resources to the most effective management actions to conserve coral reefs.

  2. A diverse assemblage of reef corals thriving in a dynamic intertidal reef setting (Bonaparte Archipelago, Kimberley, Australia).

    PubMed

    Richards, Zoe T; Garcia, Rodrigo A; Wallace, Carden C; Rosser, Natalie L; Muir, Paul R

    2015-01-01

    The susceptibility of reef-building corals to climatic anomalies is well documented and a cause of great concern for the future of coral reefs. Reef corals are normally considered to tolerate only a narrow range of climatic conditions with only a small number of species considered heat-tolerant. Occasionally however, corals can be seen thriving in unusually harsh reef settings and these are cause for some optimism about the future of coral reefs. Here we document for the first time a diverse assemblage of 225 species of hard corals occurring in the intertidal zone of the Bonaparte Archipelago, north western Australia. We compare the environmental conditions at our study site (tidal regime, SST and level of turbidity) with those experienced at four other more typical tropical reef locations with similar levels of diversity. Physical extremes in the Bonaparte Archipelago include tidal oscillations of up to 8 m, long subaerial exposure times (>3.5 hrs), prolonged exposure to high SST and fluctuating turbidity levels. We conclude the timing of low tide in the coolest parts of the day ameliorates the severity of subaerial exposure, and the combination of strong currents and a naturally high sediment regime helps to offset light and heat stress. The low level of anthropogenic impact and proximity to the Indo-west Pacific centre of diversity are likely to further promote resistance and resilience in this community. This assemblage provides an indication of what corals may have existed in other nearshore locations in the past prior to widespread coastal development, eutrophication, coral predator and disease outbreaks and coral bleaching events. Our results call for a re-evaluation of what conditions are optimal for coral survival, and the Bonaparte intertidal community presents an ideal model system for exploring how species resilience is conferred in the absence of confounding factors such as pollution.

  3. Low recruitment due to altered settlement substrata as primary constraint for coral communities under ocean acidification.

    PubMed

    Fabricius, Katharina E; Noonan, Sam H C; Abrego, David; Harrington, Lindsay; De'ath, Glenn

    2017-09-13

    The future of coral reefs under increasing CO 2 depends on their capacity to recover from disturbances. To predict the recovery potential of coral communities that are fully acclimatized to elevated CO 2 , we compared the relative success of coral recruitment and later life stages at two volcanic CO 2 seeps and adjacent control sites in Papua New Guinea. Our field experiments showed that the effects of ocean acidification (OA) on coral recruitment rates were up to an order of magnitude greater than the effects on the survival and growth of established corals. Settlement rates, recruit and juvenile densities were best predicted by the presence of crustose coralline algae, as opposed to the direct effects of seawater CO 2 Offspring from high CO 2 acclimatized parents had similarly impaired settlement rates as offspring from control parents. For most coral taxa, field data showed no evidence of cumulative and compounding detrimental effects of high CO 2 on successive life stages, and three taxa showed improved adult performance at high CO 2 that compensated for their low recruitment rates. Our data suggest that severely declining capacity for reefs to recover, due to altered settlement substrata and reduced coral recruitment, is likely to become a dominant mechanism of how OA will alter coral reefs. © 2017 The Author(s).

  4. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals.

    PubMed

    Silverstein, Rachel N; Cunning, Ross; Baker, Andrew C

    2015-01-01

    Mutualistic organisms can be particularly susceptible to climate change stress, as their survivorship is often limited by the most vulnerable partner. However, symbiotic plasticity can also help organisms in changing environments by expanding their realized niche space. Coral-algal (Symbiodinium spp.) symbiosis exemplifies this dichotomy: the partnership is highly susceptible to 'bleaching' (stress-induced symbiosis breakdown), but stress-tolerant symbionts can also sometimes mitigate bleaching. Here, we investigate the role of diverse and mutable symbiotic partnerships in increasing corals' ability to thrive in high temperature conditions. We conducted repeat bleaching and recovery experiments on the coral Montastraea cavernosa, and used quantitative PCR and chlorophyll fluorometry to assess the structure and function of Symbiodinium communities within coral hosts. During an initial heat exposure (32 °C for 10 days), corals hosting only stress-sensitive symbionts (Symbiodinium C3) bleached, but recovered (at either 24 °C or 29 °C) with predominantly (>90%) stress-tolerant symbionts (Symbiodinium D1a), which were not detected before bleaching (either due to absence or extreme low abundance). When a second heat stress (also 32 °C for 10 days) was applied 3 months later, corals that previously bleached and were now dominated by D1a Symbiodinium experienced less photodamage and symbiont loss compared to control corals that had not been previously bleached, and were therefore still dominated by Symbiodinium C3. Additional corals that were initially bleached without heat by a herbicide (DCMU, at 24 °C) also recovered predominantly with D1a symbionts, and similarly lost fewer symbionts during subsequent thermal stress. Increased thermotolerance was also not observed in C3-dominated corals that were acclimated for 3 months to warmer temperatures (29 °C) before heat stress. These findings indicate that increased thermotolerance post-bleaching resulted from

  5. Culture-independent characterization of bacterial communities associated with the cold-water coral Lophelia pertusa in the northeastern Gulf of Mexico

    USGS Publications Warehouse

    Kellogg, C.A.; Lisle, J.T.; Galkiewicz, J.P.

    2009-01-01

    Bacteria are recognized as an important part of the total biology of shallow-water corals. Studies of shallow-water corals suggest that associated bacteria may benefit the corals by cycling carbon, fixing nitrogen, chelating iron, and producing antibiotics that protect the coral from other microbes. Cold-water or deep-sea corals have a fundamentally different ecology due to their adaptation to cold, dark, high-pressure environments and as such have novel microbiota. The goal of this study was to characterize the microbial associates of Lophelia pertusa in the northeastern Gulf of Mexico. This is the first study to collect the coral samples in individual insulated containers and to preserve coral samples at depth in an effort to minimize thermal shock and evaluate the effects of environmental gradients on the microbial diversity of samples. Molecular analysis of bacterial diversity showed a marked difference between the two study sites, Viosca Knoll 906/862 (VK906/862) and Viosca Knoll 826 (VK826). The bacterial communities from VK826 were dominated by a variety of unknown mycoplasmal members of the Tenericutes and Bacteroidetes, whereas the libraries from VK906/862 were dominated by members of the Proteobacteria. In addition to novel sequences, the 16S rRNA gene clone libraries revealed many bacterial sequences in common between Gulf of Mexico Lophelia corals and Norwegian fjord Lophelia corals, as well as shallow-water corals. Two Lophelia-specific bacterial groups were identified: a cluster of gammaproteobacteria related to sulfide-oxidizing gill symbionts of seep clams and a group of Mycoplasma spp. The presence of these groups in both Gulf and Norwegian Lophelia corals indicates that in spite of the geographic heterogeneity observed in Lophelia-associated bacterial communities, there are Lophelia-specific microbes. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  6. Resilience potential of an Indian Ocean reef: an assessment through coral recruitment pattern and survivability of juvenile corals to recurrent stress events.

    PubMed

    Manikandan, Balakrishnan; Ravindran, Jeyaraman; Vidya, Pottekkatt Jayabalan; Shrinivasu, Selvaraju; Manimurali, Rajagopal; Paramasivam, Kaliyaperumal

    2017-05-01

    Coral reefs are degraded by the synergistic action of climate and anthropogenic stressors. Coral cover in the Palk Bay reef at the northern Indian Ocean largely declined in the past decade due to frequent bleaching events, tsunami and increased fishing activities. In this study, we carried out a comparative assessment to assess the differences in the recovery and resilience of three spatially distant reefs viz. Vedhalai, Mandapam and Pamban along Palk Bay affected by moderate, severe and low fishing pressure respectively. The assessment was based on the juvenile coral recruitment pattern and its survivability combined with availability of hard substratum, live coral cover and herbivore reef fish stock. The Vedhalai reef has the highest coral cover (14.6 ± 6.3%), and ≥90% of the live corals in Vedhalai and Mandapam were affected by turf algal overgrowth. The density of herbivore reef fish was low in Vedhalai and Mandapam reefs compared to the Pamban reef with relatively few grazing species. The juvenile coral diversity and density were high in the Pamban reef and low in Vedhalai and Mandapam reefs despite high hard substratum cover. In total, 22 species of juvenile corals of 10 genera were recorded in Palk Bay. Comparison of the species diversity of juvenile corals with adult ones suggested that the Pamban reef is connected with other distant reefs whereas Vedhalai and Mandapam reefs were self-seeded. There was no statistically significant difference in the survivability of juvenile corals between the study sites, and in total, ≥90% of the juvenile corals survived the high sedimentation stress triggered by the northeast monsoon and bleaching stress that occurred recurrently. Our results indicated that the human activities indirectly affected the juvenile coral recruitment by degrading the live coral cover and contributed to the spatial variation in the recovery and resilience of the Palk Bay reef. Low species diversity of the juvenile corals will increase the

  7. Deepwater Program: Exploration and Research of Northern Gulf of Mexico Deepwater Natural and Artificial Hard Bottom Habitats with Emphasis on Coral Communities: Reefs, Rigs and Wrecks

    DTIC Science & Technology

    2010-01-01

    Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for...Roberts, J.M. & Guinotte, J.J. (2007) Corals in deep water: Will the unseen hand of ocean acidification destroy cold water ecosystems? Coral Reefs ...scleractinians from the NE Atlantic Ocean . Coral Reefs , 24(3), 514-522. Wang JL, Whitlock MC (2003) Estimating effective population size and migration rates

  8. Conventional and technical diving surveys reveal elevated biomass and differing fish community composition from shallow and upper mesophotic zones of a remote United States coral reef.

    PubMed

    Muñoz, Roldan C; Buckel, Christine A; Whitfield, Paula E; Viehman, Shay; Clark, Randy; Taylor, J Christopher; Degan, Brian P; Hickerson, Emma L

    2017-01-01

    The world's coral reefs appear to be in a global decline, yet most previous research on coral reefs has taken place at depths shallower than 30 m. Mesophotic coral ecosystem (depths deeper than ~30 m) studies have revealed extensive, productive habitats and rich communities. Despite recent advances, mesophotic coral ecosystems remain understudied due to challenges with sampling at deeper depths. The few previous studies of mesophotic coral ecosystems have shown variation across locations in depth-specific species composition and assemblage shifts, potentially a response to differences in habitat or light availability/water clarity. This study utilized scuba to examine fish and benthic communities from shallow and upper mesophotic (to 45 m) zones of Flower Garden Banks National Marine Sanctuary (FGBNMS, 28°0'N; 93°50'W) from 2010-2012. Dominant planktivores were ubiquitous in shallow and upper mesophotic habitats, and comparisons with previous shallow research suggest this community distribution has persisted for over 30 years. Planktivores were abundant in shallow low-relief habitats on the periphery of the coral reef, and some of these sites that contained habitat transitioning from high to low relief supported high biomass of benthic predators. These peripheral sites at FGBNMS may be important for the trophic transfer of oceanic energy to the benthic coral reef. Distinct differences between upper mesophotic and shallow communities were also observed. These included greater overall fish (as well as apex predator) biomass in the upper mesophotic, differences in apex predator community composition between depth zones, and greater percent cover of algae, rubble, sand, and sponges in the upper mesophotic. Greater fish biomass in the upper mesophotic and similar fish community composition between depth zones provide preliminary support that upper mesophotic habitats at FGBNMS have the capacity to serve as refugia for the shallow-water reefs. Diving surveys of the

  9. Demersal fishes associated with Lophelia pertusa coral and hard-substrate biotopes on the continental slope, northern Gulf of Mexico

    USGS Publications Warehouse

    Sulak, Kenneth J.; Allen, Brooks R.; Luke, Kirsten E.; Norem, April D.; Randall, Michael T.; Quaid, Andrew J.; Yeargin, George E.; Miller, Jana M.; Harden, William M.; Caruso, John H.; Ross, Steve W.

    2007-01-01

    The demersal fish fauna of Lophelia pertusa (Linnaeus, 1758) coral reefs and associated hard-bottom biotopes was investigated at two depth horizons in the northern Gulf of Mexico using a manned submersible and remote sampling. The Viosca Knoll fauna consisted of at least 53 demersal fish species, 37 of which were documented by submersible video. On the 325 m horizon, dominant taxa determined from frame-by-frame video analysis included Stromateidae, Serranidae, Trachichthyidae, Congridae, Scorpaenidae, and Gadiformes. On the 500 m horizon, large mobile visual macrocarnivores of families Stromateidae and Serranidae dropped out, while a zeiform microcarnivore assumed importance on reef "Thicket" biotope, and the open-slope taxa Macrouridae and Squalidae gained in importance. The most consistent faunal groups at both depths included sit-and-wait and hover-and-wait strategists (Scorpaenidae, Congridae, Trachichthyidae), along with generalized mesocarnivores (Gadiformes). The specialized microcarnivore, Grammicolepis brachiusculus Poey, 1873, appears to be highly associated with Lophelia reefs. The coral "Thicket" biotope was extensively developed on the 500 m site, but fish abundance was low with only 95 fish per hectare. In contrast to Lophelia reefs from the eastern the North Atlantic, the coral "Rubble" biotope was essentially absent. This study represents the first quantitative analysis of fishes associated with Lophelia reefs in the Gulf of Mexico, and generally in the western North Atlantic.

  10. Stable isotopes reveal spatial variability in the trophic structure of a macro-benthic invertebrate community in a tropical coral reef.

    PubMed

    Kolasinski, Joanna; Nahon, Sarah; Rogers, Karyne; Chauvin, Anne; Bigot, Lionel; Frouin, Patrick

    2016-02-15

    Studies of organic matter fluxes in coral reefs are historically based on physical and biogeochemical approaches. It is important to link these approaches to community analysis as the abundance and behaviour of species, populations or trophic groups can have a profound effect on nutrient budgets. We determined the carbon and nitrogen isotopic compositions of coral reef organic matter sources and macro-benthic invertebrate communities using a Europa Geo 20/20 isotope ratio mass spectrometer interfaced to an ANCA-SL elemental analyzer in continuous flow mode. Isotopic ecology metrics and a mixing model were used to analyze and interpret the data. The coral reef macro-invertebrate community principally relies on detrital or recycled food sources. An increased reliance on reef nitrogen-derived sources was observed in the cold-dry season. The community food-web lengths differ noticeably across the coral reef and reflect the characteristics and origin of organic matter reservoirs. Anthropogenic and terrestrial inputs lead to a loss of biological diversity. Exclusive dominance of suspension-feeding species is observed in areas receiving direct surface riverine particulate organic matter. The accumulation of sediment organic matter in eutrophic areas leads to dominance of deposit-feeding species. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Post-bleaching coral community change on southern Maldivian reefs: is there potential for rapid recovery?

    NASA Astrophysics Data System (ADS)

    Perry, C. T.; Morgan, K. M.

    2017-12-01

    Given the severity of the 2016 global bleaching event, there are major questions about how quickly reef communities will recover. Here, we explore the ecological and physical structural changes that occurred across five atoll interior reefs in the southern Maldives using data collected at 6 and 12 months post-bleaching. Following initial severe coral mortality, further minor coral mortality had occurred by 12 months post-bleaching, and coral cover is now low (<6%). In contrast, reef rugosity has continued to decline over time, and our observations suggest transitions to rubble-dominated states will occur in the near future. Juvenile coral densities in shallow fore-reef habitats are also exceptionally low (<6 individuals m-2), well below those measured 9-12 months following the 1998 bleaching event, and below recovery thresholds identified on other Indian Ocean reefs. Our findings suggest that the physical structure of these reefs will need to decline further before effective recruitment and recovery can begin.

  12. Immunity to community: what can immune pathways tell us about disease patterns in corals?

    NASA Astrophysics Data System (ADS)

    Mydlarz, L. D.; Fuess, L.; Pinzon, J. C.; Weil, E.

    2016-02-01

    Predicting species composition and abundances is one of the most fundamental questions in ecology. This question is even more pressing in marine ecology and coral reefs since communities are changing at a rapid pace due to climate-related changes. Increases in disease prevalence and severity are just some of the consequences of these environmental changes. Particularly in coral reef ecosystems, diseases are increasing and driving region-wide population collapses. It has become clear, however, that not all reefs or coral species are affected by disease equally. In fact, the Caribbean is a concentrated area for diseases. The patterns in which disease manifests itself on an individual reef are also proving interesting, as not all coral species are affected by disease equally. Some species are host to different diseases, but seem to successfully fight them reducing mortality. Other species are disproportionately infected on any given reef and experience high mortality due to disease. We are interested in the role immunity can play in directing these patterns and are evaluating coral immunity using several novel approaches. We exposed 4 species of corals with different disease susceptibilities to immune stimulators and quantified of coral immunity using a combination of full transcriptome sequencing and protein activity assays for gene to phenotype analysis. We also mapped gene expression changes onto immune pathways (i.e. melanin-cascade, antimicrobial peptide synthesis, complement cascade, lectin-opsonization) to evaluate expression of immune pathways between species. In our preliminary data we found many immune genes in the disease susceptible Orbicella faveolata underwent changes in gene expression opposite of the predictions and may disply `dysfunctional' patterns of expression. We will present expression data for 4 species of coral and assess how these transcriptional and protein immune responses are related to disease susceptibility in nature, thus scaling up

  13. Microbial ecology of corals, sponges, and algae in mesophotic coral environments

    USGS Publications Warehouse

    Olson, Julie B.; Kellogg, Christina A.

    2010-01-01

    Mesophotic coral ecosystems that occur at depths from 30 to 200 m have historically been understudied and yet appear to support a diverse biological community. The microbiology of these systems is particularly poorly understood, especially with regard to the communities associated with corals, sponges, and algae. This lack of information is partly due to the problems associated with gaining access to these environments and poor reproducibility across sampling methods. To summarize what is known about the microbiology of these ecosystems and to highlight areas where research is urgently needed, an overview of the current state of knowledge is presented. Emphasis is placed on the characterization of microbial populations, both prokaryotic and eukaryotic, associated with corals, sponges, and algae and the factors that influence microbial community structure. In topic areas where virtually nothing is known from mesophotic environments, the knowledge pertaining to shallow-water ecosystems is summarized to provide a starting point for a discussion on what might be expected in the mesophotic zone.

  14. Why Do Corals Bleach? Conflict and Conflict Mediation in a Host/Symbiont Community.

    PubMed

    Blackstone, Neil W; Golladay, Jeff M

    2018-06-26

    Coral bleaching has attracted considerable study, yet one central question remains unanswered: given that corals and their Symbiodinium symbionts have co-evolved for millions of years, why does this clearly maladaptive process occur? Bleaching may result from evolutionary conflict between the host corals and their symbionts. Selection at the level of the individual symbiont favors using the products of photosynthesis for selfish replication, while selection at the higher level favors using these products for growth of the entire host/symbiont community. To hold the selfish lower-level units in check, mechanisms of conflict mediation must evolve. Fundamental features of photosynthesis have been co-opted into conflict mediation so that symbionts that fail to export these products produce high levels of reactive oxygen species and undergo programmed cell death. These mechanisms function very well under most environmental conditions, but under conditions particularly detrimental to photosynthesis, it is these mechanisms of conflict mediation that trigger bleaching. © 2018 WILEY Periodicals, Inc.

  15. From cooperation to combat: adverse effect of thermal stress in a symbiotic coral-crustacean community.

    PubMed

    Stella, J S; Munday, P L; Walker, S P W; Pratchett, M S; Jones, G P

    2014-04-01

    Although mutualisms are ubiquitous in nature, our understanding of the potential impacts of climate change on these important ecological interactions is deficient. Here, we report on a thermal stress-related shift from cooperation to antagonism between members of a mutualistic coral-dwelling community. Increased mortality of coral-defending crustacean symbionts Trapezia cymodoce (coral crab) and Alpheus lottini (snapping shrimp) was observed in response to experimentally elevated temperatures and reduced coral-host (Pocillopora damicornis) condition. However, strong differential numerical effects occurred among crustaceans as a function of species and sex, with shrimp (75%), and female crabs (55%), exhibiting the fastest and greatest declines in numbers. These declines were due to forceful eviction from the coral-host by male crabs. Furthermore, surviving female crabs were impacted by a dramatic decline (85%) in egg production, which could have deleterious consequences for population sustainability. Our results suggest that elevated temperature switches the fundamental nature of this interaction from cooperation to competition, leading to asymmetrical effects on species and/or sexes. Our study illustrates the importance of evaluating not only individual responses to climate change, but also potentially fragile interactions within and among susceptible species.

  16. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment

    PubMed Central

    Röthig, Till; Yum, Lauren K.; Kremb, Stephan G.; Roik, Anna; Voolstra, Christian R.

    2017-01-01

    Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L−1) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment. PMID:28303925

  17. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment.

    PubMed

    Röthig, Till; Yum, Lauren K; Kremb, Stephan G; Roik, Anna; Voolstra, Christian R

    2017-03-17

    Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L -1 ) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment.

  18. Microhabitat type determines the composition of nematode communities associated with sediment-clogged cold-water coral framework in the Porcupine Seabight (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Raes, M.; Vanreusel, A.

    2006-12-01

    The nematofauna associated with a cold-water coral degradation zone in the Porcupine Seabight (NE Atlantic) was investigated. This is the first comprehensive study of nematodes associated with cold-water corals. This research mainly aimed to investigate the influence of microhabitat type on nematode community structure. Three distinct microhabitats for nematodes were distinguished: dead coral fragments, glass sponge skeletons and the underlying sediment. The nematode assemblages associated with these three microhabitats were significantly different from each other. Coral and sponge substrata lie relatively unprotected on the seafloor and are consequently more subjected to strong currents than the underlying sediment. As a result, both large biogenic substrata were characterized by higher abundances of taxa that are less vulnerable and more adapted to physical disturbance, whereas the underlying sediment yielded more slender, sediment-dwelling taxa. Typically epifaunal taxa, such as Epsilonematidae and Draconematidae, were especially abundant on dead coral fragments, where they are thought to feed on the microbial biofilm which covers the coral surface. Several epifaunal genera showed significant preferences for this microhabitat, and Epsilonema (Epsilonematidae) was dominant here. Sponge skeletons are thought to act as efficient sediment traps, resulting in a lower abundance of epifaunal taxa compared to coral fragments. The underlying sediment was dominated by taxa typical for slope sediments. The considerable degree of overlap between the communities of each microhabitat is attributed to sediment infill between the coral branches and sponge spicules. It is assumed that the nematofauna associated with large biogenic substrata is composed of a typical sediment-dwelling background community, supplemented with taxa adapted to an epifaunal life strategy. The extent to which these taxa contribute to the community depends on the type of the substratum. Selective deposit

  19. Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea.

    PubMed

    Khalil, Maha T; Bouwmeester, Jessica; Berumen, Michael L

    2017-01-01

    Local-scale ecological information is critical as a sound basis for spatial management and conservation and as support for ongoing research in relatively unstudied areas. We conducted visual surveys of fish and benthic communities on nine reefs (3-24 km from shore) in the Thuwal area of the central Saudi Arabian Red Sea. Fish biomass increased with increasing distance from shore, but was generally low compared to reefs experiencing minimal human influence around the world. All reefs had a herbivore-dominated trophic structure and few top predators, such as sharks, jacks, or large groupers. Coral cover was considerably lower on inshore reefs, likely due to a 2010 bleaching event. Community analyses showed inshore reefs to be characterized by turf algae, slower-growing corals, lower herbivore diversity, and highly abundant turf-farming damselfishes. Offshore reefs had more planktivorous fishes, a more diverse herbivore assemblage, and faster-growing corals . All reefs appear to be impacted by overfishing, and inshore reefs seem more vulnerable to thermal bleaching. The study provides a description of the spatial variation in biomass and community structure in the central Saudi Arabian Red Sea and provides a basis for spatial prioritization and subsequent marine protected area design in Thuwal.

  20. Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea

    PubMed Central

    Bouwmeester, Jessica; Berumen, Michael L.

    2017-01-01

    Local-scale ecological information is critical as a sound basis for spatial management and conservation and as support for ongoing research in relatively unstudied areas. We conducted visual surveys of fish and benthic communities on nine reefs (3–24 km from shore) in the Thuwal area of the central Saudi Arabian Red Sea. Fish biomass increased with increasing distance from shore, but was generally low compared to reefs experiencing minimal human influence around the world. All reefs had a herbivore-dominated trophic structure and few top predators, such as sharks, jacks, or large groupers. Coral cover was considerably lower on inshore reefs, likely due to a 2010 bleaching event. Community analyses showed inshore reefs to be characterized by turf algae, slower-growing corals, lower herbivore diversity, and highly abundant turf-farming damselfishes. Offshore reefs had more planktivorous fishes, a more diverse herbivore assemblage, and faster-growing corals. All reefs appear to be impacted by overfishing, and inshore reefs seem more vulnerable to thermal bleaching. The study provides a description of the spatial variation in biomass and community structure in the central Saudi Arabian Red Sea and provides a basis for spatial prioritization and subsequent marine protected area design in Thuwal. PMID:28603671

  1. The determination of substrate conditions from the orientations of solitary rugose corals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, J.C.; Driese, S.G.

    1990-10-01

    The substrate conditions of mudstone strata formed in ancient epicontinental settings may be determined from taphonomic assemblages of solitary rugose corals. Equal-area plots on the orientations of preserved corals can be used to infer whether subsequent hydrodynamic conditions affected any post-mortem reworking of the corals. Mechanically stable positions for curved corals can be determined. Curved corals preserved in mechanically stable positions are interpreted to have been deposited on firm or hard substrates. Curved corals preserved in mechanically unstable positions were probably embedded in soft or soupy substrates.

  2. Cold-water coral distributions in the drake passage area from towed camera observations--initial interpretations.

    PubMed

    Waller, Rhian G; Scanlon, Kathryn M; Robinson, Laura F

    2011-01-25

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated

  3. Cold-water coral distributions in the Drake Passage area from towed camera observations - Initial interpretations

    USGS Publications Warehouse

    Waller, Rhian G.; Catanach, Kathryn Scanlon; Robinson, Laura F.

    2011-01-01

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated

  4. Cold-water coral distributions in the drake passage area from towed camera observations - Initial interpretations

    USGS Publications Warehouse

    Waller, Rhian G.; Scanlon, Kathryn M.; Robinson, Laura F.

    2011-01-01

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Coldwater corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated features

  5. Big Data Approaches To Coral-Microbe Symbiosis

    NASA Astrophysics Data System (ADS)

    Zaneveld, J.; Pollock, F. J.; McMinds, R.; Smith, S.; Payet, J.; Hanna, B.; Welsh, R.; Foster, A.; Ohdera, A.; Shantz, A. A.; Burkepile, D. E.; Maynard, J. A.; Medina, M.; Vega Thurber, R.

    2016-02-01

    Coral reefs face increasing challenges worldwide, threatened by overfishing and nutrient pollution, which drive growth of algal competitors of corals, and periods of extreme temperature, which drive mass coral bleaching. I will discuss two projects that examine how coral's complex relationships with microorganisms affect the response of coral colonies and coral species to environmental challenge. Microbiological studies have documented key roles for coral's microbial symbionts in energy harvest and defense against pathogens. However, the evolutionary history of corals and their microbes is little studied. As part of the Global Coral Microbiome Project, we are characterizing bacterial, archaeal, fungal, and Symbiodinium diversity across >1400 DNA samples from all major groups of corals, collected from 15 locations worldwide. This collection will allow us to ask how coral- microbe associations evolved over evolutionary time, and to determine whether microbial symbiosis helps predict the relative vulnerability of certain coral species to environmental stress. In the second project, we experimentally characterized how the long-term effects of human impacts such as overfishing and nutrient pollution influence coral-microbe symbiosis. We conducted a three-year field experiment in the Florida Keys applying nutrient pollution or simulated overfishing to reef plots, and traced the effects on reef communities, coral microbiomes, and coral health. The results show that extremes of temperature and algal competition destabilize coral microbiomes, increasing pathogen blooms, coral disease, and coral death. Surprisingly, these local stressors interacted strongly with thermal stress: the greatest microbiome disruption, and >80% of coral mortality happened in the hottest periods. Thus, overfishing and nutrient pollution may interact with increased climate-driven episodes of sub-bleaching thermal stress to increase coral mortality by disrupt reef communities down to microbial scales.

  6. Corals Form Characteristic Associations with Symbiotic Nitrogen-Fixing Bacteria

    PubMed Central

    Lema, Kimberley A.; Willis, Bette L.

    2012-01-01

    The complex symbiotic relationship between corals and their dinoflagellate partner Symbiodinium is believed to be sustained through close associations with mutualistic bacterial communities, though little is known about coral associations with bacterial groups able to fix nitrogen (diazotrophs). In this study, we investigated the diversity of diazotrophic bacterial communities associated with three common coral species (Acropora millepora, Acropora muricata, and Pocillopora damicormis) from three midshelf locations of the Great Barrier Reef (GBR) by profiling the conserved subunit of the nifH gene, which encodes the dinitrogenase iron protein. Comparisons of diazotrophic community diversity among coral tissue and mucus microenvironments and the surrounding seawater revealed that corals harbor diverse nifH phylotypes that differ between tissue and mucus microhabitats. Coral mucus nifH sequences displayed high heterogeneity, and many bacterial groups overlapped with those found in seawater. Moreover, coral mucus diazotrophs were specific neither to coral species nor to reef location, reflecting the ephemeral nature of coral mucus. In contrast, the dominant diazotrophic bacteria in tissue samples differed among coral species, with differences remaining consistent at all three reefs, indicating that coral-diazotroph associations are species specific. Notably, dominant diazotrophs for all coral species were closely related to the bacterial group rhizobia, which represented 71% of the total sequences retrieved from tissue samples. The species specificity of coral-diazotroph associations further supports the coral holobiont model that bacterial groups associated with corals are conserved. Our results suggest that, as in terrestrial plants, rhizobia have developed a mutualistic relationship with corals and may contribute fixed nitrogen to Symbiodinium. PMID:22344646

  7. River discharge reduces reef coral diversity in Palau.

    PubMed

    Golbuu, Yimnang; van Woesik, Robert; Richmond, Robert H; Harrison, Peter; Fabricius, Katharina E

    2011-04-01

    Coral community structure is often governed by a suite of processes that are becoming increasingly influenced by land-use changes and related terrestrial discharges. We studied sites along a watershed gradient to examine both the physical environment and the associated biological communities. Transplanted corals showed no differences in growth rates and mortality along the watershed gradient. However, coral cover, coral richness, and coral colony density increased with increasing distance from the mouth of the bay. There was a negative relationship between coral cover and mean suspended solids concentration. Negative relationships were also found between terrigenous sedimentation rates and the richness of adult and juvenile corals. These results have major implications not only for Pacific islands but for all countries with reef systems downstream of rivers. Land development very often leads to increases in river runoff and suspended solids concentrations that reduce coral cover and coral diversity on adjacent reefs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. The implications of recurrent disturbances within the world's hottest coral reef.

    PubMed

    Bento, Rita; Hoey, Andrew S; Bauman, Andrew G; Feary, David A; Burt, John A

    2016-04-30

    Determining how coral ecosystems are structured within extreme environments may provide insights into how coral reefs are impacted by future climate change. Benthic community structure was examined within the Persian Gulf, and adjacent Musandam and northern Oman regions across a 3-year period (2008-2011) in which all regions were exposed to major disturbances. Although there was evidence of temporal switching in coral composition within regions, communities predominantly reflected local environmental conditions and the disturbance history of each region. Gulf reefs showed little change in coral composition, being dominated by stress-tolerant Faviidae and Poritidae across the 3 years. In comparison, Musandam and Oman coral communities were comprised of stress-sensitive Acroporidae and Pocilloporidae; Oman communities showed substantial declines in such taxa and increased cover of stress-tolerant communities. Our results suggest that coral communities may persist within an increasingly disturbed future environment, albeit in a much more structurally simple configuration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Conventional and technical diving surveys reveal elevated biomass and differing fish community composition from shallow and upper mesophotic zones of a remote United States coral reef

    PubMed Central

    Buckel, Christine A.; Whitfield, Paula E.; Viehman, Shay; Clark, Randy; Taylor, J. Christopher; Degan, Brian P.; Hickerson, Emma L.

    2017-01-01

    The world’s coral reefs appear to be in a global decline, yet most previous research on coral reefs has taken place at depths shallower than 30 m. Mesophotic coral ecosystem (depths deeper than ~30 m) studies have revealed extensive, productive habitats and rich communities. Despite recent advances, mesophotic coral ecosystems remain understudied due to challenges with sampling at deeper depths. The few previous studies of mesophotic coral ecosystems have shown variation across locations in depth-specific species composition and assemblage shifts, potentially a response to differences in habitat or light availability/water clarity. This study utilized scuba to examine fish and benthic communities from shallow and upper mesophotic (to 45 m) zones of Flower Garden Banks National Marine Sanctuary (FGBNMS, 28°0ʹN; 93°50ʹW) from 2010–2012. Dominant planktivores were ubiquitous in shallow and upper mesophotic habitats, and comparisons with previous shallow research suggest this community distribution has persisted for over 30 years. Planktivores were abundant in shallow low-relief habitats on the periphery of the coral reef, and some of these sites that contained habitat transitioning from high to low relief supported high biomass of benthic predators. These peripheral sites at FGBNMS may be important for the trophic transfer of oceanic energy to the benthic coral reef. Distinct differences between upper mesophotic and shallow communities were also observed. These included greater overall fish (as well as apex predator) biomass in the upper mesophotic, differences in apex predator community composition between depth zones, and greater percent cover of algae, rubble, sand, and sponges in the upper mesophotic. Greater fish biomass in the upper mesophotic and similar fish community composition between depth zones provide preliminary support that upper mesophotic habitats at FGBNMS have the capacity to serve as refugia for the shallow-water reefs. Diving surveys of

  10. Fishing down nutrients on coral reefs.

    PubMed

    Allgeier, Jacob E; Valdivia, Abel; Cox, Courtney; Layman, Craig A

    2016-08-16

    Fishing is widely considered a leading cause of biodiversity loss in marine environments, but the potential effect on ecosystem processes, such as nutrient fluxes, is less explored. Here, we test how fishing on Caribbean coral reefs influences biodiversity and ecosystem functions provided by the fish community, that is, fish-mediated nutrient capacity. Specifically, we modelled five processes of nutrient storage (in biomass) and supply (via excretion) of nutrients, as well as a measure of their multifunctionality, onto 143 species of coral reef fishes across 110 coral reef fish communities. These communities span a gradient from extreme fishing pressure to protected areas with little to no fishing. We find that in fished sites fish-mediated nutrient capacity is reduced almost 50%, despite no substantial changes in the number of species. Instead, changes in community size and trophic structure were the primary cause of shifts in ecosystem function. These findings suggest that a broader perspective that incorporates predictable impacts of fishing pressure on ecosystem function is imperative for effective coral reef conservation and management.

  11. Assessing the ecological effects of human impacts on coral reefs in Bocas del Toro, Panama.

    PubMed

    Seemann, Janina; González, Cindy T; Carballo-Bolaños, Rodrigo; Berry, Kathryn; Heiss, Georg A; Struck, Ulrich; Leinfelder, Reinhold R

    2014-03-01

    Environmental and biological reef monitoring was conducted in Almirante Bay (Bahía Almirante) in Bocas del Toro, Panama, to assess impacts from anthropogenic developments. An integrated monitoring investigated how seasonal temperature stress, turbidity, eutrophication and physical impacts threatened reef health and biodiversity throughout the region. Environmental parameters such as total suspended solids [TSS], carbon isotopes (δ(13)C), C/N ratios, chlorophyll a, irradiance, secchi depth, size fractions of the sediments and isotope composition of dissolved inorganic carbon [DIC] of the water were measured throughout the years 2010 and 2011 and were analysed in order to identify different impact sources. Compared to data from Collin et al. (Smithsonian Contributions to the Marine Sciences 38:324-334, 2009) chlorophyll a has doubled at sites close to the city and the port Almirante (from 0.46-0.49 to 0.78-0.97 μg l(-1)) and suspension load increased, visible by a decrease in secchi depth values. Visibility decreased from 9-13 m down to 4 m at the bay inlet Boca del Drago, which is strongly exposed to river run off and dredging for the shipping traffic. Eutrophication and turbidity levels seemed to be the determining factor for the loss of hard coral diversity, most significant at chlorophyll a levels higher than 0.5 μg l(-1) and TSS levels higher than 4.7 mg l(-1). Hard coral cover within the bay has also declined, at some sites down to <10 % with extremely low diversities (7 hard coral species). The hard coral species Porites furcata dominated the reefs in highly impacted areas and showed a strong recovery after bleaching and a higher tolerance to turbidity and eutrophication compared to other hard coral species in the bay. Serious overfishing was detected in the region by a lack of adult and carnivorous fish species, such as grunts, snappers and groupers. Study sites less impacted by anthropogenic activities and/or those with local protection showed a

  12. Cold-Water Coral Distributions in the Drake Passage Area from Towed Camera Observations – Initial Interpretations

    PubMed Central

    Waller, Rhian G.; Scanlon, Kathryn M.; Robinson, Laura F.

    2011-01-01

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated

  13. Individual-based analyses reveal limited functional overlap in a coral reef fish community.

    PubMed

    Brandl, Simon J; Bellwood, David R

    2014-05-01

    Detailed knowledge of a species' functional niche is crucial for the study of ecological communities and processes. The extent of niche overlap, functional redundancy and functional complementarity is of particular importance if we are to understand ecosystem processes and their vulnerability to disturbances. Coral reefs are among the most threatened marine systems, and anthropogenic activity is changing the functional composition of reefs. The loss of herbivorous fishes is particularly concerning as the removal of algae is crucial for the growth and survival of corals. Yet, the foraging patterns of the various herbivorous fish species are poorly understood. Using a multidimensional framework, we present novel individual-based analyses of species' realized functional niches, which we apply to a herbivorous coral reef fish community. In calculating niche volumes for 21 species, based on their microhabitat utilization patterns during foraging, and computing functional overlaps, we provide a measurement of functional redundancy or complementarity. Complementarity is the inverse of redundancy and is defined as less than 50% overlap in niche volumes. The analyses reveal extensive complementarity with an average functional overlap of just 15.2%. Furthermore, the analyses divide herbivorous reef fishes into two broad groups. The first group (predominantly surgeonfishes and parrotfishes) comprises species feeding on exposed surfaces and predominantly open reef matrix or sandy substrata, resulting in small niche volumes and extensive complementarity. In contrast, the second group consists of species (predominantly rabbitfishes) that feed over a wider range of microhabitats, penetrating the reef matrix to exploit concealed surfaces of various substratum types. These species show high variation among individuals, leading to large niche volumes, more overlap and less complementarity. These results may have crucial consequences for our understanding of herbivorous processes on

  14. Historical photographs revisited: A case study for dating and characterizing recent loss of coral cover on the inshore Great Barrier Reef

    PubMed Central

    Clark, Tara R.; Leonard, Nicole D.; Zhao, Jian-xin; Brodie, Jon; McCook, Laurence J.; Wachenfeld, David R.; Duc Nguyen, Ai; Markham, Hannah L.; Pandolfi, John M.

    2016-01-01

    Long-term data with high-precision chronology are essential to elucidate past ecological changes on coral reefs beyond the period of modern-day monitoring programs. In 2012 we revisited two inshore reefs within the central Great Barrier Reef, where a series of historical photographs document a loss of hard coral cover between c.1890–1994 AD. Here we use an integrated approach that includes high-precision U-Th dating specifically tailored for determining the age of extremely young corals to provide a robust, objective characterisation of ecological transition. The timing of mortality for most of the dead in situ corals sampled from the historical photograph locations was found to coincide with major flood events in 1990–1991 at Bramston Reef and 1970 and 2008 at Stone Island. Evidence of some recovery was found at Bramston Reef with living coral genera similar to what was described in c.1890 present in 2012. In contrast, very little sign of coral re-establishment was found at Stone Island suggesting delayed recovery. These results provide a valuable reference point for managers to continue monitoring the recovery (or lack thereof) of coral communities at these reefs. PMID:26813703

  15. Historical photographs revisited: A case study for dating and characterizing recent loss of coral cover on the inshore Great Barrier Reef.

    PubMed

    Clark, Tara R; Leonard, Nicole D; Zhao, Jian-Xin; Brodie, Jon; McCook, Laurence J; Wachenfeld, David R; Duc Nguyen, Ai; Markham, Hannah L; Pandolfi, John M

    2016-01-27

    Long-term data with high-precision chronology are essential to elucidate past ecological changes on coral reefs beyond the period of modern-day monitoring programs. In 2012 we revisited two inshore reefs within the central Great Barrier Reef, where a series of historical photographs document a loss of hard coral cover between c.1890-1994 AD. Here we use an integrated approach that includes high-precision U-Th dating specifically tailored for determining the age of extremely young corals to provide a robust, objective characterisation of ecological transition. The timing of mortality for most of the dead in situ corals sampled from the historical photograph locations was found to coincide with major flood events in 1990-1991 at Bramston Reef and 1970 and 2008 at Stone Island. Evidence of some recovery was found at Bramston Reef with living coral genera similar to what was described in c.1890 present in 2012. In contrast, very little sign of coral re-establishment was found at Stone Island suggesting delayed recovery. These results provide a valuable reference point for managers to continue monitoring the recovery (or lack thereof) of coral communities at these reefs.

  16. Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2

    NASA Astrophysics Data System (ADS)

    Comeau, Steeve; Edmunds, Peter J.; Lantz, Coulson A.; Carpenter, Robert C.

    2017-07-01

    The threat represented by ocean acidification (OA) for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR) is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet), and between PAR and community net calcification (Gnet), using experiments on three coral communities constructed to match (i) the back reef of Mo'orea, French Polynesia, (ii) the fore reef of Mo'orea, and (iii) the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet-PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet-PAR relationship for both reef communities in Mo'orea (but not in O'ahu). For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

  17. Coral identity underpins architectural complexity on Caribbean reefs.

    PubMed

    Alvarez-Filip, Lorenzo; Dulvy, Nicholas K; Côte, Isabelle M; Watkinson, Andrew R; Gill, Jennifer A

    2011-09-01

    The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.

  18. Upper and lower mesophotic coral reef fish communities evaluated by underwater visual censuses in two Caribbean locations

    NASA Astrophysics Data System (ADS)

    Pinheiro, H. T.; Goodbody-Gringley, G.; Jessup, M. E.; Shepherd, B.; Chequer, A. D.; Rocha, L. A.

    2016-03-01

    Despite more than 60 yr of coral reef research using scuba diving, mesophotic coral ecosystems (MCEs) between 30 and 150 m depth remain largely unknown. This study represents the first underwater visual census of reef fish communities in the Greater Caribbean on MCEs at depths up to 80 m in Bermuda and 130 m in Curaçao. Sampling was performed using mixed-gas closed-circuit rebreathers. Quantitative data on reef fish communities were obtained for four habitats: coral reefs (45-80 m), rhodolith beds (45-80 m), ledges (85-130 m) and walls (85-130 m). A total of 38 species were recorded in Bermuda and 66 in Curaçao. Mesophotic reef fish communities varied significantly between the two localities. MCEs in Bermuda had lower richness and abundance, but higher biomass than those in Curaçao. Richness, abundance and biomass increased with depth in Bermuda, but decreased in Curaçao. A high turnover of species was found among depth strata and between Bermuda and other Caribbean upper MCEs (45-80 m), indicating that depth was an important driver of community structure at all localities. However, local and evolutionary factors (habitat and endemism) are likely the main factors shaping communities in isolated locations such as Bermuda. High fishing pressure is evident in both localities, as total biomass of apex predators was generally low, and thus may be driving a "refugia" scenario in Bermuda, as the abundance and biomass of macro-carnivores increased with depth and distance from the coast.

  19. Trophic cascade facilitates coral recruitment in a marine reserve

    PubMed Central

    Mumby, Peter J.; Harborne, Alastair R.; Williams, Jodene; Kappel, Carrie V.; Brumbaugh, Daniel R.; Micheli, Fiorenza; Holmes, Katherine E.; Dahlgren, Craig P.; Paris, Claire B.; Blackwell, Paul G.

    2007-01-01

    Reduced fishing pressure and weak predator–prey interactions within marine reserves can create trophic cascades that increase the number of grazing fishes and reduce the coverage of macroalgae on coral reefs. Here, we show that the impacts of reserves extend beyond trophic cascades and enhance the process of coral recruitment. Increased fish grazing, primarily driven by reduced fishing, was strongly negatively correlated with macroalgal cover and resulted in a 2-fold increase in the density of coral recruits within a Bahamian reef system. Our conclusions are robust because four alternative hypotheses that may generate a spurious correlation between grazing and coral recruitment were tested and rejected. Grazing appears to influence the density and community structure of coral recruits, but no detectable influence was found on the overall size-frequency distribution, community structure, or cover of corals. We interpret this absence of pattern in the adult coral community as symptomatic of the impact of a recent disturbance event that masks the recovery trajectories of individual reefs. Marine reserves are not a panacea for conservation but can facilitate the recovery of corals from disturbance and may help sustain the biodiversity of organisms that depend on a complex three-dimensional coral habitat. PMID:17488824

  20. U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century

    NASA Astrophysics Data System (ADS)

    Clark, Tara R.; Roff, George; Zhao, Jian-xin; Feng, Yue-xing; Done, Terence J.; McCook, Laurence J.; Pandolfi, John M.

    2017-09-01

    Hard coral cover on the Great Barrier Reef (GBR) is on a trajectory of decline. However, little is known about past coral mortality before the advent of long-term monitoring (circa 1980s). Using paleoecological analysis and high-precision uranium-thorium (U-Th) dating, we reveal an extensive loss of branching Acropora corals and changes in coral community structure in the Palm Islands region of the central GBR over the past century. In 2008, dead coral assemblages were dominated by large, branching Acropora and living coral assemblages by genera typically found in turbid inshore environments. The timing of Acropora mortality was found to be occasionally synchronous among reefs and frequently linked to discrete disturbance events, occurring in the 1920s to 1960s and again in the 1980s to 1990s. Surveys conducted in 2014 revealed low Acropora cover (<5%) across all sites, with very little evidence of change for up to 60 y at some sites. Collectively, our results suggest a loss of resilience of this formerly dominant key framework builder at a regional scale, with recovery severely lagging behind predictions. Our study implies that the management of these reefs may be predicated on a shifted baseline.

  1. U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century.

    PubMed

    Clark, Tara R; Roff, George; Zhao, Jian-Xin; Feng, Yue-Xing; Done, Terence J; McCook, Laurence J; Pandolfi, John M

    2017-09-26

    Hard coral cover on the Great Barrier Reef (GBR) is on a trajectory of decline. However, little is known about past coral mortality before the advent of long-term monitoring (circa 1980s). Using paleoecological analysis and high-precision uranium-thorium (U-Th) dating, we reveal an extensive loss of branching Acropora corals and changes in coral community structure in the Palm Islands region of the central GBR over the past century. In 2008, dead coral assemblages were dominated by large, branching Acropora and living coral assemblages by genera typically found in turbid inshore environments. The timing of Acropora mortality was found to be occasionally synchronous among reefs and frequently linked to discrete disturbance events, occurring in the 1920s to 1960s and again in the 1980s to 1990s. Surveys conducted in 2014 revealed low Acropora cover (<5%) across all sites, with very little evidence of change for up to 60 y at some sites. Collectively, our results suggest a loss of resilience of this formerly dominant key framework builder at a regional scale, with recovery severely lagging behind predictions. Our study implies that the management of these reefs may be predicated on a shifted baseline.

  2. Spatial variability in distribution and prevalence of Caribbean scleractinian coral and octocoral diseases. I. Community-level analysis.

    PubMed

    Weil, Ernesto; Cróquer, Aldo

    2009-02-25

    Geographic assessments of coral diseases are needed to understand their local and geographic spatial-temporal variability. Coral and octocoral diseases and their prevalence were assessed along 4 permanent 10 x 2 m band-transects in each of 3 depth habitats (<4, 5-12 and >15 m) in each of 2 reefs in each of 6 countries across the wider Caribbean during the summer and fall of 2005. A permutational multivariate analysis of variance was used to test variability of major diseases and community level disease prevalence in corals and octocorals among habitats, reefs and countries. The most common and damaging diseases reported for the region were found in most reefs surveyed, but prevalence at the community level was generally low (ca. 2%) increasing from northern to southern latitudes. A significant interaction between sites (nested within country) and depth habitats was found (F = 2.1, df = 12, p = 0.02), with higher prevalence of coral diseases in deep habitats of Culebrita, Puerto Rico (14.8 +/- SE 6.5%) and in shallow habitats of Roldán, Panama (10.2 +/- SE 3.5%). The relative importance of each particular disease was dependent on site and habitat (depth intervals) (F = 1.7, df = 12, p = 0.001), with black band disease more prevalent in shallow habitats of Rita's, Bermuda (1.7 +/- SE 0.4%) and yellow band disease (YBD) more prevalent in deeper habitats of Chub Cut, Bermuda (3.7 +/- SE 0.5%). There was a significant interaction of total octocoral diseases with country and habitat (F = 2.8, df = 10, p = 0.04) with higher prevalence in deeper habitats of Curaçao (25.9 +/- SE 4.2%). Our results indicate that patterns of prevalence of coral and octocoral diseases were not consistent across the different spatial scales, showing differences produced by particular diseases and community composition present. There were no widespread epizootics, but local white plague-II and YBD epizootics were observed in Puerto Rico and other localities.

  3. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages.

    PubMed

    Hoey, Andrew S; Pratchett, Morgan S; Cvitanovic, Christopher

    2011-01-01

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2)), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1)), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.

  4. High Macroalgal Cover and Low Coral Recruitment Undermines the Potential Resilience of the World's Southernmost Coral Reef Assemblages

    PubMed Central

    Hoey, Andrew S.; Pratchett, Morgan S.; Cvitanovic, Christopher

    2011-01-01

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32′S, 159°04′E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m−2), however, were 5–200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha−1), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances. PMID:21991366

  5. Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    NASA Astrophysics Data System (ADS)

    Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.

    2016-06-01

    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.

  6. Defining the Core Microbiome in Corals' Microbial Soup.

    PubMed

    Hernandez-Agreda, Alejandra; Gates, Ruth D; Ainsworth, Tracy D

    2017-02-01

    Corals are considered one of the most complex microbial biospheres studied to date, hosting thousands of bacterial phylotypes in species-specific associations. There are, however, substantial knowledge gaps and challenges in understanding the functional significance of bacterial communities and bacterial symbioses of corals. The ubiquitous nature of some bacterial interactions has only recently been investigated and an accurate differentiation between the healthy (symbiotic) and unhealthy (dysbiotic) microbial state has not yet been determined. Here we review the complexity of the coral holobiont, coral microbiome diversity, and recently proposed bacterial symbioses of corals. We provide insight into coupling the core microbiome framework with community ecology principals, and draw on the theoretical insights from other complex systems, to build a framework to aid in deciphering ecologically significant microbes within a corals' microbial soup. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia.

    PubMed

    Crane, Nicole L; Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle

    2017-01-01

    The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2-oceanic and inhabited (high human impact); and cluster 3-lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.

  8. Coral Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Yap, Helen T.

    Coral reefs are geological structures of significant dimensions, constructed over millions of years by calcifying organisms. The present day reef-builders are hard corals belonging to the order Scleractinia, phylum Cnidaria. The greatest concentrations of coral reefs are in the tropics, with highest levels of biodiversity situated in reefs of the Indo-West Pacific region. These ecosystems have provided coastal protection and livelihood to human populations over the millennia. Human activities have caused destruction of these habitats, the intensity of which has increased alarmingly since the latter decades of the twentieth century. The severity of this impact is directly related to exponential growth rates of human populations especially in the coastal areas of the developing world. However, a more recently recognized phenomenon concerns disturbances brought about by the changing climate, manifested mainly as rising sea surface temperatures, and increasing acidification of ocean waters due to greater drawdown of higher concentrations of atmospheric carbon dioxide. Management efforts have so far not kept pace with the rates of degradation, so that the spatial extent of damaged reefs and the incidences of localized extinction of reef species are increasing year after year. The major management efforts to date consist of establishing marine protected areas and promoting the active restoration of coral habitats.

  9. Hurricanes benefit bleached corals

    PubMed Central

    Manzello, Derek P.; Brandt, Marilyn; Smith, Tyler B.; Lirman, Diego; Hendee, James C.; Nemeth, Richard S.

    2007-01-01

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community. PMID:17606914

  10. Hurricanes benefit bleached corals.

    PubMed

    Manzello, Derek P; Brandt, Marilyn; Smith, Tyler B; Lirman, Diego; Hendee, James C; Nemeth, Richard S

    2007-07-17

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community.

  11. Low calcification in corals in the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-10-01

    Reef-building coral communities in the Great Barrier Reef—the world's largest coral reef—may now be calcifying at only about half the rate that they did during the 1970s, even though live coral cover may not have changed over the past 40 years, a new study finds. In recent decades, coral reefs around the world, home to large numbers of fish and other marine species, have been threatened by such human activities as pollution, overfishing, global warming, and ocean acidification; the latter affects ambient water chemistry and availability of calcium ions, which are critical for coral communities to calcify, build, and maintain reefs. Comparing data from reef surveys during the 1970s, 1980s, and 1990s with present-day (2009) measurements of calcification rates in One Tree Island, a coral reef covering 13 square kilometers in the southern part of the Great Barrier Reef, Silverman et al. show that the total calcification rates (the rate of calcification minus the rate of dissolution) in these coral communities have decreased by 44% over the past 40 years; the decrease appears to stem from a threefold reduction in calcification rates during nighttime.

  12. Effects of coral bleaching on the obligate coral-dwelling crab Trapezia cymodoce

    NASA Astrophysics Data System (ADS)

    Stella, J. S.; Munday, P. L.; Jones, G. P.

    2011-09-01

    Corals are an essential and threatened habitat for a diverse range of reef-associated animals. Episodes of coral bleaching are predicted to increase in frequency and intensity over coming decades, yet the effects of coral-host bleaching on the associated animal communities remain poorly understood. The present study investigated the effects of host-colony bleaching on the obligate coral-dwelling crab, Trapezia cymodoce, during a natural bleaching event in the lagoon of Lizard Island, Australia. Branching corals, which harbour the highest diversity of coral associates, comprised 13% of live coral cover at the study site, with 83% affected by bleaching. Crabs on healthy and bleached colonies of Pocillopora damicornis were monitored over a 5-week period to determine whether coral bleaching affected crab density and movement patterns. All coral colonies initially contained one breeding pair of crabs. There was a significant decline in crab density on bleached corals after 5 weeks, with many corals losing one or both crabs, yet all healthy colonies retained a mating pair. Fecundity of crabs collected from bleached and healthy colonies of P. damicornis was also compared. The size of egg clutches of crabs collected from bleached hosts was 40% smaller than those from healthy hosts, indicating a significant reduction in fecundity. A laboratory experiment on movement patterns found that host-colony bleaching also prompted crabs to emigrate in search of more suitable colonies. Emigrant crabs engaged in aggressive interactions with occupants of healthy hosts, with larger crabs always usurping occupants of a smaller size. Decreased densities and clutch sizes, along with increased competitive interactions, could potentially result in a population decline of these important coral associates with cascading effects on coral health.

  13. First Evidence of an Important Organic Matter Trophic Pathway between Temperate Corals and Pelagic Microbial Communities.

    PubMed

    Fonvielle, J A; Reynaud, S; Jacquet, S; LeBerre, B; Ferrier-Pages, C

    2015-01-01

    Mucus, i.e., particulate and dissolved organic matter (POM, DOM) released by corals, acts as an important energy carrier in tropical ecosystems, but little is known on its ecological role in temperate environments. This study assessed POM and DOM production by the temperate coral Cladocora caespitosa under different environmental conditions. The subsequent enzymatic degradation, growth of prokaryotes and virus-like particles (VLPs) as well as changes in the structure of the prokaryotic communities were also monitored. C. caespitosa produced an important quantity of mucus, which varied according to the environmental conditions (from 37.8 to 67.75 nmol carbon h-1 cm-2), but remained higher or comparable to productions observed in tropical corals. It has an important nutritional value, as highlighted by the high content in dissolved nitrogen (50% to 90% of the organic matter released). Organic matter was rapidly degraded by prokaryotes' enzymatic activities, and due to its nitrogen content, aminopeptidase activity was 500 fold higher than the α-glucosidase activity. Prokaryotes, as well as VLPs, presented a rapid growth in the mucus, with prokaryote production rates as high as 0.31 μg h-1 L-1. Changes in bacterial and archaeal communities were observed in the ageing mucus and between mucus and the water column, suggesting a clear impact of mucus on microorganism diversity. Overall, our results show that the organic matter released by temperate corals, such as C. caespitosa, which can form reef structures in the Mediterranean Sea, stimulates microbial activity and thereby functions as a significant carbon and nitrogen supplier to the microbial loop.

  14. Biodiversity of Spongosorites coralliophaga (Stephens, 1915) on coral rubble at two contrasting cold-water coral reef settings

    NASA Astrophysics Data System (ADS)

    Kazanidis, Georgios; Henry, Lea-Anne; Roberts, J. Murray; Witte, Ursula F. M.

    2016-03-01

    Cold-water coral reefs (CWRs) in the northeast Atlantic harbor diverse sponge communities. Knowledge of deep-sea sponge ecology is limited and this leaves us with a fragmented understanding of the ecological roles that sponges play in CWR ecosystems. We present the first study of faunal biodiversity associated with the massive demosponge Spongosorites coralliophaga (Stephens, 1915) that typically colonizes coral debris fields of CWRs. Our study focused on the sessile fauna inhabiting sponges mixed with coral rubble at two contrasting settings in the northeast Atlantic: the shallow inshore (120-190 m water depth) Mingulay Reef Complex (MRC) and the deep offshore (500-1200 m) Logachev Mound (LM) coral province. MRC is dominated by the scleractinian Lophelia pertusa, while LM is dominated by L. pertusa and Madrepora oculata. Nine sponge-coral rubble associations were collected from MRC and four from LM. Measurements of abundance, species richness, diversity, evenness, dry biomass, and composition of sessile fauna on sponge and coral rubble microhabitats were undertaken. Differences in community composition between the two regions were mainly a response to changes in fauna with depth. Fauna composition was also different between sponge and coral rubble within each region. Infauna constituted a minor component of the sponge-associated fauna in MRC but had a higher contribution in LM. Sponge and coral rubble sessile fauna in both regions was mainly composed of cnidarians and molluscs, similarly to some previous studies. Sponges' outer surfaces at MRC were colonized by a species-rich community with high abundance and biomass suggesting that S. coralliophaga at MRC acts as a settlement surface for various organisms but such a role is not the case at LM. This difference in the role of S. coralliophaga as a biological structure is probably related to differences in fauna composition with depth, bottom current speed, and the quantity/quality of food supplied to the benthos.

  15. Strategic Science for Coral Ecosystems 2007-2011

    USGS Publications Warehouse

    ,

    2010-01-01

    Shallow and deep coral ecosystems are being imperiled by a combination of stressors. Climate change, unsustainable fishing practices, and disease are transforming coral communities at regional to global scales. At local levels, excessive amounts of sediments, nutrients, and contaminants are also impacting the many benefits that healthy coral ecosystems provide. This Plan, Strategic Science for Coral Ecosystems, describes the information needs of resource managers and summarizes current research being conducted by U.S. Geological Survey (USGS) scientists and partners. It outlines important research actions that need to be undertaken over the next five years to achieve more accurate forecasting of future conditions and develop more effective decision-support tools to adaptively manage coral ecosystems. The overarching outcome of this Plan, if fully implemented, would be in transferring relevant knowledge to decision-makers, enabling them to better protect and sustain coral ecosystem services. These services include sources of food, essential habitat for fisheries and protected species, protection of coastlines from wave damage and erosion, recreation, and cultural values for indigenous communities. The USGS has a long history of research and monitoring experience in studying ancient and living coral communities and serving many stakeholders. The research actions in this Plan build on the USGS legacy of conducting integrated multidisciplinary science to address complex environmental issues. This Plan is responsive to Federal legislation and authorities and a variety of external and internal drivers that include the President's Ocean Action Plan, the recommendations of the Coral Reef Task Force, the information needs of Bureaus in the Department of Interior, the USGS Bureau Science Strategy (USGS 2007) and the formal plans of several USGS Programs. To achieve this Plan's desired outcomes will require increased funding and more effective coordination and collaboration

  16. Micro-topography mediates interactions between corals, algae, and herbivorous fishes on coral reefs

    NASA Astrophysics Data System (ADS)

    Brandl, S. J.; Hoey, A. S.; Bellwood, D. R.

    2014-06-01

    Processes occurring during the early life stages of corals are important for the replenishment of coral assemblages and the resilience of coral reefs. However, the factors influencing early life stages of corals are not well understood, and the role of micro-topographic complexity for habitat associations of juvenile corals is largely unexplored. This study investigated the microhabitat distribution patterns of early life stages of corals and a potential macroalgal competitor ( Turbinaria ornata) across two reef zones (reef crest and outer reef flat) on Lizard Island, Great Barrier Reef. In both reef zones, both corals and T. ornata were significantly more abundant in concealed microhabitats than in semi-concealed or open microhabitats (GLMM: P < 0.001). The prevalence of juvenile corals and T. ornata within concealed environments suggests that they might be effective refuges from grazing by herbivorous fishes. The density of juvenile corals was positively related, and density of T. ornata negatively related to the abundance of two groups of herbivorous fishes, pairing rabbitfishes, and surgeonfishes in the genus Zebrasoma (BEST ENV-BIO: r s = 0.72, P < 0.01), which feed in concealed microhabitats. This correlative evidence suggests that crevices may be important for early life stages of both coral and macroalgae, and that a specific suite of crevice-feeding fishes may influence benthic community dynamics in these microhabitats.

  17. Early-phase dynamics in coral recovery following cyclone disturbance on the inshore Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Sato, Yui; Bell, Sara C.; Nichols, Cassandra; Fry, Kent; Menéndez, Patricia; Bourne, David G.

    2018-06-01

    Coral recovery (the restoration of abundance and composition of coral communities) after disturbance is a key process that determines the resilience of reef ecosystems. To understand the mechanisms underlying the recovery process of coral communities, colony abundance and size distribution were followed on reefs around Pelorus Island, located in the inshore central region of the Great Barrier Reef, following a severe tropical cyclone in 2011 that caused dramatic loss of coral communities. Permanent quadrats (600 m2) were monitored biannually between 2012 and 2016, and individual coral colonies were counted, sized and categorized into morphological types. The abundance of coral recruits and coral cover were also examined using permanent quadrats and random line intercept transects, respectively. The number of colonies in the smallest size class (4-10 cm) increased substantially during the study period, driving the recovery of coral populations. The total number of coral colonies 5 yr post-cyclone reached between 73 and 122% of pre-cyclone levels though coral cover remained between 16 and 31% of pre-cyclone levels, due to the dominance of small coral colonies in the recovering communities. Temporal transitions of coral demography (i.e., colony-size distributions) illustrated that the number of recently established coral populations overtook communities of surviving colonies. Coral recruits (< 4 cm in size) also showed increasing patterns in abundance over the study period, underscoring the importance of larval supply in coral recovery. A shift in morphological composition of coral communities was also observed, with the relative abundance of encrusting corals reduced post-cyclone in contrast to their dominance prior to the disturbance. This study identifies the fine-scale processes involved in the initial recovery of coral reefs, providing insights into the dynamics of coral demography that are essential for determining coral reef resilience following major

  18. Cryptic effects of habitat declines: coral-associated fishes avoid coral-seaweed interactions due to visual and chemical cues

    PubMed Central

    Brooker, Rohan M.; Brandl, Simon J.; Dixson, Danielle L.

    2016-01-01

    Seaweed-dominated coral reefs are becoming increasingly common as environmental conditions shift away from those required by corals and toward those ideal for rampant seaweed growth. How coral-associated organisms respond to seaweed will not only impact their fate following environmental change but potentially also the trajectories of the coral communities on which they rely. However, behavioral responses by coral-associated organisms to seaweeds are poorly understood. This study examined interactions between a guild of obligate and opportunistic coral-feeding butterflyfishes (Chaetodontidae) and scleractinian corals to determine whether fishes continue to interact with corals in contact with seaweed or if they are avoided. Under natural conditions, all species interacted almost exclusively with seaweed-free corals. In a controlled patch reef experiment, fishes avoided corals in physical contact with seaweed, irrespective of dietary preferences. When visual seaweed cues were removed, butterflyfish continued to avoid corals that had been in contact with the allelopathic Galaxaura filamentosa, suggesting that chemical cues produced by coral-seaweed interactions are repellent. These findings suggest that, due to deleterious visual and chemical cues produced by coral-seaweed interactions, coral-associated organisms may struggle to locate resources as seaweed-free corals decline in abundance. PMID:26725835

  19. Cryptic effects of habitat declines: coral-associated fishes avoid coral-seaweed interactions due to visual and chemical cues.

    PubMed

    Brooker, Rohan M; Brandl, Simon J; Dixson, Danielle L

    2016-01-04

    Seaweed-dominated coral reefs are becoming increasingly common as environmental conditions shift away from those required by corals and toward those ideal for rampant seaweed growth. How coral-associated organisms respond to seaweed will not only impact their fate following environmental change but potentially also the trajectories of the coral communities on which they rely. However, behavioral responses by coral-associated organisms to seaweeds are poorly understood. This study examined interactions between a guild of obligate and opportunistic coral-feeding butterflyfishes (Chaetodontidae) and scleractinian corals to determine whether fishes continue to interact with corals in contact with seaweed or if they are avoided. Under natural conditions, all species interacted almost exclusively with seaweed-free corals. In a controlled patch reef experiment, fishes avoided corals in physical contact with seaweed, irrespective of dietary preferences. When visual seaweed cues were removed, butterflyfish continued to avoid corals that had been in contact with the allelopathic Galaxaura filamentosa, suggesting that chemical cues produced by coral-seaweed interactions are repellent. These findings suggest that, due to deleterious visual and chemical cues produced by coral-seaweed interactions, coral-associated organisms may struggle to locate resources as seaweed-free corals decline in abundance.

  20. Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia

    PubMed Central

    Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle

    2017-01-01

    The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1–oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2–oceanic and inhabited (high human impact); and cluster 3–lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an ‘opportunistic’ scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities. PMID:28489903

  1. Bacterial assemblages differ between compartments within the coral holobiont

    NASA Astrophysics Data System (ADS)

    Sweet, M. J.; Croquer, A.; Bythell, J. C.

    2011-03-01

    It is widely accepted that corals are associated with a diverse and host species-specific microbiota, but how they are organized within their hosts remains poorly understood. Previous sampling techniques (blasted coral tissues, coral swabs and milked mucus) may preferentially sample from different compartments such as mucus, tissue and skeleton, or amalgamate them, making comparisons and generalizations between studies difficult. This study characterized bacterial communities of corals with minimal mechanical disruption and contamination from water, air and sediments from three compartments: surface mucus layer (SML), coral tissue and coral skeleton. A novel apparatus (the `snot sucker') was used to separate the SML from tissues and skeleton, and these three compartments were compared to swab samples and milked mucus along with adjacent environmental samples (water column and sediments). Bacterial 16S rRNA gene diversity was significantly different between the various coral compartments and environmental samples (PERMANOVA, F = 6.9, df = 8, P = 0.001), the only exceptions being the complete crushed coral samples and the coral skeleton, which were similar, because the skeleton represents a proportionally large volume and supports a relatively rich microflora. Milked mucus differed significantly from the SML collected with the `snot sucker' and was contaminated with zooxanthellae, suggesting that it may originate at least partially from the gastrovascular cavity rather than the tissue surface. A common method of sampling the SML, surface swabs, produced a bacterial community profile distinct from the SML sampled using our novel apparatus and also showed contamination from coral tissues. Our results indicate that microbial communities are spatially structured within the coral holobiont, and methods used to describe these need to be standardized to allow comparisons between studies.

  2. In situ effects of simulated overfishing and eutrophication on settlement of benthic coral reef invertebrates in the Central Red Sea.

    PubMed

    Jessen, Christian; Voolstra, Christian R; Wild, Christian

    2014-01-01

    In the Central Red Sea, healthy coral reefs meet intense coastal development, but data on the effects of related stressors for reef functioning are lacking. This in situ study therefore investigated the independent and combined effects of simulated overfishing through predator/grazer exclusion and simulated eutrophication through fertilizer addition on settlement of reef associated invertebrates on light-exposed and -shaded tiles over 4 months. At the end of the study period invertebrates had almost exclusively colonized shaded tiles. Algae were superior settling competitors on light-exposed tiles. On the shaded tiles, simulated overfishing prevented settlement of hard corals, but significantly increased settlement of polychaetes, while simulated eutrophication only significantly decreased hard coral settlement relative to controls. The combined treatment significantly increased settlement of bryozoans and bivalves compared to controls and individual manipulations, but significantly decreased polychaetes compared to simulated overfishing. These results suggest settlement of polychaetes and hard corals as potential bioindicators for overfishing and eutrophication, respectively, and settlement of bivalves and bryozoans for a combination of both. Therefore, if the investigated stressors are not controlled, phase shifts from dominance by hard corals to that by other invertebrates may occur at shaded reef locations in the Central Red Sea.

  3. Coral reef metabolism and carbon chemistry dynamics of a coral reef flat

    NASA Astrophysics Data System (ADS)

    Albright, Rebecca; Benthuysen, Jessica; Cantin, Neal; Caldeira, Ken; Anthony, Ken

    2015-05-01

    Global carbon emissions continue to acidify the oceans, motivating growing concern for the ability of coral reefs to maintain net positive calcification rates. Efforts to develop robust relationships between coral reef calcification and carbonate parameters such as aragonite saturation state (Ωarag) aim to facilitate meaningful predictions of how reef calcification will change in the face of ocean acidification. Here we investigate natural trends in carbonate chemistry of a coral reef flat over diel cycles and relate these trends to benthic carbon fluxes by quantifying net community calcification and net community production. We find that, despite an apparent dependence of calcification on Ωarag seen in a simple pairwise relationship, if the dependence of net calcification on net photosynthesis is accounted for, knowing Ωarag does not add substantial explanatory value. This suggests that, over short time scales, the control of Ωarag on net calcification is weak relative to factors governing net photosynthesis.

  4. Controls on coral-ground development along the northern Mesoamerican Reef tract.

    PubMed

    Rodríguez-Martínez, Rosa E; Jordán-Garza, Adán G; Maldonado, Miguel A; Blanchon, Paul

    2011-01-01

    Coral-grounds are reef communities that colonize rocky substratum but do not form framework or three-dimensional reef structures. To investigate why, we used video transects and underwater photography to determine the composition, structure and status of a coral-ground community located on the edge of a rocky terrace in front of a tourist park, Xcaret, in the northern Mesoamerican Reef tract, Mexico. The community has a relatively low coral, gorgonian and sponge cover (<10%) and high algal cover (>40%). We recorded 23 species of Scleractinia, 14 species of Gorgonacea and 30 species of Porifera. The coral community is diverse but lacks large coral colonies, being dominated instead by small, sediment-tolerant, and brooding species. In these small colonies, the abundance of potentially lethal interactions and partial mortality is high but decreases when colonies are larger than 40 cm. Such characteristics are consistent with an environment control whereby storm waves periodically remove larger colonies and elevate sediment flux. The community only survives these storm conditions due to its slope-break location, which ensures lack of burial and continued local recruitment. A comparison with similar coral-ground communities in adjacent areas suggests that the narrow width of the rock terrace hinders sediment stabilization, thereby ensuring that communities cannot escape bottom effects and develop into three-dimensional reef structures on geological time scales.

  5. Recovery of Seamount Precious Coral Beds From Heavy Trawling Disturbance with Links to Carbonate Chemistry Changes

    NASA Astrophysics Data System (ADS)

    Roark, E. B.; Baco-Taylor, A.; Morgan, N. B.; Shamberger, K.; Miller, K.; Brooks, J.

    2016-12-01

    Increasing anthropogenic impacts in the deep sea make studies of resilience and recovery time critical, with deep-sea hard-substrate habitats and large-scale disturbances having received little attention. Seamount hard-substrate habitats in particular are thought to have low resilience due to the slow growth rates and recruitment limitations of key structure-forming taxa. Seamounts of the far Northwestern Hawaiian Islands and Emperor Chain have had some of the heaviest trawl impacts in the world, from both fish and precious coral fisheries, and include sites that are still trawled and recovering ones that have been protected since establishment of the EEZ in 1977. To test the hypothesis of low resilience we compare these impacted seamounts to untrawled sites. We used the AUV Sentry in 2014 and 2015 to image nine features (three per "treatment") and analyze for substrate and visible megafauna. Sites in the "still trawled" treatment were characterized by extensive areas of bare substrate with abundant trawl scars. Sites in the "recovering" and "never trawled" locations had abundant megafauna in hard substrate areas. Initial comparisons of transects at 700m depth for three sites indicate that Yuryaku in the "still trawled" treatment had lower diversity and abundance of megafauna compared to the "recovering" and "never trawled" locations with a dominance of sea urchins. The "recovering" and "never trawled" sites were dominated by cnidarians, fishes, and echinoderms, but differed in dominant species, diversity, abundances and occurrence of dead coral skeletons. These preliminary results suggest that the recovering sites have not returned to a pre-impact community type in the 38 years since they were trawled. The megafauna distribution, in particular that of deep-sea corals, was compared to environmental water column variables at the study sites across the Northwestern Hawaiian Islands. Deep-sea corals with calcium carbonate skeletons were found living below the

  6. Lithifying Microbes Associated to Coral Rubbles

    NASA Astrophysics Data System (ADS)

    Beltran, Y.

    2015-12-01

    Microbial communities taking part in calcium carbonate lithification processes are particularly relevant to coral reef formation in as much as this lithification allows the stabilization of secondary reef structure. This second framework promotes long-term permanence of the reef, favoring the establishment of macro-reef builders, including corals. The reef-bacterial crusts formed by microbial communities are composed of magnesium calcite. Although prokaryotes are not proper calcifiers, carbonate precipitation can be induced by their metabolic activity and EPS production. Coral reefs are rapidly declining due to several variables associated to environmental change. Specifically in the Caribbean, stony coral Acropora palmata have suffered damage due to diseases, bleaching and storms. Some reports show that in highly disturbed areas wide ridges of reef rubbles are formed by biological and physical lithification. In this study we explore microbial diversity associated to lithified rubbles left after the great decline of reef-building A. palmata.

  7. Rare symbionts may contribute to the resilience of coral-algal assemblages.

    PubMed

    Ziegler, Maren; Eguíluz, Víctor M; Duarte, Carlos M; Voolstra, Christian R

    2018-01-01

    The association between corals and photosynthetic dinoflagellates (Symbiodinium spp.) is the key to the success of reef ecosystems in highly oligotrophic environments, but it is also their Achilles' heel due to its vulnerability to local stressors and the effects of climate change. Research during the last two decades has shaped a view that coral host-Symbiodinium pairings are diverse, but largely exclusive. Deep sequencing has now revealed the existence of a rare diversity of cryptic Symbiodinium assemblages within the coral holobiont, in addition to one or a few abundant algal members. While the contribution of the most abundant resident Symbiodinium species to coral physiology is widely recognized, the significance of the rare and low abundant background Symbiodinium remains a matter of debate. In this study, we assessed how coral-Symbiodinium communities assemble and how rare and abundant components together constitute the Symbiodinium community by analyzing 892 coral samples comprising >110 000 unique Symbiodinium ITS2 marker gene sequences. Using network modeling, we show that host-Symbiodinium communities assemble in non-random 'clusters' of abundant and rare symbionts. Symbiodinium community structure follows the same principles as bacterial communities, for which the functional significance of rare members (the 'rare bacterial biosphere') has long been recognized. Importantly, the inclusion of rare Symbiodinium taxa in robustness analyses revealed a significant contribution to the stability of the host-symbiont community overall. As such, it highlights the potential functions rare symbionts may provide to environmental resilience of the coral holobiont.

  8. Ocean acidification reduces demersal zooplankton that reside in tropical coral reefs

    NASA Astrophysics Data System (ADS)

    Smith, Joy N.; de'Ath, Glenn; Richter, Claudio; Cornils, Astrid; Hall-Spencer, Jason M.; Fabricius, Katharina E.

    2016-12-01

    The in situ effects of ocean acidification on zooplankton communities remain largely unexplored. Using natural volcanic CO2 seep sites around tropical coral communities, we show a threefold reduction in the biomass of demersal zooplankton in high-CO2 sites compared with sites with ambient CO2. Differences were consistent across two reefs and three expeditions. Abundances were reduced in most taxonomic groups. There were no regime shifts in zooplankton community composition and no differences in fatty acid composition between CO2 levels, suggesting that ocean acidification affects the food quantity but not the quality for nocturnal plankton feeders. Emergence trap data show that the observed reduction in demersal plankton may be partly attributable to altered habitat. Ocean acidification changes coral community composition from branching to massive bouldering coral species, and our data suggest that bouldering corals represent inferior daytime shelter for demersal zooplankton. Since zooplankton represent a major source of nutrients for corals, fish and other planktivores, this ecological feedback may represent an additional mechanism of how coral reefs will be affected by ocean acidification.

  9. Twenty-year changes in coral near Muscat, Oman estimated from manta board tow observations.

    PubMed

    Coles, Steve L; Looker, Elayne; Burt, John A

    2015-02-01

    The coastline of Muscat, Oman, contains some of the most extensive and diverse coral reefs in the northeastern Arabian Peninsula. In the past two decades this region has been impacted by expanding coastal development, the largest cyclone ever recorded in the Arabian Sea, and a large-scale harmful algal bloom which resulted in mass mortality of reefs elsewhere in the Gulf of Oman. In 2012 we estimated live and dead coral using manta tow observations on 370 transects at 13 locations along the coastline and nearshore islands of Muscat Oman. We compared these estimates against observations made on 389 transects at the same 13 locations two decades earlier (1993-94) in order to determine long-term changes in benthos along the Muscat coast. Results were mapped and differences in categorical mean values for transect locations were statistically compared between survey years. Live hard and soft coral decreased over the past two decades at most survey sites, and decreases were significant at three exposed coastline sites and one semi-enclosed embayment. One sheltered embayment site showed a significant increase in live hard coral over the study period. Declines in live hard coral were associated with increases in dead coral framework at 8 of the 13 sites, but these changes were non-significant. We attribute these changes primarily to long-term effects of Cyclone Gonu, which struck the Oman coast in June 2007. The study results suggest that the manta tow method can be an effective way to detect long-term changes in coral and other benthic parameters over large areas, despite limitations on its precision. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century

    PubMed Central

    Clark, Tara R.; Roff, George; Zhao, Jian-xin; Feng, Yue-xing; Done, Terence J.; McCook, Laurence J.; Pandolfi, John M.

    2017-01-01

    Hard coral cover on the Great Barrier Reef (GBR) is on a trajectory of decline. However, little is known about past coral mortality before the advent of long-term monitoring (circa 1980s). Using paleoecological analysis and high-precision uranium-thorium (U-Th) dating, we reveal an extensive loss of branching Acropora corals and changes in coral community structure in the Palm Islands region of the central GBR over the past century. In 2008, dead coral assemblages were dominated by large, branching Acropora and living coral assemblages by genera typically found in turbid inshore environments. The timing of Acropora mortality was found to be occasionally synchronous among reefs and frequently linked to discrete disturbance events, occurring in the 1920s to 1960s and again in the 1980s to 1990s. Surveys conducted in 2014 revealed low Acropora cover (<5%) across all sites, with very little evidence of change for up to 60 y at some sites. Collectively, our results suggest a loss of resilience of this formerly dominant key framework builder at a regional scale, with recovery severely lagging behind predictions. Our study implies that the management of these reefs may be predicated on a shifted baseline. PMID:28893981

  11. Quorum Sensing Signal Production and Microbial Interactions in a Polymicrobial Disease of Corals and the Coral Surface Mucopolysaccharide Layer

    PubMed Central

    Zimmer, Beth L.; May, Amanda L.; Bhedi, Chinmayee D.; Dearth, Stephen P.; Prevatte, Carson W.; Pratte, Zoe; Campagna, Shawn R.; Richardson, Laurie L.

    2014-01-01

    Black band disease (BBD) of corals is a complex polymicrobial disease considered to be a threat to coral reef health, as it can lead to mortality of massive reef-building corals. The BBD community is dominated by gliding, filamentous cyanobacteria with a highly diverse population of heterotrophic bacteria. Microbial interactions such as quorum sensing (QS) and antimicrobial production may be involved in BBD disease pathogenesis. In this study, BBD (whole community) samples, as well as 199 bacterial isolates from BBD, the surface mucopolysaccharide layer (SML) of apparently healthy corals, and SML of apparently healthy areas of BBD-infected corals were screened for the production of acyl homoserine lactones (AHLs) and for autoinducer-2 (AI-2) activity using three bacterial reporter strains. AHLs were detected in all BBD (intact community) samples tested and in cultures of 5.5% of BBD bacterial isolates. Over half of a subset (153) of the isolates were positive for AI-2 activity. AHL-producing isolates were further analyzed using LC-MS/MS to determine AHL chemical structure and the concentration of (S)-4,5-dihydroxy-2,3-pentanedione (DPD), the biosynthetic precursor of AI-2. C6-HSL was the most common AHL variant detected, followed by 3OC4-HSL. In addition to QS assays, 342 growth challenges were conducted among a subset of the isolates, with 27% of isolates eliciting growth inhibition and 2% growth stimulation. 24% of BBD isolates elicited growth inhibition as compared to 26% and 32% of the bacteria from the two SML sources. With one exception, only isolates that exhibited AI-2 activity or produced DPD inhibited growth of test strains. These findings demonstrate for the first time that AHLs are present in an active coral disease. It is possible that AI-2 production among BBD and coral SML bacteria may structure the microbial communities of both a polymicrobial infection and the healthy coral microbiome. PMID:25268348

  12. Proteomic profiling of healthy and diseased hybrid soft corals Sinularia maxima × S. polydactyla.

    PubMed

    Gochfeld, Deborah J; Ankisetty, Sridevi; Slattery, Marc

    2015-10-16

    Emerging diseases of marine invertebrates have been implicated as one of the major causes of the continuing decline in coral reefs worldwide. To date, most of the focus on marine diseases has been aimed at hard (scleractinian) corals, which are the main reef builders worldwide. However, soft (alcyonacean) corals are also essential components of tropical reefs, representing food, habitat and the 'glue' that consolidates reefs, and they are subject to the same stressors as hard corals. Sinularia maxima and S. polydactyla are the dominant soft corals on the shallow reefs of Guam, where they hybridize. In addition to both parent species, the hybrid soft coral population in Guam is particularly affected by Sinularia tissue loss disease. Using label-free shotgun proteomics, we identified differences in protein expression between healthy and diseased colonies of the hybrid S. maxima × S. polydactyla. This study provided qualitative and quantitative data on specific proteins that were differentially expressed under the stress of disease. In particular, metabolic proteins were down-regulated, whereas proteins related to stress and to symbiont photosynthesis were up-regulated in the diseased soft corals. These results indicate that soft corals are responding to pathogenesis at the level of the proteome, and that this label-free approach can be used to identify and quantify protein biomarkers of sub-lethal stress in studies of marine disease.

  13. Symbiont diversity may help coral reefs survive moderate climate change.

    PubMed

    Baskett, Marissa L; Gaines, Steven D; Nisbet, Roger M

    2009-01-01

    Given climate change, thermal stress-related mass coral-bleaching events present one of the greatest anthropogenic threats to coral reefs. While corals and their symbiotic algae may respond to future temperatures through genetic adaptation and shifts in community compositions, the climate may change too rapidly for coral response. To test this potential for response, here we develop a model of coral and symbiont ecological dynamics and symbiont evolutionary dynamics. Model results without variation in symbiont thermal tolerance predict coral reef collapse within decades under multiple future climate scenarios, consistent with previous threshold-based predictions. However, model results with genetic or community-level variation in symbiont thermal tolerance can predict coral reef persistence into the next century, provided low enough greenhouse gas emissions occur. Therefore, the level of greenhouse gas emissions will have a significant effect on the future of coral reefs, and accounting for biodiversity and biological dynamics is vital to estimating the size of this effect.

  14. Coral disease dynamics at a subtropical location, Solitary Islands Marine Park, eastern Australia

    NASA Astrophysics Data System (ADS)

    Dalton, Steven J.; Smith, Stephen D. A.

    2006-03-01

    Recent observations suggest that a spreading disease is increasingly contributing to hard coral mortality in the Solitary Islands Marine Park, NSW, Australia. This study determined coral disease prevalence and rate-of-spread through individual affected colonies and investigated the effect this epizootic had on coral populations at sites adjacent to South West Solitary Island. Quantitative data were collected between 2002 and 2004 using photographic and video methods, and visual census along radial arc belt transects. Disease similar to the reported white syndrome and white plague was apparent, spreading through hard coral species from the genera Turbinaria, Acropora, Goniastrea, Pocillopora, Stylophora and Porites. Coral disease prevalence varied between survey dates with mean prevalence increasing from 8.55% during March 2003 to 13.58% in June and declining to 7.75% in September and 6.21% during March 2004. There was a significant difference in mean prevalence between the affected species (p<0.001) and an overall difference between survey dates (p=0.001). Additionally, the rate-of-spread of coral disease through coral colonies determined using repeated, seasonal, still photographs followed similar patterns, with disease progression differing between affected species (p=0.004), and between survey dates (p<0.001). Analysis of the video-transects indicated significant difference in disease prevalence over larger spatial scales (100s of m). However, disease frequency did not vary significantly between 2002 and 2003.

  15. Status of coral reef species at Chabahar Bay, Sistan and Baluchistan, Iran.

    PubMed

    Teymour, Rad A; Sanjani, M S

    2010-04-15

    This study was carried out in the coral growing zone at Chabahar Bay where it located at 25 degrees 17' N and 60 degrees 36'E. It is called horseshoe Bay, because of its semicircle shape. Some destroyer factors have been affected on the health of coral reefs in Chabahar Bay. Port constructions, dredging operations, spearfishing, anchorages and scuba diving activities were distinguished as the most important problems of coral reef in Chabahar Bay. This study was conducted in order to access Semi-Qualitative Indexes of corals in different areas of Chabahar Bay. Five stations were chosen in east and north part of the Bay, where the most construction activities happened. Rectangular Transect and CoralWatch Racket were used to determine the status of the corals. During study, two classes of Hexacoralia and Octocoralia with 15 families were recorded. Twenty one species of hard coral and 10 species of soft coral were recorded. Hexacoralia was recorded the higher number of family with 10 families and 21 species and Octocoralia was recorded the lower with 5 families and 10 species. Hard corals were dominant. The ranges of qualitative indexes showed, of five stations, three of them (stations 2, 4, 5) showed Good Development and two stations (stations 1, 3) showed Fair Development. For the Condition Index, two stations showed Good Condition (stations 1, 5) and two stations showed Fair Condition (stations 2, 3). Only station 4 showed Poor Condition. The ranges of the Succession Index Showed, four stations (stations 1, 2, 3, 4) were in Very poor Succession and one station (stations 5) showed Poor Succession.

  16. Macroalgal communities on multi-stressed coral reefs in the Caribbean: Long-term changes, spatial variations, and relationships with environmental variables

    NASA Astrophysics Data System (ADS)

    Sangil, Carlos; Guzman, Hector M.

    2016-11-01

    Long-term changes in macroalgal cover, spatial variation between macroalgal communities, and relationships with environmental variables and benthic groups were assessed in coral reefs along the Caribbean coast of Panama. Sampling was conducted in two regions: Western and Central. Data collected between 2000 and 2012 showed a continuous increase in macroalgal abundance, although patterns differed according to region and site. There were differences in macroalgal communities between regions, as well as within regions between different wave-exposure levels. There were also differences between sites within regions exposed to the same level of wave action. Multivariate analysis found that wave exposure along with herbivore density (Echinometra viridis) and sedimentation were the variables that explained most of the variability between communities. Other variables such as Echinometra lucunter and Diadema antillarum densities, fish density, productivity, and live coral cover had significant relationships with community structure, but explained less of the variability.

  17. Global microbialization of coral reefs.

    PubMed

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-04-25

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.

  18. Shifts in coral-assemblage composition do not ensure persistence of reef functionality.

    PubMed

    Alvarez-Filip, Lorenzo; Carricart-Ganivet, Juan P; Horta-Puga, Guillermo; Iglesias-Prieto, Roberto

    2013-12-12

    Coral communities are changing rapidly worldwide through loss of coral cover and shifts in species composition. Although many reef-building corals are likely to decline, some weedy opportunistic species might increase in abundance. Here we explore whether the reshuffling of species can maintain ecosystem integrity and functioning. Using four common Caribbean reef-building coral genera we modeled rates of reef construction and complexity. We show that shifting coral assemblages result in rapid losses in coral-community calcification and reef rugosity that are independent of changes in the total abundance of reef corals. These losses are considerably higher than those recently attributed to climate change. Dominance patterns of coral assemblages seem to be the most important driver of the functioning of coral reefs and thus, the future of these ecosystems might depend not only on reductions of local and global stressors, but also on the maintenance of keystone coral species.

  19. Coral reefs and carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buddemeier, R.W.

    1996-03-01

    This commentary argues the conclusion from a previous article, which investigates diurnal changes in carbon dioxide partial pressure and community metabolism on coral reefs, that coral `reefs might serve as a sink, not a source, for atmospheric carbon dioxide.` Commentaries from two groups are given along with the response by the original authors, Kayanne et al. 27 refs.

  20. Diel Variability in Seawater pH Relates to Calcification and Benthic Community Structure on Coral Reefs

    PubMed Central

    Martz, Todd R.; Brainard, Russell E.

    2012-01-01

    Community structure and assembly are determined in part by environmental heterogeneity. While reef-building corals respond negatively to warming (i.e. bleaching events) and ocean acidification (OA), the extent of present-day natural variability in pH on shallow reefs and ecological consequences for benthic assemblages is unknown. We documented high resolution temporal patterns in temperature and pH from three reefs in the central Pacific and examined how these data relate to community development and net accretion rates of early successional benthic organisms. These reefs experienced substantial diel fluctuations in temperature (0.78°C) and pH (>0.2) similar to the magnitude of ‘warming’ and ‘acidification’ expected over the next century. Where daily pH within the benthic boundary layer failed to exceed pelagic climatological seasonal lows, net accretion was slower and fleshy, non-calcifying benthic organisms dominated space. Thus, key aspects of coral reef ecosystem structure and function are presently related to natural diurnal variability in pH. PMID:22952785

  1. Coral reef diseases in the Atlantic-Caribbean

    USGS Publications Warehouse

    Rogers, Caroline S.; Weil, Ernesto; Dubinsky, Zvy; Stambler, Noga

    2010-01-01

    Coral reefs are the jewels of the tropical oceans. They boast the highest diversity of all marine ecosystems, aid in the development and protection of other important, productive coastal marine communities, and have provided millions of people with food, building materials, protection from storms, recreation and social stability over thousands of years, and more recently, income, active pharmacological compounds and other benefits. These communities have been deteriorating rapidly in recent times. The continuous emergence of coral reef diseases and increase in bleaching events caused in part by high water temperatures among other factors underscore the need for intensive assessments of their ecological status and causes and their impact on coral reefs.

  2. Coral reef fish predator maintains olfactory acuity in degraded coral habitats.

    PubMed

    Natt, Michael; Lönnstedt, Oona M; McCormick, Mark I

    2017-01-01

    Coral reefs around the world are rapidly degrading due to a range of environmental stressors. Habitat degradation modifies the sensory landscape within which predator-prey interactions occur, with implications for olfactory-mediated behaviours. Predator naïve settlement-stage damselfish rely on conspecific damage-released odours (i.e., alarm odours) to inform risk assessments. Yet, species such as the Ambon damselfish, Pomacentrus amboinensis, become unable to respond appropriately to these cues when living in dead-degraded coral habitats, leading to increased mortality through loss of vigilance. Reef fish predators also rely on odours from damaged prey to locate, assess prey quality and engage in prey-stealing, but it is unknown whether their responses are also modified by the change to dead-degraded coral habitats. Implications for prey clearly depend on how their predatory counterparts are affected, therefore the present study tested whether olfactory-mediated foraging responses in the dusky dottyback, Pseudochromis fuscus, a common predator of P. amboinensis, were similarly affected by coral degradation. A y-maze was used to measure the ability of Ps. fuscus to detect and move towards odours, against different background water sources. Ps. fuscus were exposed to damage-released odours from juvenile P. amboinensis, or a control cue of seawater, against a background of seawater treated with either healthy or dead-degraded hard coral. Predators exhibited an increased time allocation to the chambers of y-mazes injected with damage-released odours, with comparable levels of response in both healthy and dead-degraded coral treated waters. In control treatments, where damage-released odours were replaced with a control seawater cue, fish showed no increased preference for either chamber of the y-maze. Our results suggest that olfactory-mediated foraging behaviours may persist in Ps. fuscus within dead-degraded coral habitats. Ps. fuscus may consequently gain a

  3. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.

    PubMed

    Markey, Kathryn L; Abdo, Dave A; Evans, Scott N; Bosserelle, Cyprien

    2016-01-01

    In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI) coral communities was documented. This bleaching event highlighted the question of whether a supply of 'heat tolerant' coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile) compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile). Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011) has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them.

  4. Reversal of ocean acidification enhances net coral reef calcification.

    PubMed

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; Maclaren, Jana K; Mason, Benjamin M; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-17

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  5. Reversal of ocean acidification enhances net coral reef calcification

    NASA Astrophysics Data System (ADS)

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; MacLaren, Jana K.; Mason, Benjamin M.; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L.; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-01

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO32-]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO32-], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  6. Surfing the Pacific Island chains: linking internal wave energetics to coral reef benthic community patterns.

    NASA Astrophysics Data System (ADS)

    Painter Jones, Matilda; Green, Mattias; Gove, Jamison; Williams, Gareth

    2017-04-01

    The ocean is saturated with internal waves at tidal frequency. The energy associated with conversion from barotropic to baroclinic can enhance mixing and upwelling at sites of generation and dissipation, which in turn can drive primary production. Hotspots of internal wave generation are located at sudden changes in topography with the Hawaiian archipelago identified as an area of intense internal wave activity. The role of internal waves as a driver of benthic reef community is unexplored and could be key to coral reefs survival in the unknown future. Using a Pacific wide map of internal wave flux and barotropic-to-baroclinic conversion at an unprecedented 1/30th degree resolution, energy budgets were developed for four islands to evaluate dissipation and generation of internal waves. Spatiotemporal variations in benthic community structure were plotted around each island and related to changes in internal wave energetics using a boosted regression tree. Contrasting spatial patterns and species assemblages were seen around islands with distinct internal wave regimes. The relative importance and influence of internal waves on coral reef ecosystems is evaluated.

  7. Community production modulates coral reef pH and the sensitivity of ecosystem calcification to ocean acidification

    NASA Astrophysics Data System (ADS)

    DeCarlo, Thomas M.; Cohen, Anne L.; Wong, George T. F.; Shiah, Fuh-Kwo; Lentz, Steven J.; Davis, Kristen A.; Shamberger, Kathryn E. F.; Lohmann, Pat

    2017-01-01

    Coral reefs are built of calcium carbonate (CaCO3) produced biogenically by a diversity of calcifying plants, animals, and microbes. As the ocean warms and acidifies, there is mounting concern that declining calcification rates could shift coral reef CaCO3 budgets from net accretion to net dissolution. We quantified net ecosystem calcification (NEC) and production (NEP) on Dongsha Atoll, northern South China Sea, over a 2 week period that included a transient bleaching event. Peak daytime pH on the wide, shallow reef flat during the nonbleaching period was ˜8.5, significantly elevated above that of the surrounding open ocean (˜8.0-8.1) as a consequence of daytime NEP (up to 112 mmol C m-2 h-1). Diurnal-averaged NEC was 390 ± 90 mmol CaCO3 m-2 d-1, higher than any other coral reef studied to date despite comparable calcifier cover (25%) and relatively high fleshy algal cover (19%). Coral bleaching linked to elevated temperatures significantly reduced daytime NEP by 29 mmol C m-2 h-1. pH on the reef flat declined by 0.2 units, causing a 40% reduction in NEC in the absence of pH changes in the surrounding open ocean. Our findings highlight the interactive relationship between carbonate chemistry of coral reef ecosystems and ecosystem production and calcification rates, which are in turn impacted by ocean warming. As open-ocean waters bathing coral reefs warm and acidify over the 21st century, the health and composition of reef benthic communities will play a major role in determining on-reef conditions that will in turn dictate the ecosystem response to climate change.

  8. Status and conservation of coral reefs in Costa Rica.

    PubMed

    Cortés, Jorge; Jiménez, Carlos E; Fonseca, Ana C; Alvarado, Juan José

    2010-05-01

    Costa Rica has coral communities and reefs on the Caribbean coast and on the Pacific along the coast and off-shore islands. The Southern section of the Caribbean coast has fringing and patch reefs, carbonate banks, and an incipient algal ridge. The Pacific coast has coral communities, reefs and isolated coral colonies. Coral reefs have been seriously impacted in the last 30 years, mainly by sediments (Caribbean coast and some Pacific reefs) and by El Niño warming events (both coasts). Monitoring is being carried out at three sites on each coast. Both coasts suffered significant reductions in live coral cover in the 1980's, but coral cover is now increasing in most sites. The government of Costa Rica is aware of the importance of coral reefs and marine environments in general, and in recent years decrees have been implemented (or are in the process of approval) to protect them, but limited resources endanger their proper management and conservation, including proper outreach to reef users and the general public.

  9. Microbial Ecology of Four Coral Atolls in the Northern Line Islands

    PubMed Central

    Smriga, Steven; Edwards, Robert A.; Angly, Florent; Wegley, Linda; Hatay, Mark; Hall, Dana; Brown, Elysa; Haynes, Matthew; Krause, Lutz; Sala, Enric; Sandin, Stuart A.; Thurber, Rebecca Vega; Willis, Bette L.; Azam, Farooq; Knowlton, Nancy; Rohwer, Forest

    2008-01-01

    Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp.) and heterotrophs. In contrast, Kiritimati, a large and populated (∼5500 people) atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1) oceaonographic and/or hydrographic conditions or 2) human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover) suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation of coral reef ecosystems

  10. Microbial ecology of four coral atolls in the Northern Line Islands.

    PubMed

    Dinsdale, Elizabeth A; Pantos, Olga; Smriga, Steven; Edwards, Robert A; Angly, Florent; Wegley, Linda; Hatay, Mark; Hall, Dana; Brown, Elysa; Haynes, Matthew; Krause, Lutz; Sala, Enric; Sandin, Stuart A; Thurber, Rebecca Vega; Willis, Bette L; Azam, Farooq; Knowlton, Nancy; Rohwer, Forest

    2008-02-27

    Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp.) and heterotrophs. In contrast, Kiritimati, a large and populated ( approximately 5500 people) atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1) oceaonographic and/or hydrographic conditions or 2) human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover) suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation of coral reef

  11. Anti-Pathogenic Activity of Coral Bacteria Againts White Plaque Disease of Coral Dipsastraea from Tengah Island, Karimunjawa

    NASA Astrophysics Data System (ADS)

    Imam Muchlissin, Sakti; Sabdono, Agus; Permata W, Diah

    2018-02-01

    Coral disease is main factor of degrading coral reefs, such as White Plaque (WP) disease that cause loss of epidermal tissue of corals. The purposes of this research were to identify the bacteria associated with White Plaque Disease of coral Dipsastraea and to investigate coral bacteria that have antipathogenic potency against White Plaque Disease by Coral Dipsastraea. Sampling was carried out by purposive method in Tengah Island, Karimunjawa on March 2015. Streak method was used to isolate and purify coral bacteria, while overlay and agar diffusion method were used to test antibacterial activity. Identification of selected bacteria was conducted by biochemical and molecular methods. Polyphasic identification of bacteria associated with diseased coral White Plague of Dipsastraea. It is found that TFWP1, TFWP2, TFWP3 and TFWP4 were closely related to Bacillus antracis, Virgibacillus olivae, Virgibacillus salarius and Bacillus mojavensis, respectively. While antipathogen activity bacterial isolates, NM1.3, NM1.8 and NM2.3 were closely related to Pseudoalteromonas flavipulchra, Pseudoalteromonas piscicida, and Vibrio azureus, respectively. Phylogenetic data on microbial community composition in coral will help with the knowledge in the biological control of coral diseases.

  12. Spatial analyses for nonoverlapping objects with size variations and their application to coral communities.

    PubMed

    Muko, Soyoka; Shimatani, Ichiro K; Nozawa, Yoko

    2014-07-01

    Spatial distributions of individuals are conventionally analysed by representing objects as dimensionless points, in which spatial statistics are based on centre-to-centre distances. However, if organisms expand without overlapping and show size variations, such as is the case for encrusting corals, interobject spacing is crucial for spatial associations where interactions occur. We introduced new pairwise statistics using minimum distances between objects and demonstrated their utility when examining encrusting coral community data. We also calculated the conventional point process statistics and the grid-based statistics to clarify the advantages and limitations of each spatial statistical method. For simplicity, coral colonies were approximated by disks in these demonstrations. Focusing on short-distance effects, the use of minimum distances revealed that almost all coral genera were aggregated at a scale of 1-25 cm. However, when fragmented colonies (ramets) were treated as a genet, a genet-level analysis indicated weak or no aggregation, suggesting that most corals were randomly distributed and that fragmentation was the primary cause of colony aggregations. In contrast, point process statistics showed larger aggregation scales, presumably because centre-to-centre distances included both intercolony spacing and colony sizes (radius). The grid-based statistics were able to quantify the patch (aggregation) scale of colonies, but the scale was strongly affected by the colony size. Our approach quantitatively showed repulsive effects between an aggressive genus and a competitively weak genus, while the grid-based statistics (covariance function) also showed repulsion although the spatial scale indicated from the statistics was not directly interpretable in terms of ecological meaning. The use of minimum distances together with previously proposed spatial statistics helped us to extend our understanding of the spatial patterns of nonoverlapping objects that vary in

  13. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    PubMed

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  14. In situ effects of simulated overfishing and eutrophication on settlement of benthic coral reef invertebrates in the Central Red Sea

    PubMed Central

    Voolstra, Christian R.; Wild, Christian

    2014-01-01

    In the Central Red Sea, healthy coral reefs meet intense coastal development, but data on the effects of related stressors for reef functioning are lacking. This in situ study therefore investigated the independent and combined effects of simulated overfishing through predator/grazer exclusion and simulated eutrophication through fertilizer addition on settlement of reef associated invertebrates on light-exposed and -shaded tiles over 4 months. At the end of the study period invertebrates had almost exclusively colonized shaded tiles. Algae were superior settling competitors on light-exposed tiles. On the shaded tiles, simulated overfishing prevented settlement of hard corals, but significantly increased settlement of polychaetes, while simulated eutrophication only significantly decreased hard coral settlement relative to controls. The combined treatment significantly increased settlement of bryozoans and bivalves compared to controls and individual manipulations, but significantly decreased polychaetes compared to simulated overfishing. These results suggest settlement of polychaetes and hard corals as potential bioindicators for overfishing and eutrophication, respectively, and settlement of bivalves and bryozoans for a combination of both. Therefore, if the investigated stressors are not controlled, phase shifts from dominance by hard corals to that by other invertebrates may occur at shaded reef locations in the Central Red Sea. PMID:24765573

  15. Bacterial profiling of White Plague Disease across corals and oceans indicates a conserved and distinct disease microbiome

    PubMed Central

    Roder, Cornelia; Arif, Chatchanit; Daniels, Camille; Weil, Ernesto; Voolstra, Christian R

    2014-01-01

    Coral diseases are characterized by microbial community shifts in coral mucus and tissue, but causes and consequences of these changes are vaguely understood due to the complexity and dynamics of coral-associated bacteria. We used 16S rRNA gene microarrays to assay differences in bacterial assemblages of healthy and diseased colonies displaying White Plague Disease (WPD) signs from two closely related Caribbean coral species, Orbicella faveolata and Orbicella franksi. Analysis of differentially abundant operational taxonomic units (OTUs) revealed strong differences between healthy and diseased specimens, but not between coral species. A subsequent comparison to data from two Indo-Pacific coral species (Pavona duerdeni and Porites lutea) revealed distinct microbial community patterns associated with ocean basin, coral species and health state. Coral species were clearly separated by site, but also, the relatedness of the underlying bacterial community structures resembled the phylogenetic relationship of the coral hosts. In diseased samples, bacterial richness increased and putatively opportunistic bacteria were consistently more abundant highlighting the role of opportunistic conditions in structuring microbial community patterns during disease. Our comparative analysis shows that it is possible to derive conserved bacterial footprints of diseased coral holobionts that might help in identifying key bacterial species related to the underlying etiopathology. Furthermore, our data demonstrate that similar-appearing disease phenotypes produce microbial community patterns that are consistent over coral species and oceans, irrespective of the putative underlying pathogen. Consequently, profiling coral diseases by microbial community structure over multiple coral species might allow the development of a comparative disease framework that can inform on cause and relatedness of coral diseases. PMID:24350609

  16. Reciprocal Symbiont Sharing in the Lodging Mutualism between Walking Corals and Sipunculans.

    PubMed

    Igawa, Momoko; Hata, Hiroki; Kato, Makoto

    2017-01-01

    Solitary scleractinian corals of the genera Heterocyathus and Heteropsammia inhabit soft marine bottoms without attaching to hard substrata. The corallums of these genera contain a coiled cavity inhabited by a sipunculan that roams the seafloor, carrying the host coral with it. The coral serves as a sturdy shelter that protects the sipunculan from possible predators. At the same time, the sipunculan maintains the coral in an upright position on the soft bottom. This coral-sipunculan association is unique because two phylogenetically distant coral genera have developed convergent associations with sipunculans. We investigate the process of convergent evolution of two coral species, Hc. aequicostatus and Hp. cochlea, in Okinawa, Japan, with their symbiotic sipunculans, using phylogenetic and morphological analyses. Phylogenetic analyses clarified that the symbiotic sipunculans comprise two distinct clades, surprisingly both of which are associated with both coral species. The bodily habitus of the sipunculan differed between coral species and fit the morphologies of the coiled cavities of their respective host corals. Our results suggest that the two coral species share two sipunculan clades and that sipunculan morphology is plastic and determined by the internal structure of their host corals.

  17. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef

    PubMed Central

    Meyer, Friedrich W.; Vogel, Nikolas; Diele, Karen; Kunzmann, Andreas; Uthicke, Sven; Wild, Christian

    2016-01-01

    Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as

  18. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef.

    PubMed

    Meyer, Friedrich W; Vogel, Nikolas; Diele, Karen; Kunzmann, Andreas; Uthicke, Sven; Wild, Christian

    2016-01-01

    Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as

  19. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata

    PubMed Central

    Wijgerde, Tim; Dini-Andreote, Francisco; Eriksson, Britas Klemens; Salles, Joana Falcão; Pen, Ido; Wild, Christian

    2017-01-01

    Recent research suggests that prior exposure of several months to elevated irradiance induces enhanced thermal tolerance in scleractinian corals. While this tolerance has been reported at the species level, individual coral colonies may react differently due to individual variability in thermal tolerance. As thermal anomalies are predicted to become common in the upcoming future, intraspecific variation may be key to the survival of coral populations. In order to study light-history based thermal stress responses on individual colonies, we developed a preliminary microcosm experiment where three randomly chosen, aquacultured colonies of the model coral Stylophora pistillata were exposed to two irradiance treatments (200 and 400 μmol photons m−2 s−1) for 31 days, followed by artificially induced heat stress (∼33.4 °C). We found different responses to occur at both the intraspecific and the intracolonial levels, as indicated by either equal, less severe, delayed, and/or even non-necrotic responses of corals previously exposed to the irradiance of 400 compared to 200 μmol photons m−2 s−1. In addition, all individual colonies revealed light-enhanced calcification. Finally, elevated irradiance resulted in a lower chlorophyll a concentration in one colony compared to the control treatment, and the same colony displayed more rapid bleaching compared to the other ones. Taken together, this study highlights the potential importance of intra-individual variability in physiological responses of scleractinian corals and provides recommendations for improving methodological designs for future studies. PMID:29038747

  20. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    USGS Publications Warehouse

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  1. Allometric growth in reef-building corals.

    PubMed

    Dornelas, Maria; Madin, Joshua S; Baird, Andrew H; Connolly, Sean R

    2017-03-29

    Predicting demographic rates is a critical part of forecasting the future of ecosystems under global change. Here, we test if growth rates can be predicted from morphological traits for a highly diverse group of colonial symbiotic organisms: scleractinian corals. We ask whether growth is isometric or allometric among corals, and whether most variation in coral growth rates occurs at the level of the species or morphological group. We estimate growth as change in planar area for 11 species, across five morphological groups and over 5 years. We show that coral growth rates are best predicted from colony size and morphology rather than species. Coral size follows a power scaling law with a constant exponent of 0.91. Despite being colonial organisms, corals have consistent allometric scaling in growth. This consistency simplifies the task of projecting community responses to disturbance and climate change. © 2017 The Author(s).

  2. Copper and thermal perturbations on the early life processes of the hard coral Platygyra acuta

    NASA Astrophysics Data System (ADS)

    Kwok, C. K.; Lam, K. Y.; Leung, S. M.; Chui, A. P. Y.; Ang, P. O.

    2016-09-01

    Anthropogenic pollutants and climate change are major threats to coral reefs today. Yet interactions between chemical and thermal perturbations have not been fully explored in reef studies. Here, we present the single and combined effects of copper (Cu) with thermal stress on five early life-history stages/processes (fertilization, larval mortality, swimming ability, metamorphosis and growth of juvenile recruits) of the massive coral Platygyra acuta in Hong Kong. In the first four experiments, coral gametes and larvae were exposed to different Cu doses (0-200 μg L-1, apart from the fertilization assay in which 0-1000 μg L-1 was used) and temperature treatments (ambient and ambient +2 or +3 °C as a thermal stress treatment) following a factorial experimental design. Exposure time was 5 h for the fertilization assay and 48 h for the other experiments. The last experiment on growth of coral recruits was conducted over 56 d with 0-80 μg L-1 Cu used. Cu significantly reduced percent fertilization success, percentage of active swimming larvae and larval survivorship (EC50s, the half maximal effective concentrations, for percent fertilization success and percentage of active swimming larvae were 92-145 and 45-47 μg L-1 respectively. While LC50, the lethal concentration that kills 50% of the population, was 101-110 μg L-1), while growth of coral recruits was not affected at 80 μg L-1 Cu for 56 d. No settling cues were used in the settlement experiment. In their absence, percent metamorphosis increased with Cu doses, in sharp contrast to earlier findings. Settlement and metamorphosis may thus be strategies for coral larvae to escape from Cu toxicity. Thermal treatment did not significantly affect any experimental end points. This is likely because the thermal regimes used in the experiments were within the range experienced by local corals. The high variability in Cu toxicities indicates differential susceptibilities of the various life-history stages/processes of P

  3. Not equal in the face of habitat change: closely related fishes differ in their ability to use predation-related information in degraded coral

    PubMed Central

    2017-01-01

    Coral reefs are biodiversity hotpots that are under significant threat due to the degradation and death of hard corals. When obligate coral-dwelling species die, the remaining species must either move or adjust to the altered conditions. Our goal was to investigate the effect of coral degradation on the ability of coral reef fishes to assess their risk of predation using alarm cues from injured conspecifics. Here, we tested the ability of six closely related species of juvenile damselfish (Pomacentridae) to respond to risk cues in both live coral or dead-degraded coral environments. Of those six species, two are exclusively associated with live coral habitats, two are found mostly on dead-degraded coral rubble, while the last two are found in both habitat types. We found that the two live coral associates failed to respond appropriately to the cues in water from degraded habitats. In contrast, the cue response of the two rubble associates was unaffected in the same degraded habitat. Interestingly, we observed a mixed response from the species found in both habitat types, with one species displaying an appropriate cue response while the other did not. Our second experiment suggested that the lack of responses stemmed from deactivation of the alarm cues, rather than the inability of the species to smell. Habitat preference (live coral versus dead coral associates) and phylogeny are good candidates for future work aimed at predicting which species are affected by coral degradation. Our results point towards a surprising level of variation in the ability of congeneric species to fare in altered habitats and hence underscores the difficulty of predicting community change in degraded habitats. PMID:28404773

  4. Not equal in the face of habitat change: closely related fishes differ in their ability to use predation-related information in degraded coral.

    PubMed

    Ferrari, Maud C O; McCormick, Mark I; Allan, Bridie J M; Chivers, Douglas P

    2017-04-12

    Coral reefs are biodiversity hotpots that are under significant threat due to the degradation and death of hard corals. When obligate coral-dwelling species die, the remaining species must either move or adjust to the altered conditions. Our goal was to investigate the effect of coral degradation on the ability of coral reef fishes to assess their risk of predation using alarm cues from injured conspecifics. Here, we tested the ability of six closely related species of juvenile damselfish (Pomacentridae) to respond to risk cues in both live coral or dead-degraded coral environments. Of those six species, two are exclusively associated with live coral habitats, two are found mostly on dead-degraded coral rubble, while the last two are found in both habitat types. We found that the two live coral associates failed to respond appropriately to the cues in water from degraded habitats. In contrast, the cue response of the two rubble associates was unaffected in the same degraded habitat. Interestingly, we observed a mixed response from the species found in both habitat types, with one species displaying an appropriate cue response while the other did not. Our second experiment suggested that the lack of responses stemmed from deactivation of the alarm cues, rather than the inability of the species to smell. Habitat preference (live coral versus dead coral associates) and phylogeny are good candidates for future work aimed at predicting which species are affected by coral degradation. Our results point towards a surprising level of variation in the ability of congeneric species to fare in altered habitats and hence underscores the difficulty of predicting community change in degraded habitats. © 2017 The Authors.

  5. Ocean acidification limits temperature-induced poleward expansion of coral habitats around Japan

    NASA Astrophysics Data System (ADS)

    Yara, Y.; Vogt, M.; Fujii, M.; Yamano, H.; Hauri, C.; Steinacher, M.; Gruber, N.; Yamanaka, Y.

    2012-12-01

    Using results from four coupled global carbon cycle-climate models combined with in situ observations, we estimate the effects of future global warming and ocean acidification on potential habitats for tropical/subtropical and temperate coral communities in the seas around Japan. The suitability of coral habitats is classified on the basis of the currently observed regional ranges for temperature and saturation states with regard to aragonite (Ωarag). We find that, under the "business as usual" SRES A2 scenario, coral habitats are projected to expand northward by several hundred kilometers by the end of this century. At the same time, coral habitats are projected to become sandwiched between regions where the frequency of coral bleaching will increase, and regions where Ωarag will become too low to support sufficiently high calcification rates. As a result, the habitat suitable for tropical/subtropical corals around Japan may be reduced by half by the 2020s to 2030s, and is projected to disappear by the 2030s to 2040s. The habitat suitable for the temperate coral communities is also projected to decrease, although at a less pronounced rate, due to the higher tolerance of temperate corals for low Ωarag. Our study has two important caveats: first, it does not consider the potential adaptation of the coral communities, which would permit them to colonize habitats that are outside their current range. Second, it also does not consider whether or not coral communities can migrate quickly enough to actually occupy newly emerging habitats. As such, our results serve as a baseline for the assessment of the future evolution of coral habitats, but the consideration of important biological and ecological factors and feedbacks will be required to make more accurate projections.

  6. Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica.

    PubMed

    Ainsworth, T D; Fine, M; Roff, G; Hoegh-Guldberg, O

    2008-01-01

    Coral bleaching occurs when the endosymbiosis between corals and their symbionts disintegrates during stress. Mass coral bleaching events have increased over the past 20 years and are directly correlated with periods of warm sea temperatures. However, some hypotheses have suggested that reef-building corals bleach due to infection by bacterial pathogens. The 'Bacterial Bleaching' hypothesis is based on laboratory studies of the Mediterranean invading coral, Oculina patagonica, and has further generated conclusions such as the coral probiotic hypothesis and coral hologenome theory of evolution. We aimed to investigate the natural microbial ecology of O. patagonica during the annual bleaching using fluorescence in situ hybridization to map bacterial populations within the coral tissue layers, and found that the coral bleaches on the temperate rocky reefs of the Israeli coastline without the presence of Vibrio shiloi or bacterial penetration of its tissue layers. Bacterial communities were found associated with the endolithic layer of bleached coral regions, and a community dominance shift from an apparent cyanobacterial-dominated endolithic layer to an algal-dominated layer was found in bleached coral samples. While bacterial communities certainly play important roles in coral stasis and health, we suggest environmental stressors, such as those documented with reef-building corals, are the primary triggers leading to bleaching of O. patagonica and suggest that bacterial involvement in patterns of bleaching is that of opportunistic colonization.

  7. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    PubMed Central

    Rix, Laura; de Goeij, Jasper M.; Mueller, Christina E.; Struck, Ulrich; Middelburg, Jack J.; van Duyl, Fleur C.; Al-Horani, Fuad A.; Wild, Christian; Naumann, Malik S.; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21–40% of the mucus carbon and 32–39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  8. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems.

    PubMed

    Graham, Nicholas A J; Wilson, Shaun K; Jennings, Simon; Polunin, Nicholas V C; Robinson, Jan; Bijoux, Jude P; Daw, Tim M

    2007-10-01

    Recent episodes of coral bleaching have led to wide-scale loss of reef corals and raised concerns over the effectiveness of existing conservation and management efforts. The 1998 bleaching event was most severe in the western Indian Ocean, where coral declined by up to 90% in some locations. Using fisheries-independent data, we assessed the long-term impacts of this event on fishery target species in the Seychelles, the overall size structure of the fish assemblage, and the effectiveness of two marine protected areas (MPAs) in protecting fish communities. The biomass of fished species above the size retained in fish traps changed little between 1994 and 2005, indicating no current effect on fishery yields. Biomass remained higher in MPAs, indicating they were effective in protecting fish stocks. Nevertheless, the size structure of the fish communities, as described with size-spectra analysis, changed in both fished areas and MPAs, with a decline in smaller fish (<30 cm) and an increase in larger fish (>45 cm). We believe this represents a time-lag response to a reduction in reef structural complexity brought about because fishes are being lost through natural mortality and fishing, and are not being replaced by juveniles. This effect is expected to be greater in terms of fisheries productivity and, because congruent patterns are observed for herbivores, suggests that MPAs do not offer coral reefs long-term resilience to bleaching events. Corallivores and planktivores declined strikingly in abundance, particularly in MPAs, and this decline was associated with a similar pattern of decline in their preferred corals. We suggest that climate-mediated disturbances, such as coral bleaching, be at the fore of conservation planning for coral reefs.

  9. Seascape dynamics of a coral disease outbreak in Hawaii

    NASA Astrophysics Data System (ADS)

    Sziklay, J.; Donahue, M. J.

    2016-02-01

    When trying to understand patterns of disease transmission, it is essential to estimate the rate at which individuals become infected. Over the past five years, there have been three coral disease outbreaks of tissue loss diseases in Kaneohe Bay, Oahu, Hawaii resulting in localized mass mortality of the host coral species Montipora capitata. These progressive tissue loss diseases cause coral tissue to disassociate with the coral skeleton, usually resulting in total colony mortality. During the most recent outbreak (winter 2015) we designed a natural experiment to estimate force of infection in the field, and determine whether benthic characteristics of the coral community (size of host, distance from host to infected individuals, coral community composition) increased or decreased the probability of survival. We determined that colony size and distance to infected neighbors were the most important determinants of infection likelihood and calculated a force of infection, which is key to understanding epidemiology in any disease and for modeling potential intervention strategies. We plan to use this information to better understand disease dynamics for tissue loss diseases in coral more broadly and to identify putative vectors of disease transmission.

  10. Fluctuations in coral health of four common inshore reef corals in response to seasonal and anthropogenic changes in water quality.

    PubMed

    Browne, Nicola K; Tay, Jason K L; Low, Jeffrey; Larson, Ole; Todd, Peter A

    2015-04-01

    Environmental drivers of coral condition (maximum quantum yield, symbiont density, chlorophyll a content and coral skeletal growth rates) were assessed in the equatorial inshore coastal waters of Singapore, where the amplitude of seasonal variation is low, but anthropogenic influence is relatively high. Water quality variables (sediments, nutrients, trace metals, temperature, light) explained between 52 and 83% of the variation in coral condition, with sediments and light availability as key drivers of foliose corals (Merulina ampliata, Pachyseris speciosa), and temperature exerting a greater influence on a branching coral (Pocillopora damicornis). Seasonal reductions in water quality led to high chlorophyll a concentrations and maximum quantum yields in corals, but low growth rates. These marginal coral communities are potentially vulnerable to climate change, hence, we propose water quality thresholds for coral growth with the aim of mitigating both local and global environmental impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. [Coral reefs in the face of ecological threats of XXI century].

    PubMed

    Tkachenko, K S

    2015-01-01

    To date, more than a quarter of tropical coral reefs of the World Ocean are believed to be totally de- stroyed. Given the present rates of reefs degradation, this value may be doubled in the nearest 30 years. For the essential part of coastal community, the destruction of coral ecosystems implies the loss of the major food sources, natural protection from storms, and significant (if not the only) revenue from exploi- tation of reefs especially in tourism industry. Finally, the disappearance of low-laying coral islands may threat the local communities by deprivation of living space. Global negative effects include temperature anomalies of sea surface waters and an increase of atmospheric CO2 concentration leading to ocean acidification. Local negative effects are related to in- crease of sedimentation and eutrophication, cyclone and storm passes, coral diseases, chemical pollution, mechanical destruction of corals by humans, anthropogenic depletion of functional groups of fish and invertebrates. An entire set of responses of coral ecosystems to stressful factors on the levels of both separate taxa and ecosystem is discussed. An analysis of published data suggests that with high probability the tropical coral communities will come to collapse stage by the middle of the current century at more than 50% of the area of their biogeographic range, especially in the regions of dense human population. At the most optimistic scenario, complex effect of reviewed negative factors will result in coral ecosystems main- taining in some areas. However, after global transformations, these ecosystems will be dominated by the most resistant taxa, mainly massive and encrusting forms of long-lived species with low growth rates and high competitive ability. Among such taxa, Poritidae demonstrates the highest adaptive capability. At the most pessimistic scenario, scleractinian communities will be replaced by alternative communities of macroalgae and non-calcareous anthozoans.

  12. Temperature Regimes Impact Coral Assemblages along Environmental Gradients on Lagoonal Reefs in Belize

    PubMed Central

    Townsend, Joseph E.; Courtney, Travis A.; Aichelman, Hannah E.; Davies, Sarah W.; Lima, Fernando P.; Castillo, Karl D.

    2016-01-01

    Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (lowTP), moderate (modTP), or high (highTP) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003–2015) as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals utilizing

  13. Temperature Regimes Impact Coral Assemblages along Environmental Gradients on Lagoonal Reefs in Belize.

    PubMed

    Baumann, Justin H; Townsend, Joseph E; Courtney, Travis A; Aichelman, Hannah E; Davies, Sarah W; Lima, Fernando P; Castillo, Karl D

    2016-01-01

    Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (lowTP), moderate (modTP), or high (highTP) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003-2015) as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals utilizing

  14. Some scleractinian corals (Scleractinia: Anthozoa) of Larak Island, Persian Gulf.

    PubMed

    Samiei, Jahangir Vajed; Dab, Koosha; Ghezellou, Parviz; Shirvani, Arash

    2013-01-01

    There is a shortage of knowledge about taxonomy and distribution of coral reef communities in the Persian Gulf. One of the main steps in the conservation and evaluation of such an environment is to locate and identify the communities and their inhabited fauna and flora. In the present study scleractinian corals were collected from depths of 3 to 9 meter around Larak Island, Persian Gulf. Underwater photographs of the sampled specimens were obtained in the natural habitat before sampling. 37 species have been identified via morphological characteristics of exoskeletons. The following study provided a pictorial reference to enhance the basic knowledge about coral reef communities in the Persian Gulf.

  15. Dynamics of coral-associated microbiomes during a thermal bleaching event.

    PubMed

    Pootakham, Wirulda; Mhuantong, Wuttichai; Putchim, Lalita; Yoocha, Thippawan; Sonthirod, Chutima; Kongkachana, Wasitthee; Sangsrakru, Duangjai; Naktang, Chaiwat; Jomchai, Nukoon; Thongtham, Nalinee; Tangphatsornruang, Sithichoke

    2018-03-23

    Coral-associated microorganisms play an important role in their host fitness and survival. A number of studies have demonstrated connections between thermal tolerance in corals and the type/relative abundance of Symbiodinium they harbor. More recently, the shifts in coral-associated bacterial profiles were also shown to be linked to the patterns of coral heat tolerance. Here, we investigated the dynamics of Porites lutea-associated bacterial and algal communities throughout a natural bleaching event, using full-length 16S rRNA and internal transcribed spacer sequences (ITS) obtained from PacBio circular consensus sequencing. We provided evidence of significant changes in the structure and diversity of coral-associated microbiomes during thermal stress. The balance of the symbiosis shifted from a predominant association between corals and Gammaproteobacteria to a predominance of Alphaproteobacteria and to a lesser extent Betaproteobacteria following the bleaching event. On the contrary, the composition and diversity of Symbiodinium communities remained unaltered throughout the bleaching event. It appears that the switching and/or shuffling of Symbiodinium types may not be the primary mechanism used by P. lutea to cope with increasing seawater temperature. The shifts in the structure and diversity of associated bacterial communities may contribute more to the survival of the coral holobiont under heat stress. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs.

    PubMed

    Ruppert, Jonathan L W; Vigliola, Laurent; Kulbicki, Michel; Labrosse, Pierre; Fortin, Marie-Josée; Meekan, Mark G

    2018-01-01

    Anthropogenic activities such as land-use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass sampled using underwater visual transects on coral reefs, we modelled the impact of human activities on food webs at Pacific-wide and regional (1,000s-10,000s km) scales. We found significantly lower biomass of sharks and carnivores, where there were higher densities of human populations (hereafter referred to as human activity); however, these patterns were not spatially consistent as there were significant differences in the trophic structures of fishes among biogeographic regions. Additionally, we found significant changes in the benthic structure of reef environments, notably a decline in coral cover where there was more human activity. Direct human impacts were the strongest in the upper part of the food web, where we found that in a majority of the Pacific, the biomass of reef sharks and carnivores were significantly and negatively associated with human activity. Finally, although human-induced stressors varied in strength and significance throughout the coral reef food web across the Pacific, socioeconomic variables explained more variation in reef fish trophic structure than habitat variables in a majority of the biogeographic regions. Notably, economic development (measured as GDP per capita) did not guarantee healthy reef ecosystems (high coral cover and greater fish biomass). Our results indicate that human activities are significantly shaping patterns of trophic structure of reef fishes in a spatially nonuniform manner across the Pacific Ocean, by altering processes that organize communities in both "top-down" (fishing of predators) and "bottom-up" (degradation of benthic communities) contexts. © 2017 John Wiley & Sons Ltd.

  17. Say what? Coral reef sounds as indicators of community assemblages and reef conditions

    NASA Astrophysics Data System (ADS)

    Mooney, T. A.; Kaplan, M. B.

    2016-02-01

    Coral reefs host some of the highest diversity of life on the planet. Unfortunately, reef health and biodiversity is declining or is threatened as a result of climate change and human influences. Tracking these changes is necessary for effective resource management, yet estimating marine biodiversity and tracking trends in ecosystem health is a challenging and expensive task, especially in many pristine reefs which are remote and difficult to access. Many fishes, mammals and invertebrates make sound. These sounds are reflective of a number of vital biological processes and are a cue for settling reef larvae. Biological sounds may be a means to quantify ecosystem health and biodiversity, however the relationship between coral reef soundscapes and the actual taxa present remains largely unknown. This study presents a comparative evaluation of the soundscape of multiple reefs, naturally differing in benthic cover and fish diversity, in the U.S. Virgin Islands National Park. Using multiple recorders per reef we characterized spacio-temporal variation in biological sound production within and among reefs. Analyses of sounds recorded over 4 summer months indicated diel trends in both fish and snapping shrimp acoustic frequency bands with crepuscular peaks at all reefs. There were small but statistically significant acoustic differences among sites on a given reef raising the possibility of potentially localized acoustic habitats. The strength of diel trends in lower, fish-frequency bands were correlated with coral cover and fish density, yet no such relationship was found with shrimp sounds suggesting that fish sounds may be of higher relevance to tracking certain coral reef conditions. These findings indicate that, in spite of considerable variability within reef soundscapes, diel trends in low-frequency sound production reflect reef community assemblages. Further, monitoring soundscapes may be an efficient means of establishing and monitoring reef conditions.

  18. Occurrence and behaviour of Paromola cuvieri (Crustacea, Decapoda) in the Santa Maria di Leuca cold-water coral community (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Capezzuto, Francesca; Maiorano, Porzia; Panza, Michele; Indennidate, Antonella; Sion, Letizia; D'Onghia, Gianfranco

    2012-01-01

    Occurrence and behaviour of Paromola cuvieri (Crustacea, Decapoda) were recorded by means of the MEMO lander equipped with two digital cameras and deployed in the cold-water coral community of the Santa Maria di Leuca (Mediterranean Sea). A total of 14 individuals were observed at depths between 547 and 648 m; 10 in the coral habitat on coral mounds and 4 off the coral habitat on muddy bottoms. Thirteen specimens recorded were females, one male and all were shown to scavenge the bait. All the specimens carried a sponge on their exoskeleton using the fifth pereiopods. The specimens were distinguishable by the size and shape of the carried sponge. The present observations demonstrate both passive covering behaviour and active behaviour of discouraging approach and attack from competitors or predators, respectively. This study represents the first in situ documentation of Paromola cuvieri behaviour interacting with other deep-sea species in the Mediterranean Sea.

  19. Workshop on Biological Integrity of Coral Reefs August 21-22 ...

    EPA Pesticide Factsheets

    This report summarizes an EPA-sponsored workshop on coral reef biological integrity held at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico on August 21-22, 2012. The goals of this workshop were to:• Identify key qualitative and quantitative ecological characteristics (reef attributes) that determine the condition of linear coral reefs inhabiting shallow waters (<12 m) in southwestern Puerto Rico.• Use those reef attributes to recommend categorical condition rankings for establishing a biological condition gradient.• Ascertain through expert consensus those reef attributes that characterize biological integrity (a natural, fully-functioning system of organisms and communities) for coral reefs. • Develop a conceptual, narrative model that describes how biological attributes of coral reefs change along a gradient of increasing anthropogenic stress.The workshop brought together scientists with expertise in coral reef taxonomic groups (e.g., stony corals, fishes, sponges, gorgonians, algae, seagrasses and macroinvertebrates), as well as community structure, organism condition, ecosystem function and ecosystem connectivity. The experts evaluated photos and videos from 12 stations collected during EPA Coral Reef surveys (2010 & 2011) from Puerto Rico on coral reefs exhibiting a wide range of conditions. The experts individually rated each station as to observed condition (“good”, “fair” or “poor”) and documented their rationale for

  20. Context-dependent effects of nutrient loading on the coral-algal mutualism.

    PubMed

    Shantz, Andrew A; Burkepile, Deron E

    2014-07-01

    Human-mediated increases in nutrient availability alter patterns of primary production, impact species diversity, and threaten ecosystem function. Nutrients can also alter community structure by disrupting the relationships between nutrient-sharing mutualists that form the foundation of communities. Given their oligotrophic nature and the dependence of reef-building corals on symbiotic relationships, coral reefs may be particularly vulnerable to excess nutrients. However, individual studies suggest complex, even contradictory, relationships among nutrient availability, coral physiology, and coral growth. Here, we used meta-analysis to establish general patterns of the impact of nitrogen (N) and phosphorus (P) on coral growth and photobiology. Overall, we found that over a wide range of concentrations, N reduced coral calcification 11%, on average, but enhanced metrics of coral photobiology, such as photosynthetic rate. In contrast, P enrichment increased average calcification rates by 9%, likely through direct impacts on the calcification process, but minimally impacted coral photobiology. There were few synergistic impacts of combined N and P on corals, as the nutrients impact corals via different pathways. Additionally, the response of corals to increasing nutrient availability was context dependent, varying with coral taxa and morphology, enrichment source, and nutrient identity. For example, naturally occurring enrichment from fish excretion increased coral growth, while human-mediated enrichment tended to decrease coral growth. Understanding the nuances of the relationship between nutrients and corals may allow for more targeted remediation strategies and suggest how other global change drivers such as overfishing and climate change will shape how nutrient availability impacts corals.

  1. Community structure and biogeography of shore fishes in the Gulf of Aqaba, Red Sea

    NASA Astrophysics Data System (ADS)

    Khalaf, Maroof A.; Kochzius, Marc

    2002-02-01

    Shore fish community structure off the Jordanian Red Sea coast was determined on fringing coral reefs and in a seagrass-dominated bay at 6 m and 12 m depths. A total of 198 fish species belonging to 121 genera and 43 families was recorded. Labridae and Pomacentridae dominated the ichthyofauna in terms of species richness and Pomacentridae were most abundant. Neither diversity nor species richness was correlated to depth. The abundance of fishes was higher at the deep reef slope, due to schooling planktivorous fishes. At 12 m depth abundance of fishes at the seagrass-dominated site was higher than on the coral reefs. Multivariate analysis demonstrated a strong influence on the fish assemblages by depth and benthic habitat. Fish species richness was positively correlated with hard substrate cover and habitat diversity. Abundance of corallivores was positively linked with live hard coral cover. The assemblages of fishes were different on the shallow reef slope, deep reef slope and seagrass meadows. An analysis of the fish fauna showed that the Gulf of Aqaba harbours a higher species richness than previously reported. The comparison with fish communities on other reefs around the Arabian Peninsula and Indian Ocean supported the recognition of an Arabian subprovince within the Indian Ocean. The affinity of the Arabian Gulf ichthyofauna to the Red Sea is not clear.

  2. Local extinction of a coral reef fish explained by inflexible prey choice

    NASA Astrophysics Data System (ADS)

    Brooker, R. M.; Munday, P. L.; Brandl, S. J.; Jones, G. P.

    2014-12-01

    While global extinctions of marine species are infrequent, local extinctions are becoming common. However, the role of habitat degradation and resource specialisation in explaining local extinction is unknown. On coral reefs, coral bleaching is an increasingly frequent cause of coral mortality that can result in dramatic changes to coral community composition. Coral-associated fishes are often specialised on a limited suite of coral species and are therefore sensitive to these changes. This study documents the local extinction of a corallivorous reef fish, Oxymonacanthus longirostris, following a mass bleaching event that altered the species composition of associated coral communities. Local extinction only occurred on reefs that also completely lost a key prey species, Acropora millepora, even though coral cover remained high. In an experimental test, fish continued to select bleached A. millepora over the healthy, but less-preferred prey species that resisted bleaching. These results suggest that behavioural inflexibility may limit the ability of specialists to cope with even subtle changes to resource availability.

  3. Effect of shading by the table coral Acropora Hyacinthus on understory corals. [Acropora; Pocillopora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimson, J.

    1985-02-01

    Field surveys at Enewetak Atoll, Marshall Islands, show that coral density and diversity is much lower beneath Acropora table corals than in adjacent unshaded areas. Additionally, the understory community is predominantly composed of massive and encrusting species, while branching Acropora and Pocillopora predominate in unshaded areas. Results of experiments in which coral fragments were transferred to the shade of table Acropora and to adjacent unshaded areas show that shading slows the growth and leads to higher mortality of branching species, while massive and encrusting species are unaffected. Light measurements made beneath table Acropora show that illumination and irradiance values fallmore » to levels at which most hermatypic corals do not occur. The fast-growing but fragile table Acropora are abundant in a wide variety of atoll habitats and grow rapidly to form a canopy approx. = 50 cm above the substrate. However, table Acropora also have high mortality rates, so that there is continuous production of unshaded areas. The growth and death of tables thus create local disturbances, and the resulting patchwork of recently shaded and unshaded areas may enhance coral diversity in areas of high coral cover.« less

  4. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials

    PubMed Central

    Mahmoud, Huda M.; Kalendar, Aisha A.

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications. PMID:26973601

  5. Long-term impacts of coral bleaching events on the world's warmest reefs.

    PubMed

    Burt, John; Al-Harthi, Suaad; Al-Cibahy, Ashraf

    2011-10-01

    The southern Arabian Gulf houses some of the most thermally tolerant corals on earth, but severe bleaching in the late 1990s caused widespread mortality. More than a decade later, corals still dominated benthos (mean: 40 ± 3% cover on 10 sites spanning > 350 km; range: 11.0-65.6%), but coral communities varied spatially. Sites to the west generally had low species richness and coral cover (mean: 3.2 species per transect, 31% cover), with Porites dominated communities (88% of coral) that are distinct from more diverse and higher cover eastern sites (mean: 10.3 species per transect, 62% cover). These patterns reflect both the more extreme bleaching to the west in the late 1990s as well as the higher faviid dominated recruitment to the east in subsequent years. There has been limited recovery of the formerly dominant Acropora, which now represents <1% of the benthos, likely as a result of recruitment failure. Results indicate that severe bleaching can have substantial long-term impacts on coral communities, even in areas with corals tolerant to environmental extremes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats

    NASA Astrophysics Data System (ADS)

    Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.

    2015-12-01

    The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate

  7. Metamorphosis of a Scleractinian Coral in Response to Microbial Biofilms

    PubMed Central

    Webster, Nicole S.; Smith, Luke D.; Heyward, Andrew J.; Watts, Joy E. M.; Webb, Richard I.; Blackall, Linda L.; Negri, Andrew P.

    2004-01-01

    Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no

  8. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings.

    PubMed

    Morgan, Kyle M; Perry, Chris T; Smithers, Scott G; Johnson, Jamie A; Daniell, James J

    2016-07-19

    Mean coral cover has reportedly declined by over 15% during the last 30 years across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore areas (<10 m depth), and show that coral cover on these reefs averages 38% (twice that reported on mid- and outer-shelf reefs). Of the surveyed seafloor area, 11% had distinct reef or coral community cover. Although the survey area represents a small subset of the nearshore zone (15.5 km(2)), this reef density is comparable to that measured across the wider GBR shelf (9%). We also show that cross-shelf coral cover declines with distance from the coast (R(2) = 0.596). Identified coral taxa (21 genera) exhibited clear depth-stratification, corresponding closely to light attenuation and seafloor topography, with reefal development restricted to submarine antecedent bedforms. Data from this first assessment of nearshore reef occurrence and ecology measured across meaningful spatial scales suggests that these coral communities may exhibit an unexpected capacity to tolerate documented declines in water quality. Indeed, these shallow-water nearshore reefs may share many characteristics with their deep-water (>30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances.

  9. The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems.

    PubMed

    Salcedo-Sanz, S; Del Ser, J; Landa-Torres, I; Gil-López, S; Portilla-Figueras, J A

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems.

  10. The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems

    PubMed Central

    Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860

  11. Ecological impacts and management implications of reef walking on a tropical reef flat community.

    PubMed

    Williamson, Jane E; Byrnes, Evan E; Clark, Jennalee A; Connolly, David M; Schiller, Sabine E; Thompson, Jessica A; Tosetto, Louise; Martinelli, Julieta C; Raoult, Vincent

    2017-01-30

    Continued growth of tourism has led to concerns about direct and indirect impacts on the ecology of coral reefs and ultimate sustainability of these environments under such pressure. This research assessed impacts of reef walking by tourists on a relatively pristine reef flat community associated with an 'ecoresort' on the Great Barrier Reef, Australia. Heavily walked areas had lower abundances of live hard coral but greater amounts of dead coral and sediment. Abundances of macroalgae were not affected between sites. Coral-associated butterflyfish were less abundant and less diverse in more trampled sites. A manipulative experiment showed handling holothurians on reef walks had lasting negative impacts. This is the first study to show potential impacts of such handling on holothurians. Ecological impacts of reef walking are weighed against sociocultural benefits of a first hand experience in nature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Assessing baseline levels of coral health in a newly established marine protected area in a global scuba diving hotspot.

    PubMed

    Hein, Margaux Y; Lamb, Joleah B; Scott, Chad; Willis, Bette L

    2015-02-01

    While coral reefs are increasingly threatened worldwide, they are also increasingly used for recreational activities. Given the environmental and socio-economic significance of coral reefs, understanding the links between human activities and coral health and evaluating the efficacy of marine protected areas (MPAs) as a management regime to prevent further deterioration are critically important. The aim of this study was to quantify indicators of coral health at sites inside and outside a newly rezoned MPA framework in the dive tourism hotspot of Koh Tao, Thailand. We found that patterns in the health and diversity of coral communities one year on did not reflect the protected status conferred by newly zoned MPAs, but instead reflected past history of recreational use around the island. Sites characterised as past high-use sites had lower mean percent cover of hard corals overall and of corals in the typically disease- and disturbance-susceptible family Acroporidae, but higher mean cover of species in the more weedy family Agariciidae. Past high use sites also had higher mean prevalence of infectious diseases and other indicators of compromised health. Sites within the newly established MPAs are currently subjected to higher levels of environmental and anthropogenic pressures, with sedimentation, algal overgrowth, feeding scars from Drupella snails, and breakage particularly prevalent compared to sites in non-MPA areas. Given the greater prevalence of these factors within protected sites, the capacity of the MPA framework to effectively prevent further deterioration of Koh Tao's reefs is unclear. Nevertheless, our study constitutes a strong baseline for future long-term evaluations of the potential of MPAs to maintain coral health and diversity on highly threatened reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effects of predation and nutrient enrichment on the success and microbiome of a foundational coral.

    PubMed

    Shaver, Elizabeth C; Shantz, Andrew A; McMinds, Ryan; Burkepile, Deron E; Vega Thurber, Rebecca L; Silliman, Brian R

    2017-03-01

    By inflicting damage to prey tissues, consumer species may increase stress in prey hosts and reduce overall fitness (i.e., primary effects, such as growth or reproduction) or cause secondary effects by affecting prey interactions with other species such as microbes. However, little is known about how abiotic conditions affect the outcomes of these biotic interactions. In coral reef communities, both nutrient enrichment and predation have been linked to reduced fitness and disease facilitation in corals, yet no study to date has tested their combined effects on corals or their associated microbial communities (i.e., microbiomes). Here, we assess the effects of grazing by a prevalent coral predator (the short coral snail, Coralliophila abbreviata) and nutrient enrichment on staghorn coral, Acropora cervicornis, and its microbiomes using a factorial experiment and high-throughput DNA sequencing. We found that predation, but not nutrients, significantly reduced coral growth and increased mortality, tissue loss, and turf algae colonization. Partial predation and nutrient enrichment both independently altered coral microbiomes such that one bacterial genus came to dominate the microbial community. Nutrient-enriched corals were associated with significant increases in Rickettsia-like organisms, which are currently one of several microbial groups being investigated as a disease agent in this coral species. However, we found no effects of nutrient enrichment on coral health, disease, or their predators. This research suggests that in the several months following coral transplantation (i.e., restoration) or disturbance (i.e., recovery), Caribbean acroporid corals appear to be highly susceptible to negative effects caused by predators, but not or not yet susceptible to nutrient enrichment despite changes to their microbial communities. © 2016 by the Ecological Society of America.

  14. Phylogenetically diverse denitrifying and ammonia-oxidizing bacteria in corals Alcyonium gracillimum and Tubastraea coccinea.

    PubMed

    Yang, Shan; Sun, Wei; Zhang, Fengli; Li, Zhiyong

    2013-10-01

    To date, the association of coral-bacteria and the ecological roles of bacterial symbionts in corals remain largely unknown. In particular, little is known about the community components of bacterial symbionts of corals involved in the process of denitrification and ammonia oxidation. In this study, the nitrite reductase (nirS and nirK) and ammonia monooxygenase subunit A (amoA) genes were used as functional markers. Diverse bacteria with the potential to be active as denitrifiers and ammonia-oxidizing bacteria (AOB) were found in two East China Sea corals: stony coral Alcyonium gracillimum and soft coral Tubastraea coccinea. The 16S rRNA gene library analysis demonstrated different communities of bacterial symbionts in these two corals of the same location. Nitrite reductase nirK gene was found only in T. coccinea, while both nirK and nirS genes were detected in A. gracillimum, which might be the result of the presence of different bacterial symbionts in these two corals. AOB rather than ammonia-oxidizing archaea were detected in both corals, suggesting that AOB might play an important role in the ammonia oxidation process of the corals. This study indicates that the coral bacterial symbionts with the potential for nitrite reduction and ammonia oxidation might have multiple ecological roles in the coral holobiont, which promotes our understanding of bacteria-mediated nitrogen cycling in corals. To our knowledge, this study is the first assessment of the community structure and phylogenetic diversity of denitrifying bacteria and AOB in corals based on nirK, nirS, and amoA gene library analysis.

  15. Incorporating benthic community changes into hydrochemical-based projections of coral reef calcium carbonate production under ocean acidification

    NASA Astrophysics Data System (ADS)

    Shaw, Emily C.; Hamylton, Sarah M.; Phinn, Stuart R.

    2016-06-01

    The existence of coral reefs is dependent on the production and maintenance of calcium carbonate (CaCO3) framework that is produced through calcification. The net production of CaCO3 will likely decline in the future, from both declining net calcification rates (decreasing calcification and increasing dissolution) and shifts in benthic community composition from calcifying organisms to non-calcifying organisms. Here, we present a framework for hydrochemical studies that allows both declining net calcification rates and changes in benthic community composition to be incorporated into projections of coral reef CaCO3 production. The framework involves upscaling net calcification rates for each benthic community type using mapped proportional cover of the benthic communities. This upscaling process was applied to the reef flats at One Tree and Lady Elliot reefs (Great Barrier Reef) and Shiraho Reef (Okinawa), and compared to existing data. Future CaCO3 budgets were projected for Lady Elliot Reef, predicting a decline of 53 % from the present value by end-century (800 ppm CO2) without any changes to benthic community composition. A further 5.7 % decline in net CaCO3 production is expected for each 10 % decline in calcifier cover, and net dissolution is predicted by end-century if calcifier cover drops below 18 % of the present extent. These results show the combined negative effect of both declining net calcification rates and changing benthic community composition on reefs and the importance of considering both processes for determining future reef CaCO3 production.

  16. Delayed coral recovery in a warming ocean.

    PubMed

    Osborne, Kate; Thompson, Angus A; Cheal, Alistair J; Emslie, Michael J; Johns, Kerryn A; Jonker, Michelle J; Logan, Murray; Miller, Ian R; Sweatman, Hugh P A

    2017-09-01

    Climate change threatens coral reefs across the world. Intense bleaching has caused dramatic coral mortality in many tropical regions in recent decades, but less obvious chronic effects of temperature and other stressors can be equally threatening to the long-term persistence of diverse coral-dominated reef systems. Coral reefs persist if coral recovery rates equal or exceed average rates of mortality. While mortality from acute destructive events is often obvious and easy to measure, estimating recovery rates and investigating the factors that influence them requires long-term commitment. Coastal development is increasing in many regions, and sea surface temperatures are also rising. The resulting chronic stresses have predictable, adverse effects on coral recovery, but the lack of consistent long-term data sets has prevented measurement of how much coral recovery rates are actually changing. Using long-term monitoring data from 47 reefs spread over 10 degrees of latitude on Australia's Great Barrier Reef (GBR), we used a modified Gompertz equation to estimate coral recovery rates following disturbance. We compared coral recovery rates in two periods: 7 years before and 7 years after an acute and widespread heat stress event on the GBR in 2002. From 2003 to 2009, there were few acute disturbances in the region, allowing us to attribute the observed shortfall in coral recovery rates to residual effects of acute heat stress plus other chronic stressors. Compared with the period before 2002, the recovery of fast-growing Acroporidae and of "Other" slower growing hard corals slowed after 2002, doubling the time taken for modest levels of recovery. If this persists, recovery times will be increasing at a time when acute disturbances are predicted to become more frequent and intense. Our study supports the need for management actions to protect reefs from locally generated stresses, as well as urgent global action to mitigate climate change. © 2017 John Wiley & Sons

  17. Unseen players shape benthic competition on coral reefs.

    PubMed

    Barott, Katie L; Rohwer, Forest L

    2012-12-01

    Recent work has shown that hydrophilic and hydrophobic organic matter (OM) from algae disrupts the function of the coral holobiont and promotes the invasion of opportunistic pathogens, leading to coral morbidity and mortality. Here we refer to these dynamics as the (3)DAM [dissolved organic matter (DOM), direct contact, disease, algae and microbes] model. There is considerable complexity in coral-algae interactions; turf algae and macroalgae promote heterotrophic microbial overgrowth of coral, macroalgae also directly harm the corals via hydrophobic OM, whereas crustose coralline algae generally encourage benign microbial communities. In addition, complex flow patterns transport OM and pathogens from algae to downstream corals, and direct algal contact enhances their delivery. These invisible players (microbes, viruses, and OM) are important drivers of coral reefs because they have non-linear responses to disturbances and are the first to change in response to perturbations, providing near real-time trajectories for a coral reef, a vital metric for conservation and restoration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Expansion of corals on temperate reefs: direct and indirect effects of marine heatwaves

    NASA Astrophysics Data System (ADS)

    Tuckett, C. A.; de Bettignies, T.; Fromont, J.; Wernberg, T.

    2017-09-01

    Globally, many temperate marine communities have experienced significant temperature increases over recent decades in the form of gradual warming and heatwaves. As a result, these communities are shifting towards increasingly subtropical and tropical species compositions. Expanding coral populations have been reported from several temperate reef ecosystems along warming coastlines; these changes have been attributed to direct effects of gradual warming over decades. In contrast, increases in coral populations following shorter-term extreme warming events have rarely been documented. In this study, we compared coral populations on 17 temperate reefs in Western Australia before (2005/06) and after (2013) multiple marine heatwaves (2010-2012) affected the entire coastline. We hypothesised that coral communities would expand and change as a consequence of increasing local populations and recruitment of warm-affinity species. We found differences in coral community structure over time, driven primarily by a fourfold increase of one local species, Plesiastrea versipora, rather than recruitment of warm-affinity species. Coral populations became strongly dominated by small size classes, indicative of recent increased recruitment or recruit survival. These changes were likely facilitated by competitive release of corals from dominant temperate seaweeds, which perished during the heatwaves, rather than driven by direct temperature effects. Overall, as corals are inherently warm-water taxa not commonly associated with seaweed-dominated temperate reefs, these findings are consistent with a net tropicalisation. Our study draws attention to processes other than gradual warming that also influence the trajectory of temperate reefs in a changing ocean.

  19. Tropical Archaea: Diversity associated with the surface microlayer of corals

    USGS Publications Warehouse

    Kellogg, C.A.

    2004-01-01

    Recent 16S rDNA studies have focused on detecting uncultivated bacteria associated with Caribbean reef corals in an effort to address the ecological roles of coral-associated microbes. Reports of Archaea associated with fishes and marine invertebrates raised the question of whether Archaea might also be part of the coral-associated microbial community. DNA analysis of mucus from 3 reef-building species of Caribbean corals, Montastraea annularis complex, Diploria strigosa and D. labyrinthiformis in the US Virgin Islands yielded 34 groups of archaeal 16S ribotypes (defined at the level of 97% similarity). The majority (75%) was most closely matched by BLAST searches to sequences derived from marine water column samples, whereas the remaining ribotypes were most similar to sequences isolated from anoxic environments (15%) and hydrothermal vents (9%). Unlike previous 16S studies of coral-associated Bacteria, the results do not suggest specific associations between particular archaeal sequences and individual coral species. Marine Archaea (Groups I, II and III) in addition to Thermoplasma-like, methanogen, and marine benthic crenarchaeote phylotypes, were detected in the mucus of tropical corals. The finding of sequences from coral-associated Archaea that are closely related to strict and facultative anaerobes, as well as to uncultivated Archaea from other types of anoxic environments, suggests that anaerobic micro-niches may exist in coral mucus layers. Archaea, with their unique biogeochemical capabilities, broaden the scope of possible interactions between corals and their associated microbial communities.

  20. A unified model explains commonness and rarity on coral reefs.

    PubMed

    Connolly, Sean R; Hughes, Terry P; Bellwood, David R

    2017-04-01

    Abundance patterns in ecological communities have important implications for biodiversity maintenance and ecosystem functioning. However, ecological theory has been largely unsuccessful at capturing multiple macroecological abundance patterns simultaneously. Here, we propose a parsimonious model that unifies widespread ecological relationships involving local aggregation, species-abundance distributions, and species associations, and we test this model against the metacommunity structure of reef-building corals and coral reef fishes across the western and central Pacific. For both corals and fishes, the unified model simultaneously captures extremely well local species-abundance distributions, interspecific variation in the strength of spatial aggregation, patterns of community similarity, species accumulation, and regional species richness, performing far better than alternative models also examined here and in previous work on coral reefs. Our approach contributes to the development of synthetic theory for large-scale patterns of community structure in nature, and to addressing ongoing challenges in biodiversity conservation at macroecological scales. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  1. Status and progress in coral reef disease research.

    PubMed

    Weil, Ernesto; Smith, Garriet; Gil-Agudelo, Diego L

    2006-03-23

    Recent findings on the ecology, etiology and pathology of coral pathogens, host resistance mechanisms, previously unknown disease/syndromes and the global nature of coral reef diseases have increased our concern about the health and future of coral reef communities. Much of what has been discovered in the past 4 years is presented in this special issue. Among the significant findings, the role that various Vibrio species play in coral disease and health, the composition of the 'normal microbiota' of corals, and the possible role of viruses in the disease process are important additions to our knowledge. New information concerning disease resistance and vectors, variation in pathogen composition for both fungal diseases of gorgonians and black band disease across oceans, environmental effects on disease susceptibility and resistance, and temporal and spatial disease variations among different coral species is presented in a number of papers. While the Caribbean may still be the 'disease hot spot' for coral reefs, it is now clear that diseases of coral reef organisms have become a global threat to coral reefs and a major cause of reef deterioration.

  2. Microbiome variation in corals with distinct depth distribution ranges across a shallow-mesophotic gradient (15-85 m)

    NASA Astrophysics Data System (ADS)

    Glasl, Bettina; Bongaerts, Pim; Elisabeth, Nathalie H.; Hoegh-Guldberg, Ove; Herndl, Gerhard J.; Frade, Pedro R.

    2017-06-01

    Mesophotic coral ecosystems (MCEs) are generally poorly studied, and our knowledge of lower MCEs (below 60 m depth) is largely limited to visual surveys. Here, we provide a first detailed assessment of the prokaryotic community associated with scleractinian corals over a depth gradient to the lower mesophotic realm (15-85 m). Specimens of three Caribbean coral species exhibiting differences in their depth distribution ranges ( Agaricia grahamae, Madracis pharensis and Stephanocoenia intersepta) were collected with a manned submersible on the island of Curaçao, and their prokaryotic communities assessed using 16S rRNA gene sequencing analysis. Corals with narrower depth distribution ranges (depth-specialists) were associated with a stable prokaryotic community, whereas corals with a broader niche range (depth-generalists) revealed a higher variability in their prokaryotic community. The observed depth effects match previously described patterns in Symbiodinium depth zonation. This highlights the contribution of structured microbial communities over depth to the coral's ability to colonize a broader depth range.

  3. A clear human footprint in the coral reefs of the Caribbean.

    PubMed

    Mora, Camilo

    2008-04-07

    The recent degradation of coral reefs worldwide is increasingly well documented, yet the underlying causes remain debated. In this study, we used a large-scale database on the status of coral reef communities in the Caribbean and analysed it in combination with a comprehensive set of socioeconomic and environmental databases to decouple confounding factors and identify the drivers of change in coral reef communities. Our results indicated that human activities related to agricultural land use, coastal development, overfishing and climate change had created independent and overwhelming responses in fishes, corals and macroalgae. While the effective implementation of marine protected areas (MPAs) increased the biomass of fish populations, coral reef builders and macroalgae followed patterns of change independent of MPAs. However, we also found significant ecological links among all these groups of organisms suggesting that the long-term stability of coral reefs as a whole requires a holistic and regional approach to the control of human-related stressors in addition to the improvement and establishment of new MPAs.

  4. Response diversity can increase ecological resilience to disturbance in coral reefs.

    PubMed

    Baskett, Marissa L; Fabina, Nicholas S; Gross, Kevin

    2014-08-01

    Community-level resilience depends on the interaction between multiple populations that vary in individual responses to disturbance. For example, in tropical reefs, some corals can survive higher stress (resistance) while others exhibit faster recovery (engineering resilience) following disturbances such as thermal stress. While each type will negatively affect the other through competition, each might also benefit the other by reducing the potential for an additional competitor such as macroalgae to invade after a disturbance. To determine how community composition affects ecological resilience, we modeled coral-macroalgae interactions given either a resistant coral, a resilient coral, or both together. Having both coral types (i.e., response diversity) can lead to observable enhanced ecological resilience if (1) the resilient coral is not a superior competitor and (2) disturbance levels are high enough such that the resilient coral would collapse when considered alone. This enhanced resilience occurs through competitor-enabled rescue where each coral increases the potential for the other to recover from disturbance through external recruitment, such that both corals benefit from the presence of each other in terms of total cover and resilience. Therefore, conservation management aimed at protecting resilience under global change requires consideration of both diversity and connectivity between sites experiencing differential disturbance.

  5. Differential Impacts of Land-Based Sources of Pollution on the Microbiota of Southeast Florida Coral Reefs

    PubMed Central

    Staley, Christopher; Kaiser, Thomas; Gidley, Maribeth L.; Enochs, Ian C.; Jones, Paul R.; Goodwin, Kelly D.; Sinigalliano, Christopher D.

    2017-01-01

    ABSTRACT Coral reefs are dynamic ecosystems known for decades to be endangered due, in large part, to anthropogenic impacts from land-based sources of pollution (LBSP). In this study, we utilized an Illumina-based next-generation sequencing approach to characterize prokaryotic and fungal communities from samples collected off the southeast coast of Florida. Water samples from coastal inlet discharges, oceanic outfalls of municipal wastewater treatment plants, treated wastewater effluent before discharge, open ocean samples, and coral tissue samples (mucus and polyps) were characterized to determine the relationships between microbial communities in these matrices and those in reef water and coral tissues. Significant differences in microbial communities were noted among all sample types but varied between sampling areas. Contamination from outfalls was found to be the greatest potential source of LBSP influencing native microbial community structure among all reef samples, although pollution from inlets was also noted. Notably, reef water and coral tissue communities were found to be more greatly impacted by LBSP at southern reefs, which also experienced the most degradation during the course of the study. The results of this study provide new insights into how microbial communities from LBSP can impact coral reefs in southeast Florida and suggest that wastewater outfalls may have a greater influence on the microbial diversity and structure of these reef communities than do contaminants carried in runoff, although the influences of runoff and coastal inlet discharge on coral reefs are still substantial. IMPORTANCE Coral reefs are known to be endangered due to sewage discharge and to runoff of nutrients, pesticides, and other substances associated with anthropogenic activity. Here, we used next-generation sequencing to characterize the microbial communities of potential contaminant sources in order to determine how environmental discharges of microbiota and their

  6. Differential Impacts of Land-Based Sources of Pollution on the Microbiota of Southeast Florida Coral Reefs.

    PubMed

    Staley, Christopher; Kaiser, Thomas; Gidley, Maribeth L; Enochs, Ian C; Jones, Paul R; Goodwin, Kelly D; Sinigalliano, Christopher D; Sadowsky, Michael J; Chun, Chan Lan

    2017-05-15

    Coral reefs are dynamic ecosystems known for decades to be endangered due, in large part, to anthropogenic impacts from land-based sources of pollution (LBSP). In this study, we utilized an Illumina-based next-generation sequencing approach to characterize prokaryotic and fungal communities from samples collected off the southeast coast of Florida. Water samples from coastal inlet discharges, oceanic outfalls of municipal wastewater treatment plants, treated wastewater effluent before discharge, open ocean samples, and coral tissue samples (mucus and polyps) were characterized to determine the relationships between microbial communities in these matrices and those in reef water and coral tissues. Significant differences in microbial communities were noted among all sample types but varied between sampling areas. Contamination from outfalls was found to be the greatest potential source of LBSP influencing native microbial community structure among all reef samples, although pollution from inlets was also noted. Notably, reef water and coral tissue communities were found to be more greatly impacted by LBSP at southern reefs, which also experienced the most degradation during the course of the study. The results of this study provide new insights into how microbial communities from LBSP can impact coral reefs in southeast Florida and suggest that wastewater outfalls may have a greater influence on the microbial diversity and structure of these reef communities than do contaminants carried in runoff, although the influences of runoff and coastal inlet discharge on coral reefs are still substantial. IMPORTANCE Coral reefs are known to be endangered due to sewage discharge and to runoff of nutrients, pesticides, and other substances associated with anthropogenic activity. Here, we used next-generation sequencing to characterize the microbial communities of potential contaminant sources in order to determine how environmental discharges of microbiota and their genetic

  7. Understanding the murky history of the Coral Triangle: Miocene corals and reef habitats in East Kalimantan (Indonesia)

    NASA Astrophysics Data System (ADS)

    Santodomingo, Nadiezhda; Renema, Willem; Johnson, Kenneth G.

    2016-09-01

    Studies on ancient coral communities living in marginal conditions, including low light, high turbidity, extreme temperatures, or high nutrients, are important to understand the current structure of reefs and how they could potentially respond to global changes. The main goal of this study was to document the rich and well-preserved fossil coral fauna preserved in Miocene exposures of the Kutai Basin in East Kalimantan, Indonesia. Our collections include almost forty thousand specimens collected from 47 outcrops. Seventy-nine genera and 234 species have been identified. Three different coral assemblages were found corresponding to small patch reefs that developed under the influence of high siliciclastic inputs from the Mahakam Delta. Coral assemblages vary in richness, structure, and composition. Platy coral assemblages were common until the Serravallian (Middle Miocene), while branching coral assemblages became dominant in the Tortonian (Late Miocene). By the late Tortonian massive coral assemblages dominated, similar to modern-style coral framework. Our results suggest that challenging habitats, such as the Miocene turbid habitats of East Kalimantan, might have played an important role during the early diversification of the Coral Triangle by hosting a pool of resilient species more likely to survive the environmental changes that have affected this region since the Cenozoic. Further research that integrates fossil and recent turbid habitats may provide a glimpse into the dynamics and future of coral reefs as "typical" clear-water reefs continue to decline in most regions.

  8. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings

    PubMed Central

    Morgan, Kyle M.; Perry, Chris T.; Smithers, Scott G.; Johnson, Jamie A.; Daniell, James J.

    2016-01-01

    Mean coral cover has reportedly declined by over 15% during the last 30 years across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore areas (<10 m depth), and show that coral cover on these reefs averages 38% (twice that reported on mid- and outer-shelf reefs). Of the surveyed seafloor area, 11% had distinct reef or coral community cover. Although the survey area represents a small subset of the nearshore zone (15.5 km2), this reef density is comparable to that measured across the wider GBR shelf (9%). We also show that cross-shelf coral cover declines with distance from the coast (R2 = 0.596). Identified coral taxa (21 genera) exhibited clear depth-stratification, corresponding closely to light attenuation and seafloor topography, with reefal development restricted to submarine antecedent bedforms. Data from this first assessment of nearshore reef occurrence and ecology measured across meaningful spatial scales suggests that these coral communities may exhibit an unexpected capacity to tolerate documented declines in water quality. Indeed, these shallow-water nearshore reefs may share many characteristics with their deep-water (>30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances. PMID:27432782

  9. Farming behaviour of reef fishes increases the prevalence of coral disease associated microbes and black band disease.

    PubMed

    Casey, Jordan M; Ainsworth, Tracy D; Choat, J Howard; Connolly, Sean R

    2014-08-07

    Microbial community structure on coral reefs is strongly influenced by coral-algae interactions; however, the extent to which this influence is mediated by fishes is unknown. By excluding fleshy macroalgae, cultivating palatable filamentous algae and engaging in frequent aggression to protect resources, territorial damselfish (f. Pomacentridae), such as Stegastes, mediate macro-benthic dynamics on coral reefs and may significantly influence microbial communities. To elucidate how Stegastes apicalis and Stegastes nigricans may alter benthic microbial assemblages and coral health, we determined the benthic community composition (epilithic algal matrix and prokaryotes) and coral disease prevalence inside and outside of damselfish territories in the Great Barrier Reef, Australia. 16S rDNA sequencing revealed distinct bacterial communities associated with turf algae and a two to three times greater relative abundance of phylotypes with high sequence similarity to potential coral pathogens inside Stegastes's territories. These potentially pathogenic phylotypes (totalling 30.04% of the community) were found to have high sequence similarity to those amplified from black band disease (BBD) and disease affected corals worldwide. Disease surveys further revealed a significantly higher occurrence of BBD inside S. nigricans's territories. These findings demonstrate the first link between fish behaviour, reservoirs of potential coral disease pathogens and the prevalence of coral disease. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Farming behaviour of reef fishes increases the prevalence of coral disease associated microbes and black band disease

    PubMed Central

    Casey, Jordan M.; Ainsworth, Tracy D.; Choat, J. Howard; Connolly, Sean R.

    2014-01-01

    Microbial community structure on coral reefs is strongly influenced by coral–algae interactions; however, the extent to which this influence is mediated by fishes is unknown. By excluding fleshy macroalgae, cultivating palatable filamentous algae and engaging in frequent aggression to protect resources, territorial damselfish (f. Pomacentridae), such as Stegastes, mediate macro-benthic dynamics on coral reefs and may significantly influence microbial communities. To elucidate how Stegastes apicalis and Stegastes nigricans may alter benthic microbial assemblages and coral health, we determined the benthic community composition (epilithic algal matrix and prokaryotes) and coral disease prevalence inside and outside of damselfish territories in the Great Barrier Reef, Australia. 16S rDNA sequencing revealed distinct bacterial communities associated with turf algae and a two to three times greater relative abundance of phylotypes with high sequence similarity to potential coral pathogens inside Stegastes's territories. These potentially pathogenic phylotypes (totalling 30.04% of the community) were found to have high sequence similarity to those amplified from black band disease (BBD) and disease affected corals worldwide. Disease surveys further revealed a significantly higher occurrence of BBD inside S. nigricans's territories. These findings demonstrate the first link between fish behaviour, reservoirs of potential coral disease pathogens and the prevalence of coral disease. PMID:24966320

  11. The Microbial Signature Provides Insight into the Mechanistic Basis of Coral Success across Reef Habitats.

    PubMed

    Hernandez-Agreda, Alejandra; Leggat, William; Bongaerts, Pim; Ainsworth, Tracy D

    2016-07-26

    For ecosystems vulnerable to environmental change, understanding the spatiotemporal stability of functionally crucial symbioses is fundamental to determining the mechanisms by which these ecosystems may persist. The coral Pachyseris speciosa is a successful environmental generalist that succeeds in diverse reef habitats. The generalist nature of this coral suggests it may have the capacity to form functionally significant microbial partnerships to facilitate access to a range of nutritional sources within different habitats. Here, we propose that coral is a metaorganism hosting three functionally distinct microbial interactions: a ubiquitous core microbiome of very few symbiotic host-selected bacteria, a microbiome of spatially and/or regionally explicit core microbes filling functional niches (<100 phylotypes), and a highly variable bacterial community that is responsive to biotic and abiotic processes across spatial and temporal scales (>100,000 phylotypes). We find that this coral hosts upwards of 170,000 distinct phylotypes and provide evidence for the persistence of a select group of bacteria in corals across environmental habitats of the Great Barrier Reef and Coral Sea. We further show that a higher number of bacteria are consistently associated with corals on mesophotic reefs than on shallow reefs. An increase in microbial diversity with depth suggests reliance by this coral on bacteria for nutrient acquisition on reefs exposed to nutrient upwelling. Understanding the complex microbial communities of host organisms across broad biotic and abiotic environments as functionally distinct microbiomes can provide insight into those interactions that are ubiquitous niche symbioses and those that provide competitive advantage within the hosts' environment. Corals have been proposed as the most diverse microbial biosphere. The high variability of microbial communities has hampered the identification of bacteria playing key functional roles that contribute to coral

  12. USGS research on Atlantic coral reef ecosystems

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Yates, Kimberly K.; Zawada, David G.; Richey, Julie N.; Kellogg, Christina A.; Toth, Lauren T.

    2015-10-23

    Coral reefs are massive, biomineralized structures that protect coastal communities by acting as barriers to hazards such as hurricanes and tsunamis. They provide sand for beaches through the natural process of erosion, support tourism and recreational industries, and provide essential habitat for fisheries. The continuing global degradation of coral reef ecosystems is well documented. There is a need for focused, coordinated science to understand the complex physical and biological processes and interactions that are impacting the condition of coral reefs and their ability to respond to a changing environment.

  13. ROLE OF CORAL DISEASES AND ANTHROPOGENIC STRESSORS ON TROPIC MARINE CORAL REEFS

    EPA Science Inventory

    Stony (scleractinian) and soft (octocorals) corals throughout the Western Atlantic have been affected by several fatal diseases in the last two decades. In many locations the communities have not recovered from these diseases and the ecosystem has permanently changed. Several hyp...

  14. Modeling the Impact of White-Plague Coral Disease in Climate Change Scenarios

    PubMed Central

    Loya, Yossi; Stone, Lewi

    2015-01-01

    Coral reefs are in global decline, with coral diseases increasing both in prevalence and in space, a situation that is expected only to worsen as future thermal stressors increase. Through intense surveillance, we have collected a unique and highly resolved dataset from the coral reef of Eilat (Israel, Red Sea), that documents the spatiotemporal dynamics of a White Plague Disease (WPD) outbreak over the course of a full season. Based on modern statistical methodologies, we develop a novel spatial epidemiological model that uses a maximum-likelihood procedure to fit the data and assess the transmission pattern of WPD. We link the model to sea surface temperature (SST) and test the possible effect of increasing temperatures on disease dynamics. Our results reveal that the likelihood of a susceptible coral to become infected is governed both by SST and by its spatial location relative to nearby infected corals. The model shows that the magnitude of WPD epidemics strongly depends on demographic circumstances; under one extreme, when recruitment is free-space regulated and coral density remains relatively constant, even an increase of only 0.5°C in SST can cause epidemics to double in magnitude. In reality, however, the spatial nature of transmission can effectively protect the community, restricting the magnitude of annual epidemics. This is because the probability of susceptible corals to become infected is negatively associated with coral density. Based on our findings, we expect that infectious diseases having a significant spatial component, such as Red-Sea WPD, will never lead to a complete destruction of the coral community under increased thermal stress. However, this also implies that signs of recovery of local coral communities may be misleading; indicative more of spatial dynamics than true rehabilitation of these communities. In contrast to earlier generic models, our approach captures dynamics of WPD both in space and time, accounting for the highly

  15. Bacterial communities associated with healthy and Acropora white syndrome-affected corals from American Samoa

    USGS Publications Warehouse

    Wilson, Bryan; Aeby, Greta S.; Work, Thierry M.; Bourne, David G.

    2012-01-01

    Acropora white syndrome (AWS) is characterized by rapid tissue loss revealing the white underlying skeleton and affects corals worldwide; however, reports of causal agents are conflicting. Samples were collected from healthy and diseased corals and seawater around American Samoa and bacteria associated with AWS characterized using both culture-dependent and culture-independent methods, from coral mucus and tissue slurries, respectively. Bacterial 16S rRNA gene clone libraries derived from coral tissue were dominated by the Gammaproteobacteria, and Jaccard's distances calculated between the clone libraries showed that those from diseased corals were more similar to each other than to those from healthy corals. 16S rRNA genes from 78 culturable coral mucus isolates also revealed a distinct partitioning of bacterial genera into healthy and diseased corals. Isolates identified as Vibrionaceae were further characterized by multilocus sequence typing, revealing that whilst several Vibrio spp. were found to be associated with AWS lesions, a recently described species, Vibrio owensii, was prevalent amongst cultured Vibrio isolates. Unaffected tissues from corals with AWS had a different microbiota than normal Acropora as found by others. Determining whether a microbial shift occurs prior to disease outbreaks will be a useful avenue of pursuit and could be helpful in detecting prodromal signs of coral disease prior to manifestation of lesions.

  16. Turf algae-mediated coral damage in coastal reefs of Belize, Central America.

    PubMed

    Wild, Christian; Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12-70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26-29%) when compared to the other sites (4-19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  17. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change

    USGS Publications Warehouse

    Yates, Kimberly K.; Rogers, Caroline S.; Herlan, James J.; Brooks, Gregg R.; Smiley, Nathan A.; Larson, Rebekka A.

    2014-01-01

    Over 30 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies were living shaded by mangroves, and no shaded colonies were bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies were bleached. A combination of substrate and habitat heterogeneity, proximity of different habitat types, hydrographic conditions, and biological influences on seawater chemistry generate chemical conditions that buffer against ocean acidification. This previously undocumented refuge for corals provides evidence for adaptation of coastal organisms and ecosystem transition due to recent climate change. Identifying and protecting other natural, non-reef coral refuges is critical for sustaining corals and other reef species into the future.

  18. Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef

    NASA Astrophysics Data System (ADS)

    Adjeroud, M.; Michonneau, F.; Edmunds, P. J.; Chancerelle, Y.; de Loma, T. Lison; Penin, L.; Thibaut, L.; Vidal-Dupiol, J.; Salvat, B.; Galzin, R.

    2009-09-01

    Coral reefs are increasingly threatened by various disturbances, and a critical challenge is to determine their ability for resistance and resilience. Coral assemblages in Moorea, French Polynesia, have been impacted by multiple disturbances (one cyclone and four bleaching events between 1991 and 2006). The 1991 disturbances caused large declines in coral cover (~51% to ~22%), and subsequent colonization by turf algae (~16% to ~49%), but this phase-shift from coral to algal dominance has not persisted. Instead, the composition of the coral community changed following the disturbances, notably favoring an increased cover of Porites, reduced cover of Montipora and Pocillopora, and a full return of Acropora; in this form, the reef returned to pre-disturbance coral cover within a decade. Thus, this coral assemblage is characterized by resilience in terms of coral cover, but plasticity in terms of community composition.

  19. Response of Holobiont Compartments to Salinity Changes Indicates Osmoregulation of Scleractinian Corals

    NASA Astrophysics Data System (ADS)

    Roethig, T.; Ochsenkuehn, M. A.; van der Merwe, R.; Roik, A.; Voolstra, C. R.

    2016-02-01

    Environmental change is expected to render the oceans more saline, but scleractinian corals are assumed to be stenohaline osmoconformers. Yet, some corals are able to tolerate salinities up to 50 PSU, but we know little about the mechanisms involved. Previous studies have exclusively addressed the coral host and their algal symbionts (Symbiodinium) in hospite. To disentangle the role of all compartments of the coral holobiont we assessed the response of the coral host, its symbiont algae in the genus Symbiodinium (in hospite and in culture), and the associated bacterial community to strongly increased salinities. In a short-term incubation (4h) we could measure decreases in the calcification rate of the coral host and the photosynthetic performance of its algal symbiont in hospite. In a long-term (29 days) setup we found no differences in the photosynthetic efficiency but a major restructuring of the bacterial communities. In four Symbiodinium cultures we identified changes in photosynthetic yields and osmolytes composition upon short-term salinity exposure (≤24h). Our results show a short-term reaction of coral host and Symbiodinium to strongly increased salinities. However, lack of an apparent physiological long-term response indicates an acclimation process that is accompanied by a microbiome community shift towards a microbiome that potentially supports increased osmolyte production. Furthermore, changes in osmolytes composition in the Symbiodinium cultures display conserved osmoregulatory processes that may translate to osmoregulation for the coral holobiont.

  20. A cross-ocean comparison of responses to settlement cues in reef-building corals

    PubMed Central

    Meyer, Eli; Guermond, Sarah M.; Matz, Mikhail V.

    2014-01-01

    Caribbean coral reefs have deteriorated substantially over the past 30 years, which is broadly attributable to the effects of global climate change. In the same time, Indo-Pacific reefs maintain higher coral cover and typically recover rapidly after disturbances. This difference in reef resilience is largely due to much higher coral recruitment rates in the Pacific. We hypothesized that the lack of Caribbean recruitment might be explained by diminishing quality of settlement cues and/or impaired sensitivity of Caribbean coral larvae to those cues, relative to the Pacific. To evaluate this hypothesis, we assembled a collection of bulk samples of reef encrusting communities, mostly consisting of crustose coralline algae (CCA), from various reefs around the world and tested them as settlement cues for several coral species originating from different ocean provinces. Cue samples were meta-barcoded to evaluate their taxonomic diversity. We observed no systematic differences either in cue potency or in strength of larval responses depending on the ocean province, and no preference of coral larvae towards cues from the same ocean. Instead, we detected significant differences in cue preferences among coral species, even for corals originating from the same reef. We conclude that the region-wide disruption of the settlement process is unlikely to be the major cause of Caribbean reef loss. However, due to their high sensitivity to the effects of climate change, shifts in the composition of CCA-associated communities, combined with pronounced differences in cue preferences among coral species, could substantially influence future coral community structure. PMID:24765568

  1. Coral physiology and microbiome dynamics under combined warming and ocean acidification

    PubMed Central

    Dalcin Martins, Paula; Wilkins, Michael J.; Johnston, Michael D.; Warner, Mark E.; Cai, Wei-Jun; Melman, Todd F.; Hoadley, Kenneth D.; Pettay, D. Tye; Levas, Stephen; Schoepf, Verena

    2018-01-01

    Rising seawater temperature and ocean acidification threaten the survival of coral reefs. The relationship between coral physiology and its microbiome may reveal why some corals are more resilient to these global change conditions. Here, we conducted the first experiment to simultaneously investigate changes in the coral microbiome and coral physiology in response to the dual stress of elevated seawater temperature and ocean acidification expected by the end of this century. Two species of corals, Acropora millepora containing the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the thermally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5°C and pCO2 of 364 μatm) and treatment (29.0°C and pCO2 of 750 μatm) conditions for 24 days, after which we measured the microbial community composition. These microbial findings were interpreted within the context of previously published physiological measurements from the exact same corals in this study (calcification, organic carbon flux, ratio of photosynthesis to respiration, photosystem II maximal efficiency, total lipids, soluble animal protein, soluble animal carbohydrates, soluble algal protein, soluble algal carbohydrate, biomass, endosymbiotic algal density, and chlorophyll a). Overall, dually stressed A. millepora had reduced microbial diversity, experienced large changes in microbial community composition, and experienced dramatic physiological declines in calcification, photosystem II maximal efficiency, and algal carbohydrates. In contrast, the dually stressed coral T. reniformis experienced a stable and more diverse microbiome community with minimal physiological decline, coupled with very high total energy reserves and particulate organic carbon release rates. Thus, the microbiome changed and microbial diversity decreased in the physiologically sensitive coral with the thermally sensitive endosymbiotic algae but not in the physiologically tolerant coral with

  2. Coral physiology and microbiome dynamics under combined warming and ocean acidification.

    PubMed

    Grottoli, Andréa G; Dalcin Martins, Paula; Wilkins, Michael J; Johnston, Michael D; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Levas, Stephen; Schoepf, Verena

    2018-01-01

    Rising seawater temperature and ocean acidification threaten the survival of coral reefs. The relationship between coral physiology and its microbiome may reveal why some corals are more resilient to these global change conditions. Here, we conducted the first experiment to simultaneously investigate changes in the coral microbiome and coral physiology in response to the dual stress of elevated seawater temperature and ocean acidification expected by the end of this century. Two species of corals, Acropora millepora containing the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the thermally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5°C and pCO2 of 364 μatm) and treatment (29.0°C and pCO2 of 750 μatm) conditions for 24 days, after which we measured the microbial community composition. These microbial findings were interpreted within the context of previously published physiological measurements from the exact same corals in this study (calcification, organic carbon flux, ratio of photosynthesis to respiration, photosystem II maximal efficiency, total lipids, soluble animal protein, soluble animal carbohydrates, soluble algal protein, soluble algal carbohydrate, biomass, endosymbiotic algal density, and chlorophyll a). Overall, dually stressed A. millepora had reduced microbial diversity, experienced large changes in microbial community composition, and experienced dramatic physiological declines in calcification, photosystem II maximal efficiency, and algal carbohydrates. In contrast, the dually stressed coral T. reniformis experienced a stable and more diverse microbiome community with minimal physiological decline, coupled with very high total energy reserves and particulate organic carbon release rates. Thus, the microbiome changed and microbial diversity decreased in the physiologically sensitive coral with the thermally sensitive endosymbiotic algae but not in the physiologically tolerant coral with

  3. Exploration and Discovery of Hydrocarbon Seeps, Coral Ecosystems, and Shipwrecks in the Deep Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Hsing, P.; Carney, R. S.; Herrera, S.; Heyl, T.; Munro, C.; Bors, E.; Kiene, W.; Vecchione, M.; Evans, A.; Irion, J.; Warren, D.; Malik, M.; Lobecker, M.; Potter, J.

    2012-12-01

    Between March 20 and April 6, 2012, the NOAA Ship Okeanos Explorer served as a platform for ship-board and shore-side scientists to explore the deep Gulf of Mexico, targeting the northern West Florida Escarpment, DeSoto Canyon, the vicinity (within 11km) of the Deepwater Horizon (DWH) well, and deepwater shipwrecks. We systematically explored and discovered natural hydrocarbon seeps, diverse coral ecosystems, wooden and iron-hulled shipwrecks more than 100 years old colonized by coral communities, and sperm whale habitat between 600 and 1200m. A total of sixteen dives took advantage of new and recent maps to explore and groundtruth both hard and soft-bottom habitats, from cretaceous carbonates to mounds of coral rubble. The final ROV dive successfully groundtruthed expected methane-release areas imaged by the ship's mapping systems up to 1150m above the seafloor. The source of the mapping imagery was a stream of bubbles issuing from beneath thriving seep mussel communities. We visited five sites in the Mississippi Canyon (MC) area (lease blocks MC294, MC297, MC388, MC255, and MC036; the DWH incident took place in MC252). These sites were 11.3 km SW, 6.8 km SW, 7.6 km SW, 25.7 km E, and 27.4 km to the NE of the DWH, respectively. We used high-definition imaging systems on the Little Hercules ROV and Seirios camera platform to document more than 130 coral colonies and over 400 associated individual animals to continue to assessing the impact of the Deepwater Horizon oil spill. All of these efforts were conducted to provide fundamental knowledge of unknown and poorly known regions, ecosystems, and items of historical significance in the deep Gulf of Mexico.

  4. The northernmost coral frontier of the Maldives: The coral reefs of Ihavandippolu Atoll under long-term environmental change.

    PubMed

    Tkachenko, Konstantin S

    2012-12-01

    Ihavandippolu, the northernmost atoll of the Maldives, experienced severe coral bleaching and mortality in 1998 followed by several bleaching episodes in the last decade. Coral cover in the 11 study sites surveyed in July-December of 2011 in the 3-5 m depth range varied from 1.7 to 51%. Reefs of the islands located in the center of Ihavandippolu lagoon have exhibited a very low coral recovery since 1998 and remain mostly degraded 12 years after the impact. At the same time, some reefs, especially in the inner part of the eastern ring of the atoll, demonstrate a high coral cover (>40%) with a dominance of branching Acropora that is known to be one of the coral genera that is most susceptible to thermal stress. The last severe bleaching event in 2010 resulted in high coral mortality in some sites of the atoll. Differences in coral mortality rates and proportion between "susceptible" and "resistant" taxa in study sites are apparently related to long-term adaptation and local hydrological features that can mitigate thermal impacts. Abundant herbivorous fish observed in the atoll prevent coral overgrowth by macroalgae even on degraded reefs. Despite the frequent influence of temperature anomalies and having less geomorphologic refuges for coral survivals than other larger Maldivian atolls, a major part of observed coral communities in Ihavandippolu Atoll exhibits high resilience and potential for further acclimatization to a changing environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The future of coral reefs

    NASA Astrophysics Data System (ADS)

    Knowlton, Nancy

    2001-05-01

    Coral reefs, with their millions of species, have changed profoundly because of the effects of people, and will continue to do so for the foreseeable future. Reefs are subject to many of the same processes that affect other human-dominated ecosystems, but some special features merit emphasis: (i) Many dominant reef builders spawn eggs and sperm into the water column, where fertilization occurs. They are thus particularly vulnerable to Allee effects, including potential extinction associated with chronic reproductive failure. (ii) The corals likely to be most resistant to the effects of habitat degradation are small, short-lived "weedy" corals that have limited dispersal capabilities at the larval stage. Habitat degradation, together with habitat fragmentation, will therefore lead to the establishment of genetically isolated clusters of inbreeding corals. (iii) Increases in average sea temperatures by as little as 1°C, a likely result of global climate change, can cause coral "bleaching" (the breakdown of coral-algal symbiosis), changes in symbiont communities, and coral death. (iv) The activities of people near reefs increase both fishing pressure and nutrient inputs. In general, these processes favor more rapidly growing competitors, often fleshy seaweeds, and may also result in explosions of predator populations. (v) Combinations of stress appear to be associated with threshold responses and ecological surprises, including devastating pathogen outbreaks. (vi) The fossil record suggests that corals as a group are more likely to suffer extinctions than some of the groups that associate with them, whose habitat requirements may be less stringent.

  6. Relationships between structural complexity, coral traits, and reef fish assemblages

    NASA Astrophysics Data System (ADS)

    Darling, Emily S.; Graham, Nicholas A. J.; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.; Pratchett, Morgan S.; Wilson, Shaun K.

    2017-06-01

    With the ongoing loss of coral cover and the associated flattening of reef architecture, understanding the links between coral habitat and reef fishes is of critical importance. Here, we investigate whether considering coral traits and functional diversity provides new insights into the relationship between structural complexity and reef fish communities, and whether coral traits and community composition can predict structural complexity. Across 157 sites in Seychelles, Maldives, the Chagos Archipelago, and Australia's Great Barrier Reef, we find that structural complexity and reef zone are the strongest and most consistent predictors of reef fish abundance, biomass, species richness, and trophic structure. However, coral traits, diversity, and life histories provided additional predictive power for models of reef fish assemblages, and were key drivers of structural complexity. Our findings highlight that reef complexity relies on living corals—with different traits and life histories—continuing to build carbonate skeletons, and that these nuanced relationships between coral assemblages and habitat complexity can affect the structure of reef fish assemblages. Seascape-level estimates of structural complexity are rapid and cost effective with important implications for the structure and function of fish assemblages, and should be incorporated into monitoring programs.

  7. A clear human footprint in the coral reefs of the Caribbean

    PubMed Central

    Mora, Camilo

    2008-01-01

    The recent degradation of coral reefs worldwide is increasingly well documented, yet the underlying causes remain debated. In this study, we used a large-scale database on the status of coral reef communities in the Caribbean and analysed it in combination with a comprehensive set of socioeconomic and environmental databases to decouple confounding factors and identify the drivers of change in coral reef communities. Our results indicated that human activities related to agricultural land use, coastal development, overfishing and climate change had created independent and overwhelming responses in fishes, corals and macroalgae. While the effective implementation of marine protected areas (MPAs) increased the biomass of fish populations, coral reef builders and macroalgae followed patterns of change independent of MPAs. However, we also found significant ecological links among all these groups of organisms suggesting that the long-term stability of coral reefs as a whole requires a holistic and regional approach to the control of human-related stressors in addition to the improvement and establishment of new MPAs. PMID:18182370

  8. 'Reaching the hard to reach' - lessons learned from the VCS (voluntary and community Sector). A qualitative study

    PubMed Central

    2010-01-01

    Background The notion 'hard to reach' is a contested and ambiguous term that is commonly used within the spheres of social care and health, especially in discourse around health and social inequalities. There is a need to address health inequalities and to engage in services the marginalized and socially excluded sectors of society. Methods This paper describes a pilot study involving interviews with representatives from eight Voluntary and Community Sector (VCS) organisations. The purpose of the study was to explore the notion of 'hard to reach' and perceptions of the barriers and facilitators to accessing services for 'hard to reach' groups from a voluntary and community sector perspective. Results The 'hard to reach' may include drug users, people living with HIV, people from sexual minority communities, asylum seekers, refugees, people from black and ethnic minority communities, and homeless people although defining the notion of the 'hard to reach' is not straight forward. It may be that certain groups resist engaging in treatment services and are deemed hard to reach by a particular service or from a societal stance. There are a number of potential barriers for people who may try and access services, including people having bad experiences in the past; location and opening times of services and how services are funded and managed. A number of areas of commonality are found in terms of how access to services for 'hard to reach' individuals and groups could be improved including: respectful treatment of service users, establishing trust with service users, offering service flexibility, partnership working with other organisations and harnessing service user involvement. Conclusions If health services are to engage with groups that are deemed 'hard to reach' and marginalised from mainstream health services, the experiences and practices for engagement from within the VCS may serve as useful lessons for service improvement for statutory health services. PMID

  9. Shared Skeletal Support in a Coral-Hydroid Symbiosis

    PubMed Central

    Pantos, Olga; Hoegh-Guldberg, Ove

    2011-01-01

    Hydroids form symbiotic relationships with a range of invertebrate hosts. Where they live with colonial invertebrates such as corals or bryozoans the hydroids may benefit from the physical support and protection of their host's hard exoskeleton, but how they interact with them is unknown. Electron microscopy was used to investigate the physical interactions between the colonial hydroid Zanclea margaritae and its reef-building coral host Acropora muricata. The hydroid tissues extend below the coral tissue surface sitting in direct contact with the host's skeleton. Although this arrangement provides the hydroid with protective support, it also presents problems of potential interference with the coral's growth processes and exposes the hydroid to overgrowth and smothering. Desmocytes located within the epidermal layer of the hydroid's perisarc-free hydrorhizae fasten it to the coral skeleton. The large apical surface area of the desmocyte and high bifurcation of the distal end within the mesoglea, as well as the clustering of desmocytes suggests that a very strong attachment between the hydroid and the coral skeleton. This is the first study to provide a detailed description of how symbiotic hydroids attach to their host's skeleton, utilising it for physical support. Results suggest that the loss of perisarc, a characteristic commonly associated with symbiosis, allows the hydroid to utilise desmocytes for attachment. The use of these anchoring structures provides a dynamic method of attachment, facilitating detachment from the coral skeleton during extension, thereby avoiding overgrowth and smothering enabling the hydroid to remain within the host colony for prolonged periods of time. PMID:21695083

  10. The versatile nature of coral-associated viruses.

    PubMed

    Bettarel, Yvan; Bouvier, Thierry; Nguyen, Hanh Kim; Thu, Pham The

    2015-10-01

    A recent hypothesis considers that many coral pathologies are the result of a sudden structural alteration of the epibiotic bacterial communities in response to environmental disturbances. However, the ecological mechanisms that lead to shifts in their composition are still unclear. In the ocean, viruses represent a major bactericidal agent but little is known on their occurrence within the coral holobiont. Recent reports have revealed that viruses are abundant and diversified within the coral mucus and therefore could be decisive for coral health. However, their mode of action is still unknown, and there is now an urgent need to shed light on the nature of the relationships they might have with the other prokaryotic and eukaryotic members of the holobiont. In this opinion letter, we are putting forward the hypothesis that coral-associated viruses (mostly bacterial and algal viruses), depending on the environmental conditions might either reinforce coral stability or conversely fasten their decline. We propose that these processes are presumably based on an environmentally driven shift in infection strategies allowing viruses to regulate, circumstantially, both coral symbionts (bacteria or Symbiodinium) and surrounding pathogens. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Recruitment, mortality, and resilience potential of scleractinian corals at Eilat, Red Sea

    NASA Astrophysics Data System (ADS)

    Shlesinger, Tom; Loya, Yossi

    2016-12-01

    Events of mass coral bleaching and mortality have increased in recent decades worldwide, making coral recruitment more important than ever in sustaining coral-reef ecosystems and ensuring their resilience. During the last four decades, the coral reefs of Eilat have undergone severe deterioration due to both anthropogenic and natural causes. Recruitment failure has been frequently suggested as one of the main mechanisms underlying this deterioration. Here we assess the demographic replenishment and resilience potential of the local reefs, i.e., the potential for new sexually derived corals to recruit and exceed the community's mortality rate. We present a detailed analysis of coral community demography, obtained by means of high-resolution photographic monitoring of permanently marked plots. Coral spats as small as 1 mm were documented and the detailed dynamics of coral recruitment and mortality were recorded, in addition to other common ecological measurements. The cumulative quantity of recruited individuals was twofold to fivefold higher than total mortality. The most significant predictor variable for coral recruitment among all ecological parameters measured was the available substrate for settlement, and the survival of recruited corals was correlated with reef structural complexity. Two consecutive annual reproductive seasons (June-September of each year) with high recruitment rates were monitored. Combined with the high survival of recruits and the increase in coral live cover and abundance, the findings from this study indicate an encouraging potential for recovery of these reefs.

  12. A unique coral community in the mangroves of Hurricane Hole, St. John, US Virgin Islands

    USGS Publications Warehouse

    Rogers, Caroline S.

    2017-01-01

    Corals do not typically thrive in mangrove environments. However, corals are growing on and near the prop roots of red mangrove trees in Hurricane Hole, an area within the Virgin Islands Coral Reef National Monument under the protection of the US National Park Service in St. John, US Virgin Islands. This review summarizes current knowledge of the remarkable biodiversity of this area. Over 30 scleractinian coral species, about the same number as documented to date from nearby coral reefs, grow here. No other mangrove ecosystems in the Caribbean are known to have so many coral species. This area may be a refuge from changing climate, as these corals weathered the severe thermal stress and subsequent disease outbreak that caused major coral loss on the island’s coral reefs in 2005 and 2006. Shading by the red mangrove trees reduces the stress that leads to coral bleaching. Seawater temperatures in these mangroves are more variable than those on the reefs, and some studies have shown that this variability results in corals with a greater resistance to higher temperatures. The diversity of sponges and fish is also high, and a new genus of serpulid worm was recently described. Continuing research may lead to the discovery of more new species.

  13. The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope' for coral reefs in an era of climate change.

    PubMed

    Berkelmans, Ray; van Oppen, Madeleine J H

    2006-09-22

    The ability of coral reefs to survive the projected increases in temperature due to global warming will depend largely on the ability of corals to adapt or acclimatize to increased temperature extremes over the next few decades. Many coral species are highly sensitive to temperature stress and the number of stress (bleaching) episodes has increased in recent decades. We investigated the acclimatization potential of Acropora millepora, a common and widespread Indo-Pacific hard coral species, through transplantation and experimental manipulation. We show that adult corals, at least in some circumstances, are capable of acquiring increased thermal tolerance and that the increased tolerance is a direct result of a change in the symbiont type dominating their tissues from Symbiodinium type C to D. Our data suggest that the change in symbiont type in our experiment was due to a shuffling of existing types already present in coral tissues, not through exogenous uptake from the environment. The level of increased tolerance gained by the corals changing their dominant symbiont type to D (the most thermally resistant type known) is around 1-1.5 degrees C. This is the first study to show that thermal acclimatization is causally related to symbiont type and provides new insight into the ecological advantage of corals harbouring mixed algal populations. While this increase is of huge ecological significance for many coral species, in the absence of other mechanisms of thermal acclimatization/adaptation, it may not be sufficient to survive climate change under predicted sea surface temperature scenarios over the next 100 years. However, it may be enough to 'buy time' while greenhouse reduction measures are put in place.

  14. Human Impacts on Coral Reefs in the Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Al-Jufaili, S.; Al-Jabri, M.; Al-Baluchi, A.; Baldwin, R. M.; Wilson, S. C.; West, F.; Matthews, A. D.

    1999-08-01

    A rapid assessment survey of the coral reefs of the Sultanate of Oman was conducted by the Ministry of Regional Municipalities and Environment during the first half of 1996. The survey revealed new information on the distribution pattern of corals in Oman and identified impacts, threats and potential threats to coral communities for the purpose of preparation of a National Coral Reef Management Plan (Phase One of the implementation of a National Coastal Zone Management Plan). Impacts on coral reefs in Oman were found to be attributable to both natural and human causes, resulting in significant and widespread degradation. Damage resulting from fisheries activities was the most commonly recorded human impact, with the most severe effects. Other human impacts resulted from coastal construction, recreational activities, oil pollution and eutrophication. Predation of corals by Acanthaster planci, damage caused by storms, coral diseases and temperature-related stress were the most commonly recorded natural impacts to coral reefs. Further minor natural impacts were attributable to siltation, rock falls and predation by a corallivorous gastropod (Drupella sp.). Significant differences between different areas of the country were found in terms of human impacts on coral reefs and these were related to coastal demography and human activity. Eighty per cent of sites studied were recorded to have been affected by human impacts to some degree. Impacts attributable to fisheries activities were found at 69% of the sites. Lost or abandoned gill nets were found to affect coral reefs at 49% of sites throughout Oman and accounted for 70% of all severe human impacts. Lost gill nets were also found to have a negative affect on fisheries resources and other marine wildlife. Observations of the behaviour of gill nets on coral reefs suggested a predictable pattern of damage over time and a significant increase in damage intensity during storms. Fishing nets were found to act selectively

  15. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome.

    PubMed

    Pogoreutz, Claudia; Rädecker, Nils; Cárdenas, Anny; Gärdes, Astrid; Wild, Christian; Voolstra, Christian R

    2018-02-01

    The importance of Symbiodinium algal endosymbionts and a diverse suite of bacteria for coral holobiont health and functioning are widely acknowledged. Yet, we know surprisingly little about microbial community dynamics and the stability of host-microbe associations under adverse environmental conditions. To gain insight into the stability of coral host-microbe associations and holobiont structure, we assessed changes in the community structure of Symbiodinium and bacteria associated with the coral Pocillopora verrucosa under excess organic nutrient conditions. Pocillopora -associated microbial communities were monitored over 14 days in two independent experiments. We assessed the effect of excess dissolved organic nitrogen (DON) and excess dissolved organic carbon (DOC). Exposure to excess nutrients rapidly affected coral health, resulting in two distinct stress phenotypes: coral bleaching under excess DOC and severe tissue sloughing (>90% tissue loss resulting in host mortality) under excess DON. These phenotypes were accompanied by structural changes in the Symbiodinium community. In contrast, the associated bacterial community remained remarkably stable and was dominated by two Endozoicomonas phylotypes, comprising on average 90% of 16S rRNA gene sequences. This dominance of Endozoicomonas even under conditions of coral bleaching and mortality suggests the bacterial community of P. verrucosa may be rather inflexible and thereby unable to respond or acclimatize to rapid changes in the environment, contrary to what was previously observed in other corals. In this light, our results suggest that coral holobionts might occupy structural landscapes ranging from a highly flexible to a rather inflexible composition with consequences for their ability to respond to environmental change.

  16. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome.

    PubMed

    Röthig, Till; Ochsenkühn, Michael A; Roik, Anna; van der Merwe, Riaan; Voolstra, Christian R

    2016-03-01

    Scleractinian corals are assumed to be stenohaline osmoconformers, although they are frequently subjected to variations in seawater salinity due to precipitation, freshwater run-off and other processes. Observed responses to altered salinity levels include differences in photosynthetic performance, respiration and increased bleaching and mortality of the coral host and its algal symbiont, but a study looking at bacterial community changes is lacking. Here, we exposed the coral Fungia granulosa to strongly increased salinity levels in short- and long-term experiments to disentangle temporal and compartment effects of the coral holobiont (i.e. coral host, symbiotic algae and associated bacteria). Our results show a significant reduction in calcification and photosynthesis, but a stable microbiome after short-term exposure to high-salinity levels. By comparison, long-term exposure yielded unchanged photosynthesis levels and visually healthy coral colonies indicating long-term acclimation to high-salinity levels that were accompanied by a major coral microbiome restructuring. Importantly, a bacterium in the family Rhodobacteraceae was succeeded by Pseudomonas veronii as the numerically most abundant taxon. Further, taxonomy-based functional profiling indicates a shift in the bacterial community towards increased osmolyte production, sulphur oxidation and nitrogen fixation. Our study highlights that bacterial community composition in corals can change within days to weeks under altered environmental conditions, where shifts in the microbiome may enable adjustment of the coral to a more advantageous holobiont composition. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  17. Levels of immunity parameters underpin bleaching and disease susceptibility of reef corals.

    PubMed

    Palmer, Caroline V; Bythell, John C; Willis, Bette L

    2010-06-01

    Immunity is a key life history trait that may explain hierarchies in the susceptibility of corals to disease and thermal bleaching, two of the greatest current threats to coral health and the persistence of tropical reefs. Despite their ongoing and rapid global decline, there have been few investigations into the immunity mechanisms of reef-building corals. Variables commonly associated with invertebrate immunity, including the presence of melanin, size of melanin-containing granular cells, and phenoloxidase (PO) activity, as well as concentrations of fluorescent proteins (FPs), were investigated in hard (Scleractinia) and soft (Alcyonacea) corals spanning 10 families from the Great Barrier Reef. Detectable levels of these indicators were present in all corals investigated, although relative investment differed among coral taxa. Overall levels of investment were inversely correlated to thermal bleaching and disease susceptibility. In addition, PO activity, melanin-containing granular cell size, and FP concentration were each found to be significant predictors of susceptibility and thus may play key roles in coral immunity. Correlative evidence that taxonomic (family-level) variation in the levels of these constituent immunity parameters underpins susceptibility to both thermal bleaching and disease indicates that baseline immunity underlies the vulnerability of corals to these two threats. This reinforces the necessity of a holistic approach to understanding bleaching and disease in order to accurately determine the resilience of coral reefs.

  18. DISEASES OF CORALS: RESEARCH PROGRESS, REEF PROSPECTS

    EPA Science Inventory

    Scleractinian corals have been the subject of intensive research during the past few decades to improve understanding of their role in supporting diverse tropical and subtropical marine communities and to examine factors responsible for their decline and loss of community biodive...

  19. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems.

    PubMed

    Reverter, Miriam; Sasal, Pierre; Tapissier-Bontemps, N; Lecchini, D; Suzuki, M

    2017-06-01

    While recent studies have suggested that fish mucus microbiota play an important role in homeostasis and prevention of infections, very few studies have investigated the bacterial communities of gill mucus. We characterised the gill mucus bacterial communities of four butterflyfish species and although the bacterial diversity of gill mucus varied significantly between species, Shannon diversities were high (H = 3.7-5.7) in all species. Microbiota composition differed between butterflyfishes, with Chaetodon lunulatus and C. ornatissimus having the most similar bacterial communities, which differed significantly from C. vagabundus and C. reticulatus. The core bacterial community of all species consisted of mainly Proteobacteria followed by Actinobacteria and Firmicutes. Chaetodonlunulatus and C. ornatissimus bacterial communities were mostly dominated by Gammaproteobacteria with Vibrio as the most abundant genus. Chaetodonvagabundus and C. reticulatus presented similar abundances of Gammaproteobacteria and Alphaproteobacteria, which were well represented by Acinetobacter and Paracoccus, respectively. In conclusion, our results indicate that different fish species present specific bacterial assemblages. Finally, as mucus layers are nutrient hotspots for heterotrophic bacteria living in oligotrophic environments, such as coral reef waters, the high bacterial diversity found in butterflyfish gill mucus might indicate external fish mucus surfaces act as a reservoir of coral reef bacterial diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Chemotaxis by natural populations of coral reef bacteria.

    PubMed

    Tout, Jessica; Jeffries, Thomas C; Petrou, Katherina; Tyson, Gene W; Webster, Nicole S; Garren, Melissa; Stocker, Roman; Ralph, Peter J; Seymour, Justin R

    2015-08-01

    Corals experience intimate associations with distinct populations of marine microorganisms, but the microbial behaviours underpinning these relationships are poorly understood. There is evidence that chemotaxis is pivotal to the infection process of corals by pathogenic bacteria, but this evidence is limited to experiments using cultured isolates under laboratory conditions. We measured the chemotactic capabilities of natural populations of coral-associated bacteria towards chemicals released by corals and their symbionts, including amino acids, carbohydrates, ammonium and dimethylsulfoniopropionate (DMSP). Laboratory experiments, using a modified capillary assay, and in situ measurements, using a novel microfabricated in situ chemotaxis assay, were employed to quantify the chemotactic responses of natural microbial assemblages on the Great Barrier Reef. Both approaches showed that bacteria associated with the surface of the coral species Pocillopora damicornis and Acropora aspera exhibited significant levels of chemotaxis, particularly towards DMSP and amino acids, and that these levels of chemotaxis were significantly higher than that of bacteria inhabiting nearby, non-coral-associated waters. This pattern was supported by a significantly higher abundance of chemotaxis and motility genes in metagenomes within coral-associated water types. The phylogenetic composition of the coral-associated chemotactic microorganisms, determined using 16S rRNA amplicon pyrosequencing, differed from the community in the seawater surrounding the coral and comprised known coral associates, including potentially pathogenic Vibrio species. These findings indicate that motility and chemotaxis are prevalent phenotypes among coral-associated bacteria, and we propose that chemotaxis has an important role in the establishment and maintenance of specific coral-microbe associations, which may ultimately influence the health and stability of the coral holobiont.

  1. The Coral Trait Database, a curated database of trait information for coral species from the global oceans

    NASA Astrophysics Data System (ADS)

    Madin, Joshua S.; Anderson, Kristen D.; Andreasen, Magnus Heide; Bridge, Tom C. L.; Cairns, Stephen D.; Connolly, Sean R.; Darling, Emily S.; Diaz, Marcela; Falster, Daniel S.; Franklin, Erik C.; Gates, Ruth D.; Hoogenboom, Mia O.; Huang, Danwei; Keith, Sally A.; Kosnik, Matthew A.; Kuo, Chao-Yang; Lough, Janice M.; Lovelock, Catherine E.; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M.; Pochon, Xavier; Pratchett, Morgan S.; Putnam, Hollie M.; Roberts, T. Edward; Stat, Michael; Wallace, Carden C.; Widman, Elizabeth; Baird, Andrew H.

    2016-03-01

    Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.

  2. The Coral Trait Database, a curated database of trait information for coral species from the global oceans

    PubMed Central

    Madin, Joshua S.; Anderson, Kristen D.; Andreasen, Magnus Heide; Bridge, Tom C.L.; Cairns, Stephen D.; Connolly, Sean R.; Darling, Emily S.; Diaz, Marcela; Falster, Daniel S.; Franklin, Erik C.; Gates, Ruth D.; Hoogenboom, Mia O.; Huang, Danwei; Keith, Sally A.; Kosnik, Matthew A.; Kuo, Chao-Yang; Lough, Janice M.; Lovelock, Catherine E.; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M.; Pochon, Xavier; Pratchett, Morgan S.; Putnam, Hollie M.; Roberts, T. Edward; Stat, Michael; Wallace, Carden C.; Widman, Elizabeth; Baird, Andrew H.

    2016-01-01

    Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research. PMID:27023900

  3. The Coral Trait Database, a curated database of trait information for coral species from the global oceans.

    PubMed

    Madin, Joshua S; Anderson, Kristen D; Andreasen, Magnus Heide; Bridge, Tom C L; Cairns, Stephen D; Connolly, Sean R; Darling, Emily S; Diaz, Marcela; Falster, Daniel S; Franklin, Erik C; Gates, Ruth D; Harmer, Aaron; Hoogenboom, Mia O; Huang, Danwei; Keith, Sally A; Kosnik, Matthew A; Kuo, Chao-Yang; Lough, Janice M; Lovelock, Catherine E; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M; Pochon, Xavier; Pratchett, Morgan S; Putnam, Hollie M; Roberts, T Edward; Stat, Michael; Wallace, Carden C; Widman, Elizabeth; Baird, Andrew H

    2016-03-29

    Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism's function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.

  4. PhyloChip™ microarray comparison of sampling methods used for coral microbial ecology

    USGS Publications Warehouse

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Zawada, David G.; Andersen, Gary L.

    2012-01-01

    Interest in coral microbial ecology has been increasing steadily over the last decade, yet standardized methods of sample collection still have not been defined. Two methods were compared for their ability to sample coral-associated microbial communities: tissue punches and foam swabs, the latter being less invasive and preferred by reef managers. Four colonies of star coral, Montastraea annularis, were sampled in the Dry Tortugas National Park (two healthy and two with white plague disease). The PhyloChip™ G3 microarray was used to assess microbial community structure of amplified 16S rRNA gene sequences. Samples clustered based on methodology rather than coral colony. Punch samples from healthy and diseased corals were distinct. All swab samples clustered closely together with the seawater control and did not group according to the health state of the corals. Although more microbial taxa were detected by the swab method, there is a much larger overlap between the water control and swab samples than punch samples, suggesting some of the additional diversity is due to contamination from water absorbed by the swab. While swabs are useful for noninvasive studies of the coral surface mucus layer, these results show that they are not optimal for studies of coral disease.

  5. PhyloChip™ microarray comparison of sampling methods used for coral microbial ecology.

    PubMed

    Kellogg, Christina A; Piceno, Yvette M; Tom, Lauren M; DeSantis, Todd Z; Zawada, David G; Andersen, Gary L

    2012-01-01

    Interest in coral microbial ecology has been increasing steadily over the last decade, yet standardized methods of sample collection still have not been defined. Two methods were compared for their ability to sample coral-associated microbial communities: tissue punches and foam swabs, the latter being less invasive and preferred by reef managers. Four colonies of star coral, Montastraea annularis, were sampled in the Dry Tortugas National Park (two healthy and two with white plague disease). The PhyloChip™ G3 microarray was used to assess microbial community structure of amplified 16S rRNA gene sequences. Samples clustered based on methodology rather than coral colony. Punch samples from healthy and diseased corals were distinct. All swab samples clustered closely together with the seawater control and did not group according to the health state of the corals. Although more microbial taxa were detected by the swab method, there is a much larger overlap between the water control and swab samples than punch samples, suggesting some of the additional diversity is due to contamination from water absorbed by the swab. While swabs are useful for noninvasive studies of the coral surface mucus layer, these results show that they are not optimal for studies of coral disease. Published by Elsevier B.V.

  6. Mass coral bleaching causes biotic homogenization of reef fish assemblages.

    PubMed

    Richardson, Laura E; Graham, Nicholas A J; Pratchett, Morgan S; Eurich, Jacob G; Hoey, Andrew S

    2018-04-06

    Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait-based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system-wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small-bodied, algal-farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances. © 2018 John Wiley & Sons Ltd.

  7. Isotropic microscale mechanical properties of coral skeletons

    PubMed Central

    Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe

    2015-01-01

    Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958

  8. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change

    PubMed Central

    Berkelmans, Ray; van Oppen, Madeleine J.H

    2006-01-01

    The ability of coral reefs to survive the projected increases in temperature due to global warming will depend largely on the ability of corals to adapt or acclimatize to increased temperature extremes over the next few decades. Many coral species are highly sensitive to temperature stress and the number of stress (bleaching) episodes has increased in recent decades. We investigated the acclimatization potential of Acropora millepora, a common and widespread Indo-Pacific hard coral species, through transplantation and experimental manipulation. We show that adult corals, at least in some circumstances, are capable of acquiring increased thermal tolerance and that the increased tolerance is a direct result of a change in the symbiont type dominating their tissues from Symbiodinium type C to D. Our data suggest that the change in symbiont type in our experiment was due to a shuffling of existing types already present in coral tissues, not through exogenous uptake from the environment. The level of increased tolerance gained by the corals changing their dominant symbiont type to D (the most thermally resistant type known) is around 1–1.5 °C. This is the first study to show that thermal acclimatization is causally related to symbiont type and provides new insight into the ecological advantage of corals harbouring mixed algal populations. While this increase is of huge ecological significance for many coral species, in the absence of other mechanisms of thermal acclimatization/adaptation, it may not be sufficient to survive climate change under predicted sea surface temperature scenarios over the next 100 years. However, it may be enough to ‘buy time’ while greenhouse reduction measures are put in place. PMID:16928632

  9. Eukarya associated with the stony coral Oculina patagonica from the Mediterranean Sea.

    PubMed

    Rubio-Portillo, Esther; Souza-Egipsy, Virginia; Ascaso, Carmen; de Los Rios Murillo, Asunción; Ramos-Esplá, Alfonso A; Antón, Josefa

    2014-10-01

    Oculina patagonica is a putative alien scleractinian coral from the Southwest Atlantic that inhabits across the Mediterranean Sea. Here, we have addressed the diversity of Eukarya associated with this coral and its changes related to the environmental conditions and coral status. A total of 46 colonies of O. patagonica were taken from Alicante coast (Spain) and Pietra Ligure coast (Italy) and analyzed using denaturing gradient gel electrophoresis (DGGE) of the small-subunit 18S rRNA and 16S plastid rRNA genes, internal transcribed spacer region 2 (ITS 2) analyses, and electron microscopy. Our results show that Eukarya and plastid community associated to O. patagonica change with environmental conditions and coral status. Cryptic species, which can be difficult to identify by optical methods, were distinguished by 18S rRNA gene DGGE: the barnacle Megatrema anglicum, which was detected at two locations, and two boring sponges related to Cliona sp. and Siphonodictyon coralliphagum detected in samples from Tabarca and Alicante Harbour, respectively. Eukaryotic phototrophic community from the skeletal matrix of healthy corals was dominated by Ochrosphaera sp. while bleached corals from the Harbour and Tabarca were associated to different uncultured phototrophic organism. Differences in ultrastructural morphologies of the zooxanthellae between healthy and bleached corals were observed. Nevertheless, no differences were found in Symbiodinium community among time, environments, coral status and location, showing that O. patagonica hosted only one genotype of Symbiodinium belonging to clade B2. The fact that this clade has not been previously detected in other Mediterranean corals and is more frequent in the tropical Western Atlantic, is a new evidence that O. patagonica is an alien species in the Mediterranean Sea. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. An outbreak of sea cucumbers hinders coral recruitment

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Yang; McCook, Laurence; Jiang, Lei; Lian, Jian-Sheng; Liu, Sheng; Huang, Hui

    2018-06-01

    An outbreak of a small sessile sea cucumber, Ocnus sanya, occurred on the degraded Luhuitou coral reef in Sanya Bay, Hainan, China. This study explored the pattern of distribution of O. sanya on the reef and the impacts of the high abundance of O. sanya on post-settlement mortality of Pocillopora damicornis recruits. The density of O. sanya ranged from about 500 to over 2000 individuals m-2 with 10.95-23.69% cover on hard substrate. Terracotta tiles with O. sanya on the surface accumulated 19.7% more surface sediment than those without sea cucumbers. Post-settlement P. damicornis recruits had significantly higher mortality on terracotta tiles with O. sanya than those without O. sanya after 21 d. Overall, O. sanya appears to increase sediment stress and inhibit coral recruitment, exacerbating the degradation of Luhuitou Reef. This study raises the possibility that such novel outbreak species could contribute significant additional stress on coral reefs at larger scales.

  11. Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis

    PubMed Central

    Tout, Jessica; Siboni, Nachshon; Messer, Lauren F.; Garren, Melissa; Stocker, Roman; Webster, Nicole S.; Ralph, Peter J.; Seymour, Justin R.

    2015-01-01

    Rising seawater temperature associated with global climate change is a significant threat to coral health and is linked to increasing coral disease and pathogen-related bleaching events. We performed heat stress experiments with the coral Pocillopora damicornis, where temperature was increased to 31°C, consistent with the 2–3°C predicted increase in summer sea surface maxima. 16S rRNA amplicon sequencing revealed a large shift in the composition of the bacterial community at 31°C, with a notable increase in Vibrio, including known coral pathogens. To investigate the dynamics of the naturally occurring Vibrio community, we performed quantitative PCR targeting (i) the whole Vibrio community and (ii) the coral pathogen Vibrio coralliilyticus. At 31°C, Vibrio abundance increased by 2–3 orders of magnitude and V. coralliilyticus abundance increased by four orders of magnitude. Using a Vibrio-specific amplicon sequencing assay, we further demonstrated that the community composition shifted dramatically as a consequence of heat stress, with significant increases in the relative abundance of known coral pathogens. Our findings provide quantitative evidence that the abundance of potential coral pathogens increases within natural communities of coral-associated microbes as a consequence of rising seawater temperature and highlight the potential negative impacts of anthropogenic climate change on coral reef ecosystems. PMID:26042096

  12. Persistence of coral assemblages at East and West Flower Garden Banks, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Johnston, Michelle A.; Embesi, John A.; Eckert, Ryan J.; Nuttall, Marissa F.; Hickerson, Emma L.; Schmahl, George P.

    2016-09-01

    Since 1989 a federally supported long-term coral reef monitoring program has focused on two study sites atop East and West Flower Garden Banks in the northwestern Gulf of Mexico. We examined 25 yr of benthic cover data to provide a multi-decadal baseline and trend analysis of the community structure for this coral reef system. Despite global coral reef decline in recent decades, mean coral cover at East and West Flower Garden Banks was above 50% for the combined 25 yr of continuous monitoring, and represented a stable coral community. However, mean macroalgal cover increased significantly between 1998 and 1999, rising from approximately 3 to 20%, and reaching a maximum above 30% in 2012. In contrast to many other shallow water reefs in the Caribbean region, increases in mean macroalgal cover have not been concomitant with coral cover decline at the Flower Garden Banks.

  13. Bacterial populations and adaptations in the mucus layers on living corals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducklow, H.W.; Mitchell, R.

    1979-07-01

    The external mucus layers of the stony coral Porites astreoides and the soft corals Palythoa sp. and Heteroxenia fuscesens are inhabited by communities of marine heterotrophic bacteria. Population levels of bacteria in coral mucus may be regulated by the self-cleaning behavior of the host. Bacterial populations in coral mucus respond to stresses applied to the host coral by growing to higher population levels in the mucus, indicating that these are populations of viable organisms closely attuned to host metabolism. Members of these microbial populations utilize the mucus compounds and may play a role in processing coral mucus for reef detritusmore » feeders. One such species, Vibrio alginolyticus, grows rapidly on Heteroxenia mucus, is attracted to dissolved mucus, and possesses a mechanism to maintain itself on the coral surface.« less

  14. New directions in coral reef microbial ecology.

    PubMed

    Garren, Melissa; Azam, Farooq

    2012-04-01

    Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Deep-sea coral and hardbottom habitats on the west Florida slope, eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ross, Steve W.; Rhode, Mike; Brooke, Sandra

    2017-02-01

    Until recently, benthic habitats dominated by deep-sea corals (DSC) appeared to be less extensive on the slope of the Gulf of Mexico (GOM) than in the northeast Atlantic Ocean or off the southeastern US. There are relatively few bioherms (i.e., coral-built mounds) in the northern GOM, and most DSCs are attached to existing hard substrata (e.g., authigenically formed carbonate). The primary structure-forming, DSC in the GOM is Lophelia pertusa, but structure is also provided by other living and dead scleractinians, antipatharians (black corals), octocorals (gorgonians, soft corals), hydrocorals and sponges, as well as abundant rocky substrata. The best development of DSCs in the GOM was previously documented within Viosca Knoll oil and gas lease blocks 826 and 862/906 (north-central GOM) and on the Campeche Bank (southern GOM in Mexican waters). This paper documents extensive deep reef ecosystems composed of DSC and rocky hard-bottom recently surveyed on the West Florida Slope (WFS, eastern GOM) during six research cruises (2008-2012). Using multibeam sonar, CTD casts, and video from underwater vehicles, we describe the physical and oceanographic characteristics of these deep reefs and provide size or area estimates of deep coral and hardground habitats. The multibeam sonar analyses revealed hundreds of mounds and ridges, some of which were subsequently surveyed using underwater vehicles. Mounds and ridges in <525 m depths were usually capped with living coral colonies, dominated by L. pertusa. An extensive rocky scarp, running roughly north-south for at least 229 km, supported lower abundances of scleractinian corals than the mounds and ridges, despite an abundance of settlement substrata. Areal comparisons suggested that the WFS may exceed other parts of the GOM slope in extent of living deep coral coverage and other deep-reef habitat (dead coral and rock). The complex WFS region warrants additional studies to better understand the influences of oceanography and

  16. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Uthicke, S.; Thompson, A.; Schaffelke, B.

    2010-03-01

    Although the debate about coral reef decline focuses on global disturbances (e.g., increasing temperatures and acidification), local stressors (nutrient runoff and overfishing) continue to affect reef health and resilience. The effectiveness of foraminiferal and hard-coral assemblages as indicators of changes in water quality was assessed on 27 inshore reefs along the Great Barrier Reef. Environmental variables (i.e., several water quality and sediment parameters) and the composition of both benthic foraminiferal and hard-coral assemblages differed significantly between four regions (Whitsunday, Burdekin, Fitzroy, and the Wet Tropics). Grain size and organic carbon and nitrogen content of sediments, and a composite water column parameter (based on turbidity and concentrations of particulate matter) explained a significant amount of variation in the data (tested by redundancy analyses) in both assemblages. Heterotrophic species of foraminifera were dominant in sediments with high organic content and in localities with low light availability, whereas symbiont-bearing mixotrophic species were dominant elsewhere. A similar suite of parameters explained 89% of the variation in the FORAM index (a Caribbean coral reef health indicator) and 61% in foraminiferal species richness. Coral richness was not related to environmental setting. Coral assemblages varied in response to environmental variables, but were strongly shaped by acute disturbances (e.g., cyclones, Acanthaster planci outbreaks, and bleaching), thus different coral assemblages may be found at sites with the same environmental conditions. Disturbances also affect foraminiferal assemblages, but they appeared to recover more rapidly than corals. Foraminiferal assemblages are effective bioindicators of turbidity/light regimes and organic enrichment of sediments on coral reefs.

  17. Biogeography of planktonic and coral-associated microorganisms across the Hawaiian Archipelago.

    PubMed

    Salerno, Jennifer L; Bowen, Brian W; Rappé, Michael S

    2016-08-01

    Factors driving the distribution of marine microorganisms are widely debated and poorly understood. Recent studies show that free-living marine microbes exhibit geographical patterns indicative of limited dispersal. In contrast, host-associated microbes face a different set of dispersal challenges, and hosts may function as habitat 'islands' for resident microbial populations. Here, we examine the biogeographical distributions of planktonic and adjacent coral-associated bacterial communities across the Hawaiian Archipelago, Johnston Atoll (∼1400 km southwest of Hawaii) and American Samoa in the Pacific Ocean and investigate the potential underlying processes driving observed patterns. Statistical analyses of bacterial community structure, determined using a small-subunit ribosomal RNA gene-based approach, showed that bacterioplankton and coral-associated bacterial communities were distinct, and correlated with geographical distance between sites. In addition, biogeographical patterns of bacterial associates paralleled those of their host coral Porites lobata, highlighting the specificity of these associations and the impact that host dispersal may have on bacterial biogeography. Planktonic and coral-associated bacterial communities from distant Johnston Atoll were shown to be connected with communities from the center of the Hawaiian Archipelago, a pattern previously observed in fish and invertebrates. No significant correlations were detected with habitat type, temperature or depth. However, non-distance-based geographical groupings were detected, indicating that, in addition to dispersal, unidentified environmental factors also affected the distributions of bacterial communities investigated here. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Bacterial communities associated with three Brazilian endemic reef corals (Mussismilia spp.) in a coastal reef of the Abrolhos shelf

    NASA Astrophysics Data System (ADS)

    de Castro, Alinne Pereira; Araújo, Samuel Dias; Reis, Alessandra M. M.; Pompeu, Maira; Hatay, Mark; de Moura, Rodrigo Leão; Francini-Filho, Ronaldo B.; Thompson, Fabiano L.; Krüger, Ricardo H.

    2013-11-01

    The diversity of bacterial communities associated with three Brazilian endemic reef corals from genus Mussismilia (M. hispida, M. braziliensis, and M. harttii) at a single site was assessed using 16S rRNA clone libraries. The study site, Pedra do Leste, is a coastal reef within the largest and richest South Atlantic coralline reef complex (Abrolhos Bank) and is subject to high fishing pressure, high sedimentation loads, and other land-based stressors. The three coral species are Neogene relicts with unique biological and morphological traits that enable them to survive relatively high sedimentation levels. Our results show that sequences affiliated with γ-Proteobacteria predominated, accounting for more than 60% of the examined sequences. Indeed, the most frequent species were related to Alteromonas, Marinomonas, Neptuniibacter, and Vibrio, which are copiotrophic microorganisms common in environments highly affected by anthropogenic stress. Principal component analysis revealed that bacterial communities of M. braziliensis and M. hispida were more similar to each other than to M. harttii-associated bacteria. Such pattern is likely related to distinct morphological properties of M. harttii, such as the existence of phaceloid colonies, in which polyps are not connected by soft tissue. This is the first investigation assessing the bacterial communities of the three Brazilian endemic Mussismilia species at the same location.

  19. Additive negative effects of anthropogenic sedimentation and warming on the survival of coral recruits.

    PubMed

    Fourney, Francesca; Figueiredo, Joana

    2017-09-28

    Corals worldwide are facing population declines due to global climate change and local anthropogenic impacts. Global climate change effects are hard to tackle but recent studies show that some coral species can better handle climate change stress when provided with additional energy resources. The local stressor that most undermines energy acquisition is sedimentation because it impedes coral heterotrophic feeding and their ability to photosynthesize. To investigate if reducing local sedimentation will enable corals to better endure ocean warming, we quantitatively assessed the combined effects of increased temperature and sedimentation (concentration and turbidity) on the survival of coral recruits of the species, Porites astreoides. We used sediment from a reef and a boat basin to mimic natural sediment (coarse) and anthropogenic (fine) sediment (common in dredging), respectively. Natural sediment did not negatively impact coral survival, but anthropogenic sediment did. We found that the capacity of coral recruits to survive under warmer temperatures is less compromised when anthropogenic sedimentation is maintained at the lowest level (30 mg.cm -2 ). Our study suggests that a reduction of US-EPA allowable turbidity from 29 Nephelometric Turbidity Units (NTU) above background to less than 7 NTU near coral reefs would facilitate coral recruit survival under current and higher temperatures.

  20. In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event.

    PubMed

    Monroe, Alison A; Ziegler, Maren; Roik, Anna; Röthig, Till; Hardenstine, Royale S; Emms, Madeleine A; Jensen, Thor; Voolstra, Christian R; Berumen, Michael L

    2018-01-01

    Coral bleaching continues to be one of the most devastating and immediate impacts of climate change on coral reef ecosystems worldwide. In 2015, a major bleaching event was declared as the "3rd global coral bleaching event" by the United States National Oceanic and Atmospheric Administration, impacting a large number of reefs in every major ocean. The Red Sea was no exception, and we present herein in situ observations of the status of coral reefs in the central Saudi Arabian Red Sea from September 2015, following extended periods of high temperatures reaching upwards of 32.5°C in our study area. We examined eleven reefs using line-intercept transects at three different depths, including all reefs that were surveyed during a previous bleaching event in 2010. Bleaching was most prevalent on inshore reefs (55.6% ± 14.6% of live coral cover exhibited bleaching) and on shallower transects (41% ± 10.2% of live corals surveyed at 5m depth) within reefs. Similar taxonomic groups (e.g., Agariciidae) were affected in 2015 and in 2010. Most interestingly, Acropora and Porites had similar bleaching rates (~30% each) and similar relative coral cover (~7% each) across all reefs in 2015. Coral genera with the highest levels of bleaching (>60%) were also among the rarest (<1% of coral cover) in 2015. While this bodes well for the relative retention of coral cover, it may ultimately lead to decreased species richness, often considered an important component of a healthy coral reef. The resultant long-term changes in these coral reef communities remain to be seen.

  1. Cloud-based serviced-orientated data systems for ocean observational data - an example from the coral reef community

    NASA Astrophysics Data System (ADS)

    Bainbridge, S.

    2012-04-01

    The advent of new observing systems, such as sensor networks, have dramatically increased our ability to collect marine data; the issue now is not data drought but data deluge. The challenge now is to extract data representing events of interest from the background data, that is how to deliver information and potentially knowledge from an increasing large store of base observations. Given that each potential user will have differing definitions of 'interesting' and that this is often defined by other events and data, systems need to deliver information or knowledge in a form and context defined by the user. This paper reports on a series of coral reef sensor networks set up under the Coral Reef Environmental Observation Network (CREON). CREON is a community of interest group deploying coral reef sensor networks with the goal of increasing capacity in coral reef observation, especially into developing areas. Issues such as coral bleaching, terrestrial runoff, human impacts and climate change are impacting reefs with one assessment indicating a quarter of the worlds reefs being severely degraded with another quarter under immediate threat. Increasing our ability to collect scientifically valid observations is fundamental to understanding these systems and ultimately in preserving and sustaining them. A cloud based data management system was used to store the base sensor data from each agency involved using service based agents to push the data from individual field sensors to the cloud. The system supports a range of service based outputs such as on-line graphs, a smart-phone application and simple event detection. A more complex event detection system was written that takes input from the cloud services and outputs natural language 'tweets' to Twitter as events occur. It therefore becomes possible to distil the entire data set down to a series of Twitter entries that interested parties can subscribe to. The next step is to allow users to define their own events and

  2. Critical research needs for identifying future changes in Gulf coral reef ecosystems.

    PubMed

    Feary, David A; Burt, John A; Bauman, Andrew G; Al Hazeem, Shaker; Abdel-Moati, Mohamed A; Al-Khalifa, Khalifa A; Anderson, Donald M; Amos, Carl; Baker, Andrew; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geórgenes H; Chen, Chaolun Allen; Coles, Steve L; Dab, Koosha; Fowler, Ashley M; George, David; Grandcourt, Edwin; Hill, Ross; John, David M; Jones, David A; Keshavmurthy, Shashank; Mahmoud, Huda; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood; Pichon, Michel; Purkis, Sam; Riegl, Bernhard; Samimi-Namin, Kaveh; Sheppard, Charles; Vajed Samiei, Jahangir; Voolstra, Christian R; Wiedenmann, Joerg

    2013-07-30

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/Persian Gulf (thereafter 'Gulf') coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Critical research needs for identifying future changes in Gulf coral reef ecosystems

    PubMed Central

    Feary, David A.; Burt, John A.; Bauman, Andrew G.; Al Hazeem, Shaker; Abdel-Moati, Mohamed A.; Al-Khalifa, Khalifa A.; Anderson, Donald M.; Amos, Carl; Baker, Andrew; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geórgenes H.; Chen, Chaolun Allen; Coles, Steve L.; Dab, Koosha; Fowler, Ashley M.; George, David; Grandcourt, Edwin; Hill, Ross; John, David M.; Jones, David A.; Keshavmurthy, Shashank; Mahmoud, Huda; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood; Pichon, Michel; Purkis, Sam; Riegl, Bernhard; Samimi-Namin, Kaveh; Sheppard, Charles; Vajed Samiei, Jahangir; Voolstra, Christian R.; Wiedenmann, Joerg

    2014-01-01

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/ Persian Gulf (thereafter ‘Gulf’) coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. PMID:23643407

  4. Determining the Extent and Characterizing Coral Reef Habitats of the Northern Latitudes of the Florida Reef Tract (Martin County)

    PubMed Central

    Walker, Brian K.; Gilliam, David S.

    2013-01-01

    Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25–27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km2 seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and

  5. Determining the extent and characterizing coral reef habitats of the northern latitudes of the Florida Reef Tract (Martin County).

    PubMed

    Walker, Brian K; Gilliam, David S

    2013-01-01

    Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25-27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km(2) seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and

  6. Interoceanic differences in the reproduction of coral-reef fishes.

    PubMed

    Thresher, R E

    1982-10-01

    Eggs of demersal spawning coral-reef fishes of the tropical western Atlantic are smaller than those of related species in the western Pacific. Decreased egg volume may result in increased fecundity per unit body weight of Atlantic species, a factor that may underlie apparent differences in the stability of the respective coral-reef fish communities.

  7. The genetics of colony form and function in Caribbean Acropora corals.

    PubMed

    Hemond, Elizabeth M; Kaluziak, Stefan T; Vollmer, Steven V

    2014-12-17

    Colonial reef-building corals have evolved a broad spectrum of colony morphologies based on coordinated asexual reproduction of polyps on a secreted calcium carbonate skeleton. Though cnidarians have been shown to possess and use similar developmental genes to bilaterians during larval development and polyp formation, little is known about genetic regulation of colony morphology in hard corals. We used RNA-seq to evaluate transcriptomic differences between functionally distinct regions of the coral (apical branch tips and branch bases) in two species of Caribbean Acropora, the staghorn coral, A. cervicornis, and the elkhorn coral, A. palmata. Transcriptome-wide gene profiles differed significantly between different parts of the coral colony as well as between species. Genes showing differential expression between branch tips and bases were involved in developmental signaling pathways, such as Wnt, Notch, and BMP, as well as pH regulation, ion transport, extracellular matrix production and other processes. Differences both within colonies and between species identify a relatively small number of genes that may contribute to the distinct "staghorn" versus "elkhorn" morphologies of these two sister species. The large number of differentially expressed genes supports a strong division of labor between coral branch tips and branch bases. Genes involved in growth of mature Acropora colonies include the classical signaling pathways associated with development of cnidarian larvae and polyps as well as morphological determination in higher metazoans.

  8. Inhibition of coral recruitment by macroalgae and cyanobacteria

    USGS Publications Warehouse

    Kuffner, I.B.; Walters, L.J.; Becerro, M.A.; Paul, V.J.; Ritson-Williams, R.; Beach, K.S.

    2006-01-01

    Coral recruitment is a key process in the maintenance and recovery of coral reef ecosystems. While intense competition between coral and algae is often assumed on reefs that have undergone phase shifts from coral to algal dominance, data examining the competitive interactions involved, particularly during the larval and immediate post-settlement stage, are scarce. Using a series of field and outdoor seawater table experiments, we tested the hypothesis that common species of macroalgae and cyanobacteria inhibit coral recruitment. We examined the effects of Lyngbya spp., Dictyota spp., Lobophora variegata (J. V. Lamouroux) Womersley, and Chondrophycus poiteaui (J. V. Lamouroux) Nam (formerly Laurencia poiteaui) on the recruitment success of Porites astreoides larvae. All species but C. poiteaui caused either recruitment inhibition or avoidance behavior in P. astreoides larvae, while L. confervoides and D. menstrualis significantly increased mortality rates of P. astreoides recruits. We also tested the effect of some of these macrophytes on larvae of the gorgonian octocoral Briareum asbestinum. Exposure to Lyngbya majuscula reduced survival and recruitment in the octocoral larvae. Our results provide evidence that algae and cyanobacteria use tactics beyond space occupation to inhibit coral recruitment. On reefs experiencing phase shifts or temporary algal blooms, the restocking of adult coral populations may be slowed due to recruitment inhibition, thereby perpetuating reduced coral cover and limiting coral community recovery. ?? Inter-Research 2006.

  9. Assessing the Effects of Disease and Bleaching on Florida Keys Corals by Fitting Population Models to Data

    EPA Science Inventory

    Coral diseases have increased in frequency over the past few decades and have important influences on the structure and composition of coral reef communities. However, there is limited information on the etiologies of many coral diseases, and pathways via which coral diseases ar...

  10. Characteristics of a Virtual Community for Individuals Who Are d/Deaf and Hard of Hearing

    ERIC Educational Resources Information Center

    Shoham, Snunith; Heber, Meital

    2012-01-01

    The content of 2,050 messages on a virtual forum for d/Deaf and hard of hearing people in Israel was analyzed. Interactions and behavior were monitored to determine if behavior on the forum expressed social support, and whether the community was an entirely virtual community or a real community whose members also met in other venues. Subjects…

  11. Clues to Coral Reef Health: Integrating Radiative Transfer Modeling and Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Guild, Liane; Ganapol, Barry; Kramer, Philip; Armstrong, Roy; Gleason, Art; Torres, Juan; Johnson, Lee; Garfield, Toby; Peterson, David L. (Technical Monitor)

    2002-01-01

    An important contribution to coral reef research is to improve spectral distinction between various health states of coral species in areas subject to harmful anthropogenic activity and climate change. New insights into radiative transfer properties of corals under healthy and stressed conditions can advance understandings of ecological processes on reefs and allow better assessments of the impacts of large-scale bleaching and disease events, Our objective was to examine the spectral and spatial properties of hyperspectral sensors that may be used to remotely sense changes in reef community health. We compare in situ reef environment spectra (healthy coral, stressed coral, dead coral, algae, and sand) with airborne hyperspectral data to identify important spectral characteristics and indices. Additionally, spectral measurements over a range of water depths, relief, and bottom types are compared to help quantify bottom-water column influences. In situ spectra were collected in July and August 2002 at the Long Rock site in the Andros Island, Bahamas coastal zone coral reef. Our primary emphasis was on Acropora palmata (or elkhorn coral), a major reef building coral, which is prevalent in the study area, but is suffering from white band disease. A. palmata is currently being, proposed as an endangered species because its populations have severely declined in many areas of the Caribbean. In addition to the A. palmata biotope, we have collected spectra of at least seven other coral biotopes that exist within the study area, each with different coral community composition, density of corals, relief, and size of corals. Coral spectral reflectance was then input into a radiative transfer model, CORALMOD (CM1), which is based on a leaf radiative transfer model. In CM1, input coral reflectance measurements produce modeled reflectance through an inversion at each visible wavelength to provide the absorption spectrum. Initially, we imposed a scattering baseline that is the

  12. Biological and chemical characteristics of the coral gastric cavity

    NASA Astrophysics Data System (ADS)

    Agostini, S.; Suzuki, Y.; Higuchi, T.; Casareto, B. E.; Yoshinaga, K.; Nakano, Y.; Fujimura, H.

    2012-03-01

    All corals have a common structure: two tissue layers enclose a lumen, which forms the gastric cavity. Few studies have described the processes occurring inside the gastric cavity and its chemical and biological characteristics. Here, we show that the coral gastric cavity has distinct chemical characteristics with respect to dissolved O2, pH, alkalinity, and nutrients (vitamin B12, nitrate, nitrite, ammonium, and phosphate) and also harbors a distinct bacterial community. From these results, the gastric cavity can be described as a semi-closed sub-environment within the coral. Dissolved O2 shows very low constant concentrations in the deepest parts of the cavity, creating a compartmentalized, anoxic environment. The pH is lower in the cavity than in the surrounding water and, like alkalinity, shows day/night variations different from those of the surrounding water. Nutrient concentrations in the cavity are greater than the concentrations found in reef waters, especially for phosphate and vitamin B12. The source of these nutrients may be internal production by symbiotic bacteria and/or the remineralization of organic matter ingested or produced by the corals. The importance of the bacteria inhabiting the gastric cavity is supported by the finding of a high bacterial abundance and a specific bacterial community with affiliation to bacteria found in other corals and in the guts of other organisms. The findings presented here open a new area of research that may help us to understand the processes that maintain coral health.

  13. Spatial competition dynamics between reef corals under ocean acidification.

    PubMed

    Horwitz, Rael; Hoogenboom, Mia O; Fine, Maoz

    2017-01-09

    Climate change, including ocean acidification (OA), represents a major threat to coral-reef ecosystems. Although previous experiments have shown that OA can negatively affect the fitness of reef corals, these have not included the long-term effects of competition for space on coral growth rates. Our multispecies year-long study subjected reef-building corals from the Gulf of Aqaba (Red Sea) to competitive interactions under present-day ocean pH (pH 8.1) and predicted end-of-century ocean pH (pH 7.6). Results showed coral growth is significantly impeded by OA under intraspecific competition for five out of six study species. Reduced growth from OA, however, is negligible when growth is already suppressed in the presence of interspecific competition. Using a spatial competition model, our analysis indicates shifts in the competitive hierarchy and a decrease in overall coral cover under lowered pH. Collectively, our case study demonstrates how modified competitive performance under increasing OA will in all likelihood change the composition, structure and functionality of reef coral communities.

  14. Spatial competition dynamics between reef corals under ocean acidification

    NASA Astrophysics Data System (ADS)

    Horwitz, Rael; Hoogenboom, Mia O.; Fine, Maoz

    2017-01-01

    Climate change, including ocean acidification (OA), represents a major threat to coral-reef ecosystems. Although previous experiments have shown that OA can negatively affect the fitness of reef corals, these have not included the long-term effects of competition for space on coral growth rates. Our multispecies year-long study subjected reef-building corals from the Gulf of Aqaba (Red Sea) to competitive interactions under present-day ocean pH (pH 8.1) and predicted end-of-century ocean pH (pH 7.6). Results showed coral growth is significantly impeded by OA under intraspecific competition for five out of six study species. Reduced growth from OA, however, is negligible when growth is already suppressed in the presence of interspecific competition. Using a spatial competition model, our analysis indicates shifts in the competitive hierarchy and a decrease in overall coral cover under lowered pH. Collectively, our case study demonstrates how modified competitive performance under increasing OA will in all likelihood change the composition, structure and functionality of reef coral communities.

  15. Spatial competition dynamics between reef corals under ocean acidification

    PubMed Central

    Horwitz, Rael; Hoogenboom, Mia O.; Fine, Maoz

    2017-01-01

    Climate change, including ocean acidification (OA), represents a major threat to coral-reef ecosystems. Although previous experiments have shown that OA can negatively affect the fitness of reef corals, these have not included the long-term effects of competition for space on coral growth rates. Our multispecies year-long study subjected reef-building corals from the Gulf of Aqaba (Red Sea) to competitive interactions under present-day ocean pH (pH 8.1) and predicted end-of-century ocean pH (pH 7.6). Results showed coral growth is significantly impeded by OA under intraspecific competition for five out of six study species. Reduced growth from OA, however, is negligible when growth is already suppressed in the presence of interspecific competition. Using a spatial competition model, our analysis indicates shifts in the competitive hierarchy and a decrease in overall coral cover under lowered pH. Collectively, our case study demonstrates how modified competitive performance under increasing OA will in all likelihood change the composition, structure and functionality of reef coral communities. PMID:28067281

  16. Settling into an increasingly hostile world: the rapidly closing "recruitment window" for corals.

    PubMed

    Arnold, Suzanne N; Steneck, Robert S

    2011-01-01

    Free space is necessary for larval recruitment in all marine benthic communities. Settling corals, with limited energy to invest in competitive interactions, are particularly vulnerable during settlement into well-developed coral reef communities. This situation may be exacerbated for corals settling into coral-depauperate reefs where succession in nursery microhabitats moves rapidly toward heterotrophic organisms inhospitable to settling corals. To study effects of benthic organisms (at millimeter to centimeter scales) on newly settled corals and their survivorship we deployed terra-cotta coral settlement plates at 10 m depth on the Mesoamerican Barrier Reef in Belize and monitored them for 38 mo. During the second and third years, annual recruitment rates declined by over 50% from the previous year. Invertebrate crusts (primarily sponges) were absent at the start of the experiment but increased in abundance annually from 39, 60, to 73% of the plate undersides by year three. Subsequently, substrates hospitable to coral recruitment, including crustose coralline algae, biofilmed terra-cotta and polychaete tubes, declined. With succession, substrates upon which spat settled shifted toward organisms inimical to survivorship. Over 50% of spat mortality was due to overgrowth by sponges alone. This result suggests that when a disturbance creates primary substrate a "recruitment window" for settling corals exists from approximately 9 to 14 mo following the disturbance. During the window, early-succession, facilitating species are most abundant. The window closes as organisms hostile to coral settlement and survivorship overgrow nursery microhabitats.

  17. Is proximity to land-based sources of coral stressors an appropriate measure of risk to coral reefs? An example from the Florida Reef Tract.

    PubMed

    Lirman, Diego; Fong, Peggy

    2007-06-01

    Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species

  18. Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Roark, E. Brendan; Guilderson, Thomas P.; Flood-Page, Sarah; Dunbar, Robert B.; Ingram, B. Lynn; Fallon, Stewart J.; McCulloch, Malcolm

    2005-02-01

    Deep-sea coral communities have long been recognized by fisherman as areas that support large populations of commercial fish. As a consequence, many deep-sea coral communities are threatened by bottom trawling. Successful management and conservation of this widespread deep-sea habitat requires knowledge of the age and growth rates of deep-sea corals. These organisms also contain important archives of intermediate and deep-water variability, and are thus of interest in the context of decadal to century-scale climate dynamics. Here, we present Δ14C data that suggest that bamboo corals from the Gulf of Alaska are long-lived (75-126 years) and that they acquire skeletal carbon from two distinct sources. Independent verification of our growth rate estimates and coral ages is obtained by counting seasonal Sr/Ca cycles and probable lunar cycle growth bands.

  19. In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event

    PubMed Central

    Ziegler, Maren; Roik, Anna; Röthig, Till; Hardenstine, Royale S.; Emms, Madeleine A.; Jensen, Thor; Voolstra, Christian R.; Berumen, Michael L.

    2018-01-01

    Coral bleaching continues to be one of the most devastating and immediate impacts of climate change on coral reef ecosystems worldwide. In 2015, a major bleaching event was declared as the “3rd global coral bleaching event” by the United States National Oceanic and Atmospheric Administration, impacting a large number of reefs in every major ocean. The Red Sea was no exception, and we present herein in situ observations of the status of coral reefs in the central Saudi Arabian Red Sea from September 2015, following extended periods of high temperatures reaching upwards of 32.5°C in our study area. We examined eleven reefs using line-intercept transects at three different depths, including all reefs that were surveyed during a previous bleaching event in 2010. Bleaching was most prevalent on inshore reefs (55.6% ± 14.6% of live coral cover exhibited bleaching) and on shallower transects (41% ± 10.2% of live corals surveyed at 5m depth) within reefs. Similar taxonomic groups (e.g., Agariciidae) were affected in 2015 and in 2010. Most interestingly, Acropora and Porites had similar bleaching rates (~30% each) and similar relative coral cover (~7% each) across all reefs in 2015. Coral genera with the highest levels of bleaching (>60%) were also among the rarest (<1% of coral cover) in 2015. While this bodes well for the relative retention of coral cover, it may ultimately lead to decreased species richness, often considered an important component of a healthy coral reef. The resultant long-term changes in these coral reef communities remain to be seen. PMID:29672556

  20. Coral reefs: threats and conservation in an era of global change.

    PubMed

    Riegl, Bernhard; Bruckner, Andy; Coles, Steve L; Renaud, Philip; Dodge, Richard E

    2009-04-01

    Coral reefs are iconic, threatened ecosystems that have been in existence for approximately 500 million years, yet their continued ecological persistence seems doubtful at present. Anthropogenic modification of chemical and physical atmospheric dynamics that cause coral death by bleaching and newly emergent diseases due to increased heat and irradiation, as well as decline in calcification caused by ocean acidification due to increased CO(2), are the most important large-scale threats. On more local scales, overfishing and destructive fisheries, coastal construction, nutrient enrichment, increased runoff and sedimentation, and the introduction of nonindigenous invasive species have caused phase shifts away from corals. Already approximately 20% of the world's reefs are lost and approximately 26% are under imminent threat. Conservation science of coral reefs is well advanced, but its practical application has often been lagging. Societal priorites, economic pressures, and legal/administrative systems of many countries are more prone to destroy rather than conserve coral-reef ecosystems. Nevertheless, many examples of successful conservation exist from the national level to community-enforced local action. When effectively managed, protected areas have contributed to regeneration of coral reefs and stocks of associated marine resources. Local communities often support coral-reef conservation in order to raise income potential associated with tourism and/or improved resource levels. Coral reefs create an annual income in S-Florida alone of over $4 billion. Thus, no conflict between development, societal welfare, and coral-reef conservation needs to exist. Despite growing threats, it is not too late for decisive action to protect and save these economically and ecologically high-value ecosystems. Conservation science plays a critical role in designing effective strategies.

  1. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts

    PubMed Central

    D Ainsworth, Tracy; Krause, Lutz; Bridge, Thomas; Torda, Gergely; Raina, Jean-Baptise; Zakrzewski, Martha; Gates, Ruth D; Padilla-Gamiño, Jacqueline L; Spalding, Heather L; Smith, Celia; Woolsey, Erika S; Bourne, David G; Bongaerts, Pim; Hoegh-Guldberg, Ove; Leggat, William

    2015-01-01

    Despite being one of the simplest metazoans, corals harbor some of the most highly diverse and abundant microbial communities. Differentiating core, symbiotic bacteria from this diverse host-associated consortium is essential for characterizing the functional contributions of bacteria but has not been possible yet. Here we characterize the coral core microbiome and demonstrate clear phylogenetic and functional divisions between the micro-scale, niche habitats within the coral host. In doing so, we discover seven distinct bacterial phylotypes that are universal to the core microbiome of coral species, separated by thousands of kilometres of oceans. The two most abundant phylotypes are co-localized specifically with the corals' endosymbiotic algae and symbiont-containing host cells. These bacterial symbioses likely facilitate the success of the dinoflagellate endosymbiosis with corals in diverse environmental regimes. PMID:25885563

  2. Climate Resilience: Outreach and Engagement with Hard to Reach Communities

    NASA Astrophysics Data System (ADS)

    Baja, K.

    2017-12-01

    Baltimore faces a unique combination of shocks and stresses that cut across social, economic, and environmental sectors. Like many postindustrial cities, Baltimore has experienced a decline in its population - resulting in a lower tax base. These trends have had deleterious effects on the city's ability to attend to much needed infrastructure improvements and human services. Furthermore, Baltimore has an unfortunate history of deliberate racial segregation that is directly responsible for many of the economic and social challenges the City faces today. In addition to considerable social and economic issues, the city is already experiencing negative impacts from climate change. Baltimore is vulnerable to many natural hazards including heavy precipitation, sea level rise, storm surge, and extreme heat. Impacts from hazards and the capacity to adapt to them is not equal across all populations. Low-income residents and communities of color are most vulnerable and lack access to the resources to effectively plan, react and recover. They are also less likely to engage in government processes or input sessions, either due to distrust or ineffective outreach efforts by government employees and partners. This session is focused on sharing best practices and lessons learned from Baltimore's approach to community outreach and engagement as well as its focus on power shifting and relationship building with hard-to-reach communities. Reducing neighborhood vulnerability and strengthening the fabric that holds systems together requires a large number of diverse stakeholders coordinated around resiliency efforts. With the history of deliberate segregation and current disparities it remains critical to build trust, shift power from government to residents, and focus on relationship building. Baltimore City utilized this approach in planning, implementation and evaluation of resiliency work. This session will highlight two plan development processes, several projects, and innovative

  3. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance.

    PubMed

    Glasl, Bettina; Herndl, Gerhard J; Frade, Pedro R

    2016-09-01

    Microbes are well-recognized members of the coral holobiont. However, little is known about the short-term dynamics of mucus-associated microbial communities under natural conditions and after disturbances, and how these dynamics relate to the host's health. Here we examined the natural variability of prokaryotic communities (based on 16S ribosomal RNA gene amplicon sequencing) associating with the surface mucus layer (SML) of Porites astreoides, a species exhibiting cyclical mucus aging and shedding. Shifts in the prokaryotic community composition during mucus aging led to the prevalence of opportunistic and potentially pathogenic bacteria (Verrucomicrobiaceae and Vibrionaceae) in aged mucus and to a twofold increase in prokaryotic abundance. After the release of aged mucus sheets, the community reverted to its original state, dominated by Endozoicimonaceae and Oxalobacteraceae. Furthermore, we followed the fate of the coral holobiont upon depletion of its natural mucus microbiome through antibiotics treatment. After re-introduction to the reef, healthy-looking microbe-depleted corals started exhibiting clear signs of bleaching and necrosis. Recovery versus mortality of the P. astreoides holobiont was related to the degree of change in abundance distribution of the mucus microbiome. We conclude that the natural prokaryotic community inhabiting the coral SML contributes to coral health and that cyclical mucus shedding has a key role in coral microbiome dynamics.

  4. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change

    PubMed Central

    Cardini, Ulisse; Bednarz, Vanessa N; Foster, Rachel A; Wild, Christian

    2014-01-01

    Tropical coral reefs are among the most productive and diverse ecosystems, despite being surrounded by ocean waters where nutrients are in short supply. Benthic dinitrogen (N2) fixation is a significant internal source of “new” nitrogen (N) in reef ecosystems, but related information appears to be sparse. Here, we review the current state (and gaps) of knowledge on N2 fixation associated with coral reef organisms and their ecosystems. By summarizing the existing literature, we show that benthic N2 fixation is an omnipresent process in tropical reef environments. Highest N2 fixation rates are detected in reef-associated cyanobacterial mats and sea grass meadows, clearly showing the significance of these functional groups, if present, to the input of new N in reef ecosystems. Nonetheless, key benthic organisms such as hard corals also importantly contribute to benthic N2 fixation in the reef. Given the usually high coral coverage of healthy reef systems, these results indicate that benthic symbiotic associations may be more important than previously thought. In fact, mutualisms between carbon (C) and N2 fixers have likely evolved that may enable reef communities to mitigate N limitation. We then explore the potential effects of the increasing human interferences on the process of benthic reef N2 fixation via changes in diazotrophic populations, enzymatic activities, or availability of benthic substrates favorable to these microorganisms. Current knowledge indicates positive effects of ocean acidification, warming, and deoxygenation and negative effects of increased ultraviolet radiation on the amount of N fixed in coral reefs. Eutrophication may either boost or suppress N2 fixation, depending on the nutrient becoming limiting. As N2 fixation appears to play a fundamental role in nutrient-limited reef ecosystems, these assumptions need to be expanded and confirmed by future research efforts addressing the knowledge gaps identified in this review. PMID:24967086

  5. Interactive effects of three pervasive marine stressors in a post-disturbance coral reef

    NASA Astrophysics Data System (ADS)

    Gil, Michael A.; Goldenberg, Silvan U.; Ly Thai Bach, Anne; Mills, Suzanne C.; Claudet, Joachim

    2016-12-01

    Ecosystems are commonly affected by natural, episodic disturbances that can abruptly and drastically alter communities. Although it has been shown that resilient ecosystems can eventually recover to pre-disturbed states, the extent to which communities in early stages of recovery could be affected by multiple anthropogenic stressors is poorly understood. Pervasive and rising anthropogenic stressors in coastal marine systems that could interactively affect the recovery of these systems following natural disturbances include high sedimentation, nutrient enrichment, and overfishing. Using a 6-month field experiment, we examined the effects of all combinations of these three stressors on key functional groups in the benthic community growing on simulated, post-disturbance reef patches within a system recovering from large-scale natural disturbances (corallivorous seastar outbreak and cyclone). Our study revealed that sedimentation, nutrient enrichment, and overfishing (simulated using exclusion cages) interactively affected coral survival and algal growth, with taxon-specific effects at multiple scales. First, our treatments affected corals and algae differently, with sedimentation being more detrimental to macroalgal growth but less detrimental to coral ( Porites rus) survival in caged plots, driving significant interactions between sedimentation and caging for both taxa. We also observed distinct responses between coral species and between algal functional groups, with the most extensive responses from algal turf biomass, for which sedimentation suppressed the synergistic (positive) combined effect of nutrient enrichment and caging. Our findings suggest that different combinations of ubiquitous anthropogenic stressors, related to either sea- or land-based activities, interactively influence community recovery from disturbance and may alter species compositions in the resulting community. Our findings further suggest that anthropogenic stressors could promote further

  6. Digital Reef Rugosity Estimates Coral Reef Habitat Complexity

    PubMed Central

    Dustan, Phillip; Doherty, Orla; Pardede, Shinta

    2013-01-01

    Ecological habitats with greater structural complexity contain more species due to increased niche diversity. This is especially apparent on coral reefs where individual coral colonies aggregate to give a reef its morphology, species zonation, and three dimensionality. Structural complexity is classically measured with a reef rugosity index, which is the ratio of a straight line transect to the distance a flexible chain of equal length travels when draped over the reef substrate; yet, other techniques from visual categories to remote sensing have been used to characterize structural complexity at scales from microhabitats to reefscapes. Reef-scale methods either lack quantitative precision or are too time consuming to be routinely practical, while remotely sensed indices are mismatched to the finer scale morphology of coral colonies and reef habitats. In this communication a new digital technique, Digital Reef Rugosity (DRR) is described which utilizes a self-contained water level gauge enabling a diver to quickly and accurately characterize rugosity with non-invasive millimeter scale measurements of coral reef surface height at decimeter intervals along meter scale transects. The precise measurements require very little post-processing and are easily imported into a spreadsheet for statistical analyses and modeling. To assess its applicability we investigated the relationship between DRR and fish community structure at four coral reef sites on Menjangan Island off the northwest corner of Bali, Indonesia and one on mainland Bali to the west of Menjangan Island; our findings show a positive relationship between DRR and fish diversity. Since structural complexity drives key ecological processes on coral reefs, we consider that DRR may become a useful quantitative community-level descriptor to characterize reef complexity. PMID:23437380

  7. Digital reef rugosity estimates coral reef habitat complexity.

    PubMed

    Dustan, Phillip; Doherty, Orla; Pardede, Shinta

    2013-01-01

    Ecological habitats with greater structural complexity contain more species due to increased niche diversity. This is especially apparent on coral reefs where individual coral colonies aggregate to give a reef its morphology, species zonation, and three dimensionality. Structural complexity is classically measured with a reef rugosity index, which is the ratio of a straight line transect to the distance a flexible chain of equal length travels when draped over the reef substrate; yet, other techniques from visual categories to remote sensing have been used to characterize structural complexity at scales from microhabitats to reefscapes. Reef-scale methods either lack quantitative precision or are too time consuming to be routinely practical, while remotely sensed indices are mismatched to the finer scale morphology of coral colonies and reef habitats. In this communication a new digital technique, Digital Reef Rugosity (DRR) is described which utilizes a self-contained water level gauge enabling a diver to quickly and accurately characterize rugosity with non-invasive millimeter scale measurements of coral reef surface height at decimeter intervals along meter scale transects. The precise measurements require very little post-processing and are easily imported into a spreadsheet for statistical analyses and modeling. To assess its applicability we investigated the relationship between DRR and fish community structure at four coral reef sites on Menjangan Island off the northwest corner of Bali, Indonesia and one on mainland Bali to the west of Menjangan Island; our findings show a positive relationship between DRR and fish diversity. Since structural complexity drives key ecological processes on coral reefs, we consider that DRR may become a useful quantitative community-level descriptor to characterize reef complexity.

  8. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages

    PubMed Central

    Nelson, Craig E; Goldberg, Stuart J; Wegley Kelly, Linda; Haas, Andreas F; Smith, Jennifer E; Rohwer, Forest; Carlson, Craig A

    2013-01-01

    Increasing algal cover on tropical reefs worldwide may be maintained through feedbacks whereby algae outcompete coral by altering microbial activity. We hypothesized that algae and coral release compositionally distinct exudates that differentially alter bacterioplankton growth and community structure. We collected exudates from the dominant hermatypic coral holobiont Porites spp. and three dominant macroalgae (one each Ochrophyta, Rhodophyta and Chlorophyta) from reefs of Mo'orea, French Polynesia. We characterized exudates by measuring dissolved organic carbon (DOC) and fractional dissolved combined neutral sugars (DCNSs) and subsequently tracked bacterioplankton responses to each exudate over 48 h, assessing cellular growth, DOC/DCNS utilization and changes in taxonomic composition (via 16S rRNA amplicon pyrosequencing). Fleshy macroalgal exudates were enriched in the DCNS components fucose (Ochrophyta) and galactose (Rhodophyta); coral and calcareous algal exudates were enriched in total DCNS but in the same component proportions as ambient seawater. Rates of bacterioplankton growth and DOC utilization were significantly higher in algal exudate treatments than in coral exudate and control incubations with each community selectively removing different DCNS components. Coral exudates engendered the smallest shift in overall bacterioplankton community structure, maintained high diversity and enriched taxa from Alphaproteobacteria lineages containing cultured representatives with relatively few virulence factors (VFs) (Hyphomonadaceae and Erythrobacteraceae). In contrast, macroalgal exudates selected for less diverse communities heavily enriched in copiotrophic Gammaproteobacteria lineages containing cultured pathogens with increased VFs (Vibrionaceae and Pseudoalteromonadaceae). Our results demonstrate that algal exudates are enriched in DCNS components, foster rapid growth of bacterioplankton and select for bacterial populations with more potential VFs than

  9. Environmental Variability in the Florida Keys: Impacts on Coral Reef Resilience and Health

    NASA Astrophysics Data System (ADS)

    Soto, I. M.; Muller-Karger, F. E.

    2005-12-01

    Environmental variability contributes to both mass mortality and resilience in tropical coral reef communities. We assess variations in sea surface temperature (SST) and ocean color in the Florida Keys using satellite imagery, and provide insight into how this variability is associated with locations of resilient coral communities (those unaffected by or able to recover from major events). The project tests the hypothesis that areas with historically low environmental variability promote lower levels of coral reef resilience. Time series of SST from the Advanced Very High Resolution Radiometer (AVHRR) sensors and ocean color derived quantities (e.g., turbidity and chlorophyll) from the Sea-viewing Wide Field of View Sensor (SeaWiFS) are being constructed over the entire Florida Keys region for a period of twelve and nine years, respectively. These data will be compared with historical coral cover data derived from Landsat imagery (1984-2002). Improved understanding of the causes of coral reef decline or resilience will help protect and manage these natural treasures.

  10. The importance of spatial fishing behavior for coral reef resilience

    NASA Astrophysics Data System (ADS)

    Rassweiler, A.; Lauer, M.; Holbrook, S. J.

    2016-02-01

    Coral reefs are dynamic systems in which disturbances periodically reduce coral cover but are normally followed by recovery of the coral community. However, human activity may have reduced this resilience to disturbance in many coral reef systems, as an increasing number of reefs have undergone persistent transitions from coral-dominated to macroalgal-dominated community states. Fishing on herbivores may be one cause of reduced reef resilience, as lower herbivory can make it easier for macroalgae to become established after a disturbance. Despite the acknowledged importance of fishing, relatively little attention has been paid to the potential for feedbacks between ecosystem state and fisher behavior. Here we couple methods from environmental anthropology and ecology to explore these feedbacks between small-scale fisheries and coral reefs in Moorea, French Polynesia. We document how aspects of ecological state such as the abundance of macroalgae affect people's preference for fishing in particular lagoon habitats. We then incorporate biases towards fishing in certain ecological states into a spatially explicit bio-economic model of ecological dynamics and fishing in Moorea's lagoons. We find that feedbacks between spatial fishing behavior and ecological state can have critical effects on coral reefs. Presence of these spatial behaviors consistently leads to more coherence across the reef-scape. However, whether this coherence manifests as increased resilience or increased fragility depends on the spatial scales of fisher movement and the magnitudes of disturbance. These results emphasize the potential importance of spatially-explicit fishing behavior for reef resilience, but also the complexity of the feedbacks involved.

  11. Assessing the spatial distribution of coral bleaching using small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Levy, Joshua; Hunter, Cynthia; Lukacazyk, Trent; Franklin, Erik C.

    2018-06-01

    Small unmanned aerial systems (sUAS) are an affordable, effective complement to existing coral reef monitoring and assessment tools. sUAS provide repeatable low-altitude, high-resolution photogrammetry to address fundamental questions of spatial ecology and community dynamics for shallow coral reef ecosystems. Here, we qualitatively describe the use of sUAS to survey the spatial characteristics of coral cover and the distribution of coral bleaching across patch reefs in Kānéohe Bay, Hawaii, and address limitations and anticipated technology advancements within the field of UAS. Overlapping sub-decimeter low-altitude aerial reef imagery collected during the 2015 coral bleaching event was used to construct high-resolution reef image mosaics of coral bleaching responses on four Kānéohe Bay patch reefs, totaling 60,000 m2. Using sUAS imagery, we determined that paled, bleached and healthy corals on all four reefs were spatially clustered. Comparative analyses of data from sUAS imagery and in situ diver surveys found as much as 14% difference in coral cover values between survey methods, depending on the size of the reef and area surveyed. When comparing the abundance of unhealthy coral (paled and bleached) between sUAS and in situ diver surveys, we found differences in cover from 1 to 49%, depending on the depth of in situ surveys, the percent of reef area covered with sUAS surveys and patchiness of the bleaching response. This study demonstrates the effective use of sUAS surveys for assessing the spatial dynamics of coral bleaching at colony-scale resolutions across entire patch reefs and evaluates the complementarity of data from both sUAS and in situ diver surveys to more accurately characterize the spatial ecology of coral communities on reef flats and slopes.

  12. Sewage impacts coral reefs at multiple levels of ecological organization.

    PubMed

    Reopanichkul, Pasinee; Schlacher, Thomas A; Carter, R W; Worachananant, Suchai

    2009-09-01

    Against a backdrop of rising sea temperatures and ocean acidification which pose global threats to coral reefs, excess nutrients and turbidity continue to be significant stressors at regional and local scales. Because interventions usually require local data on pollution impacts, we measured ecological responses to sewage discharges in Surin Marine Park, Thailand. Wastewater disposal significantly increased inorganic nutrients and turbidity levels, and this degradation in water quality resulted in substantial ecological shifts in the form of (i) increased macroalgal density and species richness, (ii) lower cover of hard corals, and (iii) significant declines in fish abundance. Thus, the effects of nutrient pollution and turbidity can cascade across several levels of ecological organization to change key properties of the benthos and fish on coral reefs. Maintenance or restoration of ecological reef health requires improved wastewater management and run-off control for reefs to deliver their valuable ecosystems services.

  13. Integration of coral reef ecosystem process studies and remote sensing: Chapter 5

    USGS Publications Warehouse

    Brook, John; Yates, Kimberly; Halley, Robert

    2006-01-01

    Worldwide, local-scale anthropogenic stress combined with global climate change is driving shifts in the state of reef benthic communities from coral-rich to micro- or macroalgal-dominated (Knowlton, 1992; Done, 1999). Such phase shifts in reef benthic communities may be either abrupt or gradual, and case studies from diverse ocean basins demonstrate that recovery, while uncertain (Hughes, 1994), typically involves progression through successional stages (Done, 1992). These transitions in benthic community structure involve changes in community metabolism, and accordingly, the holistic evaluation of associated biogeochemical variables is of great intrinsic value (Done, 1992). Effective reef management requires advance prediction of coral reef alteration in the face of anthropogenic stress and change in the global environment (Hatcher, 1997a). In practice, this goal requires techniques that can rapidly discern, at an early stage, sublethal effects that may cause long-term increases in mortality (brown, 1988; Grigg and Dollar, 1990). Such methods would improve our understanding of the differences in the population, community, and ecosystem structure, as well as function, between pristine and degraded reefs. This knowledge base could then support scientifically based management strategies (Done, 1992). Brown (1988) noted the general lack of rigor in the assessment of stress on coral reefs and suggested that more quantitative approaches than currently exist are needed to allow objective understanding of coral reef dynamics. Sensitive techniques for the timely appraisal of pollution effects or generalized endemic stress in coral reefs are sorely lacking (Grigg and Dollar, 1990; Wilkinsin, 1992). Moreover, monitoring methods based on population inventories, sclerochronology, or reproductive biology tend to myopic and may give inconsistent results. Ideally, an improved means of evaluating reef stress would discriminate mortality due to natural causes from morality to

  14. Coral Mucus Is a Hot Spot for Viral Infections

    PubMed Central

    Nguyen-Kim, Hanh; Bouvier, Thierry; Bouvier, Corinne; Doan-Nhu, Hai; Nguyen-Ngoc, Lam; Nguyen-Thanh, Thuy; Tran-Quang, Huy; Brune, Justine

    2015-01-01

    There is increasing suspicion that viral communities play a pivotal role in maintaining coral health, yet their main ecological traits still remain poorly characterized. In this study, we examined the seasonal distribution and reproduction pathways of viruses inhabiting the mucus of the scleractinians Fungia repanda and Acropora formosa collected in Nha Trang Bay (Vietnam) during an 11-month survey. The strong coupling between epibiotic viral and bacterial abundance suggested that phages are dominant among coral-associated viral communities. Mucosal viruses also exhibited significant differences in their main features between the two coral species and were also remarkably contrasted with their planktonic counterparts. For example, their abundance (inferred from epifluorescence counts), lytic production rates (KCN incubations), and the proportion of lysogenic cells (mitomycin C inductions) were, respectively, 2.6-, 9.5-, and 2.2-fold higher in mucus than in the surrounding water. Both lytic and lysogenic indicators were tightly coupled with temperature and salinity, suggesting that the life strategy of viral epibionts is strongly dependent upon environmental circumstances. Finally, our results suggest that coral mucus may represent a highly favorable habitat for viral proliferation, promoting the development of both temperate and virulent phages. Here, we discuss how such an optimized viral arsenal could be crucial for coral viability by presumably forging complex links with both symbiotic and adjacent nonsymbiotic microorganisms. PMID:26092456

  15. A Trait-Based Approach to Advance Coral Reef Science.

    PubMed

    Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R; Darling, Emily S; Falster, Daniel S; Huang, Danwei; Keith, Sally A; Mizerek, Toni; Pandolfi, John M; Putnam, Hollie M; Baird, Andrew H

    2016-06-01

    Coral reefs are biologically diverse and ecologically complex ecosystems constructed by stony corals. Despite decades of research, basic coral population biology and community ecology questions remain. Quantifying trait variation among species can help resolve these questions, but progress has been hampered by a paucity of trait data for the many, often rare, species and by a reliance on nonquantitative approaches. Therefore, we propose filling data gaps by prioritizing traits that are easy to measure, estimating key traits for species with missing data, and identifying 'supertraits' that capture a large amount of variation for a range of biological and ecological processes. Such an approach can accelerate our understanding of coral ecology and our ability to protect critically threatened global ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Radiocarbon-Based Ages and Growth Rates of Bamboo Corals from the Gulf of Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roark, E B; Guilderson, T P; Flood-Page, S

    2004-12-12

    Deep-sea coral communities have long been recognized by fisherman as areas that support large populations of commercial fish. As a consequence, many deep-sea coral communities are threatened by bottom trawling. Successful management and conservation of this widespread deep-sea habitat requires knowledge of the age and growth rates of deep-sea corals. These organisms also contain important archives of intermediate and deep-water variability, and are thus of interest in the context of decadal to century-scale climate dynamics. Here, we present {Delta}{sup 14}C data that suggest that bamboo corals from the Gulf of Alaska are long-lived (75-126 years) and that they acquire skeletalmore » carbon from two distinct sources. Independent verification of our growth rate estimates and coral ages is obtained by counting seasonal Sr/Ca cycles and probable lunar cycle growth bands.« less

  17. Interactive effects of live coral and structural complexity on the recruitment of reef fishes

    NASA Astrophysics Data System (ADS)

    Coker, D. J.; Graham, N. A. J.; Pratchett, M. S.

    2012-12-01

    Corals reefs are subjected to multiple disturbances that modify levels of coral cover and structural complexity of the reef matrix, and in turn influence the structure of associated fish communities. With disturbances predicted to increase, insight into how changes in substrate condition will influence the recruitment of many fishes is essential for understanding the recovery of reef fish populations following biological and physical disturbances. While studies have revealed that both live coral cover and structural complexity are important for many fishes, there is a lack of understanding regarding how a combination of these changes will impact the recruitment of fishes. This study used experimentally constructed patch reefs consisting of six different habitat treatments; three levels of live coral cover (high, medium, low) crossed with two levels of structural complexity (high, low), to test the independent and combined effects of live coral cover and structural complexity on the recruitment and recovery of fish communities. The abundance and species diversity of fishes varied significantly among the six habitat treatments, but differences were not clearly associated with either coral cover or structural complexity and varied through time. More striking, however, was a significant difference in the composition of fish assemblages among treatments, due mostly to disproportionate abundance of coral-dwelling fishes on high coral cover, high complexity reefs. Overall, it appears that coral cover had a more important influence than structural complexity, at least for the contrasting levels of structural complexity achieved on experimental patch reefs. Furthermore, we found that live coral cover is important for the recruitment of some non-coral-dependent fishes. This study confirms that live coral cover is critical for the maintenance of high biodiversity on tropical coral reefs, and that sustained and ongoing declines in coral cover will adversely affect recruitment

  18. The Coral Reef pH-stat: An Important Defense Against Ocean Acidification? (Invited)

    NASA Astrophysics Data System (ADS)

    Andersson, A. J.; Yeakel, K.; Bates, N.; de Putron, S.; Collins, A.

    2013-12-01

    Concerns have been raised on how coral reefs will be affected by ocean acidification (OA), but there are currently no direct predictions on how seawater CO2 chemistry and pH within coral reefs might change in response to OA. Projections of future changes in seawater pH and aragonite saturation state have only been applied to open ocean conditions surrounding coral reef environments rather than the reef systems themselves. The seawater CO2 chemistry within heterogenous coral reef systems can be significantly different from that of the open ocean depending on the residence time, community composition and the major biogeochemical processes occurring on the reef, i.e., net ecosystem organic carbon production and calcification, which combined act to modify the seawater chemistry. We argue that these processes and coral reefs in general could as a pH-stat, partly regulating seawater pH on the reef and offsetting changes in seawater chemistry imposed by ocean acidification. Based on observations from the Bermuda coral reef, we show that a range of anticipated biogeochemical responses of coral reef communities to OA by the end of this century could partially offset changes in seawater pH by an average of 12% to 24%.

  19. Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals.

    PubMed

    Putnam, Hollie M; Stat, Michael; Pochon, Xavier; Gates, Ruth D

    2012-11-07

    Flexibility in biological systems is seen as an important driver of macro-ecosystem function and stability. Spatially constrained endosymbiotic settings, however, are less studied, although environmental thresholds of symbiotic corals are linked to the function of their endosymbiotic dinoflagellate communities. Symbiotic flexibility is a hypothesized mechanism that corals may exploit to adapt to climate change. This study explores the flexibility of the coral-Symbiodinium symbiosis through quantification of Symbiodinium ITS2 sequence assemblages in a range of coral species and genera. Sequence assemblages are expressed as an index of flexibility incorporating phylogenetic divergence and relative abundance of Symbiodinium sequences recovered from the host. This comparative analysis reveals profound differences in the flexibility of corals for Symbiodinium, thereby classifying corals as generalists or specifists. Generalists such as Acropora and Pocillopora exhibit high intra- and inter-species flexibility in their Symbiodinium assemblages and are some of the most environmentally sensitive corals. Conversely, specifists such as massive Porites colonies exhibit low flexibility, harbour taxonomically narrow Symbiodinium assemblages, and are environmentally resistant corals. Collectively, these findings challenge the paradigm that symbiotic flexibility enhances holobiont resilience. This underscores the need for a deeper examination of the extent and duration of the functional benefits associated with endosymbiotic diversity and flexibility under environmental stress.

  20. Mesopredator trophodynamics on thermally stressed coral reefs

    NASA Astrophysics Data System (ADS)

    Hempson, Tessa N.; Graham, Nicholas A. J.; MacNeil, M. Aaron; Hoey, Andrew S.; Almany, Glenn R.

    2018-03-01

    Ecosystems are becoming vastly modified through disturbance. In coral reef ecosystems, the differential susceptibility of coral taxa to climate-driven bleaching is predicted to shift coral assemblages towards reefs with an increased relative abundance of taxa with high thermal tolerance. Many thermally tolerant coral species are characterised by low structural complexity, with reduced habitat niche space for the small-bodied coral reef fishes on which piscivorous mesopredators feed. This study used a patch reef array to investigate the potential impacts of climate-driven shifts in coral assemblages on the trophodynamics of reef mesopredators and their prey communities. The `tolerant' reef treatment consisted only of coral taxa of low susceptibility to bleaching, while `vulnerable' reefs included species of moderate to high thermal vulnerability. `Vulnerable' reefs had higher structural complexity, and the fish assemblages that established on these reefs over 18 months had higher species diversity, abundance and biomass than those on `tolerant' reefs. Fish assemblages on `tolerant' reefs were also more strongly influenced by the introduction of a mesopredator ( Cephalopholis boenak). Mesopredators on `tolerant' reefs had lower lipid content in their muscle tissue by the end of the 6-week experiment. Such sublethal energetic costs can compromise growth, fecundity, and survivorship, resulting in unexpected population declines in long-lived mesopredators. This study provides valuable insight into the altered trophodynamics of future coral reef ecosystems, highlighting the potentially increased vulnerability of reef fish assemblages to predation as reef structure declines, and the cost of changing prey availability on mesopredator condition.

  1. Microbial consortia of gorgonian corals from the Aleutian islands

    USGS Publications Warehouse

    Gray, Michael A.; Stone, R.P.; McLaughlin, M.R.; Kellogg, C.A.

    2011-01-01

    Gorgonians make up the majority of corals in the Aleutian archipelago and provide critical fish habitat in areas of economically important fisheries. The microbial ecology of the deep-sea gorgonian corals Paragorgea arborea, Plumarella superba, and Cryogorgia koolsae was examined with culture-based and 16S rRNA gene-based techniques. Six coral colonies (two per species) were collected. Samples from all corals were cultured, and clone libraries were constructed from P. superba and C. koolsae. Cultured bacteria were dominated by the Gammaproteobacteria, especially Vibrionaceae, with other phyla comprising <6% of the isolates. The clone libraries showed dramatically different bacterial communities between corals of the same species collected at different sites, with no clear pattern of conserved bacterial consortia. Two of the clone libraries (one from each coral species) were dominated by Tenericutes, with Alphaproteobacteria dominating the remaining sequences. The other libraries were more diverse and had a more even distribution of bacterial phyla, showing more similarity between genera than within coral species. Here we report the first microbiological characterization of P. arborea, P. superba, and C. koolsae. FEMS Microbiology Ecology ?? 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  2. Coral Colonisation of an Artificial Reef in a Turbid Nearshore Environment, Dampier Harbour, Western Australia

    PubMed Central

    Blakeway, David; Byers, Michael; Stoddart, James; Rossendell, Jason

    2013-01-01

    A 0.6 hectare artificial reef of local rock and recycled concrete sleepers was constructed in December 2006 at Parker Point in the industrial port of Dampier, western Australia, with the aim of providing an environmental offset for a nearshore coral community lost to land reclamation. Corals successfully colonised the artificial reef, despite the relatively harsh environmental conditions at the site (annual water temperature range 18-32°C, intermittent high turbidity, frequent cyclones, frequent nearby ship movements). Coral settlement to the artificial reef was examined by terracotta tile deployments, and later stages of coral community development were examined by in-situ visual surveys within fixed 25 x 25 cm quadrats on the rock and concrete substrates. Mean coral density on the tiles varied from 113 ± 17 SE to 909 ± 85 SE per m2 over five deployments, whereas mean coral density in the quadrats was only 6.0 ± 1.0 SE per m2 at eight months post construction, increasing to 24.0 ± 2.1 SE per m2 at 62 months post construction. Coral taxa colonising the artificial reef were a subset of those on the surrounding natural reef, but occurred in different proportions— Pseudosiderastreatayami , Mycediumelephantotus and Leptastrea purpurea being disproportionately abundant on the artificial reef. Coral cover increased rapidly in the later stages of the study, reaching 2.3 ± 0.7 SE % at 62 months post construction. This study indicates that simple materials of opportunity can provide a suitable substrate for coral recruitment in Dampier Harbour, and that natural colonisation at the study site remains sufficient to initiate a coral community on artificial substrate despite ongoing natural and anthropogenic perturbations. PMID:24040405

  3. Coral colonisation of an artificial reef in a turbid nearshore environment, Dampier Harbour, western Australia.

    PubMed

    Blakeway, David; Byers, Michael; Stoddart, James; Rossendell, Jason

    2013-01-01

    A 0.6 hectare artificial reef of local rock and recycled concrete sleepers was constructed in December 2006 at Parker Point in the industrial port of Dampier, western Australia, with the aim of providing an environmental offset for a nearshore coral community lost to land reclamation. Corals successfully colonised the artificial reef, despite the relatively harsh environmental conditions at the site (annual water temperature range 18-32°C, intermittent high turbidity, frequent cyclones, frequent nearby ship movements). Coral settlement to the artificial reef was examined by terracotta tile deployments, and later stages of coral community development were examined by in-situ visual surveys within fixed 25 x 25 cm quadrats on the rock and concrete substrates. Mean coral density on the tiles varied from 113 ± 17 SE to 909 ± 85 SE per m(2) over five deployments, whereas mean coral density in the quadrats was only 6.0 ± 1.0 SE per m(2) at eight months post construction, increasing to 24.0 ± 2.1 SE per m(2) at 62 months post construction. Coral taxa colonising the artificial reef were a subset of those on the surrounding natural reef, but occurred in different proportions--Pseudosiderastrea tayami, Mycedium elephantotus and Leptastrea purpurea being disproportionately abundant on the artificial reef. Coral cover increased rapidly in the later stages of the study, reaching 2.3 ± 0.7 SE % at 62 months post construction. This study indicates that simple materials of opportunity can provide a suitable substrate for coral recruitment in Dampier Harbour, and that natural colonisation at the study site remains sufficient to initiate a coral community on artificial substrate despite ongoing natural and anthropogenic perturbations.

  4. Discovery of a living coral reef in the coastal waters of Iraq

    PubMed Central

    Pohl, Thomas; Al-Muqdadi, Sameh W.; Ali, Malik H.; Fawzi, Nadia Al-Mudaffar; Ehrlich, Hermann; Merkel, Broder

    2014-01-01

    Until now, it has been well-established that coral complex in the Arabian/Persian Gulf only exist in the coastal regions of Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia, and United Arab Emirates and it was thought that there are no coral reefs in Iraq. However, here for the first time we show the existence of a living 28 km2 large coral reef in this country. These corals are adapted to one of the most extreme coral-bearing environments on earth: the seawater temperature in this area ranges between 14 and 34°C. The discovery of the unique coral reef oasis in the turbid coastal waters of Iraq will stimulate the interest of governmental agencies, environmental organizations, as well as of the international scientific community working on the fundamental understanding of coral marine ecosystems and global climate today. PMID:24603901

  5. Discovery of a living coral reef in the coastal waters of Iraq.

    PubMed

    Pohl, Thomas; Al-Muqdadi, Sameh W; Ali, Malik H; Fawzi, Nadia Al-Mudaffar; Ehrlich, Hermann; Merkel, Broder

    2014-03-06

    Until now, it has been well-established that coral complex in the Arabian/Persian Gulf only exist in the coastal regions of Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia, and United Arab Emirates and it was thought that there are no coral reefs in Iraq. However, here for the first time we show the existence of a living 28 km(2) large coral reef in this country. These corals are adapted to one of the most extreme coral-bearing environments on earth: the seawater temperature in this area ranges between 14 and 34°C. The discovery of the unique coral reef oasis in the turbid coastal waters of Iraq will stimulate the interest of governmental agencies, environmental organizations, as well as of the international scientific community working on the fundamental understanding of coral marine ecosystems and global climate today.

  6. Coral Settlement on a Highly Disturbed Equatorial Reef System

    PubMed Central

    Bauman, Andrew G.; Guest, James R.; Dunshea, Glenn; Low, Jeffery; Todd, Peter A.; Steinberg, Peter D.

    2015-01-01

    Processes occurring early in the life stages of corals can greatly influence the demography of coral populations, and successful settlement of coral larvae that leads to recruitment is a critical life history stage for coral reef ecosystems. Although corals in Singapore persist in one the world’s most anthropogenically impacted reef systems, our understanding of the role of coral settlement in the persistence of coral communities in Singapore remains limited. Spatial and temporal patterns of coral settlement were examined at 7 sites in the southern islands of Singapore, using settlement tiles deployed and collected every 3 months from 2011 to 2013. Settlement occurred year round, but varied significantly across time and space. Annual coral settlement was low (~54.72 spat m-2 yr-1) relative to other equatorial regions, but there was evidence of temporal variation in settlement rates. Peak settlement occurred between March–May and September–November, coinciding with annual coral spawning periods (March–April and October), while the lowest settlement occurred from December–February during the northeast monsoon. A period of high settlement was also observed between June and August in the first year (2011/12), possibly due to some species spawning outside predicted spawning periods, larvae settling from other locations or extended larval settlement competency periods. Settlement rates varied significantly among sites, but spatial variation was relatively consistent between years, suggesting the strong effects of local coral assemblages or environmental conditions. Pocilloporidae were the most abundant coral spat (83.6%), while Poritidae comprised only 6% of the spat, and Acroporidae <1%. Other, unidentifiable families represented 10% of the coral spat. These results indicate that current settlement patterns are reinforcing the local adult assemblage structure (‘others’; i.e. sediment-tolerant coral taxa) in Singapore, but that the replenishment capacity of

  7. Coral settlement on a highly disturbed equatorial reef system.

    PubMed

    Bauman, Andrew G; Guest, James R; Dunshea, Glenn; Low, Jeffery; Todd, Peter A; Steinberg, Peter D

    2015-01-01

    Processes occurring early in the life stages of corals can greatly influence the demography of coral populations, and successful settlement of coral larvae that leads to recruitment is a critical life history stage for coral reef ecosystems. Although corals in Singapore persist in one the world's most anthropogenically impacted reef systems, our understanding of the role of coral settlement in the persistence of coral communities in Singapore remains limited. Spatial and temporal patterns of coral settlement were examined at 7 sites in the southern islands of Singapore, using settlement tiles deployed and collected every 3 months from 2011 to 2013. Settlement occurred year round, but varied significantly across time and space. Annual coral settlement was low (~54.72 spat m(-2) yr(-1)) relative to other equatorial regions, but there was evidence of temporal variation in settlement rates. Peak settlement occurred between March-May and September-November, coinciding with annual coral spawning periods (March-April and October), while the lowest settlement occurred from December-February during the northeast monsoon. A period of high settlement was also observed between June and August in the first year (2011/12), possibly due to some species spawning outside predicted spawning periods, larvae settling from other locations or extended larval settlement competency periods. Settlement rates varied significantly among sites, but spatial variation was relatively consistent between years, suggesting the strong effects of local coral assemblages or environmental conditions. Pocilloporidae were the most abundant coral spat (83.6%), while Poritidae comprised only 6% of the spat, and Acroporidae <1%. Other, unidentifiable families represented 10% of the coral spat. These results indicate that current settlement patterns are reinforcing the local adult assemblage structure ('others'; i.e. sediment-tolerant coral taxa) in Singapore, but that the replenishment capacity of Singapore

  8. Evaluating social and ecological vulnerability of coral reef fisheries to climate change.

    PubMed

    Cinner, Joshua E; Huchery, Cindy; Darling, Emily S; Humphries, Austin T; Graham, Nicholas A J; Hicks, Christina C; Marshall, Nadine; McClanahan, Tim R

    2013-01-01

    There is an increasing need to evaluate the links between the social and ecological dimensions of human vulnerability to climate change. We use an empirical case study of 12 coastal communities and associated coral reefs in Kenya to assess and compare five key ecological and social components of the vulnerability of coastal social-ecological systems to temperature induced coral mortality [specifically: 1) environmental exposure; 2) ecological sensitivity; 3) ecological recovery potential; 4) social sensitivity; and 5) social adaptive capacity]. We examined whether ecological components of vulnerability varied between government operated no-take marine reserves, community-based reserves, and openly fished areas. Overall, fished sites were marginally more vulnerable than community-based and government marine reserves. Social sensitivity was indicated by the occupational composition of each community, including the importance of fishing relative to other occupations, as well as the susceptibility of different fishing gears to the effects of coral bleaching on target fish species. Key components of social adaptive capacity varied considerably between the communities. Together, these results show that different communities have relative strengths and weaknesses in terms of social-ecological vulnerability to climate change.

  9. Evaluating Social and Ecological Vulnerability of Coral Reef Fisheries to Climate Change

    PubMed Central

    Cinner, Joshua E.; Huchery, Cindy; Darling, Emily S.; Humphries, Austin T.; Graham, Nicholas A. J.; Hicks, Christina C.; Marshall, Nadine; McClanahan, Tim R.

    2013-01-01

    There is an increasing need to evaluate the links between the social and ecological dimensions of human vulnerability to climate change. We use an empirical case study of 12 coastal communities and associated coral reefs in Kenya to assess and compare five key ecological and social components of the vulnerability of coastal social-ecological systems to temperature induced coral mortality [specifically: 1) environmental exposure; 2) ecological sensitivity; 3) ecological recovery potential; 4) social sensitivity; and 5) social adaptive capacity]. We examined whether ecological components of vulnerability varied between government operated no-take marine reserves, community-based reserves, and openly fished areas. Overall, fished sites were marginally more vulnerable than community-based and government marine reserves. Social sensitivity was indicated by the occupational composition of each community, including the importance of fishing relative to other occupations, as well as the susceptibility of different fishing gears to the effects of coral bleaching on target fish species. Key components of social adaptive capacity varied considerably between the communities. Together, these results show that different communities have relative strengths and weaknesses in terms of social-ecological vulnerability to climate change. PMID:24040228

  10. Reprint of - Deep-sea coral and hardbottom habitats on the west Florida slope, eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ross, Steve W.; Rhode, Mike; Brooke, Sandra

    2017-09-01

    Until recently, benthic habitats dominated by deep-sea corals (DSC) appeared to be less extensive on the slope of the Gulf of Mexico (GOM) than in the northeast Atlantic Ocean or off the southeastern US. There are relatively few bioherms (i.e., coral-built mounds) in the northern GOM, and most DSCs are attached to existing hard substrata (e.g., authigenically formed carbonate). The primary structure-forming, DSC in the GOM is Lophelia pertusa, but structure is also provided by other living and dead scleractinians, antipatharians (black corals), octocorals (gorgonians, soft corals), hydrocorals and sponges, as well as abundant rocky substrata. The best development of DSCs in the GOM was previously documented within Viosca Knoll oil and gas lease blocks 826 and 862/906 (north-central GOM) and on the Campeche Bank (southern GOM in Mexican waters). This paper documents extensive deep reef ecosystems composed of DSC and rocky hard-bottom recently surveyed on the West Florida Slope (WFS, eastern GOM) during six research cruises (2008-2012). Using multibeam sonar, CTD casts, and video from underwater vehicles, we describe the physical and oceanographic characteristics of these deep reefs and provide size or area estimates of deep coral and hardground habitats. The multibeam sonar analyses revealed hundreds of mounds and ridges, some of which were subsequently surveyed using underwater vehicles. Mounds and ridges in <525 m depths were usually capped with living coral colonies, dominated by L. pertusa. An extensive rocky scarp, running roughly north-south for at least 229 km, supported lower abundances of scleractinian corals than the mounds and ridges, despite an abundance of settlement substrata. Areal comparisons suggested that the WFS may exceed other parts of the GOM slope in extent of living deep coral coverage and other deep-reef habitat (dead coral and rock). The complex WFS region warrants additional studies to better understand the influences of oceanography and

  11. Ocean acidification and warming will lower coral reef resilience

    PubMed Central

    Anthony, Kenneth R N; Maynard, Jeffrey A; Diaz-Pulido, Guillermo; Mumby, Peter J; Marshall, Paul A; Cao, Long; Hoegh-Guldberg, Ove

    2011-01-01

    Ocean warming and acidification from increasing levels of atmospheric CO2 represent major global threats to coral reefs, and are in many regions exacerbated by local-scale disturbances such as overfishing and nutrient enrichment. Our understanding of global threats and local-scale disturbances on reefs is growing, but their relative contribution to reef resilience and vulnerability in the future is unclear. Here, we analyse quantitatively how different combinations of CO2 and fishing pressure on herbivores will affect the ecological resilience of a simplified benthic reef community, as defined by its capacity to maintain and recover to coral-dominated states. We use a dynamic community model integrated with the growth and mortality responses for branching corals (Acropora) and fleshy macroalgae (Lobophora). We operationalize the resilience framework by parameterizing the response function for coral growth (calcification) by ocean acidification and warming, coral bleaching and mortality by warming, macroalgal mortality by herbivore grazing and macroalgal growth via nutrient loading. The model was run for changes in sea surface temperature and water chemistry predicted by the rise in atmospheric CO2 projected from the IPCC's fossil-fuel intensive A1FI scenario during this century. Results demonstrated that severe acidification and warming alone can lower reef resilience (via impairment of coral growth and increased coral mortality) even under high grazing intensity and low nutrients. Further, the threshold at which herbivore overfishing (reduced grazing) leads to a coral–algal phase shift was lowered by acidification and warming. These analyses support two important conclusions: Firstly, reefs already subjected to herbivore overfishing and nutrification are likely to be more vulnerable to increasing CO2. Secondly, under CO2 regimes above 450–500 ppm, management of local-scale disturbances will become critical to keeping reefs within an Acropora-rich domain.

  12. Gulf of Mexico Deep-Sea Coral Ecosystem Studies, 2008-2011

    USGS Publications Warehouse

    Kellogg, Christina A.

    2009-01-01

    Most people are familiar with tropical coral reefs, located in warm, well-illuminated, shallow waters. However, corals also exist hundreds and even thousands of meters below the ocean surface, where it is cold and completely dark. These deep-sea corals, also known as cold-water corals, have become a topic of interest due to conservation concerns over the impacts of trawling, exploration for oil and gas, and climate change. Although the existence of these corals has been known since the 1800s, our understanding of their distribution, ecology, and biology is limited due to the technical difficulties of conducting deep-sea research. DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) is a new U.S. Geological Survey (USGS) program focused on deep-water coral ecosystems in the Gulf of Mexico. This integrated, multidisciplinary, international effort investigates a variety of topics related to unique and fragile deep-sea coral ecosystems from the microscopic level to the ecosystem level, including components of microbiology, population genetics, paleoecology, food webs, taxonomy, community ecology, physical oceanography, and mapping.

  13. The Effects of Nutrient Enrichment and Herbivore Abundance on the Ability of Turf Algae to Overgrow Coral in the Caribbean

    PubMed Central

    Vermeij, Mark J. A.; van Moorselaar, Imke; Engelhard, Sarah; Hörnlein, Christine; Vonk, Sophie M.; Visser, Petra M.

    2010-01-01

    Turf algae are multispecies communities of small marine macrophytes that are becoming a dominant component of coral reef communities around the world. To assess the impact of turf algae on corals, we investigated the effects of increased nutrients (eutrophication) on the interaction between the Caribbean coral Montastraea annularis and turf algae at their growth boundary. We also assessed whether herbivores are capable of reducing the abundance of turf algae at coral-algae boundaries. We found that turf algae cause visible (overgrowth) and invisible negative effects (reduced fitness) on neighbouring corals. Corals can overgrow neighbouring turf algae very slowly (at a rate of 0.12 mm 3 wk−1) at ambient nutrient concentrations, but turf algae overgrew corals (at a rate of 0.34 mm 3 wk−1) when nutrients were experimentally increased. Exclusion of herbivores had no measurable effect on the rate turf algae overgrew corals. We also used PAM fluorometry (a common approach for measuring of a colony's “fitness”) to detect the effects of turf algae on the photophysiology of neighboring corals. Turf algae always reduced the effective photochemical efficiency of neighbouring corals, regardless of nutrient and/or herbivore conditions. The findings that herbivores are not capable of controlling the abundance of turf algae and that nutrient enrichment gives turf algae an overall competitive advantage over corals together have serious implications for the health of Caribbean coral reef systems. At ambient nutrient levels, traditional conservation measures aimed at reversing coral-to-algae phase shifts by reducing algal abundance (i.e., increasing herbivore populations by establishing Marine Protected Areas or tightening fishing regulations) will not necessarily reduce the negative impact of turf algae on local coral communities. Because turf algae have become the most abundant benthic group on Curaçao (and likely elsewhere in the Caribbean), new conservation strategies

  14. Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs

    NASA Astrophysics Data System (ADS)

    Henry, L.-A.; Moreno Navas, J.; Roberts, J. M.

    2013-04-01

    We investigated how interactions between hydrography, topography and species ecology influence the assembly of species and functional traits across multiple spatial scales of a cold-water coral reef seascape. In a novel approach for these ecosystems, we used a spatially resolved complex three-dimensional flow model of hydrography to help explain assembly patterns. Forward-selection of distance-based Moran's eigenvector mapping (dbMEM) variables identified two submodels of spatial scales at which communities change: broad-scale (across reef) and fine-scale (within reef). Variance partitioning identified bathymetric and hydrographic gradients important in creating broad-scale assembly of species and traits. In contrast, fine-scale assembly was related more to processes that created spatially autocorrelated patches of fauna, such as philopatric recruitment in sessile fauna, and social interactions and food supply in scavenging detritivores and mobile predators. Our study shows how habitat modification of reef connectivity and hydrography by bottom fishing and renewable energy installations could alter the structure and function of an entire cold-water coral reef seascape.

  15. Age, growth rates, and paleoclimate studies of deep sea corals

    USGS Publications Warehouse

    Prouty, Nancy G; Roark, E. Brendan; Andrews, Allen; Robinson, Laura; Hill, Tessa; Sherwood, Owen; Williams, Branwen; Guilderson, Thomas P.; Fallon, Stewart

    2015-01-01

    Deep-water corals are some of the slowest growing, longest-lived skeletal accreting marine organisms. These habitat-forming species support diverse faunal assemblages that include commercially and ecologically important organisms. Therefore, effective management and conservation strategies for deep-sea corals can be informed by precise and accurate age, growth rate, and lifespan characteristics for proper assessment of vulnerability and recovery from perturbations. This is especially true for the small number of commercially valuable, and potentially endangered, species that are part of the black and precious coral fisheries (Tsounis et al. 2010). In addition to evaluating time scales of recovery from disturbance or exploitation, accurate age and growth estimates are essential for understanding the life history and ecology of these habitat-forming corals. Given that longevity is a key factor for population maintenance and fishery sustainability, partly due to limited and complex genetic flow among coral populations separated by great distances, accurate age structure for these deep-sea coral communities is essential for proper, long-term resource management.

  16. The Assimilation of Diazotroph-Derived Nitrogen by Scleractinian Corals Depends on Their Metabolic Status

    PubMed Central

    Grover, Renaud; Maguer, Jean-François; Fine, Maoz; Ferrier-Pagès, Christine

    2017-01-01

    ABSTRACT Tropical corals are associated with a diverse community of dinitrogen (N2)-fixing prokaryotes (diazotrophs) providing the coral an additional source of bioavailable nitrogen (N) in oligotrophic waters. The overall activity of these diazotrophs changes depending on the current environmental conditions, but to what extent it affects the assimilation of diazotroph-derived N (DDN) by corals is still unknown. Here, in a series of 15N2 tracer experiments, we directly quantified DDN assimilation by scleractinian corals from the Red Sea exposed to different environmental conditions. We show that DDN assimilation strongly varied with the corals’ metabolic status or with phosphate availability in the water. The very autotrophic shallow-water (~5 m) corals showed low or no DDN assimilation, which significantly increased under elevated phosphate availability (3 µM). Corals that depended more on heterotrophy (i.e., bleached and deep-water [~45 m] corals) assimilated significantly more DDN, which contributed up to 15% of the corals’ N demand (compared to 1% in shallow corals). Furthermore, we demonstrate that a substantial part of the DDN assimilated by deep corals was likely obtained from heterotrophic feeding on fixed N compounds and/or diazotrophic cells in the mucus. Conversely, in shallow corals, the net release of mucus, rich in organic carbon compounds, likely enhanced diazotroph abundance and activity and thereby the release of fixed N to the pelagic and benthic reef community. Overall, our results suggest that DDN assimilation by corals varies according to the environmental conditions and is likely linked to the capacity of the coral to acquire nutrients from seawater. PMID:28074021

  17. Oceanic forcing of coral reefs.

    PubMed

    Lowe, Ryan J; Falter, James L

    2015-01-01

    Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.

  18. Symbiodinium spp. associated with high-latitude scleractinian corals from Jeju Island, South Korea

    NASA Astrophysics Data System (ADS)

    De Palmas, S.; Denis, V.; Ribas-Deulofeu, L.; Loubeyres, M.; Woo, S.; Hwang, S. J.; Song, J. I.; Chen, C. A.

    2015-09-01

    Most studies on endosymbiotic dinoflagellate algae (genus Symbiodinium) associated with scleractinian corals focus on tropical and sub-tropical reefs. Their diversity in outlying, non-reef coral communities at high latitudes is still not fully documented. In this study, we analyzed the Symbiodinium diversity associated with five scleractinian species collected at eight sites around Jeju Island (South Korea, 33.4°N) between 5 and 15 m depth. Denaturing gradient gel electrophoresis of amplified internal transcribed spacer region 2 distinguished five Symbiodinium types. We observed a high level of specificity between host genera and Symbiodinium spp. despite existing in an environment with large seasonal oscillations in temperature and light. Psammocora albopicta and Psammocora profundacella were associated with C1 and Montipora millepora with C17. Alveopora japonica was associated exclusively with an unusual F-type, the only known clade F representative functionally important to a scleractinian coral. Oulastrea crispata was associated with Symbiodinium boreum (type D15), occasionally co-occurring with type C3 (in 4 % of specimens). In addition to increasing the knowledge of Symbiodinium diversity in high-latitude coral communities, this study constitutes an important baseline upon which the effects of projected environmental change in the near future can be assessed. A better understanding of high-latitude coral communities is critical for understanding how a warming planet will affect the tempo and mode of shifts in the composition of temperate marine communities.

  19. Spectral response of the coral rubble, living corals, and dead corals: study case on the Spermonde Archipelago, Indonesia

    NASA Astrophysics Data System (ADS)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Yamano, Hiroya; Arafat, Gulam; Rani, Chair; Akbar AS, M.

    2012-10-01

    Coral reefs play important ecological services such as providing foods, biodiversity, nutrient recycling etc. for human society. On the other hand, they are threatened by human impacts such as illegal fishing and environmental changes such as rises of sea water temperature and sea level due to global warming. Thus, it is very important to monitor dynamic spatial distributions of coral reefs and related habitats such as coral rubble, dead coral, bleached corals, seagrass, etc. Hyperspectral data, in particular, offer high potential for characterizing and mapping coral reefs because of their capability to identify individual reef components based on their detailed spectral response. We studied the optical properties by measuring in situ spectra of living corals, dead coral and coral rubble covered with algae. Study site was selected in Spermonde archipelago, South Sulawesi, Indonesia because this area is included in the highest diversity of corals in the world named as Coral Triangle, which is recognized as the global centre of marine biodiversity and a global priority for conservation. Correlation analysis and cluster analysis support that there are distinct differences in reflectance spectra among categories. Common spectral characteristic of living corals, dead corals and coral rubble covered with algae was a reflectance minimum at 674 nm. Healthy corals, dead coral covered with algae and coral rubble covered with algae showed high similarity of spectral reflectance. It is estimated that this is due to photsynthetic pigments.

  20. PROTECTING A NATIONAL TREASURE: A REEF MANAGER’S GUIDE TO CORAL BLEACHING

    EPA Science Inventory

    Coral reefs form the foundation for multi-million dollar industries. Many coastal communities rely on them for eco-tourism, fishing, and shoreline protection from erosion and storm damage. Also, they are the backbone to an entire ecosystem. Corals are primary producers and s...

  1. The threat to coral reefs from more intense cyclones under climate change.

    PubMed

    Cheal, Alistair J; MacNeil, M Aaron; Emslie, Michael J; Sweatman, Hugh

    2017-04-01

    Ocean warming under climate change threatens coral reefs directly, through fatal heat stress to corals and indirectly, by boosting the energy of cyclones that cause coral destruction and loss of associated organisms. Although cyclone frequency is unlikely to rise, cyclone intensity is predicted to increase globally, causing more frequent occurrences of the most destructive cyclones with potentially severe consequences for coral reef ecosystems. While increasing heat stress is considered a pervasive risk to coral reefs, quantitative estimates of threats from cyclone intensification are lacking due to limited data on cyclone impacts to inform projections. Here, using extensive data from Australia's Great Barrier Reef (GBR), we show that increases in cyclone intensity predicted for this century are sufficient to greatly accelerate coral reef degradation. Coral losses on the outer GBR were small, localized and offset by gains on undisturbed reefs for more than a decade, despite numerous cyclones and periods of record heat stress, until three unusually intense cyclones over 5 years drove coral cover to record lows over >1500 km. Ecological damage was particularly severe in the central-southern region where 68% of coral cover was destroyed over >1000 km, forcing record declines in the species richness and abundance of associated fish communities, with many local extirpations. Four years later, recovery of average coral cover was relatively slow and there were further declines in fish species richness and abundance. Slow recovery of community diversity appears likely from such a degraded starting point. Highly unusual characteristics of two of the cyclones, aside from high intensity, inflated the extent of severe ecological damage that would more typically have occurred over 100s of km. Modelling published predictions of future cyclone activity, the likelihood of more intense cyclones within time frames of coral recovery by mid-century poses a global threat to coral

  2. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance

    PubMed Central

    Glasl, Bettina; Herndl, Gerhard J; Frade, Pedro R

    2016-01-01

    Microbes are well-recognized members of the coral holobiont. However, little is known about the short-term dynamics of mucus-associated microbial communities under natural conditions and after disturbances, and how these dynamics relate to the host's health. Here we examined the natural variability of prokaryotic communities (based on 16S ribosomal RNA gene amplicon sequencing) associating with the surface mucus layer (SML) of Porites astreoides, a species exhibiting cyclical mucus aging and shedding. Shifts in the prokaryotic community composition during mucus aging led to the prevalence of opportunistic and potentially pathogenic bacteria (Verrucomicrobiaceae and Vibrionaceae) in aged mucus and to a twofold increase in prokaryotic abundance. After the release of aged mucus sheets, the community reverted to its original state, dominated by Endozoicimonaceae and Oxalobacteraceae. Furthermore, we followed the fate of the coral holobiont upon depletion of its natural mucus microbiome through antibiotics treatment. After re-introduction to the reef, healthy-looking microbe-depleted corals started exhibiting clear signs of bleaching and necrosis. Recovery versus mortality of the P. astreoides holobiont was related to the degree of change in abundance distribution of the mucus microbiome. We conclude that the natural prokaryotic community inhabiting the coral SML contributes to coral health and that cyclical mucus shedding has a key role in coral microbiome dynamics. PMID:26953605

  3. Season, but not symbiont state, drives microbiome structure in the temperate coral Astrangia poculata.

    PubMed

    Sharp, Koty H; Pratte, Zoe A; Kerwin, Allison H; Rotjan, Randi D; Stewart, Frank J

    2017-09-15

    Understanding the associations among corals, their photosynthetic zooxanthella symbionts (Symbiodinium), and coral-associated prokaryotic microbiomes is critical for predicting the fidelity and strength of coral symbioses in the face of growing environmental threats. Most coral-microbiome associations are beneficial, yet the mechanisms that determine the composition of the coral microbiome remain largely unknown. Here, we characterized microbiome diversity in the temperate, facultatively symbiotic coral Astrangia poculata at four seasonal time points near the northernmost limit of the species range. The facultative nature of this system allowed us to test seasonal influence and symbiotic state (Symbiodinium density in the coral) on microbiome community composition. Change in season had a strong effect on A. poculata microbiome composition. The seasonal shift was greatest upon the winter to spring transition, during which time A. poculata microbiome composition became more similar among host individuals. Within each of the four seasons, microbiome composition differed significantly from that of surrounding seawater but was surprisingly uniform between symbiotic and aposymbiotic corals, even in summer, when differences in Symbiodinium density between brown and white colonies are the highest, indicating that the observed seasonal shifts are not likely due to fluctuations in Symbiodinium density. Our results suggest that symbiotic state may not be a primary driver of coral microbial community organization in A. poculata, which is a surprise given the long-held assumption that excess photosynthate is of importance to coral-associated microbes. Rather, other environmental or host factors, in this case, seasonal changes in host physiology associated with winter quiescence, may drive microbiome diversity. Additional studies of A. poculata and other facultatively symbiotic corals will provide important comparisons to studies of reef-building tropical corals and therefore

  4. Gradients of coastal fish farm effluents and their effect on coral reef microbes.

    PubMed

    Garren, Melissa; Smriga, Steven; Azam, Farooq

    2008-09-01

    Coastal milkfish (Chanos chanos) farming may be a source of organic matter enrichment for coral reefs in Bolinao, Republic of the Philippines. Interactions among microbial communities associated with the water column, corals and milkfish feces can provide insight into the ecosystem's response to enrichment. Samples were collected at sites along a transect that extended from suspended milkfish pens into the coral reef. Water was characterized by steep gradients in the concentrations of dissolved organic carbon (70-160 microM), total dissolved nitrogen (7-40 microM), chlorophyll a (0.25-10 microg l(-1)), particulate matter (106-832 microg l(-1)), bacteria (5 x 10(5)-1 x 10(6) cells ml(-1)) and viruses (1-7 x 10(7) ml(-1)) that correlated with distance from the fish cages. Particle-attached bacteria, which were observed by scanning laser confocal microscopy, increased across the gradient from < 0.1% to 5.6% of total bacteria at the fish pens. Analyses of 16S rRNA genes by denaturing gradient gel electrophoresis and environmental clone libraries revealed distinct microbial communities for each sample type. Coral libraries had the greatest number of phyla represented (range: 6-8) while fish feces contained the lowest number (3). Coral libraries also had the greatest number of 'novel' sequences (defined as < 93% similar to any sequence in the NCBI nt database; 29% compared with 3% and 5% in the feces and seawater libraries respectively). Despite the differences in microbial community composition, some 16S rRNA sequences co-occurred across sample types including Acinetobacter sp. and Ralstonia sp. Such patterns raise the question of whether bacteria might be transported from the fish pens to corals or if microenvironments at the fish pens and on the corals select for the same phylotypes. Understanding the underlying mechanisms of effluent-coral interactions will help predict the ability of coral reef ecosystems to resist and rebound from organic matter enrichment.

  5. Dynamic Stability of Coral Reefs on the West Australian Coast

    PubMed Central

    Speed, Conrad W.; Babcock, Russ C.; Bancroft, Kevin P.; Beckley, Lynnath E.; Bellchambers, Lynda M.; Depczynski, Martial; Field, Stuart N.; Friedman, Kim J.; Gilmour, James P.; Hobbs, Jean-Paul A.; Kobryn, Halina T.; Moore, James A. Y.; Nutt, Christopher D.; Shedrawi, George; Thomson, Damian P.; Wilson, Shaun K.

    2013-01-01

    Monitoring changes in coral cover and composition through space and time can provide insights to reef health and assist the focus of management and conservation efforts. We used a meta-analytical approach to assess coral cover data across latitudes 10–35°S along the west Australian coast, including 25 years of data from the Ningaloo region. Current estimates of coral cover ranged between 3 and 44% in coral habitats. Coral communities in the northern regions were dominated by corals from the families Acroporidae and Poritidae, which became less common at higher latitudes. At Ningaloo Reef coral cover has remained relatively stable through time (∼28%), although north-eastern and southern areas have experienced significant declines in overall cover. These declines are likely related to periodic disturbances such as cyclones and thermal anomalies, which were particularly noticeable around 1998/1999 and 2010/2011. Linear mixed effects models (LME) suggest latitude explains 10% of the deviance in coral cover through time at Ningaloo. Acroporidae has decreased in abundance relative to other common families at Ningaloo in the south, which might be related to persistence of more thermally and mechanically tolerant families. We identify regions where quantitative time-series data on coral cover and composition are lacking, particularly in north-western Australia. Standardising routine monitoring methods used by management and research agencies at these, and other locations, would allow a more robust assessment of coral condition and a better basis for conservation of coral reefs. PMID:23922829

  6. Phage and Nucleocytoplasmic Large Viral Sequences Dominate Coral Viromes from the Arabian Gulf.

    PubMed

    Mahmoud, Huda; Jose, Liny

    2017-01-01

    Corals that naturally thrive under extreme conditions are gaining increasing attention due to their importance as living models to understand the impact of global warming on world corals. Here, we present the first metagenomic study of viral communities in corals thriving in a thermally variable water body in which the temperature fluctuates between 11 and 39°C in different seasons. The viral assemblages of two of the most abundant massive ( Porites harrisoni ) and branching ( Acropora downingi ) corals in offshore and inshore reef systems in the northern Arabian Gulf were investigated. Samples were collected from five reef systems during summer, autumn and winter of 2011/2012. The two coral viromes contain 12 viral families, including 10 dsDNA viral families [Siphoviridae, Podoviridae, Myoviridae, Phycodnaviridae, Baculoviridae, Herpesviridae, Adenoviridae, Alloherpesviridae, Mimiviridae and one unclassified family], one-ssDNA viral family (Microviridae) and one RNA viral family (Retroviridae). Overall, sequences significantly similar to Podoviridae were the most abundant in the P. harrisoni and A. downingi viromes. Various morphological types of virus-like particles (VLPs) were confirmed in the healthy coral tissue by transmission electron microscopy, including large tailless VLPs and electron-dense core VLPs. Tailed bacteriophages were isolated from coral tissue using a plaque assay. Higher functional gene diversity was recorded in A. downingi than in P. harrisoni , and comparative metagenomics revealed that the Gulf viral assemblages are functionally distinct from Pacific Ocean coral viral communities.

  7. Fish community reassembly after a coral mass mortality: higher trophic groups are subject to increased rates of extinction.

    PubMed

    Alonso, David; Pinyol-Gallemí, Aleix; Alcoverro, Teresa; Arthur, Rohan

    2015-05-01

    Since Gleason and Clements, our understanding of community dynamics has been influenced by theories emphasising either dispersal or niche assembly as central to community structuring. Determining the relative importance of these processes in structuring real-world communities remains a challenge. We tracked reef fish community reassembly after a catastrophic coral mortality in a relatively unfished archipelago. We revisited the stochastic model underlying MacArthur and Wilson's Island Biogeography Theory, with a simple extension to account for trophic identity. Colonisation and extinction rates calculated from decadal presence-absence data based on (1) species neutrality, (2) trophic identity and (3) site-specificity were used to model post-disturbance reassembly, and compared with empirical observations. Results indicate that species neutrality holds within trophic guilds, and trophic identity significantly increases overall model performance. Strikingly, extinction rates increased clearly with trophic position, indicating that fish communities may be inherently susceptible to trophic downgrading even without targeted fishing of top predators. © 2015 John Wiley & Sons Ltd/CNRS.

  8. Phytoplankton transport to coral reefs by internal solitons in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Huai

    2016-09-01

    Evidence is presented that waters containing high concentrations of chlorophyll are transported by internal waves to the fore-reef slope of Dongsha Atoll in the northern South China Sea. High vertical resolution mooring measurements of temperature, pressure, and chlorophyll fluorescence revealed that the internal soliton cores could transport chlorophyll vertically downward and increase concentrations by an order of magnitude near the seafloor, compared to background levels. The reef areas that are potentially nourished by the pulses of phytoplankton are dominated by alcyonacean soft corals, while other reef areas that are less or not at all affected by internal waves are dominated by scleractinian hard corals. This suggests that the delivery of phytoplankton by internal solitons provides a plentiful food source that benefits the growth of soft corals.

  9. Microbial consortia of gorgonian corals from the Aleutian islands.

    PubMed

    Gray, Michael A; Stone, Robert P; McLaughlin, Molly R; Kellogg, Christina A

    2011-04-01

    Gorgonians make up the majority of corals in the Aleutian archipelago and provide critical fish habitat in areas of economically important fisheries. The microbial ecology of the deep-sea gorgonian corals Paragorgea arborea, Plumarella superba, and Cryogorgia koolsae was examined with culture-based and 16S rRNA gene-based techniques. Six coral colonies (two per species) were collected. Samples from all corals were cultured, and clone libraries were constructed from P. superba and C. koolsae. Cultured bacteria were dominated by the Gammaproteobacteria, especially Vibrionaceae, with other phyla comprising <6% of the isolates. The clone libraries showed dramatically different bacterial communities between corals of the same species collected at different sites, with no clear pattern of conserved bacterial consortia. Two of the clone libraries (one from each coral species) were dominated by Tenericutes, with Alphaproteobacteria dominating the remaining sequences. The other libraries were more diverse and had a more even distribution of bacterial phyla, showing more similarity between genera than within coral species. Here we report the first microbiological characterization of P. arborea, P. superba, and C. koolsae. FEMS Microbiology Ecology © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  10. Ecological Inferences from a deep screening of the Complex Bacterial Consortia associated with the coral, Porites astreoides.

    PubMed

    Rodriguez-Lanetty, Mauricio; Granados-Cifuentes, Camila; Barberan, Albert; Bellantuono, Anthony J; Bastidas, Carolina

    2013-08-01

    The functional role of the bacterial organisms in the reef ecosystem and their contribution to the coral well-being remain largely unclear. The first step in addressing this gap of knowledge relies on in-depth characterization of the coral microbial community and its changes in diversity across coral species, space and time. In this study, we focused on the exploration of microbial community assemblages associated with an ecologically important Caribbean scleractinian coral, Porites astreoides, using Illumina high-throughput sequencing of the V5 fragment of 16S rRNA gene. We collected data from a large set of biological replicates, allowing us to detect patterns of geographical structure and resolve co-occurrence patterns using network analyses. The taxonomic analysis of the resolved diversity showed consistent and dominant presence of two OTUs affiliated with the order Oceanospirillales, which corroborates a specific pattern of bacterial association emerging for this coral species and for many other corals within the genus Porites. We argue that this specific association might indicate a symbiotic association with the adult coral partner. Furthermore, we identified a highly diverse rare bacterial 'biosphere' (725 OTUs) also living along with the dominant bacterial symbionts, but the assemblage of this biosphere is significantly structured along the geographical scale. We further discuss that some of these rare bacterial members show significant association with other members of the community reflecting the complexity of the networked consortia within the coral holobiont. © 2013 John Wiley & Sons Ltd.

  11. Virus-host interactions and their roles in coral reef health and disease.

    PubMed

    Thurber, Rebecca Vega; Payet, Jérôme P; Thurber, Andrew R; Correa, Adrienne M S

    2017-04-01

    Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.

  12. Sedimentologic succession of uplifted coral community, Urvina Bay, Isabela Island, Galapagos Archipelago, Ecuador

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, M.W.; Hollander, D.

    1987-05-01

    In March 1954, along the west-central coast of Isabela Island, an upward movement of magma suddenly raised Urvina Bay over 6 m and exposed several square kilometers of carbonate deposits covering a young aa lava flow (around 1000 years old). Results from 6 transect lines across the uplift, 30 cores, and 10 trenches describe the sedimentologic and ecologic transition from barren basalt to diverse carbonate sediments with small coral reefs. Along horizontal transects spanning from 0 to 7 m paleowater depth, there is a seaward progression from beaches, mangroves, and basalt to thick deposits (> 1.6 m) of carbonate sandsmore » and small coral reefs. Variation in water depth, degree of wave exposure, and irregularity of the aa lava topography provided many microhabitats where coral, calcareous algae, and mollusks settled and grew. Eight hermatypic coral species are found throughout the shelf, and three species (i.e., Pavona clavus, Pocillopora damicornis, and Porites lobata) produced five small, isolated, monospecific, coral-reef frameworks. The vertical section seen in cores and trenches shows that calcium carbonate increased upward, whereas volcanic sediments decreased; however, episodic layers occur with high concentrations of basaltic sands. In vertical samples from the central portion of the shelf, the coral population changed from small, isolated colonies of Psammocora (Plesioseris) superficalis near the basalt basement to large reef-forming colonies of Pocillopora damicornis farther upsection. Reefs of the Galapagos Islands are small and less diverse than most Pacific reefs. Nonetheless, understanding their temporal successional development should throw light on the origin and history of larger oceanic reefs in the Pacific.« less

  13. Symbiodinium associations with diseased and healthy scleractinian corals

    NASA Astrophysics Data System (ADS)

    Correa, A. M. S.; Brandt, M. E.; Smith, T. B.; Thornhill, D. J.; Baker, A. C.

    2009-06-01

    Despite recent advances in identifying the causative agents of disease in corals and understanding the impact of epizootics on reef communities, little is known regarding the interactions among diseases, corals, and their dinoflagellate endosymbionts ( Symbiodinium spp.). Since the genotypes of both corals and their resident Symbiodinium contribute to colony-level phenotypes, such as thermotolerance, symbiont genotypes might also contribute to the resistance or susceptibility of coral colonies to disease. To explore this, Symbiodinium were identified using the internal transcribed spacer-2 region of ribosomal DNA from diseased and healthy tissues within individual coral colonies infected with black band disease (BB), dark spot syndrome (DSS), white plague disease (WP), or yellow blotch disease (YB) in the Florida Keys (USA) and the US Virgin Islands. Most of the diseased colonies sampled contained B1, B5a, or C1 (depending on host species), while apparently healthy colonies of the same coral species frequently hosted these types and/or additional symbiont diversity. No potentially “parasitic” Symbiodinium types, uniquely associated with diseased coral tissue, were detected. Within most individual colonies, the same dominant Symbiodinium type was detected in diseased and visually healthy tissues. These data indicate that specific Symbiodinium types are not correlated with the infected tissues of diseased colonies and that DSS and WP onset do not trigger symbiont shuffling within infected tissues. However, few diseased colonies contained clade D symbionts suggesting a negative correlation between hosting Symbiodinium clade D and disease incidence in scleractinian corals. Understanding the influence of Symbiodinium diversity on colony phenotypes may play a critical role in predicting disease resistance and susceptibility in scleractinian corals.

  14. A restoration genetics guide for coral reef conservation.

    PubMed

    Baums, Iliana B

    2008-06-01

    Worldwide degradation of coral reef communities has prompted a surge in restoration efforts. They proceed largely without considering genetic factors because traditionally, coral populations have been regarded as open over large areas with little potential for local adaptation. Since, biophysical and molecular studies indicated that most populations are closed over shorter time and smaller spatial scales. Thus, it is justified to re-examine the potential for site adaptation in corals. There is ample evidence for differentiated populations, inbreeding, asexual reproduction and the occurrence of ecotypes, factors that may facilitate local adaptation. Discovery of widespread local adaptation would influence coral restoration projects mainly with regard to the physical and evolutionary distance from the source wild and/or captive bred propagules may be moved without causing a loss of fitness in the restored population. Proposed causes for loss of fitness as a result of (plant) restoration efforts include founder effects, genetic swamping, inbreeding and/or outbreeding depression. Direct evidence for any of these processes is scarce in reef corals due to a lack of model species that allow for testing over multiple generations and the separation of the relative contributions of algal symbionts and their coral hosts to the overall performance of the coral colony. This gap in our knowledge may be closed by employing novel population genetic and genomics approaches. The use of molecular tools may aid managers in the selection of appropriate propagule sources, guide spatial arrangement of transplants, and help in assessing the success of coral restoration projects by tracking the performance of transplants, thereby generating important data for future coral reef conservation and restoration projects.

  15. Living on the edge: Vulnerability of coral-dependent fishes in the Gulf.

    PubMed

    Buchanan, Jack R; Krupp, Friedhelm; Burt, John A; Feary, David A; Ralph, Gina M; Carpenter, Kent E

    2016-04-30

    In the Gulf, multiple human impacts and recurrent bleaching events have resulted in serious declines of coral assemblages, particularly in near-shore areas. However, the degree to which the extinction risk of coral-dependent fishes is impacted by these coral declines has been uncertain. Using primary literature and expert knowledge, coral-dependent fishes of the Gulf were identified and species-specific data on the regional distribution, population status, life history characteristics, and major threats were compiled to determine their likelihood of extinction under the IUCN Red List of Threatened Species' Categories and Criteria. Due to the limited area and degraded and fragmented nature of coral assemblages in the Gulf, all coral-dependent fishes (where data was sufficient to assess) were listed at elevated risk of extinction. Cross-boundary collaboration among Gulf States is necessary for effective management and protection of coral assemblages and their associated communities within this globally important region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Evidence of host-associated divergence from coral-eating snails (genus Coralliophila) in the Coral Triangle

    NASA Astrophysics Data System (ADS)

    Simmonds, Sara E.; Chou, Vincent; Cheng, Samantha H.; Rachmawati, Rita; Calumpong, Hilconida P.; Ngurah Mahardika, G.; Barber, Paul H.

    2018-06-01

    We studied how host-associations and geography shape the genetic structure of sister species of marine snails Coralliophila radula (A. Adams, 1853) and C. violacea (Kiener, 1836). These obligate ectoparasites prey upon corals and are sympatric throughout much of their ranges in coral reefs of the tropical and subtropical Indo-Pacific. We tested for population genetic structure of snails in relation to geography and their host corals using mtDNA (COI) sequences in minimum spanning trees and AMOVAs. We also examined the evolutionary relationships of their Porites host coral species using maximum likelihood trees of RAD-seq (restriction site-associated DNA sequencing) loci mapped to a reference transcriptome. A maximum likelihood tree of host corals revealed three distinct clades. Coralliophila radula showed a pronounced genetic break across the Sunda Shelf ( Φ CT = 0.735) but exhibited no genetic structure with respect to host. C. violacea exhibited significant geographic structure ( Φ CT = 0.427), with divergence among Hawaiian populations, the Coral Triangle and the Indian Ocean. Notably, C. violacea showed evidence of ecological divergence; two lineages were associated with different groups of host coral species, one widespread found at all sites, and the other restricted to the Coral Triangle. Sympatric populations of C. violacea found on different suites of coral species were highly divergent ( Φ CT = 0.561, d = 5.13%), suggesting that symbiotic relationships may contribute to lineage diversification in the Coral Triangle.

  17. The Influence of Coral Reef Benthic Condition on Associated Fish Assemblages

    PubMed Central

    Chong-Seng, Karen M.; Mannering, Thomas D.; Pratchett, Morgan S.; Bellwood, David R.; Graham, Nicholas A. J.

    2012-01-01

    Accumulative disturbances can erode a coral reef’s resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae. PMID:22870294

  18. The influence of coral reef benthic condition on associated fish assemblages.

    PubMed

    Chong-Seng, Karen M; Mannering, Thomas D; Pratchett, Morgan S; Bellwood, David R; Graham, Nicholas A J

    2012-01-01

    Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.

  19. The Assimilation of Diazotroph-Derived Nitrogen by Scleractinian Corals Depends on Their Metabolic Status.

    PubMed

    Bednarz, Vanessa N; Grover, Renaud; Maguer, Jean-François; Fine, Maoz; Ferrier-Pagès, Christine

    2017-01-10

    Tropical corals are associated with a diverse community of dinitrogen (N 2 )-fixing prokaryotes (diazotrophs) providing the coral an additional source of bioavailable nitrogen (N) in oligotrophic waters. The overall activity of these diazotrophs changes depending on the current environmental conditions, but to what extent it affects the assimilation of diazotroph-derived N (DDN) by corals is still unknown. Here, in a series of 15 N 2 tracer experiments, we directly quantified DDN assimilation by scleractinian corals from the Red Sea exposed to different environmental conditions. We show that DDN assimilation strongly varied with the corals' metabolic status or with phosphate availability in the water. The very autotrophic shallow-water (~5 m) corals showed low or no DDN assimilation, which significantly increased under elevated phosphate availability (3 µM). Corals that depended more on heterotrophy (i.e., bleached and deep-water [~45 m] corals) assimilated significantly more DDN, which contributed up to 15% of the corals' N demand (compared to 1% in shallow corals). Furthermore, we demonstrate that a substantial part of the DDN assimilated by deep corals was likely obtained from heterotrophic feeding on fixed N compounds and/or diazotrophic cells in the mucus. Conversely, in shallow corals, the net release of mucus, rich in organic carbon compounds, likely enhanced diazotroph abundance and activity and thereby the release of fixed N to the pelagic and benthic reef community. Overall, our results suggest that DDN assimilation by corals varies according to the environmental conditions and is likely linked to the capacity of the coral to acquire nutrients from seawater. Tropical corals are associated with specialized bacteria (i.e., diazotrophs) able to transform dinitrogen (N 2 ) gas into a bioavailable form of nitrogen, but how much of this diazotroph-derived nitrogen (DDN) is assimilated by corals under different environmental conditions is still unknown. Here

  20. Launching Literacy in After-School Programs: Early Lessons from the CORAL Initiative

    ERIC Educational Resources Information Center

    Arbreton, Amy J. A.; Goldsmith, Julie; Sheldon, Jessica

    2005-01-01

    The James Irvine Foundation launched the Communities Organizing Resources to Advance Learning (CORAL) initiative in 1999 with the goal of improving the academic achievement of children in the lowest-performing schools in five California cities. In 2004, CORAL adopted a more targeted approach toward reaching this goal by integrating a regular…