Sample records for hard core potentials

  1. An inverse problem for Gibbs fields with hard core potential

    NASA Astrophysics Data System (ADS)

    Koralov, Leonid

    2007-05-01

    It is well known that for a regular stable potential of pair interaction and a small value of activity one can define the corresponding Gibbs field (a measure on the space of configurations of points in Rd). In this paper we consider a converse problem. Namely, we show that for a sufficiently small constant ρ¯1 and a sufficiently small function ρ¯2(x), x ∈Rd, that is equal to zero in a neighborhood of the origin, there exist a hard core pair potential and a value of activity such that ρ¯1 is the density and ρ¯2 is the pair correlation function of the corresponding Gibbs field.

  2. Hard-Core Unemployment: A Selected, Annotated Bibliography.

    ERIC Educational Resources Information Center

    Cameron, Colin, Comp.; Menon, Anila Bhatt, Comp.

    This annotated bibliography contains references to various films, articles, and books on the subject of hard-core unemployment, and is divided into the following sections: (1) The Sociology of the Hard-Core Milieu, (2) Training Programs, (3) Business and the Hard-Core, (4) Citations of Miscellaneous References on Hard-Core Unemployment, (5)…

  3. Equation of state and critical point behavior of hard-core double-Yukawa fluids.

    PubMed

    Montes, J; Robles, M; López de Haro, M

    2016-02-28

    A theoretical study on the equation of state and the critical point behavior of hard-core double-Yukawa fluids is presented. Thermodynamic perturbation theory, restricted to first order in the inverse temperature and having the hard-sphere fluid as the reference system, is used to derive a relatively simple analytical equation of state of hard-core multi-Yukawa fluids. Using such an equation of state, the compressibility factor and phase behavior of six representative hard-core double-Yukawa fluids are examined and compared with available simulation results. The effect of varying the parameters of the hard-core double-Yukawa intermolecular potential on the location of the critical point is also analyzed using different perspectives. The relevance of this analysis for fluids whose molecules interact with realistic potentials is also pointed out.

  4. A mean spherical model for soft potentials: The hard core revealed as a perturbation

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Y.; Ashcroft, N. W.

    1978-01-01

    The mean spherical approximation for fluids is extended to treat the case of dense systems interacting via soft-potentials. The extension takes the form of a generalized statement concerning the behavior of the direct correlation function c(r) and radial distribution g(r). From a detailed analysis that views the hard core portion of a potential as a perturbation on the whole, a specific model is proposed which possesses analytic solutions for both Coulomb and Yukawa potentials, in addition to certain other remarkable properties. A variational principle for the model leads to a relatively simple method for obtaining numerical solutions.

  5. On Maximal Hard-Core Thinnings of Stationary Particle Processes

    NASA Astrophysics Data System (ADS)

    Hirsch, Christian; Last, Günter

    2018-02-01

    The present paper studies existence and distributional uniqueness of subclasses of stationary hard-core particle systems arising as thinnings of stationary particle processes. These subclasses are defined by natural maximality criteria. We investigate two specific criteria, one related to the intensity of the hard-core particle process, the other one being a local optimality criterion on the level of realizations. In fact, the criteria are equivalent under suitable moment conditions. We show that stationary hard-core thinnings satisfying such criteria exist and are frequently distributionally unique. More precisely, distributional uniqueness holds in subcritical and barely supercritical regimes of continuum percolation. Additionally, based on the analysis of a specific example, we argue that fluctuations in grain sizes can play an important role for establishing distributional uniqueness at high intensities. Finally, we provide a family of algorithmically constructible approximations whose volume fractions are arbitrarily close to the maximum.

  6. Hard sphere perturbation theory for fluids with soft-repulsive-core potentials

    NASA Astrophysics Data System (ADS)

    Ben-Amotz, Dor; Stell, George

    2004-03-01

    The thermodynamic properties of fluids with very soft repulsive-core potentials, resembling those of some liquid metals, are predicted with unprecedented accuracy using a new first-order thermodynamic perturbation theory. This theory is an extension of Mansoori-Canfield/Rasaiah-Stell (MCRS) perturbation theory, obtained by including a configuration integral correction recently identified by Mon, who evaluated it by computer simulation. In this work we derive an analytic expression for Mon's correction in terms of the radial distribution function of the soft-core fluid, g0(r), approximated using Lado's self-consistent extension of Weeks-Chandler-Andersen (WCA) theory. Comparisons with WCA and MCRS predictions show that our new extended-MCRS theory outperforms other first-order theories when applied to fluids with very soft inverse-power potentials (n⩽6), and predicts free energies that are within 0.3kT of simulation results up to the fluid freezing point.

  7. The effect of thermocycling on the fracture toughness and hardness of core buildup materials.

    PubMed

    Medina Tirado, J I; Nagy, W W; Dhuru, V B; Ziebert, A J

    2001-11-01

    Thermocycling has been shown to cause surface degradation of many dental materials, but its effect on the fracture toughness and hardness of direct core buildup materials is unknown. This study was designed to determine the effect of thermocycling on the fracture toughness and hardness of 5 core buildup materials. Fifteen specimens were prepared from each of the following materials: Fluorocore, VariGlass VLC, Valiant PhD, Vitremer, and Chelon-Silver. American Standard for Testing Materials guidelines for single-edge notch, bar-shaped specimens were used. Ten specimens of each material were thermocycled for 2000 cycles; the other 5 specimens were not thermocycled. All specimens were subjected to 3-point bending in a universal testing machine. The load at fracture was recorded, and the fracture toughness (K(IC)) was calculated. Barcol hardness values were also determined. Data were analyzed with 1-way analysis of variance and compared with the Tukey multiple range test (P<.05). Pearson's correlation coefficient was also calculated to measure the association between fracture toughness and hardness. Fluorocore had the highest thermocycled mean K(IC) and Valiant PhD the highest non-thermocycled K(IC). Chelon-Silver demonstrated the lowest mean K(IC) both before and after thermocycling. One-way analysis of variance demonstrated significant differences between conditions, and the Tukey test showed significant differences (P<.05) between materials for both conditions. Most specimens also showed significant hardness differences between conditions. Pearson's correlation coefficient indicated only a mild-to-moderate correlation between hardness and fracture toughness. Within the limitations of this study, the thermocycling process negatively affected the fracture toughness and hardness of the core buildup materials tested.

  8. Perceived pros and cons of smoking and quitting in hard-core smokers: a focus group study

    PubMed Central

    2014-01-01

    Background In the last decade, so-called hard-core smokers have received increasing interest in research literature. For smokers in general, the study of perceived costs and benefits (or ‘pros and cons’) of smoking and quitting is of particular importance in predicting motivation to quit and actual quitting attempts. Therefore, this study aims to gain insight into the perceived pros and cons of smoking and quitting in hard-core smokers. Methods We conducted 11 focus group interviews among current hard-core smokers (n = 32) and former hard-core smokers (n = 31) in the Netherlands. Subsequently, each participant listed his or her main pros and cons in a questionnaire. We used a structural procedure to analyse the data obtained from the group interviews and from the questionnaires. Results Using the qualitative data of both the questionnaires and the transcripts, the perceived pros and cons of smoking and smoking cessation were grouped into 6 main categories: Finance, Health, Intrapersonal Processes, Social Environment, Physical Environment and Food and Weight. Conclusions Although the perceived pros and cons of smoking in hard-core smokers largely mirror the perceived pros and cons of quitting, there are some major differences with respect to weight, social integration, health of children and stress reduction, that should be taken into account in clinical settings and when developing interventions. Based on these findings we propose the ‘Distorted Mirror Hypothesis’. PMID:24548463

  9. Soft Skills: The New Curriculum for Hard-Core Technical Professionals

    ERIC Educational Resources Information Center

    Bancino, Randy; Zevalkink, Claire

    2007-01-01

    In this article, the authors talk about the importance of soft skills for hard-core technical professionals. In many technical professions, the complete focus of education and training is on technical topics either directly or indirectly related to a career or discipline. Students are generally required to master various mathematics skills,…

  10. Critical parameters of hard-core Yukawa fluids within the structural theory

    NASA Astrophysics Data System (ADS)

    Bahaa Khedr, M.; Osman, S. M.

    2012-10-01

    A purely statistical mechanical approach is proposed to account for the liquid-vapor critical point based on the mean density approximation (MDA) of the direct correlation function. The application to hard-core Yukawa (HCY) fluids facilitates the use of the series mean spherical approximation (SMSA). The location of the critical parameters for HCY fluid with variable intermolecular range is accurately calculated. Good agreement is observed with computer simulation results and with the inverse temperature expansion (ITE) predictions. The influence of the potential range on the critical parameters is demonstrated and the universality of the critical compressibility ratio is discussed. The behavior of the isochoric and isobaric heat capacities along the equilibrium line and the near vicinity of the critical point is discussed in details.

  11. Understanding Why Students Participate in Multiple Surveys: Who are the Hard-Core Responders?

    ERIC Educational Resources Information Center

    Porter, Stephen R.; Whitcomb, Michael E.

    2004-01-01

    What causes a student to participate in a survey? This paper looks at survey response across multiple surveys to understand who the hard-core survey responders and non-responders are. Students at a selective liberal arts college were administered four different surveys throughout the 2002-2003 academic year, and we use the number of surveys…

  12. Random phase approximation and cluster mean field studies of hard core Bose Hubbard model

    NASA Astrophysics Data System (ADS)

    Alavani, Bhargav K.; Gaude, Pallavi P.; Pai, Ramesh V.

    2018-04-01

    We investigate zero temperature and finite temperature properties of the Bose Hubbard Model in the hard core limit using Random Phase Approximation (RPA) and Cluster Mean Field Theory (CMFT). We show that our RPA calculations are able to capture quantum and thermal fluctuations significantly better than CMFT.

  13. RC64, a Rad-Hard Many-Core High- Performance DSP for Space Applications

    NASA Astrophysics Data System (ADS)

    Ginosar, Ran; Aviely, Peleg; Gellis, Hagay; Liran, Tuvia; Israeli, Tsvika; Nesher, Roy; Lange, Fredy; Dobkin, Reuven; Meirov, Henri; Reznik, Dror

    2015-09-01

    RC64, a novel rad-hard 64-core signal processing chip targets DSP performance of 75 GMACs (16bit), 150 GOPS and 38 single precision GFLOPS while dissipating less than 10 Watts. RC64 integrates advanced DSP cores with a multi-bank shared memory and a hardware scheduler, also supporting DDR2/3 memory and twelve 3.125 Gbps full duplex high speed serial links using SpaceFibre and other protocols. The programming model employs sequential fine-grain tasks and a separate task map to define task dependencies. RC64 is implemented as a 300 MHz integrated circuit on a 65nm CMOS technology, assembled in hermetically sealed ceramic CCGA624 package and qualified to the highest space standards.

  14. RC64, a Rad-Hard Many-Core High-Performance DSP for Space Applications

    NASA Astrophysics Data System (ADS)

    Ginosar, Ran; Aviely, Peleg; Liran, Tuvia; Alon, Dov; Mandler, Alberto; Lange, Fredy; Dobkin, Reuven; Goldberg, Miki

    2014-08-01

    RC64, a novel rad-hard 64-core signal processing chip targets DSP performance of 75 GMACs (16bit), 150 GOPS and 20 single precision GFLOPS while dissipating less than 10 Watts. RC64 integrates advanced DSP cores with a multi-bank shared memory and a hardware scheduler, also supporting DDR2/3 memory and twelve 2.5 Gbps full duplex high speed serial links using SpaceFibre and other protocols. The programming model employs sequential fine-grain tasks and a separate task map to define task dependencies. RC64 is implemented as a 300 MHz integrated circuit on a 65nm CMOS technology, assembled in hermetically sealed ceramic CCGA624 package and qualified to the highest space standards.

  15. Ultrasonic Drilling and Coring

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1998-01-01

    A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.

  16. Dual-core optical fiber based strain sensor for remote sensing in hard-to-reach areas

    NASA Astrophysics Data System (ADS)

    MÄ kowska, Anna; Szostkiewicz, Łukasz; Kołakowska, Agnieszka; Budnicki, Dawid; Bieńkowska, Beata; Ostrowski, Łukasz; Murawski, Michał; Napierała, Marek; Mergo, Paweł; Nasiłowski, Tomasz

    2017-10-01

    We present research on optical fiber sensors based on microstructured multi-core fiber. Elaborated sensor can be advantageously used in hard-to-reach areas by taking advantage of the fact, that optical fibers can play both the role of sensing elements and they can realize signal delivery. By using the sensor, it is possible to increase the level of the safety in the explosive endangered areas, e.g. in mine-like objects. As a base for the strain remote sensor we use dual-core fibers. The multi-core fibers possess a characteristic parameter called crosstalk, which is a measure of the amount of signal which can pass to the adjacent core. The strain-sensitive area is made by creating the tapered section, in which the level of crosstalk is changed. Due to this fact, we present broadened conception of fiber optic sensor designing. Strain measurement is realized thanks to the fact, that depending on the strain applied, the power distribution between the cores of dual-core fibers changes. Principle of operation allows realization of measurements both in wavelength and power domain.

  17. Nonequilibrium dynamics of one-dimensional hard-core anyons following a quench: complete relaxation of one-body observables.

    PubMed

    Wright, Tod M; Rigol, Marcos; Davis, Matthew J; Kheruntsyan, Karén V

    2014-08-01

    We demonstrate the role of interactions in driving the relaxation of an isolated integrable quantum system following a sudden quench. We consider a family of integrable hard-core lattice anyon models that continuously interpolates between noninteracting spinless fermions and strongly interacting hard-core bosons. A generalized Jordan-Wigner transformation maps the entire family to noninteracting fermions. We find that, aside from the singular free-fermion limit, the entire single-particle density matrix and, therefore, all one-body observables relax to the predictions of the generalized Gibbs ensemble (GGE). This demonstrates that, in the presence of interactions, correlations between particles in the many-body wave function provide the effective dissipation required to drive the relaxation of all one-body observables to the GGE. This relaxation does not depend on translational invariance or the tracing out of any spatial domain of the system.

  18. Asymptotics of quasi-classical localized states in 2D system of charged hard-core bosons

    NASA Astrophysics Data System (ADS)

    Panov, Yu. D.; Moskvin, A. S.

    2018-05-01

    The continuous quasi-classical two-sublattice approximation is constructed for the 2D system of charged hard-core bosons to explore metastable inhomogeneous states analogous to inhomogeneous localized excitations in magnetic systems. The types of localized excitations are determined by asymptotic analysis and compared with numerical results. Depending on the homogeneous ground state, the excitations are the ferro and antiferro type vortices, the skyrmion-like topological excitations or linear domain walls.

  19. Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Fan, Meng; Liu, Yanhui

    When a liquid is cooled well below its melting temperature at a rate that exceeds the critical cooling rate R{sub c}, the crystalline state is bypassed and a metastable, amorphous glassy state forms instead. R{sub c} (or the corresponding critical casting thickness d{sub c}) characterizes the glass-forming ability (GFA) of each material. While silica is an excellent glass-former with small R{sub c} < 10{sup −2} K/s, pure metals and most alloys are typically poor glass-formers with large R{sub c} > 10{sup 10} K/s. Only in the past thirty years have bulk metallic glasses (BMGs) been identified with R{sub c} approachingmore » that for silica. Recent simulations have shown that simple, hard-sphere models are able to identify the atomic size ratio and number fraction regime where BMGs exist with critical cooling rates more than 13 orders of magnitude smaller than those for pure metals. However, there are a number of other features of interatomic potentials beyond hard-core interactions. How do these other features affect the glass-forming ability of BMGs? In this manuscript, we perform molecular dynamics simulations to determine how variations in the softness and non-additivity of the repulsive core and form of the interatomic pair potential at intermediate distances affect the GFA of binary alloys. These variations in the interatomic pair potential allow us to introduce geometric frustration and change the crystal phases that compete with glass formation. We also investigate the effect of tuning the strength of the many-body interactions from zero to the full embedded atom model on the GFA for pure metals. We then employ the full embedded atom model for binary BMGs and show that hard-core interactions play the dominant role in setting the GFA of alloys, while other features of the interatomic potential only change the GFA by one to two orders of magnitude. Despite their perturbative effect, understanding the detailed form of the intermetallic potential is important

  20. Pair Formation of Hard Core Bosons in Flat Band Systems

    NASA Astrophysics Data System (ADS)

    Mielke, Andreas

    2018-05-01

    Hard core bosons in a large class of one or two dimensional flat band systems have an upper critical density, below which the ground states can be described completely. At the critical density, the ground states are Wigner crystals. If one adds a particle to the system at the critical density, the ground state and the low lying multi particle states of the system can be described as a Wigner crystal with an additional pair of particles. The energy band for the pair is separated from the rest of the multi-particle spectrum. The proofs use a Gerschgorin type of argument for block diagonally dominant matrices. In certain one-dimensional or tree-like structures one can show that the pair is localised, for example in the chequerboard chain. For this one-dimensional system with periodic boundary condition the energy band for the pair is flat, the pair is localised.

  1. Decoherence in models for hard-core bosons coupled to optical phonons

    NASA Astrophysics Data System (ADS)

    Dey, A.; Lone, M. Q.; Yarlagadda, S.

    2015-09-01

    Understanding coherent dynamics of excitons, spins, or hard-core bosons (HCBs) has tremendous scientific and technological implications for quantum computation. Here, we study decay of excited-state population and decoherence in two models for HCBs, namely, a two-site HCB model with site-dependent strong potentials and subject to non-Markovian dynamics and an infinite-range HCB model governed by Markovian dynamics. Both models are investigated in the regimes of antiadiabaticity and strong HCB-phonon coupling with each site providing a different local optical phonon environment; furthermore, the HCB systems in both models are taken to be initially uncorrelated with the environment in the polaronic frame of reference. In the case of the two-site HCB model, we show clearly that the degree of decoherence and decay of excited state are enhanced by the proximity of the site-energy difference to the eigenenergy of phonons and are most pronounced when the site-energy difference is at resonance with twice the polaronic energy; additionally, the decoherence and the decay effects are reduced when the strength of HCB-phonon coupling is increased. For the infinite-range model, when the site energies are the same, we derive an effective many-body Hamiltonian that commutes with the long-range system Hamiltonian and thus has the same set of eigenstates; consequently, a quantum-master-equation approach shows that the quantum states of the system do not decohere.

  2. LC and ferromagnetic resonance in soft/hard magnetic microwires

    NASA Astrophysics Data System (ADS)

    Tian, Bin; Vazquez, Manuel

    2015-12-01

    The magnetic behavior of soft/hard biphase microwires is introduced here. The microwires consist of a Co59.1Fe14.8Si10.2B15.9 soft magnetic nucleus and a Co90Ni10 hard outer shell separated by an intermediate insulating Pyrex glass microtube. By comparing the resistance spectrums of welding the ends of metallic core (CC) or welding the metallic core and outer shell (CS) to the connector, it is found that one of the two peaks in the resistance spectrum is because the LC resonance depends on the inductor and capacitors in which one is the capacitor between the metallic core and outer shell, and the other is between the outer shell and connector. Correspondingly, another peak is for the ferromagnetic resonance of metallic core. After changing the capacitance of the capacitors, the frequency of LC resonance moves to high frequency band, and furthermore, the peak of LC resonance in the resistance spectrum disappeared. These magnetostatically coupled biphase systems are thought to be of large potential interest as sensing elements in sensor devices.

  3. Theory and computer simulation of hard-core Yukawa mixtures: thermodynamical, structural and phase coexistence properties.

    PubMed

    Mkanya, Anele; Pellicane, Giuseppe; Pini, Davide; Caccamo, Carlo

    2017-09-13

    We report extensive calculations, based on the modified hypernetted chain (MHNC) theory, on the hierarchical reference theory (HRT), and on Monte Carlo simulations, of thermodynamical, structural and phase coexistence properties of symmetric binary hard-core Yukawa mixtures (HCYM) with attractive interactions at equal species concentration. The obtained results are throughout compared with those available in the literature for the same systems. It turns out that the MHNC predictions for thermodynamic and structural quantities are quite accurate in comparison with the MC data. The HRT is equally accurate for thermodynamics, and slightly less accurate for structure. Liquid-vapor (LV) and liquid-liquid (LL) consolute coexistence conditions as emerging from simulations, are also highly satisfactorily reproduced by both the MHNC and HRT for relatively long ranged potentials. When the potential range reduces, the MHNC faces problems in determining the LV binodal line; however, the LL consolute line and the critical end point (CEP) temperature and density turn out to be still satisfactorily predicted within this theory. The HRT also predicts with good accuracy the CEP position. The possibility of employing liquid state theories HCYM for the purpose of reliably determining phase equilibria in multicomponent colloidal fluids of current technological interest, is discussed.

  4. Theory and computer simulation of hard-core Yukawa mixtures: thermodynamical, structural and phase coexistence properties

    NASA Astrophysics Data System (ADS)

    Mkanya, Anele; Pellicane, Giuseppe; Pini, Davide; Caccamo, Carlo

    2017-09-01

    We report extensive calculations, based on the modified hypernetted chain (MHNC) theory, on the hierarchical reference theory (HRT), and on Monte Carlo simulations, of thermodynamical, structural and phase coexistence properties of symmetric binary hard-core Yukawa mixtures (HCYM) with attractive interactions at equal species concentration. The obtained results are throughout compared with those available in the literature for the same systems. It turns out that the MHNC predictions for thermodynamic and structural quantities are quite accurate in comparison with the MC data. The HRT is equally accurate for thermodynamics, and slightly less accurate for structure. Liquid-vapor (LV) and liquid-liquid (LL) consolute coexistence conditions as emerging from simulations, are also highly satisfactorily reproduced by both the MHNC and HRT for relatively long ranged potentials. When the potential range reduces, the MHNC faces problems in determining the LV binodal line; however, the LL consolute line and the critical end point (CEP) temperature and density turn out to be still satisfactorily predicted within this theory. The HRT also predicts with good accuracy the CEP position. The possibility of employing liquid state theories HCYM for the purpose of reliably determining phase equilibria in multicomponent colloidal fluids of current technological interest, is discussed.

  5. On the impossibility of defining adhesive hard spheres as sticky limit of a hard-sphere-Yukawa potential.

    PubMed

    Gazzillo, Domenico

    2011-03-28

    For fluids of molecules with short-ranged hard-sphere-Yukawa (HSY) interactions, it is proven that the Noro-Frenkel "extended law of corresponding states" cannot be applied down to the vanishing attraction range, since the exact HSY second virial coefficient diverges in such a limit. It is also shown that, besides Baxter's original approach, a fully correct alternative definition of "adhesive hard spheres" can be obtained by taking the vanishing-range-limit (sticky limit) not of a Yukawa tail, as is commonly done, but of a slightly different potential with a logarithmic-Yukawa attraction.

  6. Hard-X-Ray-Induced Multistep Ultrafast Dissociation

    NASA Astrophysics Data System (ADS)

    Travnikova, Oksana; Marchenko, Tatiana; Goldsztejn, Gildas; Jänkälä, Kari; Sisourat, Nicolas; Carniato, Stéphane; Guillemin, Renaud; Journel, Loïc; Céolin, Denis; Püttner, Ralph; Iwayama, Hiroshi; Shigemasa, Eiji; Piancastelli, Maria Novella; Simon, Marc

    2016-05-01

    Creation of deep core holes with very short (τ ≤1 fs ) lifetimes triggers a chain of relaxation events leading to extensive nuclear dynamics on a few-femtosecond time scale. Here we demonstrate a general multistep ultrafast dissociation on an example of HCl following Cl 1 s →σ* excitation. Intermediate states with one or multiple holes in the shallower core electron shells are generated in the course of the decay cascades. The repulsive character and large gradients of the potential energy surfaces of these intermediates enable ultrafast fragmentation after the absorption of a hard x-ray photon.

  7. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model.

    PubMed

    Gabriëlse, Alexander; Löwen, Hartmut; Smallenburg, Frank

    2017-11-07

    In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO) lattices not previously considered for the square shoulder model.

  8. ["The hard core". Science between politics and philosophy by Carl Friedrich von Weizsäcker and in the finalization theory].

    PubMed

    Krohn, Wolfgang

    2014-01-01

    In the Starnberg Max-Planck Institute one of the working groups was concerned with science as the formative condition--or "hard core"--of societal modernity, and with science as potential resource for solving social problems and addressing future goals. More precisely, the group intended to differentiate between phases in which scientific disciplines predominantly care for their own paradigmatic completion and those allowing their theoretical potential resonate with external needs. The conceptual model was coined "finalization in science". It soon provoked a heated controversy on the dangers of social control of science. The paper analyses Carl Friedrich von Weizsäcker's views on the relation between philosophy and policy of science including his interpretation of Thomas Kuhn and reconstructs the impact of his ideas on the finalization model. It finally reflects on the relationship between science development and change of consciousness in the context of scientific responsibility for (the use of) research outcomes.

  9. Pseudo hard-sphere potential for use in continuous molecular-dynamics simulation of spherical and chain molecules

    NASA Astrophysics Data System (ADS)

    Jover, J.; Haslam, A. J.; Galindo, A.; Jackson, G.; Müller, E. A.

    2012-10-01

    We present a continuous pseudo-hard-sphere potential based on a cut-and-shifted Mie (generalized Lennard-Jones) potential with exponents (50, 49). Using this potential one can mimic the volumetric, structural, and dynamic properties of the discontinuous hard-sphere potential over the whole fluid range. The continuous pseudo potential has the advantage that it may be incorporated directly into off-the-shelf molecular-dynamics code, allowing the user to capitalise on existing hardware and software advances. Simulation results for the compressibility factor of the fluid and solid phases of our pseudo hard spheres are presented and compared both to the Carnahan-Starling equation of state of the fluid and published data, the differences being indistinguishable within simulation uncertainty. The specific form of the potential is employed to simulate flexible chains formed from these pseudo hard spheres at contact (pearl-necklace model) for mc = 4, 5, 7, 8, 16, 20, 100, 201, and 500 monomer segments. The compressibility factor of the chains per unit of monomer, mc, approaches a limiting value at reasonably small values, mc < 50, as predicted by Wertheim's first order thermodynamic perturbation theory. Simulation results are also presented for highly asymmetric mixtures of pseudo hard spheres, with diameter ratios of 3:1, 5:1, 20:1 over the whole composition range.

  10. Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-05-31

    In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.

  11. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Leandro Londoño-Calderón, César; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-01

    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  12. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires.

    PubMed

    Londoño-Calderón, César Leandro; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-16

    A straightforward method for the synthesis of CoFe 2.7 /CoFe 2 O 4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe 2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe 2 O 4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe 2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  13. Hard sphere packings within cylinders.

    PubMed

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-03-07

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

  14. Potential Health Impacts of Hard Water

    PubMed Central

    Sengupta, Pallav

    2013-01-01

    In the past five decades or so evidence has been accumulating about an environmental factor, which appears to be influencing mortality, in particular, cardiovascular mortality, and this is the hardness of the drinking water. In addition, several epidemiological investigations have demonstrated the relation between risk for cardiovascular disease, growth retardation, reproductive failure, and other health problems and hardness of drinking water or its content of magnesium and calcium. In addition, the acidity of the water influences the reabsorption of calcium and magnesium in the renal tubule. Not only, calcium and magnesium, but other constituents also affect different health aspects. Thus, the present review attempts to explore the health effects of hard water and its constituents. PMID:24049611

  15. Potential health impacts of hard water.

    PubMed

    Sengupta, Pallav

    2013-08-01

    In the past five decades or so evidence has been accumulating about an environmental factor, which appears to be influencing mortality, in particular, cardiovascular mortality, and this is the hardness of the drinking water. In addition, several epidemiological investigations have demonstrated the relation between risk for cardiovascular disease, growth retardation, reproductive failure, and other health problems and hardness of drinking water or its content of magnesium and calcium. In addition, the acidity of the water influences the reabsorption of calcium and magnesium in the renal tubule. Not only, calcium and magnesium, but other constituents also affect different health aspects. Thus, the present review attempts to explore the health effects of hard water and its constituents.

  16. Pseudo hard-sphere potential for use in continuous molecular-dynamics simulation of spherical and chain molecules.

    PubMed

    Jover, J; Haslam, A J; Galindo, A; Jackson, G; Müller, E A

    2012-10-14

    We present a continuous pseudo-hard-sphere potential based on a cut-and-shifted Mie (generalized Lennard-Jones) potential with exponents (50, 49). Using this potential one can mimic the volumetric, structural, and dynamic properties of the discontinuous hard-sphere potential over the whole fluid range. The continuous pseudo potential has the advantage that it may be incorporated directly into off-the-shelf molecular-dynamics code, allowing the user to capitalise on existing hardware and software advances. Simulation results for the compressibility factor of the fluid and solid phases of our pseudo hard spheres are presented and compared both to the Carnahan-Starling equation of state of the fluid and published data, the differences being indistinguishable within simulation uncertainty. The specific form of the potential is employed to simulate flexible chains formed from these pseudo hard spheres at contact (pearl-necklace model) for m(c) = 4, 5, 7, 8, 16, 20, 100, 201, and 500 monomer segments. The compressibility factor of the chains per unit of monomer, m(c), approaches a limiting value at reasonably small values, m(c) < 50, as predicted by Wertheim's first order thermodynamic perturbation theory. Simulation results are also presented for highly asymmetric mixtures of pseudo hard spheres, with diameter ratios of 3:1, 5:1, 20:1 over the whole composition range.

  17. 34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES CORES THAT ARE NOT MADE ON HEATED OR COLD BOX CORE MACHINES, TO SET BINDING AGENTS MIXED WITH THE SAND CREATING CORES HARD ENOUGH TO WITHSTAND THE FLOW OF MOLTEN IRON INSIDE A MOLD. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  18. Retention of the Hard-to-Employ. Perspectives on Training the Disadvantaged--The Hard-to-Employ. Personnel Services Review Series 2.

    ERIC Educational Resources Information Center

    Harrison, Don K.; Brown, Dorothy R.

    Although calculated by various statistical methods, retention (in this monograph) refers to the time that a former hard core member stays on the job. These rates may be tallied from the first day of pre-vocational training at a center, from the first day of a plant's vestibule training, or the first day of work at the job site. The hard core need…

  19. An optimized full-configuration-interaction nuclear orbital approach to a ``hard-core'' interaction problem: Application to (3He)N-Cl2(B) clusters (N<=4)

    NASA Astrophysics Data System (ADS)

    de Lara-Castells, M. P.; Villarreal, P.; Delgado-Barrio, G.; Mitrushchenkov, A. O.

    2009-11-01

    An efficient full-configuration-interaction nuclear orbital treatment has been recently developed as a benchmark quantum-chemistry-like method to calculate ground and excited "solvent" energies and wave functions in small doped ΔEest clusters (N ≤4) [M. P. de Lara-Castells, G. Delgado-Barrio, P. Villarreal, and A. O. Mitrushchenkov, J. Chem. Phys. 125, 221101 (2006)]. Additional methodological and computational details of the implementation, which uses an iterative Jacobi-Davidson diagonalization algorithm to properly address the inherent "hard-core" He-He interaction problem, are described here. The convergence of total energies, average pair He-He interaction energies, and relevant one- and two-body properties upon increasing the angular part of the one-particle basis set (expanded in spherical harmonics) has been analyzed, considering Cl2 as the dopant and a semiempirical model (T-shaped) He-Cl2(B) potential. Converged results are used to analyze global energetic and structural aspects as well as the configuration makeup of the wave functions, associated with the ground and low-lying "solvent" excited states. Our study reveals that besides the fermionic nature of H3e atoms, key roles in determining total binding energies and wave-function structures are played by the strong repulsive core of the He-He potential as well as its very weak attractive region, the most stable arrangement somehow departing from the one of N He atoms equally spaced on equatorial "ring" around the dopant. The present results for N =4 fermions indicates the structural "pairing" of two H3e atoms at opposite sides on a broad "belt" around the dopant, executing a sort of asymmetric umbrella motion. This pairing is a compromise between maximizing the H3e-H3e and the He-dopant attractions, and suppressing at the same time the "hard-core" repulsion. Although the He-He attractive interaction is rather weak, its contribution to the total energy is found to scale as a power of three and it thus

  20. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  1. One-pot synthesis of biocompatible Te@phenol formaldehyde resin core-shell nanowires with uniform size and unique fluorescent properties by a synergized soft-hard template process.

    PubMed

    Qian, Haisheng; Zhu, Enbo; Zheng, Shunji; Li, Zhengquan; Hu, Yong; Guo, Changfa; Yang, Xingyun; Li, Liangchao; Tong, Guoxiu; Guo, Huichen

    2010-12-10

    One-pot hydrothermal process has been developed to synthesize uniform Te@phenol formaldehyde resin core-shell nanowires with unique fluorescent properties. A synergistic soft-hard template mechanism has been proposed to explain the formation of the core-shell nanowires. The Te@phenol formaldehyde resin core-shell nanowires display unique fluorescent properties, which give strong luminescent emission in the blue-violet and green regions with excitation wavelengths of 270 nm and 402 nm, respectively.

  2. Exchange coupling and microwave absorption in core/shell-structured hard/soft ferrite-based CoFe2O4/NiFe2O4 nanocapsules

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Liu, Xianguo; Or, Siu Wing; Ho, S. L.

    2017-05-01

    Core/shell-structured, hard/soft spinel-ferrite-based CoFe2O4/NiFe2O4 (CFO/NFO) nanocapsules with an average diameter of 17 nm are synthesized by a facile two-step hydrothermal process using CFO cores of ˜15 nm diameter as the hard magnetic phase and NFO shells of ˜1 nm thickness as the soft magnetic phase. The single-phase-like hysteresis loop with a high remnant-to-saturation magnetization ratio of 0.7, together with a small grain size of ˜16 nm, confirms the existence of exchange-coupling interaction between the CFO cores and the NFO shells. The effect of hard/soft exchange coupling on the microwave absorption properties is studied. Comparing to CFO and NFO nanoparticles, the finite-size NFO shells and the core/shell structure enable a significant reduction in electric resistivity and an enhancement in dipole and interfacial polarizations in the CFO/NFO nanocapsules, resulting in an obvious increase in dielectric permittivity and loss in the whole S-Ku bands of microwaves of 2-18 GHz, respectively. The exchange-coupling interaction empowers a more favorable response of magnetic moment to microwaves, leading to enhanced exchange resonances in magnetic permeability and loss above 10 GHz. As a result, strong absorption, as characterized by a large reflection loss (RL) of -20.1 dB at 9.7 GHz for an absorber thickness of 4.5 mm as well as a broad effective absorption bandwidth (for RL<-10 dB) of 8.4 GHz (7.8-16.2 GHz) at an absorber thickness range of 3.0-4.5 mm, is obtained.

  3. Tuning the bridging attraction between large hard particles by the softness of small microgels.

    PubMed

    Luo, Junhua; Yuan, Guangcui; Han, Charles C

    2016-09-20

    In this study, the attraction between large hard polystyrene (PS) spheres is studied by using three types of small microgels as bridging agents. One is a purely soft poly(N-isopropylacrylamide) (PNIPAM) microgel, the other two have a non-deformable PS hard core surrounded by a soft PNIPAM shell but are different in the core-shell ratio. The affinity for bridging the large PS spheres is provided and thus affected by the PNIPAM constituent in the microgels. The bridging effects caused by the microgels can be indirectly incorporated into their influence on the effective attraction interaction between the large hard spheres, since the size of the microgels is very small in comparison to the size of the PS hard spheres. At a given volume fraction of large PS spheres, they behave essentially as hard spheres in the absence of small microgels. By gradually adding the microgels, the large spheres are connected to each other through the bridging of small particles until the attraction strength reaches a maximum value, after which adding more small particles slowly decreases the effective attraction strength and eventually the large particles disperse individually when saturated adsorption is achieved. The aggregation and gelation behaviors triggered by these three types of small microgels are compared and discussed. A way to tune the strength and range of the short-range attractive potential via changing the softness of bridging microgels (which can be achieved either by using core-shell microgels or by changing the temperature) is proposed.

  4. Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines

    NASA Astrophysics Data System (ADS)

    Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.

    2014-12-01

    A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.

  5. Charge order-superfluidity transition in a two-dimensional system of hard-core bosons and emerging domain structures

    NASA Astrophysics Data System (ADS)

    Moskvin, A. S.; Panov, Yu. D.; Rybakov, F. N.; Borisov, A. B.

    2017-11-01

    We have used high-performance parallel computations by NVIDIA graphics cards applying the method of nonlinear conjugate gradients and Monte Carlo method to observe directly the developing ground state configuration of a two-dimensional hard-core boson system with decrease in temperature, and its evolution with deviation from a half-filling. This has allowed us to explore unconventional features of a charge order—superfluidity phase transition, specifically, formation of an irregular domain structure, emergence of a filamentary superfluid structure that condenses within of the charge-ordered phase domain antiphase boundaries, and formation and evolution of various topological structures.

  6. On the trends of Fukui potential and hardness potential derivatives in isolated atoms vs. atoms in molecules.

    PubMed

    Bhattacharjee, Rituparna; Roy, Ram Kinkar

    2014-10-28

    In the present study, trends of electronic contribution to molecular electrostatic potential [Vel(r¯)(r=0)], Fukui potential [v(+)f|(r=0) and v(-)f|(r=0)] and hardness potential derivatives [Δ(+)h(k) and Δ(-)h(k)] for isolated atoms as well as atoms in molecules are investigated. The generated numerical values of these three reactivity descriptors in these two electronically different situations are critically analyzed through the relevant formalism. Values of Vel(r¯) (when r → 0, i.e., on the nucleus) are higher for atoms in molecules than that of isolated atoms. In contrast, higher values of v(+)|(r=0) and v(-)|(r=0) are observed for isolated atoms compared to the values for atoms in a molecule. However, no such regular trend is observed for the Δ(+)h(k) and Δ(-)h(k) values, which is attributed to the uncertainty in the Fukui function values of atoms in molecules. The sum of Fukui potential and the sum of hardness potential derivatives in molecules are also critically analyzed, which shows the efficacy of orbital relaxation effects in quantifying the values of these parameters. The chemical consequence of the observed trends of these descriptors in interpreting electron delocalization, electronic relaxation and non-negativity of atomic Fukui function indices is also touched upon. Several commonly used molecules containing carbon as well as heteroatoms are chosen to make the investigation more insightful.

  7. Results of core drilling for uranium-bearing lignites in the Bar H area, Slim Buttes, Harding County, South Dakota

    USGS Publications Warehouse

    Zeller, Howard D.

    1953-01-01

    Core drilling in the Car H area, Slim Buttes, Harding County, South Dakota, under a contract with the B. H. Mott Drilling Co., Huntington, West Virginia, was resumed June 12, 1952 after a 6-month recess during the winter and was completed July 18, 1952. The drilling was undertaken to obtain information on the distribution and extent of the uranium-bearing lignite beds along the southeast edge of the Bar H area. Eight holes totalling 885 feet were drilled and 52 feet of lignite core submitted for study and analysis. The report includes detailed lithographic descriptions of the lignite cores, Bureau of Mines coal analyses, and the results of 100 chemical analyses for uranium. The drilling showed that the thicker, more persistent lignite beds exposed in the northern part of the Bar H area were removed by erosion prior to the deposition of the overlaying White River formation in the south-eastern part of the area. The beds penetrated by drilling were not of sufficient thickness or uranium content to add to the previously known reserves.

  8. Short-term hot-hardness characteristics of five case hardened steels

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Zaretsky, E. V.

    1975-01-01

    Short-term hot-hardness studies were performed with carburized and hardened AISI 8620, CBS 1000, CBS 1000M, CBS 600, and Vasco X-2 steels. Case and core hardness measurements were made at temperatures from 294 to 811 K (70 to 1000 F). The data were compared with data for high-speed tool steels and AISI 52100. The materials tested can be ranked as follows in order of decreasing hot-hardness retention: (1) Vasco X-2; equivalent to through-hardened tool steels up to 644 K (700 F) above which Vasco X-2 is inferior; (2) CBS 1000, (3) CBS 1000M; (4) CBS 6000; better hardness retention at elevated temperatures than through-hardened AISI 52100; and (5) AISI 8620. For the carburized steels, the change in hardness with temperature of the case and core are similar for a given material. The short-term hot hardness of these materials can be predicted with + or - 1 point Rockwell C.

  9. A new generation of effective core potentials for correlated calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Michael Chandler; Melton, Cody A.; Annaberdiyev, Abdulgani

    Here, we outline ideas on desired properties for a new generation of effective core potentials (ECPs) that will allow valence-only calculations to reach the full potential offered by recent advances in many-body wave function methods. The key improvements include consistent use of correlated methods throughout ECP constructions and improved transferability as required for an accurate description of molecular systems over a range of geometries. The guiding principle is the isospectrality of all-electron and ECP Hamiltonians for a subset of valence states. We illustrate these concepts on a few first- and second-row atoms (B, C, N, O, S), and we obtainmore » higher accuracy in transferability than previous constructions while using semi-local ECPs with a small number of parameters. In addition, the constructed ECPs enable many-body calculations of valence properties with higher (or same) accuracy than their all-electron counterparts with uncorrelated cores. This implies that the ECPs include also some of the impacts of core-core and core-valence correlations on valence properties. The results open further prospects for ECP improvements and refinements.« less

  10. A new generation of effective core potentials for correlated calculations

    DOE PAGES

    Bennett, Michael Chandler; Melton, Cody A.; Annaberdiyev, Abdulgani; ...

    2017-12-12

    Here, we outline ideas on desired properties for a new generation of effective core potentials (ECPs) that will allow valence-only calculations to reach the full potential offered by recent advances in many-body wave function methods. The key improvements include consistent use of correlated methods throughout ECP constructions and improved transferability as required for an accurate description of molecular systems over a range of geometries. The guiding principle is the isospectrality of all-electron and ECP Hamiltonians for a subset of valence states. We illustrate these concepts on a few first- and second-row atoms (B, C, N, O, S), and we obtainmore » higher accuracy in transferability than previous constructions while using semi-local ECPs with a small number of parameters. In addition, the constructed ECPs enable many-body calculations of valence properties with higher (or same) accuracy than their all-electron counterparts with uncorrelated cores. This implies that the ECPs include also some of the impacts of core-core and core-valence correlations on valence properties. The results open further prospects for ECP improvements and refinements.« less

  11. Hardness characteristic of dental porcelain synthesized from Indonesian natural sand

    NASA Astrophysics Data System (ADS)

    Gunawan, J.; Taufik, D.; Takarini, V.; Hasratiningsih, Z.; Ramelan, A.

    2018-02-01

    Porcelain has been one of dental biomaterials which can be used to restore tooth structure. Veneer and jacket crown were the examples of dental porcelain restoration. Since wear resistance is related to the strength on its surface, then Vickers Hardness Test of the synthesized porcelain was applied subsequently. If the porcelain hardness number is too high, it should be considered that an abrasion of the opposing teeth could occur. On previous research, dental porcelain had been successfully synthesized from Indonesian natural sand. In this experiment, 5 samples were prepared from a mixture of 65w/o Pangaribuan feldspar, 25w/o Belitung silica, 5w/o Sukabumi kaolinite, and 5w/o potassium salt. This synthesized porcelain samples were invested on 5 cm diameter resin each. A kilogram of load was placed on top of each sample for 10 seconds on 7 different indented areas using ZwickRoell Indentec ZHVμ Micro Vickers. The average hardness number of synthesized dental porcelain made from Indonesian natural sand was 936.06 VHN which was higher than the average hardness number of porcelain restoration. In conclusion of the hardness test, synthesized dental porcelain made from Indonesian natural sand can potentially be used as a core, which shall support hardness and strength of the crown restoration.

  12. Unusual Domain Structure and Filamentary Superfluidity for 2D Hard-Core Bosons in Insulating Charge-Ordered Phase

    NASA Astrophysics Data System (ADS)

    Panov, Yu. D.; Moskvin, A. S.; Rybakov, F. N.; Borisov, A. B.

    2016-12-01

    We made use of a special algorithm for compute unified device architecture for NVIDIA graphics cards, a nonlinear conjugate-gradient method to minimize energy functional, and Monte-Carlo technique to directly observe the forming of the ground state configuration for the 2D hard-core bosons by lowering the temperature and its evolution with deviation away from half-filling. The novel technique allowed us to examine earlier implications and uncover novel features of the phase transitions, in particular, look upon the nucleation of the odd domain structure, emergence of filamentary superfluidity nucleated at the antiphase domain walls of the charge-ordered phase, and nucleation and evolution of different topological structures.

  13. Fourier heat conduction as a strong kinetic effect in one-dimensional hard-core gases

    NASA Astrophysics Data System (ADS)

    Zhao, Hanqing; Wang, Wen-ge

    2018-01-01

    For a one-dimensional (1D) momentum conserving system, intensive studies have shown that generally its heat current autocorrelation function (HCAF) tends to decay in a power-law manner and results in the breakdown of the Fourier heat conduction law in the thermodynamic limit. This has been recognized to be a dominant hydrodynamic effect. Here we show that, instead, the kinetic effect can be dominant in some cases and leads to the Fourier law for finite-size systems. Usually the HCAF undergoes a fast decaying kinetic stage followed by a long slowly decaying hydrodynamic tail. In a finite range of the system size, we find that whether the system follows the Fourier law depends on whether the kinetic stage dominates. Our Rapid Communication is illustrated by the 1D hard-core gas models with which the HCAF is derived analytically and verified numerically by molecular dynamics simulations.

  14. To probe a core

    NASA Astrophysics Data System (ADS)

    2017-04-01

    Hidden under many kilometres of silicate mantle material, the cores of Earth and other planets are hard to investigate. The Psyche spacecraft, designed to visit a metal body that may be a core stripped of its mantle, could bring a close-up view.

  15. Non-Abelian fractional quantum Hall states for hard-core bosons in one dimension

    NASA Astrophysics Data System (ADS)

    Paredes, Belén

    2012-05-01

    I present a family of one-dimensional bosonic liquids analogous to non-Abelian fractional quantum Hall states. A new quantum number is introduced to characterize these liquids, the chiral momentum, which differs from the usual angular or linear momentum in one dimension. As their two-dimensional counterparts, these liquids minimize a k-body hard-core interaction with the minimum total chiral momentum. They exhibit global order, with a hidden organization of the particles in k identical copies of a one-dimensional Laughlin state. For k=2 the state is a p-wave paired phase corresponding to the Pfaffian quantum Hall state. By imposing conservation of the total chiral momentum, an exact parent Hamiltonian is derived which involves long-range tunneling and interaction processes with an amplitude decaying with the chord distance. This family of non-Abelian liquids is shown to be in formal correspondence with a family of spin-(k)/(2) liquids which are total singlets made out of k indistinguishable resonating valence bond states. The corresponding spin Hamiltonians are obtained.

  16. Magnetization processes in core/shell exchange-spring structures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J. S.

    2015-03-27

    The magnetization reversal processes in cylindrical and spherical soft core/hard shell exchange-spring structures are investigated via the analytical nucleation theory, and are verified with numerical micromagnetic simulations. At small core sizes, the nucleation of magnetic reversal proceeds via the modified bulging mode, where the transverse component of the magnetization is only semi-coherent in direction and the nucleation field contains a contribution from self-demagnetization. For large core sizes, the modified curling mode, where the magnetization configuration is vortex-like, is favored at nucleation. The preference for the modified curling mode is beneficial in that the fluxclosure allows cylindrical and spherical core/shell exchange-springmore » elements to be densely packed into bulk permanent magnets without affecting the nucleation field, thereby offering the potential for high energy product.« less

  17. Comparison of the effect of soft-core potentials and Coulombic potentials on bremsstrahlung during laser matter interaction

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi R.; Becker, Valerie R.; Barrington, Kasey; Thurston, Jeremy; Ramunno, Lora; Ackad, Edward

    2018-04-01

    An intense, short laser pulse incident on rare-gas clusters can produce nano-plasmas containing energetic electrons. As these electrons undergo scattering, from both phonons and ions, they emit bremsstrahlung radiation. Here, we compare a theory of bremsstrahlung emission appropriate for the interaction of intense lasers with matter using soft-core potentials and Coulombic potentials. A new scaling for the radiation cross-section and the radiated power via bremsstrahlung is derived for a soft-core potential (which depends on the potential depth) and compared with the Coulomb potential. Calculations using the new scaling are performed for electrons in vacuum ultraviolet, infrared and mid-infrared laser pulses. The radiation cross-section and the radiation power via bremsstrahlung are found to increase rapidly with increases in the potential depth of up to around 200 eV and then become mostly saturated for larger depths while remaining constant for the Coulomb potential. In both cases, the radiation cross-section and the radiation power of bremsstrahlung decrease with increases in the laser wavelength. The ratio of the scattering amplitude for the soft-core potential and that for the Coulombic potential decreases exponentially with an increase in momentum transfer. The bremsstrahlung emission by electrons in plasmas may provide a broadband light source for diagnostics.

  18. Waterlike anomalies in a two-dimensional core-softened potential

    NASA Astrophysics Data System (ADS)

    Bordin, José Rafael; Barbosa, Marcia C.

    2018-02-01

    We investigate the structural, thermodynamic, and dynamic behavior of a two-dimensional (2D) core-corona system using Langevin dynamics simulations. The particles are modeled by employing a core-softened potential which exhibits waterlike anomalies in three dimensions. In previous studies in a quasi-2D system a new region in the pressure versus temperature phase diagram of structural anomalies was observed. Here we show that for the two-dimensional case two regions in the pressure versus temperature phase diagram with structural, density, and diffusion anomalies are observed. Our findings indicate that, while the anomalous region at lower densities is due the competition between the two length scales in the potential at higher densities, the anomalous region is related to the reentrance of the melting line.

  19. Applications of liquid state physics to the earth's core

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1980-01-01

    New results derived for application to the earth's outer core using the modern theory of liquids and the hard-sphere model of liquid structure are presented. An expression derived in terms of the incompressibility and pressure is valid for a high-pressure liquid near its melting point, provided that the pressure is derived from a strongly repulsive pair potential; a relation derived between the melting point and density leads to a melting curve law of essentially the same form as Lindemann's law. Finally, it is shown that the 'core paradox' of Higgins and Kennedy (1971) can occur only if the Gruneisen parameter is smaller than 2/3, and this constant is larger than this value in any liquid for which the pair potential is strongly repulsive.

  20. Plant Bioelectric Potential of Hard-leaf Cabbage to Irradiation-light Frequency

    NASA Astrophysics Data System (ADS)

    Tokuda, Masaki; Shao, Lixin; Oyabu, Takashi; Nanto, Hidehito

    Bioelectric potential was investigated to examine the availability of vegetable growth control. The potential is a kind of information transmitted by the vegetable and it varies markedly with one’s physiological phenomenon, light, air contaminant and insect which are external factors. Highly-efficient growth control can be made possible due to clarifying the relationship between the external factors and the potential. Vegetable can be used as a sensor in addition. A hard-leaf cabbage (Ancient specie) was adopted as a subjective plant in this study and the bioelectric potential was measured. The analysis was carried out using the summation of the potential (vm1) for one minute. The data was input every 0.1 seconds through a difference amplifier. The potential characteristic was investigated as a function of light frequency emitting from a LED panel. In addition, the potential was studied when ethyl alcohol existed and not existed as an air contaminant. As a result, it becomes obvious that the vm1 is raised when blue and red lights are irradiated. The lights mainly contribute to photosynthesis. The potential increases in the presence of ethyl alcohol which was adopted as a kind of nutrient.

  1. Recycling potential of neodymium: the case of computer hard disk drives.

    PubMed

    Sprecher, Benjamin; Kleijn, Rene; Kramer, Gert Jan

    2014-08-19

    Neodymium, one of the more critically scarce rare earth metals, is often used in sustainable technologies. In this study, we investigate the potential contribution of neodymium recycling to reducing scarcity in supply, with a case study on computer hard disk drives (HDDs). We first review the literature on neodymium production and recycling potential. From this review, we find that recycling of computer HDDs is currently the most feasible pathway toward large-scale recycling of neodymium, even though HDDs do not represent the largest application of neodymium. We then use a combination of dynamic modeling and empirical experiments to conclude that within the application of NdFeB magnets for HDDs, the potential for loop-closing is significant: up to 57% in 2017. However, compared to the total NdFeB production capacity, the recovery potential from HDDs is relatively small (in the 1-3% range). The distributed nature of neodymium poses a significant challenge for recycling of neodymium.

  2. Successive measurements of streaming potential and electroosmotic pressure with the same core-holder

    NASA Astrophysics Data System (ADS)

    Yin, Chenggang; Hu, Hengshan; Yu, Chunhao; Wang, Jun

    2018-05-01

    Successive measurements of the streaming potential and electroosmotic pressure of each core sample are important for understanding the mechanisms of electrokinetic effects. In previous studies, one plug of the core-holder needs to be replaced in these two experiments, which causes the change of the fluid parameters and the boundary conditions in the core. We design a new core-holder to permit successive experiments without plug replacement, which ensures the consistency of the measurement environment. A two-direction harmonic pressure-driving source is accordingly designed. Using this new equipment, electrokinetic experiments conducted ten core samples at 0.4 mol/L NaCl solution. The results show good agreement between the electrokinetically deduced permeability and premeasured gas permeability. For high salinity saturated samples, the permeability can be inverted from electroosmotic effect instead of the streaming potential.

  3. Interfacial effect on physical properties of composite media: Interfacial volume fraction with non-spherical hard-core-soft-shell-structured particles.

    PubMed

    Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu

    2015-11-02

    Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.

  4. Interfacial effect on physical properties of composite media: Interfacial volume fraction with non-spherical hard-core-soft-shell-structured particles

    PubMed Central

    Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu

    2015-01-01

    Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials. PMID:26522701

  5. Fault-Tolerant, Radiation-Hard DSP

    NASA Technical Reports Server (NTRS)

    Czajkowski, David

    2011-01-01

    Commercial digital signal processors (DSPs) for use in high-speed satellite computers are challenged by the damaging effects of space radiation, mainly single event upsets (SEUs) and single event functional interrupts (SEFIs). Innovations have been developed for mitigating the effects of SEUs and SEFIs, enabling the use of very-highspeed commercial DSPs with improved SEU tolerances. Time-triple modular redundancy (TTMR) is a method of applying traditional triple modular redundancy on a single processor, exploiting the VLIW (very long instruction word) class of parallel processors. TTMR improves SEU rates substantially. SEFIs are solved by a SEFI-hardened core circuit, external to the microprocessor. It monitors the health of the processor, and if a SEFI occurs, forces the processor to return to performance through a series of escalating events. TTMR and hardened-core solutions were developed for both DSPs and reconfigurable field-programmable gate arrays (FPGAs). This includes advancement of TTMR algorithms for DSPs and reconfigurable FPGAs, plus a rad-hard, hardened-core integrated circuit that services both the DSP and FPGA. Additionally, a combined DSP and FPGA board architecture was fully developed into a rad-hard engineering product. This technology enables use of commercial off-the-shelf (COTS) DSPs in computers for satellite and other space applications, allowing rapid deployment at a much lower cost. Traditional rad-hard space computers are very expensive and typically have long lead times. These computers are either based on traditional rad-hard processors, which have extremely low computational performance, or triple modular redundant (TMR) FPGA arrays, which suffer from power and complexity issues. Even more frustrating is that the TMR arrays of FPGAs require a fixed, external rad-hard voting element, thereby causing them to lose much of their reconfiguration capability and in some cases significant speed reduction. The benefits of COTS high

  6. A comprehensive comparison between thermodynamic perturbation theory and first-order mean spherical approximation: Based on discrete potentials with hard core

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi; Zhou, Run

    2017-08-01

    Using the TL (Tang and Lu, 1993) method, Ornstein-Zernike integral equation is solved perturbatively under the mean spherical approximation (MSA) for fluid with potential consisting of a hard sphere plus square-well plus square-shoulder (HS + SW + SS) to obtain first-order analytic expressions of radial distribution function (RDF), second-order direct correlation function, and semi-analytic expressions for common thermodynamic properties. A comprehensive comparison between the first-order MSA and high temperature series expansion (HTSE) to third-, fifth- and seventh-order is performed over a wide parameter range for both a HS + SW and the HS + SW + SS model fluids by using corresponding ;exact; Monte Carlo results as a reference; although the HTSE is carried out up to seventh-order, and not to the first order as the first-order MSA the comparison is considered fair from a calculation complexity perspective. It is found that the performance of the first-order MSA is dramatically model-dependent: as target potentials go from the HS + SW to the HS + SW + SS, (i) there is a dramatic dropping of performance of the first-order MSA expressions in calculating the thermodynamic properties, especially both the excess internal energy and constant volume excess heat capacity of the HS + SW + SS model cannot be predicted even qualitatively correctly. (ii) One tendency is noticed that the first-order MSA gets more reliable with increasing temperatures in dealing with the pressure, excess Helmholtz free energy, excess enthalpy and excess chemical potential. (iii) Concerning the RDF, the first-order MSA is not as disappointing as it displays in the cases of thermodynamics. (iv) In the case of the HS + SW model, the first-order MSA solution is shown to be quantitatively correct in calculating the pressure and excess chemical potential even if the reduced temperatures are as low as 0.8. On the other hand, the seventh-order HTSE is less model-dependent; in most cases of the HS + SW

  7. Deciphering groundwater potential zones in hard rock terrain using geospatial technology.

    PubMed

    Dar, Imran A; Sankar, K; Dar, Mithas A

    2011-02-01

    Remote sensing and geographical information system (GIS) has become one of the leading tools in the field of groundwater research, which helps in assessing, monitoring, and conserving groundwater resources. This paper mainly deals with the integrated approach of remote sensing and GIS to delineate groundwater potential zones in hard rock terrain. Digitized vector maps pertaining to chosen parameters, viz. geomorphology, geology, land use/land cover, lineament, relief, and drainage, were converted to raster data using 23 m×23 m grid cell size. Moreover, curvature of the study area was also considered while manipulating the spatial data. The raster maps of these parameters were assigned to their respective theme weight and class weights. The individual theme weight was multiplied by its respective class weight and then all the raster thematic layers were aggregated in a linear combination equation in Arc Map GIS Raster Calculator module. Moreover, the weighted layers were statistically modeled to get the areal extent of groundwater prospects with respect to each thematic layer. The final result depicts the favorable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.

  8. Hard X-ray Emission from the M87 AGN Detected with NuSTAR

    NASA Astrophysics Data System (ADS)

    Wong, Ka-Wah; Nemmen, Rodrigo; Irwin, Jimmy; Lin, Dacheng

    2018-01-01

    M87 hosts a 3–6 billion solar mass black hole with a remarkable relativistic jet that has been regularly monitored in radio to TeV bands. However, hard X-ray emission above 10keV expected to primarily come from the jet or the accretion flow had never been detected from its unresolved X-ray core. We report NuSTAR detection up to 40 keV from the the central regions of M87. Together with simultaneous Chandra observations, we have constrained the dominant hard X-ray emission to be from its unresolved X-ray core, presumably in its quiescent state. The core spectrum is well fitted by a power-law. The measured flux density at 40keV is consistent with a jet origin, although emission from the advection-dominated accretion flow cannot be completely ruled out. The detected hard X-ray emission is significantly lower than that predicted by synchrotron self-Compton models introduced to explain emission above a GeV.

  9. Combining hard and soft magnetism into a single core-shell nanoparticle to achieve both hyperthermia and image contrast

    PubMed Central

    Yang, Qiuhong; Gong, Maogang; Cai, Shuang; Zhang, Ti; Douglas, Justin T; Chikan, Viktor; Davies, Neal M; Lee, Phil; Choi, In-Young; Ren, Shenqiang; Forrest, M Laird

    2015-01-01

    Background A biocompatible core/shell structured magnetic nanoparticles (MNPs) was developed to mediate simultaneous cancer therapy and imaging. Methods & results A 22-nm MNP was first synthesized via magnetically coupling hard (FePt) and soft (Fe3O4) materials to produce high relative energy transfer. Colloidal stability of the FePt@Fe3O4 MNPs was achieved through surface modification with silane-polyethylene glycol (PEG). Intravenous administration of PEG-MNPs into tumor-bearing mice resulted in a sustained particle accumulation in the tumor region, and the tumor burden of treated mice was a third that of the mice in control groups 2 weeks after a local hyperthermia treatment. In vivo magnetic resonance imaging exhibited enhanced T2 contrast in the tumor region. Conclusion This work has demonstrated the feasibility of cancer theranostics with PEG-MNPs. PMID:26606855

  10. Relativistic semiempirical-core-potential calculations in Ca+,Sr+ , and Ba+ ions on Lagrange meshes

    NASA Astrophysics Data System (ADS)

    Filippin, Livio; Schiffmann, Sacha; Dohet-Eraly, Jérémy; Baye, Daniel; Godefroid, Michel

    2018-01-01

    Relativistic atomic structure calculations are carried out in alkaline-earth-metal ions using a semiempirical-core-potential approach. The systems are partitioned into frozen-core electrons and an active valence electron. The core orbitals are defined by a Dirac-Hartree-Fock calculation using the grasp2k package. The valence electron is described by a Dirac-like Hamiltonian involving a core-polarization potential to simulate the core-valence electron correlation. The associated equation is solved with the Lagrange-mesh method, which is an approximate variational approach having the form of a mesh calculation because of the use of a Gauss quadrature to calculate matrix elements. Properties involving the low-lying metastable D 3 /2 ,5 /2 2 states of Ca+, Sr+, and Ba+ are studied, such as polarizabilities, one- and two-photon decay rates, and lifetimes. Good agreement is found with other theory and observation, which is promising for further applications in alkalilike systems.

  11. Residual stress control and design of next-generation ultra-hard gear steels

    NASA Astrophysics Data System (ADS)

    Qian, Yana

    In high power density transmission systems, Ni-Co secondary hardening steels have shown great potential for next-generation gear applications due to their excellent strength, toughness and superior fatigue performance. Study of residual stress generation and evolution in Ferrium C61 and C67 gear steels revealed that shot peening and laser peening processes effectively produce desired beneficial residual stress in the steels for enhanced fatigue performance. Surface residual stress levels of -1.4GPa and -1.5GPa were achieved in shot peened C61 and laser peened C67, respectively, without introducing large surface roughness or defects. Higher compressive residual stress is expected in C67 according to a demonstrated correlation between attainable residual stress and material hardness. Due to the lack of appropriate shot media, dual laser peening is proposed for future peening optimization in C67. A novel non-destructive synchrotron radiation technique was implemented and applied for the first time for residual stress distribution analysis in gear steels with large composition and property gradients. Observed substantial residual stress redistribution and material microstructure change during the rolling contact fatigue screening test with extremely high 5.4GPa load indicates the unsuitability of the test as a fatigue life predictor. To exploit benefits of higher case hardness and associated residual stress, a new material and process (CryoForm70) aiming at 70Rc surface hardness was designed utilizing the systems approach based on thermodynamics and secondary hardening mechanisms. The composition design was first validated by the excellent agreement between experimental and theoretical core martensite start temperature in the prototype. A novel cryogenic deformation process was concurrently designed to increase the case martensite volume fraction from 76% to 92% for enhanced strengthening efficiency and surface hardness. High temperature vacuum carburizing was

  12. Impact and hardness optimisation of composite materials inspired by the babassu nut (Orbignya speciosa).

    PubMed

    Staufenberg, Gerrit; Graupner, Nina; Müssig, Jörg

    2015-08-20

    The babassu nut is the fruit of the babassu palm Orbignya speciosa. The combination of hardness and impact strength is difficult to acquire for artificial materials, making the babassu nut a promising source for biomimetic inspiration. Unnotched Charpy impact tests, Shore D hardness tests and scanning electron microscopy were used for mechanical and microscopical analysis of the pericarp. Four major principles were found for a biomimetic approach: a hard core ((1); endocarp) is embedded in a soft outer layer of high impact strength ((2); epicarp) and is reinforced with fibres of variable fineness (3), some of which are oriented radial to the core (4). Biomimetic fibre-reinforced composites were produced using abstracted mechanisms of the babassu nut based on regenerated cellulose fibres (lyocell, L) with two different fineness values as reinforcement embedded in a polylactide (PLA) core matrix and polypropylene (PP) based outer layers. The biomimetic fibre composite reaches a significantly higher impact strength that is 1.6 times higher than the reference sample produced from a PLA/PP/L-blend. At the same time the hardness is slightly increased compared to PP/L.

  13. Chemical potential of a test hard sphere of variable size in hard-sphere fluid mixtures.

    PubMed

    Heyes, David M; Santos, Andrés

    2018-06-07

    A detailed comparison between the Boublík-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of state of hard-sphere mixtures is made with Molecular Dynamics (MD) simulations of the same compositions. The Labík and Smith simulation technique [S. Labík and W. R. Smith, Mol. Simul. 12, 23-31 (1994)] was used to implement the Widom particle insertion method to calculate the excess chemical potential, βμ 0 ex , of a test particle of variable diameter, σ 0 , immersed in a hard-sphere fluid mixture with different compositions and values of the packing fraction, η. Use is made of the fact that the only polynomial representation of βμ 0 ex which is consistent with the limits σ 0 → 0 and σ 0 → ∞ has to be of the cubic form, i.e., c 0 (η)+c¯ 1 (η)σ 0 /M 1 +c¯ 2 (η)(σ 0 /M 1 ) 2 +c¯ 3 (η)(σ 0 /M 1 ) 3 , where M 1 is the first moment of the distribution. The first two coefficients, c 0 (η) and c¯ 1 (η), are known analytically, while c¯ 2 (η) and c¯ 3 (η) were obtained by fitting the MD data to this expression. This in turn provides a method to determine the excess free energy per particle, βa ex , in terms of c¯ 2 , c¯ 3 , and the compressibility factor, Z. Very good agreement between the BMCSL formulas and the MD data is found for βμ 0 ex , Z, and βa ex for binary mixtures and continuous particle size distributions with the top-hat analytic form. However, the BMCSL theory typically slightly underestimates the simulation values, especially for Z, differences which the Boublík-Carnahan-Starling-Kolafa formulas and an interpolation between two Percus-Yevick routes capture well in different ranges of the system parameter space.

  14. Chemical potential of a test hard sphere of variable size in hard-sphere fluid mixtures

    NASA Astrophysics Data System (ADS)

    Heyes, David M.; Santos, Andrés

    2018-06-01

    A detailed comparison between the Boublík-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of state of hard-sphere mixtures is made with Molecular Dynamics (MD) simulations of the same compositions. The Labík and Smith simulation technique [S. Labík and W. R. Smith, Mol. Simul. 12, 23-31 (1994)] was used to implement the Widom particle insertion method to calculate the excess chemical potential, β μ0ex, of a test particle of variable diameter, σ0, immersed in a hard-sphere fluid mixture with different compositions and values of the packing fraction, η. Use is made of the fact that the only polynomial representation of β μ0ex which is consistent with the limits σ0 → 0 and σ0 → ∞ has to be of the cubic form, i.e., c0(η ) +c¯ 1(η ) σ0/M1+c¯ 2(η ) (σ0/M1 ) 2+c¯ 3(η ) (σ0/M1 ) 3, where M1 is the first moment of the distribution. The first two coefficients, c0(η) and c¯ 1(η ) , are known analytically, while c¯ 2(η ) and c¯ 3(η ) were obtained by fitting the MD data to this expression. This in turn provides a method to determine the excess free energy per particle, βaex, in terms of c¯ 2, c¯ 3, and the compressibility factor, Z. Very good agreement between the BMCSL formulas and the MD data is found for β μ0ex, Z, and βaex for binary mixtures and continuous particle size distributions with the top-hat analytic form. However, the BMCSL theory typically slightly underestimates the simulation values, especially for Z, differences which the Boublík-Carnahan-Starling-Kolafa formulas and an interpolation between two Percus-Yevick routes capture well in different ranges of the system parameter space.

  15. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco-Pérez, Marco, E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx; Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1; Gázquez, José L., E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx

    We extend the definition of the electronic chemical potential (μ{sub e}) and chemical hardness (η{sub e}) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ{sub e}.more » Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.« less

  16. Room-temperature ferromagnetic Cr-doped Ge/GeOx core-shell nanowires.

    PubMed

    Katkar, Amar S; Gupta, Shobhnath P; Seikh, Md Motin; Chen, Lih-Juann; Walke, Pravin S

    2018-06-08

    The Cr-doped tunable thickness core-shell Ge/GeO x nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr 3+ in core-shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core-shell thickness and intriguing room temperature ferromagnetism is realized only in core-shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (T C  > 300 K) with the dominating values of its magnetic remanence (M R ) and coercivity (H C ) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeO X core-shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.

  17. Mechanical Property Comparison of the Soviet BS-41 and the US M993 Armor-Penetrating Cores

    DTIC Science & Technology

    2016-11-23

    influences the formation of cracks at the tips of hardness indentations. The observations from the optical and SEM micrographs allow one to better...core is a fine-grained WC cemented in cobalt. The M993 core was determined to have superior hardness and indentation toughness. The superior... hardness , toughness, microstructure, composition 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 20 19a

  18. Steric interactions determine side-chain conformations in protein cores.

    PubMed

    Caballero, D; Virrueta, A; O'Hern, C S; Regan, L

    2016-09-01

    We investigate the role of steric interactions in defining side-chain conformations in protein cores. Previously, we explored the strengths and limitations of hard-sphere dipeptide models in defining sterically allowed side-chain conformations and recapitulating key features of the side-chain dihedral angle distributions observed in high-resolution protein structures. Here, we show that modeling residues in the context of a particular protein environment, with both intra- and inter-residue steric interactions, is sufficient to specify which of the allowed side-chain conformations is adopted. This model predicts 97% of the side-chain conformations of Leu, Ile, Val, Phe, Tyr, Trp and Thr core residues to within 20°. Although the hard-sphere dipeptide model predicts the observed side-chain dihedral angle distributions for both Thr and Ser, the model including the protein environment predicts side-chain conformations to within 20° for only 60% of core Ser residues. Thus, this approach can identify the amino acids for which hard-sphere interactions alone are sufficient and those for which additional interactions are necessary to accurately predict side-chain conformations in protein cores. We also show that our approach can predict alternate side-chain conformations of core residues, which are supported by the observed electron density. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Optical Methods for Identifying Hard Clay Core Samples During Petrophysical Studies

    NASA Astrophysics Data System (ADS)

    Morev, A. V.; Solovyeva, A. V.; Morev, V. A.

    2018-01-01

    X-ray phase analysis of the general mineralogical composition of core samples from one of the West Siberian fields was performed. Electronic absorption spectra of the clay core samples with an added indicator were studied. The speed and availability of applying the two methods in petrophysical laboratories during sample preparation for standard and special studies were estimated.

  20. Performance potential of gas-core and fusion rockets - A mission applications survey.

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.; Willis, E. A., Jr.

    1971-01-01

    This paper reports an evaluation of the performance potential of five nuclear rocket engines for four mission classes. These engines are: the regeneratively cooled gas-core nuclear rocket; the light bulb gas-core nuclear rocket; the space-radiator cooled gas-core nuclear rocket; the fusion rocket; and an advanced solid-core nuclear rocket which is included for comparison. The missions considered are: earth-to-orbit launch; near-earth space missions; close interplanetary missions; and distant interplanetary missions. For each of these missions, the capabilities of each rocket engine type are compared in terms of payload ratio for the earth launch mission or by the initial vehicle mass in earth orbit for space missions (a measure of initial cost). Other factors which might determine the engine choice are discussed. It is shown that a 60 day manned round trip to Mars is conceivable.-

  1. Non-hard sphere thermodynamic perturbation theory.

    PubMed

    Zhou, Shiqi

    2011-08-21

    A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics

  2. Mechanical properties of commercial high strength ceramic core materials.

    PubMed

    Rizkalla, A S; Jones, D W

    2004-02-01

    The objective of the present study is to evaluate and compare the flexural strength, dynamic elastic moduli and true hardness (H(o)) values of commercial Vita In-Ceram alumina core and Vita In-Ceram matrix glass with the standard aluminous porcelain (Hi-Ceram and Vitadur), Vitadur N and Dicor glass and glass-ceramic. The flexural strength was evaluated (n=5) using 3-point loading and a servo hydraulic Instron testing machine at a cross head speed of 0.5 mm/min. The density of the specimens (n=3) was measured by means of the water displacement technique. Dynamic Young's shear and bulk moduli and Poisson's ratio (n=3) were measured using a non-destructive ultrasonic technique using 10 MHz lithium niobate crystals. The true hardness (n=3) was measured using a Knoop indenter and the fracture toughness (n=3) was determined using a Vickers indenter and a Tukon hardness tester. Statistical analysis of the data was conducted using ANOVA and a Student-Newman-Keuls (SNK) rank order multiple comparative test. The SNK rank order test analysis of the mean flexural strength was able to separate five commercial core materials into three significant groups at p=0.05. Vita In-Ceram alumina and IPS Empress 2 exhibited significantly higher flexural strength than aluminous porcelains and IPS Empress at p=0.05. The dynamic elastic moduli and true hardness of Vita In-Ceram alumina core were significantly higher than the rest of the commercial ceramic core materials at p=0.05. The ultrasonic test method is a valuable mechanical characterization tool and was able to statistically discriminate between the chemical and structural differences within dental ceramic materials. Significant correlation was obtained between the dynamic Young's modulus and true hardness, p=0.05.

  3. In vitro evaluation of five core materials.

    PubMed

    Gu, Steven; Rasimick, Brian J; Deutsch, Allan S; Musikant, Barry L

    2007-01-01

    This in vitro study determined the fracture strength of five core materials supported by two different endodontic dowels. Diametral tensile strength and microhardness of the three resin composite core materials used in this study were also tested. The fracture strength study used one lanthanide-reinforced flowable resin composite (Ti-Core Auto E), one titanium- and lanthanide-reinforced composite (Ti-Core), one lanthanide-reinforced composite (Ti-Core Natural), and two metal-reinforced glass ionomer core materials (Ketac Silver and GC Miracle Mix). Two types of dowels were used: a multitiered, split-shank threaded dowel with a flange (#1 Flexi-Flange) and one without a flange design (#1 Flexi-Post). The specimens were divided into ten groups. Each tooth/dowel and core specimen was placed in a special jig at 45 degrees and subjected to a load by a universal testing machine. The diametral tensile strength and the microhardness of the three resin composite core materials were measured by a universal testing machine and Barcol hardness tester, respectively. All test groups contained ten specimens. The fracture strength value of the resin composite core materials was significantly larger ( p < 0.0001) than those for the metal-reinforced glass-ionomer core materials. Analysis of variance (ANOVA) also showed that the Flexi-Flange dowel interacted with Ti-Core and Ti-Core Auto E to significantly ( p < 0.0013) increase the fracture strength relative to the Flexi-Post. One-way ANOVA revealed that there were no significant differences between them in terms of diametral tensile strength. The Barcol hardness values of the composite core materials were statistically different ( p < 0.0001), with the Ti-Core the highest, followed by Ti-Core Natural, then Ti-Core Auto E. Resin composite core material performed better than glass ionomer material in this in vitro study. The flowable composite core material performed about the same in terms of fracture strength and diametral tensile

  4. Automated classification of Acid Rock Drainage potential from Corescan drill core imagery

    NASA Astrophysics Data System (ADS)

    Cracknell, M. J.; Jackson, L.; Parbhakar-Fox, A.; Savinova, K.

    2017-12-01

    Classification of the acid forming potential of waste rock is important for managing environmental hazards associated with mining operations. Current methods for the classification of acid rock drainage (ARD) potential usually involve labour intensive and subjective assessment of drill core and/or hand specimens. Manual methods are subject to operator bias, human error and the amount of material that can be assessed within a given time frame is limited. The automated classification of ARD potential documented here is based on the ARD Index developed by Parbhakar-Fox et al. (2011). This ARD Index involves the combination of five indicators: A - sulphide content; B - sulphide alteration; C - sulphide morphology; D - primary neutraliser content; and E - sulphide mineral association. Several components of the ARD Index require accurate identification of sulphide minerals. This is achieved by classifying Corescan Red-Green-Blue true colour images into the presence or absence of sulphide minerals using supervised classification. Subsequently, sulphide classification images are processed and combined with Corescan SWIR-based mineral classifications to obtain information on sulphide content, indices representing sulphide textures (disseminated versus massive and degree of veining), and spatially associated minerals. This information is combined to calculate ARD Index indicator values that feed into the classification of ARD potential. Automated ARD potential classifications of drill core samples associated with a porphyry Cu-Au deposit are compared to manually derived classifications and those obtained by standard static geochemical testing and X-ray diffractometry analyses. Results indicate a high degree of similarity between automated and manual ARD potential classifications. Major differences between approaches are observed in sulphide and neutraliser mineral percentages, likely due to the subjective nature of manual estimates of mineral content. The automated approach

  5. Criticality in charge-asymmetric hard-sphere ionic fluids.

    PubMed

    Aqua, Jean-Noël; Banerjee, Shubho; Fisher, Michael E

    2005-10-01

    Phase separation and criticality are analyzed in z:1 charge-asymmetric ionic fluids of equisized hard spheres by generalizing the Debye-Hückel approach combined with ionic association, cluster solvation by charged ions, and hard-core interactions, following lines developed by Fisher and Levin for the 1:1 case (i.e., the restricted primitive model). Explicit analytical calculations for 2:1 and 3:1 systems account for ionic association into dimers, trimers, and tetramers and subsequent multipolar cluster solvation. The reduced critical temperatures, Tc* (normalized by z), decrease with charge asymmetry, while the critical densities increase rapidly with . The results compare favorably with simulations and represent a distinct improvement over all current theories such as the mean spherical approximation, symmetric Poisson-Boltzmann theory, etc. For z not equal to 1, the interphase Galvani (or absolute electrostatic) potential difference, Deltaphi(T), between coexisting liquid and vapor phases is calculated and found to vanish as absolute value (T-Tc) beta when T-->Tc-with, since our approximations are classical, beta = (1/2). Above Tc, the compressibility maxima and so-called k-inflection loci (which aid the fast and accurate determination of the critical parameters) are found to exhibit a strong z dependence.

  6. Observation of electric potential in organic thin-film transistor by bias-applied hard X-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Watanabe, Takeshi; Tada, Keisuke; Yasuno, Satoshi; Oji, Hiroshi; Yoshimoto, Noriyuki; Hirosawa, Ichiro

    2016-03-01

    The effect of gate voltage on electric potential in a pentacene (PEN) layer was studied by hard X-ray photoelectron spectroscopy under a bias voltage. It was observed that applying a negative gate voltage substantially increases the width of a C 1s peak. This suggested that injected and accumulated carriers in an organic thin film transistor channel modified the potential depth profile in PEN. It was also observed that the C 1s kinetic energy tends to increase monotonically with threshold voltage.

  7. Different Timing Features in Brain Processing of Core and Moral Disgust Pictures: An Event-Related Potentials Study

    PubMed Central

    Zhang, Youxue; Lou, Liandi; Ding, Daoqun

    2015-01-01

    Disgust, an emotion motivating withdrawal from offensive stimuli, protects us from the risk of biological pathogens and sociomoral violations. Homogeneity of its two types, namely, core and moral disgust has been under intensive debate. To examine the dynamic relationship between them, we recorded event-related potentials (ERPs) for core disgust, moral disgust and neutral pictures while participants performed a modified oddball task. ERP analysis revealed that N1 and P2 amplitudes were largest for the core disgust pictures, indicating automatic processing of the core disgust-evoking pictures. N2 amplitudes were higher for pictures evoking moral disgust relative to core disgust and neutral pictures, reflecting a violation of social norms. The core disgust pictures elicited larger P3 and late positive potential (LPP) amplitudes in comparison with the moral disgust pictures which, in turn, elicited larger P3 and LPP amplitudes when compared to the neutral pictures. Taken together, these findings indicated that core and moral disgust pictures elicited different neural activities at various stages of information processing, which provided supporting evidence for the heterogeneity of disgust. PMID:26011635

  8. Different timing features in brain processing of core and moral disgust pictures: an event-related potentials study.

    PubMed

    Zhang, Xiangyi; Guo, Qi; Zhang, Youxue; Lou, Liandi; Ding, Daoqun

    2015-01-01

    Disgust, an emotion motivating withdrawal from offensive stimuli, protects us from the risk of biological pathogens and sociomoral violations. Homogeneity of its two types, namely, core and moral disgust has been under intensive debate. To examine the dynamic relationship between them, we recorded event-related potentials (ERPs) for core disgust, moral disgust and neutral pictures while participants performed a modified oddball task. ERP analysis revealed that N1 and P2 amplitudes were largest for the core disgust pictures, indicating automatic processing of the core disgust-evoking pictures. N2 amplitudes were higher for pictures evoking moral disgust relative to core disgust and neutral pictures, reflecting a violation of social norms. The core disgust pictures elicited larger P3 and late positive potential (LPP) amplitudes in comparison with the moral disgust pictures which, in turn, elicited larger P3 and LPP amplitudes when compared to the neutral pictures. Taken together, these findings indicated that core and moral disgust pictures elicited different neural activities at various stages of information processing, which provided supporting evidence for the heterogeneity of disgust.

  9. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    PubMed

    Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S; Heitzmann, Daniel W W; Kretzer, J Philippe

    2013-01-01

    The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  10. Hard-on-Hard Lubrication in the Artificial Hip under Dynamic Loading Conditions

    PubMed Central

    Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S.; Heitzmann, Daniel W. W.; Kretzer, J. Philippe

    2013-01-01

    The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal. PMID:23940772

  11. Lipid-coated mannitol core microparticles for sustained release of protein.

    PubMed

    Wang, Bifeng; Friess, Wolfgang

    2018-07-01

    Parenteral sustained release systems for proteins which provide therapeutic levels over a longer period avoiding frequent administration, which preserve protein stability during manufacturing, storage and application and which are biodegradable and highly biocompatible in the body are intensively sought after. The aim of this study was to generate and study mannitol core microparticles loaded with a monoclonal antibody IgG1 and coated with lipid either hard fat or glyceryl stearate at different coating levels. The protein was stabilized with 22.5 mg/mL sucrose, 0.1% PS 80, 10 mM methionine in 10 mM His buffer pH 7.2 during the spray loading process. 30 g protein-loaded mannitol carrier microparticles were coated with 5 g, 10 g, 20 g and 30 g of lipid, respectively. Placing more lipid onto the protein-loaded microparticles reduced both burst and release rate, and the particles maintained their geometric form during the release test. The IgG1 release from microparticles covered with a hard fat layer extended up to 6 weeks. The IgG1 was released in its monomeric form and maintained its secondary structure as shown by FTIR. Incomplete release of IgG1 from glyceryl stearate-coated microparticles was observed, which may be due to the small pore sizes of the glyceryl stearate layer or a detrimental surfactant character of glyceryl stearate to protein. Hence, these hard fat-coated mannitol core microparticles have high potential for protein delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effect of attractive interactions on the water-like anomalies of a core-softened model potential.

    PubMed

    Pant, Shashank; Gera, Tarun; Choudhury, Niharendu

    2013-12-28

    It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case.

  13. Radial distribution function for hard spheres in fractal dimensions: A heuristic approximation.

    PubMed

    Santos, Andrés; de Haro, Mariano López

    2016-06-01

    Analytic approximations for the radial distribution function, the structure factor, and the equation of state of hard-core fluids in fractal dimension d (1≤d≤3) are developed as heuristic interpolations from the knowledge of the exact and Percus-Yevick results for the hard-rod and hard-sphere fluids, respectively. In order to assess their value, such approximate results are compared with those of recent Monte Carlo simulations and numerical solutions of the Percus-Yevick equation for a fractal dimension [M. Heinen et al., Phys. Rev. Lett. 115, 097801 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.097801], a good agreement being observed.

  14. Enhanced Densification and Hardness of Titanium Bodies Sintered by Advanced Hydrogen Sintering Process

    NASA Astrophysics Data System (ADS)

    Oh, Jung-Min; Koo, Ja-Geon; Lim, Jae-Won

    2018-05-01

    A new sintering technique for enhancing a densification and hardness of sintered titanium body by supplying hydrogen was developed (Hydrogen Sintering Process, HSP). The HSP was developed by only injecting hydrogen into an argon atmosphere during the core time. As a result, sound titanium sintered bodies with high density and hardness were obtained by the HSP. In addition, a pore size and number of the HSP specimens were smaller than those of the argon atmosphere specimen. It was found that the injecting hydrogen into the argon atmosphere by HSP can prevent the formation of oxide layers, resulting in enhanced densification and hardness.

  15. Hard Core Pharmacology: How Much Is Taught in Pharmacy Schools?

    ERIC Educational Resources Information Center

    Bachmann, Kenneth A.; And Others

    1990-01-01

    A survey was sent to eighty-five American Association of Colleges of Pharmacy-member schools and affiliates to learn how many lectures are accorded to core sequences in pharmacology. The data were intended to provide a frame of reference for the University of Toledo College of Pharmacy. (Author/MLW)

  16. Potential fields & satellite missions: what they tell us about the Earth's core?

    NASA Astrophysics Data System (ADS)

    Mandea, M.; Panet, I.; Lesur, V.; de Viron, O.; Diament, M.; Le Mouël, J.

    2012-12-01

    Since the advent of satellite potential field missions, the search to find information they can carry about the Earth's core has been motivated both by an interest in understanding the structure of dynamics of the Earth's interior and by the possibility of applying new space data analysis. While it is agreed upon that the magnetic field measurements from space bring interesting information on the rapid variations of the core magnetic field and flows associated with, the question turns to whether the core process can have a signature in the space gravity data. Here, we tackle this question, in the light of the recent data from the GRACE mission, that reach an unprecedented precision. Our study is based on eight years of high-resolution, high-accuracy gravity and magnetic satellite data, provided by the GRACE and CHAMP satellite missions. From the GRACE CNES/GRGS geoid solutions, we have emphasized the long-term variability by using a specific post-processing technique. From the CHAMP magnetic data we have computed models for the core magnetic field and its temporal variations, and the flow at the top of the core. A correlation analysis between the gravity and magnetic gridded series indicates that the inter-annual changes in the core magnetic field - under a region from the Atlantic to Indian Oceans - coincide with similar changes in the gravity field. These results should be considered as a constituent when planning new Earth's observation space missions and future innovations relevant to both gravity (after GRACE Follow-On) and magnetic (after Swarm) missions.

  17. An RXTE Study of M87 and the Core of the Virgo Cluster

    NASA Technical Reports Server (NTRS)

    Reynolds, Christopher S.; Heinz, Sebastian; Fabian, Andrew C.; Begelman, Mitchell C.

    1998-01-01

    We present hard X-ray observations of the nearby radio galaxy M87 and the core of the Virgo cluster using the Rossi X-ray Timing Explorer. These are the first hard X-ray observations of M87 not affected by contamination from the nearby Seyfert 2 galaxy NGC 4388. Thermal emission from Virgo's intracluster medium is clearly detected and has a spectrum indicative of kT approx. = 2.5 keV plasma with approximately 25% cosmic abundances. No non-thermal (power-law) emission from M87 is detected in the hard X-ray band, with fluctuations in the Cosmic X-ray Background being the limiting factor. Combining with ROSAT data, we infer that the X-ray spectrum of the M87 core and jet must be steep (Gamma(sub core) greater than 1.90 and Gamma(sub jet) greater than 1.75), and we discuss the implications of this result. In particular, these results are consistent with M87 being a mis-aligned BL-Lac object.

  18. An RXTE Study of M87 and the Core of the Virgo Cluster

    NASA Technical Reports Server (NTRS)

    Reynolds, Christopher S.; Heinz, Sebastian; Fabian, Andrew C.; Begelman, Mitchell C.

    1998-01-01

    We present hard X-ray observations of the nearby radio galaxy M87 and the core of the Virgo cluster using the Rossi X-ray 7Tming Explorer. These are the first hard X-ray observations of M87 not affected by contamination from the nearby Seyfert 2 galaxy NGC 4388. Thermal emission from Virgo's intracluster medium is clearly detected and has a spectrum indicative of kT is approximately equal to 2.5 keV plasma with approximately 25% cosmic abundances. No non-thermal (power-law) emission from M87 is detected in the hard X-ray band, with fluctuations in the Cosmic X-ray Background being the limiting factor. Combining with ROSAT data, we infer that the X-ray spectrum of the M87 core and jet must be steep (Gamma (sub core) > 1.90 and Gamma (sub jet) > 1.75), and we discuss the implications of this result. In particular, these results are consistent with M87 being a mis-aligned BL-Lac object.

  19. Mongoose: Creation of a Rad-Hard MIPS R3000

    NASA Technical Reports Server (NTRS)

    Lincoln, Dan; Smith, Brian

    1993-01-01

    This paper describes the development of a 32 Bit, full MIPS R3000 code-compatible Rad-Hard CPU, code named Mongoose. Mongoose progressed from contract award, through the design cycle, to operational silicon in 12 months to meet a space mission for NASA. The goal was the creation of a fully static device capable of operation to the maximum Mil-883 derated speed, worst-case post-rad exposure with full operational integrity. This included consideration of features for functional enhancements relating to mission compatibility and removal of commercial practices not supported by Rad-Hard technology. 'Mongoose' developed from an evolution of LSI Logic's MIPS-I embedded processor, LR33000, code named Cobra, to its Rad-Hard 'equivalent', Mongoose. The term 'equivalent' is used to infer that the core of the processor is functionally identical, allowing the same use and optimizations of the MIPS-I Instruction Set software tool suite for compilation, software program trace, etc. This activity was started in September of 1991 under a contract from NASA-Goddard Space Flight Center (GSFC)-Flight Data Systems. The approach affected a teaming of NASA-GSFC for program development, LSI Logic for system and ASIC design coupled with the Rad-Hard process technology, and Harris (GASD) for Rad-Hard microprocessor design expertise. The program culminated with the generation of Rad-Hard Mongoose prototypes one year later.

  20. The Potential of Digital Technologies to Support Literacy Instruction Relevant to the Common Core State Standards

    ERIC Educational Resources Information Center

    Hutchison, Amy C.; Colwell, Jamie

    2014-01-01

    Digital tools have the potential to transform instruction and promote literacies outlined in the Common Core State Standards. Empirical research is examined to illustrate this potential in grades 6-12 instruction.

  1. Scoring Dawg Core Breakoff and Retention Mechanism

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Backes, Paul G.

    2011-01-01

    This novel core break-off and retention mechanism consists of a scoring dawg controlled by a set of two tubes (a drill tube and an inner tube). The drill tube and the inner tube have longitudinal concentric holes. The solution can be implemented in an eccentric tube configuration as well where the tubes have eccentric longitudinal holes. The inner tube presents at the bottom two control surfaces for controlling the orientation of the scoring dawg. The drill tube presents a sunk-in profile on the inside of the wall for housing the scoring dawg. The inner tube rotation relative to the drill tube actively controls the orientation of the scoring dawg and hence its penetration and retrieval from the core. The scoring dawg presents a shaft, two axially spaced arms, and a tooth. The two arms slide on the control surfaces of the inner tube. The tooth, when rotated, can penetrate or be extracted from the core. During drilling, the two tubes move together maintaining the scoring dawg completely outside the core. After the desired drilling depth has been reached the inner tube is rotated relative to the drill tube such that the tooth of the scoring dawg moves toward the central axis. By rotating the drill tube, the scoring dawg can score the core and so reduce its cross sectional area. The scoring dawg can also act as a stress concentrator for breaking the core in torsion or tension. After breaking the core, the scoring dawg can act as a core retention mechanism. For scoring, it requires the core to be attached to the rock. If the core is broken, the dawg can be used as a retention mechanism. The scoring dawg requires a hard-tip insert like tungsten carbide for scoring hard rocks. The relative rotation of the two tubes can be controlled manually or by an additional actuator. In the implemented design solution the bit rotation for scoring was in the same direction as the drilling. The device was tested for limestone cores and basalt cores. The torque required for breaking the

  2. Relative contribution of combined kinetic and exchange energy terms vs the electronic component of molecular electrostatic potential in hardness potential derivatives.

    PubMed

    Bhattacharjee, Rituparna; Roy, Ram Kinkar

    2013-11-14

    The relative contribution of the sum of kinetic [(10/9)CFρ(r)2/3] and exchange energy [(4/9)CXρ(r)1/3] terms to that of the electronic part of the molecular electrostatic potential [Vel(r)] in the variants of hardness potential is investigated to assess the proposed definition of Δ+h(k) = −[VelN+1(k) – VelN(k)] and Δ–h(k) = −[VelN(k) – VelN–1(k)] (Saha; et al. J. Comput. Chem. 2013, 34, 662). Some substituted benzenes and polycyclic aromatic hydrocarbons (PAHs) (undergoing electrophilic aromatic substitution), carboxylic acids, and their derivatives are chosen to carry out the theoretical investigation as stated above. Intra- and intermolecular reactivity trends generated by Δ+h(k) and Δ–h(k) are found to be satisfactory and are correlated reasonably well with experimental results.

  3. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining

  4. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining

  5. Few-body modes of binary formation in core collapse

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru; Heggie, Douglas C.; Hut, Piet; Makino, Junichiro

    2013-11-01

    At the moment of deepest core collapse, a star cluster core contains less than ten stars. This small number makes the traditional treatment of hard binary formation, assuming a homogeneous background density, suspect. In a previous paper, we have found that indeed the conventional wisdom of binary formation, based on three-body encounters, is incorrect. Here we refine that insight, by further dissecting the subsequent steps leading to hard binary formation. For this purpose, we add some analysis tools in order to make the study less subjective. We find that the conventional treatment does remain valid for direct three-body scattering, but fails for resonant three-body scattering. Especially democratic resonance scattering, which forms an important part of the analytical theory of three-body binary formation, takes too much space and time to be approximated as being isolated, in the context of a cluster core around core collapse. We conclude that, while three-body encounters can be analytically approximated as isolated, subsequent strong perturbations typically occur whenever those encounters give rise to democratic resonances. We present analytical estimates postdicting our numerical results. If we only had been a bit more clever, we could have predicted this qualitative behaviour.

  6. Decomposition of insoluble and hard-to-degrade animal proteins by enzyme E77 and its potential applications.

    PubMed

    Zhao, Hui; Mitsuiki, Shinji; Takasugi, Mikako; Sakai, Masashi; Goto, Masatoshi; Kanouchi, Hiroaki; Oka, Tatsuzo

    2012-04-01

    Insoluble and hard-to-degrade animal proteins are group of troublesome proteins, such as collagen, elastin, keratin, and prion proteins that are largely generated by the meat industry and ultimately converted to industrial wastes. We analyzed the ability of the abnormal prion protein-degrading enzyme E77 to degrade insoluble and hard-to-degrade animal proteins including keratin, collagen, and elastin. The results indicate that E77 has a much higher keratinolytic activity than proteinase K and subtilisin. Maximal E77 keratinolytic activity was observed at pH 12.0 and 65 °C. E77 was also adsorbed by keratin in a pH-independent manner. E77 showed lower collagenolytic and elastinolytic specificities than proteinase K and subtilisin. Moreover, E77 treatment did not damage collagens in ovine small intestines but did almost completely remove the muscles. We consider that E77 has the potential ability for application in the processing of animal feedstuffs and sausages.

  7. Transport coefficients of Lennard-Jones fluids: A molecular-dynamics and effective-hard-sphere treatment

    NASA Astrophysics Data System (ADS)

    Heyes, David M.

    1988-04-01

    This study evaluates the shear viscosity, self-diffusion coefficient, and thermal conductivity of the Lennard-Jones (LJ) fluid over essentially the entire fluid range by molecular-dynamics (MD) computer simulation. The Green-Kubo (GK) method is mainly used. In addition, for shear viscosity, homogeneous shear nonequilibrium MD (NEMD) is also employed and compared with experimental data on argon along isotherms. Reasonable agreement between GK, NEMD, and experiment is found. Hard-sphere MD modified Chapman-Enskog expressions for these transport coefficients are tested with use of a temperature-dependent effective hard-sphere diameter. Excellent agreement is found for shear viscosity. The thermal conductivity and, more so, self-diffusion coefficient is less successful in this respect. This behavior is attributed to the attractive part to the LJ potential and its soft repulsive core. Expressions for the constant-volume and -pressure activation energies for these transport coefficients are derived solely in terms of the thermodynamic properties of the LJ fluid. Also similar expressions for the activation volumes are given, which should have a wider range of applications than just for the LJ system.

  8. Antigenic potential of a highly conserved Neisseria meningitidis lipopolysaccharide inner core structure defined by chemical synthesis.

    PubMed

    Reinhardt, Anika; Yang, You; Claus, Heike; Pereira, Claney L; Cox, Andrew D; Vogel, Ulrich; Anish, Chakkumkal; Seeberger, Peter H

    2015-01-22

    Neisseria meningitidis is a leading cause of bacterial meningitis worldwide. We studied the potential of synthetic lipopolysaccharide (LPS) inner core structures as broadly protective antigens against N. meningitidis. Based on the specific reactivity of human serum antibodies to synthetic LPS cores, we selected a highly conserved LPS core tetrasaccharide as a promising antigen. This LPS inner core tetrasaccharide induced a robust IgG response in mice when formulated as an immunogenic glycoconjugate. Binding of raised mouse serum to a broad collection of N. meningitidis strains demonstrated the accessibility of the LPS core on viable bacteria. The distal trisaccharide was identified as the crucial epitope, whereas the proximal Kdo moiety was immunodominant and induced mainly nonprotective antibodies that are responsible for lack of functional protection in polyclonal serum. Our results identified key antigenic determinants of LPS core glycan and, hence, may aid the design of a broadly protective immunization against N. meningitidis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A., E-mail: gpetersson@wesleyan.edu

    2015-12-07

    We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mE{sub h}) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies.

  10. Towards Reconfigurable, Separable and Hard Real-Time Hybrid Simulation and Test Systems

    NASA Astrophysics Data System (ADS)

    Quartier, F.; Delatte, B.; Joubert, M.

    2009-05-01

    Formation flight needs several new technologies, new disciplines, new approaches and above all, more concurrent engineering by more players. One of the problems to be addressed are more complex simulation and test systems that are easy to re-configure to include parts of the target hardware and that can provide sufficient power to handle simulation cores that are requiring one to two orders of magnitude more processing power than the current technology provides. Critical technologies that are already addressed by CNES and Spacebel are study model reuse and simulator reconfigurability (Basiles), model portability (SMP2) and the federation of several simulators using HLA. Two more critical issues are addressed in ongoing R&D work by CNES and Spacebel and are covered by this paper and concern the time engineering and management. The first issue concerns separability (characterisation, identification and handling of separable subsystems) and the consequences on practical systems. Experiments on the Pleiades operational simulator have shown that adding precise simulation of instruments such as Doris and the Star Tracker can be added without significantly impacting overall performance. Improved time analysis leads to better system understanding and testability. The second issue concerns architectures for distributed hybrid simulators systems that provide hard real-time capabilities and can react with a relative time precision and jitter that is in the 10 to 50 µsecond range using mainstream PC's and mainstream Operating Systems. This opens a way to make smaller economic hardware test systems that can be reconfigured to make large hardware test systems without restarting development. Although such systems were considered next to impossible till now, distributed hard real-time systems are getting in reach when modern but mainstream electronics are used and when processor cores can be isolated and reserved for real-time cores. This requires a complete rethinking of the

  11. Comparison of bloat potential between a variety of soft-red versus a variety of hard-red winter wheat forage.

    PubMed

    Akins, M S; Kegley, E B; Coffey, K P; Caldwell, J D; Lusby, K S; Moore, J C; Coblentz, W K

    2009-10-01

    Some aspects of wheat pasture bloat have been researched extensively, but few studies have evaluated the effect of wheat type or variety on bloat. Eight Gelbvieh x Angus ruminally cannulated heifers (515 +/- 49 kg of BW) and 48 Angus heifers (238 +/- 12 kg of BW) grazed 1-ha pastures of hard-red or soft-red winter wheat (Triticum aestivum L.) to evaluate the effect of wheat variety on bloat potential. In Exp. 1, cattle grazed from November 11 to 22 and from November 26 to December 7, 2006, in a crossover design. In Exp. 2, cattle were shrunk for 20 h and then grazed from December 19 to 20, 2006, and from January 19 to 20, 2007. In both experiments, bloat was scored at 1000 and 1600 h daily. Rumen samples were collected at 0600, 1200, and 1800 h during each of the last 2 d of each period in Exp. 1 and during both days of each period of Exp. 2. Rumen samples were evaluated for pH, foam production and strength, and viscosity. In Exp. 1, cannulated heifers grazing soft-red had a greater (P < 0.01) percentage of observed bloat (21.9 vs. 5.6%) than those grazing hard-red winter wheat, but bloat incidence was low (2.1%) for the stocker cattle, with no difference between hard-red and soft-red winter wheat (P = 0.52). Viscosity of the rumen fluid was affected (P = 0.03) by the wheat variety x time interaction, with soft-red at 1200 and 1800 h being more viscous than soft-red at 0600 h and hard-red at all times. Foam strength, as determined by bubbling CO(2) gas through rumen fluid, had a wheat variety x time interaction (P = 0.02) with both wheat varieties similar at 0600 h but soft-red having greater foam strength at 1200 and 1800 h. In Exp. 2, no bloat was observed, and no differences between wheat varieties were observed for any of the rumen foam measures. Therefore, for these 2 varieties, the soft-red winter wheat had a greater bloat potential than the hard-red winter wheat based on results from the cannulated heifers, but no differences were observed in the frequency

  12. On the stability of a quasicrystal and its crystalline approximant in a system of hard disks with a soft corona

    NASA Astrophysics Data System (ADS)

    Pattabhiraman, Harini; Gantapara, Anjan P.; Dijkstra, Marjolein

    2015-10-01

    Using computer simulations, we study the phase behavior of a model system of colloidal hard disks with a diameter σ and a soft corona of width 1.4σ. The particles interact with a hard core and a repulsive square-shoulder potential. We calculate the free energy of the random-tiling quasicrystal and its crystalline approximants using the Frenkel-Ladd method. We explicitly account for the configurational entropy associated with the number of distinct configurations of the random-tiling quasicrystal. We map out the phase diagram and find that the random tiling dodecagonal quasicrystal is stabilised by entropy at finite temperatures with respect to the crystalline approximants that we considered, and its stability region seems to extend to zero temperature as the energies of the defect-free quasicrystal and the crystalline approximants are equal within our statistical accuracy.

  13. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Smith, D. M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Harrison, F. A.; Grefenstette, B. W.; Stern, D.

    2012-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. Around the time of this meeting, the Nuclear Spectroscopic Telescope ARray (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. Three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux; 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating; 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum; 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes; 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched; 6) Study of particles at the coronal reconnection site when flare footpoints and loops are occulted; 7) Search for weak high-temperature coronal plasmas in active regions that are not flaring; and 8) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  14. Evaluating Core Quality for a Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Weiss, D. K.; Budney, C.; Shiraishi, L.; Klein, K.

    2012-01-01

    Sample return missions, including the proposed Mars Sample Return (MSR) mission, propose to collect core samples from scientifically valuable sites on Mars. These core samples would undergo extreme forces during the drilling process, and during the reentry process if the EEV (Earth Entry Vehicle) performed a hard landing on Earth. Because of the foreseen damage to the stratigraphy of the cores, it is important to evaluate each core for rock quality. However, because no core sample return mission has yet been conducted to another planetary body, it remains unclear as to how to assess the cores for rock quality. In this report, we describe the development of a metric designed to quantitatively assess the mechanical quality of any rock cores returned from Mars (or other planetary bodies). We report on the process by which we tested the metric on core samples of Mars analogue materials, and the effectiveness of the core assessment metric (CAM) in assessing rock core quality before and after the cores were subjected to shocking (g forces representative of an EEV landing).

  15. Hard template synthesis of metal nanowires

    NASA Astrophysics Data System (ADS)

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-11-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  16. Hard template synthesis of metal nanowires.

    PubMed

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  17. Composite Cores

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Spang & Company's new configuration of converter transformer cores is a composite of gapped and ungapped cores assembled together in concentric relationship. The net effect of the composite design is to combine the protection from saturation offered by the gapped core with the lower magnetizing requirement of the ungapped core. The uncut core functions under normal operating conditions and the cut core takes over during abnormal operation to prevent power surges and their potentially destructive effect on transistors. Principal customers are aerospace and defense manufacturers. Cores also have applicability in commercial products where precise power regulation is required, as in the power supplies for large mainframe computers.

  18. Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Primc, D.; Makovec, D.

    2015-01-01

    By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the supersaturation of the precipitating species was enabled by the controlled release of the Fe3+ ions from the nitrate complex with urea ([Fe((H2N)2C&z.dbd;O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system.By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the

  19. Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.

    2009-05-01

    A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.

  20. A long-time, high spatiotemporal resolution optical recording system for membrane potential activity via real-time writing to the hard disk.

    PubMed

    Hirota, Akihiko; Ito, Shin-ichi

    2006-06-01

    Using real-time hard disk recording, we have developed an optical system for the long-duration detection of changes in membrane potential from 1,020 sites with a high temporal resolution. The signal-to-noise ratio was sufficient for analyzing the spreading pattern of excitatory waves in frog atria in a single sweep.

  1. Shape evolution of a core-shell spherical particle under hydrostatic pressure.

    PubMed

    Colin, Jérôme

    2012-03-01

    The morphological evolution by surface diffusion of a core-shell spherical particle has been investigated theoretically under hydrostatic pressure when the shear modulii of the core and shell are different. A linear stability analysis has demonstrated that depending on the pressure, shear modulii, and radii of both phases, the free surface of the composite particle may be unstable with respect to a shape perturbation. A stability diagram finally emphasizes that the roughness development is favored in the case of a hard shell with a soft core.

  2. Hard template synthesis of metal nanowires

    PubMed Central

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed. PMID:25453031

  3. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  4. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  5. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  6. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  7. Generating unstructured nuclear reactor core meshes in parallel

    DOE PAGES

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less

  8. Further links between the maximum hardness principle and the hard/soft acid/base principle: insights from hard/soft exchange reactions.

    PubMed

    Chattaraj, Pratim K; Ayers, Paul W; Melin, Junia

    2007-08-07

    Ayers, Parr, and Pearson recently showed that insight into the hard/soft acid/base (HSAB) principle could be obtained by analyzing the energy of reactions in hard/soft exchange reactions, i.e., reactions in which a soft acid replaces a hard acid or a soft base replaces a hard base [J. Chem. Phys., 2006, 124, 194107]. We show, in accord with the maximum hardness principle, that the hardness increases for favorable hard/soft exchange reactions and decreases when the HSAB principle indicates that hard/soft exchange reactions are unfavorable. This extends the previous work of the authors, which treated only the "double hard/soft exchange" reaction [P. K. Chattaraj and P. W. Ayers, J. Chem. Phys., 2005, 123, 086101]. We also discuss two different approaches to computing the hardness of molecules from the hardness of the composing fragments, and explain how the results differ. In the present context, it seems that the arithmetic mean of fragment softnesses is the preferable definition.

  9. Structure and effective interactions in three-component hard sphere liquids.

    PubMed

    König, A; Ashcroft, N W

    2001-04-01

    Complete and simple analytical expressions for the partial structure factors of the ternary hard sphere mixture are obtained within the Percus-Yevick approximation and presented as functions of relative packing fractions and relative hard sphere diameters. These solutions follow from the Laplace transform method as applied to multicomponent systems by Lebowitz [Phys. Rev. 133, A895 (1964)]. As an important application, we examine effective interactions in hard sphere liquid mixtures using the microscopic information contained in their partial structure factors. Thus the ensuring pair potential for an effective one-component system is obtained from the correlation functions by using an approximate inversion, and examples of effective potentials for three-component hard sphere mixtures are given. These mixtures may be of particular interest for the study of the packing aspects of melts that form glasses or quasicrystals, since noncrystalline solids often emerge from melts with at least three atomic constituents.

  10. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Smith, David M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Stern, D.; Grefenstette, B. W.; Harrison, F. A.

    2011-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. In 2012, the Nuclear Spectroscopic Telescope Array (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. NuSTAR is capable of solar pointing, and three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes, and comparison of these events with observations of 3He and other particles in interplanetary space 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched 6) Study of particles at the coronal reconnection site when flare footpoints are occulted; and 7) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  11. Preparation of Multifunctional Fe@Au Core-Shell Nanoparticles with Surface Grafting as a Potential Treatment for Magnetic Hyperthermia.

    PubMed

    Chung, Ren-Jei; Shih, Hui-Ting

    2014-01-24

    Iron core gold shell nanoparticles grafted with Methotrexate (MTX) and indocyanine green (ICG) were synthesized for the first time in this study, and preliminarily evaluated for their potential in magnetic hyperthermia treatment. The core-shell Fe@Au nanoparticles were prepared via the microemulsion process and then grafted with MTX and ICG using hydrolyzed poly(styrene-alt-maleic acid) (PSMA) to obtain core-shell Fe@Au-PSMA-ICG/MTX nanoparticles. MTX is an anti-cancer therapeutic, and ICG is a fluorescent dye. XRD, TEM, FTIR and UV-Vis spectrometry were performed to characterize the nanoparticles. The data indicated that the average size of the nanoparticles was 6.4 ± 09 nm and that the Au coating protected the Fe core from oxidation. MTX and ICG were successfully grafted onto the surface of the nanoparticles. Under exposure to high frequency induction waves, the superparamagnetic nanoparticles elevated the temperature of a solution in a few minutes, which suggested the potential for an application in magnetic hyperthermia treatment. The in vitro studies verified that the nanoparticles were biocompatible; nonetheless, the Fe@Au-PSMA-ICG/MTX nanoparticles killed cancer cells (Hep-G2) via the magnetic hyperthermia mechanism and the release of MTX.

  12. Use of Relativistic Effective Core Potentials in the Calculation of Electron-Impact Ionization Cross Sections

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Kim, Yong-Ki

    1999-01-01

    Based on the Binary-Encounter-Bethe (BEB) model, the advantage of using relativistic effective core potentials (RECP) in the calculation of total ionization cross sections of heavy atoms or molecules containing heavy atoms is discussed. Numerical examples for Ar, Kr, Xe, and WF6 are presented.

  13. Mapping coexistence lines via free-energy extrapolation: application to order-disorder phase transitions of hard-core mixtures.

    PubMed

    Escobedo, Fernando A

    2014-03-07

    In this work, a variant of the Gibbs-Duhem integration (GDI) method is proposed to trace phase coexistence lines that combines some of the advantages of the original GDI methods such as robustness in handling large system sizes, with the ability of histogram-based methods (but without using histograms) to estimate free-energies and hence avoid the need of on-the-fly corrector schemes. This is done by fitting to an appropriate polynomial function not the coexistence curve itself (as in GDI schemes) but the underlying free-energy function of each phase. The availability of a free-energy model allows the post-processing of the simulated data to obtain improved estimates of the coexistence line. The proposed method is used to elucidate the phase behavior for two non-trivial hard-core mixtures: a binary blend of spheres and cubes and a system of size-polydisperse cubes. The relative size of the spheres and cubes in the first mixture is chosen such that the resulting eutectic pressure-composition phase diagram is nearly symmetric in that the maximum solubility of cubes in the sphere-rich solid (∼20%) is comparable to the maximum solubility of spheres in the cube-rich solid. In the polydisperse cube system, the solid-liquid coexistence line is mapped out for an imposed Gaussian activity distribution, which produces near-Gaussian particle-size distributions in each phase. A terminal polydispersity of 11.3% is found, beyond which the cubic solid phase would not be stable, and near which significant size fractionation between the solid and isotropic phases is predicted.

  14. Precursors to potential severe core damage accidents: 1994, a status report. Volume 22: Appendix I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.

    Nine operational events that affected eleven commercial light-water reactors (LWRs) during 1994 and that are considered to be precursors to potential severe core damage are described. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 {times} 10{sup {minus}6}. These events were identified by computer-screening the 1994 licensee event reports from commercial LWRs to identify those that could be potential precursors. Candidate precursors were then selected and evaluated in a process similar to that used in previous assessments. Selected events underwent engineering evaluation that identified, analyzed, and documented the precursors. Other events designatedmore » by the Nuclear Regulatory Commission (NRC) also underwent a similar evaluation. Finally, documented precursors were submitted for review by licensees and NRC headquarters and regional offices to ensure that the plant design and its response to the precursor were correctly characterized. This study is a continuation of earlier work, which evaluated 1969--1981 and 1984--1993 events. The report discusses the general rationale for this study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for events. This document is bound in two volumes: Vol. 21 contains the main report and Appendices A--H; Vol. 22 contains Appendix 1.« less

  15. Applications of nutrient profiling: potential role in diet-related chronic disease prevention and the feasibility of a core nutrient-profiling system.

    PubMed

    Sacks, G; Rayner, M; Stockley, L; Scarborough, P; Snowdon, W; Swinburn, B

    2011-03-01

    A number of different nutrient-profiling models have been proposed and several applications of nutrient profiling have been identified. This paper outlines the potential role of nutrient-profiling applications in the prevention of diet-related chronic disease (DRCD), and considers the feasibility of a core nutrient-profiling system, which could be modified for purpose, to underpin the multiple potential applications in a particular country. The 'Four 'P's of Marketing' (Product, Promotion, Place and Price) are used as a framework for identifying and for classifying potential applications of nutrient profiling. A logic pathway is then presented that can be used to gauge the potential impact of nutrient-profiling interventions on changes in behaviour, changes in diet and, ultimately, changes in DRCD outcomes. The feasibility of a core nutrient-profiling system is assessed by examining the implications of different model design decisions and their suitability to different purposes. There is substantial scope to use nutrient profiling as part of the policies for the prevention of DRCD. A core nutrient-profiling system underpinning the various applications is likely to reduce discrepancies and minimise the confusion for regulators, manufacturers and consumers. It seems feasible that common elements, such as a standard scoring method, a core set of nutrients and food components, and defined food categories, could be incorporated as part of a core system, with additional application-specific criteria applying. However, in developing and in implementing such a system, several country-specific contextual and technical factors would need to be balanced.

  16. Improved diamond coring bits developed for dry and chip-flush drilling

    NASA Technical Reports Server (NTRS)

    Decker, W. E.; Hampe, W. R.; Hampton, W. H.; Simon, A. B.

    1971-01-01

    Two rotary diamond bit designs, one operating with a chip-flushing fluid, the second including auger section to remove drilled chips, enhance usefulness of tool for exploratory and industrial core-drilling of hard, abrasive mineral deposits and structural masonry.

  17. Hard X-ray photoemission study of the Fabre salts (TMTTF)2X (X = SbF6 and PF6)

    NASA Astrophysics Data System (ADS)

    Medjanik, Katerina; de Souza, Mariano; Kutnyakhov, Dmytro; Gloskovskii, Andrei; Müller, Jens; Lang, Michael; Pouget, Jean-Paul; Foury-Leylekian, Pascale; Moradpour, Alec; Elmers, Hans-Joachim; Schönhense, Gerd

    2014-11-01

    Core-level photoemission spectra of the Fabre salts with X = SbF6 and PF6 were taken using hard X-rays from PETRA III, Hamburg. In these salts TMTTF layers show a significant stack dimerization with a charge transfer of 1 e per dimer to the anion SbF6 or PF6. At room temperature and slightly below the core-level spectra exhibit single lines, characteristic for a well-screened metallic state. At reduced temperatures progressive charge localization sets in, followed by a 2nd order phase transition into a charge-ordered ground state. In both salts groups of new core-level signals occur, shifted towards lower kinetic energies. This is indicative of a reduced transverse-conductivity across the anion layers, visible as layer-dependent charge depletion for both samples. The surface potential was traced via shifts of core-level signals of an adsorbate. A well-defined potential could be established by a conducting cap layer of 5 nm aluminum which appears "transparent" due to the large probing depth of HAXPES (8-10 nm). At the transition into the charge-ordered phase the fluorine 1 s line of (TMTTF)2SbF6 shifts by 2.8 eV to higher binding energy. This is a spectroscopic fingerprint of the loss of inversion symmetry accompanied by a cooperative shift of the SbF6 anions towards the more positively charged TMTTF donors. This shift does not occur for the X = PF6 compound, most likely due to smaller charge disproportion or due to the presence of charge disorder.

  18. Three-loop hard-thermal-loop perturbation theory thermodynamics at finite temperature and finite baryonic and isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Haque, Najmul; Mustafa, Munshi G.; Strickland, Michael

    2016-03-01

    In a previous paper [N. Haque et al., J. High Energy Phys. 05 (2014) 27], we calculated the three-loop thermodynamic potential of QCD at finite temperature T and quark chemical potentials μq using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and finite baryon, strangeness, and isospin chemical potentials μB, μS, and μI. We calculate the pressure at nonzero μB and μI with μS=0 , and the energy density, the entropy density, the trace anomaly, and the speed of sound at nonzero μI with μB=μS=0 . The second- and fourth-order isospin susceptibilities are calculated at μB=μS=μI=0 . Our results can be directly compared to lattice QCD without Taylor expansions around μq=0 since QCD has no sign problem at μB=μS=0 and finite isospin chemical potential μI.

  19. Liquid crystalline phase behavior in systems of hard-sphere chains

    NASA Astrophysics Data System (ADS)

    Williamson, Dave C.; Jackson, George

    1998-06-01

    A study of the liquid crystalline phase transitions in a system of hard-sphere chains is presented. The chains comprise m=7 tangentially bonded hard-sphere segments in a linear conformation (LHSC). The isothermal-isobaric Monte Carlo simulation technique is used to obtain the equation of state of the system both by compressing the isotropic (I) liquid and by expanding the solid (K). As well as the usual isotropic and solid phases, nematic and smectic-A liquid crystalline states are seen. A large degree of hysteresis is found in the neighborhood of the I-N transition. The results for the rigid LHSC system were compared with existing data for the corresponding semiflexible hard-sphere chains (FHSC): the flexibility has a large destabilizing effect on the nematic phase and consequently it postpones the I-N transition. The results of the simulations are also compared with rescaled Onsager theories for the I-N transition. It is rather surprising to find that the Parsons approach, which has been so successful for other hard-core models such as spherocylinders and ellipsoids, gives very poor results. The related approach of Vega and Lago gives a good description of the I-N phase transition. The procedure of Vega and Lago, as with all two-body resummations of the Onsager theory, only gives a qualitative description of the nematic order.

  20. Nitride stabilized core/shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.

    Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.

  1. High-lying intermediate excitations in the nuclear effective interaction with a super-soft-core potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goode, P.R.; Barrett, B.R.; Portilho, O.

    1979-02-01

    The earlier calculations of Goode and Barrett are repeated using the super-soft-core potential of Gogny, Pires, and de Tourreil. The particular third-order folded diagram which they calculated now converges in its intermediate-state energy summation, because of the suppression of the strong short-range repulsive effects present in earlier calculations.

  2. The effect of surface-bulk potential difference on the kinetics of intercalation in core-shell active cathode particles

    NASA Astrophysics Data System (ADS)

    Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo

    2018-04-01

    Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.

  3. Rotation of hard particles in a soft matrix

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Liu, Qingchang; Yue, Zhufeng; Li, Xiaodong; Xu, Baoxing

    Soft-hard materials integration is ubiquitous in biological materials and structures in nature and has also attracted growing attention in the bio-inspired design of advanced functional materials, structures and devices. Due to the distinct difference in their mechanical properties, the rotation of hard phases in soft matrixes upon deformation has been acknowledged, yet is lack of theory in mechanics. In this work, we propose a theoretical mechanics framework that can describe the rotation of hard particles in a soft matrix. The rotation of multiple arbitrarily shaped, located and oriented particles with perfectly bonded interfaces in an elastic soft matrix subjected to a far-field tensile loading is established and analytical solutions are derived by using complex potentials and conformal mapping methods. Strong couplings and competitions of the rotation of hard particles among each other are discussed by investigating numbers, relative locations and orientations of particles in the matrix at different loading directions. Extensive finite element analyses are performed to validate theoretical solutions and good agreement of both rotation and stress field between them are achieved. Possible extensions of the present theory to non-rigid particles, viscoelastic matrix and imperfect bonding are also discussed. Finally, by taking advantage of the rotation of hard particles, we exemplify an application in a conceptual design of soft-hard material integrated phononic crystal and demonstrate that phononic band gaps can be successfully tuned with a high accuracy through the mechanical tension-induced rotation of hard particles. The present theory established herein is expected to be of immediate interests to the design of soft-hard materials integration based functional materials, structures and devices with tunable performance via mechanical rotation of hard phases.

  4. Lower Bound on the Mean Square Displacement of Particles in the Hard Disk Model

    NASA Astrophysics Data System (ADS)

    Richthammer, Thomas

    2016-08-01

    The hard disk model is a 2D Gibbsian process of particles interacting via pure hard core repulsion. At high particle density the model is believed to show orientational order, however, it is known not to exhibit positional order. Here we investigate to what extent particle positions may fluctuate. We consider a finite volume version of the model in a box of dimensions 2 n × 2 n with arbitrary boundary configuration, and we show that the mean square displacement of particles near the center of the box is bounded from below by c log n. The result generalizes to a large class of models with fairly arbitrary interaction.

  5. Proposal to Produce Novel, Transparent Radiation Hard Low Refractive Index

    DTIC Science & Technology

    1994-02-09

    or ainy nht.at NX ftU 1.AECY USE a EP....3RFPfT TYP’E AND DATES~ COV-ERED-- 4. TITLE AND SUBTITLE . . FjUNDING NUMBERS PROPOSAL TO PRODUCE NOVEL...cladding use . our research resulted in identifying a radiation hard, low refractive index polymer, poly (heptafluorobutyl methacrylate), P(MFBM) as the best...candidate for a novel ~. cladding material. P(HFB) has a refractive index of 1.387. When used to clada styrene core, the theoretical light propagation

  6. Hard sphere perturbation theory of dense fluids with singular perturbation

    NASA Astrophysics Data System (ADS)

    Mon, K. K.

    2000-02-01

    Hard sphere perturbation theories (HSPT) played a significant role in the fundamental understanding of fluids and continues to be a popular method in a wide range of applications. The possibility of difficulty with singular perturbation for some classical soft core model fluids appears to have been overlooked or ignored in the literature. We address this issue in this short note and show by analysis that a region of phase space has been neglected in the standard application of HSPT involving singular perturbation.

  7. JPIC-Rad-Hard JPEG2000 Image Compression ASIC

    NASA Astrophysics Data System (ADS)

    Zervas, Nikos; Ginosar, Ran; Broyde, Amitai; Alon, Dov

    2010-08-01

    JPIC is a rad-hard high-performance image compression ASIC for the aerospace market. JPIC implements tier 1 of the ISO/IEC 15444-1 JPEG2000 (a.k.a. J2K) image compression standard [1] as well as the post compression rate-distortion algorithm, which is part of tier 2 coding. A modular architecture enables employing a single JPIC or multiple coordinated JPIC units. JPIC is designed to support wide data sources of imager in optical, panchromatic and multi-spectral space and airborne sensors. JPIC has been developed as a collaboration of Alma Technologies S.A. (Greece), MBT/IAI Ltd (Israel) and Ramon Chips Ltd (Israel). MBT IAI defined the system architecture requirements and interfaces, The JPEG2K-E IP core from Alma implements the compression algorithm [2]. Ramon Chips adds SERDES interfaces and host interfaces and integrates the ASIC. MBT has demonstrated the full chip on an FPGA board and created system boards employing multiple JPIC units. The ASIC implementation, based on Ramon Chips' 180nm CMOS RadSafe[TM] RH cell library enables superior radiation hardness.

  8. A Grand Canonical Monte Carlo simulation program for computing ion distributions around biomolecules in hard sphere solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The GIBS software program is a Grand Canonical Monte Carlo (GCMC) simulation program (written in C++) that can be used for 1) computing the excess chemical potential of ions and the mean activity coefficients of salts in homogeneous electrolyte solutions; and, 2) for computing the distribution of ions around fixed macromolecules such as, nucleic acids and proteins. The solvent can be represented as neutral hard spheres or as a dielectric continuum. The ions are represented as charged hard spheres that can interact via Coulomb, hard-sphere, or Lennard-Jones potentials. In addition to hard-sphere repulsions, the ions can also be made tomore » interact with the solvent hard spheres via short-ranged attractive square-well potentials.« less

  9. Cadmium-free aqueous synthesis of ZnSe and ZnSe@ZnS core-shell quantum dots and their differential bioanalyte sensing potential

    NASA Astrophysics Data System (ADS)

    Mir, Irshad Ahmad; Rawat, Kamla; Bohidar, H. B.

    2016-10-01

    Herein we report a facile and cadmium-free approach to prepare water-soluble fluorescent ZnSe@ZnS core-shell quantum dots (QDs), using thioglycolic acid (TGA) ligand as a stabilizer and thiourea as a sulfur source. The optical properties and morphology of the obtained core-shell QDs were characterized by UV-vis and fluorescence spectroscopy, transmission electron microscopy (TEM), energy-dispersive x-ray analysis (EDX), x-ray diffraction (XRD), electrophoresis and dynamic light scattering (DLS) techniques. TEM analysis, and electrophoresis data showed that ZnSe core had an average size of 3.60 ± 0.12 nm and zeta potential of -38 mV; and for ZnSe@ZnS QDs, the mean size was 4.80 ± 0.20 nm and zeta potential was -45 mV. Compared to the core ZnSe QDs, the quantum yield of these core-shell structures was higher (13% versus 32%). These were interacted with five common bioanalytes such as, ascorbic acid, citric acid, oxalic acid, glucose and cholesterol which revealed fluorescence quenching due to concentration dependent binding of analytes to the core only, and core-shell QDs. The binding pattern followed the sequence: cholesterol < glucose < ascorbic acid < oxalic acid < citric acid for ZnSe, and cholesterol < glucose < oxalic acid < ascorbic acid < citric acid for core-shell QDs. Thus, enhanced binding was noticed for the analyte citric acid which may facilitate development of a fluorescence-based sensor based on the ZnSe core-only quantum dot platform. Further, the hydrophilic core-shell structure may find use in cell imaging applications.

  10. Evaluation of HardSys/HardDraw, An Expert System for Electromagnetic Interactions Modelling

    DTIC Science & Technology

    1993-05-01

    interactions ir complex systems. This report gives a description of HardSys/HardDraw and reviews the main concepts used in its design. Various aspects of its ...HardDraw, an expert system for the modelling of electromagnetic interactions in complex systems. It consists of two main components: HardSys and HardDraw...HardSys is the advisor part of the expert system. It is knowledge-based, that is it contains a database of models and properties for various types of

  11. Study of long-range orders of hard-core bosons coupled to cooperative normal modes in two-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Yarlagadda, S.

    2017-09-01

    Understanding the microscopic mechanism of coexisting long-range orders (such as lattice supersolidity) in strongly correlated systems is a subject of immense interest. We study the possible manifestations of long-range orders, including lattice-supersolid phases with differently broken symmetry, in a two-dimensional square lattice system of hard-core bosons (HCBs) coupled to archetypal cooperative/coherent normal-mode distortions such as those in perovskites. At strong HCB-phonon coupling, using a duality transformation to map the strong-coupling problem to a weak-coupling one, we obtain an effective Hamiltonian involving nearest-neighbor, next-nearest-neighbor, and next-to-next-nearest-neighbor hoppings and repulsions. Using stochastic series expansion quantum Monte Carlo, we construct the phase diagram of the system. As coupling strength is increased, we find that the system undergoes a first-order quantum phase transition from a superfluid to a checkerboard solid at half-filling and from a superfluid to a diagonal striped solid [with crystalline ordering wave vector Q ⃗=(2 π /3 ,2 π /3 ) or (2 π /3 ,4 π /3 )] at one-third filling without showing any evidence of supersolidity. On tuning the system away from these commensurate fillings, checkerboard supersolid is generated near half-filling whereas a rare diagonal striped supersolid is realized near one-third filling. Interestingly, there is an asymmetry in the extent of supersolidity about one-third filling. Within our framework, we also provide an explanation for the observed checkerboard and stripe formations in La2 -xSrxNiO4 at x =1 /2 and x =1 /3 .

  12. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells.

    PubMed

    Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii

    2017-10-17

    Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones-HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells.

  13. Registration of 'Prevail' hard red spring wheat

    USDA-ARS?s Scientific Manuscript database

    Grower and end-user acceptance of new Hard Red Spring Wheat (HRSW; Triticum aestivum L.) cultivars is largely contingent upon satisfactory agronomic performance, end-use quality potential, and disease resistance levels. Additional characteristics, such as desirable plant height, can also contribute...

  14. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells

    PubMed Central

    Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii

    2017-01-01

    Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones—HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells. PMID:29156827

  15. Optical properties and indentation hardness of thin-film acrylated epoxidized oil

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Syuhaimi Ab.; Shaktur, Khaled Mohamed; Mohammad, Rahmah; Zalikha, Wan Aimi; Nawi, Norwimie; Mohd, Ahmad Faiza

    2012-02-01

    Epoxy acrylate has been widely used as optical resin for applications such as cladding, the core of a waveguide, and other photonic devices. In this study, sustainable resin from edible oil was used as an alternative to epoxy acrylate. Structural features and the transmission of planar thin-film resin from an ultraviolet-visible spectroscopy (UV-VIS) spectrometer were investigated upon UV exposure. It was found that high transmission still persists for all samples with and without an UV absorber for exposed and unexposed samples. The film was found to absorb strongly below 400 nm. A change in the cut-off wavelength was observed upon exposure. Thin-film hardness and its dynamic indentation in the load-unload mode with different test forces were evaluated. Vickers hardness and the elastic modulus were determined for unacrylated epoxidized soybean oil (ESO) and acrylated epoxidized soybean oil (AESO). It was found that the AESO has a higher Vickers hardness and elastic modulus than those of unacrylated thin film. The Vickers hardness and elastic modulus were found to increase as the applied test force increased. The refractive index, thickness, and modes present were characterized from a spin-coated planar thin film. The refractive index in the transverse electric mode (TE) and transverse magnetic mode (TM) were determined and compared for unacrylated and acrylated epoxidized oil.

  16. Warming rays in cluster cool cores

    NASA Astrophysics Data System (ADS)

    Colafrancesco, S.; Marchegiani, P.

    2008-06-01

    Context: Cosmic rays are confined in the atmospheres of galaxy clusters and, therefore, they can play a crucial role in the heating of their cool cores. Aims: We discuss here the thermal and non-thermal features of a model of cosmic ray heating of cluster cores that can provide a solution to the cooling-flow problems. To this aim, we generalize a model originally proposed by Colafrancesco, Dar & DeRujula (2004) and we show that our model predicts specific correlations between the thermal and non-thermal properties of galaxy clusters and enables various observational tests. Methods: The model reproduces the observed temperature distribution in clusters by using an energy balance condition in which the X-ray energy emitted by clusters is supplied, in a quasi-steady state, by the hadronic cosmic rays, which act as “warming rays” (WRs). The temperature profile of the intracluster (IC) gas is strictly correlated with the pressure distribution of the WRs and, consequently, with the non-thermal emission (radio, hard X-ray and gamma-ray) induced by the interaction of the WRs with the IC gas and the IC magnetic field. Results: The temperature distribution of the IC gas in both cool-core and non cool-core clusters is successfully predicted from the measured IC plasma density distribution. Under this contraint, the WR model is also able to reproduce the thermal and non-thermal pressure distribution in clusters, as well as their radial entropy distribution, as shown by the analysis of three clusters studied in detail: Perseus, A2199 and Hydra. The WR model provides other observable features of galaxy clusters: a correlation of the pressure ratio (WRs to thermal IC gas) with the inner cluster temperature (P_WR/P_th) ˜ (kT_inner)-2/3, a correlation of the gamma-ray luminosity with the inner cluster temperature Lγ ˜ (kT_inner)4/3, a substantial number of cool-core clusters observable with the GLAST-LAT experiment, a surface brightness of radio halos in cool-core clusters

  17. High hardness in the biocompatible intermetallic compound β-Ti3Au.

    PubMed

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M; Morosan, E

    2016-07-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti-Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials.

  18. Testing Numerical Models of Cool Core Galaxy Cluster Formation with X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Henning, Jason W.; Gantner, Brennan; Burns, Jack O.; Hallman, Eric J.

    2009-12-01

    Using archival Chandra and ROSAT data along with numerical simulations, we compare the properties of cool core and non-cool core galaxy clusters, paying particular attention to the region beyond the cluster cores. With the use of single and double β-models, we demonstrate a statistically significant difference in the slopes of observed cluster surface brightness profiles while the cluster cores remain indistinguishable between the two cluster types. Additionally, through the use of hardness ratio profiles, we find evidence suggesting cool core clusters are cooler beyond their cores than non-cool core clusters of comparable mass and temperature, both in observed and simulated clusters. The similarities between real and simulated clusters supports a model presented in earlier work by the authors describing differing merger histories between cool core and non-cool core clusters. Discrepancies between real and simulated clusters will inform upcoming numerical models and simulations as to new ways to incorporate feedback in these systems.

  19. Hepatitis C virus core protein targets 4E-BP1 expression and phosphorylation and potentiates Myc-induced liver carcinogenesis in transgenic mice.

    PubMed

    Abdallah, Cosette; Lejamtel, Charlène; Benzoubir, Nassima; Battaglia, Serena; Sidahmed-Adrar, Nazha; Desterke, Christophe; Lemasson, Matthieu; Rosenberg, Arielle R; Samuel, Didier; Bréchot, Christian; Pflieger, Delphine; Le Naour, François; Bourgeade, Marie-Françoise

    2017-08-22

    Hepatitis C virus (HCV) is a leading cause of liver diseases including the development of hepatocellular carcinoma (HCC). Particularly, core protein has been involved in HCV-related liver pathologies. However, the impact of HCV core on signaling pathways supporting the genesis of HCC remains largely elusive. To decipher the host cell signaling pathways involved in the oncogenic potential of HCV core, a global quantitative phosphoproteomic approach was carried out. This study shed light on novel differentially phosphorylated proteins, in particular several components involved in translation. Among the eukaryotic initiation factors that govern the translational machinery, 4E-BP1 represents a master regulator of protein synthesis that is associated with the development and progression of cancers due to its ability to increase protein expression of oncogenic pathways. Enhanced levels of 4E-BP1 in non-modified and phosphorylated forms were validated in human hepatoma cells and in mouse primary hepatocytes expressing HCV core, in the livers of HCV core transgenic mice as well as in HCV-infected human primary hepatocytes. The contribution of HCV core in carcinogenesis and the status of 4E-BP1 expression and phosphorylation were studied in HCV core/Myc double transgenic mice. HCV core increased the levels of 4E-BP1 expression and phosphorylation and significantly accelerated the onset of Myc-induced tumorigenesis in these double transgenic mice. These results reveal a novel function of HCV core in liver carcinogenesis potentiation. They position 4E-BP1 as a tumor-specific target of HCV core and support the involvement of the 4E-BP1/eIF4E axis in hepatocarcinogenesis.

  20. Bond-orientational analysis of hard-disk and hard-sphere structures.

    PubMed

    Senthil Kumar, V; Kumaran, V

    2006-05-28

    We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.

  1. Coring: a potential problem in eye surgery.

    PubMed

    Stein, H A; Vu, B L

    1994-03-01

    Any needle passing through a rubber stopper can aspirate a core of rubber. This rubber may then be injected into the eye or into the retrobulbar or peribulbar space. Aspirates from a number of syringes were spun down in a centrifuge and examined for microscopic particles. All specimens contained microscopic particles even from half-used bottles of Xylocaine.

  2. Preparation, process optimization and characterization of core-shell polyurethane/chitosan nanofibers as a potential platform for bioactive scaffolds.

    PubMed

    Maleknia, Laleh; Dilamian, Mandana; Pilehrood, Mohammad Kazemi; Sadeghi-Aliabadi, Hojjat; Hekmati, Amir Houshang

    2018-06-01

    In this paper, polyurethane (PU), chitosan (Cs)/polyethylene oxide (PEO), and core-shell PU/Cs nanofibers were produced at the optimal processing conditions using electrospinning technique. Several methods including SEM, TEM, FTIR, XRD, DSC, TGA and image analysis were utilized to characterize these nanofibrous structures. SEM images exhibited that the core-shell PU/Cs nanofibers were spun without any structural imperfections at the optimized processing conditions. TEM image confirmed the PU/Cs core-shell nanofibers were formed apparently. It that seems the inclusion of Cs/PEO to the shell, did not induce the significant variations in the crystallinity in the core-shell nanofibers. DSC analysis showed that the inclusion of Cs/PEO led to the glass temperature of the composition increased significantly compared to those of neat PU nanofibers. The thermal degradation of core-shell PU/Cs was similar to PU nanofibers degradation due to the higher PU concentration compared to other components. It was hypothesized that the core-shell PU/Cs nanofibers can be used as a potential platform for the bioactive scaffolds in tissue engineering. Further biological tests should be conducted to evaluate this platform as a three dimensional scaffold with the capabilities of releasing the bioactive molecules in a sustained manner.

  3. Electronegativity and hardness as coordinates in structure stability diagrams.

    PubMed Central

    Shankar, S; Parr, R G

    1985-01-01

    With electronegativity and hardness of an atom defined as 1/2(I + A) and 1/2(I - A), respectively, where I and A are the ionization potential and electron affinity, electronegativity difference and hardness sum are proposed as coordinates in structure stability diagrams. With these coordinates a successful topological classification of the crystal structures of octet and suboctet binary compounds is obtained, and a clear delineation of the structural classes portraying chemical periodicity is found. PMID:3855552

  4. Incremental k-core decomposition: Algorithms and evaluation

    DOE PAGES

    Sariyuce, Ahmet Erdem; Gedik, Bugra; Jacques-SIlva, Gabriela; ...

    2016-02-01

    A k-core of a graph is a maximal connected subgraph in which every vertex is connected to at least k vertices in the subgraph. k-core decomposition is often used in large-scale network analysis, such as community detection, protein function prediction, visualization, and solving NP-hard problems on real networks efficiently, like maximal clique finding. In many real-world applications, networks change over time. As a result, it is essential to develop efficient incremental algorithms for dynamic graph data. In this paper, we propose a suite of incremental k-core decomposition algorithms for dynamic graph data. These algorithms locate a small subgraph that ismore » guaranteed to contain the list of vertices whose maximum k-core values have changed and efficiently process this subgraph to update the k-core decomposition. We present incremental algorithms for both insertion and deletion operations, and propose auxiliary vertex state maintenance techniques that can further accelerate these operations. Our results show a significant reduction in runtime compared to non-incremental alternatives. We illustrate the efficiency of our algorithms on different types of real and synthetic graphs, at varying scales. Furthermore, for a graph of 16 million vertices, we observe relative throughputs reaching a million times, relative to the non-incremental algorithms.« less

  5. SuperHERO: The Next Generation Hard X-Ray HEROES Telescope

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Gaskin, Jessica A.; Christe, Steven D.; Elsner, Ronald F.; Ramsey, Brian D.; Seller, Paul; Shih, Albert Y.; Stuchlik, David W.; Swartz, Douglas A.; Tenant, Allyn F.; hide

    2014-01-01

    SuperHERO is a new high-sensitivity Long Duration Balloon (LDB)-capable, hard-x-ray (20-75 keV) telescope for making novel astrophysics and heliophysics observations. The proposed SuperHERO payload will be developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center, the Solar Physics Laboratory and Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently launched from Fort Sumner, NM in September of 2013. The HEROES core instrument is a hard x-ray telescope consisting of x-ray 109 optics configured into 8 modules. Each module is aligned to a matching gas-filled detector at a focal length of 6 m. SuperHERO will make significant improvements to the HEROES payload, including: new solid-state multi-pixel CdTe detectors, additional optics, the Wallops Arc-Second Pointer, alignment monitoring systems and lighter gondola.

  6. SuperHERO: The Next Generation Hard X-ray HEROES Telescope

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Christe, Steven D.; Wilson-Hodge, Colleen; Shih, Albert Y. M.; Ramsey, Brian D.; Tennant, Allyn F.; Swartz, Douglas A.

    2014-01-01

    SuperHERO is a new high-sensitivity Long Duration Balloon (LDB)-capable, hard-x-ray (20-75 keV) telescope for making novel astrophysics and heliophysics observations. The proposed SuperHERO payload will be developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center, the Solar Physics Laboratory and Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently launched from Fort Sumner, NM in September of 2013. The HEROES core instrument is a hard x-ray telescope consisting of x-ray 109 optics configured into 8 modules. Each module is aligned to a matching gas-filled detector at a focal length of 6 m. SuperHERO will make significant improvements to the HEROES payload, including: new solid-state multi-pixel CdTe detectors, additional optics, the Wallops Arc-Second Pointer, alignment monitoring systems and lighter gondola.

  7. High hardness in the biocompatible intermetallic compound β-Ti3Au

    PubMed Central

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K.; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M.; Morosan, E.

    2016-01-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti–Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials. PMID:27453942

  8. Interspeaker Variability in Hard Palate Morphology and Vowel Production

    ERIC Educational Resources Information Center

    Lammert, Adam; Proctor, Michael; Narayanan, Shrikanth

    2013-01-01

    Purpose: Differences in vocal tract morphology have the potential to explain interspeaker variability in speech production. The potential acoustic impact of hard palate shape was examined in simulation, in addition to the interplay among morphology, articulation, and acoustics in real vowel production data. Method: High-front vowel production from…

  9. Diffusion of finite-sized hard-core interacting particles in a one-dimensional box: Tagged particle dynamics.

    PubMed

    Lizana, L; Ambjörnsson, T

    2009-11-01

    We solve a nonequilibrium statistical-mechanics problem exactly, namely, the single-file dynamics of N hard-core interacting particles (the particles cannot pass each other) of size Delta diffusing in a one-dimensional system of finite length L with reflecting boundaries at the ends. We obtain an exact expression for the conditional probability density function rhoT(yT,t|yT,0) that a tagged particle T (T=1,...,N) is at position yT at time t given that it at time t=0 was at position yT,0. Using a Bethe ansatz we obtain the N -particle probability density function and, by integrating out the coordinates (and averaging over initial positions) of all particles but particle T , we arrive at an exact expression for rhoT(yT,t|yT,0) in terms of Jacobi polynomials or hypergeometric functions. Going beyond previous studies, we consider the asymptotic limit of large N , maintaining L finite, using a nonstandard asymptotic technique. We derive an exact expression for rhoT(yT,t|yT,0) for a tagged particle located roughly in the middle of the system, from which we find that there are three time regimes of interest for finite-sized systems: (A) for times much smaller than the collision time ttaucoll but times smaller than the equilibrium time ttaue , rhoT(yT,t|yT,0) approaches a polynomial-type equilibrium probability density function. Notably, only regimes (A) and (B) are found in the previously considered infinite systems.

  10. Study of the hard-disk system at high densities: the fluid-hexatic phase transition.

    PubMed

    Mier-Y-Terán, Luis; Machorro-Martínez, Brian Ignacio; Chapela, Gustavo A; Del Río, Fernando

    2018-06-21

    Integral equations of uniform fluids have been considered unable to predict any characteristic feature of the fluid-solid phase transition, including the shoulder that arises in the second peak of the fluid-phase radial distribution function, RDF, of hard-core systems obtained by computer simulations, at fluid densities very close to the structural two-step phase transition. This reasoning is based on the results of traditional integral approximations, like Percus-Yevick, PY, which does not show such a shoulder in hard-core systems, neither in two nor three dimensions. In this work, we present results of three Ansätze, based on the PY theory, that were proposed to remedy the lack of PY analytical solutions in two dimensions. This comparative study shows that one of those Ansätze does develop a shoulder in the second peak of the RDF at densities very close to the phase transition, qualitatively describing this feature. Since the shoulder grows into a peak at still higher densities, this integral equation approach predicts the appearance of an orientational order characteristic of the hexatic phase in a continuous fluid-hexatic phase transition.

  11. Algebraic perturbation theory for dense liquids with discrete potentials

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2007-06-01

    A simple theory for the leading-order correction g1(r) to the structure of a hard-sphere liquid with discrete (e.g., square-well) potential perturbations is proposed. The theory makes use of a general approximation that effectively eliminates four-particle correlations from g1(r) with good accuracy at high densities. For the particular case of discrete perturbations, the remaining three-particle correlations can be modeled with a simple volume-exclusion argument, resulting in an algebraic and surprisingly accurate expression for g1(r) . The structure of a discrete “core-softened” model for liquids with anomalous thermodynamic properties is reproduced as an application.

  12. Caring for patients who are deaf or hard of hearing.

    PubMed

    Brown, Heather L; Hughes-Bell, Aileen; McDuffie, Anna W

    2015-12-01

    Patients who are deaf and hard of hearing often find the American healthcare system to be inaccessible due to communication barriers. This article describes facilities' and providers' requirements under the Americans with Disabilities Act to provide qualified interpreters and other assistive devices to patients who are deaf or hard of hearing. Removing communication barriers can protect healthcare providers from potential legal action and lets them deliver consistent, quality healthcare to all patients.

  13. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India.

    PubMed

    Rashid, Mehnaz; Lone, Mahjoor Ahmad; Ahmed, Shakeel

    2012-08-01

    The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains.

  14. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M.

    2015-12-28

    A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching ofmore » the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.« less

  15. Remember Hard But Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions.

    PubMed

    Xie, Jiushu; Lu, Zhi; Wang, Ruiming; Cai, Zhenguang G

    2016-01-01

    Previous studies have found that bodily stimulation, such as hardness biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between "hard" and "rigid" and between "soft" and "flexible" in Chinese, to investigate whether the experience of hardness affects cognitive functions whose performance depends prospectively on rigidity (memory) and flexibility (creativity). In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition) than a cushioned one (the soft condition). In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity or flexibility. They support the embodiment proposition that cognitive functions and representations can be grounded in bodily states via metaphorical associations.

  16. Ultra-fast magnetic vortex core reversal by a local field pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rückriem, R.; Albrecht, M., E-mail: manfred.albrecht@physik.uni-augsburg.de; Schrefl, T.

    2014-02-03

    Magnetic vortex core reversal of a 20-nm-thick permalloy disk with a diameter of 100 nm was studied by micromagnetic simulations. By applying a global out-of-plane magnetic field pulse, it turned out that the final core polarity is very sensitive to pulse width and amplitude, which makes it hard to control. The reason for this phenomenon is the excitation of radial spin waves, which dominate the reversal process. The excitation of spin waves can be strongly suppressed by applying a local field pulse within a small area at the core center. With this approach, ultra-short reversal times of about 15 ps weremore » achieved, which are ten times faster compared to a global pulse.« less

  17. Internal core tightener

    DOEpatents

    Brynsvold, Glen V.; Snyder, Jr., Harold J.

    1976-06-22

    An internal core tightener which is a linear actuated (vertical actuation motion) expanding device utilizing a minimum of moving parts to perform the lateral tightening function. The key features are: (1) large contact areas to transmit loads during reactor operation; (2) actuation cam surfaces loaded only during clamping and unclamping operation; (3) separation of the parts and internal operation involved in the holding function from those involved in the actuation function; and (4) preloaded pads with compliant travel at each face of the hexagonal assembly at the two clamping planes to accommodate thermal expansion and irradiation induced swelling. The latter feature enables use of a "fixed" outer core boundary, and thus eliminates the uncertainty in gross core dimensions, and potential for rapid core reactivity changes as a result of core dimensional change.

  18. Hard X-ray mirrors for Nuclear Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Descalle, M. A.; Brejnholt, N.; Hill, R.

    Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a newmore » type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed

  19. Inference of the electron temperature in ICF implosions from the hard X-ray spectral continuum

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Landen, O. L.; Svyatsky, D.; Sio, H.; Kabadi, N. V.; Simpson, R. A.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Shah, R. C.; Joshi, T. R.; Hakel, P.; Weber, T. E.; Rinderknecht, H. G.; Thorn, D.; Schneider, M.; Bradley, D.; Kilkenny, J.

    2017-10-01

    The NIF Continuum Spectrometer, scheduled to be first deployed in Fall of 2017, will infer the imploded core electron temperature from the free-free continuum self-emission spectra of photons with energies of 20 to 30 keV. However, this hard X-ray radiation is emitted by the tail of the electron distribution, which likely deviates from Maxwellian and thus obscures interpretation of the data. We investigate resulting modifications to the X-ray spectra. The logarithmic slope of the spectrum from the more realistic, non-thermal tail of the electron distribution is found to decrease more rapidly at higher photon energies, as compared to the perfectly Maxwellian case. Interpreting the spectrum with assumption of Maxwellian electrons enforced is shown to give an electron temperature that is lower than the actual one. Conversely, due to its connection with the non-thermal features in the electron distribution, hard X-ray emission can provide unprecedented information about kinetic processes in the hot DT core. This work was performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

  20. Traumatization in Deaf and Hard-of-Hearing Adult Psychiatric Outpatients.

    PubMed

    Øhre, Beate; Uthus, Mette Perly; von Tetzchner, Stephen; Falkum, Erik

    2015-07-01

    Deaf and hard-of-hearing persons are at risk for experiencing traumatic events and such experiences are associated with symptoms of mental disorder. We investigated the prevalence of traumatic events and subsequent traumatization in adults referred to specialized psychiatric outpatient units for deaf and hard-of-hearing patients. Sixty-two patients were diagnosed with mental disorders and assessed for potential traumatic experiences in their preferred language and mode of communication using instruments translated into Norwegian Sign Language. All patients reported traumatic events, with a mean of 6.2 different types; 85% reported subsequent traumatization not significantly associated with either residential school setting or communicative competence of childhood caregivers. Traumatization patterns in both sexes were similar to those in hearing clinical samples. Findings indicate that psychiatric intake interviews should routinely assess potentially traumatic events and their impacts, and that mental health professionals working with deaf and hard-of-hearing patients should be able to treat trauma-related disorders. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Social place as a location of potential core transmitters-implications for the targeted control of sexually transmitted disease transmission in urban areas.

    PubMed

    Jennings, Jacky M; Polk, Sarah; Fichtenberg, Caroline; Chung, Shang-en; Ellen, Jonathan M

    2015-11-01

    Places are an important determinant of risk for sexually transmitted infection (STI) acquisition and transmission. We sought to identify social places that are critical for targeted STI control activities. The objective of this study was to determine whether sex partner meeting places characterized by drug markets, sex markets, and separately, drug and/or sex markets were more likely to have potential core transmitters as compared with other sex partner meeting places in one urban setting. In 2008-2009, heterosexual sex partner places or venues were identified in Baltimore, MD using a venue-based study approach. A total of 1334 participants aged 18 to 35 years were enrolled at 85 venues. In those participants, 39 potential core transmitters were identified and 31% of venues had at least one potential core transmitter. In final age-adjusted and gender-adjusted models, core transmitters were significantly more likely to be identified at drug markets (OR = 1.37; 95% CI = 1.23-1.53), sex markets (OR = 1.27; 95% CI = 1.14-1.41), and drug and/or sex markets (OR = 1.49; 95% CI = 1.32-1.68). This study identified key characteristics of venues, such as drug and sex market activity, that may be important in identifying places for the targeted control of STI transmission. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  3. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  4. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  5. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  6. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  7. Computational search for rare-earth free hard-magnetic materials

    NASA Astrophysics Data System (ADS)

    Flores Livas, José A.; Sharma, Sangeeta; Dewhurst, John Kay; Gross, Eberhard; MagMat Team

    2015-03-01

    It is difficult to over state the importance of hard magnets for human life in modern times; they enter every walk of our life from medical equipments (NMR) to transport (trains, planes, cars, etc) to electronic appliances (for house hold use to computers). All the known hard magnets in use today contain rare-earth elements, extraction of which is expensive and environmentally harmful. Rare-earths are also instrumental in tipping the balance of world economy as most of them are mined in limited specific parts of the world. Hence it would be ideal to have similar characteristics as a hard magnet but without or at least with reduced amount of rare-earths. This is the main goal of our work: search for rare-earth-free magnets. To do so we employ a combination of density functional theory and crystal prediction methods. The quantities which define a hard magnet are magnetic anisotropy energy (MAE) and saturation magnetization (Ms), which are the quantities we maximize in search for an ideal magnet. In my talk I will present details of the computation search algorithm together with some potential newly discovered rare-earth free hard magnet. J.A.F.L. acknowledge financial support from EU's 7th Framework Marie-Curie scholarship program within the ``ExMaMa'' Project (329386).

  8. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  9. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  10. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  11. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  12. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  13. Submicron cubic boron nitride as hard as diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guoduan; Kou, Zili, E-mail: kouzili@scu.edu.cn, E-mail: yanxz@hpstar.ac.cn; Lei, Li

    Here, we report the sintering of aggregated submicron cubic boron nitride (sm-cBN) at a pressure of 8 GPa. The sintered cBN compacts exhibit hardness values comparable to that of single crystal diamond, fracture toughness about 5-fold that of cBN single crystal, in combination with a high oxidization temperature. Thus, another way has been demonstrated to improve the mechanical properties of cBN besides reducing the grain size to nano scale. In contrast to other ultrahard compacts with similar hardness, the sm-cBN aggregates are better placed for potential industrial application, as their relative low pressure manufacturing perhaps be easier and cheaper.

  14. Percolation in suspensions of hard nanoparticles: From spheres to needles

    NASA Astrophysics Data System (ADS)

    Schilling, Tanja; Miller, Mark A.; van der Schoot, Paul

    2015-09-01

    We investigate geometric percolation and scaling relations in suspensions of nanorods, covering the entire range of aspect ratios from spheres to extremely slender needles. A new version of connectedness percolation theory is introduced and tested against specialised Monte Carlo simulations. The theory accurately predicts percolation thresholds for aspect ratios of rod length to width as low as 10. The percolation threshold for rod-like particles of aspect ratios below 1000 deviates significantly from the inverse aspect ratio scaling prediction, thought to be valid in the limit of infinitely slender rods and often used as a rule of thumb for nanofibres in composite materials. Hence, most fibres that are currently used as fillers in composite materials cannot be regarded as practically infinitely slender for the purposes of percolation theory. Comparing percolation thresholds of hard rods and new benchmark results for ideal rods, we find that i) for large aspect ratios, they differ by a factor that is inversely proportional to the connectivity distance between the hard cores, and ii) they approach the slender rod limit differently.

  15. Future Hard Disk Storage: Limits & Potential Solutions

    NASA Astrophysics Data System (ADS)

    Lambeth, David N.

    2000-03-01

    For several years the hard disk drive technology pace has raced along at 60-100products this year and laboratory demonstrations approaching what has been estimated as a physical thermal stability limit of around 40 Gbit/in2. For sometime now the data storage industry has recogniz d that doing business as usually will not be viable for long and so both incremental evolutionary and revolutionary technologies are being explored. While new recording head materials or thermal recording techniques may allow higher coercivity materials to be recorded upon, and while high sensitivity spin transport transducer technology may provide sufficient signals to extend beyond the 100 Gigabit/in2 regime, conventional isotropic longitudinal media will show large data retention problems at less than 1/2 of this value. We have recently developed a simple model which indicates that while thermal instability issues may appear at different areal densities, they are non-discriminatory as to the magnetic recording modality: longitudinal, perpendicular, magnetooptic, near field, etc. The model indicates that a strong orientation of the media tends to abate the onset of the thermal limit. Hence, for the past few years we have taken an approach of controlled growth of the microstructure of thin film media. This knowledge has lead us to believe that epitaxial growth of multiple thin film layers on single crystalline Si may provide a pathway to nearly perfect crystallites of various, highly oriented, thin film textures. Here we provide an overview of the recording system media challenges, which are useful for the development of a future media design philosophy and then discuss materials issues and processing techniques for multi-layered thin film material structures which may be used to achieve media structures which can easy exceed the limits predicted for isotropic media.

  16. Core signaling pathways in ovarian cancer stem cell revealed by integrative analysis of multi-marker genomics data.

    PubMed

    Zhang, Tianyu; Xu, Jielin; Deng, Siyuan; Zhou, Fengqi; Li, Jin; Zhang, Liwei; Li, Lang; Wang, Qi-En; Li, Fuhai

    2018-01-01

    Tumor recurrence occurs in more than 70% of ovarian cancer patients, and the majority eventually becomes refractory to treatments. Ovarian Cancer Stem Cells (OCSCs) are believed to be responsible for the tumor relapse and drug resistance. Therefore, eliminating ovarian CSCs is important to improve the prognosis of ovarian cancer patients. However, there is a lack of effective drugs to eliminate OCSCs because the core signaling pathways regulating OCSCs remain unclear. Also it is often hard for biologists to identify a few testable targets and infer driver signaling pathways regulating CSCs from a large number of differentially expression genes in an unbiased manner. In this study, we propose a straightforward and integrative analysis to identify potential core signaling pathways of OCSCs by integrating transcriptome data of OCSCs isolated based on two distinctive markers, ALDH and side population, with regulatory network (Transcription Factor (TF) and Target Interactome) and signaling pathways. We first identify the common activated TFs in two OCSC populations integrating the gene expression and TF-target Interactome; and then uncover up-stream signaling cascades regulating the activated TFs. In specific, 22 activated TFs are identified. Through literature search validation, 15 of them have been reported in association with cancer stem cells. Additionally, 10 TFs are found in the KEGG signaling pathways, and their up-stream signaling cascades are extracted, which also provide potential treatment targets. Moreover, 40 FDA approved drugs are identified to target on the up-stream signaling cascades, and 15 of them have been reported in literatures in cancer stem cell treatment. In conclusion, the proposed approach can uncover the activated up-stream signaling, activated TFs and up-regulated target genes that constitute the potential core signaling pathways of ovarian CSC. Also drugs and drug combinations targeting on the core signaling pathways might be able to

  17. Historical ecology of the northern Adriatic Sea: Field methods and coring device

    NASA Astrophysics Data System (ADS)

    Haselmair, Alexandra; Gallmetzer, Ivo; Tomasovych, Adam; Stachowitsch, Michael; Zuschin, Martin

    2014-05-01

    For an ongoing study on the historical ecology of the northern Adriatic Sea, the objective was to retrieve a high number of sediment cores at seven sampling stations spread across the entire basin. One set of cores is intended for sediment analyses including radiometric Pb-sediment-dating, grain size, TOC, TAC and heavy metal analyses. The other set of cores delivered enough shelly remains of endo- or epibenthic hard part producers (e.g. molluscs, crustaceans, echinoderms) to enable the reconstruction of death assemblages in core layers from top to bottom. The down-core changes of such assemblages record ecological shifts in a marine environment that has endured strong human impacts over several centuries. A 1.5 m-long core could, according to the available sedimentation data for the area, cover up to 2000 or even more years of ecological history. The coring method had to meet the following requirements: a) deliver 1.5-m-long cores from different sediment settings (mud to sand, reflecting a wide range of benthic habitats in the northern Adriatic); b) enable quick and easy deployment to ensure that multiple cores can be taken at the individual sampling stations within a short time; c) be relatively affordable and allow handling by the researchers themselves, potentially using a small vessel in order to further contain the operating costs. Two types of UWITEC™ piston corers were used to meet these requirements. A model with 90 mm of diameter (samples for sediment analysis) and another one with 160 mm, specifically designed to obtain the large amount of material needed for shell analysis, successfully delivered a total of 54 cores. The device consists of a stabilizing tripod and the interchangeable coring cylinders. It is equipped with a so-called hammer action that makes it possible, at least for the smaller cylinder, to penetrate even harder sediments. A closing mechanism of the corer retains the sediment in the cylinder upon extraction; it works either

  18. Improved Thermoplastic/Iron-Particle Transformer Cores

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Bryant, Robert G.; Namkung, Min

    2004-01-01

    A method of fabricating improved transformer cores from composites of thermoplastic matrices and iron-particles has been invented. Relative to commercially available laminated-iron-alloy transformer cores, the cores fabricated by this method weigh less and are less expensive. Relative to prior polymer-matrix/ iron-particle composite-material transformer cores, the cores fabricated by this method can be made mechanically stronger and more magnetically permeable. In addition, whereas some prior cores have exhibited significant eddy-current losses, the cores fabricated by this method exhibit very small eddy-current losses. The cores made by this method can be expected to be attractive for use in diverse applications, including high-signal-to-noise transformers, stepping motors, and high-frequency ignition coils. The present method is a product of an experimental study of the relationships among fabrication conditions, final densities of iron particles, and mechanical and electromagnetic properties of fabricated cores. Among the fabrication conditions investigated were molding pressures (83, 104, and 131 MPa), and molding temperatures (250, 300, and 350 C). Each block of core material was made by uniaxial-compression molding, at the applicable pressure/temperature combination, of a mixture of 2 weight percent of LaRC (or equivalent high-temperature soluble thermoplastic adhesive) with 98 weight percent of approximately spherical iron particles having diameters in the micron range. Each molded block was cut into square cross-section rods that were used as core specimens in mechanical and electromagnetic tests. Some of the core specimens were annealed at 900 C and cooled slowly before testing. For comparison, a low-carbon-steel core was also tested. The results of the tests showed that density, hardness, and rupture strength generally increased with molding pressure and temperature, though the correlation was rather weak. The weakness of the correlation was attributed to

  19. Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre.

    PubMed

    Urich, A; Maier, R R J; Mangan, B J; Renshaw, S; Knight, J C; Hand, D P; Shephard, J D

    2012-03-12

    In this paper the delivery of high power Er:YAG laser pulses through a silica hollow core photonic crystal fibre is demonstrated. The Er:YAG wavelength of 2.94 µm is well beyond the normal transmittance of bulk silica but the unique hollow core guidance allows silica to guide in this regime. We have demonstrated for the first time the ability to deliver high energy pulses through an all-silica fibre at 2.94 µm. These silica fibres are mechanically and chemically robust, biocompatible and have low sensitivity to bending. A maximum pulse energy of 14 mJ at 2.94 µm was delivered through the fibre. This, to our knowledge, is the first time a silica hollow core photonic crystal fibre has been shown to transmit 2.94 μm laser light at a fluence exceeding the thresholds required for modification (e.g. cutting and drilling) of hard biological tissue. Consequently, laser delivery systems based on these fibres have the potential for the realization of novel, minimally-invasive surgical procedures.

  20. Assessment of groundwater potential based on aquifer properties of hard rock terrain in the Chittar-Uppodai watershed, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Kumar, T. Jeyavel Raja; Balasubramanian, A.; Kumar, R. S.; Dushiyanthan, C.; Thiruneelakandan, B.; Suresh, R.; Karthikeyan, K.; Davidraju, D.

    2016-06-01

    Aquifer performance was tested in 24 locations to assess the groundwater potential of the hard rock terrain in the Chittar-Uppodai watershed of the Tambaraparani River basin. Geologically, the area consists of biotite gneiss, charnockite, and quartzite. The aquifer characteristics, such as transmissivity ( T), the storage coefficient, specific capacity, optimum yield, and the recovery rate were calculated. The drawdown transmissivity was determined using Jacob's straight-line method, while the recovery transmissivity was determined by the Theis method. The drawdown transmissivity was low in the western areas, particularly at Kadayanallur, and was higher in the other areas. The recovery transmissivity was high in the western area, and, with the exception of Gangaikondan, was low at other locations. The assessment indicates that there is groundwater potential in the western part of the study area because of favorable results for recovery drawdown, aquifer thickness, and specific capacity.

  1. Dynamic hardness of metals

    NASA Astrophysics Data System (ADS)

    Liang, Xuecheng

    Dynamic hardness (Pd) of 22 different pure metals and alloys having a wide range of elastic modulus, static hardness, and crystal structure were measured in a gas pulse system. The indentation contact diameter with an indenting sphere and the radius (r2) of curvature of the indentation were determined by the curve fitting of the indentation profile data. r 2 measured by the profilometer was compared with that calculated from Hertz equation in both dynamic and static conditions. The results indicated that the curvature change due to elastic recovery after unloading is approximately proportional to the parameters predicted by Hertz equation. However, r 2 is less than the radius of indenting sphere in many cases which is contradictory to Hertz analysis. This discrepancy is believed due to the difference between Hertzian and actual stress distributions underneath the indentation. Factors which influence indentation elastic recovery were also discussed. It was found that Tabor dynamic hardness formula always gives a lower value than that directly from dynamic hardness definition DeltaE/V because of errors mainly from Tabor's rebound equation and the assumption that dynamic hardness at the beginning of rebound process (Pr) is equal to kinetic energy change of an impact sphere over the formed crater volume (Pd) in the derivation process for Tabor's dynamic hardness formula. Experimental results also suggested that dynamic to static hardness ratio of a material is primarily determined by its crystal structure and static hardness. The effects of strain rate and temperature rise on this ratio were discussed. A vacuum rotating arm apparatus was built to measure Pd at 70, 127, and 381 mum sphere sizes, these results exhibited that Pd is highly depended on the sphere size due to the strain rate effects. P d was also used to substitute for static hardness to correlate with abrasion and erosion resistance of metals and alloys. The particle size effects observed in erosion were

  2. The column density distribution of hard X-ray radio galaxies

    NASA Astrophysics Data System (ADS)

    Panessa, F.; Bassani, L.; Landi, R.; Bazzano, A.; Dallacasa, D.; La Franca, F.; Malizia, A.; Venturi, T.; Ubertini, P.

    2016-09-01

    In order to investigate the role of absorption in active galactic nuclei (AGN) with jets, we have studied the column density distribution of a hard X-ray selected sample of radio galaxies, derived from the INTEGRAL/Imager on Board the Integral Satellite (IBIS) and Swift/The Burst Alert Telescope (BAT) AGN catalogues (˜7-10 per cent of the total AGN population). The 64 radio galaxies have a typical FR II radio morphology and are characterized by high 20-100 keV luminosities (from 1042 to 1046 erg s-1) and high Eddington ratios (log LBol/LEdd typically larger than ˜0.01). The observed fraction of absorbed AGN (NH > 1022 cm-2) is around 40 per cent among the total sample, and ˜75 per cent among type 2 AGN. The majority of obscured AGN are narrow-line objects, while unobscured AGN are broad-line objects, obeying to the zeroth-order predictions of unified models. A significant anti-correlation between the radio core dominance parameter and the X-ray column density is found. The observed fraction of Compton thick AGN is ˜2-3 per cent, in comparison with the 5-7 per cent found in radio-quiet hard X-ray selected AGN. We have estimated the absorption and Compton thick fractions in a hard X-ray sample containing both radio galaxies and non-radio galaxies and therefore affected by the same selection biases. No statistical significant difference was found in the absorption properties of radio galaxies and non-radio galaxies sample. In particular, the Compton thick objects are likely missing in both samples and the fraction of obscured radio galaxies appears to decrease with luminosity as observed in hard X-ray non-radio galaxies.

  3. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core.

    PubMed

    Rinker, Torri E; Philbrick, Brandon D; Temenoff, Johnna S

    2017-07-01

    Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation. Tissue repair requires temporally controlled presentation of potent proteins. Recently, biomaterial-mediated binding (sequestration) of cell-secreted proteins has emerged as a strategy to harness the regenerative potential of naturally produced proteins, but this strategy currently only allows immediate amplification and re-delivery of these signals. The multifunctional, dynamic

  4. Research in the Hard Sciences, and in Very Hard "Softer" Domains

    ERIC Educational Resources Information Center

    Phillips, D. C.

    2014-01-01

    The author of this commentary argues that physical scientists are attempting to advance knowledge in the so-called hard sciences, whereas education researchers are laboring to increase knowledge and understanding in an "extremely hard" but softer domain. Drawing on the work of Popper and Dewey, this commentary highlights the relative…

  5. Structural and electronic properties of OsB2 : A hard metallic material

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Xiang, H. J.; Yang, Jinlong; Hou, J. G.; Zhu, Qingshi

    2006-07-01

    We calculate the structural and electronic properties of OsB2 using density functional theory with or without taking into account the spin-orbit (SO) interaction. Our results show that the bulk modulus with and without SO interactions are 364 and 365GPa , respectively, both are in good agreement with experiment (365-395GPa) . The evidence of covalent bonding of Os-B, which plays an important role to form a hard material, is indicated both in charge density, atoms in molecules analysis, and density of states analysis. The good metallicity and hardness of OsB2 might suggest its potential application as hard conductors.

  6. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  7. Hypersonic vibrations of Ag@SiO2 (cubic core)-shell nanospheres.

    PubMed

    Sun, Jing Ya; Wang, Zhi Kui; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Tran, Toan Trong; Lu, Xianmao

    2010-12-28

    The intriguing optical and catalytic properties of metal-silica core-shell nanoparticles, inherited from their plasmonic metallic cores together with the rich surface chemistry and increased stability offered by their silica shells, have enabled a wide variety of applications. In this work, we investigate the confined vibrational modes of a series of monodisperse Ag@SiO(2) (cubic core)-shell nanospheres synthesized using a modified Stöber sol-gel method. The particle-size dependence of their mode frequencies has been mapped by Brillouin light scattering, a powerful tool for probing hypersonic vibrations. Unlike the larger particles, the observed spheroidal-like mode frequencies of the smaller ones do not scale with inverse diameter. Interestingly, the onset of the deviation from this linearity occurs at a smaller particle size for higher-energy modes than for lower-energy ones. Finite element simulations show that the mode displacement profiles of the Ag@SiO(2) core-shells closely resemble those of a homogeneous SiO(2) sphere. Simulations have also been performed to ascertain the effects that the core shape and the relative hardness of the core and shell materials have on the vibrations of the core-shell as a whole. As the vibrational modes of a particle have a bearing on its thermal and mechanical properties, the findings would be of value in designing core-shell nanostructures with customized thermal and mechanical characteristics.

  8. Must "Hard Problems" Be Hard?

    ERIC Educational Resources Information Center

    Kolata, Gina

    1985-01-01

    To determine how hard it is for computers to solve problems, researchers have classified groups of problems (polynomial hierarchy) according to how much time they seem to require for their solutions. A difficult and complex proof is offered which shows that a combinatorial approach (using Boolean circuits) may resolve the problem. (JN)

  9. Core-shell carbon nanosphere-TiO2 composite and hollow TiO2 nanospheres prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Bakos, L. P.; Justh, N.; Hernádi, K.; Kiss, G.; Réti, B.; Erdélyi, Z.; Parditka, B.; Szilágyi, I. M.

    2016-10-01

    Core-shell carbon-TiO2 composite and hollow TiO2 nanospheres were prepared using carbon nanospheres as hard-templates, coating them with TiO2 using atomic layer deposition, and subsequent burning out of the carbon cores. The bare carbon, the composite carbon-TiO2 and the hollow TiO2 nanospheres were characterized with TG/DTA-MS, FTIR, XRD and SEM-EDX.

  10. Assessment of Tablet Surface Hardness by Laser Ablation and Its Correlation With the Erosion Tendency of Core Tablets.

    PubMed

    Narang, Ajit S; Breckenridge, Lydia; Guo, Hang; Wang, Jennifer; Wolf, Abraham Avi; Desai, Divyakant; Varia, Sailesh; Badawy, Sherif

    2017-01-01

    Surface erosion of uncoated tablets results in processing problems such as dusting and defects during coating and is governed by the strength of particle bonding on tablet surface. In this study, the correlation between dusting tendency of tablets in a coating pan with friability and laser ablation surface hardness was assessed using tablets containing different concentrations of magnesium stearate and tartaric acid. Surface erosion propensity of different batches was evaluated by assessing their dusting tendency in the coating pan. In addition, all tablets were analyzed for crushing strength, friability, modified friability test using baffles in the friability apparatus, and weight loss after laser ablation. Tablets with similar crushing strength showed differences in their surface erosion and dusting tendency when rotated in a coating pan. These differences did not correlate well with tablet crushing strength or friability but did show reasonably good correlation with mass loss after laser ablation. These results suggest that tablet surface mass loss by laser ablation can be used as a minipiloting (small-scale) tool to assess tablet surface properties during early stages of drug product development to assess the risk of potential large-scale manufacturing issues. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Steady Shear Viscosities of Two Hard Sphere Colloidal Dispersions

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengdong; Chaikin, Paul M.; Phan, See-Eng; Russel, William B.; Zhu, Jixiang

    1996-03-01

    Though hard spheres have the simplest inter-particle potential, the many body hydrodynamic interactions are complex and the rheological properties of dispersions are not fully understood in the concentrated regime. We studied two model systems: colloidal poly-(Methyl Methacrylate) spheres with a grafted layer of poly-(12-hydroxy stearic acid) (PMMA/PHSA) and spherical Silica particles (PST-5, Nissan Chemical Industries, Ltd, Tokyo, Japan). Steady shear viscosities were measured by a Zimm viscometer. The high shear relative viscosity of the dispersions compares well with other hard sphere systems, but the low shear relative viscosity of PMMA/PHSA dispersions is η / η 0 = 50 at φ = 0.5 , higher than η / η 0 = 22 for other hard sphere systems, consistent with recently published data (Phys. Rev. Lett. 75(1995)958). Bare Silica spheres are used to clarify the effect of the grafted layer. With the silica spheres, volume fraction can be determined independent of intrinsic viscosity measurements; also, higher concentrated dispersions can be made.

  12. Temporal Change of Seismic Earth's Inner Core Phases: Inner Core Differential Rotation Or Temporal Change of Inner Core Surface?

    NASA Astrophysics Data System (ADS)

    Yao, J.; Tian, D.; Sun, L.; Wen, L.

    2017-12-01

    the observed temporal changes of the inner core phases are caused by temporal changes of inner core surface. The temporal changes of inner core surface are found to occur in some localized regions within a short time scale (years to months), a phenomenon that should provide important clues to a potentially fundamental change of our understanding of core dynamics.

  13. Pitfalls, Potentials, and Ethics of Online Survey Research: LGBTQ and Other Marginalized and Hard-to-Access Youths

    PubMed Central

    McInroy, Lauren B.

    2016-01-01

    Online research methodologies may serve as an important mechanism for population-focused data collection in social work research. Online surveys have become increasingly prevalent in research inquiries with young people and have been acknowledged for their potential in investigating understudied and marginalized populations and subpopulations, permitting increased access to communities that tend to be less visible—and thus often less studied—in offline contexts. Lesbian, gay, bisexual, transgender, and queer (LGBTQ) young people are a socially stigmatized, yet digitally active, youth population whose participation in online surveys has been previously addressed in the literature. Many of the opportunities and challenges of online survey research identified with LGBTQ youths may be highly relevant to other populations of marginalized and hard-to-access young people, who are likely present in significant numbers in the online environment (for example, ethnoracialized youths and low-income youths). In this article, the utility of online survey methods with marginalized young people is discussed, and recommendations for social work research are provided. PMID:27257362

  14. Pitfalls, Potentials, and Ethics of Online Survey Research: LGBTQ and Other Marginalized and Hard-to-Access Youths.

    PubMed

    McInroy, Lauren B

    2016-06-01

    Online research methodologies may serve as an important mechanism for population-focused data collection in social work research. Online surveys have become increasingly prevalent in research inquiries with young people and have been acknowledged for their potential in investigating understudied and marginalized populations and subpopulations, permitting increased access to communities that tend to be less visible-and thus often less studied-in offline contexts. Lesbian, gay, bisexual, transgender, and queer (LGBTQ) young people are a socially stigmatized, yet digitally active, youth population whose participation in online surveys has been previously addressed in the literature. Many of the opportunities and challenges of online survey research identified with LGBTQ youths may be highly relevant to other populations of marginalized and hard-to-access young people, who are likely present in significant numbers in the online environment (for example, ethnoracialized youths and low-income youths). In this article, the utility of online survey methods with marginalized young people is discussed, and recommendations for social work research are provided.

  15. Inhomogeneous hard homonuclear molecules

    NASA Astrophysics Data System (ADS)

    Quintana, Jacqueline

    A review is given of some features of theories for inhomogeneous fluids of nonspherical molecules that take as input the direct correlation function of the corresponding homogeneous system. Two different methods are described for defining the structure of hard homonuclear molecules close to a hard planar wall. A spherical harmonics expanison (SHE) within the integral equation (IE) method is presented and, for comparison, a version of density functional theory for orientable hard bodies. In both cases the Pynn-Lado model is employed and a comparison is made with Monte Carlo data. The results indicate that for hard molecules the IE approach does not always capture the effects of orientation due to the characteristics of the SHE for the step function. This disadvantage is particularly true in the case of the orientationally averaged density profile.

  16. Dirac potential in the Doebner-Goldin equation

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Ma, Yi Rong; Hu, Fang Qi; Zhao, Qing

    2018-01-01

    We study a dissipative quantum system which is described by the Doebner-Goldin equation (DGE) model. For time-independent states, the new three-dimensional analytical solutions of the DGE are obtained by binding the vertical relation of velocity and the gradient of density in the system, when the form of a central potential such as hard core or harmonic oscillator is suggested. Through the gauge-invariant parameters which characterize the physical nature of the dissipation, we find a novel set of gauge-invariant parameters which show that the Galilean invariance is broken in this system. Moreover, a subfamily of the DGE can be obtained after a gauge transformation, which describes a dissipative quantum system with the conserved Galilean invariance. It is interesting that this dissipative quantum system is completely equivalent to a charge-monopole system, in which the Dirac potential is supplied with the nonlinear terms and two cases of the velocity potential. Especially, the two gauge potentials given by Wu and Yang emerge from solving the DGE as two cases in our approach. The results not only present some new physical comprehension of the dissipative quantum system, but also might shed light on the Dirac monopole potential, in the sense that the partition into south and north hemisphere is avoided in our new solutions.

  17. Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review

    PubMed Central

    Yusop, A. H.; Bakir, A. A.; Shaharom, N. A.; Abdul Kadir, M. R.; Hermawan, H.

    2012-01-01

    Scaffolds have been utilized in tissue regeneration to facilitate the formation and maturation of new tissues or organs where a balance between temporary mechanical support and mass transport (degradation and cell growth) is ideally achieved. Polymers have been widely chosen as tissue scaffolding material having a good combination of biodegradability, biocompatibility, and porous structure. Metals that can degrade in physiological environment, namely, biodegradable metals, are proposed as potential materials for hard tissue scaffolding where biodegradable polymers are often considered as having poor mechanical properties. Biodegradable metal scaffolds have showed interesting mechanical property that was close to that of human bone with tailored degradation behaviour. The current promising fabrication technique for making scaffolds, such as computation-aided solid free-form method, can be easily applied to metals. With further optimization in topologically ordered porosity design exploiting material property and fabrication technique, porous biodegradable metals could be the potential materials for making hard tissue scaffolds. PMID:22919393

  18. Fabrication of polyacrylate core-shell nanoparticles via spray drying method

    NASA Astrophysics Data System (ADS)

    Chen, Pengpeng; Cheng, Zenghui; Chu, Fuxiang; Xu, Yuzhi; Wang, Chunpeng

    2016-05-01

    Fine polyacrylate particles are thought to be environmental plastisols for car industry. However, these particles are mainly dried through demulsification of the latexes, which is not reproducible and hard to be scaled up. In this work, a spray drying method had been applied to the plastisols-used acrylate latex. By adjusting the core/shell ratio, spray drying process of the latex was fully studied. Scanning electronic microscopy observation of the nanoparticles before and after spray drying indicated that the core-shell structures could be well preserved and particles were well separated by spray drying if the shell was thick enough. Otherwise, the particles fused into each other and core-shell structures were destroyed. Polyacrylate plastisols were developed using diisononylphthalate as a plasticizer, and plastigels were obtained after heat treatment of the sols. Results showed that the shell thickness also had a great influence on the storage stability of the plastisols and mechanical properties of the plastigels.

  19. Constraining axion-like-particles with hard X-ray emission from magnetars

    NASA Astrophysics Data System (ADS)

    Fortin, Jean-François; Sinha, Kuver

    2018-06-01

    Axion-like particles (ALPs) produced in the core of a magnetar will convert to photons in the magnetosphere, leading to possible signatures in the hard X-ray band. We perform a detailed calculation of the ALP-to-photon conversion probability in the magnetosphere, recasting the coupled differential equations that describe ALP-photon propagation into a form that is efficient for large scale numerical scans. We show the dependence of the conversion probability on the ALP energy, mass, ALP-photon coupling, magnetar radius, surface magnetic field, and the angle between the magnetic field and direction of propagation. Along the way, we develop an analytic formalism to perform similar calculations in more general n-state oscillation systems. Assuming ALP emission rates from the core that are just subdominant to neutrino emission, we calculate the resulting constraints on the ALP mass versus ALP-photon coupling space, taking SGR 1806-20 as an example. In particular, we take benchmark values for the magnetar radius and core temperature, and constrain the ALP parameter space by the requirement that the luminosity from ALP-to-photon conversion should not exceed the total observed luminosity from the magnetar. The resulting constraints are competitive with constraints from helioscope experiments in the relevant part of ALP parameter space.

  20. Small ICBM area narrowing report. Volume 3: Hard silo in patterned array basing mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this report is to identify those areas that could potentially support deployment of the Small Intercontinental Ballistic Missile (ICBM) utilizing basing modes presently considered viable: the Hard Mobile Launcher in Random Movement, the Hard Mobile Launcher at Minuteman Facilities, or the Hard Silo in Patterned Array. Specifically, this report describes the process and the rationale supporting the application of Exclusionary and Evaluative Criteria and lists those locations that were eliminated through the application of these criteria. The remaining locations will be the subject of further investigations.

  1. Vibrational frequencies of transition metal chloride and oxo compounds using effective core potential analytic second derivatives

    NASA Astrophysics Data System (ADS)

    Russo, Thomas V.; Martin, Richard L.; Hay, P. Jeffrey; Rappé, Anthony K.

    1995-06-01

    The application of analytic second derivative techniques to quantum chemical calculations using effective core potentials is discussed. Using a recent implementation of these techniques, the vibrational frequencies of transition metal compounds are calculated including the chlorides TiCl4, ZrCl4, and HfCl4, the oxochlorides CrO2Cl2, MoO2Cl2, WO2Cl2, and VOCl3, and the oxide OsO4. Results are compared to previous calculations and with experimental results.

  2. Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and In Situ X-Ray Ptychography.

    PubMed

    Baier, Sina; Damsgaard, Christian D; Klumpp, Michael; Reinhardt, Juliane; Sheppard, Thomas; Balogh, Zoltan; Kasama, Takeshi; Benzi, Federico; Wagner, Jakob B; Schwieger, Wilhelm; Schroer, Christian G; Grunwaldt, Jan-Dierk

    2017-06-01

    When using bifunctional core@shell catalysts, the stability of both the shell and core-shell interface is crucial for catalytic applications. In the present study, we elucidate the stability of a CuO/ZnO/Al2O3@ZSM-5 core@shell material, used for one-stage synthesis of dimethyl ether from synthesis gas. The catalyst stability was studied in a hierarchical manner by complementary environmental transmission electron microscopy (ETEM), scanning electron microscopy (SEM) and in situ hard X-ray ptychography with a specially designed in situ cell. Both reductive activation and reoxidation were applied. The core-shell interface was found to be stable during reducing and oxidizing treatment at 250°C as observed by ETEM and in situ X-ray ptychography, although strong changes occurred in the core on a 10 nm scale due to the reduction of copper oxide to metallic copper particles. At 350°C, in situ X-ray ptychography indicated the occurrence of structural changes also on the µm scale, i.e. the core material and parts of the shell undergo restructuring. Nevertheless, the crucial core-shell interface required for full bifunctionality appeared to remain stable. This study demonstrates the potential of these correlative in situ microscopy techniques for hierarchically designed catalysts.

  3. Mitigation of hard x-ray background in backlit pinhole imagers

    DOE PAGES

    Fein, J. R.; Keiter, P. A.; Holloway, J. P.; ...

    2016-09-16

    Experiments were performed to mitigate the hard x-ray background commonly observed in backlit pinhole imagers. The material of the scaffold holding the primary backlighter foil was varied to reduce the laser-plasma instabilities responsible for hot electrons and resulting hard x-ray background. Radiographic measurements with image plates showed a factor of >25 decrease in x-rays between 30 and 67 keV when going from a plastic to Al or V scaffold. Here, a potential design using V scaffold offers a signal-to-background ratio of 6:1, a factor of 2 greater than using the bare plastic scaffold.

  4. Hard Water and Soft Soap: Dependence of Soap Performance on Water Hardness

    ERIC Educational Resources Information Center

    Osorio, Viktoria K. L.; de Oliveira, Wanda; El Seoud, Omar A.; Cotton, Wyatt; Easdon, Jerry

    2005-01-01

    The demonstration of the performance of soap in different aqueous solutions, which is due to water hardness and soap formulation, is described. The demonstrations use safe, inexpensive reagents and simple glassware and equipment, introduce important everyday topics, stimulates the students to consider the wider consequences of water hardness and…

  5. Radiation hardness of Ce-doped sol-gel silica fibers for high energy physics applications.

    PubMed

    Cova, Francesca; Moretti, Federico; Fasoli, Mauro; Chiodini, Norberto; Pauwels, Kristof; Auffray, Etiennette; Lucchini, Marco Toliman; Baccaro, Stefania; Cemmi, Alessia; Bártová, Hana; Vedda, Anna

    2018-02-15

    The results of irradiation tests on Ce-doped sol-gel silica using x- and γ-rays up to 10 kGy are reported in order to investigate the radiation hardness of this material for high-energy physics applications. Sol-gel silica fibers with Ce concentrations of 0.0125 and 0.05 mol. % are characterized by means of optical absorption and attenuation length measurements before and after irradiation. The two different techniques give comparable results, evidencing the formation of a main broad radiation-induced absorption band, peaking at about 2.2 eV, related to radiation-induced color centers. The results are compared with those obtained on bulk silica. This study reveals that an improvement of the radiation hardness of Ce-doped silica fibers can be achieved by reducing Ce content inside the fiber core, paving the way for further material development.

  6. Studying Hardness Meter Spring Strength to Understand Hardness Distribution on Body Surfaces.

    PubMed

    Arima, Yoshitaka

    2017-10-01

    For developing a hardness multipoint measurement system for understanding hardness distribution on biological body surfaces, we investigated the spring strength of the contact portion main axis of a biological tissue hardness meter (product name: PEK). We measured the hardness of three-layered sheets of six types of gel sheets (90 mm × 60 mm × 6 mm) constituting the acupuncture practice pads, with PEK measurements of 1.96 N, 2.94 N, 3.92 N, 4.90 N, 5.88 N, 6.86 N, 7.84 N, 8.82 N, and 9.81 N of the main axis spring strength. We obtained measurements 10 times for the gel sheets and simultaneously measured the load using a digital scale. We measured the hardness distribution of induration embedded and breast cancer palpation models, with a main axis with 1.96 N, 4.90 N, and 9.81 N spring strengths, to create a two-dimensional Contour Fill Chart. Using 4.90 N spring strength, we could obtain measurement loads of ≤3.0 N, and the mean hardness was 5.14 mm. This was close to the median of the total measurement range 0.0-10.0 mm, making the measurement range the largest for this spring strength. We could image the induration of the induration-embedded model regardless of the spring strength. Overall, 4.90 N spring strength was best suited for imaging cancer in the breast cancer palpation model. Copyright © 2017. Published by Elsevier B.V.

  7. Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: The atoms Ga-Kr and In-Xe

    NASA Astrophysics Data System (ADS)

    Martin, Jan M. L.; Sundermann, Andreas

    2001-02-01

    We propose large-core correlation-consistent (cc) pseudopotential basis sets for the heavy p-block elements Ga-Kr and In-Xe. The basis sets are of cc-pVTZ and cc-pVQZ quality, and have been optimized for use with the large-core (valence-electrons only) Stuttgart-Dresden-Bonn (SDB) relativistic pseudopotentials. Validation calculations on a variety of third-row and fourth-row diatomics suggest them to be comparable in quality to the all-electron cc-pVTZ and cc-pVQZ basis sets for lighter elements. Especially the SDB-cc-pVQZ basis set in conjunction with a core polarization potential (CPP) yields excellent agreement with experiment for compounds of the later heavy p-block elements. For accurate calculations on Ga (and, to a lesser extent, Ge) compounds, explicit treatment of 13 valence electrons appears to be desirable, while it seems inevitable for In compounds. For Ga and Ge, we propose correlation consistent basis sets extended for (3d) correlation. For accurate calculations on organometallic complexes of interest to homogenous catalysis, we recommend a combination of the standard cc-pVTZ basis set for first- and second-row elements, the presently derived SDB-cc-pVTZ basis set for heavier p-block elements, and for transition metals, the small-core [6s5p3d] Stuttgart-Dresden basis set-relativistic effective core potential combination supplemented by (2f1g) functions with exponents given in the Appendix to the present paper.

  8. The Relationship Between Solar Radio and Hard X-Ray Emission

    NASA Technical Reports Server (NTRS)

    White, S. M.; Benz, A. O.; Christe, S.; Farnik, F.; Kundu, M. R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Valio, A. V. R.; Saint-Hilaire, P.; hide

    2011-01-01

    This review discusses the complementary relationship between radio and hard Xray observations of the Sun using primarily results from the era of the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite. A primary focus of joint radio and hard X-ray studies of solar flares uses observations of nonthermal gyrosynchrotron emission at radio wavelengths and bremsstrahlung hard X-rays to study the properties of electrons accelerated in the main flare site, since it is well established that these two emissions show very similar temporal behavior. A quantitative prescription is given for comparing the electron energy distributions derived separately from the two wavelength ranges: this is an important application with the potential for measuring the magnetic field strength in the flaring region, and reveals significant differences between the electrons in different energy ranges. Examples of the use of simultaneous data from the two wavelength ranges to derive physical conditions are then discussed, including the case of microflares, and the comparison of images at radio and hard X-ray wavelengths is presented. There have been puzzling results obtained from observations of solar flares at millimeter and submillimeter wavelengths, and the comparison of these results with corresponding hard X-ray data is presented. Finally, the review discusses the association of hard X-ray releases with radio emission at decimeter and meter wavelengths, which is dominated by plasma emission (at lower frequencies) and electron cyclotron maser emission (at higher frequencies), both coherent emission mechanisms that require small numbers of energetic electrons. These comparisons show broad general associations but detailed correspondence remains more elusive.

  9. A synthetic dataset for evaluating soft and hard fusion algorithms

    NASA Astrophysics Data System (ADS)

    Graham, Jacob L.; Hall, David L.; Rimland, Jeffrey

    2011-06-01

    There is an emerging demand for the development of data fusion techniques and algorithms that are capable of combining conventional "hard" sensor inputs such as video, radar, and multispectral sensor data with "soft" data including textual situation reports, open-source web information, and "hard/soft" data such as image or video data that includes human-generated annotations. New techniques that assist in sense-making over a wide range of vastly heterogeneous sources are critical to improving tactical situational awareness in counterinsurgency (COIN) and other asymmetric warfare situations. A major challenge in this area is the lack of realistic datasets available for test and evaluation of such algorithms. While "soft" message sets exist, they tend to be of limited use for data fusion applications due to the lack of critical message pedigree and other metadata. They also lack corresponding hard sensor data that presents reasonable "fusion opportunities" to evaluate the ability to make connections and inferences that span the soft and hard data sets. This paper outlines the design methodologies, content, and some potential use cases of a COIN-based synthetic soft and hard dataset created under a United States Multi-disciplinary University Research Initiative (MURI) program funded by the U.S. Army Research Office (ARO). The dataset includes realistic synthetic reports from a variety of sources, corresponding synthetic hard data, and an extensive supporting database that maintains "ground truth" through logical grouping of related data into "vignettes." The supporting database also maintains the pedigree of messages and other critical metadata.

  10. Hard and Soft Safety Verifications

    NASA Technical Reports Server (NTRS)

    Wetherholt, Jon; Anderson, Brenda

    2012-01-01

    The purpose of this paper is to examine the differences between and the effects of hard and soft safety verifications. Initially, the terminology should be defined and clarified. A hard safety verification is datum which demonstrates how a safety control is enacted. An example of this is relief valve testing. A soft safety verification is something which is usually described as nice to have but it is not necessary to prove safe operation. An example of a soft verification is the loss of the Solid Rocket Booster (SRB) casings from Shuttle flight, STS-4. When the main parachutes failed, the casings impacted the water and sank. In the nose cap of the SRBs, video cameras recorded the release of the parachutes to determine safe operation and to provide information for potential anomaly resolution. Generally, examination of the casings and nozzles contributed to understanding of the newly developed boosters and their operation. Safety verification of SRB operation was demonstrated by examination for erosion or wear of the casings and nozzle. Loss of the SRBs and associated data did not delay the launch of the next Shuttle flight.

  11. Titanium orthodontic brackets: structure, composition, hardness and ionic release.

    PubMed

    Gioka, Christiana; Bourauel, Christoph; Zinelis, Spiros; Eliades, Theodore; Silikas, Nikolaos; Eliades, George

    2004-09-01

    The aim of the present study was to investigate the composition, morphology, bulk structure and ionic release of two brands of titanium orthodontic brackets: Orthos2 (Ormco, USA) and Rematitan (Dentaurum, Germany). Five specimens of each group were examined with computerized X-ray microtomography, to reveal the morphology and structure of brackets, whilst resin-embedded and metallographically polished specimens were subjected to SEM/EDS analysis and Vickers microhardness measurements. Brackets were also maintained in 0.9% saline for 2 months and the ionic release in the immersion medium was determined with Inductively Coupled Plasma Atomic Emission Spectroscopy. The results of the hardness and ionic release measurements were statistically analyzed with two-way ANOVA and Tukey's test (alpha = 0.05). Orthos2 brackets consisted of two parts, the base (commercially pure Ti grade II) and the wing (Ti-6Al-4V alloy), joined together by laser welding, producing large gaps along the base-wing interface. The base was of lower hardness (Hv = 145), than the wing (Hv = 392) and incorporated a standard foil base-mesh pad. Rematitan brackets consisted of commercially pure Ti grade IV, with a single-piece manufacturing pattern of virtually identical hardness (p > 0.05) at the base and wings, featuring a laser-etched base-mesh pad. The hardness of the Rematitan brackets was significantly lower than the hardness of the Orthos2 wings, but double the hardness of the Orthos2 base. Released Ti levels were below the threshold level (1 ng/ml) of analysis for both materials, whilst traces of Al (3 ppm) and V (2 ppm) were found in the immersion media for Ti-6Al-4V alloy. The structural and hardness differences found may influence the torque transfer characteristics from activated archwires to the brackets and the crevice corrosion potential at the base-wing interface (Orthos2). The detection of Al and V in the immersion medium (Orthos2) may imply a different biological response from the two

  12. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A.; Jackson, George

    2018-04-01

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  13. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement.

    PubMed

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A; Jackson, George

    2018-04-28

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  14. Chemical composition of core samples from Newark Basin, a potential carbon sequestration site

    NASA Astrophysics Data System (ADS)

    Seltzer, A. M.; Yang, Q.; Goldberg, D.

    2012-12-01

    Injection of carbon dioxide into deep saline aquifers has been identified as a promising mitigation option of greenhouse gases, the successful management of which is considered to be one of the most urgent and important challenges. Given the high energy production in the New York metropolitan area, the Newark Basin region is considered to be a potential future sequestration site. However, the risk of an upward leak of sequestered CO2, especially to a shallow drinking water aquifer, is a key concern facing geological sequestration as a safe and viable mitigation option. In this study, we measured the chemical composition of 25 cores from various depths throughout Newark Basin as a precursor for an ex situ incubation experiment using these rock samples and aquifer water to simulate a leak event. Inductively coupled plasma mass spectrometry analysis of microwave-assisted digested rock powders and X-ray fluorescence analysis of the rock powders were conducted to obtain the concentrations of major and trace elements. Most of the major and trace elements show wide concentration ranges at one to two orders of magnitude. Understanding the chemical composition of these Newark Basin core samples is important not only for characterizing materials used for the later lab incubation, but also for gaining a broader understanding of the chemistry of the Newark Basin and profiling the region according to the varying risks associated with a leak of sequestered CO2 to a drinking water aquifer.

  15. Bulk sensitive hard x-ray photoemission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C.; Weber, N.

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. Themore » high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.« less

  16. Financial and environmental modelling of water hardness--implications for utilising harvested rainwater in washing machines.

    PubMed

    Morales-Pinzón, Tito; Lurueña, Rodrigo; Gabarrell, Xavier; Gasol, Carles M; Rieradevall, Joan

    2014-02-01

    A study was conducted to determine the financial and environmental effects of water quality on rainwater harvesting systems. The potential for replacing tap water used in washing machines with rainwater was studied, and then analysis presented in this paper is valid for applications that include washing machines where tap water hardness may be important. A wide range of weather conditions, such as rainfall (284-1,794 mm/year); water hardness (14-315 mg/L CaCO3); tap water prices (0.85-2.65 Euros/m(3)) in different Spanish urban areas (from individual buildings to whole neighbourhoods); and other scenarios (including materials and water storage capacity) were analysed. Rainfall was essential for rainwater harvesting, but the tap water prices and the water hardness were the main factors for consideration in the financial and the environmental analyses, respectively. The local tap water hardness and prices can cause greater financial and environmental impacts than the type of material used for the water storage tank or the volume of the tank. The use of rainwater as a substitute for hard water in washing machines favours financial analysis. Although tap water hardness significantly affects the financial analysis, the greatest effect was found in the environmental analysis. When hard tap water needed to be replaced, it was found that a water price of 1 Euro/m(3) could render the use of rainwater financially feasible when using large-scale rainwater harvesting systems. When the water hardness was greater than 300 mg/L CaCO3, a financial analysis revealed that an net present value greater than 270 Euros/dwelling could be obtained at the neighbourhood scale, and there could be a reduction in the Global Warming Potential (100 years) ranging between 35 and 101 kg CO2 eq./dwelling/year. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Janka hardness using nonstandard specimens

    Treesearch

    David W. Green; Marshall Begel; William Nelson

    2006-01-01

    Janka hardness determined on 1.5- by 3.5-in. specimens (2×4s) was found to be equivalent to that determined using the 2- by 2-in. specimen specified in ASTM D 143. Data are presented on the relationship between Janka hardness and the strength of clear wood. Analysis of historical data determined using standard specimens indicated no difference between side hardness...

  18. Determining the Effect of Material Hardness During the Hard Turning of AISI4340 Steel

    NASA Astrophysics Data System (ADS)

    Kambagowni, Venkatasubbaiah; Chitla, Raju; Challa, Suresh

    2018-05-01

    In the present manufacturing industries hardened steels are most widely used in the applications like tool design and mould design. It enhances the application range of hard turning of hardened steels in manufacturing industries. This study discusses the impact of workpiece hardness, feed and depth of cut on Arithmetic mean roughness (Ra), root mean square roughness (Rq), mean depth of roughness (Rz) and total roughness (Rt) during the hard turning. Experiments have been planned according to the Box-Behnken design and conducted on hardened AISI4340 steel at 45, 50 and 55 HRC with wiper ceramic cutting inserts. Cutting speed is kept constant during this study. The analysis of variance was used to determine the effects of the machining parameters. 3-D response surface plots drawn based on RSM were utilized to set up the input-output relationships. The results indicated that the feed rate has the most significant parameter for Ra, Rq and Rz and hardness has the most critical parameter for the Rt. Further, hardness shows its influence over all the surface roughness characteristics.

  19. Gains in efficiency and scientific potential of continental climate reconstruction provided by the LRC LacCore Facility, University of Minnesota

    NASA Astrophysics Data System (ADS)

    Noren, A.; Brady, K.; Myrbo, A.; Ito, E.

    2007-12-01

    Lacustrine sediment cores comprise an integral archive for the determination of continental paleoclimate, for their potentially high temporal resolution and for their ability to resolve spatial variability in climate across vast sections of the globe. Researchers studying these archives now have a large, nationally-funded, public facility dedicated to the support of their efforts. The LRC LacCore Facility, funded by NSF and the University of Minnesota, provides free or low-cost assistance to any portion of research projects, depending on the specific needs of the project. A large collection of field equipment (site survey equipment, coring devices, boats/platforms, water sampling devices) for nearly any lacustrine setting is available for rental, and Livingstone-type corers and drive rods may be purchased. LacCore staff can accompany field expeditions to operate these devices and curate samples, or provide training prior to device rental. The Facility maintains strong connections to experienced shipping agents and customs brokers, which vastly improves transport and importation of samples. In the lab, high-end instrumentation (e.g., multisensor loggers, high-resolution digital linescan cameras) provides a baseline of fundamental analyses before any sample material is consumed. LacCore staff provide support and training in lithological description, including smear-slide, XRD, and SEM analyses. The LRC botanical macrofossil reference collection is a valuable resource for both core description and detailed macrofossil analysis. Dedicated equipment and space for various subsample analyses streamlines these endeavors; subsamples for several analyses may be submitted for preparation or analysis by Facility technicians for a fee (e.g., carbon and sulfur coulometry, grain size, pollen sample preparation and analysis, charcoal, biogenic silica, LOI, freeze drying). The National Lacustrine Core Repository now curates ~9km of sediment cores from expeditions around the world

  20. Small ICBM area narrowing report. Volume 1. Hard mobile launcher in random movement basing mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this report is to identify those areas that could potentially support deployment of the Small Intercontinental Ballistic Missile (ICBM) utilizing basing modes presently considered viable: the Hard Mobile Launcher in Random Movement, the Hard Mobile Launcher at Minuteman Facilities, and the Hard Silo in Patterned Array. Specifically, this report describes the process and the rationale supporting the application of Exclusionary and Evaluative Criteria and lists those locations that were eliminated through the application of these criteria. The remaining locations will be the subject of further investigations.

  1. Small ICBM area narrowing report. Volume 2. Hard mobile launcher at minuteman facilities basing mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this report is to identify those areas that could potentially support deployment of the Small Intercontinental Ballistic Missile (ICBM) utilizing basing modes presently considered viable: the Hard Mobile Launcher in Random Movement, the Hard Mobile Launcher at Minuteman Facilities, and the Hard Silo in Patterned Array. Specifically, this report describes the process and the rationale supporting the application of Exclusionary and Evaluative Criteria and lists those locations that were eliminated through the application of these criteria. The remaining locations will be the subject of further investigations.

  2. Hard parts chemical composition as a potentially valuable tool for kutum, Rutilus kutum stock discrimination: A case study of the Southern Caspian Sea

    NASA Astrophysics Data System (ADS)

    Pourang, N.; Haghighi, F. Parafkandeh; Moazami, H. R.

    2018-07-01

    The potential use of elemental fingerprinting of five hard parts (otolith, scale, dorsal spine, eye lens and vertebral bone) for stock discrimination of Rutilus kutum from the Caspian Sea was investigated, for the first time. The specimens were sampled from three sampling sites in the Southern Caspian Sea in March 2016. Twenty specimens (total length: 32.6-37.9 mm; age: 3-4 yrs) were collected from each site. Concentrations of elements (Br, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, P, S, Sr and Zn) in the samples were determined by proton induced X-ray emission (PIXE). The pattern of elements occurrence in the eye lens was considerably different compared to the other hard parts. No significant differences were found in the Sr level in otolith between the sampling sites 2 and 3 (adjacent to the estuaries of Tajan and Gorganrud rivers, respectively) indicating that the specimens collected from the two sites are probably from the same population. Similar results were also obtained based on the results concerning K accumulation in scales. Generally, it can be concluded that scales may provide an alternative structure to otolith for stock discrimination of R. kutum in the southern Caspian Sea.

  3. Challenges Regarding IP Core Functional Reliability

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; LaBel, Kenneth A.

    2017-01-01

    For many years, intellectual property (IP) cores have been incorporated into field programmable gate array (FPGA) and application specific integrated circuit (ASIC) design flows. However, the usage of large complex IP cores were limited within products that required a high level of reliability. This is no longer the case. IP core insertion has become mainstream including their use in highly reliable products. Due to limited visibility and control, challenges exist when using IP cores and subsequently compromise product reliability. We discuss challenges and suggest potential solutions to critical application IP insertion.

  4. Comparison of hardness variation of ion irradiated borosilicate glasses with different projected ranges

    NASA Astrophysics Data System (ADS)

    Sun, M. L.; Peng, H. B.; Duan, B. H.; Liu, F. F.; Du, X.; Yuan, W.; Zhang, B. T.; Zhang, X. Y.; Wang, T. S.

    2018-03-01

    Borosilicate glass has potential application for vitrification of high-level radioactive waste, which attracts extensive interest in studying its radiation durability. In this study, sodium borosilicate glass samples were irradiated with 4 MeV Kr17+ ion, 5 MeV Xe26+ ion and 0.3 MeV P+ ion, respectively. The hardness of irradiated borosilicate glass samples was measured with nanoindentation in continuous stiffness mode and quasi continuous stiffness mode, separately. Extrapolation method, mean value method, squared extrapolation method and selected point method are used to obtain hardness of irradiated glass and a comparison among these four methods is conducted. The extrapolation method is suggested to analyze the hardness of ion irradiated glass. With increasing irradiation dose, the values of hardness for samples irradiated with Kr, Xe and P ions dropped and then saturated at 0.02 dpa. Besides, both the maximum variations and decay constants for three kinds of ions with different energies are similar indicates the similarity behind the hardness variation in glasses after irradiation. Furthermore, the hardness variation of low energy P ion irradiated samples whose range is much smaller than those of high energy Kr and Xe ions, has the same trend as that of Kr and Xe ions. It suggested that electronic energy loss did not play a significant role in hardness decrease for irradiation of low energy ions.

  5. On the hardness of high carbon ferrous martensite

    NASA Astrophysics Data System (ADS)

    Mola, J.; Ren, M.

    2018-06-01

    Due to the presence of retained austenite in martensitic steels, especially steels with high carbon concentrations, it is difficult to estimate the hardness of martensite independent of the hardness of the coexisting austenite. In the present work, the hardness of ferrous martensite with carbon concentrations in the range 0.23-1.46 mass-% was estimated by the regression analysis of hardnesses for hardened martensitic-austenitic steels containing various martensite fractions. For a given carbon concentration, the hardness of martensitic-austenitic steels was found to increase exponentially with an increase in the fraction of the martensitic constituent. The hardness of the martensitic constituent was subsequently estimated by the exponential extrapolation of the hardness of phase mixtures to 100 vol.% martensite. For martensite containing 1.46 mass-% carbon, the hardness was estimated to be 1791 HV. This estimate of martensite hardness is significantly higher than the experimental hardness of 822 HV for a phase mixture of 68 vol.% martensite and 32 vol.% austenite. The hardness obtained by exponential extrapolation is also much higher than the hardness of 1104 HV based on the rule of mixtures. The underestimated hardness of high carbon martensite in the presence of austenite is due to the non-linear dependence of hardness on the martensite fraction. The latter is also a common observation in composite materials with a soft matrix and hard reinforcing particles.

  6. Tactile sensor of hardness recognition based on magnetic anomaly detection

    NASA Astrophysics Data System (ADS)

    Xue, Lingyun; Zhang, Dongfang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Hardness, as one kind of tactile sensing, plays an important role in the field of intelligent robot application such as gripping, agricultural harvesting, prosthetic hand and so on. Recently, with the rapid development of magnetic field sensing technology with high performance, a number of magnetic sensors have been developed for intelligent application. The tunnel Magnetoresistance(TMR) based on magnetoresistance principal works as the sensitive element to detect the magnetic field and it has proven its excellent ability of weak magnetic detection. In the paper, a new method based on magnetic anomaly detection was proposed to detect the hardness in the tactile way. The sensor is composed of elastic body, ferrous probe, TMR element, permanent magnet. When the elastic body embedded with ferrous probe touches the object under the certain size of force, deformation of elastic body will produce. Correspondingly, the ferrous probe will be forced to displace and the background magnetic field will be distorted. The distorted magnetic field was detected by TMR elements and the output signal at different time can be sampled. The slope of magnetic signal with the sampling time is different for object with different hardness. The result indicated that the magnetic anomaly sensor can recognize the hardness rapidly within 150ms after the tactile moment. The hardness sensor based on magnetic anomaly detection principal proposed in the paper has the advantages of simple structure, low cost, rapid response and it has shown great application potential in the field of intelligent robot.

  7. Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes.

    PubMed

    Alibardi, Lorenzo; Dalla Valle, Luisa; Nardi, Alessia; Toni, Mattia

    2009-04-01

    Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal-epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal-epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%-95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins formed

  8. Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes

    PubMed Central

    Alibardi, Lorenzo; Valle, Luisa Dalla; Nardi, Alessia; Toni, Mattia

    2009-01-01

    Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal–epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal–epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%–95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins

  9. Adsorption of hard spheres via the non-uniform Percus-Yevick equation

    NASA Astrophysics Data System (ADS)

    Sokołowski, S.

    We study the adsorption of hard spheres on solids interacting according to potentials whose Boltzmann functions contain a δ-function. The nonuniform Percus-Yevick equation is solved by using the method introduced by Lado to study two dimensional fluids.

  10. Crystallization in Micellar Cores: confinement effects and dynamics

    NASA Astrophysics Data System (ADS)

    Lund, Reidar; Zinn, Thomas; Willner, Lutz; Department of Chemistry, University of Oslo Team; Forschungszentrum Jülich Collaboration

    It is well known that liquids confined to small nanoscopic pores and droplets exhibit thermal behavior very different from bulk samples. Here we demonstrate that n-alkanes forming 2-3 nm small micellar cores are considerably affected by confinement in analogue with hard confined systems. We study micelles form by self-assembly of a series of well-defined n-Alkyl-PEO polymers in aqueous solutions. By using small-angle X-ray scattering (SAXS), densiometry and differential scanning calorimetry (DSC), we show that n-alkane exhibit a first-order phase transition i.e. melting. Correlating the structural and thermodynamic data, we find that a melting depression can be accurately described by the Gibbs-Thomson equation. ∖f1 The effect of core crystallinity on the molecular exchange kinetics is investigated using time-resolved small-angle neutron scattering (TR-SANS). We show that there are considerable entropic and enthalpic contributions from the chain packing that affect the kinetic stability of micelles. ∖pard

  11. Taxonomic characterization and the bio-potential of bacteria isolated from glacier ice cores in the High Arctic.

    PubMed

    Singh, Purnima; Singh, Shiv Mohan; Roy, Utpal

    2016-03-01

    Glacier ice and firn cores have ecological and biotechnological importance. The present study is aimed at characterizing bacteria in crustal ice cores from Svalbard, the Arctic. Counts of viable isolates ranged from 10 to 7000 CFU/ml (mean 803 CFU/ml) while the total bacterial numbers ranged from 7.20 × 10(4) to 2.59 × 10(7)  cells ml(-1) (mean 3.12 × 10(6)  cells ml(-1) ). Based on 16S rDNA sequence data, the identified species belonged to seven species, namely Bacillus barbaricus, Pseudomonas orientalis, Pseudomonas oryzihabitans, Pseudomonas fluorescens, Pseudomonas syncyanea, Sphingomonas dokdonensis, and Sphingomonas phyllosphaerae, with a sequence similarity ranging between 93.5 and 99.9% with taxa present in the database. The isolates exhibited unique phenotypic properties, and three isolates (MLB-2, MLB-5, and MLB-9) are novel species, yet to be described. To the best of our knowledge, this is the first report on characterization of cultured bacterial communities from Svalbard ice cores. We conclude that high lipase, protease, cellulase, amylase, and urease activities expressed by most of the isolates provide a clue to the potential industrial applications of these organisms. These microbes, producing cold-adapted enzymes may provide an opportunity for biotechnological research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chemical and Colloidal Stability of Carboxylated Core-Shell Magnetite Nanoparticles Designed for Biomedical Applications

    PubMed Central

    Szekeres, Márta; Tóth, Ildikó Y.; Illés, Erzsébet; Hajdú, Angéla; Zupkó, István; Farkas, Katalin; Oszlánczi, Gábor; Tiszlavicz, László; Tombácz, Etelka

    2013-01-01

    Despite the large efforts to prepare super paramagnetic iron oxide nanoparticles (MNPs) for biomedical applications, the number of FDA or EMA approved formulations is few. It is not known commonly that the approved formulations in many instances have already been withdrawn or discontinued by the producers; at present, hardly any approved formulations are produced and marketed. Literature survey reveals that there is a lack for a commonly accepted physicochemical practice in designing and qualifying formulations before they enter in vitro and in vivo biological testing. Such a standard procedure would exclude inadequate formulations from clinical trials thus improving their outcome. Here we present a straightforward route to assess eligibility of carboxylated MNPs for biomedical tests applied for a series of our core-shell products, i.e., citric acid, gallic acid, poly(acrylic acid) and poly(acrylic acid-co-maleic acid) coated MNPs. The discussion is based on physicochemical studies (carboxylate adsorption/desorption, FTIR-ATR, iron dissolution, zeta potential, particle size, coagulation kinetics and magnetization measurements) and involves in vitro and in vivo tests. Our procedure can serve as an example to construct adequate physico-chemical selection strategies for preparation of other types of core-shell nanoparticles as well. PMID:23857054

  13. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles

    NASA Astrophysics Data System (ADS)

    Shen, Zhiqiang; Loe, David T.; Awino, Joseph K.; Kröger, Martin; Rouge, Jessica L.; Li, Ying

    2016-08-01

    Herein a new multifunctional formulation, referred to as a core-polyethylene glycol-lipid shell (CPLS) nanoparticle, has been proposed and studied in silico via large scale coarse-grained molecular dynamics simulations. A PEGylated core with surface tethered polyethylene glycol (PEG) chains is used as the starting configuration, where the free ends of the PEG chains are covalently bonded with lipid molecules (lipid heads). A complete lipid bilayer is formed at the surface of the PEGylated particle core upon addition of free lipids, driven by the hydrophobic properties of the lipid tails, leading to the formation of a CPLS nanoparticle. The self-assembly process is found to be sensitive to the grafting density and molecular weight of the tethered PEG chains, as well as the amount of free lipids added. At low grafting densities the assembly of CPLS nanoparticles cannot be accomplished. As demonstrated by simulations, a lipid bud/vesicle can be formed on the surface when an excess amount of free lipids is added at high grafting density. Therefore, the CPLS nanoparticles can only be formed under appropriate conditions of both PEG and free lipids. The CPLS nanoparticle has been recognized to be able to store a large quantity of water molecules, particularly with high molecular weight of PEG chains, indicating its capacity for carrying hydrophilic molecules such as therapeutic biomolecules or imaging agents. Under identical size and surface chemistry conditions of a liposome, it has been observed that the CPLS particle can be more efficiently wrapped by the lipid membrane, indicating its potential for a greater efficiency in delivering its hydrophilic cargo. As a proof-of-concept, the experimental realization of CPLS nanoparticles is explicitly demonstrated in this study. To test the capacity of the CPLS to store small molecule cargo a hydrophilic dye was successfully encapsulated in the particles' water soluble layer. The results of this study show the power and

  14. Effects of coating materials on nanoindentation hardness of enamel and adjacent areas.

    PubMed

    Alsayed, Ehab Z; Hariri, Ilnaz; Nakashima, Syozi; Shimada, Yasushi; Bakhsh, Turki A; Tagami, Junji; Sadr, Alireza

    2016-06-01

    Materials that can be applied as thin coatings and actively release fluoride or other bioavailable ions for reinforcing dental hard tissue deserve further investigation. In this study we assessed the potential of resin coating materials in protection of underlying and adjacent enamel against demineralization challenge using nanoindentation. Enamel was coated using Giomer (PRG Barrier Coat, PBC), resin-modified glass-ionomer (Clinpro XT Varnish, CXT), two-step self-etch adhesive (Clearfil SE Protect, SEP) or no coating (control). After 5000 thermal cycles and one-week demineralization challenge, Martens hardness of enamel beneath the coating, uncoated area and intermediate areas was measured using a Berkovich tip under 2mN load up to 200μm depth. Integrated hardness and 10-μm surface zone hardness were compared among groups. Nanoindentation and scanning electron microscopy suggested that all materials effectively prevented demineralization in coated area. Uncoated areas presented different hardness trends; PBC showed a remarkable peak at the surface zone before reaching as low as the control, while CXT showed relatively high hardness values at all depths. Ion-release from coating materials affects different layers of enamel. Coatings with fluoride-releasing glass fillers contributed to reinforcement of adjacent enamel. Surface prereacted glass filler-containing PBC superficially protected neighboring enamel against demineralization, while resin-modified glass-ionomer with calcium (CXT) improved in-depth protection. Cross-sectional hardness mapping of enamel on a wide range of locations revealed minute differences in its structure. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy of tetragonal Mn72Ge28 epitaxial thin film

    NASA Astrophysics Data System (ADS)

    Kim, Jinhyeok; Mizuguchi, Masaki; Inami, Nobuhito; Ueno, Tetsuro; Ueda, Shigenori; Takanashi, Koki

    2018-04-01

    An epitaxially grown Mn72Ge28 film with a tetragonal crystal structure was fabricated. It was clarified that the film had a perpendicular magnetization and a high perpendicular magnetic anisotropy energy of 14.3 Merg/cm3. The electronic structure was investigated by X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy. The obtained X-ray magnetic circular dichroism spectrum revealed that the Mn orbital magnetic moment governed the magnetocrystalline anisotropy of the Mn72Ge28 film. A doublet structure was observed for the Mn 2p3/2 peak of hard X-ray photoelectron spectrum, indicating the spin exchange interaction between the 2p core-hole and 3d valence electrons.

  16. Phase behavior of a fluid with a double Gaussian potential displaying waterlike features

    NASA Astrophysics Data System (ADS)

    Speranza, Cristina; Prestipino, Santi; Malescio, Gianpietro; Giaquinta, Paolo V.

    2014-07-01

    Pair potentials that are bounded at the origin provide an accurate description of the effective interaction for many systems of dissolved soft macromolecules (e.g., flexible dendrimers). Using numerical free-energy calculations, we reconstruct the equilibrium phase diagram of a system of particles interacting through a potential that brings together a Gaussian repulsion with a much weaker Gaussian attraction, close to the thermodynamic stability threshold. Compared to the purely repulsive model, only the reentrant branch of the melting line survives, since for lower densities solidification is overridden by liquid-vapor separation. As a result, the phase diagram of the system recalls that of water up to moderate (i.e., a few tens of MPa) pressures. Upon superimposing a suitable hard core on the double-Gaussian potential, a further transition to a more compact solid phase is induced at high pressure, which might be regarded as the analog of the ice I-to-ice III transition in water.

  17. Reduced Immunogenicity of Arabidopsis hgl1 Mutant N-Glycans Caused by Altered Accessibility of Xylose and core Fucose Epitopes*

    PubMed Central

    Kaulfürst-Soboll, Heidi; Rips, Stephan; Koiwa, Hisashi; Kajiura, Hiroyuki; Fujiyama, Kazuhito; von Schaewen, Antje

    2011-01-01

    Arabidopsis N-glycosylation mutants with enhanced salt sensitivity show reduced immunoreactivity of complex N-glycans. Among them, hybrid glycosylation 1 (hgl1) alleles lacking Golgi α-mannosidase II are unique, because their glycoprotein N-glycans are hardly labeled by anti-complex glycan antibodies, even though they carry β1,2-xylose and α1,3-fucose epitopes. To dissect the contribution of xylose and core fucose residues to plant stress responses and immunogenic potential, we prepared Arabidopsis hgl1 xylT double and hgl1 fucTa fucTb triple mutants by crossing previously established T-DNA insertion lines and verified them by mass spectrometry analyses. Root growth assays revealed that hgl1 fucTa fucTb but not hgl1 xylT plants are more salt-sensitive than hgl1, hinting at the importance of core fucose modification and masking of xylose residues. Detailed immunoblot analyses with anti-β1,2-xylose and anti-α1,3-fucose rabbit immunoglobulin G antibodies as well as cross-reactive carbohydrate determinant-specific human immunoglobulin E antibodies (present in sera of allergy patients) showed that xylose-specific reactivity of hgl1 N-glycans is indeed reduced. Based on three-dimensional modeling of plant N-glycans, we propose that xylose residues are tilted by 30° because of untrimmed mannoses in hgl1 mutants. Glycosidase treatments of protein extracts restored immunoreactivity of hgl1 N-glycans supporting these models. Furthermore, among allergy patient sera, untrimmed mannoses persisting on the α1,6-arm of hgl1 N-glycans were inhibitory to immunoreaction with core fucoses to various degrees. In summary, incompletely trimmed glycoprotein N-glycans conformationally prevent xylose and, to lesser extent, core fucose accessibility. Thus, in addition to N-acetylglucosaminyltransferase I, Golgi α-mannosidase II emerges as a so far unrecognized target for lowering the immunogenic potential of plant-derived glycoproteins. PMID:21478158

  18. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  19. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  20. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  1. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  2. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  3. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  4. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  5. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  6. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  7. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  8. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.

    PubMed

    Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang

    2015-03-15

    Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.

  9. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles.

    PubMed

    Shen, Zhiqiang; Loe, David T; Awino, Joseph K; Kröger, Martin; Rouge, Jessica L; Li, Ying

    2016-08-21

    Herein a new multifunctional formulation, referred to as a core-polyethylene glycol-lipid shell (CPLS) nanoparticle, has been proposed and studied in silico via large scale coarse-grained molecular dynamics simulations. A PEGylated core with surface tethered polyethylene glycol (PEG) chains is used as the starting configuration, where the free ends of the PEG chains are covalently bonded with lipid molecules (lipid heads). A complete lipid bilayer is formed at the surface of the PEGylated particle core upon addition of free lipids, driven by the hydrophobic properties of the lipid tails, leading to the formation of a CPLS nanoparticle. The self-assembly process is found to be sensitive to the grafting density and molecular weight of the tethered PEG chains, as well as the amount of free lipids added. At low grafting densities the assembly of CPLS nanoparticles cannot be accomplished. As demonstrated by simulations, a lipid bud/vesicle can be formed on the surface when an excess amount of free lipids is added at high grafting density. Therefore, the CPLS nanoparticles can only be formed under appropriate conditions of both PEG and free lipids. The CPLS nanoparticle has been recognized to be able to store a large quantity of water molecules, particularly with high molecular weight of PEG chains, indicating its capacity for carrying hydrophilic molecules such as therapeutic biomolecules or imaging agents. Under identical size and surface chemistry conditions of a liposome, it has been observed that the CPLS particle can be more efficiently wrapped by the lipid membrane, indicating its potential for a greater efficiency in delivering its hydrophilic cargo. As a proof-of-concept, the experimental realization of CPLS nanoparticles is explicitly demonstrated in this study. To test the capacity of the CPLS to store small molecule cargo a hydrophilic dye was successfully encapsulated in the particles' water soluble layer. The results of this study show the power and

  10. Prioritization of potential drug targets against P. aeruginosa by core proteomic analysis using computational subtractive genomics and Protein-Protein interaction network.

    PubMed

    Uddin, Reaz; Jamil, Faiza

    2018-06-01

    Pseudomonas aeruginosa is an opportunistic gram-negative bacterium that has the capability to acquire resistance under hostile conditions and become a threat worldwide. It is involved in nosocomial infections. In the current study, potential novel drug targets against P. aeruginosa have been identified using core proteomic analysis and Protein-Protein Interactions (PPIs) studies. The non-redundant reference proteome of 68 strains having complete genome and latest assembly version of P. aeruginosa were downloaded from ftp NCBI RefSeq server in October 2016. The standalone CD-HIT tool was used to cluster ortholog proteins (having >=80% amino acid identity) present in all strains. The pan-proteome was clustered in 12,380 Clusters of Orthologous Proteins (COPs). By using in-house shell scripts, 3252 common COPs were extracted out and designated as clusters of core proteome. The core proteome of PAO1 strain was selected by fetching PAO1's proteome from common COPs. As a result, 1212 proteins were shortlisted that are non-homologous to the human but essential for the survival of the pathogen. Among these 1212 proteins, 321 proteins are conserved hypothetical proteins. Considering their potential as drug target, those 321 hypothetical proteins were selected and their probable functions were characterized. Based on the druggability criteria, 18 proteins were shortlisted. The interacting partners were identified by investigating the PPIs network using STRING v10 database. Subsequently, 8 proteins were shortlisted as 'hub proteins' and proposed as potential novel drug targets against P. aeruginosa. The study is interesting for the scientific community working to identify novel drug targets against MDR pathogens particularly P. aeruginosa. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Soft-core processor study for node-based architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Houten, Jonathan Roger; Jarosz, Jason P.; Welch, Benjamin James

    2008-09-01

    Node-based architecture (NBA) designs for future satellite projects hold the promise of decreasing system development time and costs, size, weight, and power and positioning the laboratory to address other emerging mission opportunities quickly. Reconfigurable Field Programmable Gate Array (FPGA) based modules will comprise the core of several of the NBA nodes. Microprocessing capabilities will be necessary with varying degrees of mission-specific performance requirements on these nodes. To enable the flexibility of these reconfigurable nodes, it is advantageous to incorporate the microprocessor into the FPGA itself, either as a hardcore processor built into the FPGA or as a soft-core processor builtmore » out of FPGA elements. This document describes the evaluation of three reconfigurable FPGA based processors for use in future NBA systems--two soft cores (MicroBlaze and non-fault-tolerant LEON) and one hard core (PowerPC 405). Two standard performance benchmark applications were developed for each processor. The first, Dhrystone, is a fixed-point operation metric. The second, Whetstone, is a floating-point operation metric. Several trials were run at varying code locations, loop counts, processor speeds, and cache configurations. FPGA resource utilization was recorded for each configuration. Cache configurations impacted the results greatly; for optimal processor efficiency it is necessary to enable caches on the processors. Processor caches carry a penalty; cache error mitigation is necessary when operating in a radiation environment.« less

  12. Warren G. Harding and the Press.

    ERIC Educational Resources Information Center

    Whitaker, W. Richard

    There are many parallels between the Richard M. Nixon administration and Warren G. Harding's term: both Republicans, both touched by scandal, and both having a unique relationship with the press. But in Harding's case the relationship was a positive one. One of Harding's first official acts as president was to restore the regular White House news…

  13. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Brinton, John C. (Technical Monitor); Gorenstein, Paul

    2004-01-01

    The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i .e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well.

  14. Deformation Behavior of Al/a-Si Core-shell Nanostructures

    NASA Astrophysics Data System (ADS)

    Fleming, Robert

    Al/a-Si core-shell nanostructures (CSNs), consisting of a hemispherical Al core surrounded by a hard shell of a-Si, have been shown to display unusual mechanical behavior in response to compression loading. Most notably, these nanostructures exhibit substantial deformation recovery, even when loaded much beyond the elastic limit. Nanoindentation measurements revealed a unique mechanical response characterized by discontinuous signatures in the load-displacement data. In conjunction with the indentation signatures, nearly complete deformation recovery is observed. This behavior is attributed to dislocation nucleation and annihilation events enabled by the 3-dimensional confinement of the Al core. As the core confinement is reduced, either through an increase in confined core volume or a change in the geometrical confinement, the indentation signatures and deformation resistance are significantly reduced. Complimentary molecular dynamics simulations show that a substantial amount of dislocation egression occurs in the core of CSNs during unloading as dislocations annihilate at the core/shell interface. Smaller core diameters correlate with the development of a larger back-stress within the core during unloading, which further correlates with improved dislocation annihilation after unloading. Furthermore, dislocations nucleated in the core of core-shell nanorods are not as effectively removed as compared to CSNs. Nanostructure-textured surfaces (NSTSs) composed of Al/a-Si CSNs have improved tribological properties compared surfaces patterned with Al nanodots and a flat (100) Si surface. NSTSs have a coefficient of friction (COF) as low as 0.015, exhibit low adhesion with adhesion forces on the order of less than 1 microN, and are highly deformation resistant, with no apparent surface deformation after nanoscratch testing, even at contact forces up to 8000 microN. In comparison, (100) Si has substantially higher adhesion and COF ( 10 microN and 0.062, respectively

  15. Development of sol-gel bioactive glass for hard tissue regeneration

    NASA Astrophysics Data System (ADS)

    Noor, Siti Noor Fazliah Mohd; Zain, Nurul Shazwani Mohd; Wei, Poh Yong; Azizan, Nur Syazana; Mohamad, Hasmaliza

    2016-12-01

    The regeneration of hard tissues requires various contributing factors such as cells, scaffolds and growth factors. Bioactive glasses are known for its properties to stimulate hard tissue regeneration. In this study, sol-gel bioactive glasses (BG) were prepared and characterized. Sol-gel BG powders having particle size less than 25 µm were incubated with cell culture medium for 4 hours at 37°C on continuous rolling, and then the medium was filtered using 0.22 µm syringe filters. Prior to use, the SGBG-conditioned media were supplemented with 10% (v/v) fetal bovine serum and 1% (v/v) antibiotic-antimycotic, and were allowed to equilibrate overnight inside a CO2 incubator. The human dental pulp stem cells (DPSC) were incubated with the BG-conditioned media and their viability and proliferation were assessed at day 1, 2, 4 and 7 using Alamar Blue and MTT assays. The results showed that BG at various powders to liquid ratio concentrations promoted DPSC growth. The BG have potential to be used for hard tissue regeneration especially in the field of regenerative dentistry.

  16. Porous Core-Shell Nanostructures for Catalytic Applications

    NASA Astrophysics Data System (ADS)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  17. Influence of Gene Expression on Hardness in Wheat

    PubMed Central

    Nirmal, Ravi C.; Wrigley, Colin

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences. PMID:27741295

  18. Influence of Gene Expression on Hardness in Wheat.

    PubMed

    Nirmal, Ravi C; Furtado, Agnelo; Wrigley, Colin; Henry, Robert J

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences.

  19. Challenges for proteomics core facilities.

    PubMed

    Lilley, Kathryn S; Deery, Michael J; Gatto, Laurent

    2011-03-01

    Many analytical techniques have been executed by core facilities established within academic, pharmaceutical and other industrial institutions. The centralization of such facilities ensures a level of expertise and hardware which often cannot be supported by individual laboratories. The establishment of a core facility thus makes the technology available for multiple researchers in the same institution. Often, the services within the core facility are also opened out to researchers from other institutions, frequently with a fee being levied for the service provided. In the 1990s, with the onset of the age of genomics, there was an abundance of DNA analysis facilities, many of which have since disappeared from institutions and are now available through commercial sources. Ten years on, as proteomics was beginning to be utilized by many researchers, this technology found itself an ideal candidate for being placed within a core facility. We discuss what in our view are the daily challenges of proteomics core facilities. We also examine the potential unmet needs of the proteomics core facility that may also be applicable to proteomics laboratories which do not function as core facilities. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Combustion and Engine-Core Noise

    NASA Astrophysics Data System (ADS)

    Ihme, Matthias

    2017-01-01

    The implementation of advanced low-emission aircraft engine technologies and the reduction of noise from airframe, fan, and jet exhaust have made noise contributions from an engine core increasingly important. Therefore, meeting future ambitious noise-reduction goals requires the consideration of engine-core noise. This article reviews progress on the fundamental understanding, experimental analysis, and modeling of engine-core noise; addresses limitations of current techniques; and identifies opportunities for future research. After identifying core-noise contributions from the combustor, turbomachinery, nozzles, and jet exhaust, they are examined in detail. Contributions from direct combustion noise, originating from unsteady combustion, and indirect combustion noise, resulting from the interaction of flow-field perturbations with mean-flow variations in turbine stages and nozzles, are analyzed. A new indirect noise-source contribution arising from mixture inhomogeneities is identified by extending the theory. Although typically omitted in core-noise analysis, the impact of mean-flow variations and nozzle-upstream perturbations on the jet-noise modulation is examined, providing potential avenues for future core-noise mitigation.

  1. The use of CORE model by metacognitive skill approach in developing characters junior high school students

    NASA Astrophysics Data System (ADS)

    Fisher, Dahlia; Yaniawati, Poppy; Kusumah, Yaya Sukjaya

    2017-08-01

    This study aims to analyze the character of students who obtain CORE learning model using metacognitive approach. The method in this study is qualitative research and quantitative research design (Mixed Method Design) with concurrent embedded strategy. The research was conducted on two groups: an experimental group and the control group. An experimental group consists of students who had CORE model learning using metacognitive approach while the control group consists of students taught by conventional learning. The study was conducted the object this research is the seventh grader students in one the public junior high schools in Bandung. Based on this research, it is known that the characters of the students in the CORE model learning through metacognitive approach is: honest, hard work, curious, conscientious, creative and communicative. Overall it can be concluded that CORE model learning is good for developing characters of a junior high school student.

  2. When the truth isn’t too hard to handle: An event-related potential study on the pragmatics of negation

    PubMed Central

    Nieuwland, Mante S.; Kuperberg, Gina R.

    2011-01-01

    Our brains rapidly map incoming language onto what we hold to be true. Yet there are claims that such integration and verification processes are delayed in sentences containing negation words like ‘not’. However, research studies have often confounded whether a statement is true and whether it is natural thing to say during normal communication. In an event-related potential (ERP) experiment, we aimed to disentangle effects of truth-value and pragmatic licensing on the comprehension of affirmative and negated real-world statements. As in affirmative sentences, false words elicited a larger N400 ERP than true words in pragmatically licensed negated sentences (e.g., “In moderation, drinking red wine isn’t bad/good…”), whereas true and false words elicited similar responses in unlicensed negated sentences (e.g., “A baby bunny’s fur isn’t very hard/soft…”). These results suggest that negation poses no principled obstacle for readers to immediately relate incoming words to what they hold to be true. PMID:19121125

  3. When the truth is not too hard to handle: an event-related potential study on the pragmatics of negation.

    PubMed

    Nieuwland, Mante S; Kuperberg, Gina R

    2008-12-01

    Our brains rapidly map incoming language onto what we hold to be true. Yet there are claims that such integration and verification processes are delayed in sentences containing negation words like not. However, studies have often confounded whether a statement is true and whether it is a natural thing to say during normal communication. In an event-related potential (ERP) experiment, we aimed to disentangle effects of truth value and pragmatic licensing on the comprehension of affirmative and negated real-world statements. As in affirmative sentences, false words elicited a larger N400 ERP than did true words in pragmatically licensed negated sentences (e.g., "In moderation, drinking red wine isn't bad/good..."), whereas true and false words elicited similar responses in unlicensed negated sentences (e.g., "A baby bunny's fur isn't very hard/soft..."). These results suggest that negation poses no principled obstacle for readers to immediately relate incoming words to what they hold to be true.

  4. NP-hardness of the cluster minimization problem revisited

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2005-10-01

    The computational complexity of the 'cluster minimization problem' is revisited (Wille and Vennik 1985 J. Phys. A: Math. Gen. 18 L419). It is argued that the original NP-hardness proof does not apply to pairwise potentials of physical interest, such as those that depend on the geometric distance between the particles. A geometric analogue of the original problem is formulated, and a new proof for such potentials is provided by polynomial time transformation from the independent set problem for unit disk graphs. Limitations of this formulation are pointed out, and new subproblems that bear more direct consequences to the numerical study of clusters are suggested.

  5. System Would Acquire Core and Powder Samples of Rocks

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Randolph, James; Bao, Xiaoqi; Sherrit, Stewart; Ritz, Chuck; Cook, Greg

    2006-01-01

    A system for automated sampling of rocks, ice, and similar hard materials at and immediately below the surface of the ground is undergoing development. The system, denoted a sample preparation, acquisition, handling, and delivery (SPAHD) device, would be mounted on a robotic exploratory vehicle that would traverse the terrain of interest on the Earth or on a remote planet. The SPAHD device would probe the ground to obtain data for optimization of sampling, prepare the surface, acquire samples in the form(s) of cores and/or powdered cuttings, and deliver the samples to a selected location for analysis and/or storage.

  6. Modelling the core magnetic field of the earth

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A.; Carle, H. M.

    1982-01-01

    It is suggested that radial off-center dipoles located within the core of the earth be used instead of spherical harmonics of the magnetic potential in modeling the core magnetic field. The off-center dipoles, in addition to more realistically modeling the physical current systems within the core, are if located deep within the core more effective at removing long wavelength signals of either potential or field. Their disadvantage is that their positions and strengths are more difficult to compute, and such effects as upward and downward continuation are more difficult to manipulate. It is nevertheless agreed with Cox (1975) and Alldredge and Hurwitz (1964) that physical realism in models is more important than mathematical convenience. A radial dipole model is presented which agrees with observations of secular variation and excursions.

  7. Differences between the Cell Populations from the Peritenon and the Tendon Core with Regard to Their Potential Implication in Tendon Repair

    PubMed Central

    Cadby, Jennifer A.; Buehler, Evelyne; Godbout, Charles; van Weeren, P. René; Snedeker, Jess G.

    2014-01-01

    The role of intrinsic and extrinsic healing in injured tendons is still debated. In this study, we characterized cell plasticity, proliferative capacity, and migration characteristics as proxy measures of healing potential in cells derived from the peritenon (extrinsic healing) and compared these to cells from the tendon core (intrinsic healing). Both cell populations were extracted from horse superficial digital flexor tendon and characterized for tenogenic and matrix remodeling markers as well as for rates of migration and replication. Furthermore, colony-forming unit assays, multipotency assays, and real-time quantitative polymerase chain reaction analyses of markers of osteogenic and adipogenic differentiation after culture in induction media were performed. Finally, cellular capacity for differentiation towards a myofibroblastic phenotype was assessed. Our results demonstrate that both tendon- and peritenon-derived cell populations are capable of adipogenic and osteogenic differentiation, with higher expression of progenitor cell markers in peritenon cells. Cells from the peritenon also migrated faster, replicate more quickly, and show higher differentiation potential toward a myofibroblastic phenotype when compared to cells from the tendon core. Based on these data, we suggest that cells from the peritenon have substantial potential to influence tendon-healing outcome, warranting further scrutiny of their role. PMID:24651449

  8. Theoretical model of hardness anisotropy in brittle materials

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2012-07-01

    Anisotropy is prominent in the hardness test of single crystals. However, the anisotropic nature is not demonstrated quantitatively in previous hardness model. In this work, it is found that the electron transition energy per unit volume in the glide region and the orientation of glide region play critical roles in determining hardness value and hardness anisotropy for a single crystal material. We express the mathematical definition of hardness anisotropy through simple algebraic relations. The calculated Knoop hardnesses of the single crystals are in good agreement with observations. This theory, extended to polycrystalline materials by including hall-petch effect and quantum size effect, predicts that the polycrystalline diamond with low angle grain boundaries can be harder than single-crystal bulk diamond. Combining first-principles technique and the formula of hardness anisotropy the hardness of monoclinic M-carbon, orthorhombic W-carbon, Z-carbon, and T-carbon are predicted.

  9. Modeling Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, Anthony

    2017-01-01

    Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.

  10. Health benefits of hard martial arts in adults: a systematic review.

    PubMed

    Origua Rios, Sandra; Marks, Jennifer; Estevan, Isaac; Barnett, Lisa M

    2018-07-01

    Participation in organized sports is promoted as a means of increasing physical activity levels and reducing chronic disease risk in adults. Hard martial arts practice (i.e. using body contact techniques), has gained in popularity over time. This review explores the evidence for health benefits of "hard" martial arts practice within the adult population. A systematic electronic database search was conducted, and quality assessments applied the Effective Public Health Practice Project tool. Twenty-eight studies met the inclusion criteria, examining balance, cognitive function, muscular skeletal status, psychological, cardiovascular fitness, and metabolic effects. The majority of studies reported positive effects resulting from hard martial arts practice, showing some improvement and maintenance of balance, cognitive function and psychological health. Benefits may be obtained regardless of the age of practice commencement. However, quality of the evidence is affected by methodological weaknesses across the studies. "Hard" martial arts seem to have potential to improve balance and cognitive functions that decline with age, which can lead to poorer health outcomes among the elderly (e.g. cognitive decline, falls and fractures). Benefits should be further investigated with improved intervention studies, representative samples and longer follow-up periods in order to establish associations with morbidity and mortality in the long term.

  11. Hard-hard coupling assisted anomalous magnetoresistance effect in amine-ended single-molecule magnetic junction

    NASA Astrophysics Data System (ADS)

    Tang, Y.-H.; Lin, C.-J.; Chiang, K.-R.

    2017-06-01

    We proposed a single-molecule magnetic junction (SMMJ), composed of a dissociated amine-ended benzene sandwiched between two Co tip-like nanowires. To better simulate the break junction technique for real SMMJs, the first-principles calculation associated with the hard-hard coupling between a amine-linker and Co tip-atom is carried out for SMMJs with mechanical strain and under an external bias. We predict an anomalous magnetoresistance (MR) effect, including strain-induced sign reversal and bias-induced enhancement of the MR value, which is in sharp contrast to the normal MR effect in conventional magnetic tunnel junctions. The underlying mechanism is the interplay between four spin-polarized currents in parallel and anti-parallel magnetic configurations, originated from the pronounced spin-up transmission feature in the parallel case and spiky transmission peaks in other three spin-polarized channels. These intriguing findings may open a new arena in which magnetotransport and hard-hard coupling are closely coupled in SMMJs and can be dually controlled either via mechanical strain or by an external bias.

  12. Core body temperature in obesity.

    PubMed

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C; Yanovski, Jack A

    2011-05-01

    A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. In study 1, nonobese [body mass index (BMI; in kg/m(2)) <30] and obese (BMI ≥30) adults swallowed wireless core temperature-sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18-25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P < 0.0001). Obesity is not generally associated with a reduced core body temperature. It may be necessary to study individuals with function-altering mutations in core temperature-regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500.

  13. Development of a wear-resistant flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system for deposit welding of mining equipment parts

    NASA Astrophysics Data System (ADS)

    Osetkovsky, I. V.; Kozyrev, N. A.; Kryukov, R. E.; Usoltsev, A. A.; Gusev, A. I.

    2017-09-01

    The effect of introduction of cobalt in the charge of the flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system operating under abrasive and abrasive-shock loads is studied. In the laboratory conditions samples of flux cored wires were made, deposition was performed, the effect of cobalt on the hardness and the degree of wear was evaluated, metallographic studies were carried out. The influence of cobalt introduced into the charge of the flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system on the structure, nature of nonmetallic inclusions, hardness and wear resistance of the weld metal was studied. In the laboratory conditions samples flux cored wire were made using appropriate powdered materials. As a carbon-fluorine-containing material dust from gas cleaning units of aluminum production was used. In the course of the study the chemical composition of the weld metal was determined, metallographic analysis was performed, mechanical properties were determined. As a result of the metallographic analysis the size of the former austenite grain, martensite dispersion in the structure of the weld metal, the level of contamination with its nonmetallic inclusions were established.

  14. Helping Students Who Are Deaf or Hard of Hearing Succeed

    ERIC Educational Resources Information Center

    Luckner, John L.; Slike, Samuel B.; Johnson, Harold

    2012-01-01

    A hearing loss of any type has the potential to adversely impact development leading to language, literacy, social, and academic delays. Currently, approximately 87% of students who are deaf or hard of hearing spend at least part of each day in a general education classroom. In order to optimally benefit from receiving educational services in the…

  15. Hard X-ray imaging from Explorer

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Murray, S. S.

    1981-01-01

    Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

  16. Results of NanTroSEIZE Expeditions Stages 1 & 2: Deep-sea Coring Operations on-board the Deep-sea Drilling Vessel Chikyu and Development of Coring Equipment for Stage 3

    NASA Astrophysics Data System (ADS)

    Shinmoto, Y.; Wada, K.; Miyazaki, E.; Sanada, Y.; Sawada, I.; Yamao, M.

    2010-12-01

    The Nankai-Trough Seismogenic Zone Experiment (NanTroSEIZE) has carried out several drilling expeditions in the Kumano Basin off the Kii-Peninsula of Japan with the deep-sea scientific drilling vessel Chikyu. Core sampling runs were carried out during the expeditions using an advanced multiple wireline coring system which can continuously core into sections of undersea formations. The core recovery rate with the Rotary Core Barrel (RCB) system was rather low as compared with other methods such as the Hydraulic Piston Coring System (HPCS) and Extended Shoe Coring System (ESCS). Drilling conditions such as hole collapse and sea conditions such as high ship-heave motions need to be analyzed along with differences in lithology, formation hardness, water depth and coring depth in order to develop coring tools, such as the core barrel or core bit, that will yield the highest core recovery and quality. The core bit is especially important in good recovery of high quality cores, however, the PDC cutters were severely damaged during the NanTroSEIZE Stages 1 & 2 expeditions due to severe drilling conditions. In the Stage 1 (riserless coring) the average core recovery was rather low at 38 % with the RCB and many difficulties such as borehole collapse, stick-slip and stuck pipe occurred, causing the damage of several of the PDC cutters. In Stage 2, a new design for the core bit was deployed and core recovery was improved at 67 % for the riserless system and 85 % with the riser. However, due to harsh drilling conditions, the PDC core bit and all of the PDC cutters were completely worn down. Another original core bit was also deployed, however, core recovery performance was low even for plate boundary core samples. This study aims to identify the influence of the RCB system specifically on the recovery rates at each of the holes drilled in the NanTroSEIZE coring expeditions. The drilling parameters such as weight-on-bit, torque, rotary speed and flow rate, etc., were analyzed

  17. Diffraction data of core-shell nanoparticles from an X-ray free electron laser

    DOE PAGES

    Li, Xuanxuan; Chiu, Chun -Ya; Wang, Hsiang -Ju; ...

    2017-04-11

    X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Furthermore, scattering patterns resulting from single particles were selected and compiledmore » into a dataset which can be valuable for algorithm developments in single particle scattering research.« less

  18. Ground hardness and injury in community level Australian football.

    PubMed

    Twomey, Dara M; Finch, Caroline F; Lloyd, David G; Elliott, Bruce C; Doyle, Tim L A

    2012-07-01

    To describe the risk and details of injuries associated with ground hardness in community level Australian football (AF). Prospective injury surveillance with periodic objective ground hardness measurement. 112 ground hardness assessments were undertaken using a Clegg hammer at nine locations across 20 grounds, over the 2007 and 2008 AF seasons. Details of 352 injuries sustained by community level players on those grounds were prospectively collected as part of a large randomised controlled trial. The ground location of the injury was matched to the nearest corresponding ground hardness Clegg hammer readings, in gravities (g), which were classified from unacceptably low (<30 g) to unacceptably high hardness (>120 g). Clegg hammer readings ranged from 25 to 301 g. Clegg hammer hardness categories from low/normal to high/normal were associated with the majority of injuries, with only 3.7% (13 injuries) on unacceptably high hardness and 0.3% (1 injury) on the unacceptably low hardness locations. Relative to the preferred range of hardness, the risk of sustaining an injury on low/normal hardness locations was 1.31 (95%CI: 1.06-1.62) times higher and 1.82 (95%CI: 1.17-2.85) times higher on locations with unacceptably high hardness. The more severe injuries occurred with low/normal ground hardness. Despite the low number of injuries, the risk of sustaining an injury on low/normal and unacceptably hard grounds was significantly greater than on the preferred range of hardness. Notably, the severity of the injuries sustained on unacceptably hard grounds was lower than for other categories of hardness. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. On the core bacterial flora of Ixodes persulcatus (Taiga tick).

    PubMed

    Sui, Shuo; Yang, Yu; Sun, Yi; Wang, Xumin; Wang, Guoliang; Shan, Guangle; Wang, Jiancheng; Yu, Jun

    2017-01-01

    Ixodes persulcatus is a predominant hard tick species that transmits a wide range of human and animal pathogens. Since bacterial flora of the tick dwelling in the wild always vary according to their hosts and the environment, it is highly desirable that species-associated microbiomes are fully determined by using next-generation sequencing and based on comparative metagenomics. Here, we examine such metagenomic changes of I. persulcatus starting with samples collected from the wild ticks and followed by the reared animals under pathogen-free laboratory conditions over multiple generations. Based on high-coverage genomic sequences from three experimental groups-wild, reared for a single generation or R1, and reared for eight generations or R8 -we identify the core bacterial flora of I. persulcatus, which contains 70 species that belong to 69 genera of 8 phyla; such a core is from the R8 group, which is reduced from 4625 species belonging to 1153 genera of 29 phyla in the wild group. Our study provides a novel example of tick core bacterial flora acquired based on wild-to-reared comparison, which paves a way for future research on tick metagenomics and tick-borne disease pandemics.

  20. On the core bacterial flora of Ixodes persulcatus (Taiga tick)

    PubMed Central

    Sun, Yi; Wang, Xumin; Wang, Guoliang; Shan, Guangle; Wang, Jiancheng; Yu, Jun

    2017-01-01

    Ixodes persulcatus is a predominant hard tick species that transmits a wide range of human and animal pathogens. Since bacterial flora of the tick dwelling in the wild always vary according to their hosts and the environment, it is highly desirable that species-associated microbiomes are fully determined by using next-generation sequencing and based on comparative metagenomics. Here, we examine such metagenomic changes of I. persulcatus starting with samples collected from the wild ticks and followed by the reared animals under pathogen-free laboratory conditions over multiple generations. Based on high-coverage genomic sequences from three experimental groups–wild, reared for a single generation or R1, and reared for eight generations or R8 –we identify the core bacterial flora of I. persulcatus, which contains 70 species that belong to 69 genera of 8 phyla; such a core is from the R8 group, which is reduced from 4625 species belonging to 1153 genera of 29 phyla in the wild group. Our study provides a novel example of tick core bacterial flora acquired based on wild-to-reared comparison, which paves a way for future research on tick metagenomics and tick-borne disease pandemics. PMID:28692666

  1. Individual and family environment correlates differ for consumption of core and non-core foods in children.

    PubMed

    Johnson, Laura; van Jaarsveld, Cornelia H M; Wardle, Jane

    2011-03-01

    Children's diets contain too few fruits and vegetables and too many foods high in saturated fat. Food intake is affected by multiple individual and family factors, which may differ for core foods (that are important to a healthy diet) and non-core foods (that are eaten more for pleasure than health). Data came from a sample of twins aged 11 years (n 342) and their parents from the Twins Early Development Study. Foods were categorised into two types: core (e.g. cereals, vegetables and dairy) and non-core (e.g. fats, crisps and biscuits). Parents' and children's intake was assessed by an FFQ. Mothers' and children's preference ratings and home availability were assessed for each food type. Parental feeding practices were assessed with the child feeding questionnaire and child television (TV) watching was maternally reported. Physical activity was measured using accelerometers. Correlates of the child's consumption of each food type were examined using a complex samples general linear model adjusted for potential confounders. Children's non-core food intake was associated with more TV watching, higher availability and greater maternal intake of non-core foods. Children's core food intake was associated with higher preferences for core foods and greater maternal intake of core foods. These results suggest that maternal intake influences both food types, while preferences affect intake of core foods but not of non-core foods, and availability and TV exposure were only important for non-core food intake. Cross-sectional studies cannot determine causality, but the present results suggest that different approaches may be needed to change the balance of core and non-core foods in children's diets.

  2. High Capacity of Hard Carbon Anode in Na-Ion Batteries Unlocked by PO x Doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhifei; Ma, Lu; Surta, Todd Wesley

    2016-08-12

    The capacity of hard carbon anodes in Na-ion batteries 2.5 rarely reaches values beyond 300 mAh/g. We report that doping POx into local structures of hard carbon increases its reversible capacity from 283 to 359 mAh/g. We confirm that the doped POx is redox inactive by X-ray adsorption near edge structure measurements, thus not contributing to the higher capacity. We observe two significant changes of hard carbon's local structures caused by doping. First, the (002) d-spacing inside the turbostratic nanodomains is increased, revealed by both laboratory and synchrotron X-ray diffraction. Second, doping turns turbostratic nanodomains more defective along ab planes,more » indicated by neutron total scattering and the associated pair distribution function studies. The local structural changes of hard carbon are correlated to the higher capacity, where both the plateau and slope regions in the potential profiles are enhanced. Our study demonstrates that Na-ion storage in hard carbon heavily depends on carbon local structures, where such structures, despite being disordered, can be tuned toward unusually high capacities.« less

  3. Effect of alloying on screw dislocation structure in Mo: atomistic modelling approach with ab-initio parametrization

    NASA Astrophysics Data System (ADS)

    Gornostyrev, Yu. N.

    2005-03-01

    The plastic deformation in bcc metals is realized by the motion of screw dislocations with a complex star-like non-planar core. In this case, the direct investigation of the solute effect by first principles electronic structure calculations is a challenging problem for which we follow a combined approach that includes atomistic dislocation modelling with ab-initio parametrization of interatomic interactions. The screw dislocation core structure in Mo alloys is described within the model of atomic row displacements along a dislocation line with the interatomic row potential estimated from total energy full-potential linear muffin-tin orbital (FLMTO) calculations with the generalized gradient approximation (GGA) for the exchange-correlation potential. We demonstrate (1) that the solute effect on the dislocation structure is different for ``hard'' and ``easy'' cores and (2) that the softener addition in a ``hard'' core gives rise to a structural transformation into a configuration with a lower energy through an intermediate state. The softener solute is shown to disturb locally the three-fold symmetry of the dislocation core and the dislocation structure tends to the split planar core.

  4. Delivery of prazosin hydrochloride from osmotic pump system prepared by coating the core tablet with an indentation.

    PubMed

    Liu, Longxiao; Wang, Jinchao; Zhu, Suyan

    2007-04-01

    The preparation of an osmotic pump tablet was simplified by elimination of laser drilling using prazosin hydrochloride as the model drug. The osmotic pump system was obtained by coating the indented core tablet compressed by the punch with a needle. A multiple regression equation was achieved with the experimental data of core tablet formulations, and then the formulation was optimized. The influences of the indentation size of the core tablet, environmental media, and agitation rate on drug release profile were investigated. The optimal osmotic pump tablet was found to deliver prazosin hydrochloride at an approximately constant rate up to 24 hr, and independent on both release media and agitation rate. Indentation size of core tablet hardly affected drug release in the range of 0.80-1.15 mm. The method that is simplified by elimination of laser drilling may be promising for preparation of an osmotic pump tablet.

  5. A volatile rich Earth's core?

    NASA Astrophysics Data System (ADS)

    Morard, G.; Antonangeli, D.; Andrault, D.; Nakajima, Y.

    2017-12-01

    The composition of the Earth's core is still an open question. Although mostly composed of iron, it contains impurities that lower its density and melting point with respect to pure Fe. Knowledge of the nature and abundance of light elements (O, S, Si, C or H) in the core has major implications for establishing the bulk composition of the Earth and for building the model of Earth's differentiation. Geochemical models of the Earth's formation point out that its building blocks were depleted in volatile elements compared to the chondritic abundance, therefore light elements such as S, H or C cannot be the major elements alloyed with iron in the Earth's core. However, such models should be compatible with the comparison of seismic properties of the Earth's core and physical properties of iron alloys under extreme conditions, such as sound velocity or density of solid and liquid. The present work will discuss the recent progress for compositional model issued from studies of phase diagrams and elastic properties of iron alloys under core conditions and highlight the compatibility of volatile elements with observed properties of the Earth's core, in potential contradiction with models derived from metal-silicate partitioning experiments.

  6. Analytical methods in the high conversion reactor core design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeggel, W.; Oldekop, W.; Axmann, J.K.

    High conversion reactor (HCR) design methods have been used at the Technical University of Braunschweig (TUBS) with the technological support of Kraftwerk Union (KWU). The present state and objectives of this cooperation between KWU and TUBS in the field of HCRs have been described using existing design models and current activities aimed at further development and validation of the codes. The hard physical and thermal-hydraulic boundary conditions of pressurized water reactor (PWR) cores with a high degree of fuel utilization result from the tight packing of the HCR fuel rods and the high fissionable plutonium content of the fuel. Inmore » terms of design, the problem will be solved with rod bundles whose fuel rods are adjusted by helical spacers to the proposed small rod pitches. These HCR properties require novel computational models for neutron physics, thermal hydraulics, and fuel rod design. By means of a survey of the codes, the analytical procedure for present-day HCR core design is presented. The design programs are currently under intensive development, as design tools with a solid, scientific foundation and with essential parameters that are widely valid and are required for a promising optimization of the HCR core. Design results and a survey of future HCR development are given. In this connection, the reoptimization of the PWR core in the direction of an HCR is considered a fascinating scientific task, with respect to both economic and safety aspects.« less

  7. The effect of Coca-Cola and fruit juices on the surface hardness of glass-ionomers and 'compomers'.

    PubMed

    Aliping-McKenzie, M; Linden, R W A; Nicholson, J W

    2004-11-01

    The interaction of tooth-coloured dental restorative materials (a conventional glass-ionomer, two resin-modified glass-ionomers and two compomers) with acidic beverages has been studied with the aim of investigating how long-term contact affects solution pH and specimen surface hardness. For each material (ChemFil Superior, ChemFlex, Vitremer Core Build-Up/Restorative, Fuji II LC, Dyract AP and F2000) disc-shaped specimens were prepared and stored in sets of six in the following storage media: 0.9% NaCl (control), Coca-Cola, apple juice and orange juice. After time intervals of 1 day, 1 week, 1 month, 3 months, 4 months, 6 months and 1 year, solution pH and Vickers Hardness Number were determined for each individual specimen. Differences were analysed by anova followed by Student-Newman-Keuls post hoc analysis. All materials were found to reduce the pH of the 0.9% NaCl, but to increase the pH of the acidic beverages. The conventional glass-ionomers dissolved completely in apple juice and orange juice, but survived in Coca-Cola, albeit with a significantly reduced hardness after 1 year. The other materials survived in apple juice and orange juice, but showed greater reductions in surface hardness in these beverages than in Coca-Cola. Fruit juices were thus shown to pose a greater erosive threat to tooth coloured materials than Coca-Cola, a finding which is similar to those concerning dentine and enamel towards these drinks.

  8. Optimization of GRIN lenses coupling system for twin-core fiber interconnection with single core fibers

    NASA Astrophysics Data System (ADS)

    Chen, Gongdai; Deng, Hongchang; Yuan, Libo

    2018-07-01

    We aim at a more compact, flexible, and simpler core-to-fiber coupling approach, optimal combinations of two graded refractive index (GRIN) lenses have been demonstrated for the interconnection between a twin-core single-mode fiber and two single-core single-mode fibers. The optimal two-lens combinations achieve an efficient core-to-fiber separating coupling and allow the fibers and lenses to coaxially assemble. Finally, axial deviations and transverse displacements of the components are discussed, and the latter increases the coupling loss more significantly. The gap length between the two lenses is designed to be fine-tuned to compensate for the transverse displacement, and the good linear compensation relationship contributes to the device manufacturing. This approach has potential applications in low coupling loss and low crosstalk devices without sophisticated alignment and adjustment, and enables the channel separating for multicore fibers.

  9. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    NASA Astrophysics Data System (ADS)

    Wananuruksawong, R.; Jinawath, S.; Padipatvuthikul, P.; Wasanapiarnpong, T.

    2011-10-01

    Silicon nitride (Si3N4) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si3N4 ceramic as a dental core material. The white Si3N4 was prepared by pressureless sintering at relative low sintering temperature of 1650 °C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si3N4 ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si3N4 specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (<150 micrometer, Pyrex) with 5 wt% of zirconia powder (3 wt% Y2O3 - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si3N4 specimens, the firing was performed in electric tube furnace between 1000-1200°C. The veneered specimens fired at 1100°C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98×10-6 °C-1, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  10. The character and evolution of fault rocks from the Phase 3 SAFOD core and potential weakening mechanisms along the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Holdsworth, Robert; van Diggelen, E. W. E.; Spiers, C. J.; de Bresser, H.; Smith, S. A. F.; Bowen, L.

    2010-05-01

    in dilation sites during slip. Outwith of the actively creeping sections, mineral veins (mainly calcite, locally anhydrite) are widespread, with evidence for hydrofracturing events prior to, during and after local gouge-forming deformation episodes. Disseminated pyrite mineralisation is widespread and locally produces highly indurated sections of black, hard gouge. The gouges in the active creeping segments are different in three important respects: 1) mineral veins only occur as (or within) clasts; 2) pyrite mineralisation is limited; and 3) they carry numerous serpentinite clasts, some quite large (metre scale). The actively creeping gouges are also characterised by the most intense development of smectitic phyllosilicates. The SAFOD core fault rocks highlight the fundamental role played by fluid-rock interactions in upper crustal fault zones. There is clear evidence for the development of high pore fluid pressures (hydrofracture development), reaction weakening (phyllosilicate growth following cataclasis) and geometric weakening due to the development of weak interconnected layers (foliations, polished striated slip surfaces). There are also very significant similarities between the fault rocks seen here and those preserved along other deeply exhumed weak faults elsewhere in the world.

  11. Traceability in hardness measurements: from the definition to industry

    NASA Astrophysics Data System (ADS)

    Germak, Alessandro; Herrmann, Konrad; Low, Samuel

    2010-04-01

    The measurement of hardness has been and continues to be of significant importance to many of the world's manufacturing industries. Conventional hardness testing is the most commonly used method for acceptance testing and production quality control of metals and metallic products. Instrumented indentation is one of the few techniques available for obtaining various property values for coatings and electronic products in the micrometre and nanometre dimensional scales. For these industries to be successful, it is critical that measurements made by suppliers and customers agree within some practical limits. To help assure this measurement agreement, a traceability chain for hardness measurement traceability from the hardness definition to industry has developed and evolved over the past 100 years, but its development has been complicated. A hardness measurement value not only requires traceability of force, length and time measurements but also requires traceability of the hardness values measured by the hardness machine. These multiple traceability paths are needed because a hardness measurement is affected by other influence parameters that are often difficult to identify, quantify and correct. This paper describes the current situation of hardness measurement traceability that exists for the conventional hardness methods (i.e. Rockwell, Brinell, Vickers and Knoop hardness) and for special-application hardness and indentation methods (i.e. elastomer, dynamic, portables and instrumented indentation).

  12. Research on an uplink carrier sense multiple access algorithm of large indoor visible light communication networks based on an optical hard core point process.

    PubMed

    Nan, Zhufen; Chi, Xuefen

    2016-12-20

    The IEEE 802.15.7 protocol suggests that it could coordinate the channel access process based on the competitive method of carrier sensing. However, the directionality of light and randomness of diffuse reflection would give rise to a serious imperfect carrier sense (ICS) problem [e.g., hidden node (HN) problem and exposed node (EN) problem], which brings great challenges in realizing the optical carrier sense multiple access (CSMA) mechanism. In this paper, the carrier sense process implemented by diffuse reflection light is modeled as the choice of independent sets. We establish an ICS model with the presence of ENs and HNs for the multi-point to multi-point visible light communication (VLC) uplink communications system. Considering the severe optical ICS problem, an optical hard core point process (OHCPP) is developed, which characterizes the optical CSMA for the indoor VLC uplink communications system. Due to the limited coverage of the transmitted optical signal, in our OHCPP, the ENs within the transmitters' carrier sense region could be retained provided that they could not corrupt the ongoing communications. Moreover, because of the directionality of both light emitting diode (LED) transmitters and receivers, theoretical analysis of the HN problem becomes difficult. In this paper, we derive the closed-form expression for approximating the outage probability and transmission capacity of VLC networks with the presence of HNs and ENs. Simulation results validate the analysis and also show the existence of an optimal physical carrier-sensing threshold that maximizes the transmission capacity for a given emission angle of LED.

  13. Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population

    USDA-ARS?s Scientific Manuscript database

    Grain hardness is a very important trait in determining wheat market class and also influences milling and baking traits. At the grain Hardness (Ha) locus on chromosome 5DS, there are two primary mutations responsible for conveying a harder kernel texture among U.S. hard red spring wheats: (1) the P...

  14. Beyond electronegativity and local hardness: Higher-order equalization criteria for determination of a ground-state electron density.

    PubMed

    Ayers, Paul W; Parr, Robert G

    2008-08-07

    Higher-order global softnesses, local softnesses, and softness kernels are defined along with their hardness inverses. The local hardness equalization principle recently derived by the authors is extended to arbitrary order. The resulting hierarchy of equalization principles indicates that the electronegativity/chemical potential, local hardness, and local hyperhardnesses all are constant when evaluated for the ground-state electron density. The new equalization principles can be used to test whether a trial electron density is an accurate approximation to the true ground-state density and to discover molecules with desired reactive properties, as encapsulated by their chemical reactivity indicators.

  15. Revised model core potentials for third-row transition-metal atoms from Lu to Hg

    NASA Astrophysics Data System (ADS)

    Mori, Hirotoshi; Ueno-Noto, Kaori; Osanai, You; Noro, Takeshi; Fujiwara, Takayuki; Klobukowski, Mariusz; Miyoshi, Eisaku

    2009-07-01

    We have produced new relativistic model core potentials (spdsMCPs) for the third-row transition-metal atoms from Lu to Hg explicitly treating explicitly 5s and 5p electrons in addition to 5d and 6s electrons in the same manner for the first- and second-row transition-metal atoms given in the previous Letters [Y. Osanai, M.S. Mon, T. Noro, H. Mori, H. Nakashima, M. Klobukowski, E. Miyoshi, Chem. Phys. Lett. 452 (2008) 210; Y. Osanai, E. Soejima, T. Noro, H. Mori, M.S. Mon, M. Klobukowski, E. Miyoshi, Chem. Phys. Lett. 463 (2008) 230]. Using suitable correlating functions with the split-valence MCP functions, we demonstrate that the present MCP basis sets show reasonable performance in describing the electronic structures of atoms and molecules, bringing about accurate excitation energies for atoms and proper spectroscopic constants for Au 2, Hg 2, and AuH.

  16. Measuring the Hardness of Minerals

    ERIC Educational Resources Information Center

    Bushby, Jessica

    2005-01-01

    The author discusses Moh's hardness scale, a comparative scale for minerals, whereby the softest mineral (talc) is placed at 1 and the hardest mineral (diamond) is placed at 10, with all other minerals ordered in between, according to their hardness. Development history of the scale is outlined, as well as a description of how the scale is used…

  17. Preparation of monolithic osmotic pump system by coating the indented core tablet.

    PubMed

    Liu, Longxiao; Che, Binjie

    2006-10-01

    A method for the preparation of monolithic osmotic pump tablet was obtained by coating the indented core tablet compressed by the punch with a needle. Atenolol was used as the model drug, sodium chloride as osmotic agent and polyethylene oxide as suspending agent. Ethyl cellulose was employed as semipermeable membrane containing polyethylene glycol 400 as plasticizer for controlling membrane permeability. The formulation of atenolol osmotic pump tablet was optimized by orthogonal design and evaluated by similarity factor (f2). The optimal formulation was evaluated in various release media and agitation rates. Indentation size of core tablet hardly affected drug release in the range of (1.00-1.14) mm. The optimal osmotic tablet was found to be able to deliver atenolol at an approximately constant rate up to 24h, independent of both release media and agitation rate. The method that is simplified by coating the indented core tablet with the elimination of laser drilling may be promising in the field of the preparation of osmotic pump tablet.

  18. Manufacturing development for the SAFE 100 kW core

    NASA Astrophysics Data System (ADS)

    Carter, Robert; Roman, Jose; Salvail, Pat

    2002-01-01

    In stark contrast to what is sometimes considered the norm in traditional manufacturing processes, engineers at the Marshall Space Flight Center (MSFC) arc in the practice of altering the standard in an effort to realize other potential methods in core manufacturing. While remaining within the bounds of the materials database, we are researching into core manufacturing techniques that may have been overlooked in the past due to funding and/or time constraints. To augment proven core fabrication capabilities we are pursuing plating processes as another possible method for core build-up and assembly. Although brazing and a proprietary HIP cycle are used for module assembly (proven track record for stability and endurance), it is prudent to pursue secondary or backup methods of module and core assembly. For this reason heat tube manufacture and module assembly by means of plating is being investigated. Potentially, the plating processes will give engineers the ability to manufacture replacement modules for any module that might fail to perform nominally, and to assemble/disassemble a complete core in much less time than would be required for the conventional Braze-HIP process. Another area of improvement in core manufacturing capabilities is the installation of a sodium and lithium liquid metal heat pipe fill machine. This, along with the ability to Electron Beam Weld heat pipe seals and wet-in the pipes in the necessary vacuum atmosphere, will eliminate the need to ship potentially hazardous components outside for processing. In addition to developing core manufacturing techniques, the SAFE manufacturing team has been evaluating the thermal heat transfer characteristics, and manufacturability of several heat exchanger design concepts. .

  19. "We Can Get Everything We Want if We Try Hard": Young People, Celebrity, Hard Work

    ERIC Educational Resources Information Center

    Mendick, Heather; Allen, Kim; Harvey, Laura

    2015-01-01

    Drawing on 24 group interviews on celebrity with 148 students aged 14-17 across six schools, we show that "hard work" is valued by young people in England. We argue that we should not simply celebrate this investment in hard work. While it opens up successful subjectivities to previously excluded groups, it reproduces neoliberal…

  20. Short-term hot hardness characteristics of rolling-element steels

    NASA Technical Reports Server (NTRS)

    Chevalier, J. L.; Dietrich, M. W.; Zaretsky, E. V.

    1972-01-01

    Short-term hot hardness studies were performed with five vacuum-melted steels at temperatures from 294 to 887 K (70 to 1140 F). Based upon a minimum Rockwell C hardness of 58, the temperature limitation on all materials studied was dependent on the initial room temperature hardness and the tempering temperature of each material. For the same room temperature hardness, the short-term hot hardness characteristics were identical and independent of material composition. An equation was developed to predict the short-term hardness at temperature as a function of initial room temperature hardness for AISI 52100, as well as the high-speed tool steels.

  1. Mesenchymal stem cells promote hard-tissue repair after direct pulp capping.

    PubMed

    Obeid, Maram; Saber, Shehab El Din Mohamed; Ismael, Alaa El Din; Hassanien, Ehab

    2013-05-01

    The aim of this study was to investigate the potential of autologous mesenchymal bone marrow stem cells (BMSCs) to promote hard-tissue formation after direct pulp capping procedures. Bone marrow was aspirated from the iliac crest of healthy dogs of nonspecific race. Mononuclear cells were obtained using the Histopaque (Sigma-Aldrich, St Louis, MO) protocol and cultured for 21 days. Direct pulp capping procedures were performed in posterior teeth, and then mineral trioxide aggregate (MTA), hydroxyapatite/tricalcium phosphate, or BMSCs were used as direct pulp capping agents. After 3 months, animals were sacrificed, and jaw segments were processed for radiographic examination using cone-beam computed tomography scanning and histologic examination to assess the formation of a hard-tissue barrier according to a scoring system. The longitudinal and cross-sectional radiophotographs and histologic sections confirmed the formation of an evident calcific barrier after direct pulp capping with MTA and BMSCs. Statistical analysis of the scores given for radiographic and histologic calcific bridge formation showed that both MTA and BMSCs had a comparable tendency to produce a hard-tissue barrier that was significantly higher than hydroxyapatite tricalcium phosphate (P < .05). Autologous mesenchymal BMSCs were able to promote hard-tissue formation after direct pulp capping procedures. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. 36 CFR 13.1308 - Harding Icefield Trail.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Harding Icefield Trail. 13... Provisions § 13.1308 Harding Icefield Trail. The Harding Icefield Trail from the junction with the main paved trail near Exit Glacier to the emergency hut near the terminus is closed to— (a) Camping within 1/8 mile...

  3. Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine.

    PubMed

    Parkinson, J A; Olmstead, M C; Burns, L H; Robbins, T W; Everitt, B J

    1999-03-15

    Dopamine release within the nucleus accumbens (NAcc) has been associated with both the rewarding and locomotor-stimulant effects of abused drugs. The functions of the NAcc core and shell were investigated in mediating amphetamine-potentiated conditioned reinforcement and locomotion. Rats were initially trained to associate a neutral stimulus (Pavlovian CS) with food reinforcement (US). After excitotoxic lesions that selectively destroyed either the NAcc core or shell, animals underwent additional CS-US training sessions and then were tested for the acquisition of a new instrumental response that produced the CS acting as a conditioned reinforcer (CR). Animals were infused intra-NAcc with D-amphetamine (0, 1, 3, 10, or 20 microg) before each session. Shell lesions affected neither Pavlovian nor instrumental conditioning but completely abolished the potentiative effect of intra-NAcc amphetamine on responding with CR. Core-lesioned animals were impaired during the Pavlovian retraining sessions but showed no deficit in the acquisition of responding with CR. However, the selectivity in stimulant-induced potentiation of the CR lever was reduced, as intra-NAcc amphetamine infusions dose-dependently increased responding on both the CR lever and a nonreinforced (control) lever. Shell lesions produced hypoactivity and attenuated amphetamine-induced activity. In contrast, core lesions resulted in hyperactivity and enhanced the locomotor-stimulating effect of amphetamine. These results indicate a functional dissociation of subregions of the NAcc; the shell is a critical site for stimulant effects underlying the enhancement of responding with CR and locomotion after intra-NAcc injections of amphetamine, whereas the core is implicated in mechanisms underlying the expression of CS-US associations.

  4. The Effect of Water Hardness on Mortality of Zebrafish (Danio rerio) During Exposure to Oxytetracycline.

    PubMed

    Hundt, Matthias; Schreiber, Benjamin; Eckmann, Reiner; Lunestad, Bjørn Tore; Wünneman, Hannah; Schulz, Ralf

    2016-02-01

    Marking of fish otoliths with oxytetracycline and tetracycline is a widely used method to evaluate the effectiveness of stocking operations. Available protocols for the labeling of fish specify a number of factors influencing mark quality and potential risk for fish during marking. This study investigates the influence of water hardness on mortality of freshwater fish during marking with OTC. In order to pursue this question complexation of OTC with Mg(2+) and Ca(2+) cations was measured spectrophotometrically. Furthermore, zebrafish (Danio rerio) were immersed in OTC solutions (1200 mg/L; 48 h immersion) combined with varying levels of water hardness (5.5, 15.5, 25.5, 32.5°dH). The amount of OTC-Mg-Ca-complexes was positively correlated to water hardness. Moreover, it could be demonstrated that mortality of zebrafish during marking varied as a factor of water hardness. Highest mortalities occurred at the lowest (5.5°dH) and the highest (32.5°dH) tested levels during marking with OTC.

  5. Hard and soft acids and bases: atoms and atomic ions.

    PubMed

    Reed, James L

    2008-07-07

    The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.

  6. Hard Copy Market Overview

    NASA Astrophysics Data System (ADS)

    Testan, Peter R.

    1987-04-01

    A number of Color Hard Copy (CHC) market drivers are currently indicating strong growth in the use of CHC technologies for the business graphics marketplace. These market drivers relate to product, software, color monitors and color copiers. The use of color in business graphics allows more information to be relayed than is normally the case in a monochrome format. The communicative powers of full-color computer generated output in the business graphics application area will continue to induce end users to desire and require color in their future applications. A number of color hard copy technologies will be utilized in the presentation graphics arena. Thermal transfer, ink jet, photographic and electrophotographic technologies are all expected to be utilized in the business graphics presentation application area in the future. Since the end of 1984, the availability of color application software packages has grown significantly. Sales revenue generated by business graphics software is expected to grow at a compound annual growth rate of just over 40 percent to 1990. Increased availability of packages to allow the integration of text and graphics is expected. Currently, the latest versions of page description languages such as Postscript, Interpress and DDL all support color output. The use of color monitors will also drive the demand for color hard copy in the business graphics market place. The availability of higher resolution screens is allowing color monitors to be easily used for both text and graphics applications in the office environment. During 1987, the sales of color monitors are expected to surpass the sales of monochrome monitors. Another major color hard copy market driver will be the color copier. In order to take advantage of the communications power of computer generated color output, multiple copies are required for distribution. Product introductions of a new generation of color copiers is now underway with additional introductions expected

  7. Effects of hard mask etch on final topography of advanced phase shift masks

    NASA Astrophysics Data System (ADS)

    Hortenbach, Olga; Rolff, Haiko; Lajn, Alexander; Baessler, Martin

    2017-07-01

    Continuous shrinking of the semiconductor device dimensions demands steady improvements of the lithographic resolution on wafer level. These requirements challenge the photomask industry to further improve the mask quality in all relevant printing characteristics. In this paper topography of the Phase Shift Masks (PSM) was investigated. Effects of hard mask etch on phase shift uniformity and mask absorber profile were studied. Design of experiments method (DoE) was used for the process optimization, whereas gas composition, bias power of the hard mask main etch and bias power of the over-etch were varied. In addition, influence of the over-etch time was examined at the end of the experiment. Absorber depth uniformity, sidewall angle (SWA), reactive ion etch lag (RIE lag) and through pitch (TP) dependence were analyzed. Measurements were performed by means of Atomic-force microscopy (AFM) using critical dimension (CD) mode with a boot-shaped tip. Scanning electron microscope (SEM) cross-section images were prepared to verify the profile quality. Finally CD analysis was performed to confirm the optimal etch conditions. Significant dependence of the absorber SWA on hard mask (HM) etch conditions was observed revealing an improvement potential for the mask absorber profile. It was found that hard mask etch can leave a depth footprint in the absorber layer. Thus, the etch depth uniformity of hard mask etch is crucial for achieving a uniform phase shift over the active mask area. The optimized hard mask etch process results in significantly improved mask topography without deterioration of tight CD specifications.

  8. Changes in Vickers hardness during the decomposition of bone: Possibilities for forensic anthropology.

    PubMed

    Walden, Steven J; Evans, Sam L; Mulville, Jacqui

    2017-01-01

    The purpose of this study was to determine how the Vickers hardness (HV) of bone varies during soft tissue putrefaction. This has possible forensic applications, notably for determining the postmortem interval. Experimental porcine bone samples were decomposed in surface and burial deposition scenarios over a period of 6 months. Although the Vickers hardness varied widely, it was found that when transverse axial hardness was subtracted from longitudinal axial hardness, the difference showed correlations with three distinct phases of soft tissue putrefaction. The ratio of transverse axial hardness to longitudinal axial hardness showed a similar correlation. A difference of 10 or greater in HV with soft tissue present and signs of minimal decomposition, was associated with a decomposition period of 250 cumulative cooling degree days or less. A difference of 10 (+/- standard error of mean at a 95% confidence interval) or greater in HV associated with marked decomposition indicated a decomposition period of 1450 cumulative cooling degree days or more. A difference of -7 to +8 (+/- standard error of mean at a 95% confidence interval) was thus associated with 250 to 1450 cumulative cooling degree days' decomposition. The ratio of transverse axial HV to longitudinal HV, ranging from 2.42 to 1.54, is a more reliable indicator in this context and is preferable to using negative integers These differences may have potential as an indicator of postmortem interval and thus the time of body deposition in the forensic context. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  9. Synthesis of the RGO/Al2O3 core-shell nanocomposite flakes and characterization of their unique electrostatic properties using zeta potential measurements

    NASA Astrophysics Data System (ADS)

    Jastrzębska, A. M.; Karcz, J.; Letmanowski, R.; Zabost, D.; Ciecierska, E.; Zdunek, J.; Karwowska, E.; Siekierski, M.; Olszyna, A.; Kunicki, A.

    2016-01-01

    The aim of this study was to describe the influence of the modification of electrostatic properties of RGO/Al2O3 core-shell nanocomposite flakes. The amount of crystalline form of aluminum oxide was very small. It existed mostly in amorphous phase in the form of covalently bonded to GO surface. The morphological, structural and physicochemical investigations results showed that spherical Al2O3 nanoparticles (ca. 41 nm) in gamma phase completely covered the surface of curly-shaped RGO flakes and acted as a spreader between individual flakes. The high BET specific surface area of the analyzed composite (119.71 m2/g) together with very low open porosity (0.479 cm3/g) indicated that RGO/Al2O3 nanocomposite flakes showed low tendency to agglomeration. The zeta potential curves obtained for RGO/Al2O3 core-shell nanocomposite flakes were differing from curves obtained for GO and Al2O3 suspensions in distilled water and neutral environment. The specific electrostatic properties of the core-shell system of RGO/Al2O3 flakes had an influence on its surface charge (zeta potential) which was measured by applying an external electric field. The FTIR and Raman investigations results also confirmed that the Cdbnd O species were not taking part in the surface amphoteric reactions resulting in the formation of electrostatic surface charge.

  10. Beyond the single-file fluid limit using transfer matrix method: Exact results for confined parallel hard squares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurin, Péter; Varga, Szabolcs

    2015-06-14

    We extend the transfer matrix method of one-dimensional hard core fluids placed between confining walls for that case where the particles can pass each other and at most two layers can form. We derive an eigenvalue equation for a quasi-one-dimensional system of hard squares confined between two parallel walls, where the pore width is between σ and 3σ (σ is the side length of the square). The exact equation of state and the nearest neighbor distribution functions show three different structures: a fluid phase with one layer, a fluid phase with two layers, and a solid-like structure where the fluidmore » layers are strongly correlated. The structural transition between differently ordered fluids develops continuously with increasing density, i.e., no thermodynamic phase transition occurs. The high density structure of the system consists of clusters with two layers which are broken with particles staying in the middle of the pore.« less

  11. Genome-wide resequencing of KRICE_CORE reveals their potential for future breeding, as well as functional and evolutionary studies in the post-genomic era.

    PubMed

    Kim, Tae-Sung; He, Qiang; Kim, Kyu-Won; Yoon, Min-Young; Ra, Won-Hee; Li, Feng Peng; Tong, Wei; Yu, Jie; Oo, Win Htet; Choi, Buung; Heo, Eun-Beom; Yun, Byoung-Kook; Kwon, Soon-Jae; Kwon, Soon-Wook; Cho, Yoo-Hyun; Lee, Chang-Yong; Park, Beom-Seok; Park, Yong-Jin

    2016-05-26

    Rice germplasm collections continue to grow in number and size around the world. Since maintaining and screening such massive resources remains challenging, it is important to establish practical methods to manage them. A core collection, by definition, refers to a subset of the entire population that preserves the majority of genetic diversity, enhancing the efficiency of germplasm utilization. Here, we report whole-genome resequencing of the 137 rice mini core collection or Korean rice core set (KRICE_CORE) that represents 25,604 rice germplasms deposited in the Korean genebank of the Rural Development Administration (RDA). We implemented the Illumina HiSeq 2000 and 2500 platform to produce short reads and then assembled those with 9.8 depths using Nipponbare as a reference. Comparisons of the sequences with the reference genome yielded more than 15 million (M) single nucleotide polymorphisms (SNPs) and 1.3 M INDELs. Phylogenetic and population analyses using 2,046,529 high-quality SNPs successfully assigned rice accessions to the relevant rice subgroups, suggesting that these SNPs capture evolutionary signatures that have accumulated in rice subpopulations. Furthermore, genome-wide association studies (GWAS) for four exemplary agronomic traits in the KRIC_CORE manifest the utility of KRICE_CORE; that is, identifying previously defined genes or novel genetic factors that potentially regulate important phenotypes. This study provides strong evidence that the size of KRICE_CORE is small but contains high genetic and functional diversity across the genome. Thus, our resequencing results will be useful for future breeding, as well as functional and evolutionary studies, in the post-genomic era.

  12. Reply to "Comment on 'Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit' ".

    PubMed

    Gebremedhin, Daniel H; Weatherford, Charles A

    2015-02-01

    This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrödinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a δ(x), and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein.

  13. FATIGUE OF BIOMATERIALS: HARD TISSUES

    PubMed Central

    Arola, D.; Bajaj, D.; Ivancik, J.; Majd, H.; Zhang, D.

    2009-01-01

    The fatigue and fracture behavior of hard tissues are topics of considerable interest today. This special group of organic materials comprises the highly mineralized and load-bearing tissues of the human body, and includes bone, cementum, dentin and enamel. An understanding of their fatigue behavior and the influence of loading conditions and physiological factors (e.g. aging and disease) on the mechanisms of degradation are essential for achieving lifelong health. But there is much more to this topic than the immediate medical issues. There are many challenges to characterizing the fatigue behavior of hard tissues, much of which is attributed to size constraints and the complexity of their microstructure. The relative importance of the constituents on the type and distribution of defects, rate of coalescence, and their contributions to the initiation and growth of cracks, are formidable topics that have not reached maturity. Hard tissues also provide a medium for learning and a source of inspiration in the design of new microstructures for engineering materials. This article briefly reviews fatigue of hard tissues with shared emphasis on current understanding, the challenges and the unanswered questions. PMID:20563239

  14. Hard and soft acids and bases: structure and process.

    PubMed

    Reed, James L

    2012-07-05

    Under investigation is the structure and process that gives rise to hard-soft behavior in simple anionic atomic bases. That for simple atomic bases the chemical hardness is expected to be the only extrinsic component of acid-base strength, has been substantiated in the current study. A thermochemically based operational scale of chemical hardness was used to identify the structure within anionic atomic bases that is responsible for chemical hardness. The base's responding electrons have been identified as the structure, and the relaxation that occurs during charge transfer has been identified as the process giving rise to hard-soft behavior. This is in contrast the commonly accepted explanations that attribute hard-soft behavior to varying degrees of electrostatic and covalent contributions to the acid-base interaction. The ability of the atomic ion's responding electrons to cause hard-soft behavior has been assessed by examining the correlation of the estimated relaxation energies of the responding electrons with the operational chemical hardness. It has been demonstrated that the responding electrons are able to give rise to hard-soft behavior in simple anionic bases.

  15. Correlating particle hardness with powder compaction performance.

    PubMed

    Cao, Xiaoping; Morganti, Mikayla; Hancock, Bruno C; Masterson, Victoria M

    2010-10-01

    Assessing particle mechanical properties of pharmaceutical materials quickly and with little material can be very important to early stages of pharmaceutical research. In this study, a wide range of pharmaceutical materials were studied using atomic force microscopy (AFM) nanoindentation. A significant amount of particle hardness and elastic modulus data were provided. Moreover, powder compact mechanical properties of these materials were investigated in order to build correlation between the particle hardness and powder compaction performance. It was found that the materials with very low or high particle hardness most likely exhibit poor compaction performance while the materials with medium particle hardness usually have good compaction behavior. Additionally, the results from this study enriched Hiestand's special case concept on particle hardness and powder compaction performance. This study suggests that the use of AFM nanoindentation can help to screen mechanical properties of pharmaceutical materials at early development stages of pharmaceutical research.

  16. Double hard scattering without double counting

    NASA Astrophysics Data System (ADS)

    Diehl, Markus; Gaunt, Jonathan R.; Schönwald, Kay

    2017-06-01

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  17. Core body temperature in obesity123

    PubMed Central

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C

    2011-01-01

    Background: A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. Objective: We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. Design: In study 1, nonobese [body mass index (BMI; in kg/m2) <30] and obese (BMI ≥30) adults swallowed wireless core temperature–sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18–25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Results: Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P < 0.0001). Conclusions: Obesity is not generally associated with a reduced core body temperature. It may be necessary to study individuals with function-altering mutations in core temperature–regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500. PMID:21367952

  18. Electrical resistivity of liquid lanthanides using charge hard sphere system

    NASA Astrophysics Data System (ADS)

    Sonvane, Y. A.; Thakor, P. B.; Jani, A. R.

    2013-06-01

    In the present paper, we have studied electrical resistivity (ρ) of liquid lanthanides. To describe the structural information, the structure factor S(q) due to the charged hard sphere (CHS) reference systems is used along with our newly constructed model potential. To see the influence of exchange and correlation effect on the electrical resistivity (ρ) have used different local field correction functions like Hartree (H), Sarkar et al (S) and Taylor (T). Lastly we conclude that the proper choice of the model potential along with local field correction function plays a vital role to the study of the electrical resistivity (ρ).

  19. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  20. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  1. Injury risk associated with ground hardness in junior cricket.

    PubMed

    Twomey, Dara M; White, Peta E; Finch, Caroline F

    2012-03-01

    To establish if there is an association between ground hardness and injury risk in junior cricket. Nested case-series of players who played matches on specific grounds with objective ground hardness measures, within a prospective cohort study of junior community club cricket players. Monitoring of injuries and playing exposure occurred during 434 matches over the 2007/2008 playing season. Objective assessment of the hardness of 38 grounds was undertaken using a Clegg hammer at 13 sites on 19 different junior cricket grounds on the match eve across the season. Hardness readings were classified from unacceptably low (<30 g) to unacceptably high (>120 g) and two independent raters assessed the likelihood of each injury being related to ground hardness. Injuries sustained on tested grounds were related to the ground hardness measures. Overall, 31 match injuries were reported; 6.5% were rated as likely to be related to ground hardness, 16.1% as possibly related and 74.2% as unlikely to be related and 3.2% unknown. The two injuries likely to be related to ground hardness were sustained whilst diving to catch a ball resulting, in a graze/laceration from contact with hard ground. Overall, 31/38 (82%) ground assessments were rated as having 'unacceptably high' hardness and all others as 'high/normal' hardness. Only one injury occurred on an objectively tested ground. It remains unclear if ground hardness is a contributing factor to the most common injury mechanism of being struck by the ball, and needs to be confirmed in future larger-scale studies. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Effect of repeated cycles of chemical disinfection on the roughness and hardness of hard reline acrylic resins.

    PubMed

    Pinto, Luciana de Rezende; Acosta, Emílio José T Rodríguez; Távora, Flora Freitas Fernandes; da Silva, Paulo Maurício Batista; Porto, Vinícius Carvalho

    2010-06-01

    The aim of this study was to assess the effect of repeated cycles of five chemical disinfectant solutions on the roughness and hardness of three hard chairside reliners. A total of 180 circular specimens (30 mm x 6 mm) were fabricated using three hard chairside reliners (Jet; n = 60, Kooliner; n = 60, Tokuyama Rebase II Fast; n = 60), which were immersed in deionised water (control), and five disinfectant solutions (1%, 2%, 5.25% sodium hypochlorite; 2% glutaraldehyde; 4% chlorhexidine gluconate). They were tested for Knoop hardness (KHN) and surface roughness (microm), before and after 30 simulated disinfecting cycles. Data was analysed by the factorial scheme (6 x 2), two-way analysis of variance (anova), followed by Tukey's test. For Jet (from 18.74 to 13.86 KHN), Kooliner (from 14.09 to 8.72 KHN), Tokuyama (from 12.57 to 8.28 KHN) a significant decrease in hardness was observed irrespective of the solution used on all materials. For Jet (from 0.09 to 0.11 microm) there was a statistically significant increase in roughness. Kooliner (from 0.36 to 0.26 microm) presented a statistically significant decrease in roughness and Tokuyama (from 0.15 to 0.11 microm) presented no statistically significant difference after 30 days. This study showed that all disinfectant solutions promoted a statistically significant decrease in hardness, whereas with roughness, the materials tested showed a statistically significant increase, except for Tokuyama. Although statistically significant values were registered, these results could not be considered clinically significant.

  3. One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization.

    PubMed

    Hara, Shuta; Aisu, Jumpei; Kato, Masahiro; Aono, Takashige; Sugawa, Kosuke; Takase, Kouichi; Otsuki, Joe; Shimizu, Shigeru; Ikake, Hiroki

    2018-06-08

    In recent years, monodispersed magnetic nanoparticles with a core/shell structure are expected for their wide applications including magnetic fluid, recoverable catalysts, and biological analysis. However, their synthesis method needs numerous processes such as solvent substitution, exchange of protective agents, and centrifugation. A simple and rapid method for the synthesis of monodispersed core-shell nanoparticles makes it possible to accelerate their further applications. This paper describes a simple and rapid one-pot synthesis of core (CoFe 2 O 4 )-shell (Ag) nanoparticles with high monodispersity. The synthesized nanoparticles showed plasmonic light absorption owing to the Ag shell. Moreover, the magnetic property of the nanoparticles had a soft magnetic behavior at room temperature and a hard magnetic behavior at 5 K. In addition, the nanoparticles showed high monodispersity with a low polydispersity index (PDI) value of 0.083 in hexane.

  4. One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization

    NASA Astrophysics Data System (ADS)

    Hara, Shuta; Aisu, Jumpei; Kato, Masahiro; Aono, Takashige; Sugawa, Kosuke; Takase, Kouichi; Otsuki, Joe; Shimizu, Shigeru; Ikake, Hiroki

    2018-06-01

    In recent years, monodispersed magnetic nanoparticles with a core/shell structure are expected for their wide applications including magnetic fluid, recoverable catalysts, and biological analysis. However, their synthesis method needs numerous processes such as solvent substitution, exchange of protective agents, and centrifugation. A simple and rapid method for the synthesis of monodispersed core-shell nanoparticles makes it possible to accelerate their further applications. This paper describes a simple and rapid one-pot synthesis of core (CoFe2O4)-shell (Ag) nanoparticles with high monodispersity. The synthesized nanoparticles showed plasmonic light absorption owing to the Ag shell. Moreover, the magnetic property of the nanoparticles had a soft magnetic behavior at room temperature and a hard magnetic behavior at 5 K. In addition, the nanoparticles showed high monodispersity with a low polydispersity index (PDI) value of 0.083 in hexane.

  5. Macroindentation hardness measurement-Modernization and applications.

    PubMed

    Patel, Sarsvat; Sun, Changquan Calvin

    2016-06-15

    In this study, we first developed a modernized indentation technique for measuring tablet hardness. This technique is featured by rapid digital image capture, using a calibrated light microscope, and precise area-determination. We then systematically studied effects of key experimental parameters, including indentation force, speed, and holding time, on measured hardness of a very soft material, hydroxypropyl cellulose, and a very hard material, dibasic calcium phosphate, to cover a wide range of material properties. Based on the results, a holding period of 3min at the peak indentation load is recommended to minimize the effect of testing speed on H. Using this method, we show that an exponential decay function well describes the relationship between tablet hardness and porosity for seven commonly used pharmaceutical powders investigated in this work. We propose that H and H at zero porosity may be used to quantify the tablet deformability and powder plasticity, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Maximum group velocity in a one-dimensional model with a sinusoidally varying staggered potential

    NASA Astrophysics Data System (ADS)

    Nag, Tanay; Sen, Diptiman; Dutta, Amit

    2015-06-01

    We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low-frequency limit we use adiabatic theory, while in the high-frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an "engineered" initial state where the particles (taken to be hard-core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light-cone-like spreading of the particles in real space.

  7. [The neurodynamic core of consciousness and neural Darwinism].

    PubMed

    Ibáñez, A

    In the last decades, the scientific study of consciousness in the scope of the cognitive neurosciences can be considered one of the greatest challenges of contemporary science. The Gerald Edelman theory of consciousness is one of the most promising and controversial perspectives. This theory stands out by its approach to topics usually rejected by other neurophysiologic theories of consciousness, as the case of the neurophysiologic explanation of qualia. The goal of this paper is to review the dynamic core theory of consciousness, presenting the main features of the theory, analyzing the explanation strategies, their empirical extensions, and elaborating some critical considerations about the possibility of the neuroscientific study of qualia. The central and additional theoretical components are analyzed, emphasizing its ontological, restrictive and explanatory assumptions. The properties of conscious phenomena and their cerebral correlates as advanced by the theory are described, and finally its experiments and empirical extensions are examined. The explanatory strategies of the theory are analyzed, based on conceptual isomorphism between the phenomenological properties and the neurophysiological and mathematical measures. Some criticisms could be raised about the limitations of the dynamic core theory, especially regarding its account of the so-called 'hard problem' of consciousness or qualia.

  8. Seismic signals hard clipping overcoming

    NASA Astrophysics Data System (ADS)

    Olszowa, Paula; Sokolowski, Jakub

    2018-01-01

    In signal processing the clipping is understand as the phenomenon of limiting the signal beyond certain threshold. It is often related to overloading of a sensor. Two particular types of clipping are being recognized: soft and hard. Beyond the limiting value soft clipping reduces the signal real gain while the hard clipping stiffly sets the signal values at the limit. In both cases certain amount of signal information is lost. Obviously if one possess the model which describes the considered signal and the threshold value (which might be slightly more difficult to obtain in the soft clipping case), the attempt of restoring the signal can be made. Commonly it is assumed that the seismic signals take form of an impulse response of some specific system. This may lead to belief that the sine wave may be the most appropriate to fit in the clipping period. However, this should be tested. In this paper the possibility of overcoming the hard clipping in seismic signals originating from a geoseismic station belonging to an underground mine is considered. A set of raw signals will be hard-clipped manually and then couple different functions will be fitted and compared in terms of least squares. The results will be then analysed.

  9. A summary of the vocabulary research with students who are deaf or hard of hearing.

    PubMed

    Luckner, John L; Cooke, Christine

    2010-01-01

    Vocabulary is essential for communicating, reading, thinking, and learning. In comparison to typical hearing peers, students who are deaf or hard of hearing demonstrate vocabulary knowledge that is quantitatively reduced. The authors review and summarize research studies published in peer-reviewed journals between 1967 and 2008 focusing on vocabulary and students who are deaf or hard of hearing. Forty-one studies are examined. A summary of each study is presented in a table, and potential educational implications are described. The authors note the paucity of research to guide instruction and provide suggestions for future research.

  10. GR712RC- Dual-Core Processor- Product Status

    NASA Astrophysics Data System (ADS)

    Sturesson, Fredrik; Habinc, Sandi; Gaisler, Jiri

    2012-08-01

    The GR712RC System-on-Chip (SoC) is a dual core LEON3FT system suitable for advanced high reliability space avionics. Fault tolerance features from Aeroflex Gaisler’s GRLIB IP library and an implementation using Ramon Chips RadSafe cell library enables superior radiation hardness.The GR712RC device has been designed to provide high processing power by including two LEON3FT 32- bit SPARC V8 processors, each with its own high- performance IEEE754 compliant floating-point-unit and SPARC reference memory management unit.This high processing power is combined with a large number of serial interfaces, ranging from high-speed links for data transfers to low-speed control buses for commanding and status acquisition.

  11. Why Do Some Cores Remain Starless?

    NASA Astrophysics Data System (ADS)

    Anathpindika, S.

    2016-08-01

    Prestellar cores, by definition, are gravitationally bound but starless pockets of dense gas. Physical conditions that could render a core starless (in the local Universe) is the subject of investigation in this work. To this end, we studied the evolution of four starless cores, B68, L694-2, L1517B, L1689, and L1521F, a VeLLO. We demonstrate: (i) cores contracted in quasistatic manner over a timescale on the order of ~ 105 yr. Those that remained starless briefly acquired a centrally concentrated density configuration that mimicked the profile of a unstable BonnorEbert sphere before rebounding, (ii) three cores viz. L694-2, L1689-SMM16, and L1521F remained starless despite becoming thermally super-critical. By contrast, B68 and L1517B remained sub-critical; L1521F collapsed to become a VeLLO only when gas-cooling was enhanced by increasing the size of dust-grains. This result is robust, for other starless cores viz. B68, L694-2, L1517B, and L1689 could also be similarly induced to collapse. The temperature-profile of starless cores and those that collapsed was found to be radically different. While in the former type, only very close to the centre of a core was there any evidence of decline in gas temperature, by contrast, a core of the latter type developed a more uniformly cold interior. Our principle conclusions are: (a) thermal super-criticality of a core is insufficient to ensure it will become protostellar, (b) potential star-forming cores (the VeLLO L1521F here), could be experiencing dust-coagulation that must enhance gasdust coupling and in turn lower gas temperature, thereby assisting collapse. This also suggests, mere gravitational/virial boundedness of a core is insufficient to ensure it will form stars.

  12. Core curricula for postdoctoral dental students: recent problems, potential solutions, and a model for the future.

    PubMed

    Iacopino, Anthony M; Taft, Thomas B

    2007-11-01

    Development of common core curricula for the graduate advanced education/specialty programs in dental schools presents significant challenges. Similarities in graduate education accreditation standards justify such an approach, yet a core curriculum is difficult to achieve for a variety of reasons including scheduling constraints and the capacity of a common, single pathway curriculum to address the specific educational needs of postgraduate students in different disciplines. Additionally, many dental schools are experiencing severe shortages of qualified faculty to provide graduate program instruction. There are no previous reports regarding graduate core curricula and the definition/delivery of such core curricula in advanced education programs in dentistry although there are several reports in the medical literature that support the educational value of a unified core curriculum implemented in a modular format. Graduate curricula are typically designed to provide residents with advanced education/training beyond what is acquired during their predoctoral dental school experience. Advanced education programs must emphasize knowledge and skills that are discipline-specific; however, there is a large amount of common foundational material within the early phases of these programs. Dental schools have attempted to identify and present this common material within the context of an organized shared set of courses/seminars where residents from each advanced education program are scheduled simultaneously. However, there have been problems with the implementation of a shared core curricula including the following: 1) dissimilar educational backgrounds/abilities among residents; 2) relevance of material to all residents; 3) lack of central management; 4) scheduling conflicts; and 5) lack of adequate and consistent program evaluation. In an attempt to resolve these problems, a new comprehensive graduate core curriculum was implemented at the Marquette University School of

  13. Group electronegativity for prediction of materials hardness.

    PubMed

    Li, Keyan; Yang, Peng; Niu, Lingxiao; Xue, Dongfeng

    2012-06-28

    We have developed a method to predict the hardness of materials containing ultrastrong anionic polyhedra, dense atomic clusters, and layers stacked through van der Waals bonds on the basis of group electronegativity. By considering these polyhedra, clusters, and layers as groups that behave as rigid unities like superatoms bonding to other atoms or groups, the hardness values of materials such as oxysalts, T-carbon, and graphite were quantitatively calculated, and the results are consistent with the available experiments. We found that the hardness of materials containing these artificial groups is determined by the bonds between the groups and other atoms or groups, rather than by the weakest bonds. This work sheds light on the nature of materials hardness and the design of novel inorganic crystal materials.

  14. Novel hard compositions and methods of preparation

    DOEpatents

    Sheinberg, H.

    1981-02-03

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value.

  15. 21 CFR 133.150 - Hard cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hard cheeses. 133.150 Section 133.150 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.150 Hard cheeses. (a) The cheeses for which definitions and standards of identity are...

  16. 7 CFR 201.30 - Hard seed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hard seed. 201.30 Section 201.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard...

  17. 7 CFR 201.30 - Hard seed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hard seed. 201.30 Section 201.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard...

  18. 7 CFR 201.30 - Hard seed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hard seed. 201.30 Section 201.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard...

  19. 7 CFR 201.30 - Hard seed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hard seed. 201.30 Section 201.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard...

  20. 7 CFR 201.30 - Hard seed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hard seed. 201.30 Section 201.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard...

  1. Theory of hard diffraction and rapidity gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Duca, V.

    1996-02-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). {copyright} {ital 1996 American Institute of Physics.}

  2. Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration

    NASA Technical Reports Server (NTRS)

    DeGregorio, Kelly; Wilson, Dale G.

    2009-01-01

    Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand

  3. Ice core carbonyl sulfide measurements from a new South Pole ice core (SPICECORE)

    NASA Astrophysics Data System (ADS)

    Aydin, M.; Nicewonger, M. R.; Saltzman, E. S.

    2017-12-01

    Carbonyl sulfide (COS) is the most abundant sulfur gas in the troposphere with a present-day mixing ratio of about 500 ppt. Direct and indirect emissions from the oceans are the predominant sources of atmospheric COS. The primary removal mechanism is uptake by terrestrial plants during photosynthesis. Because plants do not respire COS, atmospheric COS levels are linked to terrestrial gross primary productivity (GPP). Ancient air trapped in polar ice cores has been used to reconstruct COS records of the past atmosphere, which can be used to infer past GPP variability and potential changes in oceanic COS emission. We are currently analyzing samples from a newly drilled intermediate depth ice core from South Pole, Antarctica (SPICECORE). This core is advantageous for studying COS because the cold temperatures of South Pole ice lead to very slow rates of in situ loss due to hydrolysis. One hundred and eighty-four bubbly ice core samples have been analyzed to date with gas ages ranging from about 9.2 thousand (733 m depth) to 75 years (126 m depth) before present. After a 2% correction for gravitational enrichment in the firn, the mean COS mixing ratio for the data set is 312±15 ppt (±1s), with the data set median also equal to 312 ppt. The only significant long-term trend in the record is a 5-10% increase in COS during the last 2-3 thousand years of the Holocene. The SPICECORE data agree with previously published ice core COS records from other Antarctic sites during times of overlap, confirming earlier estimates of COS loss rates to in situ hydrolysis in ice cores. Antarctic ice core data place strict constraints on the COS mixing ratio and its range of variability in the southern hemisphere atmosphere during the last several millennia. Implications for the atmospheric COS budget will be discussed.

  4. Experimental investigation on hard turning of AISI 4340 steel using cemented coated carbide insert

    NASA Astrophysics Data System (ADS)

    Pradeep Kumar, J.; Kishore, K. P.; Ranjith Kumar, M.; Saran Karthick, K. R.; Vishnu Gowtham, S.

    2018-02-01

    Hard turning is a developing technology that offers many potential advantages compared to grinding, which remains the standard finishing process for critical hardened surfaces. In this work, an attempt has been made to experimentally investigate hard turning of AISI 4340 steel under wet and dry condition using cemented coated carbide insert. Hardness of the workpiece material is tested using Brinell and Rockwell hardness testers. CNC LATHE and cemented coated carbide inserts of designation CNMG 120408 are used for conducting experimental trials. Significant cutting parameters like cutting speed, feed rate and depth of cut are considered as controllable input parameters and surface roughness (Ra), tool wear are considered as output response parameters. Design of experiments is carried out with the help of Taguchi’s L9 orthogonal array. Results of response parameters like surface roughness and tool wear under wet and dry condition are analysed. It is found that surface roughness and tool wear are higher under dry machining condition when compared to wet machining condition. Feed rate significantly influences the surface roughness followed by cutting speed. Depth of cut significantly influences the tool wear followed by cutting speed.

  5. The Leeb Hardness Test for Rock: An Updated Methodology and UCS Correlation

    NASA Astrophysics Data System (ADS)

    Corkum, A. G.; Asiri, Y.; El Naggar, H.; Kinakin, D.

    2018-03-01

    The Leeb hardness test (LHT with test value of L D ) is a rebound hardness test, originally developed for metals, that has been correlated with the Unconfined Compressive Strength (test value of σ c ) of rock by several authors. The tests can be carried out rapidly, conveniently and nondestructively on core and block samples or on rock outcrops. This makes the relatively small LHT device convenient for field tests. The present study compiles test data from literature sources and presents new laboratory testing carried out by the authors to develop a substantially expanded database with wide-ranging rock types. In addition, the number of impacts that should be averaged to comprise a "test result" was revisited along with the issue of test specimen size. Correlation for L D and σ c for various rock types is provided along with recommended testing methodology. The accuracy of correlated σ c estimates was assessed and reasonable correlations were observed between L D and σ c . The study findings show that LHT can be useful particularly for field estimation of σ c and offers a significant improvement over the conventional field estimation methods outlined by the ISRM (e.g., hammer blows). This test is rapid and simple, with relatively low equipment costs, and provides a reasonably accurate estimate of σ c .

  6. Core Hunter 3: flexible core subset selection.

    PubMed

    De Beukelaer, Herman; Davenport, Guy F; Fack, Veerle

    2018-05-31

    Core collections provide genebank curators and plant breeders a way to reduce size of their collections and populations, while minimizing impact on genetic diversity and allele frequency. Many methods have been proposed to generate core collections, often using distance metrics to quantify the similarity of two accessions, based on genetic marker data or phenotypic traits. Core Hunter is a multi-purpose core subset selection tool that uses local search algorithms to generate subsets relying on one or more metrics, including several distance metrics and allelic richness. In version 3 of Core Hunter (CH3) we have incorporated two new, improved methods for summarizing distances to quantify diversity or representativeness of the core collection. A comparison of CH3 and Core Hunter 2 (CH2) showed that these new metrics can be effectively optimized with less complex algorithms, as compared to those used in CH2. CH3 is more effective at maximizing the improved diversity metric than CH2, still ensures a high average and minimum distance, and is faster for large datasets. Using CH3, a simple stochastic hill-climber is able to find highly diverse core collections, and the more advanced parallel tempering algorithm further increases the quality of the core and further reduces variability across independent samples. We also evaluate the ability of CH3 to simultaneously maximize diversity, and either representativeness or allelic richness, and compare the results with those of the GDOpt and SimEli methods. CH3 can sample equally representative cores as GDOpt, which was specifically designed for this purpose, and is able to construct cores that are simultaneously more diverse, and either are more representative or have higher allelic richness, than those obtained by SimEli. In version 3, Core Hunter has been updated to include two new core subset selection metrics that construct cores for representativeness or diversity, with improved performance. It combines and outperforms the

  7. The Transition to a Many-core World

    NASA Astrophysics Data System (ADS)

    Mattson, T. G.

    2012-12-01

    The need to increase performance within a fixed energy budget has pushed the computer industry to many core processors. This is grounded in the physics of computing and is not a trend that will just go away. It is hard to overestimate the profound impact of many-core processors on software developers. Virtually every facet of the software development process will need to change to adapt to these new processors. In this talk, we will look at many-core hardware and consider its evolution from a perspective grounded in the CPU. We will show that the number of cores will inevitably increase, but in addition, a quest to maximize performance per watt will push these cores to be heterogeneous. We will show that the inevitable result of these changes is a computing landscape where the distinction between the CPU and the GPU is blurred. We will then consider the much more pressing problem of software in a many core world. Writing software for heterogeneous many core processors is well beyond the ability of current programmers. One solution is to support a software development process where programmer teams are split into two distinct groups: a large group of domain-expert productivity programmers and much smaller team of computer-scientist efficiency programmers. The productivity programmers work in terms of high level frameworks to express the concurrency in their problems while avoiding any details for how that concurrency is exploited. The second group, the efficiency programmers, map applications expressed in terms of these frameworks onto the target many-core system. In other words, we can solve the many-core software problem by creating a software infrastructure that only requires a small subset of programmers to become master parallel programmers. This is different from the discredited dream of automatic parallelism. Note that productivity programmers still need to define the architecture of their software in a way that exposes the concurrency inherent in their

  8. Grinding efficiency of abutment tooth with both dentin and core composite resin on axial plane.

    PubMed

    Miho, Otoaki; Sato, Toru; Matsukubo, Takashi

    2015-01-01

    The purpose of this study was to evaluate grinding efficiency in abutment teeth comprising both dentin and core composite resin in the axial plane. Grinding was performed over 5 runs at two loads (0.5 or 0.25 N) and two feed rates (1 or 2 mm/sec). The grinding surface was observed with a 3-D laser microscope. Tomographic images of the grinding surfaces captured perpendicular to the feed direction were also analyzed. Using a non-ground surface as a reference, areas comprising only dentin, both dentin and core composite resin, or only core composite resin were analyzed to determine the angle of the grinding surface. Composite resins were subjected to the Vickers hardness test and scanning electron microscopy. Data were statistically analyzed using a one-way analysis of variance and multiple comparison tests. Multiple regression analysis was performed for load, feed rate, and Vickers hardness of the build-up material depending on number of runs. When grinding was performed at a constant load and feed rate, a greater grinding angle was observed in areas comprising both dentin and composite resin or only composite resin than in areas consisting of dentin alone. A correlation was found between machinability and load or feed rate in areas comprising both dentin and composite resin or composite resin alone, with a particularly high correlation being observed between machinability and load. These results suggest that great caution should be exercised in a clinical setting when the boundary between the dentin and composite resin is to be ground, as the angle of the grinding surface changes when the rotating diamond point begins grinding the composite resin.

  9. Visualizing Earth's Core-Mantle Interactions using Nanoscale X-ray Tomography

    NASA Astrophysics Data System (ADS)

    Mao, W. L.; Wang, J.; Yang, W.; Hayter, J.; Pianetta, P.; Zhang, L.; Fei, Y.; Mao, H.; Hustoft, J. W.; Kohlstedt, D. L.

    2010-12-01

    Early-stage, core-mantle differentiation and core formation represent a pivotal geological event which defined the major geochemical signatures. However current hypotheses of the potential mechanism for core-mantle separation and interaction need more experimental input which has been awaiting technological breakthroughs. Nanoscale x-ray computed tomography (nanoXCT) within a laser-heated diamond anvil cell has exciting potential as a powerful 3D petrographic probe for non-destructive, nanoscale (<40nm) resolution of multiple minerals and amorphous phases (including melts) which are synthesized under the high pressure-temperature conditions found deep within the Earth and planetary interiors. Results from high pressure-temperature experiments which illustrate the potential for this technique will be presented. By extending measurements of the texture, shape, porosity, tortuosity, dihedral angle, and other characteristics of molten Fe-rich alloys in relation to silicates and oxides, along with the fracture systems of rocks under deformation by high pressure-temperature conditions, potential mechanisms of core formation can be tested. NanoXCT can also be used to investigate grain shape, intergrowth, orientation, and foliation -- as well as mineral chemistry and crystallography at core-mantle boundary conditions -- to understand whether shape-preferred orientation is a primary source of the observed seismic anisotropy in Earth’s D” layer and to determine the textures and shapes of the melt pockets and channels which would form putative partial melt which may exist in ultralow velocity zones.

  10. Hard water softening effect of a baby cleanser

    PubMed Central

    Walters, Russel M; Anim-Danso, Emmanuel; Amato, Stephanie M; Capone, Kimberly A; Mack, M Catherine; Telofski, Lorena S; Mays, David A

    2016-01-01

    Background Hard water is associated with atopic dermatitis (eczema). We wanted to determine if a baby cleanser and its individual components altered free ionized calcium (Ca2+) in a simulated hard water baby bath. For these studies, an in vitro determination of free Ca2+ in a simulated hard water baby bath, and an in vivo exploratory study of free Ca2+ absorption into skin from hard water were performed. Methods Free Ca2+ was measured with an ion-sensitive electrode in vitro in hard water (100–500 ppm, Ca2+) before and after addition of the cleanser and/or its components. In an exploratory study, absorption of Ca2+ into skin from hard water was determined in three female participants (aged 21–29 years). Results At an in-use dilution of 1%, the test cleanser reduced free Ca2+ from ~500 ppm to <200 ppm; a 10% in-use dilution bound virtually all free Ca2+. The anionic surfactant component contributed the most to this effect. In the exploratory in vivo study, we measured a reduction of ~15% in free Ca2+ from simulated hard water over 10 minutes. Conclusion Baby cleansers can bind free Ca2+ and reduce the effective water hardness of bath water. Reducing the amount of free Ca2+ in the water will reduce the availability of the ion for binding to the skin. Altering or reducing free Ca2+ concentrations in bath water may be an important parameter in creating the ideal baby bath. PMID:27789967

  11. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor

  12. Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses

    DOE Data Explorer

    Daurer, Benedikt, J.

    2016-12-09

    Facilitating the very short and intense pulses from an X-ray laser for the purpose of imaging small bioparticles carries the potential for structure determination at atomic resolution without the need for crystallization. In this study, we explore experimental strategies for this idea based on data collected at the Linac Coherent Light Source from 40 nm virus particles injected into a hard X-ray beam.

  13. Hard X-ray Microscopy with sub 30 nm Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Tang, Mau-Tsu; Song, Yen-Fang; Yin, Gung-Chian; Chen, Fu-Rong; Chen, Jian-Hua; Chen, Yi-Ming; Liang, Keng S.; Duewer, F.; Yun, Wenbing

    2007-01-01

    A transmission X-ray microscope (TXM) has been installed at the BL01B beamline at National Synchrotron Radiation Research Center in Taiwan. This state-of-the-art TXM operational in a range 8-11 keV provides 2D images and 3D tomography with spatial resolution 60 nm, and with the Zernike-phase contrast mode for imaging light materials such as biological specimens. A spatial resolution of the TXM better than 30 nm, apparently the best result in hard X-ray microscopy, has been achieved by employing the third diffraction order of the objective zone plate. The TXM has been applied in diverse research fields, including analysis of failure mechanisms in microelectronic devices, tomographic structures of naturally grown photonic specimens, and the internal structure of fault zone gouges from an earthquake core. Here we discuss the scope and prospects of the project, and the progress of the TXM in NSRRC.

  14. Effect of core geometry and size on concrete compressive strength.

    DOT National Transportation Integrated Search

    2016-07-01

    To evaluate the in-place concrete strength for acceptance for a structural member with : potentially substandard strength, the compressive strength of cores may be required for : assessment. Depending on the geometry and size of the core specimen, th...

  15. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis; Alan Black; Homer Robertson

    2006-03-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program

  16. Second virial coefficient of a generalized Lennard-Jones potential.

    PubMed

    González-Calderón, Alfredo; Rocha-Ichante, Adrián

    2015-01-21

    We present an exact analytical solution for the second virial coefficient of a generalized Lennard-Jones type of pair potential model. The potential can be reduced to the Lennard-Jones, hard-sphere, and sticky hard-sphere models by tuning the potential parameters corresponding to the width and depth of the well. Thus, the second virial solution can also regain the aforementioned cases. Moreover, the obtained expression strongly resembles the one corresponding to the Kihara potential. In fact, the Fk functions are the same. Furthermore, for these functions, the complete expansions at low and high temperature are given. Additionally, we propose an alternative stickiness parameter based on the obtained second virial coefficient.

  17. Monolayers of hard rods on planar substrates. II. Growth

    NASA Astrophysics Data System (ADS)

    Klopotek, M.; Hansen-Goos, H.; Dixit, M.; Schilling, T.; Schreiber, F.; Oettel, M.

    2017-02-01

    Growth of hard-rod monolayers via deposition is studied in a lattice model using rods with discrete orientations and in a continuum model with hard spherocylinders. The lattice model is treated with kinetic Monte Carlo simulations and dynamic density functional theory while the continuum model is studied by dynamic Monte Carlo simulations equivalent to diffusive dynamics. The evolution of nematic order (excess of upright particles, "standing-up" transition) is an entropic effect and is mainly governed by the equilibrium solution, rendering a continuous transition [Paper I, M. Oettel et al., J. Chem. Phys. 145, 074902 (2016)]. Strong non-equilibrium effects (e.g., a noticeable dependence on the ratio of rates for translational and rotational moves) are found for attractive substrate potentials favoring lying rods. Results from the lattice and the continuum models agree qualitatively if the relevant characteristic times for diffusion, relaxation of nematic order, and deposition are matched properly. Applicability of these monolayer results to multilayer growth is discussed for a continuum-model realization in three dimensions where spherocylinders are deposited continuously onto a substrate via diffusion.

  18. Novel hard compositions and methods of preparation

    DOEpatents

    Sheinberg, Haskell

    1983-08-23

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated.

  19. Novel hard compositions and methods of preparation

    DOEpatents

    Sheinberg, H.

    1983-08-23

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated. 3 figs.

  20. Haptic Search for Hard and Soft Spheres

    PubMed Central

    van Polanen, Vonne; Bergmann Tiest, Wouter M.; Kappers, Astrid M. L.

    2012-01-01

    In this study the saliency of hardness and softness were investigated in an active haptic search task. Two experiments were performed to explore these properties in different contexts. In Experiment 1, blindfolded participants had to grasp a bundle of spheres and determine the presence of a hard target among soft distractors or vice versa. If the difference in compliance between target and distractors was small, reaction times increased with the number of items for both features; a serial strategy was found to be used. When the difference in compliance was large, the reaction times were independent of the number of items, indicating a parallel strategy. In Experiment 2, blindfolded participants pressed their hand on a display filled with hard and soft items. In the search for a soft target, increasing reaction times with the number of items were found, but the location of target and distractors appeared to have a large influence on the search difficulty. In the search for a hard target, reaction times did not depend on the number of items. In sum, this showed that both hardness and softness are salient features. PMID:23056197

  1. Haptic search for hard and soft spheres.

    PubMed

    van Polanen, Vonne; Bergmann Tiest, Wouter M; Kappers, Astrid M L

    2012-01-01

    In this study the saliency of hardness and softness were investigated in an active haptic search task. Two experiments were performed to explore these properties in different contexts. In Experiment 1, blindfolded participants had to grasp a bundle of spheres and determine the presence of a hard target among soft distractors or vice versa. If the difference in compliance between target and distractors was small, reaction times increased with the number of items for both features; a serial strategy was found to be used. When the difference in compliance was large, the reaction times were independent of the number of items, indicating a parallel strategy. In Experiment 2, blindfolded participants pressed their hand on a display filled with hard and soft items. In the search for a soft target, increasing reaction times with the number of items were found, but the location of target and distractors appeared to have a large influence on the search difficulty. In the search for a hard target, reaction times did not depend on the number of items. In sum, this showed that both hardness and softness are salient features.

  2. A volatile-rich Earth's core inferred from melting temperature of core materials

    NASA Astrophysics Data System (ADS)

    Morard, G.; Andrault, D.; Antonangeli, D.; Nakajima, Y.; Auzende, A. L.; Boulard, E.; Clark, A. N.; Lord, O. T.; Cervera, S.; Siebert, J.; Garbarino, G.; Svitlyk, V.; Mezouar, M.

    2016-12-01

    Planetary cores are mainly constituted of iron and nickel, alloyed with lighter elements (Si, O, C, S or H). Understanding how these elements affect the physical and chemical properties of solid and liquid iron provides stringent constraints on the composition of the Earth's core. In particular, melting curves of iron alloys are key parameter to establish the temperature profile in the Earth's core, and to asses the potential occurrence of partial melting at the Core-Mantle Boundary. Core formation models based on metal-silicate equilibration suggest that Si and O are the major light element components1-4, while the abundance of other elements such as S, C and H is constrained by arguments based on their volatility during planetary accretion5,6. Each compositional model implies a specific thermal state for the core, due to the different effect that light elements have on the melting behaviour of Fe. We recently measured melting temperatures in Fe-C and Fe-O systems at high pressures, which complete the data sets available both for pure Fe7 and other binary alloys8. Compositional models with an O- and Si-rich outer core are suggested to be compatible with seismological constraints on density and sound velocity9. However, their crystallization temperatures of 3650-4050 K at the CMB pressure of 136 GPa are very close to, if not higher than the melting temperature of the silicate mantle and yet mantle melting above the CMB is not a ubiquitous feature. This observation requires significant amounts of volatile elements (S, C or H) in the outer core to further reduce the crystallisation temperature of the core alloy below that of the lower mantle. References 1. Wood, B. J., et al Nature 441, 825-833 (2006). 2. Siebert, J., et al Science 339, 1194-7 (2013). 3. Corgne, A., et al Earth Planet. Sc. Lett. 288, 108-114 (2009). 4. Fischer, R. a. et al. Geochim. Cosmochim. Acta 167, 177-194 (2015). 5. Dreibus, G. & Palme, H. Geochim. Cosmochim. Acta 60, 1125-1130 (1995). 6. Mc

  3. Neural networks within multi-core optic fibers.

    PubMed

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-07-07

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.

  4. Synthesis, Structure, and Properties of Refractory Hard-Metal Borides

    NASA Astrophysics Data System (ADS)

    Lech, Andrew Thomas

    As the limits of what can be achieved with conventional hard compounds, such as tungsten carbide, are nearing reach, super-hard materials are an area of increasing industrial interest. The refractory hard metal borides, such as ReB2 and WB4, offer an increasingly attractive alternative to diamond and cubic boron nitride as a next-generation tool material. In this Thesis, a thorough discussion is made of the progress achieved by our laboratory towards understanding the synthesis, structure, and properties of these extremely hard compounds. Particular emphasis is placed on structural manipulation, solid solution formation, and the unique crystallographic manifestations of what might also be called "super-hard metals".

  5. The incidence of coring with blunt versus sharp needles.

    PubMed

    Wani, Tariq; Wadhwa, Anupama; Tobias, Joseph D

    2014-03-01

    With the advent of safety needles to prevent inadvertent needle sticks in the operating room (OR), a potentially new issue has arisen. These needles may result in coring, or the shaving off of fragments of the rubber stopper, when the needle is pierced through the rubber stopper of the medication vial. These fragments may be left in the vial and then drawn up with the medication and possibly injected into patients. The current study prospectively evaluated the incidence of coring when blunt and sharp needles were used to pierce rubber topped vials. We also evaluated the incidence of coring in empty medication vials with rubber tops. The rubber caps were then pierced with either an18-gauge sharp hypodermic needle or a blunt plastic (safety) needle. Coring occurred in 102 of 250 (40.8%) vials when a blunt needle was used versus 9 of 215 (4.2%) vials with a sharp needle (P < 0.0001). A significant incidence of coring was demonstrated when a blunt plastic safety needle was used. This situation is potentially a patient safety hazard and methods to eliminate this problem are needed. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. 3D visualization of subcellular structures of Schizosaccharomyces pombe by hard X-ray tomography.

    PubMed

    Yang, Y; Li, W; Liu, G; Zhang, X; Chen, J; Wu, W; Guan, Y; Xiong, Y; Tian, Y; Wu, Z

    2010-10-01

    Cellular structures of the fission yeast, Schizosaccharomyces pombe, were examined by using hard X-ray tomography. Since cells are nearly transparent to hard X-rays, Zernike phase contrast and heavy metal staining were introduced to improve image contrast. Through using such methods, images taken at 8 keV displayed sufficient contrast for observing cellular structures. The cell wall, the intracellular organelles and the entire structural organization of the whole cells were visualized in three-dimensional at a resolution better than 100 nm. Comparison between phase contrast and absorption contrast was also made, indicating the obvious advantage of phase contrast for cellular imaging at this energy. Our results demonstrate that hard X-ray tomography with Zernike phase contrast is suitable for cellular imaging. Its unique abilities make it have potential to become a useful tool for revealing structural information from cells, especially thick eukaryotic cells. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  7. Core-to-core uniformity improvement in multi-core fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Lindley, Emma; Min, Seong-Sik; Leon-Saval, Sergio; Cvetojevic, Nick; Jovanovic, Nemanja; Bland-Hawthorn, Joss; Lawrence, Jon; Gris-Sanchez, Itandehui; Birks, Tim; Haynes, Roger; Haynes, Dionne

    2014-07-01

    Multi-core fiber Bragg gratings (MCFBGs) will be a valuable tool not only in communications but also various astronomical, sensing and industry applications. In this paper we address some of the technical challenges of fabricating effective multi-core gratings by simulating improvements to the writing method. These methods allow a system designed for inscribing single-core fibers to cope with MCFBG fabrication with only minor, passive changes to the writing process. Using a capillary tube that was polished on one side, the field entering the fiber was flattened which improved the coverage and uniformity of all cores.

  8. A Weak Bar Potential and Massive Core in the Seyfert 2 Galaxy NGC 3079: CO(1--0) observations using the Nobeyama Millimeter Array

    NASA Astrophysics Data System (ADS)

    Koda, J.; Sofue, Y.; Kohno, K.; Okumura, S. K.; Irwin, Judith A.

    We present our recent 12CO (1-0) observations in the central molecular disk of the Hα/radio lobe galaxy NGC 3079 with the Nobeyama Millimeter Array. We show four kinematically distinct components in the observed molecular disk: a main disk, spiral arms, a nuclear disk and a nuclear core. We discuss their possible origins using a simple orbit-analysis model in a weak bar potential. We show that three of the four components are well-understood by typical gaseous orbits in a weak bar, such as gaseous x1- and x2-orbits. The main disk and spiral arms are well-understood as the gaseous x1-orbits and their associated crowding, respectively. The nuclear disk is naturally explained by the x2-orbits. However, the nuclear core, showing a high velocity of about 200kmps at a radius of about 100pc, cannot be explained by those gaseous orbits in a bar. Furthermore, no other orbits, derived by bars, cannot be responsible for the nuclear core. Thus we discuss that this component should be attributed to a central massive core with a dynamical mass of about 109Msun within the central 100pc radius. This mass is three orders of magnitude more massive than that of a central black hole in this galaxy. More detailed descriptions are presented in Koda et al. (2002).

  9. Does the Common Core Further Democracy? A Response to "The Common Core and Democratic Education: Examining Potential Costs and Benefits to Public and Private Autonomy"

    ERIC Educational Resources Information Center

    Neem, Johann N.

    2018-01-01

    The Common Core does not advance democratic education. Far from it, the opening section of the language standards argues that the goal of public K-12 education is "college and career readiness." Only at the end of their introductory section do the Common Core's authors suggest that K-12 education has any goals beyond the economic:…

  10. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids

    PubMed Central

    Dai, Fu-Zhi; Zhou, Yanchun

    2016-01-01

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165

  11. Incomplete Thermalization from Trap-Induced Integrability Breaking: Lessons from Classical Hard Rods

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyu; Bulchandani, Vir B.; Moore, Joel E.

    2018-04-01

    We study a one-dimensional gas of hard rods trapped in a harmonic potential, which breaks integrability of the hard-rod interaction in a nonuniform way. We explore the consequences of such broken integrability for the dynamics of a large number of particles and find three distinct regimes: initial, chaotic, and stationary. The initial regime is captured by an evolution equation for the phase-space distribution function. For any finite number of particles, this hydrodynamics breaks down and the dynamics becomes chaotic after a characteristic timescale determined by the interparticle distance and scattering length. The system fails to thermalize over the timescale studied (1 04 natural units), but the time-averaged ensemble is a stationary state of the hydrodynamic evolution. We close by discussing logical extensions of the results to similar systems of quantum particles.

  12. He implantation induced microstructure- and hardness-modification of the intermetallic γ-TiAl

    NASA Astrophysics Data System (ADS)

    Pouchon, Manuel A.; Chen, Jiachao; Hoffelner, Wolfgang

    2009-05-01

    TiAl is a well known high temperature material with good creep properties. It is investigated as a potential structural material for Generation IV high temperature gas cooled nuclear reactors. The tests are performed with the ABB-2 (Ti-rich TiAl with 2 at.% W) developed by ASEA Brown Boveri Ltd. (ABB). Thin samples are irradiated throughout with 24 MeV 4He2+ ions; the irradiated material is then investigated towards its microstructure and its hardness. The microstructure is studied by transmission electron microscopy and the hardness is investigated using a micro-hardness tester and a nano-indenter. Different effects can be identified. From room to moderate irradiation temperatures, the radiation induced hardening of the material slowly vanishes until the material completely recovers at about 943 K. Beyond this temperature, He-bubble formation seems to harden the material again, until beyond 1200 K a steep increase in hardening is detected. This effect can be correlated with bubbles being identified in the micrographs. The results are consistent and give strong indications to a microstructural development as a function of temperature.

  13. Compact pulse generators with soft ferromagnetic cores driven by gunpowder and explosive.

    PubMed

    Ben, Chi; He, Yong; Pan, Xuchao; Chen, Hong; He, Yuan

    2015-12-01

    Compact pulse generators which utilized soft ferromagnets as an initial energy carrier inside multi-turn coil and hard ferromagnets to provide the initial magnetic field outside the coil have been studied. Two methods of reducing the magnetic flux in the generators have been studied: (1) by igniting gunpowder to launch the core out of the generator, and (2) by detonating explosives that demagnetize the core. Several types of compact generators were explored to verify the feasibility. The generators with an 80-turn coil that utilize gunpowder were capable of producing pulses with amplitude 78.6 V and the full width at half maximum was 0.41 ms. The generators with a 37-turn coil that utilize explosive were capable of producing pulses with amplitude 1.41 kV and the full width at half maximum was 11.68 μs. These two methods were both successful, but produce voltage waveforms with significantly different characteristics.

  14. HCV Core Residues Critical for Infectivity Are Also Involved in Core-NS5A Complex Formation

    PubMed Central

    Gawlik, Katarzyna; Baugh, James; Chatterji, Udayan; Lim, Precious J.; Bobardt, Michael D.; Gallay, Philippe A.

    2014-01-01

    Hepatitis C virus (HCV) infection is a major cause of liver disease. The molecular machinery of HCV assembly and particle release remains obscure. A better understanding of the assembly events might reveal new potential antiviral strategies. It was suggested that the nonstructural protein 5A (NS5A), an attractive recent drug target, participates in the production of infectious particles as a result of its interaction with the HCV core protein. However, prior to the present study, the NS5A-binding site in the viral core remained unknown. We found that the D1 domain of core contains the NS5A-binding site with the strongest interacting capacity in the basic P38-K74 cluster. We also demonstrated that the N-terminal basic residues of core at positions 50, 51, 59 and 62 were required for NS5A binding. Analysis of all substitution combinations of R50A, K51A, R59A, and R62A, in the context of the HCVcc system, showed that single, double, triple, and quadruple mutants were fully competent for viral RNA replication, but deficient in secretion of viral particles. Furthermore, we found that the extracellular and intracellular infectivity of all the mutants was abolished, suggesting a defect in the formation of infectious particles. Importantly, we showed that the interaction between the single and quadruple core mutants and NS5A was impaired in cells expressing full-length HCV genome. Interestingly, mutations of the four basic residues of core did not alter the association of core or NS5A with lipid droplets. This study showed for the first time that basic residues in the D1 domain of core that are critical for the formation of infectious extracellular and intracellular particles also play a role in core-NS5A interactions. PMID:24533158

  15. Theoretical surface core-level shifts for Be(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feibelman, P.J.

    1994-05-15

    Core-ionization potentials (CIP's) are computed for Be(0001). Three core features are observed in corresponding photoelectron spectra, with CIP's shifted relative to the bulk core level by [minus]0.825, [minus]0.570, and [minus]0.265 eV. The computed CIP shifts for the outer and subsurface layers, [minus]0.60 and [minus]0.29 eV, respectively, agree with the latter two of these. It is surmised that the [minus]0.825-eV shift is associated with a surface defect. The negative signs of the Be(0001) surface core-level shifts do not fit into the thermochemical picture widely used to explain CIP shifts. The reason is that a core-ionized Be atom is too small tomore » bond effectively to the remainder of the unrelaxed Be lattice.« less

  16. Applying attachment theory to effective practice with hard-to-reach youth: the AMBIT approach.

    PubMed

    Bevington, Dickon; Fuggle, Peter; Fonagy, Peter

    2015-01-01

    Adolescent Mentalization-Based Integrative Treatment (AMBIT) is a developing approach to working with "hard-to-reach" youth burdened with multiple co-occurring morbidities. This article reviews the core features of AMBIT, exploring applications of attachment theory to understand what makes young people "hard to reach," and provide routes toward increased security in their attachment to a worker. Using the theory of the pedagogical stance and epistemic ("pertaining to knowledge") trust, we show how it is the therapeutic worker's accurate mentalizing of the adolescent that creates conditions for new learning, including the establishment of alternative (more secure) internal working models of helping relationships. This justifies an individual keyworker model focused on maintaining a mentalizing stance toward the adolescent, but simultaneously emphasizing the critical need for such keyworkers to remain well connected to their wider team, avoiding activation of their own attachment behaviors. We consider the role of AMBIT in developing a shared team culture (shared experiences, shared language, shared meanings), toward creating systemic contexts supportive of such relationships. We describe how team training may enhance the team's ability to serve as a secure base for keyworkers, and describe an innovative approach to treatment manualization, using a wiki format as one way of supporting this process.

  17. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) boiler plate nacelle and core exhaust nozzle design report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The mechanical design of the boiler plate nacelle and core exhaust nozzle for the QCSEE under the wing engine is presented. The nacelle, which features interchangeable hard-wall and acoustic panels, is to be utilized in the initial engine testing to establish acoustic requirements for the subsequent composite nacelle as well as in the QCSEE over the wing engine configuration.

  18. Integration of Biosafety into Core Facility Management

    PubMed Central

    Fontes, Benjamin

    2013-01-01

    This presentation will discuss the implementation of biosafety policies for small, medium and large core laboratories with primary shared objectives of ensuring the control of biohazards to protect core facility operators and assure conformity with applicable state and federal policies, standards and guidelines. Of paramount importance is the educational process to inform core laboratories of biosafety principles and policies and to illustrate the technology and process pathways of the core laboratory for biosafety professionals. Elevating awareness of biohazards and the biosafety regulatory landscape among core facility operators is essential for the establishment of a framework for both project and material risk assessment. The goal of the biohazard risk assessment process is to identify the biohazard risk management parameters to conduct the procedure safely and in compliance with applicable regulations. An evaluation of the containment, protective equipment and work practices for the procedure for the level of risk identified is facilitated by the establishment of a core facility registration form for work with biohazards and other biological materials with potential risk. The final step in the biocontainment process is the assumption of Principal Investigator role with full responsibility for the structure of the site-specific biosafety program plan by core facility leadership. The presentation will provide example biohazard protocol reviews and accompanying containment measures for core laboratories at Yale University.

  19. A Novel Approach to Hardness Testing

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier; West, Harvey A.

    1996-01-01

    This paper gives a description of the application of a simple rebound time measuring device and relates the determination of relative hardness of a variety of common engineering metals. A relation between rebound time and hardness will be sought. The effect of geometry and surface condition will also be discussed in order to acquaint the student with the problems associated with this type of method.

  20. Hard particle effect on surface generation in nano-cutting

    NASA Astrophysics Data System (ADS)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The influence of the hard particle on the surface generation, plastic deformation and processing forces in nano-cutting of aluminum is investigated by means of molecular dynamics simulations. In this investigation, a hard particle which is simplified as a diamond ball is embedded under the free surface of workpiece with different depths. The influence of the position of the hard ball on the surface generation and other material removal mechanism, such as the movement of the ball under the action of cutting tool edge, is revealed. The results show that when the hard particle is removed, only a small shallow pit is left on the machined surface. Otherwise, it is pressed down to the subsurface of the workpiece left larger and deeper pit on the generated surface. Besides that, the hard particle in the workpiece would increase the processing force when the cutting tool edge or the plastic carriers interact with the hard particle. It is helpful to optimize the cutting parameters and material properties for obtaining better surface quality in nano-cutting of composites or other materials with micro/nanoscale hard particles in it.

  1. Multiple Core Galaxies: Implications for M31

    NASA Technical Reports Server (NTRS)

    Smith, B. F.; Miller, R. H.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    It is generally perceived that two cores cannot survive very long within the nuclear regions of a galaxy. The recent HST discovery of a double nucleus in M31 brings this question into prominence. Physical conditions in the nuclear regions of a typical galaxy help a second core survive so it can orbit for a long time, possibly for thousands of orbits. Given the nearly uniform mass density in a core, tidal forces within a core radius are compressive in all directions and help the core survive the buffeting it takes as it orbits near the center of the galaxy. We use numerical experiments to illustrate these physical principles. Modifications to the experimental method allow the full power of the experiments to be concentrated on the nuclear regions. Spatial resolution of about 0.2 parsec comfortably resolves detail within the 1.4 parsec core radius of the second, but brighter, core (P1) in M31. The same physical principles apply in other astronomical situations, such as dumbbell galaxies, galaxies orbiting near the center of a galaxy cluster, and subclustering in galaxy clusters. The experiments also illustrate that galaxy encounters and merging are quite sensitive to external tidal forces, such as those produced by the gravitational potential in a group or cluster of galaxies.

  2. THE HOT HARDNESS OF TITANIUM AND TITANIUM ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, F.R.

    1958-07-01

    The hot hardness of 27 different heats of titanium and titunium alloys was studied. Tests were conducted on a modified Rockwell machine in an argon atmosphere. Results indicate that low alloy heats lose their hardnesses at a fairly high even rate. On thc other hand, high alloy heats hold their hardnesses well up to about 1100 d F, and then the hardness drops off very sharply with increasing temperature. The influence of alloying elements in promoting resistance to softening was evaluated at 900 d F. Iron was found to be the most effective with the other elements being arranged inmore » order of decreasing effect, as follows: manganese, (auth)« less

  3. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Nelson, J.; Holzner, C.; Andrews, J. C.; Pianetta, P.

    2013-12-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented.

  4. IsoMark - a comprehensive assessment of the potential of isotopes in hard parts of freshwater fish to determine origin and migratory patterns using LA-(MC)-ICP-MS

    NASA Astrophysics Data System (ADS)

    Zitek, Andreas; Irrgeher, Johanna; Sturm, Monika; Brunner, Marion; Dillinger, Benno; Prohaska, Thomas

    2010-05-01

    The ‘IsoMark' project focuses for the first time on the comprehensive investigation of microchemical information (elemental fingerprint of Ca, Sr, Na, Ba, Mg; isotopic fingerprint of Sr, Ca, and additionally of C and O) in different hard parts of several typical European freshwater fish species like brown trout (Salmo trutta f.f., L.), European grayling (Thymallus thymallus, L.) or nase (Chondrostoma nasus, L.) and the barbel (Barbus barbus, L.). Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is used as major technique for the direct in situ analysis of trace elements and isotopes, whereby the employment of a multiple collector - inductively coupled plasma - mass spectrometer (MC-ICP-MS) enables high precise isotope ratio analysis of such sample matrices due to its simultaneous detection capabilities. Microchemical patterns in hard parts of farmed and wild fish are analysed resulting in natural site specific elemental and isotopic signatures. Within a pilot study the potential to discriminate between wild and hatchery trout by chronological microchemical patterns of different otolith regions in relation to site specific water chemistry was documented. 100% accuracy of classification of fish to life stage specific habitats and therefore to their origin was achieved by the elemental ratios 88Sr/43Ca, 23Na/43Ca and the isotope ratio of 87Sr/86Sr. Clear differences in otolith chemistry were found, when fish experienced different geological units or specific environmental situations (e.g. groundwater) in hatcheries during a certain period of their life. These results proved the concept that natural microchemical patterns in hard parts linked to specific life stages of fish represent a valuable tool for a wide variety of ecological questions, e.g. discriminating wild and hatchery fish without the necessity of inducing any other artificial mark, or studying natural migration phenomena on small spatial scales in freshwater systems within

  5. Transport coefficients and mechanical response in hard-disk colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Zhang, Bo-Kai; Li, Jian; Chen, Kang; Tian, Wen-De; Ma, Yu-Qiang

    2016-11-01

    We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 21374073 and, 21574096).

  6. Hard QCD rescattering in few nucleon systems

    NASA Astrophysics Data System (ADS)

    Maheswari, Dhiraj; Sargsian, Misak

    2017-01-01

    The theoretical framework of hard QCD rescattering mechanism (HRM) is extended to calculate the high energy γ3 He -> pd reaction at 900 center of mass angle. In HRM model , the incoming high energy photon strikes a quark from one of the nucleons in the target which subsequently undergoes hard rescattering with the quarks from the other nucleons generating hard two-body baryonic system in the final state of the reaction. Based on the HRM, a parameter free expression for the differential cross section for the reaction is derived, expressed through the 3 He -> pd transition spectral function, hard pd -> pd elastic scattering cross section and the effective charge of the quarks being interchanged in the hard rescattering process. The numerical estimates obtained from this expression for the differential cross section are in a good agreement with the data recently obtained at the Jefferson Lab experiment, showing the energy scaling of cross section with an exponent of s-17, also consistent with the quark counting rule. The angular and energy dependences of the cross section are also predicted within HRM which are in good agreement with the preliminary data of these distributions. Research is supported by the US Department of Energy.

  7. The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies.

    PubMed

    Muñoz-Amatriaín, María; Cuesta-Marcos, Alfonso; Endelman, Jeffrey B; Comadran, Jordi; Bonman, John M; Bockelman, Harold E; Chao, Shiaoman; Russell, Joanne; Waugh, Robbie; Hayes, Patrick M; Muehlbauer, Gary J

    2014-01-01

    New sources of genetic diversity must be incorporated into plant breeding programs if they are to continue increasing grain yield and quality, and tolerance to abiotic and biotic stresses. Germplasm collections provide a source of genetic and phenotypic diversity, but characterization of these resources is required to increase their utility for breeding programs. We used a barley SNP iSelect platform with 7,842 SNPs to genotype 2,417 barley accessions sampled from the USDA National Small Grains Collection of 33,176 accessions. Most of the accessions in this core collection are categorized as landraces or cultivars/breeding lines and were obtained from more than 100 countries. Both STRUCTURE and principal component analysis identified five major subpopulations within the core collection, mainly differentiated by geographical origin and spike row number (an inflorescence architecture trait). Different patterns of linkage disequilibrium (LD) were found across the barley genome and many regions of high LD contained traits involved in domestication and breeding selection. The genotype data were used to define 'mini-core' sets of accessions capturing the majority of the allelic diversity present in the core collection. These 'mini-core' sets can be used for evaluating traits that are difficult or expensive to score. Genome-wide association studies (GWAS) of 'hull cover', 'spike row number', and 'heading date' demonstrate the utility of the core collection for locating genetic factors determining important phenotypes. The GWAS results were referenced to a new barley consensus map containing 5,665 SNPs. Our results demonstrate that GWAS and high-density SNP genotyping are effective tools for plant breeders interested in accessing genetic diversity in large germplasm collections.

  8. ROPEC - ROtary PErcussive Coring Drill for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Chu, Philip; Spring, Justin; Zacny, Kris

    2014-01-01

    The ROtary Percussive Coring Drill is a light weight, flight-like, five-actuator drilling system prototype designed to acquire core material from rock targets for the purposes of Mars Sample Return. In addition to producing rock cores for sample caching, the ROPEC drill can be integrated with a number of end effectors to perform functions such as rock surface abrasion, dust and debris removal, powder and regolith acquisition, and viewing of potential cores prior to caching. The ROPEC drill and its suite of end effectors have been demonstrated with a five degree of freedom Robotic Arm mounted to a mobility system with a prototype sample cache and bit storage station.

  9. Properties of iron alloys under the Earth's core conditions

    NASA Astrophysics Data System (ADS)

    Morard, Guillaume; Andrault, Denis; Antonangeli, Daniele; Bouchet, Johann

    2014-05-01

    The Earth's core is constituted of iron and nickel alloyed with lighter elements. In view of their affinity with the metallic phase, their relative high abundance in the solar system and their moderate volatility, a list of potential light elements have been established, including sulfur, silicon and oxygen. We will review the effects of these elements on different aspects of Fe-X high pressure phase diagrams under Earth's core conditions, such as melting temperature depression, solid-liquid partitioning during crystallization, and crystalline structure of the solid phases. Once extrapolated to the inner-outer core boundary, these petrological properties can be used to constrain the Earth's core properties.

  10. Thermodynamics and simulation of hard-sphere fluid and solid: Kinetic Monte Carlo method versus standard Metropolis scheme

    NASA Astrophysics Data System (ADS)

    Ustinov, E. A.

    2017-01-01

    The paper aims at a comparison of techniques based on the kinetic Monte Carlo (kMC) and the conventional Metropolis Monte Carlo (MC) methods as applied to the hard-sphere (HS) fluid and solid. In the case of the kMC, an alternative representation of the chemical potential is explored [E. A. Ustinov and D. D. Do, J. Colloid Interface Sci. 366, 216 (2012)], which does not require any external procedure like the Widom test particle insertion method. A direct evaluation of the chemical potential of the fluid and solid without thermodynamic integration is achieved by molecular simulation in an elongated box with an external potential imposed on the system in order to reduce the particle density in the vicinity of the box ends. The existence of rarefied zones allows one to determine the chemical potential of the crystalline phase and substantially increases its accuracy for the disordered dense phase in the central zone of the simulation box. This method is applicable to both the Metropolis MC and the kMC, but in the latter case, the chemical potential is determined with higher accuracy at the same conditions and the number of MC steps. Thermodynamic functions of the disordered fluid and crystalline face-centered cubic (FCC) phase for the hard-sphere system have been evaluated with the kinetic MC and the standard MC coupled with the Widom procedure over a wide range of density. The melting transition parameters have been determined by the point of intersection of the pressure-chemical potential curves for the disordered HS fluid and FCC crystal using the Gibbs-Duhem equation as a constraint. A detailed thermodynamic analysis of the hard-sphere fluid has provided a rigorous verification of the approach, which can be extended to more complex systems.

  11. Controlling coherence using the internal structure of hard pi pulses.

    PubMed

    Dong, Yanqun; Ramos, R G; Li, Dale; Barrett, S E

    2008-06-20

    The tiny difference between hard pi pulses and their delta-function approximation can be exploited to control coherence. Variants on the magic echo that work despite a large spread in resonance offsets are demonstrated using the zeroth- and first-order average Hamiltonian terms, for 13C NMR in 60C. The 29Si NMR linewidth of silicon has been reduced by a factor of about 70,00 using this approach, which also has potential applications in magnetic resonance microscopy and imaging of solids.

  12. Revisiting the origin of satellites in core-level photoemission of transparent conducting oxides: The case of n -doped SnO2

    NASA Astrophysics Data System (ADS)

    Borgatti, Francesco; Berger, J. A.; Céolin, Denis; Zhou, Jianqiang Sky; Kas, Joshua J.; Guzzo, Matteo; McConville, C. F.; Offi, Francesco; Panaccione, Giancarlo; Regoutz, Anna; Payne, David J.; Rueff, Jean-Pascal; Bierwagen, Oliver; White, Mark E.; Speck, James S.; Gatti, Matteo; Egdell, Russell G.

    2018-04-01

    The longstanding problem of interpretation of satellite structures in core-level photoemission spectra of metallic systems with a low density of conduction electrons is addressed using the specific example of Sb-doped SnO2. Comparison of ab initio many-body calculations with experimental hard x-ray photoemission spectra of the Sn 4 d states shows that strong satellites are produced by coupling of the Sn core hole to the plasma oscillations of the free electrons introduced by doping. Within the same theoretical framework, spectral changes of the valence band spectra are also related to dynamical screening effects. These results demonstrate that, for the interpretation of electron correlation features in the core-level photoelectron spectra of such narrow-band materials, going beyond the homogeneous electron gas electron-plasmon coupling model is essential.

  13. An endoglycosidase-assisted LC-MS/MS-based strategy for the analysis of site-specific core-fucosylation of low-concentrated glycoproteins in human serum using prostate-specific antigen (PSA) as example.

    PubMed

    Lang, Robert; Leinenbach, Andreas; Karl, Johann; Swiatek-de Lange, Magdalena; Kobold, Uwe; Vogeser, Michael

    2018-05-01

    Recently, site-specific fucosylation of glycoproteins has attracted attention as it can be associated with several types of cancers including prostate cancer. However, individual glycoproteins, which might serve as potential cancer markers, often are very low-concentrated in complex serum matrices and distinct glycan structures are hard to detect by immunoassays. Here, we present a mass spectrometry-based strategy for the simultaneous analysis of core-fucosylated and total prostate-specific antigen (PSA) in human serum in the low ng/ml concentration range. Sample preparation comprised an immunoaffinity capture step to enrich total PSA from human serum using anti-PSA antibody coated magnetic beads followed by consecutive two-step on-bead partial deglycosylation with endoglycosidase F3 and tryptic digestion prior to LC-MS/MS analysis. The method was shown to be linear from 0.5 to 60 ng/ml total PSA concentrations and allows the simultaneous quantification of core-fucosylated PSA down to 1 ng/ml and total PSA lower than 0.5 ng/ml. The imprecision of the method over two days ranged from 9.7-23.2% for core-fucosylated PSA and 10.3-18.3% for total PSA depending on the PSA level. The feasibility of the method in native sera was shown using three human specimens. To our knowledge, this is the first MS-based method for quantification of core-fucosylated PSA in the low ng/ml concentration range in human serum. This method could be used in large patient cohorts as core-fucosylated PSA may be a diagnostic biomarker for the differentiation of prostate cancer and other prostatic diseases, such as benign prostatic hyperplasia (BPH). Furthermore, the described strategy could be used to monitor potential changes in site-specific core-fucosylation of other low-concentrated glycoproteins, which could serve as more specific markers ("marker refinement") in cancer research. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. An Extended Hardness Limit in Bulk Nanoceramics

    DTIC Science & Technology

    2014-01-01

    spinel as an archetypal hard ceramic, the hardness of this transparent ceramic armor is shown to rigorously follow the Hall–Petch relationship down...as a result of complex phenomena related to an unconven- tionally high ratio of atoms on interfaces, or grain bound- aries, to atoms in the grain

  15. TREAT Transient Analysis Benchmarking for the HEU Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, D. C.; Connaway, H. M.; Wright, A. E.

    2014-05-01

    This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high enriched uranium (HEU) fuel to the use of low enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to benchmark the transient calculations against temperature-limited transients performed in the final operating HEU TREAT core configuration. The MCNP code was used to evaluate steady-state neutronics behavior, and the point kinetics code TREKIN was used tomore » determine core power and energy during transients. The first part of the benchmarking process was to calculate with MCNP all the neutronic parameters required by TREKIN to simulate the transients: the transient rod-bank worth, the prompt neutron generation lifetime, the temperature reactivity feedback as a function of total core energy, and the core-average temperature and peak temperature as a functions of total core energy. The results of these calculations were compared against measurements or against reported values as documented in the available TREAT reports. The heating of the fuel was simulated as an adiabatic process. The reported values were extracted from ANL reports, intra-laboratory memos and experiment logsheets and in some cases it was not clear if the values were based on measurements, on calculations or a combination of both. Therefore, it was decided to use the term “reported” values when referring to such data. The methods and results from the HEU core transient analyses will be used for the potential LEU core configurations to predict the converted (LEU) core’s performance.« less

  16. Comparison of biomechanical function at ideal and varied surgical placement for two lumbar artificial disc implant designs: mobile-core versus fixed-core.

    PubMed

    Moumene, Missoum; Geisler, Fred H

    2007-08-01

    Finite element model. To estimate the effect of lumbar mobile-core and fixed-core artificial disc design and placement on the loading of the facet joints, and stresses on the polyethylene core. Although both mobile-core and fixed-core lumbar artificial disc designs have been used clinically, the effect of their design and the effect of placement within the disc space on the structural element loading, and in particular the facets and the implant itself, have not been investigated. A 3D nonlinear finite element model of an intact ligamentous L4-L5 motion segment was developed and validated in all 6 df based on previous experiments conducted on human cadavers. Facet loading of a mobile-core TDR and a fixed-core TDR were estimated with 4 different prosthesis placements for 3 different ranges of motion. Placing the mobile-core TDR anywhere within the disc space reduced facet loading by more than 50%, while the fixed-core TDR increased facet loading by more than 10% when compared with the intact disc in axial rotation. For central (ideal) placement, the mobile- and fixed-core implants were subjected to compressive stresses on the order of 3 MPa and 24 MPa, respectively. The mobile-core stresses were not affected by implant placement, while the fixed-core stresses increased by up to 40%. A mobile-core artificial disc design is less sensitive to placement, and unloads the facet joints, compared with a fixed-core design. The decreased core stress may result in a reduced potential for wear in a mobile-core prosthesis compared with a fixed-core prosthesis, which may increase the functional longevity of the device.

  17. Mucocele of the hard palate in children.

    PubMed

    Abdel-Aziz, Mosaad; Khalifa, Badawy; Nassar, Ahmed; Kamel, Ahmed; Naguib, Nader; El-Tahan, Abdel-Rahman

    2016-06-01

    Mucus retention cyst of the hard palate may result from obstruction of the ducts of the minor salivary glands, and it was defined as a mucocele. Although, the disease is not common in the hard palate, it was previously reported by many authors in the soft palate. The aim of our study was to present pediatric patients who were diagnosed to have mucocele of the hard palate, and to evaluate the outcome of the surgical excision of this lesion. This is a case series study included 8 pediatric patients who presented with cystic lesions on the hard palate which were removed surgically, and were diagnosed as mucoceles. Preoperative data, surgical procedures, and postoperative outcome were presented. Follow up of patients was performed for at least one year. The swelling was detected as a single isolated lesion, on the side of the hard palate, covered with healthy mucosa, not tender, oval or round in shape, and measuring 0.4 to 1.7cm in its greatest dimension. Computed tomography showed a well defined cavity which was not invading the bone, and not disrupting the muscles of the palate. Histopathological examination confirmed that the lesion was a cavity that is lined with an epithelial layer with pseudoepitheliomatous hyperplasia. No patients developed intraoperative or postoperative complications, and no recurrence was detected in any patient. Oral mucoceles can develop on the hard palate of the children, the lesions are mucus retention cysts. Complete surgical removal of the lesions with their cystic wall is a good treatment options, it carries no risk of recurrence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Location of core diagnostic information across various sequences in brain MRI and implications for efficiency of MRI scanner utilization.

    PubMed

    Sharma, Aseem; Chatterjee, Arindam; Goyal, Manu; Parsons, Matthew S; Bartel, Seth

    2015-04-01

    Targeting redundancy within MRI can improve its cost-effective utilization. We sought to quantify potential redundancy in our brain MRI protocols. In this retrospective review, we aggregated 207 consecutive adults who underwent brain MRI and reviewed their medical records to document clinical indication, core diagnostic information provided by MRI, and its clinical impact. Contributory imaging abnormalities constituted positive core diagnostic information whereas absence of imaging abnormalities constituted negative core diagnostic information. The senior author selected core sequences deemed sufficient for extraction of core diagnostic information. For validating core sequences selection, four readers assessed the relative ease of extracting core diagnostic information from the core sequences. Potential redundancy was calculated by comparing the average number of core sequences to the average number of sequences obtained. Scanning had been performed using 9.4±2.8 sequences over 37.3±12.3 minutes. Core diagnostic information was deemed extractable from 2.1±1.1 core sequences, with an assumed scanning time of 8.6±4.8 minutes, reflecting a potential redundancy of 74.5%±19.1%. Potential redundancy was least in scans obtained for treatment planning (14.9%±25.7%) and highest in scans obtained for follow-up of benign diseases (81.4%±12.6%). In 97.4% of cases, all four readers considered core diagnostic information to be either easily extractable from core sequences or the ease to be equivalent to that from the entire study. With only one MRI lacking clinical impact (0.48%), overutilization did not seem to contribute to potential redundancy. High potential redundancy that can be targeted for more efficient scanner utilization exists in brain MRI protocols.

  19. Evaluation of Ceramic Honeycomb Core Compression Behavior at Room Temperature

    NASA Technical Reports Server (NTRS)

    Bird, Richard K.; Lapointe, Thomas S.

    2013-01-01

    Room temperature flatwise compression tests were conducted on two varieties of ceramic honeycomb core specimens that have potential for high-temperature structural applications. One set of specimens was fabricated using strips of a commercially-available thin-gage "ceramic paper" sheet molded into a hexagonal core configuration. The other set was fabricated by machining honeycomb core directly from a commercially available rigid insulation tile material. This paper summarizes the results from these tests.

  20. Neural networks within multi-core optic fibers

    PubMed Central

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-01-01

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks. PMID:27383911

  1. Optimizing performance by improving core stability and core strength.

    PubMed

    Hibbs, Angela E; Thompson, Kevin G; French, Duncan; Wrigley, Allan; Spears, Iain

    2008-01-01

    Core stability and core strength have been subject to research since the early 1980s. Research has highlighted benefits of training these processes for people with back pain and for carrying out everyday activities. However, less research has been performed on the benefits of core training for elite athletes and how this training should be carried out to optimize sporting performance. Many elite athletes undertake core stability and core strength training as part of their training programme, despite contradictory findings and conclusions as to their efficacy. This is mainly due to the lack of a gold standard method for measuring core stability and strength when performing everyday tasks and sporting movements. A further confounding factor is that because of the differing demands on the core musculature during everyday activities (low load, slow movements) and sporting activities (high load, resisted, dynamic movements), research performed in the rehabilitation sector cannot be applied to the sporting environment and, subsequently, data regarding core training programmes and their effectiveness on sporting performance are lacking. There are many articles in the literature that promote core training programmes and exercises for performance enhancement without providing a strong scientific rationale of their effectiveness, especially in the sporting sector. In the rehabilitation sector, improvements in lower back injuries have been reported by improving core stability. Few studies have observed any performance enhancement in sporting activities despite observing improvements in core stability and core strength following a core training programme. A clearer understanding of the roles that specific muscles have during core stability and core strength exercises would enable more functional training programmes to be implemented, which may result in a more effective transfer of these skills to actual sporting activities.

  2. 21 CFR 133.148 - Hard grating cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hard grating cheeses. 133.148 Section 133.148 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.148 Hard grating cheeses. (a) The cheeses for which definitions and standards of...

  3. Hard Spring Wheat Technical Committee 2016 Crop

    USDA-ARS?s Scientific Manuscript database

    Seven experimental lines of hard spring wheat were grown at up to five locations in 2016 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spri...

  4. Crystallization and dynamical arrest of attractive hard spheres.

    PubMed

    Babu, Sujin; Gimel, Jean-Christophe; Nicolai, Taco

    2009-02-14

    Crystallization of hard spheres interacting with a square well potential was investigated by numerical simulations using so-called Brownian cluster dynamics. The phase diagram was determined over a broad range of volume fractions. The crystallization rate was studied as a function of the interaction strength expressed in terms of the second virial coefficient. For volume fractions below about 0.3 the rate was found to increase abruptly with increasing attraction at the binodal of the metastable liquid-liquid phase separation. The rate increased until a maximum was reached after which it decreased with a power law dependence on the second virial coefficient. Above a critical percolation concentration, a transient system spanning network of connected particles was formed. Crystals were formed initially as part of the network, but eventually crystallization led to the breakup of the network. The lifetime of the transient gels increased very rapidly over a small range of interaction energies. Weak attraction destabilized the so-called repulsive crystals formed in pure hard sphere systems and shifted the coexistence line to higher volume fractions. Stronger attraction led to the formation of a denser, so-called attractive, crystalline phase. Nucleation of attractive crystals in the repulsive crystalline phase was observed close to the transition.

  5. Structural properties of liquid lanthanides using charge hard sphere reference system

    NASA Astrophysics Data System (ADS)

    Thakora, P. B.; Sonvane, Y. A.; Patel, H. P.; Gajjar, P. N.; Jani, A. R.

    2012-06-01

    In the present paper Charge Hard Sphere (CHS) system is employed to investigate the structural properties like long wavelength limit S(0), isothermal compressibility (χT) and coordination number n for some liquid lanthanides viz.: La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Yb and Lu. Our well established parameter free model potential is used to describe the electron-ion interaction alongwith sarkar et al. dielectric function. From the present results, it is seen that good agreement between present results and available experimental data have been achieved. At last, we establish the applicability of our parameter free model potential and CHS method to account such structural properties.

  6. Hardness of enamel exposed to Coca-Cola and artificial saliva.

    PubMed

    Devlin, H; Bassiouny, M A; Boston, D

    2006-01-01

    The purpose of this study was to determine the rate of change in indentation hardness of enamel in permanent teeth exposed to Coca-Cola. In a further experiment, the ability of a commercially available artificial saliva to remineralize enamel treated with Coca-Cola was tested. Ten enamel specimens were randomly chosen to be treated with Coca-Cola (experimental groups) and seven with water (control group). The fluids were applied for 1, 2, 3 h and overnight (15 h), washed off with a few drops of water and the moist enamel indentation hardness tested after each interval. With Coca-Cola treatment, the mean enamel hardness was 92.6% (s.d. = 7.9) of the original baseline hardness after 1 h, 93.25% (s.d. = 10.15) after 2 h, 85.7% (s.d. = 12.03) after 3 h and 80.3% after 15 h. The mean indentation hardness of control specimens treated with water was 108.7% (s.d. = 16.09) of the original hardness after 1 h, 99.09% (s.d. = 18.98) after 2 h, 98.97% (s.d. =11.24) after 3 h and 98.42% (s.d. = 22.78) after 15 h. In a separate experiment, the hardness of 9 enamel specimens was tested, as previously described, before and after treatment with Coca-Cola overnight and again after application of artificial saliva for 3 min. Coca-Cola reduced the mean indentation hardness of enamel in the teeth, but the hardness was partially restored with artificial saliva (Salivart) and increased by 18% from the demineralized enamel hardness.

  7. Size-exclusion chromatography using core-shell particles.

    PubMed

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Association of ground hardness with injuries in rugby union

    PubMed Central

    Takemura, Masahiro; Schneiders, Anthony G; Bell, Melanie L; Milburn, Peter D

    2007-01-01

    Background Ground hardness is considered one of the possible risk factors associated with rugby injuries. Objectives To examine the contribution of ground hardness, rainfall and evapotranspiration to the incidence of injury, and to investigate seasonal injury bias throughout one full season of rugby union. Methods A prospective epidemiological study of rugby injuries was performed on 271 players from rugby union teams involved in the premier grade rugby competition in Dunedin, New Zealand. Ground hardness was measured before each match over 20 rounds with an industrial penetrometer, and local weather information was collected through the National Institute of Weather and Atmospheric Research and the Otago Regional Council. Poisson mixed models were used to describe injury incidence as a function of ground hardness throughout the season. Results The overall injury incidence during the season was 52 injuries per 1000 match player‐hours (95% CI 42 to 65). Although injury incidence decreased gradually by round with a rate ratio of 0.98 (95% CI 0.96 to 0.99) (p = 0.036), and the hardness of match grounds decreased significantly over the season (0.16 MPa/round, 95% CI 0.12 to 0.21, p<0.001), a non‐significant association was demonstrated between injury incidence and ground hardness. Injury incidence was not associated with a combination of ground hardness, rainfall and evapotranspiration on the day of the match or cumulative rainfall and evapotranspiration before each match. Conclusions Seasonal change in ground hardness and an early‐season bias of injuries was demonstrated. Although the contribution of ground hardness to injury incidence was not statistically significant, match round and injury incidence were highly correlated, confirming a seasonal bias, which may confound the relationship of injury to ground condition. PMID:17504786

  9. Inorganic particulates in pneumoconiotic lungs of hard metal grinders.

    PubMed Central

    Rüttner, J R; Spycher, M A; Stolkin, I

    1987-01-01

    Data from the analysis of lung dust in 16 metal grinders who had been exposed to hard metals between five and 44 years is reported. The mean latent time between the first exposure and analysis in biopsy or necropsy specimens was 33.6 years. Mineralogical and elementary analysis by a variety of techniques showed small or trace amounts of hard metal in all lungs. Many specimens, however, did not contain all hard metal components, cobalt, for example, being detected in four cases only. All the lungs contained quartz and silicates and in most of the necropsy cases carborundum and corundum could also be shown. Histologically no specific pattern was found. The appearances included mixed dust nodular pneumoconiosis, diffuse interstitial lung fibrosis, and foreign body and sarcoid like granulomatous changes. In view of the mixed dust exposure of the hard metal grinders and the variable histological appearance we think that the term "mixed dust pneumoconiosis in hard metal grinders" is more appropriate than "hard metal lung" to describe this condition. PMID:3676118

  10. Saturn's F Ring Core: Calm in the Midst of Chaos

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Whizin, A. D.; Hogan, R. C.; Dobrovolskis, A. R.; Dones, L.; Showalter. M. R.; Colwell, J. E.; Scargle, J. D.

    2013-01-01

    The long-term stability of the narrow F Ring core has been hard to understand. Instead of acting as "shepherds", Prometheus and Pandora together stir the vast preponderance of the region into a chaotic state, consistent with the orbits of newly discovered objects like S/2004S6. We show how a comb of very narrow radial locations of high stability in semimajor axis is embedded within this otherwise chaotic region. The stability of these semimajor axes relies fundamentally on the unusual combination of rapid apse precession and long synodic period which characterizes the region. This situation allows stable "antiresonances" to fall on or very close to traditional Lindblad resonances which, under more common circumstances, are destabilizing. We present numerical integrations of tens of thousands of test particles over tens of thousands of Prometheus orbits that map out the effect. The stable antiresonance zones are most stable in a subset of the region where Prometheus first-order resonances are least cluttered by Pandora resonances. This region of optimum stability is paradoxically closer to Prometheus than a location more representative of "torque balance", helping explain a longstanding paradox. One stable zone corresponds closely to the currently observed semimajor axis of the F Ring core. While the model helps explain the stability of the narrow F Ring core, it does not explain why the F Ring material all shares a common apse longitude; we speculate that collisional damping at the preferred semimajor axis (not included in the current simulations) may provide that final step. Essentially, we find that the F Ring core is not confined by a combination of Prometheus and Pandora, but a combination of Prometheus and precession.

  11. Constraints on Mercury's Core-Mantle Boundary Region

    NASA Astrophysics Data System (ADS)

    Hauck, S. A., II; Chabot, N. L.; Sun, P.; Jing, Z.; Johnson, C. L.; Margot, J. L.; Padovan, S.; Peale, S. J.; Phillips, R. J.; Solomon, S. C.

    2014-12-01

    Understanding the boundary between a planet's metallic core and silicate mantle is important for constraining processes that dominate on either side of this boundary. Geophysical measurements of the planet Mercury by the MESSENGER spacecraft have provided evidence of a core larger than earlier, less-constrained estimates. Further, these results, taken in concert with measurements of the elemental composition of the surface by MESSENGER, have led to the suggestion that the uppermost layer of the outer core may be highly enriched in sulfur, and the top of the core may consist of a solid sulfide layer. The low iron and relatively large sulfur contents of the surface indicate highly reducing conditions during planet formation, placing constraints on the potential composition of Mercury's core. Recent metal-silicate partitioning experiments have developed new limits on the amount of sulfur and silicon that may partition into the core as a function of sulfur abundance at the surface. Models for the planet's internal structure constrained by the current best estimates of the bulk density, normalized polar moment of inertia, and fraction of the polar moment of inertia of the solid layer that extends from the surface to the top of the liquid outer core provide an important view of the layering and bulk composition of Mercury. By combining the results of these internal structure models with the experimental relationship between core and mantle composition we place new limits on core composition and structure. Further, imposing measured compositional constraints on the miscibility of iron-sulfur-silicon alloys yields important limits on the presence or absence of an immiscible sulfur-rich liquid layer or a solid sulfide layer at the top of the core.

  12. Super-tough, ultra-stretchable and strongly compressive hydrogels with core-shell latex particles inducing efficient aggregation of hydrophobic chains.

    PubMed

    Ren, Xiuyan; Huang, Chang; Duan, Lijie; Liu, Baijun; Bu, Lvjun; Guan, Shuang; Hou, Jiliang; Zhang, Huixuan; Gao, Guanghui

    2017-05-14

    Toughness, strechability and compressibility for hydrogels were ordinarily balanced for their use as mechanically responsive materials. For example, macromolecular microsphere composite hydrogels with chemical crosslinking exhibited excellent compression strength and strechability, but poor tensile stress. Here, a novel strategy for the preparation of a super-tough, ultra-stretchable and strongly compressive hydrogel was proposed by introducing core-shell latex particles (LPs) as crosslinking centers for inducing efficient aggregation of hydrophobic chains. The core-shell LPs always maintained a spherical shape due to the presence of a hard core even by an external force and the soft shell could interact with hydrophobic chains due to hydrophobic interactions. As a result, the hydrogels reinforced by core-shell LPs exhibited not only a high tensile strength of 1.8 MPa and dramatic elongation of over 20 times, but also an excellent compressive performance of 13.5 MPa at a strain of 90%. The Mullins effect was verified for the validity of core-shell LP-reinforced hydrogels by inducing aggregation of hydrophobic chains. The novel strategy strives to provide a better avenue for designing and developing a new generation of hydrophobic association tough hydrogels with excellent mechanical properties.

  13. Armored MOFs: enforcing soft microporous MOF nanocrystals with hard mesoporous silica.

    PubMed

    Li, Zheng; Zeng, Hua Chun

    2014-04-16

    Metal-organic frameworks (MOFs) are a class of fascinating supramolecular soft matters but with relatively weak mechanical strength. To enforce MOF materials for practical applications, one possible way seems to be transforming them into harder composites with a stronger secondary phase. Apparently, such a reinforcing phase must possess larger porosity for ionic or molecular species to travel into or out of MOFs without altering their pristine physicochemical properties. Herein we report a general synthetic approach to coat microporous MOFs and their derivatives with an enforcing shell of mesoporous silica (mSiO2). Four well-known MOFs (ZIF-8, ZIF-7, UiO-66, and HKUST-1), representing two important families of MOFs, have served as a core phase in nanocomposite products. We show that significant enhancement in mechanical properties (hardness and toughness) can indeed be achieved with this "armoring approach". Excellent accessibility of the mSiO2-wrapped MOFs and their metal-containing nanocomposites has also been demonstrated with catalytic reduction of 4-nitrophenol.

  14. Atomistic calculations of dislocation core energy in aluminium

    DOE PAGES

    Zhou, X. W.; Sills, R. B.; Ward, D. K.; ...

    2017-02-16

    A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin 2β + B·cos 2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less

  15. Atomistic calculations of dislocation core energy in aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X. W.; Sills, R. B.; Ward, D. K.

    A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin 2β + B·cos 2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less

  16. Lunar Polar Coring Lander

    NASA Technical Reports Server (NTRS)

    Angell, David; Bealmear, David; Benarroche, Patrice; Henry, Alan; Hudson, Raymond; Rivellini, Tommaso; Tolmachoff, Alex

    1990-01-01

    Plans to build a lunar base are presently being studied with a number of considerations. One of the most important considerations is qualifying the presence of water on the Moon. The existence of water on the Moon implies that future lunar settlements may be able to use this resource to produce things such as drinking water and rocket fuel. Due to the very high cost of transporting these materials to the Moon, in situ production could save billions of dollars in operating costs of the lunar base. Scientists have suggested that the polar regions of the Moon may contain some amounts of water ice in the regolith. Six possible mission scenarios are suggested which would allow lunar polar soil samples to be collected for analysis. The options presented are: remote sensing satellite, two unmanned robotic lunar coring missions (one is a sample return and one is a data return only), two combined manned and robotic polar coring missions, and one fully manned core retrieval mission. One of the combined manned and robotic missions has been singled out for detailed analysis. This mission proposes sending at least three unmanned robotic landers to the lunar pole to take core samples as deep as 15 meters. Upon successful completion of the coring operations, a manned mission would be sent to retrieve the samples and perform extensive experiments of the polar region. Man's first step in returning to the Moon is recommended to investigate the issue of lunar polar water. The potential benefits of lunar water more than warrant sending either astronauts, robots or both to the Moon before any permanent facility is constructed.

  17. Calcium nephrolithiasis: effect of water hardness on urinary electrolytes.

    PubMed

    Schwartz, Bradley F; Schenkman, Noah S; Bruce, Jeremy E; Leslie, Stephen W; Stoller, Marshall L

    2002-07-01

    To analyze the impact of water hardness from public water supplies on calcium stone incidence and 24-hour urine chemistries in patients with known calcium urinary stone formation. Patients are frequently concerned that their public water supply may contribute to urinary stone disease. Investigators have documented an inverse relationship between water hardness and calcium lithogenesis. Others have found no such association. Patients who form calcium stones (n = 4833) were identified geographically by their zip code. Water hardness information from distinct geographic public water supplies was obtained, and patient 24-hour urine chemistries were evaluated. Drinking water hardness was divided into decile rankings on the basis of the public water supply information obtained from the Environmental Protection Agency. These data were compared with patient questionnaires and 24-hour urine chemistries. The calcium and magnesium levels in the drinking water were analyzed as independent variables. The number of total lifetime stone episodes was similar between patients residing in areas with soft public water and hard public water. Patients consuming the softest water decile formed 3.4 lifetime stones and those who consumed the hardest water developed 3.0 lifetime stones (P = 0.0017). The 24-hour urine calcium, magnesium, and citrate levels increased directly with drinking water hardness, and no significant change was found in urinary oxalate, uric acid, pH, or volume. The impact of water hardness on urinary stone formation remains unclear, despite a weak correlation between water hardness and urinary calcium, magnesium, and citrate excretion. Tap water, however, can change urinary electrolytes in patients who form calcium stones.

  18. Retraction of Hard, Lozano, and Tversky (2006)

    ERIC Educational Resources Information Center

    Hard, B. M.; Lozano, S. C.; Tversky, B.

    2008-01-01

    Reports a retraction of "Hierarchical encoding of behavior: Translating perception into action" by Bridgette Martin Hard, Sandra C. Lozano and Barbara Tversky (Journal of Experimental Psychology: General, 2006[Nov], Vol 135[4], 588-608). All authors retract this article. Co-author Tversky and co-author Hard believe that the research results cannot…

  19. Effect of a core-softened O-O interatomic interaction on the shock compression of fused silica

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Weingarten, N. Scott; Byrd, Edward F. C.

    2018-03-01

    Isotropic soft-core potentials have attracted considerable attention due to their ability to reproduce thermodynamic, dynamic, and structural anomalies observed in tetrahedral network-forming compounds such as water and silica. The aim of the present work is to assess the relevance of effective core-softening pertinent to the oxygen-oxygen interaction in silica to the thermodynamics and phase change mechanisms that occur in shock compressed fused silica. We utilize the MD simulation method with a recently published numerical interatomic potential derived from an ab initio MD simulation of liquid silica via force-matching. The resulting potential indicates an effective shoulder-like core-softening of the oxygen-oxygen repulsion. To better understand the role of the core-softening we analyze two derivative force-matching potentials in which the soft-core is replaced with a repulsive core either in the three-body potential term or in all the potential terms. Our analysis is further augmented by a comparison with several popular empirical models for silica that lack an explicit core-softening. The first outstanding feature of shock compressed glass reproduced with the soft-core models but not with the other models is that the shock compression values at pressures above 20 GPa are larger than those observed under hydrostatic compression (an anomalous shock Hugoniot densification). Our calculations indicate the occurrence of a phase transformation along the shock Hugoniot that we link to the O-O repulsion core-softening. The phase transformation is associated with a Hugoniot temperature reversal similar to that observed experimentally. With the soft-core models, the phase change is an isostructural transformation between amorphous polymorphs with no associated melting event. We further examine the nature of the structural transformation by comparing it to the Hugoniot calculations for stishovite. For stishovite, the Hugoniot exhibits temperature reversal and associated

  20. Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery.

    PubMed

    Zhang, Huimin; Ming, Hai; Zhang, Wenfeng; Cao, Gaoping; Yang, Yusheng

    2017-07-19

    Sodium-ion batteries (SIBs) are expected to be a promising commercial alternative to lithium-ion batteries for grid electricity storage due to their potential low cost in the near future. Up to the present, the anode material still remains a great challenge for the application of SIBs, especially at room temperature. Graphite has an obvious limitation to store larger radius sodium ions (Na + ) in comparison with lithium ions (Li + ), while the hard carbon with large interlayer distance can demonstrate a relatively high storage capability and durable cycle life. However, the disadvantages of low initial Coulombic efficiency (ICE) mainly caused by large surface area and high cost synthetic approach hinder its practical applications. Herein, a new coupled carbonization strategy is presented to prepare a cost-effective hard carbon material by pyrolyzing and carbonizing the mixture of abundant sucrose and phenolic resin. Benefiting from the specialized pyrolysis reaction process and optimized conditions as studied in detail, the hard carbon has an extremely low surface area of 1.54 m 2 g -1 and high initial Coulombic efficiency of 87%, which have been rarely reported before and enhance the utilization efficiency of Na + consumption within the cathode in the future. More importantly, the hard carbon, with a high interlayer distance 3.95 Å, can deliver a higher capacity of 319 mAh g -1 and maintain a finer capacity retention of 90% over 150 cycles. Besides, a full cell with the configuration of as-prepared hard carbon anode versus an air-stable O3-Na 0.9 [Cu 0.22 Fe 0.30 Mn 0.48 ]O 2 cathode is further presented, and it has a high ICE of 80% and energy density of 256 Wh kg anode -1 (vs hard carbon) with reliable cycle performance. The results demonstrate that our synthetic strategy is feasible and extendable, while the tunable carbon-based materials should have wider applications in addition to the attractive properties in Na-ion batteries.

  1. From sticky-hard-sphere to Lennard-Jones-type clusters

    NASA Astrophysics Data System (ADS)

    Trombach, Lukas; Hoy, Robert S.; Wales, David J.; Schwerdtfeger, Peter

    2018-04-01

    A relation MSHS →LJ between the set of nonisomorphic sticky-hard-sphere clusters MSHS and the sets of local energy minima ML J of the (m ,n ) -Lennard-Jones potential Vmn LJ(r ) =ɛ/n -m [m r-n-n r-m] is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n and increases exponentially with increasing cluster size N for N ≳10 . While the map from MSHS→MSHS →LJ is noninjective and nonsurjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to N =13 , and most of the missing structures correspond to energetically unfavorable minima even for fairly low (m ,n ) . Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.

  2. From sticky-hard-sphere to Lennard-Jones-type clusters.

    PubMed

    Trombach, Lukas; Hoy, Robert S; Wales, David J; Schwerdtfeger, Peter

    2018-04-01

    A relation M_{SHS→LJ} between the set of nonisomorphic sticky-hard-sphere clusters M_{SHS} and the sets of local energy minima M_{LJ} of the (m,n)-Lennard-Jones potential V_{mn}^{LJ}(r)=ɛ/n-m[mr^{-n}-nr^{-m}] is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n and increases exponentially with increasing cluster size N for N≳10. While the map from M_{SHS}→M_{SHS→LJ} is noninjective and nonsurjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to N=13, and most of the missing structures correspond to energetically unfavorable minima even for fairly low (m,n). Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.

  3. Methodological problems with gamma-ray burst hardness/intensity correlations

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1993-01-01

    The hardness and intensity are easily measured quantities for all gamma-ray bursts (GRBs), and so, many past and current studies have sought correlations between them. This Letter presents many serious methodological problems with the practical definitions for both hardness and intensity. These difficulties are such that significant correlations can be easily introduced as artifacts of the reduction procedure. In particular, cosmological models of GRBs cannot be tested with hardness/intensity correlations with current instrumentation and the time evolution of the hardness in a given burst may be correlated with intensity for reasons that are unrelated to intrinsic change in the spectral shape.

  4. 'Reaching the hard to reach' - lessons learned from the VCS (voluntary and community Sector). A qualitative study

    PubMed Central

    2010-01-01

    Background The notion 'hard to reach' is a contested and ambiguous term that is commonly used within the spheres of social care and health, especially in discourse around health and social inequalities. There is a need to address health inequalities and to engage in services the marginalized and socially excluded sectors of society. Methods This paper describes a pilot study involving interviews with representatives from eight Voluntary and Community Sector (VCS) organisations. The purpose of the study was to explore the notion of 'hard to reach' and perceptions of the barriers and facilitators to accessing services for 'hard to reach' groups from a voluntary and community sector perspective. Results The 'hard to reach' may include drug users, people living with HIV, people from sexual minority communities, asylum seekers, refugees, people from black and ethnic minority communities, and homeless people although defining the notion of the 'hard to reach' is not straight forward. It may be that certain groups resist engaging in treatment services and are deemed hard to reach by a particular service or from a societal stance. There are a number of potential barriers for people who may try and access services, including people having bad experiences in the past; location and opening times of services and how services are funded and managed. A number of areas of commonality are found in terms of how access to services for 'hard to reach' individuals and groups could be improved including: respectful treatment of service users, establishing trust with service users, offering service flexibility, partnership working with other organisations and harnessing service user involvement. Conclusions If health services are to engage with groups that are deemed 'hard to reach' and marginalised from mainstream health services, the experiences and practices for engagement from within the VCS may serve as useful lessons for service improvement for statutory health services. PMID

  5. Application of the Baxter model for hard-spheres with surface adhesion to SANS data for the U(VI) - HNO{sub 3}, TBP-n-dodecane system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiarizia, R.; Nash, K. L.; Jensen, M. P.

    2003-11-11

    Small-angle neutron scattering (SANS) data for the tri-n-butyl phosphate (TBP)-n-dodecane, HNO{sub 3}-UO{sub 2}(NO{sub 3}){sub 2} solvent extraction system have been interpreted using the Baxter model for hard spheres with surface adhesion. The increase in the scattering intensity in the low Q range observed when increasing amounts of HNO{sub 3} or UO{sub 2}(NO{sub 3}){sub 2} are transferred into the organic phase has been interpreted as arising from interactions between solute particles. The SANS data have been reproduced using a 12--16 {angstrom} diameter of the hard sphere, d{sub hs}, and a 5.6k{sub B}T-7.1k{sub B}T stickiness parameter, {tau}{sup -1}. When in contact withmore » an aqueous phase, TBP in n-dodecane forms small reverse micelles containing three TBP molecules. Upon extraction of water, HNO{sub 3}, and UO{sub 2}(NO{sub 3}){sub 2}, the swollen micelles interact through attractive forces between their polar cores with a potential energy of about 2k{sub B}T and an effective Hamaker constant of about 4k{sub B}T. The intermicellar attraction, under suitable conditions, leads to third-phase formation. Upon phase splitting, most of the solutes in the original organic phase (water, TBP, HNO{sub 3}, and UO{sub 2}(NO{sub 3}){sub 2}) separate in a continuous phase containing interspersed layers of n-dodecane.« less

  6. Dislocation core structures of tungsten with dilute solute hydrogen

    NASA Astrophysics Data System (ADS)

    Wang, Yinan; Li, Qiulin; Li, Chengliang; Shu, Guogang; Xu, Ben; Liu, Wei

    2017-12-01

    In this paper, a combination of quantum mechanical and interatomic potential-based atomistic calculations are used to predict the core structures of screw and edge dislocations in tungsten in the presence of a particular concentration of hydrogen atoms. These configurations of the core structures are the results of two competing energies: the interaction between the partial dislocations and the corresponding generalized stacking fault energy in between the two partial dislocations, which are presented in this work. With this, we can precisely predict the configurations of the hydrogen-doped dislocation core structures.

  7. CSI: Hard Drive

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2008-01-01

    Acting on information from students who reported seeing a classmate looking at inappropriate material on a school computer, school officials used forensics software to plunge the depths of the PC's hard drive, searching for evidence of improper activity. Images were found in a deleted Internet Explorer cache as well as deleted file space.…

  8. PKiKP amplitude observations and structure of the inner core boundary

    NASA Astrophysics Data System (ADS)

    Krasnoshchekov, D.; Adushkin, V.; Ovtchinnikov, V.

    2003-04-01

    We present PKiKP amplitude observations at distances from 5.6 to 90 degrees that evidence substantial lateral variability of reflecting conditions on the inner core boundary. Unlike other PKiKP studies, that frequently use array data, detection of PKiKP phase in the work was accomplished on single vertical component. We have carefully investigated short-period digital vertical channels of 9 stations in Central Asia that recorded 43 Underground Nuclear Explosions carried out at Nevada, Lop-Nor, Novaya Zemlya and Semipalatinsk Test Sites in 1968 - 1994, and found numerous convincing examples of PKiKP waveforms. The amplitude data set varies in the range from 1 to 62 nm with predominant period of less than 1 s. Using known seismic source parameters we compared the expected PKiKP amplitudes and travel times to the experimental ones. The observed travel times are generally agreed with PREM within 1 s scatter, though amplitudes aren't. In addition, the whole stack of experimental amplitudes may hardly be simultaneously agreed with any regular model of the inner core boundary either sharp or with transition. Thorough analysis of the data set indicates, that detection of PKiKP and its amplitude is basically pre-defined by actual physical conditions at reflection point on the surface of the inner core which may vary substantially due to boundary processes of freezing and chemical (structural) convection.

  9. Microstructural Evolution of Hypoeutectic, Near-Eutectic, and Hypereutectic High-Carbon Cr-Based Hard-Facing Alloys

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Ming; Chang, Chia-Ming; Chen, Jie-Hao; Hsieh, Chih-Chun; Wu, Weite

    2009-05-01

    A series of high-carbon Cr-based hard-facing alloys were successfully fabricated on a substrate of 0.45 pct C carbon steel by gas tungsten arc welding (GTAW) process using various alloy fillers with chromium and chromium carbide, CrC (Cr:C = 4:1) powders. These claddings were designed to observe hypoeutectic, near-eutectic, and hypereutectic structures with various (Cr,Fe)23C6 and (Cr,Fe)7C3 carbides at room temperature. According to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and optical microscopy (OM), in 3.8 pct C cladding, the microstructure consisted of the primary carbides with outer shells (Cr,Fe)23C6 surrounding (Cr,Fe)7C3 cores and [ α + (Cr,Fe)23C6] eutectic structures. In 5.9 pct C cladding, the composite comprised primary (Cr,Fe)7C3 as the reinforcing phase and [α + (Cr,Fe)7C3] eutectic structures as matrix. Various morphologies of carbides were found in primary and eutectic (Cr,Fe)7C3 carbides, which included bladelike and rodlike (with a hexagonal cross section). The 5.9C cladding with great amounts of primary (Cr,Fe)7C3 carbides had the highest hardness (approximately HRC 63.9) of the all conditions.

  10. Efficacy of massage treatment technique in masseter muscle hardness: robotic experimental approach.

    PubMed

    Hiraiwa, Yuichiro; Ariji, Yoshiko; Kise, Yoshitaka; Sakuma, Shigemitsu; Kurita, Kenichi; Ariji, Eiichiro

    2013-10-01

    The study aimed to clarify the masseter muscle hardness in patients with myofascial pain, to examine their changes after massage, and to analyze whether the hardness can be an index for massage treatment. Sixteen patients with myofascial pain (12 with unilateral and 4 with bilateral masseter muscle pain) and 24 healthy volunteers were enrolled in this study. The masseter hardness between patients and the healthy volunteers was compared. The changes in the hardness in patients after massage were examined. The relation of the hardness with massage regimens and efficacies was analyzed. There was a significant right-and-left difference of the hardness in patients, although there was no difference in the healthy volunteers. The hardness decreased after massage. The pretreatment asymmetry index of the hardness showed a significant correlation with the massage pressure. It was concluded that there was a significant difference between the right and left masseter hardness in patients with myofascial pain. After massage treatment, the masseter hardness and right-and-left difference decreased. The hardness may be an index for determining the massage pressure.

  11. Synthesis and thermal stability of W/WS{sub 2} inorganic fullerene-like nanoparticles with core-shell structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Lianxia; Yang Haibin; Fu Wuyou

    W/WS{sub 2} inorganic fullerene-like (IF) nanoparticles with core-shell structure are synthesized by the reaction of tungsten nanospheres and sulfur at relatively low temperatures (380-600 deg. C) under hydrogen atmosphere, in which tungsten nanospheres were prepared by wire electrical explosion method. Images of transmission electron microscopy and high-resolution transmission electron microscopy show that the composite particles are of core-shell structure with spherical shape and the shell thickness is about 10 nm. X-ray powder diffraction results indicate that the interlayer spacing of IF-WS{sub 2} shell decreases and approaches that of 2H-WS{sub 2} with increasing annealing temperatures, representing an expansion of 3.3-1.6%. Amore » mechanism of IF-WS{sub 2} formation via sulfur diffusion into fullerene nanoparticles is discussed. Thermal analysis shows that the nanoparticles obtained at different temperatures exhibit similar thermal stability and the onset temperature of oxidization is about 410 deg. C. Encapsulating hard tungsten core into IF-WS{sub 2} and the spherical shape of the core-shell structures may enhance their performance in tribological applications.« less

  12. Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres.

    PubMed

    Shin, Homin; Schweizer, Kenneth S

    2013-02-28

    We propose an Einstein-solid, self-consistent phonon theory for the crystal phase of hard spheres that interact via short-range attractions. The approach is first tested against the known behavior of hard spheres, and then applied to homogeneous particles that interact via short-range square well attractions and the Baxter adhesive hard sphere model. Given the crystal symmetry, packing fraction, and strength and range of attractive interactions, an effective harmonic potential experienced by a particle confined to its Wigner-Seitz cell and corresponding mean square vibrational amplitude are self-consistently calculated. The crystal free energy is then computed and, using separate information about the fluid phase free energy, phase diagrams constructed, including a first-order solid-solid phase transition and its associated critical point. The simple theory qualitatively captures all the many distinctive features of the phase diagram (critical and triple point, crystal-fluid re-entrancy, low-density coexistence curve) as a function of attraction range, and overall is in good semi-quantitative agreement with simulation. Knowledge of the particle localization length allows the crystal shear modulus to be estimated based on elementary ideas. Excellent predictions are obtained for the hard sphere crystal. Expanded and condensed face-centered cubic crystals are found to have qualitatively different elastic responses to varying attraction strength or temperature. As temperature increases, the expanded entropic solid stiffens, while the energy-controlled, fully-bonded dense solid softens.

  13. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model

    PubMed Central

    Konstantinova, Jelizaveta; Xu, Guanghua; He, Bo; Aminzadeh, Vahid; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2017-01-01

    Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation. PMID:28248996

  14. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model.

    PubMed

    Li, Min; Konstantinova, Jelizaveta; Xu, Guanghua; He, Bo; Aminzadeh, Vahid; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2017-01-01

    Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.

  15. Ivy League Football: Hard-Core Unemployment

    ERIC Educational Resources Information Center

    Iman, Raymond S.

    1971-01-01

    Decries the discrimination accorded to Ivy League football players by Pro Football owners and suggests corrective measures including a Head Start program involving preseason coaching for Ivy Leaguers, formation of a Department of Recreational Studies headed by Ara Parseghian or Darrell Royal, and a remedial course for punters during Christmas…

  16. Double-diffusive translation of Earth's inner core

    NASA Astrophysics Data System (ADS)

    Deguen, R.; Alboussiére, T.; Labrosse, S.

    2018-03-01

    The hemispherical asymmetry of the inner core has been interpreted as resulting form a high-viscosity mode of inner core convection, consisting in a translation of the inner core. A thermally driven translation, as originally proposed, is unlikely if the currently favoured high values of the thermal conductivity of iron at core conditions are correct. We consider here the possibility that inner core translation results from an unstable compositional gradient, which would develop either because the light elements present in the core become increasingly incompatible as the inner core grows, or because of a possibly positive feedback of the development of the F-layer on inner core convection. Though the magnitude of the destabilising effect of the compositional field is predicted to be similar to or smaller than the stabilising effect of the thermal field, the huge difference between thermal and chemical diffusivities implies that double-diffusive instabilities can still arise even if the net buoyancy increases upward. Using linear stability analysis and numerical simulations, we demonstrate that a translation mode can indeed exist if the compositional field is destabilising, even if the temperature profile is subadiabatic, and irrespectively of the relative magnitudes of the composition and potential temperature gradients. The existence of this double diffusive mode of translation requires that the following conditions are met: (i) the compositional profile within the inner core is destabilising, and remains so for a duration longer than the destabilisation timescale (on the order of 200 My, but strongly dependent on the magnitude of the initial perturbation); and (ii) the inner core viscosity is sufficiently large, the required value being a strongly increasing function of the inner core size (e.g. 1017 Pa.s when the inner core was 200 km in radius, and ≃ 3 × 1021 Pa.s at the current inner core size). If these conditions are met, the predicted inner core

  17. AGN in the Swift/BAT and INTEGRAL Hard X-ray Surveys

    NASA Technical Reports Server (NTRS)

    Beckmann, Volker; Tueller, Jack; Baumgartner, Wayne; Markwardt, Craig; Mushotzky, Richard; Skinner, Gerry

    2008-01-01

    Two hard X-ray surveys are in progress at this time. They provide a unique new window on compact objects and black holes. I will discuss how these two surveys complement each other and the potential for improved coordination that could yield significant near term results in both sensitivity and time coverage. I will pay particular attention to the discovery of faint sources including new results from the 36 month survey from Swift/Burst Alert Telescope (BAT).

  18. "Hard Science" for Gifted 1st Graders

    ERIC Educational Resources Information Center

    DeGennaro, April

    2006-01-01

    "Hard Science" is designed to teach 1st grade gifted students accurate and high level science concepts. It is based upon their experience of the world and attempts to build a foundation for continued love and enjoyment of science. "Hard Science" provides field experiences and opportunities for hands-on discovery working beside experts in the field…

  19. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis; Homer Robertson; Alan Black

    2006-06-22

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more

  20. An approach for addressing hard-to-detect hot spots.

    PubMed

    Abelquist, Eric W; King, David A; Miller, Laurence F; Viars, James A

    2013-05-01

    The Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) survey approach is comprised of systematic random sampling coupled with radiation scanning to assess acceptability of potential hot spots. Hot spot identification for some radionuclides may not be possible due to the very weak gamma or x-ray radiation they emit-these hard-to-detect nuclides are unlikely to be identified by field scans. Similarly, scanning technology is not yet available for chemical contamination. For both hard-to-detect nuclides and chemical contamination, hot spots are only identified via volumetric sampling. The remedial investigation and cleanup of sites under the Comprehensive Environmental Response, Compensation, and Liability Act typically includes the collection of samples over relatively large exposure units, and concentration limits are applied assuming the contamination is more or less uniformly distributed. However, data collected from contaminated sites demonstrate contamination is often highly localized. These highly localized areas, or hot spots, will only be identified if sample densities are high or if the environmental characterization program happens to sample directly from the hot spot footprint. This paper describes a Bayesian approach for addressing hard-to-detect nuclides and chemical hot spots. The approach begins using available data (e.g., as collected using the standard approach) to predict the probability that an unacceptable hot spot is present somewhere in the exposure unit. This Bayesian approach may even be coupled with the graded sampling approach to optimize hot spot characterization. Once the investigator concludes that the presence of hot spots is likely, then the surveyor should use the data quality objectives process to generate an appropriate sample campaign that optimizes the identification of risk-relevant hot spots.

  1. Categorization of psychoactive substances into "hard drugs" and "soft drugs": a critical review of terminology used in current scientific literature.

    PubMed

    Janik, Peter; Kosticova, Michaela; Pecenak, Jan; Turcek, Michal

    2017-11-01

    Precise terminology and definitions are important components of scientific language. Although the terms "hard drugs" and "soft drugs" are used widely by professionals, neither the International Classification of Diseases nor the Diagnostic and Statistical Manual classify psychoactive substances into the categories "hard" and "soft." To analyze the occurrence of the terms "hard drugs" and "soft drugs" in recent scientific literature and to establish the degree of consensus in labeling psychoactive substances as "hard" or "soft." A critical review of scientific papers listed in PubMed and Scopus between 2011 and 2015. Three hundred thirty-four articles were initially identified as potentially relevant for review, 132 of which were included in the final analysis. One hundred twenty-four articles used the term "hard drugs" and 84.7% provided examples of substances considered "hard." Forty-four articles used the term "soft drugs" and 90.9% provided examples of substances considered "soft." Citations of relevant articles supporting categorization as "hard" or "soft" were not given in 90% of the articles. The authors often provided no or only very sparse information on their reasons for considering specific drugs as "hard" or "soft." Although it initially appeared that there is substantial agreement as to which psychoactive substances should be regarded as "hard" and "soft," closer inspection shows that the dividing line is blurred without clear criteria for categorization. At this time, it remains uncertain whether these terms should persist in the scientific literature. We therefore recommend these terms should be avoided or, if used, be clearly and precisely defined.

  2. Capturing haplotypes in germplasm core collections

    USDA-ARS?s Scientific Manuscript database

    Genomewide data sets of single nucleotide polymorphisms (SNPs) offer great potential to improve ex situ conservation. Two factors impede their use for producing core collections. First, due to the large number of SNPs, the assembly of collections that maximize diversity may be intractable using ex...

  3. Biomarker signatures in sediment cores of Lake Urmia (NW Iran): Potential implications for paleo-climate and paleo-environment reconstruction

    NASA Astrophysics Data System (ADS)

    Haghipour, Negar; Eglinton, Timothy Ian; McIntyre, Cameron; Darvishi Khatooni, Javad; Hunziker, Daniela; Mohammadi, Ali

    2015-04-01

    Lake Urmia, in northwest Iran, is the largest saline lake in the Middle East with a surface area of ~ 5000km2. Historical documents indicate its existence since at least 2000 years BC, and palynological investigation of a 100 m-long core suggest it contains a sedimentary record spanning the last 200 ka. Despite this potential as an archive of paleo-climate and paleo-environmental information, to date there has been no molecular organic geochemical investigation or precise dating of these sediments. As part of an exploratory study, we have analyzed material from 3 recently collected 8 m-long cores from the eastern, western and middle part of the lake, with the aim of gaining insight in to past depositional and environmental conditions from biomarker signatures preserved in Lake Urmia sediments. The main objectives are to 1) constrain major source(s) of organic matter and gain insights into carbon cycle and depositional processes from bulk isotopic (δ13Corg, 14Corg) and molecular information, 2) determine the applicability of molecular proxies (TEX86 index derived from glyceroldialkylglycerol tetraethers, GDGTs, and unsaturation index UK37 based on long chain alkenones) for paleo-temperature reconstruction and 3) reconstruct the paleo- vegetation and hydrology from compound-specific stable isotopes (δ13C and δD of n-alkanes). In select samples examined from the three cores, we find the hydrocarbon fractions are dominated by long-chain n-alkanes, with n-C29 and C31 as the dominant homologues in most of the samples. Based on the n-alkane distribution, we distinguish two main types; Type 1 mainly includes the samples deeper than ca 4 m (CPI= 10.2, ACL= 30), characteristic of a terrestrial higher plant source; Type 2 comprises mainly shallower samples (CPI =1.5, ACL = 27.3) which may suggest an increased contribution of aquatic plants. Preliminary GDGT analyses indicate low BIT values for most samples, which suggest little input of soil-derived branched-GDGTs. The

  4. Exchange-coupled hard magnetic Fe-Co/CoPt nanocomposite films fabricated by electro-infiltration

    NASA Astrophysics Data System (ADS)

    Wen, Xiao; Andrew, Jennifer S.; Arnold, David P.

    2017-05-01

    This paper introduces a potentially scalable electro-infiltration process to produce exchange-coupled hard magnetic nanocomposite thin films. Fe-Co/CoPt nanocomposite films are fabricated by deposition of CoFe2O4 nanoparticles onto Si substrate, followed by electroplating of CoPt. Samples are subsequently annealed under H2 to reduce the CoFe2O4 to magnetically soft Fe-Co and also induce L10 ordering in the CoPt. Resultant films exhibit 0.97 T saturation magnetization, 0.70 T remanent magnetization, 127 kA/m coercivity and 21.8 kJ/m3 maximum energy density. First order reversal curve (FORC) analysis and δM plot are used to prove the exchange coupling between soft and hard magnetic phases.

  5. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    PubMed Central

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-01-01

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering. PMID:28773924

  6. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering.

    PubMed

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-09-27

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  7. Laser Ablatin of Dental Hard Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seka, W.; Rechmann, P.; Featherstone, J.D.B.

    This paper discusses ablation of dental hard tissue using pulsed lasers. It focuses particularly on the relevant tissue and laser parameters and some of the basic ablation processes that are likely to occur. The importance of interstitial water and its phase transitions is discussed in some detail along with the ablation processes that may or may not directly involve water. The interplay between tissue parameters and laser parameters in the outcome of the removal of dental hard tissue is discussed in detail.

  8. Ti1-xAux Alloys: Hard Biocompatible Metals and Their Possible Applications

    NASA Astrophysics Data System (ADS)

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevzi; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Morosan, Emilia

    2015-03-01

    The search for new hard materials is often challenging from both theoretical and experimental points of view. Furthermore, using materials for biomedical applications calls for alloys with high biocompatibility which are even more sparse. The Ti1-xAux (0 . 22 <= x <= 0 . 8) exhibit extreme hardness and strength values, elevated melting temperatures (compared to those of constituent elements), reduced density compared to Au, high malleability, bulk metallicity, high biocompatibility, low wear, reduced friction, potentially high radio opacity, as well as osseointegration. All these properties render the Ti1-xAux alloys particularly useful for orthopedic, dental, and prosthetic applications, where they could be used as both permanent and temporary components. Additionally, the ability of Ti1-xAux alloys to adhere to ceramic parts could reduce the weight and cost of these components. The work at Rice was supported by NSF DMR 0847681 (E.M. and E.S.).

  9. Does hard insertion and space improve shock absorption ability of mouthguard?

    PubMed

    Takeda, Tomotaka; Ishigami, Keiichi; Handa, Jun; Naitoh, Kaoru; Kurokawa, Katsuhide; Shibusawa, Mami; Nakajima, Kazunori; Kawamura, Shintaro

    2006-04-01

    Mouthguards are expected to reduce sports-related orofacial injuries. Numerous studies have been conduced to improve the shock absorption ability of mouthguards using air cells, sorbothane, metal wire, or hard material insertion. Most of these were shown to be effective; however, the result of each study has not been applied to clinical use. The aim of this study was to develop mouthguards that have sufficient prevention ability and ease of clinical application with focus on a hard insertion and space. Ethylene vinyl acetate (EVA) mouthguard blank used was Drufosoft and the acrylic resin was Biolon (Dreve-Dentamid GMBH, Unna, Germany). Three types of mouthguard samples tested were constructed by means of a Dreve Drufomat (Type SO, Dreve-Dentamid) air pressure machine: the first was a conventional laminated type of EVA mouthguard material; the second was a three layer type with acrylic resin inner layer (hard-insertion); the third was the same as the second but with space that does not come into contact with tooth surfaces (hard + space). As a control, without any mouthguard condition (NOMG) was measured. A pendulum type impact testing machine with interchangeable impact object (steel ball and baseball) and dental study model (D17FE-NC.7PS, Nissin, Tokyo, Japan) with the strain gages (KFG-1-120-D171-11N30C2: Kyowa, Tokyo, Japan) applied to teeth and the accelerometer to the dentition (AS-A YG-2768 100G, Kyowa) were used to measure transmitted forces. Statistical analysis (anova, P < 0.01) showed significant differences among four conditions of NOMG and three different mouthguards in both objects and sensor. About acceleration: in a steel ball which was a harder impact object, shock absorption ability of about 40% was shown with conventional EVA and hard-insertion and about 50% with hard + space. In a baseball that was softer compared with steel ball, a decrease rate is smaller, reduction (EVA = approximately 4%, hard-insertion = approximately 12%, hard + space

  10. Hard-Boiled for Hard Times in Leonardo Padura Fuentes's Detective Fiction

    ERIC Educational Resources Information Center

    Song, H. Rosi

    2009-01-01

    Focusing on Leonardo Padura Fuentes's hard-boiled fiction, this essay traces the origin and evolution of the genre in Cuba. Padura Fuentes has challenged the officially sanctioned socialist "literatura policial" that became popular in the 1970s and 1980s. creating a new model of criticism that is not afraid to confront the island's socio-economic…

  11. Automatic Quantification of X-ray Computed Tomography Images of Cores: Method and Application to Shimokita Cores (Northeast Coast of Honshu, Japan)

    NASA Astrophysics Data System (ADS)

    Gaillot, P.

    2007-12-01

    X-ray computed tomography (CT) of rock core provides nondestructive cross-sectional or three-dimensional core representations from the attenuation of electromagnetic radiation. Attenuation depends on the density and the atomic constituents of the rock material that is scanned. Since it has the potential to non-invasively measure phase distribution and species concentration, X-ray CT offers significant advantages to characterize both heterogeneous and apparently homogeneous lithologies. In particular, once empirically calibrated into 3D density images, this scanning technique is useful in the observation of density variation. In this paper, I present a procedure from which information contained in the 3D images can be quantitatively extracted and turned into very-high resolution core logs and core image logs including (1) the radial and angular distributions of density values, (2) the histogram of distribution of the density and its related statistical parameters (average, 10- 25- 50, 75 and 90 percentiles, and width at half maximum), and (3) the volume, the average density and the mass contribution of three core fractions defined by two user-defined density thresholds (voids and vugs < 1.01 g/cc ≤ damaged core material < 1.25 g/cc < non-damaged core material). In turn, these quantitative outputs (1) allow the recognition of bedding and sedimentary features, as well as natural and coring-induced fractures, (2) provide a high-resolution bulk density core log, and (3) provide quantitative estimates of core voids and core damaged zones that can further be used to characterize core quality and core disturbance, and apply, where appropriate, volume correction on core physical properties (gamma-ray attenuation density, magnetic susceptibility, natural gamma radiation, non-contact electrical resistivity, P-wave velocity) acquired via Multi- Sensors Core loggers (MSCL). The procedure is illustrated on core data (XR-CT images, continuous MSCL physical properties and

  12. Approaches to Recruiting 'Hard-To-Reach' Populations into Re-search: A Review of the Literature.

    PubMed

    Shaghaghi, Abdolreza; Bhopal, Raj S; Sheikh, Aziz

    2011-01-01

    'Hard-to-reach' is a term used to describe those sub-groups of the population that may be difficult to reach or involve in research or public health programmes. Application of a single term to call these sub-sections of populations implies a homogeneity within distinct groups, which does not necessarily exist. Different sampling techniques were introduced so far to recruit hard-to-reach populations. In this article, we have reviewed a range of ap-proaches that have been used to widen participation in studies. We performed a Pubmed and Google search for relevant English language articles using the keywords and phrases: (hard-to-reach AND population* OR sampl*), (hidden AND population* OR sample*) and ("hard to reach" AND population* OR sample*) and a consul-tation of the retrieved articles' bibliographies to extract empirical evidence from publications that discussed or examined the use of sampling techniques to recruit hidden or hard-to-reach populations in health studies. Reviewing the literature has identified a range of techniques to recruit hard-to-reach populations, including snowball sampling, respondent-driven sampling (RDS), indigenous field worker sampling (IFWS), facility-based sampling (FBS), targeted sampling (TS), time-location (space) sampling (TLS), conventional cluster sampling (CCS) and capture re-capture sampling (CR). The degree of compliance with a study by a certain 'hard-to-reach' group de-pends on the characteristics of that group, recruitment technique used and the subject of inter-est. Irrespective of potential advantages or limitations of the recruitment techniques reviewed, their successful use depends mainly upon our knowledge about specific characteristics of the target populations. Thus in line with attempts to expand the current boundaries of our know-ledge about recruitment techniques in health studies and their applications in varying situa-tions, we should also focus on possibly all contributing factors which may have an impact on

  13. HRT-UML: a design method for hard real-time systems based on the UML notation

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Massimo; Mazzini, Silvia; di Natale, Marco; Lipari, Giuseppe

    2002-07-01

    The Hard Real-Time-Unified Modelling Language (HRT-UML) method aims at providing a comprehensive solution to the modeling of Hard Real Time systems. The experience shows that the design of Hard Real-Time systems needs methodologies suitable for the modeling and analysis of aspects related to time, schedulability and performance. In the context of the European Aerospace community a reference method for design is Hierarchical Object Oriented Design (HOOD) and in particular its extension for the modeling of hard real time systems, Hard Real-Time-Hierarchical Object Oriented Design (HRT-HOOD), recommended by the European Space Agency (ESA) for the development of on-board systems. On the other hand in recent years the Unified Modelling Language (UML) has been gaining a very large acceptance in a wide range of domains, all over the world, becoming a de-facto international standard. Tool vendors are very active in this potentially big market. In the Aerospace domain the common opinion is that UML, as a general notation, is not suitable for Hard Real Time systems, even if its importance is recognized as a standard and as a technological trend in the near future. These considerations suggest the possibility of replacing the HRT-HOOD method with a customized version of UML, that incorporates the advantages of both standards and complements the weak points. This approach has the clear advantage of making HRT-HOOD converge on a more powerful and expressive modeling notation. The paper identifies a mapping of the HRT-HOOD semantics into the UML one, and proposes a UML extension profile, that we call HRT-UML, based on the UML standard extension mechanisms, to fully represent HRT-HOOD design concepts. Finally it discusses the relationships between our profile and the UML profile for schedulability, performance and time, adopted by OMG in November 2001.

  14. Extraordinarily soft, medium-hard and hard Indian wheat varieties: Composition, protein profile, dough and baking properties.

    PubMed

    Katyal, Mehak; Singh, Narpinder; Virdi, Amardeep Singh; Kaur, Amritpal; Chopra, Nidhi; Ahlawat, Arvind Kumar; Singh, Anju Mahendru

    2017-10-01

    Hard wheat (HW), medium-hard wheat (MHW) and extraordinarily soft wheat (Ex-SW) varieties with grain hardness index (GHI) of 83 to 95, 72 to 80, 17 to 29 were evaluated for pasting, protein molecular weight (MW) distribution, dough rheology and baking properties. Flours from varieties with higher GHI had more protein content, ash content and paste viscosities. Ex-SW had more glutenins proportion as compared to HW and MHW. Flours from Ex-SW varieties showed lower NaSRC, WA and mixographic parameters as compared to HW and MHW. Dough from flours milled from Ex-SW had higher Intermolecular-β-sheets (IM-β-sheets) than those from MHW and HW. Muffins volume increased with decrease in GHI, Ex-SW varieties had more muffin volume and less air space. The accumulation of polypeptides (PPs) varied significantly in different varieties. Ex-SW variety (QBP12-10) showed accumulation of 98, 90, 81 and 79kDa PPs, which was unique and was different from other varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Long-term hot-hardness characteristics of five through-hardened bearing steels

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.

    1978-01-01

    Five vacuum-melted bearing steels tempered to various room temperature hardnesses: AISI 52100 and the tool steels AISI M-1, AISI M-50, Halmo, and WB-49 were studied. Hardness measurements were taken on AISI 52100 at room temperature and at elevated temperatures after soaking it at temperatures to 478 K (400 F) for as long as 1000 hours. Hardness measurements were also taken on the tool steels after soaking them at temperatures to 700 K (800 F) for as long at 1000 hours. None of the tool steel tempered during soaking and AISI 52100 did not temper when soaked at 366 K (200 F) for 1000 hours. However, AISI 52100 that was initially hardened to room temperature hardness of 62.5 or 64.5 lost hardness during the first 500 hours of the 1000-hour soak tests at temperatures greater than 394 K (250 F), but it maintained its hardness during the final 500 hours of soaking. Similarly, AISI 52100 initially hardened to room temperature hardness of 60.5 lost hardness during the first 500 hours of the 1000-hour soaking at temperatures greater than 422 K (300 F), but it maintained its hardness during the final 500 hours of soaking.

  16. Effective core potential calculations on small molecules containing transition metal atoms

    NASA Astrophysics Data System (ADS)

    Gropen, O.; Wahlgren, U.; Pettersson, L.

    1982-04-01

    A series of test calculations on diatomic oxides and hydrides of Sc, Ti, Cr, Ni and Zn have been carried out in order to test the reliability of some pseudopotential methods. Several different forms of some pseudopotential operators were used. Only the highest valence orbitals of each atomic symmetry were explicitly included in the calculations. The results indicate that there are problems associated with all the investigated operators particularly for the lighter transition elements. It is suggested that more reliable results may be obtained with pseudopotential methods using smaller cores.

  17. Mechanical properties of Mo-Si-B alloys fabricated by using core-shell powder with dispersion of yttria nanoparticles

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Bang, Su-Ryong; Choi, Won June; Kim, Min Sang; Noh, Goo Won; Kim, Young Do

    2017-01-01

    In recent years, refractory materials with excellent high-temperature properties have been in the spotlight as a next generation's high-temperature materials. Among these, Mo-Si-B alloys composed of two intermetallic compound phases (Mo5SiB2 and Mo3Si) and a ductile α-Mo phase have shown an outstanding thermal properties. However, due to the brittleness of the intermetallic compound phases, Mo-Si-B alloys were restricted to apply for the structural materials. So, to enhance the mechanical properties of Mo-Si-B alloys, many efforts to add rare-earth oxide particles in the Mo-Si-B alloy were performed to induce the improvement of strength and fracture toughness. In this study, to investigate the effect of adding nano-sized Y2O3 particles in Mo-Si-B alloy, a core-shell powder consisting of intermetallic compound phases as the core and nano-sized α-Mo and Y2O3 particles surrounding the core was fabricated. Then pressureless sintering was carried out at 1400 °C for 3 h, and the mechanical properties of sintered bodies with different amounts of Y2O3 particles were evaluated by Vickers hardness and 3-point bending test. Vickers hardness was improved by dispersed Y2O3 particles in the Mo-Si-B alloy. Especially, Mo-3Si-1B-1.5Y2O3 alloy had the highest value, 589 Hv. The fracture toughness was measured using Mo-3Si-1B-1.5Y2O3 alloy and the value indicated as 13.5 MPa·√m.

  18. Soliton propagation in tapered silicon core fibers.

    PubMed

    Peacock, Anna C

    2010-11-01

    Numerical simulations are used to investigate soliton-like propagation in tapered silicon core optical fibers. The simulations are based on a realistic tapered structure with nanoscale core dimensions and a decreasing anomalous dispersion profile to compensate for the effects of linear and nonlinear loss. An intensity misfit parameter is used to establish the optimum taper dimensions that preserve the pulse shape while reducing temporal broadening. Soliton formation from Gaussian input pulses is also observed--further evidence of the potential for tapered silicon fibers to find use in a range of signal processing applications.

  19. α Centauri A as a potential stellar model calibrator: establishing the nature of its core

    NASA Astrophysics Data System (ADS)

    Nsamba, B.; Monteiro, M. J. P. F. G.; Campante, T. L.; Cunha, M. S.; Sousa, S. G.

    2018-05-01

    Understanding the physical process responsible for the transport of energy in the core of α Centauri A is of the utmost importance if this star is to be used in the calibration of stellar model physics. Adoption of different parallax measurements available in the literature results in differences in the interferometric radius constraints used in stellar modelling. Further, this is at the origin of the different dynamical mass measurements reported for this star. With the goal of reproducing the revised dynamical mass derived by Pourbaix & Boffin, we modelled the star using two stellar grids varying in the adopted nuclear reaction rates. Asteroseismic and spectroscopic observables were complemented with different interferometric radius constraints during the optimisation procedure. Our findings show that best-fit models reproducing the revised dynamical mass favour the existence of a convective core (≳ 70% of best-fit models), a result that is robust against changes to the model physics. If this mass is accurate, then α Centauri A may be used to calibrate stellar model parameters in the presence of a convective core.

  20. Compaction-Driven Evolution of Pluto's Rocky Core: Implications for Water-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Gabasova, L. R.; Tobie, G.; Choblet, G.

    2018-05-01

    We model the compaction of Pluto's rocky core after accretion and explore the potential for hydrothermal circulation within the porous layer, as well as examine its effect on core cooling and the persistence of a liquid internal ocean.

  1. Is there a hard-to-reach audience?

    PubMed Central

    Freimuth, V S; Mettger, W

    1990-01-01

    The "hard-to-reach" label has been applied to many different audiences. Persons who have a low socioeconomic status (SES), members of ethnic minorities, and persons who have a low level of literacy often are tagged as "hard-to-reach." The authors identify reasons why these groups have been labelled "hard-to-reach," discuss preconceptions associated with the "hard-to-reach" label, propose alternative conceptualizations of these audiences, and present implications of such conceptualizations for health communication campaigns. Pejorative labels and preconceptions about various groups may lead to depicting these audiences as powerless, apathetic, and isolated. The authors discuss alternative conceptualizations, which highlight the strengths of different audience segments and encourage innovative approaches to the communication process. These alternative conceptualizations emphasize interactive communication, a view of society in which individuals are seen as members of equivalent--albeit different--cultures, and a shift of responsibility for health problems from individuals to social systems. Recommendations for incorporating these alternative concepts into health campaigns include formative research techniques that create a dialogue among participants, more sophisticated segmentation techniques to capture audience diversity, and new roles for mass media that are more interactive and responsive to individual needs. PMID:2113680

  2. The MVAD pump: motor stator core loss characterization.

    PubMed

    Mesa, Kelly J; Ferreira, Antonio; Castillo, Samir; Reyes, Carlos; Wolman, Justin; Casas, Fernando

    2015-01-01

    Investigation of the miniature ventricular assist device (MVAD) pump motor stator core loss behavior was conducted. During operation, the ferromagnetic core in the pump's motor is magnetized by alternating magnetic fields, which, in turn, create intrinsic energy losses in the core material; these losses are known as core losses. A core loss fixture and a method to characterize the magnetic behavior of the MVAD pump stator over a range of frequencies were developed. The MVAD pump motor design features a three phase brushless DC stator with ferromagnetic laminations and copper wire windings arranged in a six slot configuration. The stator's magnetic behavior is important because its core magnetic losses impact pump system efficiency. A system to measure the core loss of MVAD pump stators was developed using a custom core loss fixture consisting of 16 copper wire turns wound in a closed loop geometry bundle; the stator under test was then placed within this bundle. The instrumentation consisted of a signal generator, a power amplifier, and a power analyzer. Power analyzer parameters of current, voltage, and power were collected for several runs with a sinusoidal frequency sweep of 0 to 50 kHz; data were collected for the fixture with and without stators. The magnetic losses inherent to the fixture were characterized independently as a baseline presenting a flat frequency response. The core loss power measurements of individual stators yielded a characteristic bandpass frequency response morphology with a peak core loss found around 2.3 to 2.5 kHz. In conclusion, this method could be used to describe the transfer function of the stator's core magnetic behavior. It also has the potential to be used for future motor evaluation and for investigation of core loss performance variability between different stators during manufacturing operations. Investigational device. Limited by United States law to investigational use.

  3. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings

    PubMed Central

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-01-01

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings. PMID:26924136

  4. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings.

    PubMed

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-02-29

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings.

  5. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-02-01

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings.

  6. [A new machinability test machine and the machinability of composite resins for core built-up].

    PubMed

    Iwasaki, N

    2001-06-01

    A new machinability test machine especially for dental materials was contrived. The purpose of this study was to evaluate the effects of grinding conditions on machinability of core built-up resins using this machine, and to confirm the relationship between machinability and other properties of composite resins. The experimental machinability test machine consisted of a dental air-turbine handpiece, a control weight unit, a driving unit of the stage fixing the test specimen, and so on. The machinability was evaluated as the change in volume after grinding using a diamond point. Five kinds of core built-up resins and human teeth were used in this study. The machinabilities of these composite resins increased with an increasing load during grinding, and decreased with repeated grinding. There was no obvious correlation between the machinability and Vickers' hardness; however, a negative correlation was observed between machinability and scratch width.

  7. Hard Photodisintegration of 3He

    NASA Astrophysics Data System (ADS)

    Granados, Carlos

    2011-02-01

    Large angle photodisintegration of two nucleons from the 3He nucleus is studied within the framework of the hard rescattering model (HRM). In the HRM the incoming photon is absorbed by one nucleon's valence quark that then undergoes a hard rescattering reaction with a valence quark from the second nucleon producing two nucleons emerging at large transverse momentum . Parameter free cross sections for pp and pn break up channels are calculated through the input of experimental cross sections on pp and pn elastic scattering. The calculated cross section for pp breakup and its predicted energy dependency are in good agreement with recent experimental data. Predictions on spectator momentum distributions and helicity transfer are also presented.

  8. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  9. Probing molecular dynamics in solution with x-ray valence-to-core spectroscopy

    NASA Astrophysics Data System (ADS)

    Doumy, Gilles; March, Anne Marie; Tu, Ming-Feng; Al Haddad, Andre; Southworth, Stephen; Young, Linda; Walko, Donald; Bostedt, Christoph

    2017-04-01

    Hard X-ray spectroscopies are powerful tools for probing the electronic and geometric structure of molecules in complex or disordered systems and have been particularly useful for studying molecules in the solution phase. They are element specific, sensitive to the electronic structure and the local arrangements of surrounding atoms of the element being selectively probed. When combined in a pump-probe scheme with ultrafast lasers, X-ray spectroscopies can be used to track the evolution of structural changes that occur after photoexcitation. Efficient use of hard x-ray radiation coming from high brilliance synchrotrons and upcoming high repetition rate X-ray Free Electron Lasers requires MHz repetition rate lasers and data acquisition systems. High information content Valence-to-Core x-ray emission is directly sensitive to the molecular orbitals involved in photochemistry. We report on recent progress towards fully enabling this photon-hungry technique for the study of time-resolved molecular dynamics, including efficient detection and use of polychromatic x-ray micro-probe at the Advanced Photon Source. Work was supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division.

  10. Core Formation Process and Light Elements in the Planetary Core

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Sakairi, T.; Watanabe, K.; Kamada, S.; Sakamaki, T.; Hirao, N.

    2015-12-01

    Si, O, and S are major candidates for light elements in the planetary core. In the early stage of the planetary formation, the core formation started by percolation of the metallic liquid though silicate matrix because Fe-S-O and Fe-S-Si eutectic temperatures are significantly lower than the solidus of the silicates. Therefore, in the early stage of accretion of the planets, the eutectic liquid with S enrichment was formed and separated into the core by percolation. The major light element in the core at this stage will be sulfur. The internal pressure and temperature increased with the growth of the planets, and the metal component depleted in S was molten. The metallic melt contained both Si and O at high pressure in the deep magma ocean in the later stage. Thus, the core contains S, Si, and O in this stage of core formation. Partitioning experiments between solid and liquid metals indicate that S is partitioned into the liquid metal, whereas O is weakly into the liquid. Partitioning of Si changes with the metallic iron phases, i.e., fcc iron-alloy coexisting with the metallic liquid below 30 GPa is depleted in Si. Whereas hcp-Fe alloy above 30 GPa coexisting with the liquid favors Si. This contrast of Si partitioning provides remarkable difference in compositions of the solid inner core and liquid outer core among different terrestrial planets. Our melting experiments of the Fe-S-Si and Fe-O-S systems at high pressure indicate the core-adiabats in small planets, Mercury and Mars, are greater than the slope of the solidus and liquidus curves of these systems. Thus, in these planets, the core crystallized at the top of the liquid core and 'snowing core' formation occurred during crystallization. The solid inner core is depleted in both Si and S whereas the liquid outer core is relatively enriched in Si and S in these planets. On the other hand, the core adiabats in large planets, Earth and Venus, are smaller than the solidus and liquidus curves of the systems. The

  11. Microstructure and hardness performance of AA6061 aluminium composite using friction stir processing

    NASA Astrophysics Data System (ADS)

    Marini, C. D.; Fatchurrohman, N.

    2018-04-01

    Rice husk ash (RHA) is an industrial waste that has become a potential reinforced material for aluminium matrix composite (AMCs) due to low cost and abundantly available resources. Friction stir processing (FSP) has been introduced as a method to modify surface properties of the metal and alloy including theirs composite as well. The present work reports the production and characterization of AA6061 and AA6061/5 vol% RHA using FSP using parameters rotation speed 1000 rpm and traversed speed 25 mm/min. The microstructure was studied using optical microscopy (OM). A homogenous dispersion of RHA particles was obtained in the composite. No agglomeration or segregation was observed. The produced composite exhibited a fine grain structure. An improvement in hardness profile was observed as AA6061/5 vol% RHA improves in hardness compared to FSPed of AA6061 without reinforcement.

  12. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DOE PAGES

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina; ...

    2017-01-17

    Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less

  13. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina

    Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less

  14. Infrastructure and mechanical properties of a fault zone in sandstone as an outcrop analogue of a potential geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Bauer, J. F.; Meier, S.; Philipp, S. L.

    2013-12-01

    Due to high drilling costs of geothermal projects, it is economically sensible to assess the potential suitability of a reservoir prior to drilling. Fault zones are of particular importance, because they may enhance fluid flow, or be flow barriers, respectively, depending on their particular infrastructure. Outcrop analogue studies are useful to analyze the fault zone infrastructure and thereby increase the predictability of fluid flow behavior across fault zones in the corresponding deep reservoir. The main aims of the present study are to 1) analyze the infrastructure and the differences of fracture system parameters in fault zones and 2) determine the mechanical properties of the faulted rocks. We measure fracture frequencies as well as orientations, lengths and apertures and take representative rock samples for each facies to obtain Young's modulus, compressive and tensile strengths in the laboratory. Since fractures reduce the stiffnesses of in situ rock masses we use an inverse correlation of the number of discontinuities to calculate effective (in situ) Young's moduli to investigate the variation of mechanical properties in fault zones. In addition we determine the rebound hardness, which correlates with the compressive strength measured in the laboratory, with a 'Schmidt-Hammer' in the field because this allows detailed maps of mechanical property variations within fault zones. Here we present the first results for a fault zone in the Triassic Lower Bunter of the Upper Rhine Graben in France. The outcrop at Cleebourg exposes the damage zone of the footwall and a clear developed fault core of a NNW-SSE-striking normal fault. The approximately 15 m wide fault core consists of fault gouge, slip zones, deformation bands and host rock lenses. Intensive deformation close to the core led to the formation of a distal fault core, a 5 m wide zone with disturbed layering and high fracture frequency. The damage zone also contains more fractures than the host rock

  15. How cores grow by pebble accretion. I. Direct core growth

    NASA Astrophysics Data System (ADS)

    Brouwers, M. G.; Vazan, A.; Ormel, C. W.

    2018-03-01

    Context. Planet formation by pebble accretion is an alternative to planetesimal-driven core accretion. In this scenario, planets grow by the accretion of cm- to m-sized pebbles instead of km-sized planetesimals. One of the main differences with planetesimal-driven core accretion is the increased thermal ablation experienced by pebbles. This can provide early enrichment to the planet's envelope, which influences its subsequent evolution and changes the process of core growth. Aims: We aim to predict core masses and envelope compositions of planets that form by pebble accretion and compare mass deposition of pebbles to planetesimals. Specifically, we calculate the core mass where pebbles completely evaporate and are absorbed before reaching the core, which signifies the end of direct core growth. Methods: We model the early growth of a protoplanet by calculating the structure of its envelope, taking into account the fate of impacting pebbles or planetesimals. The region where high-Z material can exist in vapor form is determined by the temperature-dependent vapor pressure. We include enrichment effects by locally modifying the mean molecular weight of the envelope. Results: In the pebble case, three phases of core growth can be identified. In the first phase (Mcore < 0.23-0.39 M⊕), pebbles impact the core without significant ablation. During the second phase (Mcore < 0.5M⊕), ablation becomes increasingly severe. A layer of high-Z vapor starts to form around the core that absorbs a small fraction of the ablated mass. The rest of the material either rains out to the core or instead mixes outwards, slowing core growth. In the third phase (Mcore > 0.5M⊕), the high-Z inner region expands outwards, absorbing an increasing fraction of the ablated material as vapor. Rainout ends before the core mass reaches 0.6 M⊕, terminating direct core growth. In the case of icy H2O pebbles, this happens before 0.1 M⊕. Conclusions: Our results indicate that pebble accretion can

  16. Adsorption of soft and hard proteins onto OTCEs under the influence of an external electric field.

    PubMed

    Benavidez, Tomás E; Torrente, Daniel; Marucho, Marcelo; Garcia, Carlos D

    2015-03-03

    The adsorption behavior of hard and soft proteins under the effect of an external electric field was investigated by a combination of spectroscopic ellipsometry and molecular dynamics (MD) simulations. Optically transparent carbon electrodes (OTCE) were used as conductive, sorbent substrates. Lysozyme (LSZ) and ribonuclease A (RNase A) were selected as representative hard proteins, whereas myoglobin (Mb), α-lactalbumin (α-LAC), bovine serum albumin (BSA), glucose oxidase (GOx), and immunoglobulin G (IgG) were selected to represent soft proteins. In line with recent publications from our group, the experimental results revealed that while the adsorption of all investigated proteins can be enhanced by the potential applied to the electrode, the effect is more pronounced for hard proteins. In contrast with the incomplete monolayers formed at open-circuit potential, the application of +800 mV to the sorbent surface induced the formation of multiple layers of protein. These results suggest that this effect can be related to the intrinsic polarizability of the protein (induction of dipoles), the resulting surface accessible solvent area (SASA), and structural rearrangements induced upon the incorporation on the protein layer. The described experiments are critical to understand the relationship between the structure of proteins and their tendency to form (under electric stimulation) layers with thicknesses that greatly surpass those obtained at open-circuit conditions.

  17. Adsorption of Soft and Hard Proteins onto OTCEs under the influence of an External Electric Field

    PubMed Central

    Benavidez, Tomás E.; Torrente, Daniel; Marucho, Marcelo; Garcia, Carlos D.

    2015-01-01

    The adsorption behavior of hard and soft proteins under the effect of an external electric field was investigated by a combination of spectroscopic ellipsometry and molecular dynamics (MD) simulations. Optically transparent carbon electrodes (OTCE) were used as conductive, sorbent substrates. Lysozyme (LSZ) and ribonuclease A (RNase A) were selected as representative hard proteins whereas myoglobin (Mb), α-lactalbumin (α-LAC), bovine serum albumin (BSA), glucose oxidase (GOx), and immunoglobulin G (IgG) were selected to represent soft proteins. In line with recent publications from our group, the experimental results revealed that while the adsorption of all investigated proteins can be enhanced by the potential applied to the electrode, the effect is more pronounced for hard proteins. In contrast with the incomplete monolayers formed at open-circuit potential, the application of +800mV to the sorbent surface induced the formation of multiple layers of protein. These results also suggest that this effect can be related to the intrinsic polarizability of the protein (induction of dipoles), the resulting surface accessible solvent area (SASA), and structural rearrangements induced upon the incorporation on the protein layer. The described experiments are critical to understand the relationship between the structure of proteins and their tendency to form (under electric stimulation) layers with thicknesses that greatly surpass those obtained at open-circuit conditions. PMID:25658387

  18. Easy fabrication of a new type of mouthguard incorporating a hard insert and space and offering improved shock absorption ability.

    PubMed

    Takeda, Tomotaka; Ishigami, Keiichi; Mishima, Osamu; Karasawa, Kensuke; Kurokawa, Katsuhide; Kajima, Takaki; Nakajima, Kazunori

    2011-12-01

    The positive effects of wearing a mouthguard have been indicated in various epidemiological surveys and experiments, and their usage appears to be increasing in many sports. However, many preventable sports-related dental injuries still occur even with the use of a conventional mouthguard. We have developed a mouthguard (the Hard & Space mouthguard) with sufficient injury prevention ability (more than 95% shock absorption ability against impact with a steel ball carrying 15.2 kg m(2) S(-2) potential energy) and ease of clinical application. This mouthguard consists of an outer and an inner EVA layer and a middle layer of acrylic resin (hard insert), with a space to prevent contact between the inner surface of the mouthguard and the buccal surfaces of the maxillary front teeth or teeth already weakened through prior damage or treatment. The purpose of this article is to describe the method by which the Hard & Space mouthguard may easily be fabricated. We believe that this new type of mouthguard has the potential to reduce sports-related dental injuries. © 2011 John Wiley & Sons A/S.

  19. Students who are deaf and hard of hearing and use sign language: considerations and strategies for developing spoken language and literacy skills.

    PubMed

    Nussbaum, Debra; Waddy-Smith, Bettie; Doyle, Jane

    2012-11-01

    There is a core body of knowledge, experience, and skills integral to facilitating auditory, speech, and spoken language development when working with the general population of students who are deaf and hard of hearing. There are additional issues, strategies, and challenges inherent in speech habilitation/rehabilitation practices essential to the population of deaf and hard of hearing students who also use sign language. This article will highlight philosophical and practical considerations related to practices used to facilitate spoken language development and associated literacy skills for children and adolescents who sign. It will discuss considerations for planning and implementing practices that acknowledge and utilize a student's abilities in sign language, and address how to link these skills to developing and using spoken language. Included will be considerations for children from early childhood through high school with a broad range of auditory access, language, and communication characteristics. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets.

    PubMed

    Uddin, Reaz; Sufian, Muhammad

    2016-01-01

    Infections caused by Salmonella enterica, a Gram-negative facultative anaerobic bacteria belonging to the family of Enterobacteriaceae, are major threats to the health of humans and animals. The recent availability of complete genome data of pathogenic strains of the S. enterica gives new avenues for the identification of drug targets and drug candidates. We have used the genomic and metabolic pathway data to identify pathways and proteins essential to the pathogen and absent from the host. We took the whole proteome sequence data of 42 strains of S. enterica and Homo sapiens along with KEGG-annotated metabolic pathway data, clustered proteins sequences using CD-HIT, identified essential genes using DEG database and discarded S. enterica homologs of human proteins in unique metabolic pathways (UMPs) and characterized hypothetical proteins with SVM-prot and InterProScan. Through this core proteomic analysis we have identified enzymes essential to the pathogen. The identification of 73 enzymes common in 42 strains of S. enterica is the real strength of the current study. We proposed all 73 unexplored enzymes as potential drug targets against the infections caused by the S. enterica. The study is comprehensive around S. enterica and simultaneously considered every possible pathogenic strain of S. enterica. This comprehensiveness turned the current study significant since, to the best of our knowledge it is the first subtractive core proteomic analysis of the unique metabolic pathways applied to any pathogen for the identification of drug targets. We applied extensive computational methods to shortlist few potential drug targets considering the druggability criteria e.g. Non-homologous to the human host, essential to the pathogen and playing significant role in essential metabolic pathways of the pathogen (i.e. S. enterica). In the current study, the subtractive proteomics through a novel approach was applied i.e. by considering only proteins of the unique metabolic