Sample records for hard elastic substratum

  1. Myosin-II-Mediated Directional Migration of Dictyostelium Cells in Response to Cyclic Stretching of Substratum

    PubMed Central

    Iwadate, Yoshiaki; Okimura, Chika; Sato, Katsuya; Nakashima, Yuta; Tsujioka, Masatsune; Minami, Kazuyuki

    2013-01-01

    Living cells are constantly subjected to various mechanical stimulations, such as shear flow, osmotic pressure, and hardness of substratum. They must sense the mechanical aspects of their environment and respond appropriately for proper cell function. Cells adhering to substrata must receive and respond to mechanical stimuli from the substrata to decide their shape and/or migrating direction. In response to cyclic stretching of the elastic substratum, intracellular stress fibers in fibroblasts and endothelial, osteosarcoma, and smooth muscle cells are rearranged perpendicular to the stretching direction, and the shape of those cells becomes extended in this new direction. In the case of migrating Dictyostelium cells, cyclic stretching regulates the direction of migration, and not the shape, of the cell. The cells migrate in a direction perpendicular to that of the stretching. However, the molecular mechanisms that induce the directional migration remain unknown. Here, using a microstretching device, we recorded green fluorescent protein (GFP)-myosin-II dynamics in Dictyostelium cells on an elastic substratum under cyclic stretching. Repeated stretching induced myosin II localization equally on both stretching sides in the cells. Although myosin-II-null cells migrated randomly, myosin-II-null cells expressing a variant of myosin II that cannot hydrolyze ATP migrated perpendicular to the stretching. These results indicate that Dictyostelium cells accumulate myosin II at the portion of the cell where a large strain is received and migrate in a direction other than that of the portion where myosin II accumulated. This polarity generation for migration does not require the contraction of actomyosin. PMID:23442953

  2. Thermodynamic stability in elastic systems: Hard spheres embedded in a finite spherical elastic solid.

    PubMed

    Solano-Altamirano, J M; Goldman, Saul

    2015-12-01

    We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another.

  3. Elastic response of binary hard-sphere fluids

    NASA Astrophysics Data System (ADS)

    Rickman, J. M.; Ou-Yang, H. Daniel

    2011-07-01

    We derive expressions for the high-frequency, wave-number-dependent elastic constants of a binary hard-sphere fluid and employ Monte Carlo computer simulation to evaluate these constants in order to highlight the impact of composition and relative sphere diameter on the elastic response of this system. It is found that the elastic constant c11(k) exhibits oscillatory behavior as a function of k whereas the high-frequency shear modulus, for example, does not. This behavior is shown to be dictated by the angular dependence (in k⃗ space) of derivatives of the interatomic force at contact. The results are related to recent measurements of the compressibility of colloidal fluids in laser trapping experiments.

  4. Stress Related Surface Tension Effects in Hard Elastic Polymers.

    DTIC Science & Technology

    1982-08-19

    tension 4, and viscosity and the ,_;.rain imposed csn the materials. Results indicate that these microfi-r! Slated polymers contain a substantia- surface...modulus, 2) large recoverability (up to 98%), 3) ’energetic’ elasticity, and 4) high porosity. This field was thoroughly reviewed by Cannon, McKenna, and...influenced ’N load bearing microfibrils, open to the environment. The stress sensitivity of hard elastic polymers to changes in environmental surface

  5. Hardness and Elastic Modulus on Six-Fold Symmetry Gold Nanoparticles

    PubMed Central

    Ramos, Manuel; Ortiz-Jordan, Luis; Hurtado-Macias, Abel; Flores, Sergio; Elizalde-Galindo, José T.; Rocha, Carmen; Torres, Brenda; Zarei-Chaleshtori, Maryam; Chianelli, Russell R.

    2013-01-01

    The chemical synthesis of gold nanoparticles (NP) by using gold (III) chloride trihydrate (HAuCl∙3H2O) and sodium citrate as a reducing agent in aqueous conditions at 100 °C is presented here. Gold nanoparticles areformed by a galvanic replacement mechanism as described by Lee and Messiel. Morphology of gold-NP was analyzed by way of high-resolution transmission electron microscopy; results indicate a six-fold icosahedral symmetry with an average size distribution of 22 nm. In order to understand the mechanical behaviors, like hardness and elastic moduli, gold-NP were subjected to nanoindentation measurements—obtaining a hardness value of 1.72 GPa and elastic modulus of 100 GPa in a 3–5 nm of displacement at the nanoparticle’s surface. PMID:28809302

  6. Can single classifiers be as useful as model ensembles to produce benthic seabed substratum maps?

    NASA Astrophysics Data System (ADS)

    Turner, Joseph A.; Babcock, Russell C.; Hovey, Renae; Kendrick, Gary A.

    2018-05-01

    Numerous machine-learning classifiers are available for benthic habitat map production, which can lead to different results. This study highlights the performance of the Random Forest (RF) classifier, which was significantly better than Classification Trees (CT), Naïve Bayes (NB), and a multi-model ensemble in terms of overall accuracy, Balanced Error Rate (BER), Kappa, and area under the curve (AUC) values. RF accuracy was often higher than 90% for each substratum class, even at the most detailed level of the substratum classification and AUC values also indicated excellent performance (0.8-1). Total agreement between classifiers was high at the broadest level of classification (75-80%) when differentiating between hard and soft substratum. However, this sharply declined as the number of substratum categories increased (19-45%) including a mix of rock, gravel, pebbles, and sand. The model ensemble, produced from the results of all three classifiers by majority voting, did not show any increase in predictive performance when compared to the single RF classifier. This study shows how a single classifier may be sufficient to produce benthic seabed maps and model ensembles of multiple classifiers.

  7. Hardness, elastic, and electronic properties of chromium monoboride

    DOE PAGES

    Han, Lei; Wang, Shanmin; Zhu, Jinlong; ...

    2015-06-03

    Here, we report high-pressure synthesis of chromium monoboride (CrB) at 6 GPa and 1400 K. The elastic and plastic behaviors have been investigated by hydrostatic compression experiment and micro-indentation measurement. CrB is elastically incompressible with a high bulk modulus of 269.0 (5.9) GPa and exhibits a high Vickers hardness of 19.6 (0.7) GPa under the load of 1 kg force. Based on first principles calculations, the observed mechanical properties are attributed to the polar covalent Cr-B bonds interconnected with strong zigzag B-B covalent bonding network. The presence of metallic Cr bilayers is presumably responsible for the weakest paths in shearmore » deformation.« less

  8. Hard tissue as a composite material. I - Bounds on the elastic behavior.

    NASA Technical Reports Server (NTRS)

    Katz, J. L.

    1971-01-01

    Recent determination of the elastic moduli of hydroxyapatite by ultrasonic methods permits a re-examination of the Voigt or parallel model of the elastic behavior of bone, as a two phase composite material. It is shown that such a model alone cannot be used to describe the behavior of bone. Correlative data on the elastic moduli of dentin, enamel and various bone samples indicate the existence of a nonlinear dependence of elastic moduli on composition of hard tissue. Several composite models are used to calculate the bounds on the elastic behavior of these tissues. The limitations of these models are described, and experiments to obtain additional critical data are discussed.

  9. The Enskog Equation for Confined Elastic Hard Spheres

    NASA Astrophysics Data System (ADS)

    Maynar, P.; García de Soria, M. I.; Brey, J. Javier

    2018-03-01

    A kinetic equation for a system of elastic hard spheres or disks confined by a hard wall of arbitrary shape is derived. It is a generalization of the modified Enskog equation in which the effects of the confinement are taken into account and it is supposed to be valid up to moderate densities. From the equation, balance equations for the hydrodynamic fields are derived, identifying the collisional transfer contributions to the pressure tensor and heat flux. A Lyapunov functional, H[f], is identified. For any solution of the kinetic equation, H decays monotonically in time until the system reaches the inhomogeneous equilibrium distribution, that is a Maxwellian distribution with a density field consistent with equilibrium statistical mechanics.

  10. On the relationships between hardness and the elastic and plastic properties of isotropic power-law hardening materials

    NASA Astrophysics Data System (ADS)

    Lan, Hongzhi; Venkatesh, T. A.

    2014-01-01

    A comprehensive understanding of the relationship between the hardness and the elastic and plastic properties for a wide range of materials is obtained by analysing the hardness characteristics (that are predicted by experimentally verified indentation analyses) of over 9000 distinct combinations of material properties that represent isotropic, homogeneous, power-law hardening metallic materials. Finite element analysis has been used to develop the indentation algorithms that provide the relationships between the elastic and plastic properties of the indented material and its indentation hardness. Based on computational analysis and virtual testing, the following observations are made. The hardness (H) of a material tends to increase with an increase in the elastic modulus (E), yield strength (σy) and the strain-hardening exponent (n). Several materials with different combinations of elastic and plastic properties can exhibit identical true hardness (for a particular indenter geometry/apex angle). In general, combinations of materials that exhibit relatively low elastic modulus and high yield strength or strain-hardening exponents and those that exhibit relatively high elastic modulus and low yield strength or strain-hardening exponents exhibit similar hardness properties. Depending on the strain-hardening characteristics of the indented material, (i.e. n = 0 or ?), the ratio H/σy ranges, respectively, from 2.2 to 2.6 or 2 to 20 (for indentations with a cone angle of 70.3°). The materials that have lower σy/E and higher n exhibit higher H/σy ratios. The commonly invoked relationship between hardness and the yield strength, i.e. H ≈ 3σy, is not generally valid or applicable for all power-law hardening materials. The indentation hardness of a power law hardening material can be taken as following the relationship H ≈ (2.1-2.8)σr where σr is the representative stress based on Tabor's representative strain for a wide range of materials.

  11. Rhizoid differentiation of Spirogyra is regulated by substratum.

    PubMed

    Ikegaya, Hisato; Sonobe, Seiji; Murakami, Kohei; Shimmen, Teruo

    2008-11-01

    Some species of Spirogyra can anchor to substratum with rod- or rosette-shaped rhizoid (hapteron). The rhizoid differentiation can be induced by cutting algal filaments in a laboratory. Requirement of contact stimulation for rhizoid differentiation has been reported (Nagata in Plant Cell Physiol 14:531-541, 1973a). However, the control mechanism of rhizoid morphology has not been elucidated. When cut filaments were incubated on the glass surface, start of tip growth, secretion of lectin-binding material and callose synthesis were observed. In the absence of contact to the glass surface, none of above phenomena was induced. Systematic analysis showed that rosette-shaped rhizoid was formed only on the hydrophobic substratum. On the hydrophobic substratum, both Bandeiraea (Griffonia) simplicifolia lectin and jacalin strongly stained the rhizoids. On the hydrophilic substratum, however, only Bandeiraea (Griffonia) simplicifolia lectin strongly stained the rhizoids.

  12. 7 CFR 201.55a - Moisture and aeration of substratum.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Moisture and aeration of substratum. 201.55a Section... ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.55a Moisture and aeration of substratum. (a) The substratum must be moist enough to supply the needed moisture to...

  13. 7 CFR 201.55a - Moisture and aeration of substratum.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Moisture and aeration of substratum. 201.55a Section... ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.55a Moisture and aeration of substratum. (a) The substratum must be moist enough to supply the needed moisture to...

  14. 7 CFR 201.55a - Moisture and aeration of substratum.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Moisture and aeration of substratum. 201.55a Section... ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.55a Moisture and aeration of substratum. (a) The substratum must be moist enough to supply the needed moisture to...

  15. Ridge regression for predicting elastic moduli and hardness of calcium aluminosilicate glasses

    NASA Astrophysics Data System (ADS)

    Deng, Yifan; Zeng, Huidan; Jiang, Yejia; Chen, Guorong; Chen, Jianding; Sun, Luyi

    2018-03-01

    It is of great significance to design glasses with satisfactory mechanical properties predictively through modeling. Among various modeling methods, data-driven modeling is such a reliable approach that can dramatically shorten research duration, cut research cost and accelerate the development of glass materials. In this work, the ridge regression (RR) analysis was used to construct regression models for predicting the compositional dependence of CaO-Al2O3-SiO2 glass elastic moduli (Shear, Bulk, and Young’s moduli) and hardness based on the ternary diagram of the compositions. The property prediction over a large glass composition space was accomplished with known experimental data of various compositions in the literature, and the simulated results are in good agreement with the measured ones. This regression model can serve as a facile and effective tool for studying the relationship between the compositions and the property, enabling high-efficient design of glasses to meet the requirements for specific elasticity and hardness.

  16. Directional Cell Migration in Response to Repeated Substratum Stretching

    NASA Astrophysics Data System (ADS)

    Okimura, Chika; Iwadate, Yoshiaki

    2017-10-01

    Crawling migration plays an essential role in a variety of biological phenomena, including development, wound healing, and immune system function. Migration properties such as anterior-posterior polarity, directionality, and velocity are regulated not only by the reception of a chemoattractant but also by sensing mechanical inputs from the external environment. In this review, we describe the mechanical response of migrating cells, particularly under repeated stretching of the elastic substratum, highlighting the fact that there appear to be two independent mechanosensing systems that generate the polarity needed for migration. Cells that have no stress fibers, such as Dictyostelium cells and neutrophil-like differentiated HL-60 cells, migrate perpendicular to the stretching direction via myosin II localization. Cells that do possess stress fibers, however, such as fish keratocytes, migrate parallel to the stretching via a stress-fiber-dependent process.

  17. Radiation-damage-induced transitions in zircon: Percolation theory applied to hardness and elastic moduli as a function of density

    NASA Astrophysics Data System (ADS)

    Beirau, Tobias; Nix, William D.; Ewing, Rodney C.; Pöllmann, Herbert; Salje, Ekhard K. H.

    2018-05-01

    Two in literature predicted percolation transitions in radiation-damaged zircon (ZrSiO4) were observed experimentally by measurement of the indentation hardness as a function of density and their correlation with the elastic moduli. Percolations occur near 30% and 70% amorphous fractions, where hardness deviates from its linear correlation with the elastic modulus (E), the shear modulus (G) and the bulk modulus (K). The first percolation point pc1 generates a cusp in the hardness versus density evolution, while the second percolation point is seen as a change of slope.

  18. Deposition of hard elastic hydrogenated fullerenelike carbon films

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Zhang, Junyan

    2011-05-01

    Hydrogenated fullerenelike carbon (H-FLC) films, with high hardness of 41.7 ± 1.4 GPa and elastic recovery of ˜75.1%, have been uniformly deposited at low temperature by pulse direct current plasma enhanced chemical vapor deposition (pulse DC PECVD). The superior mechanical properties of the H-FLC films are attributed to the unique curvature and interconnection of graphitic basal planes. We propose the fullerenelike structures are formed in the far nonequilibrium pulse plasma environment and stabilized in the sequential fast quenching process. It is expected that the facile deposition of H-FLC films will promote the large-scale low-temperature preparation of engineering protective films for industrial applications.

  19. The correlation between nano-hardness and elasticity and fullerene-like clusters in hydrogenated amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Wang, Yongfu; Gao, Kaixiong; Wang, Qi; Zhang, Junyan

    2018-01-01

    Fullerene-like hydrogenated carbon films have outstanding mechanical and frictional properties, but their structures have never enjoyed elaboration. In this study, we investigate the relation between nano-hardness and elasticity and fullerene-like clusters by changing energy supply form (direct current and pulse) and H2 concentration in the feedstock. It is found that the films have a network of H-rich amorphous carbon and H-poor or -deficient fullerene-like carbon, and the network change can affect hardness and elastic recovery. This is due to the energy minimization process of the film growing system in a very short pulse period at low temperature.

  20. Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions.

    PubMed

    Wojciechowski, K W; Tretiakov, K V; Kowalik, M

    2003-03-01

    Systems of model planar, nonconvex, hard-body "molecules" of fivefold and sevenfold symmetry axes are studied by constant pressure Monte Carlo simulations with variable shape of the periodic box. The molecules, referred to as pentamers (heptamers), are composed of five (seven) identical hard disks "atoms" with centers forming regular pentagons (heptagons) of sides equal to the disk diameter. The elastic compliances of defect-free solid phases are computed by analysis of strain fluctuations and the reference (equilibrium) state is determined within the same run in which the elastic properties are computed. Results obtained by using pseudorandom number generators based on the idea proposed by Holian and co-workers [Holian et al., Phys. Rev. E 50, 1607 (1994)] are in good agreement with the results generated by DRAND48. It is shown that singular behavior of the elastic constants near close packing is in agreement with the free volume approximation; the coefficients of the leading singularities are estimated. The simulations prove that the highest density structures of heptamers (in which the molecules cannot rotate) are auxetic, i.e., show negative Poisson ratios.

  1. Sensing of substratum rigidity and directional migration by fast-crawling cells

    NASA Astrophysics Data System (ADS)

    Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki

    2018-05-01

    Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ˜10 μ m and migration velocity is ˜10 μ m /min . In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.

  2. Sensing of substratum rigidity and directional migration by fast-crawling cells.

    PubMed

    Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki

    2018-05-01

    Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ∼10 μm and migration velocity is ∼10 μm/min. In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.

  3. The effect of substratum type on aspects of swimming performance and behaviour in shortnose sturgeon Acipenser brevirostrum.

    PubMed

    May, L E; Kieffer, J D

    2017-01-01

    The swimming performance and associated swimming behaviour (i.e. substratum-skimming, station-holding and free swimming) were assessed in shortnose sturgeon Acipenser brevirostrum during critical swimming and endurance swimming tests over a rough and a smooth substratum. It was hypothesized that the addition of a rough substratum in the swimming flume may provide a surface for the A. brevirostrum to grip and offer an energetic advantage. Substratum type did not affect the critical swimming performance, but A. brevirostrum consistently performed more bottom behaviours (i.e. substratum-skimming and station-holding) while on a smooth substratum. Acipenser brevirostrum had little contact with the rough substratum until the velocity was >1 body length s -1 . Endurance swimming time was significantly lower for A. brevirostrum over the rough bottom at the highest velocity (30 cm s -1 ) which may be attributed to the observed increase in free swimming and decrease in bottom behaviours. During endurance swimming, the rough substratum was mainly used at intermediate velocities, suggesting that there may be a stability cost associated with being in contact with the rough substratum at certain velocities. © 2016 The Fisheries Society of the British Isles.

  4. Quantification of hardness, elasticity and viscosity of the skin of patients with systemic sclerosis using a novel sensing device (Vesmeter): a proposal for a new outcome measurement procedure.

    PubMed

    Kuwahara, Y; Shima, Y; Shirayama, D; Kawai, M; Hagihara, K; Hirano, T; Arimitsu, J; Ogata, A; Tanaka, T; Kawase, I

    2008-07-01

    No objective method to measure skin involvement in SSc has been established. We developed a novel method using a computer-linked device to simultaneously quantify physical properties of the skin such as hardness, elasticity and viscosity. Skin hardness was calculated by measuring the depth of an indenter pressed onto the skin. The Voigt model was used to calculate skin elasticity, viscosity, visco-elastic ratio and relaxation time by analysing the waveform of skin surface behaviour. The results were compared with the modified Rodnan skin score (mRSS) obtained at 17 sites on the bodies of 20 SSc patients and 20 healthy controls. A functional assessment questionnaire was administered to determine how skin hardness represents a patient's disability. We also examined intra- and inter-observer variability to determine the reliability of this method. The crude hardness obtained with this device correlated well with the standard hardness specified by the American Society for Testing and Materials (ASTM, r = 0.957). A close relationship between hardness and total mRSS was also observed (r = 0.832). Skin elasticity correlated positively, and relaxation time negatively with mRSS. Functional disability correlated more closely with skin hardness (r = 0.643) than with mRSS (r = 0.517). Intra- and inter-observer variabilities were 7.63 and 19.76%, respectively, which were lower than those reported for mRSS. Increases in hardness and elasticity as well as shortening of relaxation time constitute objective characteristics of skin involvement in SSc. The system devised by us proved to be able to assess skin abnormalities of SSc with high reliability.

  5. Nanoindentation of orthodontic archwires: The effect of decontamination and clinical use on hardness, elastic modulus and surface roughness.

    PubMed

    Alcock, Joseph P; Barbour, Michele E; Sandy, Jonathan R; Ireland, Anthony J

    2009-08-01

    The purpose of this research was to investigate the effects of decontamination and clinical exposure on the elastic moduli, hardness and surface roughness of two frequently used orthodontic archwires, namely 0.020in.x0.020in. heat activated (martensitic active) nickel titanium archwires and 0.019in.x0.025in. austenitic stainless steel archwires. This study was a prospective clinical trial in which 20 consecutive patients requiring an archwire change as part of their course of orthodontic fixed appliance therapy, had either a nickel titanium or stainless steel archwire fitted as deemed clinically necessary. The effect of clinical use was determined by comparing distal end cuts of the "as received" archwires before and after decontamination, with the same retrieved archwires following clinical use and decontamination. Hardness, elastic modulus and surface roughness were determined using an atomic force microscope (AFM) coupled with a nanoindenter. The results showed that the decontamination regimen and clinical use had no statistically significant effect on the nickel titanium archwires, but did have a statistically significant effect on the steel archwires. Decontamination of the steel wires significantly increased the observed surface hardness (p=0.01) and reduced the surface roughness (p=0.02). Clinical use demonstrated a statistically significant increase in the observed elastic modulus (p<0.001) and a decrease in surface roughness (p=0.001). At present it is difficult to predict the clinical significance of these statistically significant changes in archwire properties on orthodontic tooth movement.

  6. Hardness and modulus of elasticity of primary and permanent teeth after wear against different dental materials

    PubMed Central

    Galo, Rodrigo; Contente, Marta Maria Martins Giamatei; Galafassi, Daniel; Borsatto, Maria Cristina

    2015-01-01

    Objectives: The purpose of this study was to determine the Young's modulus and the hardness of deciduous and permanent teeth following wear challenges using different dental materials. Materials and Methods: Wear challenges were performed against four dental materials: A resin-based fissure sealant (Fluoroshield®), a glass ionomer based fissure sealant (Vitremer®), and two microhybrid composite resins (Filtek Z250 and P90®). Using the pin-on-plate design, a deciduous or a permanent tooth was made into a pin (4 mm × 4 mm × 2 mm) working at a 3 N vertical load, 1 Hz frequency, and 900 cycles (15 min) with Fusayama artificial saliva as a lubricant. Before and after the tribological tests, the hardness and elasticity modulus of the tooth samples were measured by creating a nanoindentation at load forces up to 50 mN and 150 mN. All of the results were statistically analyzed using ANOVA and post-hoc Duncan's tests (P < 0.05). Results: No difference in hardness was encountered between deciduous and permanent teeth (P < 0.05) or modulus of elasticity (P < 0.05) before or after the wear challenges for all of the dental materials tested. Conclusions: Wear challenges against the studied dental materials did not alter the properties of permanent or deciduous teeth after the application of a 3 N load. PMID:26929700

  7. On the Variation of Hardness Due to Uniaxial and Equi-Biaxial Residual Surface Stresses at Elastic-Plastic Indentation

    NASA Astrophysics Data System (ADS)

    Larsson, Per-Lennart

    2018-05-01

    It is established long since that the material hardness is independent of residual stresses at predominantly plastic deformation close to the contact region at indentation. Recently though, it has been shown that when elastic and plastic deformations are of equal magnitude this invariance is lost. For materials such as ceramics and polymers, this will complicate residual stress determination but can also, if properly understood, provide additional important information for performing such a task. Indeed, when the residual stresses are equi-biaxial, the situation is quite well understood, but additional efforts have to be made to understand the mechanical behavior in other loading states. Presently therefore, the variation of hardness, due to residual stresses, is examined at a uniaxial stress state. Correlation with global indentation quantities is analyzed, discussed and compared to corresponding equi-biaxial results. Cone indentation of elastic-perfectly plastic materials is considered.

  8. Hardness and deformation mechanisms of highly elastic carbon nitride thin films as studied by nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hainsworth, S.V.; Page, T.F.; Sjoestroem, H.

    1997-05-01

    Carbon nitride (CN{sub x}) thin films (0.18 < x < 0.43), deposited by magnetron sputtering of C in a N{sub 2} discharge, have been observed to be extremely resistant to plastic deformation during surface contact (i.e., exhibit a purely elastic response over large strains). Elastic recoveries as high as 90% have been measured by nanoindentation. This paper addresses the problems of estimating Young`s modulus (E) and hardness (H) in such cases and shows how different strategies involving analysis of both loading and unloading curves and measuring the work of indentation each present their own problems. The results of some cyclicmore » contact experiments are also presented and possible deformation mechanisms in the fullerene-like CN{sub x} structures discussed.« less

  9. Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres.

    PubMed

    Shin, Homin; Schweizer, Kenneth S

    2013-02-28

    We propose an Einstein-solid, self-consistent phonon theory for the crystal phase of hard spheres that interact via short-range attractions. The approach is first tested against the known behavior of hard spheres, and then applied to homogeneous particles that interact via short-range square well attractions and the Baxter adhesive hard sphere model. Given the crystal symmetry, packing fraction, and strength and range of attractive interactions, an effective harmonic potential experienced by a particle confined to its Wigner-Seitz cell and corresponding mean square vibrational amplitude are self-consistently calculated. The crystal free energy is then computed and, using separate information about the fluid phase free energy, phase diagrams constructed, including a first-order solid-solid phase transition and its associated critical point. The simple theory qualitatively captures all the many distinctive features of the phase diagram (critical and triple point, crystal-fluid re-entrancy, low-density coexistence curve) as a function of attraction range, and overall is in good semi-quantitative agreement with simulation. Knowledge of the particle localization length allows the crystal shear modulus to be estimated based on elementary ideas. Excellent predictions are obtained for the hard sphere crystal. Expanded and condensed face-centered cubic crystals are found to have qualitatively different elastic responses to varying attraction strength or temperature. As temperature increases, the expanded entropic solid stiffens, while the energy-controlled, fully-bonded dense solid softens.

  10. Elastic and mechanical softening in boron-doped diamond

    PubMed Central

    Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.

    2017-01-01

    Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50–3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials. PMID:28233808

  11. Elastic and mechanical softening in boron-doped diamond

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.

    2017-02-01

    Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50-3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials.

  12. Effects of compression force on elasticity index and elasticity ratio in ultrasound elastography

    PubMed Central

    Sasaki, Y; Sakamoto, J; Kamio, T; Nishikawa, K; Otonari-Yamamoto, M; Wako, M

    2014-01-01

    Objectives: The purpose of this study was to investigate the relationship between compression force and hardness values in ultrasound elastography. Methods: Ultrasound elastography was performed using an elastography phantom, comprising inclusions with different elasticities and echogenicities. The compression force was set to approximately 100 gw (light force) and approximately 500 gw (heavy force). The elasticity index (EI) of the inclusion was measured. The EI was a relative hardness value of a structure within an elastographic image. Similarly, the EI of the background was measured as a reference. The elasticity ratio (ER) was calculated as the EI of the inclusion divided by the EI of the reference. Results: The hardness of the phantom could be discerned with both the EI and ER, regardless of the compression force. The EI and ER with heavy force tended to be higher than those with light force, but the difference was not significant. A strong correlation was observed between the EI and ER of soft structures, whereas the correlation between the EI and ER of hard structures was weak, and the ER values varied widely. Conclusions: The EI offers potential as a good indicator for assessing the hardness. PMID:24592929

  13. Depth and substratum differentiations among coexisting herbivorous cichlids in Lake Tanganyika

    PubMed Central

    Ochi, Haruki

    2016-01-01

    Cichlid fish in Lake Tanganyika represent a system of adaptive radiation in which eight ancestral lineages have diversified into hundreds of species through adaptation to various niches. However, Tanganyikan cichlids have been thought to be oversaturated, that is, the species number exceeds the number of niches and ecologically equivalent and competitively even species coexist. However, recent studies have shed light on niche segregation on a finer scale among apparently equivalent species. We observed depth and substratum preferences of 15 herbivorous cichlids from four ecomorphs (i.e. grazer, browser, scraper and scooper) on a rocky littoral slope for 14 years. Depth differentiation was detected among grazers that defended feeding territories and among browsers with feeding territories. Cichlid species having no feeding territory also showed specificity on depth and substratum, resulting in habitat segregation among species that belong to the same ecomorph. Phylogenetically close species did not occupy adjacent depths, nor the opposite depth zones. Our findings suggest that apparently equivalent species of the same ecomorph coexist parapatrically along depth on a few-metre scale, or coexist with different substratum preferences on the rocky shore, and this niche segregation may have been acquired by competition between encountering equivalent species through repetitive lake-level fluctuations. PMID:28018609

  14. Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment.

    PubMed

    Henderson, B S; Ice, L D; Khaneft, D; O'Connor, C; Russell, R; Schmidt, A; Bernauer, J C; Kohl, M; Akopov, N; Alarcon, R; Ates, O; Avetisyan, A; Beck, R; Belostotski, S; Bessuille, J; Brinker, F; Calarco, J R; Carassiti, V; Cisbani, E; Ciullo, G; Contalbrigo, M; De Leo, R; Diefenbach, J; Donnelly, T W; Dow, K; Elbakian, G; Eversheim, P D; Frullani, S; Funke, Ch; Gavrilov, G; Gläser, B; Görrissen, N; Hasell, D K; Hauschildt, J; Hoffmeister, Ph; Holler, Y; Ihloff, E; Izotov, A; Kaiser, R; Karyan, G; Kelsey, J; Kiselev, A; Klassen, P; Krivshich, A; Lehmann, I; Lenisa, P; Lenz, D; Lumsden, S; Ma, Y; Maas, F; Marukyan, H; Miklukho, O; Milner, R G; Movsisyan, A; Murray, M; Naryshkin, Y; Perez Benito, R; Perrino, R; Redwine, R P; Rodríguez Piñeiro, D; Rosner, G; Schneekloth, U; Seitz, B; Statera, M; Thiel, A; Vardanyan, H; Veretennikov, D; Vidal, C; Winnebeck, A; Yeganov, V

    2017-03-03

    The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R_{2γ}, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20° to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5  fb^{-1} was collected. In the extraction of R_{2γ}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R_{2γ}, presented here for a wide range of virtual photon polarization 0.456<ε<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  15. Hard two-photon contribution to elastic lepton-proton scattering determined by the OLYMPUS experiment

    NASA Astrophysics Data System (ADS)

    Hasell, D. K.; OLYMPUS Collaboration

    2018-02-01

    The OLYMPUS collaboration has recently made a precise measurement of the positron-proton to electron-proton elastic scattering cross section ratio, R 2γ, over a wide range of the virtual photon polarization, 0.456 < ɛ < 0.978. This provides a direct measure of hard two-photon exchange in elastic lepton-proton scattering widely thought to explain the discrepancy observed between unpolarized and polarized measurements of the proton form factor ratio, {μ }p{G}Ep/{G}Mp. The OLYMPUS results are small, within 1% on unity, over the range of momentum transfers measured and significantly lower than theoretical calculations that can explain part of the observed discrepancy in terms of two-photon exchange at higher momentum transfers. However, the results are in reasonable agreement with predictions based on phenomenological fits to the available form factor data. The motivation for measuring R 2γ will be presented followed by a description of the OLYMPUS experiment. The importance of radiative corrections in the analysis will be shown also. Then we will present the OLYMPUS results and compare with results from two similar experiments and theoretical calculations.

  16. Dynamic hardness of metals

    NASA Astrophysics Data System (ADS)

    Liang, Xuecheng

    Dynamic hardness (Pd) of 22 different pure metals and alloys having a wide range of elastic modulus, static hardness, and crystal structure were measured in a gas pulse system. The indentation contact diameter with an indenting sphere and the radius (r2) of curvature of the indentation were determined by the curve fitting of the indentation profile data. r 2 measured by the profilometer was compared with that calculated from Hertz equation in both dynamic and static conditions. The results indicated that the curvature change due to elastic recovery after unloading is approximately proportional to the parameters predicted by Hertz equation. However, r 2 is less than the radius of indenting sphere in many cases which is contradictory to Hertz analysis. This discrepancy is believed due to the difference between Hertzian and actual stress distributions underneath the indentation. Factors which influence indentation elastic recovery were also discussed. It was found that Tabor dynamic hardness formula always gives a lower value than that directly from dynamic hardness definition DeltaE/V because of errors mainly from Tabor's rebound equation and the assumption that dynamic hardness at the beginning of rebound process (Pr) is equal to kinetic energy change of an impact sphere over the formed crater volume (Pd) in the derivation process for Tabor's dynamic hardness formula. Experimental results also suggested that dynamic to static hardness ratio of a material is primarily determined by its crystal structure and static hardness. The effects of strain rate and temperature rise on this ratio were discussed. A vacuum rotating arm apparatus was built to measure Pd at 70, 127, and 381 mum sphere sizes, these results exhibited that Pd is highly depended on the sphere size due to the strain rate effects. P d was also used to substitute for static hardness to correlate with abrasion and erosion resistance of metals and alloys. The particle size effects observed in erosion were

  17. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    DOEpatents

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  18. Effect of strong elastic contrasts on the propagation of seismic wave in hard-rock environments

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Zheng, L.; Liu, Q.; Milkereit, B.

    2013-12-01

    Understanding the propagation of seismic waves in a presence of strong elastic contrasts, such as topography, tunnels and ore-bodies is still a challenge. Safety in mining is a major concern and seismic monitoring is the main tool here. For engineering purposes, amplitudes (peak particle velocity/acceleration) and travel times of seismic events (mostly blasts or microseismic events) are critical parameters that have to be determined at various locations in a mine. These parameters are useful in preparing risk maps or to better understand the process of spatial and temporal stress distributions in a mine. Simple constant velocity models used for monitoring studies in mining, cannot explain the observed complexities in scattered seismic waves. In hard-rock environments modeling of elastic seismic wavefield require detailed 3D petrophysical, infrastructure and topographical data to simulate the propagation of seismic wave with a frequencies up to few kilohertz. With the development of efficient numerical techniques, and parallel computation facilities, a solution for such a problem is achievable. In this study, the effects of strong elastic contrasts such as ore-bodies, rough topography and tunnels will be illustrated using 3D modeling method. The main tools here are finite difference code (SOFI3D)[1] that has been benchmarked for engineering studies, and spectral element code (SPECFEM) [2], which was, developed for global seismology problems. The modeling results show locally enhanced peak particle velocity due to presence of strong elastic contrast and topography in models. [1] Bohlen, T. Parallel 3-D viscoelastic finite difference seismic modeling. Computers & Geosciences 28 (2002) 887-899 [2] Komatitsch, D., and J. Tromp, Introduction to the spectral-element method for 3-D seismic wave propagation, Geophys. J. Int., 139, 806-822, 1999.

  19. First-principles study on the structure, elastic properties, hardness and electronic structure of TMB4 (TM=Cr, Re, Ru and Os) compounds

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Zheng, W. T.; Guan, W. M.; Zhang, K. H.; Fan, X. F.

    2013-11-01

    The structural formation, elastic properties, hardness and electronic structure of TMB4 (TM=Cr, Re, Ru and Os) compounds are investigated using first-principles approach. The value of C22 for these compounds is almost two times bigger than the C11 and C33. The intrinsic hardness, shear modulus and Young's modulus are calculated to be in a sequence of CrB4>ReB4>RuB4>OsB4, and the Poisson's ratio and B/G ratio of TMB4 follow the order of CrB4hardness of CrB4 and ReB4 by LDA is bigger than 40 GPa. The high hardness of TMB4 compounds is derived from the feature of B-B bonds cage and higher C22 value. The B-B covalent bonds as bonds cage enhances the resistance to shear deformation and improve the hardness. We predict that the TMB4 compounds with CrB4-type are the potential superhard materials.

  20. Combinatorial effect of substratum properties on mesenchymal stem cell sheet engineering and subsequent multi-lineage differentiation.

    PubMed

    Chuah, Yon Jin; Zhang, Ying; Wu, Yingnan; Menon, Nishanth V; Goh, Ghim Hian; Lee, Ann Charlene; Chan, Vincent; Zhang, Yilei; Kang, Yuejun

    2015-09-01

    Cell sheet engineering has been exploited as an alternative approach in tissue regeneration and the use of stem cells to generate cell sheets has further showed its potential in stem cell-mediated tissue regeneration. There exist vast interests in developing strategies to enhance the formation of stem cell sheets for downstream applications. It has been proved that stem cells are sensitive to the biophysical cues of the microenvironment. Therefore we hypothesized that the combinatorial substratum properties could be tailored to modulate the development of cell sheet formation and further influence its multipotency. For validation, polydimethylsiloxane (PDMS) of different combinatorial substratum properties (including stiffness, roughness and wettability) were created, on which the human bone marrow derived mesenchymal stem cells (BMSCs) were cultured to form cell sheets with their multipotency evaluated after induced differentiation. The results showed that different combinatorial effects of these substratum properties were able to influence BMSC behavior such as adhesion, spreading and proliferation during cell sheet development. Collagen formation within the cell sheet was enhanced on substrates with lower stiffness, higher hydrophobicity and roughness, which further assisted the induced chondrogenesis and osteogenesis, respectively. These findings suggested that combinatorial substratum properties had profound effects on BMSC cell sheet integrity and multipotency, which had significant implications for future biomaterials and scaffold designs in the field of BMSC-mediated tissue regeneration. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Analysis of Bacterial Detachment from Substratum Surfaces by the Passage of Air-Liquid Interfaces

    PubMed Central

    Gómez-Suárez, Cristina; Busscher, Henk J.; van der Mei, Henny C.

    2001-01-01

    A theoretical analysis of the detachment of bacteria adhering to substratum surfaces upon the passage of an air-liquid interface is given, together with experimental results for bacterial detachment in the absence and presence of a conditioning film on different substratum surfaces. Bacteria (Streptococcus sobrinus HG1025, Streptococcus oralis J22, Actinomyces naeslundii T14V-J1, Bacteroides fragilis 793E, and Pseudomonas aeruginosa 974K) were first allowed to adhere to hydrophilic glass and hydrophobic dimethyldichlorosilane (DDS)-coated glass in a parallel-plate flow chamber until a density of 4 × 106 cells cm−2 was reached. For S. sobrinus HG1025, S. oralis J22, and A. naeslundii T14V-J1, the conditioning film consisted of adsorbed salivary components, while for B. fragilis 793E and P. aeruginosa 974K, the film consisted of adsorbed human plasma components. Subsequently, air bubbles were passed through the flow chamber and the bacterial detachment percentages were measured. For some experimental conditions, like with P. aeruginosa 974K adhering to DDS-coated glass and an air bubble moving at high velocity (i.e., 13.6 mm s−1), no bacteria detached upon passage of an air-liquid interface, while for others, detachment percentages between 80 and 90% were observed. The detachment percentage increased when the velocity of the passing air bubble decreased, regardless of the bacterial strain and substratum surface hydrophobicity involved. However, the variation in percentages of detachment by a passing air bubble depended greatly upon the strain and substratum surface involved. At low air bubble velocities the hydrophobicity of the substratum had no influence on the detachment, but at high air bubble velocities all bacterial strains were more efficiently detached from hydrophilic glass substrata. Furthermore, the presence of a conditioning film could either inhibit or stimulate detachment. The shape of the bacterial cell played a major role in detachment at high

  2. Analysis of bacterial detachment from substratum surfaces by the passage of air-liquid interfaces.

    PubMed

    Gómez-Suárez, C; Busscher, H J; van der Mei, H C

    2001-06-01

    A theoretical analysis of the detachment of bacteria adhering to substratum surfaces upon the passage of an air-liquid interface is given, together with experimental results for bacterial detachment in the absence and presence of a conditioning film on different substratum surfaces. Bacteria (Streptococcus sobrinus HG1025, Streptococcus oralis J22, Actinomyces naeslundii T14V-J1, Bacteroides fragilis 793E, and Pseudomonas aeruginosa 974K) were first allowed to adhere to hydrophilic glass and hydrophobic dimethyldichlorosilane (DDS)-coated glass in a parallel-plate flow chamber until a density of 4 x 10(6) cells cm(-2) was reached. For S. sobrinus HG1025, S. oralis J22, and A. naeslundii T14V-J1, the conditioning film consisted of adsorbed salivary components, while for B. fragilis 793E and P. aeruginosa 974K, the film consisted of adsorbed human plasma components. Subsequently, air bubbles were passed through the flow chamber and the bacterial detachment percentages were measured. For some experimental conditions, like with P. aeruginosa 974K adhering to DDS-coated glass and an air bubble moving at high velocity (i.e., 13.6 mm s(-1)), no bacteria detached upon passage of an air-liquid interface, while for others, detachment percentages between 80 and 90% were observed. The detachment percentage increased when the velocity of the passing air bubble decreased, regardless of the bacterial strain and substratum surface hydrophobicity involved. However, the variation in percentages of detachment by a passing air bubble depended greatly upon the strain and substratum surface involved. At low air bubble velocities the hydrophobicity of the substratum had no influence on the detachment, but at high air bubble velocities all bacterial strains were more efficiently detached from hydrophilic glass substrata. Furthermore, the presence of a conditioning film could either inhibit or stimulate detachment. The shape of the bacterial cell played a major role in detachment at high

  3. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells

    PubMed Central

    Karuri, Nancy W.; Liliensiek, Sara; Teixeira, Ana I.; Abrams, George; Campbell, Sean; Nealey, Paul F.; Murphy, Christopher J.

    2006-01-01

    Summary The basement membrane possesses a rich 3-dimensional nanoscale topography that provides a physical stimulus, which may modulate cell-substratum adhesion. We have investigated the strength of cell-substratum adhesion on nanoscale topographic features of a similar scale to that of the native basement membrane. SV40 human corneal epithelial cells were challenged by well-defined fluid shear, and cell detachment was monitored. We created silicon substrata with uniform grooves and ridges having pitch dimensions of 400-4000 nm using X-ray lithography. F-actin labeling of cells that had been incubated for 24 hours revealed that the percentage of aligned and elongated cells on the patterned surfaces was the same regardless of pitch dimension. In contrast, at the highest fluid shear, a biphasic trend in cell adhesion was observed with cells being most adherent to the smaller features. The 400 nm pitch had the highest percentage of adherent cells at the end of the adhesion assay. The effect of substratum topography was lost for the largest features evaluated, the 4000 nm pitch. Qualitative and quantitative analyses of the cells during and after flow indicated that the aligned and elongated cells on the 400 nm pitch were more tightly adhered compared to aligned cells on the larger patterns. Selected experiments with primary cultured human corneal epithelial cells produced similar results to the SV40 human corneal epithelial cells. These findings have relevance to interpretation of cell-biomaterial interactions in tissue engineering and prosthetic design. PMID:15226393

  4. Evolution of the premaxillary fraenum and substratum in snubnose darters and allies (Percidae: Etheostoma).

    PubMed

    Ciccotto, P J; Mendelson, T C

    2015-10-01

    Darters (Percidae: Etheostomatinae), a species-rich group of North American freshwater fishes, vary in the presence of a premaxillary fraenum, a strip of skin that connects the premaxillary bones to the snout, and it is hypothesized that this trait is a trophic adaptation to particular substrata. Ancestral state reconstructions and analyses of phylogenetic associations between presence of the premaxillary fraenum and preferred stream substratum were conducted in a clade of closely related darters (snubnose darters and allies) that vary in morphology and habitat preferences. The most recent common ancestor of this clade was inferred to possess a fraenum and to inhabit rocky substrata, consistent with previous hypotheses, but a significant correlation between fraenum presence and substratum type across the phylogeny was not found. © 2015 The Fisheries Society of the British Isles.

  5. Hard diffraction from quasi-elastic dipole scattering

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.

    1996-02-01

    The contribution to diffraction dissociation of virtual photons due to quasi-elastic scattering of the q- overlineq component is calculated in the framework of the QCD dipole picture. Both longitudinal and transverse components of the cross-section are given. It is shown that, at fixed mass of the diffractively produced system, quantum mechanical interference plays an important rôle. Phenomenological consequences are discussed.

  6. Laser quench hardening of steel: Effects of superimposed elastic pre-stress on the hardness and residual stress distribution

    NASA Astrophysics Data System (ADS)

    Meserve, Justin

    Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.

  7. Correlation between substratum roughness and wettability, cell adhesion, and cell migration.

    PubMed

    Lampin, M; Warocquier-Clérout; Legris, C; Degrange, M; Sigot-Luizard, M F

    1997-07-01

    Cell adhesion and spreading of chick embryo vascular and corneal explants grown on rough and smooth poly (methyl methacrylate) (PMMA) were analyzed to test the cell response specificity to substratum surface properties. Different degrees of roughness were obtained by sand-blasting PMMA with alumina grains. Hydrophilic and hydrophobic components of the surface free energy (SFE) were calculated according to Good-van Oss's model. Contact angles were determined using a computerized angle meter. The apolar component of the SFE gamma s(LW), increased with a slight roughness whereas the basic component, gamma s-, decreased. The acido-basic properties disappeared as roughness increased. Incubation of PMMA in culture medium, performed to test the influence if the biological environment, allowed surface adsorption of medium proteins which annihilated roughness effect and restored hydrophilic properties. An organotypic culture assay was carried out in an attempt to relate the biocompatibility to substratum surface state. Cell migration was calculated from the area of cell layer. Cellular adhesion was determined by measuring the kinetic of release of enzymatically dissociated cells. A slight roughness raised the migration are to an upper extent no matter which cell type. Enhancement of the cell adhesion potential was related to the degree of roughness and the hydrophobicity.

  8. Transport coefficients and mechanical response in hard-disk colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Zhang, Bo-Kai; Li, Jian; Chen, Kang; Tian, Wen-De; Ma, Yu-Qiang

    2016-11-01

    We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 21374073 and, 21574096).

  9. Fish communities associated with cold-water corals vary with depth and substratum type

    NASA Astrophysics Data System (ADS)

    Milligan, Rosanna J.; Spence, Gemma; Roberts, J. Murray; Bailey, David M.

    2016-08-01

    Understanding the processes that drive the distribution patterns of organisms and the scales over which these processes operate are vital when considering the effective management of species with high commercial or conservation value. In the deep sea, the importance of scleractinian cold-water corals (CWCs) to fish has been the focus of several studies but their role remains unclear. We propose this may be due to the confounding effects of multiple drivers operating over multiple spatial scales. The aims of this study were to investigate the role of CWCs in shaping fish community structure and individual species-habitat associations across four spatial scales in the NE Atlantic ranging from "regions" (separated by >500 km) to "substratum types" (contiguous). Demersal fish and substratum types were quantified from three regions: Logachev Mounds, Rockall Bank and Hebrides Terrace Seamount (HTS). PERMANOVA analyses showed significant differences in community composition between all regions which were most likely caused by differences in depths. Within regions, significant variation in community composition was recorded at scales of c. 20-3500 m. CWCs supported significantly different fish communities to non-CWC substrata at Rockall Bank, Logachev and the HTS. Single-species analyses using generalised linear mixed models showed that Sebastes sp. was strongly associated with CWCs at Rockall Bank and that Neocyttus helgae was more likely to occur in CWCs at the HTS. Depth had a significant effect on several other fish species. The results of this study suggest that the importance of CWCs to fish is species-specific and depends on the broader spatial context in which the substratum is found. The precautionary approach would be to assume that CWCs are important for associated fish, but must acknowledge that CWCs in different depths will not provide redundancy or replication within spatially-managed conservation networks.

  10. Substratum interfacial energetic effects on the attachment of marine bacteria

    NASA Astrophysics Data System (ADS)

    Ista, Linnea Kathryn

    Biofilms represent an ancient, ubiquitous and influential form of life on earth. Biofilm formation is initiated by attachment of bacterial cells from an aqueous suspension onto a suitable attachment substratum. While in certain, well studied cases initial attachment and subsequent biofilm formation is mediated by specific ligand-receptor pairs on the bacteria and attachment substratum, in the open environment, including the ocean, it is assumed to be non-specific and mediated by processes similar to those that drive adsorption of colloids at the water-solid interface. Colloidal principles are studied to determine the molecular and physicochemical interactions involved in the attachment of the model marine bacterium, Cobetia marina to model self-assembled monolayer surfaces. In the simplest application of colloidal principles the wettability of attachment substrata, as measured by the advancing contact angle of water (theta AW) on the surface, is frequently used as an approximation for the surface tension. We demonstrate the applicability of this approach for attachment of C. marina and algal zoospores and extend it to the development of a means to control attachment and release of microorganisms by altering and tuning surface thetaAW. In many cases, however, thetaAW does not capture all the information necessary to model attachment of bacteria to attachment substrata; SAMs with similar thetaAW attach different number of bacteria. More advanced colloidal models of initial bacterial attachment have evolved over the last several decades, with the emergence of the model proposed by van Oss, Chaudhury and Good (VCG) as preeminent. The VCG model enables calculation of interfacial tensions by dividing these into two major interactions thought to be important at biointerfaces: apolar, Lifshitz-van der Waals and polar, Lewis acid-base (including hydrogen bonding) interactions. These interfacial tensions are combined to yield DeltaGadh, the free energy associated with

  11. Theory of hard diffraction and rapidity gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Duca, V.

    1996-02-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). {copyright} {ital 1996 American Institute of Physics.}

  12. Superficial Ultrasound Shear Wave Speed Measurements in Soft and Hard Elasticity Phantoms: Repeatability and Reproducibility Using Two Different Ultrasound Systems

    PubMed Central

    Dillman, Jonathan R.; Chen, Shigao; Davenport, Matthew S.; Zhao, Heng; Urban, Matthew W.; Song, Pengfei; Watcharotone, Kuanwong; Carson, Paul L.

    2014-01-01

    Background There is a paucity of data available regarding the repeatability and reproducibility of superficial shear wave speed (SWS) measurements at imaging depths relevant to the pediatric population. Purpose To assess the repeatability and reproducibility of superficial shear wave speed (SWS) measurements acquired from elasticity phantoms at varying imaging depths using three different imaging methods, two different ultrasound systems, and multiple operators. Methods and Materials Soft and hard elasticity phantoms manufactured by Computerized Imaging Reference Systems, Inc. (Norfolk, VA) were utilized for our investigation. Institution #1 used an Acuson S3000 ultrasound system (Siemens Medical Solutions USA, Inc.) and three different shear wave imaging method/transducer combinations, while institution #2 used an Aixplorer ultrasound system (Supersonic Imagine) and two different transducers. Ten stiffness measurements were acquired from each phantom at three depths (1.0, 2.5, and 4.0 cm) by four operators at each institution. Student’s t-test was used to compare SWS measurements between imaging techniques, while SWS measurement agreement was assessed with two-way random effects single measure intra-class correlation coefficients and coefficients of variation. Mixed model regression analysis determined the effect of predictor variables on SWS measurements. Results For the soft phantom, the average of mean SWS measurements across the various imaging methods and depths was 0.84 ± 0.04 m/s (mean ± standard deviation) for the Acuson S3000 system and 0.90 ± 0.02 m/s for the Aixplorer system (p=0.003). For the hard phantom, the average of mean SWS measurements across the various imaging methods and depths was 2.14 ± 0.08 m/s for the Acuson S3000 system and 2.07 ± 0.03 m/s Aixplorer system (p>0.05). The coefficients of variation were low (0.5–6.8%), and inter-operator agreement was near-perfect (ICCs ≥0.99). Shear wave imaging method and imaging depth

  13. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenstein, R.S.; Rosen, J.M.

    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of ..beta..-casein gene transcription but a 37-fold increase in ..beta..-casein mRNA accumulation. In contrast, whey acidic protein gene transcription was constitutive in COMMA-D cells grown on either substratum, but its mRNA was unstable and little intact mature mRNAmore » was detected. Culturing COMMA-D cells on collagen also promoted increased expression of other genes expressed in differentiated mammary epithelial cells, including those encoding ..cap alpha..- and ..gamma..-casein, transferrin, malic enzyme, and phosphoenolpyruvate carboxykinase but decreased the expression of actin and histone genes. Using COMMA-D cells, the authors defined further the role of individual hormones in influencing ..beta..-casein gene transcription. With insulin alone, a basal level of ..beta..-casein gene transcription was detected in COMMA-D cells grown on floating collagen gels. Addition of prolactin but not hydrocortisone resulted in a 2.5- to 3.0-fold increase in ..beta..-casein gene transcription, but both hormones were required to elicit the maximal 73-fold induction in mRNA accumulation. The posttranscriptional effect of hormones on casein mRNA accummulation preceded any detectable changes in the relative rate of transcription. Thus, regulation by both hormones and cell substratum of casein gene expression is exerted primarily at the post transcriptional level.« less

  14. Nitrifying bio-cord reactor: performance optimization and effects of substratum and air scouring.

    PubMed

    Tian, Xin; Ahmed, Warsama; Delatolla, Robert

    2017-11-20

    Ammonia removal kinetics and solids' production performance of the bio-cord technology are studied in this research. Three nitrifying reactors housing different bio-cord substratum were operated at five different ammonia loading rates. All of the bio-cord substrata demonstrated stable and high ammonia-nitrogen removal efficiencies of 96.8 ± 0.9%, 97.0 ± 0.6% and 92.0 ± 0.4% at loading rates of 0.8, 1.6 and 1.8 g [Formula: see text]-N/m 2  d, respectively. At these same loading rates, the bio-cord reactors housing the three substrata also showed low solids' production rates of 0.19 ± 0.03, 0.23 ± 0.02, 0.25 ± 0.03 g total suspended solids/d. A reduction of system stability, identified via fluctuating ammonia removal rates, was however observed for all substrata at loading rates of 2.1 and 2.4 g [Formula: see text]-N/m 2  d. Further, the solids' production rates at these higher loading conditions were also observed to fluctuate for all substrata, likely indicating intermediate sloughing events. The effects of enhancing the air scouring of the bio-cord on the ammonia removal rate was shown to be dependent upon the substratum, while enhanced air scouring of the bio-cord was shown to stabilize the production of solids for all substrata. This study represents the first performance and optimization study of the bio-cord technology for low-carbon nitrification and shows that air scouring of the substratum reduces sloughing events at elevated loading and that the bio-cord technology achieves stable kinetics above conventional rates of 1 g [Formula: see text]-N/m 2  d to values of 1.8 g [Formula: see text]-N/m 2  d.

  15. Superficial ultrasound shear wave speed measurements in soft and hard elasticity phantoms: repeatability and reproducibility using two ultrasound systems.

    PubMed

    Dillman, Jonathan R; Chen, Shigao; Davenport, Matthew S; Zhao, Heng; Urban, Matthew W; Song, Pengfei; Watcharotone, Kuanwong; Carson, Paul L

    2015-03-01

    There is a paucity of data available regarding the repeatability and reproducibility of superficial shear wave speed (SWS) measurements at imaging depths relevant to the pediatric population. To assess the repeatability and reproducibility of superficial shear wave speed measurements acquired from elasticity phantoms at varying imaging depths using three imaging methods, two US systems and multiple operators. Soft and hard elasticity phantoms manufactured by Computerized Imaging Reference Systems Inc. (Norfolk, VA) were utilized for our investigation. Institution No. 1 used an Acuson S3000 US system (Siemens Medical Solutions USA, Malvern, PA) and three shear wave imaging method/transducer combinations, while institution No. 2 used an Aixplorer US system (SuperSonic Imagine, Bothell, WA) and two different transducers. Ten stiffness measurements were acquired from each phantom at three depths (1.0 cm, 2.5 cm and 4.0 cm) by four operators at each institution. Student's t-test was used to compare SWS measurements between imaging techniques, while SWS measurement agreement was assessed with two-way random effects single-measure intra-class correlation coefficients (ICCs) and coefficients of variation. Mixed model regression analysis determined the effect of predictor variables on SWS measurements. For the soft phantom, the average of mean SWS measurements across the various imaging methods and depths was 0.84 ± 0.04 m/s (mean ± standard deviation) for the Acuson S3000 system and 0.90 ± 0.02 m/s for the Aixplorer system (P = 0.003). For the hard phantom, the average of mean SWS measurements across the various imaging methods and depths was 2.14 ± 0.08 m/s for the Acuson S3000 system and 2.07 ± 0.03 m/s Aixplorer system (P > 0.05). The coefficients of variation were low (0.5-6.8%), and interoperator agreement was near-perfect (ICCs ≥ 0.99). Shear wave imaging method and imaging depth significantly affected measured SWS (P

  16. Tactile sensor of hardness recognition based on magnetic anomaly detection

    NASA Astrophysics Data System (ADS)

    Xue, Lingyun; Zhang, Dongfang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Hardness, as one kind of tactile sensing, plays an important role in the field of intelligent robot application such as gripping, agricultural harvesting, prosthetic hand and so on. Recently, with the rapid development of magnetic field sensing technology with high performance, a number of magnetic sensors have been developed for intelligent application. The tunnel Magnetoresistance(TMR) based on magnetoresistance principal works as the sensitive element to detect the magnetic field and it has proven its excellent ability of weak magnetic detection. In the paper, a new method based on magnetic anomaly detection was proposed to detect the hardness in the tactile way. The sensor is composed of elastic body, ferrous probe, TMR element, permanent magnet. When the elastic body embedded with ferrous probe touches the object under the certain size of force, deformation of elastic body will produce. Correspondingly, the ferrous probe will be forced to displace and the background magnetic field will be distorted. The distorted magnetic field was detected by TMR elements and the output signal at different time can be sampled. The slope of magnetic signal with the sampling time is different for object with different hardness. The result indicated that the magnetic anomaly sensor can recognize the hardness rapidly within 150ms after the tactile moment. The hardness sensor based on magnetic anomaly detection principal proposed in the paper has the advantages of simple structure, low cost, rapid response and it has shown great application potential in the field of intelligent robot.

  17. Elastic properties of single-walled carbon nanotube thin film by nanoindentation test.

    PubMed

    Tang, Xingling; El-Hami, Abdelkhalak; El-Hami, Khalil; Eid, Mohamed; Si, Chaorun

    2017-09-12

    This paper carries out a preliminary study for the elastic properties of single walled carbon nanotube (SWCNT) thin film. The SWCNT thin films (~250 nm) are prepared by a simple and cost effective method of spin-coating technology. Nanoindentation test with a Berkovich indenter is used to determine the hardness and elastic modulus of the SWCNT thin film. It is important to note that the elastic properties of SWCNT film are indirectly derived from the information of load and displacement of the indenter under certain assumptions, deviation of the 'test value' is inevitable. In this regard, uncertainty analysis is an effective process in guarantying the validity of the material properties. This paper carries out uncertainty estimation for the tested elastic properties of SWCNT film by nanoindentation. Experimental results and uncertainty analysis indicates that nanoindentation test could be an effective and reliable method in determine the elastic properties of SWCNT thin film. Moreover, the obtained values of hardness and elastic modulus can further benefit the design of SWCNT thin film based components.

  18. Influence of habitat structure and nature of substratum on limpet recruitment: Conservation implications for endangered species

    NASA Astrophysics Data System (ADS)

    Espinosa, Free; Rivera-Ingraham, Georgina; García-Gómez, Jose C.

    2011-08-01

    Habitat complexity has been recognised to exert a significant influence on the abundance and diversity of benthic invertebrates. This issue is especially important for the management of endangered species. The recruitment of limpet species was monitored monthly for one year on natural and artificial surfaces. Control plots showed the highest mean number of species and individuals settled per plot, followed by rough then smooth plots. Control plots presented the highest mean diversity values followed by rough and smooth plots. Recruits of the endangered limpet Patella ferruginea were mainly observed during the spring, from April to June. Recruitment seemed to be influenced by both the heterogeneity and nature of the substratum. P. ferruginea repopulation programmes involving the translocation of recruits on experimental plates should be conducted using similar materials to the natural substratum, such as granite or limestone, rather than plastic, avoiding surfaces with low levels of heterogeneity, and taking into account that translocation of adults is not feasible due to the high mortality observed.

  19. Cirripede Cypris Antennules: How Much Structural Variation Exists Among Balanomorphan Species from Hard-Bottom Habitats?

    PubMed

    Chan, Benny K K; Sari, Alireza; Høeg, Jens T

    2017-10-01

    Barnacle cypris antennules are important for substratum attachment during settlement and on through metamorphosis from the larval stage to sessile adult. Studies on the morphology of cirripede cyprids are mostly qualitative, based on descriptions from images obtained using a scanning electron microscope (SEM). To our knowledge, our study is the first to use scanning electron microscopy to quantify overall structural diversity in cypris antennules by measuring 26 morphological parameters, including the structure of sensory organs. We analyzed cyprids from seven species of balanomorphan barnacles inhabiting rocky shore communities; for comparison, we also included a sponge-inhabiting balanomorphan and a verrucomorphan species. Multivariate analysis of the structural parameters resulted in two distinct clusters of species. From nonmetric multidimensional scaling plots, the sponge-inhabiting Balanus spongicola and Verruca stroemia formed one cluster, while the other balanomorphan species, all from hard bottoms, grouped together in the other cluster. The shape of the attachment disk on segment 3 is the key parameter responsible for the separation into two clusters. The present results show that species from a coastal hard-bottom habitat may share a nearly identical antennular structure that is distinct from barnacles from other habitats, and this finding supports the fact that such species also have rather similar reactions to substratum cues during settlement. Any differences that may be found in settlement biology among such species must therefore be due either to differences in the properties of their adhesive mechanisms or to the way that sensory stimuli are detected by virtually identical setae and processed into settlement behavior by the cyprid.

  20. Bond-orientational analysis of hard-disk and hard-sphere structures.

    PubMed

    Senthil Kumar, V; Kumaran, V

    2006-05-28

    We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.

  1. Optical properties and indentation hardness of thin-film acrylated epoxidized oil

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Syuhaimi Ab.; Shaktur, Khaled Mohamed; Mohammad, Rahmah; Zalikha, Wan Aimi; Nawi, Norwimie; Mohd, Ahmad Faiza

    2012-02-01

    Epoxy acrylate has been widely used as optical resin for applications such as cladding, the core of a waveguide, and other photonic devices. In this study, sustainable resin from edible oil was used as an alternative to epoxy acrylate. Structural features and the transmission of planar thin-film resin from an ultraviolet-visible spectroscopy (UV-VIS) spectrometer were investigated upon UV exposure. It was found that high transmission still persists for all samples with and without an UV absorber for exposed and unexposed samples. The film was found to absorb strongly below 400 nm. A change in the cut-off wavelength was observed upon exposure. Thin-film hardness and its dynamic indentation in the load-unload mode with different test forces were evaluated. Vickers hardness and the elastic modulus were determined for unacrylated epoxidized soybean oil (ESO) and acrylated epoxidized soybean oil (AESO). It was found that the AESO has a higher Vickers hardness and elastic modulus than those of unacrylated thin film. The Vickers hardness and elastic modulus were found to increase as the applied test force increased. The refractive index, thickness, and modes present were characterized from a spin-coated planar thin film. The refractive index in the transverse electric mode (TE) and transverse magnetic mode (TM) were determined and compared for unacrylated and acrylated epoxidized oil.

  2. Correlating particle hardness with powder compaction performance.

    PubMed

    Cao, Xiaoping; Morganti, Mikayla; Hancock, Bruno C; Masterson, Victoria M

    2010-10-01

    Assessing particle mechanical properties of pharmaceutical materials quickly and with little material can be very important to early stages of pharmaceutical research. In this study, a wide range of pharmaceutical materials were studied using atomic force microscopy (AFM) nanoindentation. A significant amount of particle hardness and elastic modulus data were provided. Moreover, powder compact mechanical properties of these materials were investigated in order to build correlation between the particle hardness and powder compaction performance. It was found that the materials with very low or high particle hardness most likely exhibit poor compaction performance while the materials with medium particle hardness usually have good compaction behavior. Additionally, the results from this study enriched Hiestand's special case concept on particle hardness and powder compaction performance. This study suggests that the use of AFM nanoindentation can help to screen mechanical properties of pharmaceutical materials at early development stages of pharmaceutical research.

  3. Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids.

    PubMed

    Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A

    2003-06-01

    Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.

  4. Hard Photodisintegration of 3He

    NASA Astrophysics Data System (ADS)

    Granados, Carlos

    2011-02-01

    Large angle photodisintegration of two nucleons from the 3He nucleus is studied within the framework of the hard rescattering model (HRM). In the HRM the incoming photon is absorbed by one nucleon's valence quark that then undergoes a hard rescattering reaction with a valence quark from the second nucleon producing two nucleons emerging at large transverse momentum . Parameter free cross sections for pp and pn break up channels are calculated through the input of experimental cross sections on pp and pn elastic scattering. The calculated cross section for pp breakup and its predicted energy dependency are in good agreement with recent experimental data. Predictions on spectator momentum distributions and helicity transfer are also presented.

  5. Elastic versus acoustic inversion for marine surveys

    NASA Astrophysics Data System (ADS)

    Mora, Peter; Wu, Zedong

    2018-04-01

    Full Wavefield Inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may be tempted to assume acoustic FWI is sufficient given that only pressure waves exist in the water layer. In this paper, we pose the question as to whether or not in theory - at least for a hard water bottom case - it should be possible to resolve the shear modulus or S-wave velocity in a marine setting using large offset data. We therefore conduct numerical experiments with idealized marine data calculated with the elastic wave equation. We study two cases, FWI of data due to a diffractor model, and FWI of data due to a fault model. We find that at least in idealized situation, elastic FWI of hard waterbottom data is capable of resolving between the two Lamé parameters λ and μ. Another numerical experiment with a soft waterbottom layer gives the same result. In contrast, acoustic FWI of the synthetic elastic data results in a single image of the first Lamé parameter λ which contains severe artefacts for diffraction data and noticable artefacts for layer reflection data. Based on these results, it would appear that at least, inversions of large offset marine data should be fully elastic rather than acoustic unless it has been demonstrated that for the specific case in question (offsets, model and water depth, practical issues such as soft sediment attenuation of shear waves or computational time), that an acoustic only inversion provides a reasonably good quality of image comparable to that of an elastic inversion. Further research with real data is required to determine the degree to which practical issues such as shear wave attenuation in soft sediments may affect this result.

  6. Elastic versus acoustic inversion for marine surveys

    NASA Astrophysics Data System (ADS)

    Mora, Peter; Wu, Zedong

    2018-07-01

    Full wavefield inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may be tempted to assume that acoustic FWI is sufficient given that only pressure waves exist in the water layer. In this paper, we pose the question as to whether or not in theory—at least for a hard waterbottom case—it should be possible to resolve the shear modulus or S-wave velocity in a marine setting using large offset data. We, therefore, conduct numerical experiments with idealized marine data calculated with the elastic wave equation. We study two cases, FWI of data due to a diffractor model, and FWI of data due to a fault model. We find that at least in idealized situation, elastic FWI of hard waterbottom data is capable of resolving between the two Lamé parameters λ and μ. Another numerical experiment with a soft waterbottom layer gives the same result. In contrast, acoustic FWI of the synthetic elastic data results in a single image of the first Lamé parameter λ which contains severe artefacts for diffraction data and notable artefacts for layer reflection data. Based on these results, it would appear that at least the inversions of large offset marine data should be fully elastic rather than acoustic, unless it has been demonstrated that for the specific case in question (offsets, model and water depth, practical issues such as soft sediment attenuation of shear waves or computational time), an acoustic-only inversion provides a reasonably good quality of image comparable to that of an elastic inversion. Further research with real data is required to determine the degree to which practical issues such as shear wave attenuation in soft sediments may affect this result.

  7. Acute effect and time course of extension and internal rotation stretching of the shoulder on infraspinatus muscle hardness.

    PubMed

    Kusano, Ken; Nishishita, Satoru; Nakamura, Masatoshi; Tanaka, Hiroki; Umehara, Jun; Ichihashi, Noriaki

    2017-10-01

    A decrease in flexibility of the infraspinatus muscle causes limitations in the range of shoulder motion. Static stretching (SS) is a useful method to improve muscle flexibility and joint mobility. Previous researchers investigated effective stretching methods for the infraspinatus. However, few researchers investigated the acute effect of SS on the infraspinatus muscle's flexibility. In addition, the minimum SS time required to increase the infraspinatus muscle's flexibility remains unclear. The aims of this study included investigating the acute effect of SS on the infraspinatus muscle's hardness (an index of muscle flexibility) by measuring shear elastic modulus and determining minimum SS time to decrease the infraspinatus muscle's hardness. This included measuring the effect of SS with extension and internal rotation of the shoulder on the infraspinatus muscle's hardness in 20 healthy men. Hence, shear elastic modulus of the infraspinatus was measured by ultrasonic shear wave elastography before and after every 10 seconds up to 120 seconds of SS. Two-way analysis of variance indicated a significant main effect of SS duration on shear elastic modulus. The post hoc test indicated no significant difference between shear elastic modulus after 10 seconds of SS and that before SS. However, shear elastic modulus immediately after a period ranging from 20 seconds to 120 seconds of SS was significantly lower than that before SS. The results suggested that shoulder extension and internal rotation SS effectively decreased the infraspinatus muscle's hardness. In addition, the results indicated that a period exceeding 20 seconds of SS decreased the infraspinatus muscle's hardness. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  8. Beyond the bed: effects of metal contamination on recruitment to bedded sediments and overlying substrata.

    PubMed

    Hill, Nicole A; Simpson, Stuart L; Johnston, Emma L

    2013-02-01

    Metal-contaminated sediments pose a recognised threat to sediment-dwelling fauna. Re-mobilisation of contaminated sediments however, may impact more broadly on benthic ecosystems, including on diverse assemblages living on hard substrata patches immediately above sediments. We used manipulative field experiments to simultaneously test for the effects of metal contamination on recruitment to marine sediments and overlying hard substrata. Recruitment to sediments was strongly and negatively affected by metal contamination. However, while assemblage-level effects on hard-substratum fauna and flora were observed, most functional groups were unaffected or slightly enhanced by exposure to contaminated sediments. Diversity of hard-substratum fauna was also enhanced by metal contamination at one site. Metal-contaminated sediments appear to pose less of a hazard to hard-substratum than sediment-dwelling assemblages, perhaps due to a lower direct contaminant exposure or to indirect effects mediated by contaminant impacts on sediment fauna. Our results indicate that current sediment quality guidelines are protective of hard-substrata organisms. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  9. Mechanical modeling and characteristic study for the adhesive contact of elastic layered media

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Wang, Xiaoli; Tu, Qiaoan; Sun, Jianjun; Ma, Chenbo

    2017-11-01

    This paper investigates the adhesive contact between a smooth rigid sphere and a smooth elastic layered medium with different layer thicknesses, layer-to-substrate elastic modulus ratios and adhesion energy ratios. A numerical model is established by combining elastic responses of the contact system and an equation of equivalent adhesive contact pressure which is derived based on the Hamaker summation method and the Lennard-Jones intermolecular potential law. Simulation results for hard layer cases demonstrate that variation trends of the pull-off force with the layer thickness and elastic modulus ratio are complex. On one hand, when the elastic modulus ratio increases, the pull-off force decreases at smaller layer thicknesses, decreases at first and then increases at middle layer thicknesses, while increases monotonously at larger layer thicknesses. On the other hand, the pull-off force decreases at first and then increases with the increase in the layer thickness. Furthermore, a critical layer thickness above which the introduction of hard layer cannot reduce adhesion and an optimum layer thickness under which the pull-off force reaches a minimum are found. Both the critical and optimum layer thicknesses become larger with an increase in the Tabor parameter, while they tend to decrease with the increase in the elastic modulus ratio. In addition, the pull-off force increases sublinearly with the adhesion energy ratio if the layer thickness and elastic modulus ratio are fixed.

  10. [Development of a system for static measurement of skin-muscle hardness and a fundamental study on its applications].

    PubMed

    Honda, T

    1990-10-01

    There have been many attempts to quantitatively measure the hardness of skin-muscle, but no objective method for doing so has been established, because there is no universal standard for the hardness of organisms. The author considered elasticity and viscosity as the most important mechanical properties of the hardness of skin-muscle and applied the Maxwell model, in which a spring and a dash-pot are arranged in a series, to the static mechanical behavior of skin-muscle. A relatively large globular pressing body with a radius of 5 mm was set as a transducer in the measuring system, so that the conformity of the practically measured values to those calculated theoretically by the model was increased. Strain of skin-muscle is expressed as a function of the load, which includes indices of elasticity (1/M) (M(N/mm2) = E/(1-lambda 2) (E: Young's modulus, lambda:Poisson's ratio)) and viscosity (1/eta) (eta:modulus of viscosity) in a particular region. Because hardness is defined as the degree of resistance against transformation by loading, decreases in the indices of both elasticity and viscosity mean increases of hardness. With 150 male and female office workers chosen as the subjects, the model was examined and the indices were calculated. The results were as follows. 1) Very good conformity of practically measured values to those calculated theoretically by the Maxwell model was recognized within the range of load velocity from 0.3 G to 3.0 G (N/sec). 2) In both males and females the regions with values nearest to those of a Newtonian fluid were, in descending order, the distal phalanxes of digiti 2-4, the palm, the distal phalanx of the first digitus and the arm. In reverse order these regions approached complete elasticity. 3) In males it was suggested that the element of viscosity in the region of the biceps brachii muscle and the hardness in the regions of the brachioradialis, the flexor carpi radialis and palmalis longus muscles and the distal phalanxes of the 4

  11. Hard quark-quark scattering with exclusive reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, D.S.; Bunce, G.M.; Carroll, A.S.

    1984-07-19

    We have begun a program designed to study hard quark-quark scattering with exclusive reactions, focusing on quasi-elastic two-body reactions with all possible quark flavor exchanges. Examples are ..pi../sup -/p ..-->.. ..pi../sup -/p, rho/sup -/p, ..pi../sup +/..delta../sup -/, K/sup +/..sigma../sup -/, or K..lambda... Of the two-body exclusives, only elastic scattering had been measured at such large t previous to our experiment. By comparing the relative importance of different final states, the energy dependence of the production ratios of these states, the prominence of resonances such as rho/sup -/ over background in this region, and measuring polarizations where accessible, we have collectedmore » a large body of data on hard scattering in a completely new domain. Previously, essential all short distance QCD tests have been for inclusive processes. We have taken data with both negative and positive incident beam at 10 GeV/c on a hydrogen target and will present the first results, for ..pi../sup -/p ..-->.. ..pi../sup -/p and rho/sup -/p at THETA/sub cm/ = 90/sup 0/, -t = 9 GeV/sup 2//c/sup 2/. The apparatus consists of a magnetic spectrometer, with Cerenkov particle identification, which selects stable charged particles (protons in this case) at high momentum near 90/sup 0/ in the center-of-mass. A large aperture array of PWCs observes the recoil particle or charged decay products. Cross sections are extremely low, approximately a 1 nb/(GeV/c)/sup 2/ for elastic scattering. We will report on a sample of more than 1000 ..pi../sup -/p elastic events, and on rho/sup -/p, where the rho/sup -/ decay distribution was observed. We find a surprisingly large rho/sup -/p cross section in this large momentum transfer region, with rho/sup -/p about half the elastic cross section, and a striking spin alignment of the rho/sup -/.« less

  12. Establishment of substratum polarity in the blastocoel roof of the Xenopus embryo.

    PubMed

    Nagel, M; Winklbauer, R

    1999-05-01

    The fibronectin fibril matrix on the blastocoel roof of the Xenopus gastrula contains guidance cues that determine the direction of mesoderm cell migration. The underlying guidance-related polarity of the blastocoel roof is established in the late blastula under the influence of an instructive signal from the vegetal half of the embryo, in particular from the mesoderm. Formation of an oriented substratum depends on functional activin and FGF signaling pathways in the blastocoel roof. Besides being involved in tissue polarization, activin and FGF also affect fibronectin matrix assembly. Activin treatment of the blastocoel roof inhibits fibril formation, whereas FGF modulates the structure of the fibril network. The presence of intact fibronectin fibrils is permissive for directional mesoderm migration on the blastocoel roof extracellular matrix.

  13. Elastic K-means using posterior probability

    PubMed Central

    Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris

    2017-01-01

    The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model. PMID:29240756

  14. Elastic K-means using posterior probability.

    PubMed

    Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris

    2017-01-01

    The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model.

  15. Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-healing, and Elastic Hydrogels with Synergistic "Soft and Hard" Hybrid Networks.

    PubMed

    Liu, Yan-Jun; Cao, Wen-Tao; Ma, Ming-Guo; Wan, Pengbo

    2017-08-02

    Robust, stretchable, and strain-sensitive hydrogels have recently attracted immense research interest because of their potential application in wearable strain sensors. The integration of the synergistic characteristics of decent mechanical properties, reliable self-healing capability, and high sensing sensitivity for fabricating conductive, elastic, self-healing, and strain-sensitive hydrogels is still a great challenge. Inspired by the mechanically excellent and self-healing biological soft tissues with hierarchical network structures, herein, functional network hydrogels are fabricated by the interconnection between a "soft" homogeneous polymer network and a "hard" dynamic ferric (Fe 3+ ) cross-linked cellulose nanocrystals (CNCs-Fe 3+ ) network. Under stress, the dynamic CNCs-Fe 3+ coordination bonds act as sacrificial bonds to efficiently dissipate energy, while the homogeneous polymer network leads to a smooth stress-transfer, which enables the hydrogels to achieve unusual mechanical properties, such as excellent mechanical strength, robust toughness, and stretchability, as well as good self-recovery property. The hydrogels demonstrate autonomously self-healing capability in only 5 min without the need of any stimuli or healing agents, ascribing to the reorganization of CNCs and Fe 3+ via ionic coordination. Furthermore, the resulted hydrogels display tunable electromechanical behavior with sensitive, stable, and repeatable variations in resistance upon mechanical deformations. Based on the tunable electromechanical behavior, the hydrogels can act as a wearable strain sensor to monitor finger joint motions, breathing, and even the slight blood pulse. This strategy of building synergistic "soft and hard" structures is successful to integrate the decent mechanical properties, reliable self-healing capability, and high sensing sensitivity together for assembling a high-performance, flexible, and wearable strain sensor.

  16. Price elasticity of demand for malt liquor beer: findings from a US pilot study.

    PubMed

    French, Michael Thomas; Browntaylor, Didra; Bluthenthal, Ricky Neville

    2006-05-01

    Our objective is to estimate the relative price elasticity of demand for malt liquor beer (MLB), regular beer, hard liquor, and a combined group of all other alcoholic beverages. Three hundred and twenty-nine alcohol consumers (mostly male) in South-Central Los Angeles answered a series of questions pertaining to expected consumption responses to hypothetical price increases. We found that based on a 10% price increase, the mean price elasticity of demand (% change in quantity demanded / % change in price) was -0.79 for MLB drinkers, -1.14 for regular beer drinkers, -1.11 for hard liquor drinkers, and -1.69 for the combined group of all other drinkers. Logistic regression analysis revealed that the personal characteristics significantly related to being a MLB drinker were older age, not working, being homeless, and a daily drinker. Daily (or nearly daily) drinkers were more likely to be married, earning lower incomes, and hard liquor drinkers. This study is the first to investigate the price elasticity of demand for MLB drinkers and other heavy alcohol consumers in poor urban neighborhoods of the US. Future research can use the methods from this pilot study to more rigorously examine and compare the price sensitivity among heavy drinking groups.

  17. Elastic constants from microscopic strain fluctuations

    PubMed

    Sengupta; Nielaba; Rao; Binder

    2000-02-01

    Fluctuations of the instantaneous local Lagrangian strain epsilon(ij)(r,t), measured with respect to a static "reference" lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic computer simulations. The measured strains are systematically coarse-grained by averaging them within subsystems (of size L(b)) of a system (of total size L) in the canonical ensemble. Using a simple finite size scaling theory we predict the behavior of the fluctuations as a function of L(b)/L and extract elastic constants of the system in the thermodynamic limit at nonzero temperature. Our method is simple to implement, efficient, and general enough to be able to handle a wide class of model systems, including those with singular potentials without any essential modification. We illustrate the technique by computing isothermal elastic constants of "hard" and "soft" disk triangular solids in two dimensions from Monte Carlo and molecular dynamics simulations. We compare our results with those from earlier simulations and theory.

  18. Impact of Substratum Surface on Microbial Community Structure and Treatment Performance in Biological Aerated Filters

    PubMed Central

    Kim, Lavane; Pagaling, Eulyn; Zuo, Yi Y.

    2014-01-01

    The impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected, Burkholderiales and Rhodocyclales of the Betaproteobacteria class were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes. PMID:24141134

  19. Hard QCD rescattering in few nucleon systems

    NASA Astrophysics Data System (ADS)

    Maheswari, Dhiraj; Sargsian, Misak

    2017-01-01

    The theoretical framework of hard QCD rescattering mechanism (HRM) is extended to calculate the high energy γ3 He -> pd reaction at 900 center of mass angle. In HRM model , the incoming high energy photon strikes a quark from one of the nucleons in the target which subsequently undergoes hard rescattering with the quarks from the other nucleons generating hard two-body baryonic system in the final state of the reaction. Based on the HRM, a parameter free expression for the differential cross section for the reaction is derived, expressed through the 3 He -> pd transition spectral function, hard pd -> pd elastic scattering cross section and the effective charge of the quarks being interchanged in the hard rescattering process. The numerical estimates obtained from this expression for the differential cross section are in a good agreement with the data recently obtained at the Jefferson Lab experiment, showing the energy scaling of cross section with an exponent of s-17, also consistent with the quark counting rule. The angular and energy dependences of the cross section are also predicted within HRM which are in good agreement with the preliminary data of these distributions. Research is supported by the US Department of Energy.

  20. Structural relaxation driven increase in elastic modulus for a bulk metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Harpreet Singh; Aditya, Ayyagari V.; Mukherjee, Sundeep, E-mail: sundeep.mukherjee@unt.edu

    2015-01-07

    The change in elastic modulus as a function of temperature was investigated for a zirconium-based bulk metallic glass. High temperature nano-indentation was done over a wide temperature range from room temperature to the glass-transition. At higher temperature, there was a transition from inhomogeneous to homogeneous deformation, with a decrease in serrated flow and an increase in creep displacement. Hardness was found to decrease, whereas elastic modulus was found to increase with temperature. The increase in elastic modulus for metallic glass at higher temperature was explained by diffusive rearrangement of atoms resulting in free volume annihilation. This is in contrast tomore » elastic modulus increase with temperature for silicate glasses due to compaction of its open three dimensional coordinated structure without any atomic diffusion.« less

  1. The effect of boron concentration on the structure and elastic properties of Ru-Ir alloys: first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zhou, Zhaobo; Hu, Riming; Zhou, Xiaolong; Yu, Jie; Liu, Manmen

    2018-04-01

    The Phase stability, electronic structure, elastic properties and hardness of Ru-Ir alloys with different B concentration were investigated by first principles calculations. The calculated formation enthaplies and cohesive energies show that these compounds are all thermodynamically stable. Information on electronic structure indicates that they possess metallic characteristic and Ru-Ir-B alloys were composed of the Ru-B and Ir-B covalent bond. The elastic properties were calculated, which included bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and hardness. The calculated results reveal that the plastic of Ru-Ir-B alloys increase with the increase of the content of B atoms, but the hardness of Ru-Ir-B alloys have no substantial progress with the increase of the content of B atoms. However, it is interesting that the hardness of the Ru-Ir-B compound was improved obviously as the B content was higher than 18 atoms because of a phase structure transition.

  2. Development of Cad System for Diffuse Disease Based on Ultrasound Elasticity Images

    NASA Astrophysics Data System (ADS)

    Yamazaki, M.; Shiina, T.; Yamakawa, M.; Takizawa, H.; Tonomura, A.; Mitake, T.

    It is well known that as hepatic cirrhosis progresses, hepatocyte fibrosis spreads and nodule increases. However, it is not easy to diagnosis its early stage by conventional B-mode image because we have to read subtle change of speckle pattern which is not sensitive to the stage of fibrosis. Ultrasonic tissue elasticity imaging can provide us novel diagnostic information based on tissue hardness. We recently developed commercial-based equipment for tissue elasticity imaging. In this work, we investigated to develop the CAD system based on elasticity image for diagnosing defused type diseases such as hepatic cirrhosis. The results of clinical data analysis indicate that the CAD system is promising as means for diagnosis of diffuse disease with simple criterion.

  3. Elasticity and Strength of Biomacromolecular Crystals: Lysozyme

    NASA Technical Reports Server (NTRS)

    Holmes, A. M.; Witherow, W. K.; Chen, L. Q.; Chernov, A. A.

    2003-01-01

    The static Young modulus, E = 0.1 to 0.5 GPa, the crystal critical strength (sigma(sub c)) and its ratio to E,sigma(sub c)/E is approximately 10(exp 3), were measured for the first time for non cross-linked lysozyme crystals in solution. By using a triple point bending apparatus, we also demonstrated that the crystals were purely elastic. Softness of protein crystals built of hard macromolecules (26 GPa for lysozyme) is explained by the large size of the macromolecules as compared to the range of intermolecular forces and by the weakness of intermolecular bonds as compared to the peptide bond strength. The relatively large reported dynamic elastic moduli (approximately 8 GPa) from resonance light scattering should come from averaging over the moduli of intracrystalline water and intra- and intermolecular bonding.

  4. Elastic and Photoelastic Properties of M(NO3)2, MO (M = Mg, Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Zhuravlev, Yu. N.; Korabel'nikov, D. V.

    2017-05-01

    The paper deals with ab initio investigations of elastic and photoelastic properties of oxides and nitrates of alkaline-earth metals. In gradient approximation of the density functional theory (DFT), these properties are studied with the use of the linear combination of the atomic orbital technique. DFT calculations are done with the CRYSTAL 14 software package. The paper introduces the elastic and photoelastic constants, anisotropy parameters for single-crystalline phases and the elastic modules, hardness, Poisson ratio for polycrystalline phases. Such parameters as sonic speed, Debye temperature, thermal conductivity, and Gruneisen parameter are estimated herein. For the fist time, mechanical stability, anisotropy of elastic and photoelastic properties and their dependences are investigated ab initio in this paper. Experimental results on elastic and photoelastic properties of oxides and nitrates are in good agreement with theoretical calculations.

  5. Delta-Isobar Production in the Hard Photodisintegration of a Deuteron

    NASA Astrophysics Data System (ADS)

    Granados, Carlos; Sargsian, Misak

    2010-02-01

    Hard photodisintegration of the deuteron in delta-isobar production channels is proposed as a useful process in identifying the quark structure of hadrons and of hadronic interactions at large momentum and energy transfer. The reactions are modeled using the hard re scattering model, HRM, following previous works on hard breakup of a nucleon nucleon (NN) system in light nuclei. Here,quantitative predictions through the HRM require the numerical input of fits of experimental NN hard elastic scattering cross sections. Because of the lack of data in hard NN scattering into δ-isobar channels, the cross section of the corresponding photodisintegration processes cannot be predicted in the same way. Instead, the corresponding NN scattering process is modeled through the quark interchange mechanism, QIM, leaving an unknown normalization parameter. The observables of interest are ratios of differential cross sections of δ-isobar production channels to NN breakup in deuteron photodisintegration. Both entries in these ratios are derived through the HRM and QIM so that normalization parameters cancel out and numerical predictions can be obtained. )

  6. Theory of nonlinear elasticity, stress-induced relaxation, and dynamic yielding in dense fluids of hard nonspherical colloids

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth S.

    2012-04-01

    We generalize the microscopic naïve mode coupling and nonlinear Langevin equation theories of the coupled translation-rotation dynamics of dense suspensions of uniaxial colloids to treat the effect of applied stress on shear elasticity, cooperative cage escape, structural relaxation, and dynamic and static yielding. The key concept is a stress-dependent dynamic free energy surface that quantifies the center-of-mass force and torque on a moving colloid. The consequences of variable particle aspect ratio and volume fraction, and the role of plastic versus double glasses, are established in the context of dense, glass-forming suspensions of hard-core dicolloids. For low aspect ratios, the theory provides a microscopic basis for the recently observed phenomenon of double yielding as a consequence of stress-driven sequential unlocking of caging constraints via reduction of the distinct entropic barriers associated with the rotational and translational degrees of freedom. The existence, and breadth in volume fraction, of the double yielding phenomena is predicted to generally depend on both the degree of particle anisotropy and experimental probing frequency, and as a consequence typically occurs only over a window of (high) volume fractions where there is strong decoupling of rotational and translational activated relaxation. At high enough concentrations, a return to single yielding is predicted. For large aspect ratio dicolloids, rotation and translation are always strongly coupled in the activated barrier hopping event, and hence for all stresses only a single yielding process is predicted.

  7. Rotation of hard particles in a soft matrix

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Liu, Qingchang; Yue, Zhufeng; Li, Xiaodong; Xu, Baoxing

    Soft-hard materials integration is ubiquitous in biological materials and structures in nature and has also attracted growing attention in the bio-inspired design of advanced functional materials, structures and devices. Due to the distinct difference in their mechanical properties, the rotation of hard phases in soft matrixes upon deformation has been acknowledged, yet is lack of theory in mechanics. In this work, we propose a theoretical mechanics framework that can describe the rotation of hard particles in a soft matrix. The rotation of multiple arbitrarily shaped, located and oriented particles with perfectly bonded interfaces in an elastic soft matrix subjected to a far-field tensile loading is established and analytical solutions are derived by using complex potentials and conformal mapping methods. Strong couplings and competitions of the rotation of hard particles among each other are discussed by investigating numbers, relative locations and orientations of particles in the matrix at different loading directions. Extensive finite element analyses are performed to validate theoretical solutions and good agreement of both rotation and stress field between them are achieved. Possible extensions of the present theory to non-rigid particles, viscoelastic matrix and imperfect bonding are also discussed. Finally, by taking advantage of the rotation of hard particles, we exemplify an application in a conceptual design of soft-hard material integrated phononic crystal and demonstrate that phononic band gaps can be successfully tuned with a high accuracy through the mechanical tension-induced rotation of hard particles. The present theory established herein is expected to be of immediate interests to the design of soft-hard materials integration based functional materials, structures and devices with tunable performance via mechanical rotation of hard phases.

  8. Indentation fracture toughness and dynamic elastic moduli for commercial feldspathic dental porcelain materials.

    PubMed

    Rizkalla, Amin S; Jones, Derek W

    2004-02-01

    The purpose of this study was to evaluate and compare the indentation fracture toughness, true hardness and dynamic elastic moduli for 14 commercial dental porcelain materials. The specimens were fired according to manufacturer instructions. The density of the specimens (n=3) was measured by means of the water displacement technique. Dynamic Young's shear and bulk moduli and Poisson's ratio (n=3) were measured using a non-destructive ultrasonic technique using 10 MHz lithium niobate crystals. The true hardness (n=3) was measured using a Knoop indenter and the fracture toughness (n=3) was determined using a Vickers indenter and a Tukon hardness tester. Statistical analysis of the data was conducted using ANOVA and a Student-Newman-Keuls (SNK) rank order multiple comparative test. The SNK rank test analysis for the mean dynamic Young's modulus and fracture toughness was able to separate 14 dental porcelain materials into seven and nine groups, respectively, at p=0.05. The elastic moduli, true hardness and indentation fracture toughness for opaque porcelains were significantly higher than incisal; and body materials at p=0.05. The indentation fracture toughness and the ultrasonic test methods exhibit lower coefficient of variation compared to conventional methods and have considerable advantage for ceramic dental materials in that only small specimens are required to produce an acceptable number of data for statistical analysis.

  9. Polymorphism and Elastic Response of Molecular Materials from First Principles: How Hard Can it Be?

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony; Tkatchenko, Alexandre

    2014-03-01

    Molecular materials are of great fundamental and applied importance in science and industry, with numerous applications in pharmaceuticals, electronics, sensing, and catalysis. A key challenge for theory has been the prediction of their stability, polymorphism and response to perturbations. While pairwise models of van der Waals (vdW) interactions have improved the ability of density functional theory (DFT) to model these systems, substantial quantitative and even qualitative failures remain. In this contribution we show how a many-body description of vdW interactions can dramatically improve the accuracy of DFT for molecular materials, yielding quantitative description of stabilities and polymorphism for these challenging systems. Moreover, the role of many-body vdW interactions goes beyond stabilities to response properties. In particular, we have studied the elastic properties of a series of molecular crystals, finding that many-body vdW interactions can account for up to 30% of the elastic response, leading to quantitative and qualitative changes in elastic behavior. We will illustrate these crucial effects with the challenging case of the polymorphs of aspirin, leading to a better understanding of the conflicting experimental and theoretical studies of this system.

  10. Indentation-derived elastic modulus of multilayer thin films: Effect of unloading induced plasticity

    DOE PAGES

    Jamison, Ryan Dale; Shen, Yu -Lin

    2015-08-13

    Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayermore » material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.« less

  11. [Shock absorption of mouthguard materials--influence of temperature conditions and shore hardness on shock absorption].

    PubMed

    Tomita, Takashi; Tsukimura, Naoki; Ohno, Shigeru; Umekawa, Yoshitada; Sawano, Muneyuki; Fujimoto, Toshiki; Takamura, Masaaki; Majima, Aiko; Katakura, Yuusuke; Kurata, Akemi; Ohyama, Tetsuo; Ishigami, Tomohiko

    2006-04-01

    To consider changes in the physical properties of mouthguard materials with the change of temperature, shock-absorbing examination and Shore hardness measurement of existing MG materials and other elastic materials were carried out. Both examinations were done under two temperature conditions: at room temperature (25 degrees C) and simulated intraoral temperature (37 degrees C). In addition, a comparative study of the relation between Shore hardness and shock absorption of the materials was made. A self-made drop impact machine was used for the shock-absorbing examination. The thickness of a sample was assumed to be 3 mm. The loading was applied by dropping 3 kinds of steel ball, phi 10 mm (4.0 g), phi 15 mm (13.7 g), and phi 20 mm (32.6 g) from a height of 60 cm. The shock absorption of all materials was compared by the maximum impact force. Shore hardness was measured based on the JIS standard. The shock absorption of each material showed a different tendency depending on the loading condition. Furthermore, the shock absorption of the same material showed different results depending on the temperature condition. Shore hardness measurements tended to show low values with the condition of 37 degrees C for all materials. From the relation between shock absorption and Shore hardness, it was confirmed that there is a correlation between hardness and the maximum impact force in the materials that showed shock absorption by elastic deformation. Some materials showed high shock absorption compared with existing MG materials.

  12. Elastic and Diffractive Scattering - Proceedings of the International Conference on Vth Blois Workshop

    NASA Astrophysics Data System (ADS)

    Kang, K.; Fried, H. M.; Tan, C.-I.

    1994-02-01

    Amplitude Analysis and a QCD-Inspired Analysis * Rapidity Gaps and Multiplicity Fluctuations * Branching Processes and Multi-Particle Production * High Energy Elastic Scattering and Nucleon as a Topological Soliton * The Behavior of Cross Sections at Very High Energies * The Pomeron and QCD with Many Light Quarks * Heterotic Pomeron: High Energy Hadronic Collisions in QCD * CDF Results on Electroweak Physics * DØ Results on Electroweak Physics * Search for the Top Quark and Other New Particles at DØ * Rapidity Gaps and Forward Physics at DØ * High Energy Asymptotics of Perturbative Multi-Color QCD * Rapidity Gaps in e+e- Collisions * Large Rapidity Gap, Jet Events at HERA: a PQCD Approach * High Energy Parton-Parton Elastic Scattering in QCD * Parton-Parton Elastic Scattering and Rapidity Gaps at Tevatron Energies * Hard Elastic Scattering * Hard Diffractive Processes * Three Successful Tests of Color Transparency and Nuclear Filtering * New KNO in QCD * A Chiral Condensate Search at the Tevatron * Cosmic Ray Evidences for Aligned High Energy Jets at Supertevatron Energy and Hard DDD * "New Hadronic State" Observed in Extremely High Energy Cosmic-Ray Interactions * Meson and Nucleon Form Factors in PQCD * Elastic Charge Form Factors for Pseudoscalar Mesons * The Ultimate Experiment * Search for Coherent Charm Production in 800 GeV/c Proton-Silicon Interactions * Chiral Quark Model and Hadron Scattering * Elastic Spin Experiments at UNK, Fermilab and SSC * Spin-Flip in Elastic and Diffractive Scattering * FNAL Polarized Beams and Spin Dependence at RHIC * Particle Tracking in the Close-to-Forward Region (η > 5.5) * Blois V: Experimental Summary * Blois V: Summary Talk * List of Participants

  13. The effects of fine-scale substratum roughness on diatom community structure in estuarine biofilms.

    PubMed

    Sweat, L Holly; Johnson, Kevin B

    2013-09-01

    Benthic diatoms are a major component of biofilms that form on surfaces submerged in marine environments. Roughness of the underlying substratum affects the settlement of both diatoms and subsequent macrofouling colonizers. This study reports the effects of roughness on estuarine diatom communities established in situ in the Indian River Lagoon, FL, USA. Natural communities were established on acrylic panels with a range of surface roughnesses. Smoother substrata exhibited higher cell density, species richness, and diversity. Twenty-three of 58 species were found either exclusively or more abundantly on the smooth surfaces compared to one or both roughened treatments. The results suggest a greater ability of benthic diatoms to recruit and colonize smooth surfaces, which is probably explained by a higher degree of contact between the cells and the surface.

  14. The young Huygens solves the problem of elastic collisions

    NASA Astrophysics Data System (ADS)

    Erlichson, Herman

    1997-02-01

    Christiaan Huygens was probably the first person to solve the problem of elastic collisions. He did this in the 1650s when he was only in his early twenties. The first formal publication of his general rule for the outcome of a head-on hard collision was in March 1669 in the Journal des Sçavans. Our present paper describes in detail Huygens' work on elastic collisions. We focus particularly on how Huygens' instinct for symmetry led him to a solution in the center-of-gravity reference frame. He readily transformed this solution to other frames using what we now call the Galilean velocity transformation. Huygens' symmetry approach is quite different from the modern description of collisions using Newtonian action and reaction forces.

  15. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  16. Extracting elastic properties of an atomically thin interfacial layer by time-domain analysis of femtosecond acoustics

    NASA Astrophysics Data System (ADS)

    Chen, H.-Y.; Huang, Y.-R.; Shih, H.-Y.; Chen, M.-J.; Sheu, J.-K.; Sun, C.-K.

    2017-11-01

    Modern devices adopting denser designs and complex 3D structures have created much more interfaces than before, where atomically thin interfacial layers could form. However, fundamental information such as the elastic property of the interfacial layers is hard to measure. The elastic property of the interfacial layer is of great importance in both thermal management and nano-engineering of modern devices. Appropriate techniques to probe the elastic properties of interfacial layers as thin as only several atoms are thus critically needed. In this work, we demonstrated the feasibility of utilizing the time-resolved femtosecond acoustics technique to extract the elastic properties and mass density of a 1.85-nm-thick interfacial layer, with the aid of transmission electron microscopy. We believe that this femtosecond acoustics approach will provide a strategy to measure the absolute elastic properties of atomically thin interfacial layers.

  17. Investigation of Specificity of Mechanical Properties of Hard Materials on Nanoscale with Use of SPM- Nanohardness Tester

    NASA Astrophysics Data System (ADS)

    Lvova, N. A.; Blank, V. D.; Gogolinskiy, K. V.; Kulibaba, V. F.

    2007-04-01

    Specifisities of deformation on nanoscale of hard brittle materials with the hardness exceeding 10 GP by means of scanning probe microscope - nanohardness tester "NanoScan" are investigated. It is found, that pile-up is forming at scratching of sample surface with use of diamond indenter. Heigh of this pile-up depends on hardness and elastic modulus of the material. Definition of the contact area without taking into account height of pile-up leads to an overestimation of hardness values. At scratching of silicon carbide surface a transition from plastic flow to fracture is found out. The results received allowed to estimate fracture toughness KIC for silicon carbide.

  18. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films

    PubMed Central

    Duan, Yuetao; Luo, Jie; Wang, Guanghao; Hang, Zhi Hong; Hou, Bo; Li, Jensen; Sheng, Ping; Lai, Yun

    2015-01-01

    We derive and numerically demonstrate that perfect absorption of elastic waves can be achieved in two types of ultra-thin elastic meta-films: one requires a large value of almost pure imaginary effective mass density and a free space boundary, while the other requires a small value of almost pure imaginary effective modulus and a hard wall boundary. When the pure imaginary density or modulus exhibits certain frequency dispersions, the perfect absorption effect becomes broadband, even in the low frequency regime. Through a model analysis, we find that such almost pure imaginary effective mass density with required dispersion for perfect absorption can be achieved by elastic metamaterials with large damping. Our work provides a feasible approach to realize broadband perfect absorption of elastic waves in ultra-thin films. PMID:26184117

  19. A Crossover from High Stiffness to High Hardness: The Case of Osmium and Its Borides

    NASA Astrophysics Data System (ADS)

    Bian, Yongming; Liu, Xiaomei; Li, Anhu; Liang, Yongcheng

    2016-09-01

    Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os2B3 and OsB2) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.

  20. Novel Super-Elastic Materials for Advanced Bearing Applications

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    2014-01-01

    Tribological surfaces of mechanical components encounter harsh conditions in terrestrial, marine and aerospace environments. Brinell denting, abrasive wear and fatigue often lead to life-limiting bearing and gear failures. Novel superelastic materials based upon Ni-Ti alloys are an emerging solution. Ni-Ti alloys are intermetallic materials that possess characteristics of both metals and ceramics. Ni-Ti alloys have intrinsically good aqueous corrosion resistance (they cannot rust), high hardness, relatively low elastic modulus, are chemically inert and readily lubricated. Ni-Ti alloys also belong to the family of superelastics and, despite high hardness, are able to withstand large strains without suffering permanent plastic deformation. In this paper, the use of hard, resilient Ni-Ti alloys for corrosion-proof, shockproof bearing and gear applications are presented. Through a series of bearing and gear development projects, it is demonstrated that Ni-Tis unique blend of materials properties lead to significantly improved load capacity, reduced weight and intrinsic corrosion resistance not found in any other bearing materials. Ni-Ti thus represents a new materials solution to demanding tribological applications.

  1. Biomimetic heterogenous elastic tissue development.

    PubMed

    Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala

    2017-01-01

    There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.

  2. Substratum type affects recruitment and development of marine assemblages over artificial substrata: A case study in the Alboran Sea

    NASA Astrophysics Data System (ADS)

    Sempere-Valverde, Juan; Ostalé-Valriberas, Enrique; Farfán, Gonzalo M.; Espinosa, Free

    2018-05-01

    There are more than 27,000 harbours along coasts worldwide and construction is expected to increase. The development and application of new ecological engineering ideas, for both old and new structures, is now imperative in order to reduce perturbation on marine coastal biota and to avoid the spread of non-native species. In this study, the early benthic assessment of subtidal and intertidal communities is tracked on five artificial substrata differing in origin, roughness, and chemical composition: Oyster Sandstone, Limestone, Gabbro, Slate and Concrete. Within substrata, Sandstone was the roughest on a 1-2 mm scale. Also, Sandstone and Limestone had predominantly calcareous composition while silicon was abundant in Concrete, Gabbro and Slate. In the intertidal zone, results showed that primary productivity and diatom abundance markedly increased with substratum roughness. In the subtidal zone, species richness and diversity over experimental substrata were lower than in adjacent rocky reefs. Nonetheless, during the first year of colonization communities varied within the experimental substrata. Coverage was higher on Sandstone than Concrete and Gabbro, and species richness was higher on Sandstone than Limestone. The differences are related to intrinsic substratum-type characteristics and showed Limestone, Gabbro and Concrete hold relatively poor ecological benefits in the first phases of ecological succession. The results may help to promote future research in this field and to test different substrata combinations and heterogeneities, for more environmentally sustainable surfaces in design of coastal structures.

  3. Mechanical Model Analysis for Quantitative Evaluation of Liver Fibrosis Based on Ultrasound Tissue Elasticity Imaging

    NASA Astrophysics Data System (ADS)

    Shiina, Tsuyoshi; Maki, Tomonori; Yamakawa, Makoto; Mitake, Tsuyoshi; Kudo, Masatoshi; Fujimoto, Kenji

    2012-07-01

    Precise evaluation of the stage of chronic hepatitis C with respect to fibrosis has become an important issue to prevent the occurrence of cirrhosis and to initiate appropriate therapeutic intervention such as viral eradication using interferon. Ultrasound tissue elasticity imaging, i.e., elastography can visualize tissue hardness/softness, and its clinical usefulness has been studied to detect and evaluate tumors. We have recently reported that the texture of elasticity image changes as fibrosis progresses. To evaluate fibrosis progression quantitatively on the basis of ultrasound tissue elasticity imaging, we introduced a mechanical model of fibrosis progression and simulated the process by which hepatic fibrosis affects elasticity images and compared the results with those clinical data analysis. As a result, it was confirmed that even in diffuse diseases like chronic hepatitis, the patterns of elasticity images are related to fibrous structural changes caused by hepatic disease and can be used to derive features for quantitative evaluation of fibrosis stage.

  4. High pressure and temperature induced structural and elastic properties of lutetium chalcogenides

    NASA Astrophysics Data System (ADS)

    Shriya, S.; Kinge, R.; Khenata, R.; Varshney, Dinesh

    2018-04-01

    The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rock salt to CsCl structures in semiconducting LuX (X = S, Se, and Te) chalcogenides compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), and young modulus (E) the LuX lattice infers mechanical stiffening, and thermal softening.

  5. Elastic modulus affects the growth and differentiation of neural stem cells

    PubMed Central

    Jiang, Xian-feng; Yang, Kai; Yang, Xiao-qing; Liu, Ying-fu; Cheng, Yuan-chi; Chen, Xu-yi; Tu, Yue

    2015-01-01

    It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron specific enolase, glial fibrillary acidic protein, and myelin basic protein expression was detected by immunofluorescence. Moreover, flow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These findings confirm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus results in a more obvious trend of cell differentiation into astrocytes. PMID:26604916

  6. Elastic moduli of a Brownian colloidal glass former

    NASA Astrophysics Data System (ADS)

    Fritschi, S.; Fuchs, M.

    2018-01-01

    The static, dynamic and flow-dependent shear moduli of a binary mixture of Brownian hard disks are studied by an event-driven molecular dynamics simulation. Thereby, the emergence of rigidity close to the glass transition encoded in the static shear modulus G_∞ is accessed by three methods. Results from shear stress auto-correlation functions, elastic dispersion relations, and the elastic response to strain deformations upon the start-up of shear flow are compared. This enables one to sample the time-dependent shear modulus G(t) consistently over several decades in time. By that a very precise specification of the glass transition point and of G_∞ is feasible. Predictions by mode coupling theory of a finite shear modulus at the glass transition, of α-scaling in fluid states close to the transition, and of shear induced decay in yielding glass states are tested and broadly verified.

  7. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity

    PubMed Central

    Park, Dae Woo

    2016-01-01

    Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression. PMID:27293476

  8. Elastic properties and apparent density of human edentulous maxilla and mandible

    PubMed Central

    Seong, Wook-Jin; Kim, Uk-Kyu; Swift, James Q.; Heo, Young-Cheul; Hodges, James S.; Ko, Ching-Chang

    2009-01-01

    The aim of this study aim was to determine whether elastic properties and apparent density of bone differ in different anatomical regions of the maxilla and mandible. Additional analyses assessed how elastic properties and apparent density were related. Four pairs of edentulous maxilla and mandibles were retrieved from fresh human cadavers. Bone samples from four anatomical regions (maxillary anterior, maxillary posterior, mandibular anterior, mandibular posterior) were obtained. Elastic modulus (EM) and hardness (H) were measured using the nano-indentation technique. Bone samples containing cortical and trabecular bone were used to measure composite apparent density (cAD) using Archimedes’ principle. Statistical analyses used repeated measures ANOVA and Pearson correlations. Bone physical properties differed between regions of the maxilla and mandible. Generally, mandible had higher physical property measurements than maxilla. EM and H were higher in posterior than in anterior regions; the reverse was true for cAD. Posterior maxillary cAD was significantly lower than that in the three other regions. PMID:19647417

  9. Elastic properties and apparent density of human edentulous maxilla and mandible.

    PubMed

    Seong, W-J; Kim, U-K; Swift, J Q; Heo, Y-C; Hodges, J S; Ko, C-C

    2009-10-01

    The aim of this study was to determine whether elastic properties and apparent density of bone differ in different anatomical regions of the maxilla and mandible. Additional analyses assessed how elastic properties and apparent density were related. Four pairs of edentulous maxilla and mandibles were retrieved from fresh human cadavers. Bone samples from four anatomical regions (maxillary anterior, maxillary posterior, mandibular anterior, mandibular posterior) were obtained. Elastic modulus (EM) and hardness (H) were measured using the nano-indentation technique. Bone samples containing cortical and trabecular bone were used to measure composite apparent density (cAD) using Archimedes' principle. Statistical analyses used repeated measures ANOVA and Pearson correlations. Bone physical properties differed between regions of the maxilla and mandible. Generally, mandible had higher physical property measurements than maxilla. EM and H were higher in posterior than in anterior regions; the reverse was true for cAD. Posterior maxillary cAD was significantly lower than that in the three other regions.

  10. Deformation partitioning provides insight into elastic, plastic, and viscous contributions to bone material behavior.

    PubMed

    Ferguson, V L

    2009-08-01

    The relative contributions of elastic, plastic, and viscous material behavior are poorly described by the separate extraction and analysis of the plane strain modulus, E('), the contact hardness, H(c) (a hybrid parameter encompassing both elastic and plastic behavior), and various viscoelastic material constants. A multiple element mechanical model enables the partitioning of a single indentation response into its fundamental elastic, plastic, and viscous deformation components. The objective of this study was to apply deformation partitioning to explore the role of hydration, tissue type, and degree of mineralization in bone and calcified cartilage. Wet, ethanol-dehydrated, and PMMA-embedded equine cortical bone samples and PMMA-embedded human femoral head tissues were analyzed for contributions of elastic, plastic and viscous deformation to the overall nanoindentation response at each site. While the alteration of hydration state had little effect on any measure of deformation, unembedded tissues demonstrated significantly greater measures of resistance to plastic deformation than PMMA-embedded tissues. The PMMA appeared to mechanically stabilize the tissues and prevent extensive permanent deformation within the bone material. Increasing mineral volume fraction correlated with positive changes in E('), H(c), and resistance to plastic deformation, H; however, the partitioned deformation components were generally unaffected by mineralization. The contribution of viscous deformation was minimal and may only play a significant role in poorly mineralized tissues. Deformation partitioning enables a detailed interpretation of the elastic, plastic, and viscous contributions to the nanomechanical behavior of mineralized tissues that is not possible when examining modulus and contact hardness alone. Varying experimental or biological factors, such as hydration or mineralization level, enables the understanding of potential mechanisms for specific mechanical behavior

  11. Ultrafast dynamics of hard tissue ablation using fs-lasers.

    PubMed

    Domke, Matthias; Wick, Sebastian; Laible, Maike; Rapp, Stephan; Huber, Heinz P; Sroka, Ronald

    2018-05-29

    Several studies on hard tissue laser ablation demonstrated that ultrafast lasers enable precise material removal without thermal side effects. Although the principle ablation mechanisms have been thoroughly investigated, there are still open questions regarding the influence of material properties on transient dynamics. In this investigation, we applied pump-probe microscopy to record ablation dynamics of biomaterials with different tensile strengths (dentin, chicken bone, gallstone, kidney stones) at delay times between 1 ps and 10 μs. Transient reflectivity changes, pressure and shock wave velocities, and elastic constants were determined. The result revealed that absorption and excitation show the typical well-known transient behaviour of dielectric materials. We observed for all samples a photomechanical laser ablation process, where ultrafast expansion of the excited volume generates pressure waves leading to fragmentation around the excited region. Additionally, we identified tensile-strength-related differences in the size of ablated craters and ejected particles. The elastic constants derived were in agreement with literature values. In conclusion, pressure-wave-assisted material removal seems to be a general mechanism for hard tissue ablation with ultrafast lasers. This photomechanical process increases ablation efficiency and removes heated material, thus ultrafast laser ablation is of interest for clinical application where heating of the tissue must be avoided. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Self-consistent Modeling of Elastic Anisotropy in Shale

    NASA Astrophysics Data System (ADS)

    Kanitpanyacharoen, W.; Wenk, H.; Matthies, S.; Vasin, R.

    2012-12-01

    Elastic anisotropy in clay-rich sedimentary rocks has increasingly received attention because of significance for prospecting of petroleum deposits, as well as seals in the context of nuclear waste and CO2 sequestration. The orientation of component minerals and pores/fractures is a critical factor that influences elastic anisotropy. In this study, we investigate lattice and shape preferred orientation (LPO and SPO) of three shales from the North Sea in UK, the Qusaiba Formation in Saudi Arabia, and the Officer Basin in Australia (referred to as N1, Qu3, and L1905, respectively) to calculate elastic properties and compare them with experimental results. Synchrotron hard X-ray diffraction and microtomography experiments were performed to quantify LPO, weight proportions, and three-dimensional SPO of constituent minerals and pores. Our preliminary results show that the degree of LPO and total amount of clays are highest in Qu3 (3.3-6.5 m.r.d and 74vol%), moderately high in N1 (2.4-5.6 m.r.d. and 70vol%), and lowest in L1905 (2.3-2.5 m.r.d. and 42vol%). In addition, porosity in Qu3 is as low as 2% while it is up to 6% in L1605 and 8% in N1, respectively. Based on this information and single crystal elastic properties of mineral components, we apply a self-consistent averaging method to calculate macroscopic elastic properties and corresponding seismic velocities for different shales. The elastic model is then compared with measured acoustic velocities on the same samples. The P-wave velocities measured from Qu3 (4.1-5.3 km/s, 26.3%Ani.) are faster than those obtained from L1905 (3.9-4.7 km/s, 18.6%Ani.) and N1 (3.6-4.3 km/s, 17.7%Ani.). By making adjustments for pore structure (aspect ratio) and single crystal elastic properties of clay minerals, a good agreement between our calculation and the ultrasonic measurement is obtained.

  13. Effects of hydrostatic pressure and biaxial strains on the elastic and electronic properties of t-C8B2N2

    NASA Astrophysics Data System (ADS)

    Zhu, Haiyan; Shi, Liwei; Li, Shuaiqi; Duan, Yifeng; Zhang, Shaobo; Xia, Wangsuo

    2018-04-01

    The effects of hydrostatic pressure and biaxial strains on the elastic and electronic properties of a superhard material t-C8B2N2 have been studied using first-principles calculations. The structure is proven to be mechanically and dynamically stable under the applied external forces. All the elastic constants (except C66) and elastic modulus increase (decrease) with increasing pressure and compressive (tensile) biaxial strain ɛxx. A microscopic model is used to calculate the Vicker's hardness of every single bond as well as the crystal. The hardness of t-C8B2N2 (64.7 GPa) exceeds that of c-BN (62 GPa) and increases obviously by employing pressure and compressive ɛxx. Furthermore, the Debye temperature and anisotropy of sound velocities for t-C8B2N2 have been discussed. t-C8B2N2 undergoes an indirect to direct bandgap transition when ɛxx > 2%; however, the indirect bandgap character of the material remains under pressure.

  14. Thriving reefs in the Baltic? Diversity and small-scale variability of hard-bottom assemblages along natural and anthropogenic gradients in the German Baltic Sea

    NASA Astrophysics Data System (ADS)

    Beisiegel, K.; Zettler, M. L.; Darr, A.; Schiele, K.; Schwarzer, K.; Richter, P.

    2016-02-01

    Since the vast majority of global seafloor habitats are characterized by soft sediments, hard substrata represent rarities hosting species and functional groups not found elsewhere. The same holds true for the enclosed and brackish Baltic Sea, where hard substrata occur patchy and infrequent. Subtidal low-relief terrains with homogenous mud and sand flats form the predominant benthic substrate and the associated infaunal communities are well described. In contrast, the diverse, primarily epibenthic assemblages on subtidal hard bottoms received far less attention. Since 2011 a team of geologists and biologists aims to map the subtidal habitats and biotopes. On joint cruises, geologists use side scan sonar to map the seafloor sediments while ground truthing is performed in collaboration with biologists. Biogenic concretions like mussel beds and hard structures of geogenic origin like stones and glacial boulders form the predominant hard substrata in the German Baltic Sea. These habitats are subsequently investigated using frame sampling by SCUBA diving, dredges or towed photo/video platforms. The type of hard substratum, salinity and light availability seem to be the most important natural factors that determine the epibenthic community composition. Identified geological substrata and biological communities are matched with biotopes of the HELCOM Underwater biotope and habitat classification system. Predictive modeling approaches are used to generate biotope specific distribution patterns, based on biological point samples, area-wide sediment distribution maps and measured/modeled environmental parameters. The resulting hard-bottom biotope maps, combining geological and biological information, complement the existing area-wide biotope map of soft sediment communities. The maps are important tools both for the scientific community to understand the functioning of marine ecosystems as well as for nature conservation, e.g. for the implementation of MPA management plans

  15. Intramuscular changes of soft and hard areas after low-level static contraction of the masseter muscle and the correlations with muscle hardness and increase in water content: evaluations with sonographic elastography and magnetic resonance imaging.

    PubMed

    Ariji, Yoshiko; Nakayama, Miwa; Taguchi, Akira; Gotoh, Akihiko; Kise, Yoshitaka; Katsumata, Aakitoshi; Kurita, Kenichi; Ariji, Eiichiro

    2013-09-01

    To investigate the intramuscular changes on sonographic elastography (SE) after low-level static contraction of the masseter muscle, and to clarify the relationship with the total hardness and edematous change. Ten healthy volunteers performed sustained bilateral biting at 20% of maximal voluntary contraction for 10 min. The SE and magnetic resonance (MR) scans of the masseter muscles were performed before, immediately after, and 10 min after exercise. The masseter muscle elasticity index (MEI) ratio, muscle thickness, and intramuscular soft and hard areas distribution were evaluated on SE images. The signal to noise ratio (SNR), indicating the water content, was measured on MR images. The soft area ratio showed significant correlations with the water content expressed as SNR. The hard area ratio showed significant correlations with the total muscle hardness expressed as the MEI ratio. Intramuscular soft and hard areas could be used both clinically and experimentally. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. High Elastic Moduli of a 54Al2O3-46Ta2O5 Glass Fabricated via Containerless Processing

    PubMed Central

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki; Yanaba, Yutaka; Mizoguchi, Teruyasu; Umada, Takumi; Okamura, Kohei; Kato, Katsuyoshi; Watanabe, Yasuhiro

    2015-01-01

    Glasses with high elastic moduli have been in demand for many years because the thickness of such glasses can be reduced while maintaining its strength. Moreover, thinner and lighter glasses are desired for the fabrication of windows in buildings and cars, cover glasses for smart-phones and substrates in Thin-Film Transistor (TFT) displays. In this work, we report a 54Al2O3-46Ta2O5 glass fabricated by aerodynamic levitation which possesses one of the highest elastic moduli and hardness for oxide glasses also displaying excellent optical properties. The glass was colorless and transparent in the visible region, and its refractive index nd was as high as 1.94. The measured Young’s modulus and Vickers hardness were 158.3 GPa and 9.1 GPa, respectively, which are comparable to the previously reported highest values for oxide glasses. Analysis made using 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy revealed the presence of a significantly large fraction of high-coordinated Al in addition to four-coordinated Al in the glass. The high elastic modulus and hardness are attributed to both the large cationic field strength of Ta5+ ions and the large dissociation energies per unit volume of Al2O3 and Ta2O5. PMID:26468639

  17. Problems in hard and soft matter: From brain folds and Levy localization to active elasticity

    NASA Astrophysics Data System (ADS)

    Mayett, David

    This thesis presents a study of condensed matter systems at different length scales. The first part presents a study of elastic instabilities in biological systems ranging from the cerebral cortex in the brain to the lining of the intestines. Such instabilities lead to a zoo of morphologies ranging from primary folds to villi and crypts to secondary folds and are brought about by growth, mechanical stresses, or a combination of the two. We propose a novel model for the description of primary folds in the cerebral cortex. Motivated by the spatial structure of the cortex, we model its elasticity as a smectic liquid crystal. With this novel description we show that vertical pulling forces via axonal tension from the brain underlying white matter can lead to buckling, which initiates the primary folds. Moreover, we are able to obtain a reasonable estimate of the critical wavelength and strain for buckling. We also model the formation of secondary folds in the cortex to obtain a more comprehensive theory. We continue this study of elastic instabilities due to growth by studying a more general system comprised of two coupled elastic membranes, one of which undergoes growth and one that does not. We employ an active formulation of growth and compare it to the one due to Rodriguez (Rodriguez). We show that different morphologies corresponding to different systems, such as the cerebral cortex and the lining of the intestines, can be obtained from our model by choosing different active stress functional forms to begin to classify the zoo of morphologies observed in seemingly different biological systems. In the second part of this thesis, to work towards a more microscopic view of biological tissues such as the brain tissue, which is composed of neurons, glial cells, and progenitor cells, we model an experiment (Theveneau) studying the dynamic interaction between neural crest cells and placodal cells in which the placodal cells run away from the neural crest cells following

  18. Functional helicoidal model of DNA molecule with elastic nonlinearity

    NASA Astrophysics Data System (ADS)

    Tseytlin, Y. M.

    2013-06-01

    We constructed a functional DNA molecule model on the basis of a flexible helicoidal sensor, specifically, a pretwisted hollow nano-strip. We study in this article the helicoidal nano- sensor model with a pretwisted strip axial extension corresponding to the overstretching transition of DNA from dsDNA to ssDNA. Our model and the DNA molecule have similar geometrical and nonlinear mechanical features unlike models based on an elastic rod, accordion bellows, or an imaginary combination of "multiple soft and hard linear springs", presented in some recent publications.

  19. Development of New Elastomers and Elastic Nanocomposites from Plant Oils

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Wool, Richard

    2006-03-01

    Economic and environmental concerns lead to the development of new polymers from renewable resources. In this research, new elastomers were synthesized from plant oil based resins. Acrylated oleic methyl ester (AOME), synthesized from high oleic triglycerides, can readily undergo free radical polymerization and form a linear polymer. To achieve the elastic properties, different strategies have been developed to generate an elastic network and control the crosslink density. The elastomers are reinforced by nanoclays. The intercalated state has a network structure similar to thermoplastic elastomers in which the hard segments aggregate to give ordered crystalline domains. The selected organically modified clay and AOME matrix have similar solubility parameters, therefore intercalation of the monomer/polymer into the clay layers occurs and the nano-scale multilayered structure is stable. In situ intercalation and solution intercalation were used to prepare the elastic nanocomposites. Dramatic improvement in mechanical properties was observed. Changes of tensile strength, strain, Young's modulus and fracture energy were related to the clay concentration. The fracture surface was studied to further understand clay effects on the mechanical properties. Self-Healing of the intercalated nanobeams, thermal stability, biocompatibility and biodegradability of this new elastomer were also explored.

  20. Reducing the influence of the surface roughness on the hardness measurement using instrumented indentation test

    NASA Astrophysics Data System (ADS)

    Maslenikov, I.; Useinov, A.; Birykov, A.; Reshetov, V.

    2017-10-01

    The instrumented indentation method requires the sample surface to be flat and smooth; thus, hardness and elastic modulus values are affected by the roughness. A model that accounts for the isotropic surface roughness and can be used to correct the data in two limiting cases is proposed. Suggested approach requires the surface roughness parameters to be known.

  1. The Dynamics of Disorder-Order Transition in Hard Sphere Colloidal Dispersions

    NASA Technical Reports Server (NTRS)

    Chaikin, Paul M.; Zhu, Jixiang; Cheng, Zhengdong; Phan, See-Eng; Russel, William B.; Lant, Christian T.; Doherty, Michael P.; Meyer, William V.; Rogers, Richard; Cannell, D. S.; hide

    1998-01-01

    The Physics of Hard Spheres Experiment (PHaSE) seeks a complete understanding of the entropically driven disorder-order transition in hard sphere colloidal dispersions. The light scattering instrument designed for flight collects Bragg and low angle light scattering in the forward direction via a CCD camera and performs conventional static and dynamic light scattering at 10-160 deg. through fiber optic cables. Here we report on the kinetics of nucleation and growth extracted from time-resolved Bragg images and measurements of the elastic modulus of crystalline phases obtained by monitoring resonant responses to sinusoidal forcing through dynamic light scattering. Preliminary analysis of the former indicates a significant difference from measurements on the ground, while the latter confirms nicely laboratory experiments with the same instrument and predictions from computer simulations.

  2. Cranial neural crest recycle surface integrins in a substratum-dependent manner to promote rapid motility.

    PubMed

    Strachan, Lauren R; Condic, Maureen L

    2004-11-08

    Cell migration is essential for proper development of numerous structures derived from embryonic neural crest cells (NCCs). Although the migratory pathways of NCCs have been determined, the molecular mechanisms regulating NCC motility remain unclear. NCC migration is integrin dependent, and recent work has shown that surface expression levels of particular integrin alpha subunits are important determinants of NCC motility in vitro. Here, we provide evidence that rapid cranial NCC motility on laminin requires integrin recycling. NCCs showed both ligand- and receptor-specific integrin regulation in vitro. On laminin, NCCs accumulated internalized laminin but not fibronectin receptors over 20 min, whereas on fibronectin neither type of receptor accumulated internally beyond 2 min. Internalized laminin receptors colocalized with receptor recycling vesicles and were subsequently recycled back to the cell surface. Blocking receptor recycling with bafilomycin A inhibited NCC motility on laminin, indicating that substratum-dependent integrin recycling is essential for rapid cranial neural crest migration.

  3. Structural, elastic, electronic and dynamical properties of OsB and ReB: Density functional calculations

    NASA Astrophysics Data System (ADS)

    Li, Yanling; Zeng, Zhi; Lin, Haiqing

    2010-06-01

    The structural, elastic, electronic and dynamical properties of ReB and OsB are investigated by first-principles calculations based on density functional theory. It turns out that ReB and OsB are metallic ultra-incompressible solids with small elastic anisotropy and high hardness. The change of c/ a ratio in OsB indicates that there is a structural phase transition at about 31 GPa. Phonon spectra calculations show that both OsB and ReB are stable dynamically and there are abnormal phonon dispersions along special directions in Brillouin zone. OsB and ReB do not show superconductivity due to very weak electron-phonon interactions in them.

  4. Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network

    PubMed Central

    Hu, Meng; He, Julong; Zhao, Zhisheng; Strobel, Timothy A.; Hu, Wentao; Yu, Dongli; Sun, Hao; Liu, Lingyu; Li, Zihe; Ma, Mengdong; Kono, Yoshio; Shu, Jinfu; Mao, Ho-kwang; Fei, Yingwei; Shen, Guoyin; Wang, Yanbin; Juhl, Stephen J.; Huang, Jian Yu; Liu, Zhongyuan; Xu, Bo; Tian, Yongjun

    2017-01-01

    Carbon’s unique ability to have both sp2 and sp3 bonding states gives rise to a range of physical attributes, including excellent mechanical and electrical properties. We show that a series of lightweight, ultrastrong, hard, elastic, and conductive carbons are recovered after compressing sp2-hybridized glassy carbon at various temperatures. Compression induces the local buckling of graphene sheets through sp3 nodes to form interpenetrating graphene networks with long-range disorder and short-range order on the nanometer scale. The compressed glassy carbons have extraordinary specific compressive strengths—more than two times that of commonly used ceramics—and simultaneously exhibit robust elastic recovery in response to local deformations. This type of carbon is an optimal ultralight, ultrastrong material for a wide range of multifunctional applications, and the synthesis methodology demonstrates potential to access entirely new metastable materials with exceptional properties. PMID:28630918

  5. Area-selective atomic layer deposition of Ru on electron-beam-written Pt(C) patterns versus SiO2 substratum

    NASA Astrophysics Data System (ADS)

    Junige, Marcel; Löffler, Markus; Geidel, Marion; Albert, Matthias; Bartha, Johann W.; Zschech, Ehrenfried; Rellinghaus, Bernd; van Dorp, Willem F.

    2017-09-01

    Area selectivity is an emerging sub-topic in the field of atomic layer deposition (ALD), which employs opposite nucleation phenomena to distinct heterogeneous starting materials on a surface. In this paper, we intend to grow Ru exclusively on locally pre-defined Pt patterns, while keeping a SiO2 substratum free from any deposition. In a first step, we study in detail the Ru ALD nucleation on SiO2 and clarify the impact of the set-point temperature. An initial incubation period with actually no growth was revealed before a formation of minor, isolated RuO x islands; clearly no continuous Ru layer formed on SiO2. A lower temperature was beneficial in facilitating a longer incubation and consequently a wider window for (inherent) selectivity. In a second step, we write C-rich Pt micro-patterns on SiO2 by focused electron-beam-induced deposition (FEBID), varying the number of FEBID scans at two electron beam acceleration voltages. Subsequently, the localized Pt(C) deposits are pre-cleaned in O2 and overgrown by Ru ALD. Already sub-nanometer-thin Pt(C) patterns, which were supposedly purified into some form of Pt(O x ), acted as very effective activation for the locally restricted, thus area-selective ALD growth of a pure, continuous Ru covering, whereas the SiO2 substratum sufficiently inhibited towards no growth. FEBID at lower electron energy reduced unwanted stray deposition and achieved well-resolved pattern features. We access the nucleation phenomena by utilizing a hybrid metrology approach, which uniquely combines in-situ real-time spectroscopic ellipsometry, in-vacuo x-ray photoelectron spectroscopy, ex-situ high-resolution scanning electron microscopy, and mapping energy-dispersive x-ray spectroscopy.

  6. First-principles modeling of hardness in transition-metal diborides

    NASA Astrophysics Data System (ADS)

    Lazar, Petr; Chen, Xing-Qiu; Podloucky, Raimund

    2009-07-01

    Based on recent experiments, the diborides OsB2 and ReB2 were proposed to be ultraincompressible and superhard materials. By application of an ab initio density-functional theory approach we investigate the elastic and cleavage fracture properties of the borides MB2 ( M=Hf , Ta, W, Re, Os, and Ir). We derive a direct correlation between the lowest calculated critical cleavage stress and the experimental (micro)hardness. By calculating the critical shear stress and estimating the possibility of dislocation emission we can justify the prediction that ReB2 is indeed a superhard material.

  7. Laser-Ultrasonic Measurement of Elastic Properties of Anodized Aluminum Coatings

    NASA Astrophysics Data System (ADS)

    Singer, F.

    Anodized aluminum oxide plays a great role in many industrial applications, e.g. in order to achieve greater wear resistance. Since the hardness of the anodized films strongly depends on its processing parameters, it is important to characterize the influence of the processing parameters on the film properties. In this work the elastic material parameters of anodized aluminum were investigated using a laser-based ultrasound system. The anodized films were characterized analyzing the dispersion of Rayleigh waves with a one-layer model. It was shown that anodizing time and temperature strongly influence Rayleigh wave propagation.

  8. Radiative corrections to elastic proton-electron scattering measured in coincidence

    NASA Astrophysics Data System (ADS)

    Gakh, G. I.; Konchatnij, M. I.; Merenkov, N. P.; Tomasi-Gustafsson, E.

    2017-05-01

    The differential cross section for elastic scattering of protons on electrons at rest is calculated, taking into account the QED radiative corrections to the leptonic part of interaction. These model-independent radiative corrections arise due to emission of the virtual and real soft and hard photons as well as to vacuum polarization. We analyze an experimental setup when both the final particles are recorded in coincidence and their energies are determined within some uncertainties. The kinematics, the cross section, and the radiative corrections are calculated and numerical results are presented.

  9. Stress distribution calculations through a snow slab of varying elastic modulus; comparison with stability evaluation in the field

    NASA Astrophysics Data System (ADS)

    Swinkels, Laura; Borstad, Chris

    2017-04-01

    Field observations are the main tools for assessing the snow stability concerning dry snow slab avalanche release. Often, theoretical studies cannot directly be translated into useful information for avalanche recreationists and forecasters in the field, and vice versa; field observations are not always objective and quantifiable for theoretical studies. Moreover, numerical models often simplify the snowpack and generally use an isotropic single layer slab which is not representative of the real-life situation. The aim of this study is to investigate the stress distribution in a snowpack with an elastic modulus that continuously varies with depth. The focus lies on the difference between a slab with a gradient in hardness and a slab with isotropic hardness and the effect on the calculated maximum stress and the stability evaluation in the field. Approximately 20 different snow pits were evaluated in the mountains around Tromsø, Norway and Longyearbyen, Svalbard. In addition to the standard snowpack observations, the hardness was measured using a thin-blade gauge. Extended column tests were executed for stability evaluation. Measurements from the field were used as input for stress calculations for each snow pit using a line load solution for a sloping half space with a non-homogeneous elastic modulus. The hardness measurements were used to calculate the elastic modulus and a power law relation was fit through the modulus in the slab. The calculated shear stress was compared to the estimated stability and character of the specific snowpack The results show that the approach used for this study improves the calculation of stress at a given depth, although many assumptions and simplifications were still needed. Comparison with the snow profiles indicate that calculated stresses correlate well with the observed snowpack properties and stability. The calculated shear stresses can be introduced in the standard stability index and give a better indication for the

  10. Hybrid mechanosensing system to generate the polarity needed for migration in fish keratocytes

    PubMed Central

    Okimura, Chika; Iwadate, Yoshiaki

    2016-01-01

    ABSTRACT Crawling cells can generate polarity for migration in response to forces applied from the substratum. Such reaction varies according to cell type: there are both fast- and slow-crawling cells. In response to periodic stretching of the elastic substratum, the intracellular stress fibers in slow-crawling cells, such as fibroblasts, rearrange themselves perpendicular to the direction of stretching, with the result that the shape of the cells extends in that direction; whereas fast-crawling cells, such as neutrophil-like differentiated HL-60 cells and Dictyostelium cells, which have no stress fibers, migrate perpendicular to the stretching direction. Fish epidermal keratocytes are another type of fast-crawling cell. However, they have stress fibers in the cell body, which gives them a typical slow-crawling cell structure. In response to periodic stretching of the elastic substratum, intact keratocytes rearrange their stress fibers perpendicular to the direction of stretching in the same way as fibroblasts and migrate parallel to the stretching direction, while blebbistatin-treated stress fiber-less keratocytes migrate perpendicular to the stretching direction, in the same way as seen in HL-60 cells and Dictyostelium cells. Our results indicate that keratocytes have a hybrid mechanosensing system that comprises elements of both fast- and slow-crawling cells, to generate the polarity needed for migration. PMID:27124267

  11. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    PubMed

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  12. Chirality in microbial biofilms is mediated by close interactions between the cell surface and the substratum

    PubMed Central

    Jauffred, Liselotte; Munk Vejborg, Rebecca; Korolev, Kirill S; Brown, Stanley; Oddershede, Lene B

    2017-01-01

    From microbial biofilms to human migrations, spatial competition is central to the evolutionary history of many species. The boundary between expanding populations is the focal point of competition for space and resources and is of particular interest in ecology. For all Escherichia coli strains studied here, these boundaries move in a counterclockwise direction even when the competing strains have the same fitness. We find that chiral growth of bacterial colonies is strongly suppressed by the expression of extracellular features such as adhesive structures and pili. Experiments with other microbial species show that chiral growth is found in other bacteria and exclude cell wall biosynthesis and anisotropic shape as the primary causes of chirality. Instead, intimate contact with the substratum is necessary for chirality. Our results demonstrate that through a handful of surface molecules cells can fundamentally reorganize their migration patterns, which might affect intra- and interspecific competitions through colony morphology or other mechanisms. PMID:28362723

  13. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate

    NASA Astrophysics Data System (ADS)

    Worthy, Anna; Grosjean, Arnaud; Pfrunder, Michael C.; Xu, Yanan; Yan, Cheng; Edwards, Grant; Clegg, Jack K.; McMurtrie, John C.

    2018-01-01

    Single crystals are typically brittle, inelastic materials. Such mechanical responses limit their use in practical applications, particularly in flexible electronics and optical devices. Here we describe single crystals of a well-known coordination compound—copper(II) acetylacetonate—that are flexible enough to be reversibly tied into a knot. Mechanical measurements indicate that the crystals exhibit an elasticity similar to that of soft materials such as nylon, and thus display properties normally associated with both hard and soft matter. Using microfocused synchrotron radiation, we mapped the changes in crystal structure that occur on bending, and determined the mechanism that allows this flexibility with atomic precision. We show that, under strain, the molecules in the crystal reversibly rotate, and thus reorganize to allow the mechanical compression and expansion required for elasticity and still maintain the integrity of the crystal structure.

  14. Multiscale model for microstructure evolution in multiphase materials: Application to the growth of isolated inclusions in presence of elasticity.

    PubMed

    Perez, Danny; Lewis, Laurent J

    2006-09-01

    We present a multiscale model based on the classical lattice time-dependent density-functional theory to study microstructure evolution in multiphase systems. As a first test of the method, we study the static and dynamic properties of isolated inclusions. Three cases are explored: elastically homogeneous systems, elastically inhomogeneous systems with soft inclusions, and elastically inhomogeneous systems with hard inclusions. The equilibrium properties of inclusions are shown to be consistent with previous results: both homogeneous and hard inclusions adopt a circular shape independent of their size, whereas soft inclusions are circular below a critical radius and elliptic above. In all cases, the Gibbs-Thomson relation is obeyed, except for a change in the prefactor at the critical radius in soft inclusions. Under growth conditions, homogeneous inclusions exhibit a Mullins-Sekerka shape instability [W. Mullins and R. Sekerka, J. Appl. Phys. 34, 323 (1963)], whereas in inhomogeneous systems, the growth of perturbations follows the Leo-Sekerka model [P. Leo and R. Sekerka, Acta Metall. 37, 3139 (1989)]. For soft inclusions, the mode instability regime is gradually replaced by a tip-growing mechanism, which leads to stable, strongly out-of-equilibrium shapes even at very low supersaturation. This mechanism is shown to significantly affect the growth dynamics of soft inclusions, whereas dynamical corrections to the growth rates are negligible in homogeneous and hard inclusions. Finally, due to its microscopic formulation, the model is shown to automatically take into account phenomena caused by the presence of the underlying discrete lattice: anisotropy of the interfacial energy, anisotropy of the kinetics, and preferential excitation of shape perturbations commensurate with the rotational symmetry of the lattice.

  15. Investigation of hydrogen concentration and hardness of ion irradiated organically modified silicate thin films

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Prenzel, T.; Harriman, T. A.; Wang, Y. Q.; Lucca, D. A.; Williams, D.; Nastasi, M.; Dong, J.; Mehner, A.

    2010-06-01

    A study of the effects of ion irradiation of organically modified silicate thin films on the loss of hydrogen and increase in hardness is presented. NaOH catalyzed SiNa wO xC yH z thin films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H + or 250 keV N 2+ at fluences ranging from 1 × 10 14 to 2.5 × 10 16 ions/cm 2. Elastic Recoil Detection (ERD) was used to investigate resulting hydrogen concentration as a function of ion fluence and irradiating species. Nanoindentation was used to measure the hardness of the irradiated films. FT-IR spectroscopy was also used to examine resulting changes in chemical bonding. The resulting hydrogen loss and increase in hardness are compared to similarly processed acid catalyzed silicate thin films.

  16. In situ synchrotron high-energy X-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Junsong; Hao, Shijie; Jiang, Daqiang

    This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrixmore » and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.« less

  17. Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nanostructure

    NASA Astrophysics Data System (ADS)

    Wang, Chengbing; Yang, Shengrong; Wang, Qi; Wang, Zhou; Zhang, Junyan

    2008-06-01

    Hydrogenated carbon films were grown by a plasma-enhanced chemical vapor deposition (PECVD) technique using CH4 and H2 as feedstock at ambient temperature. The microstructure of the films was characterized by high resolution transmission electron microscopy (HRTEM). The images showed the presence of curved basal planes in fullerene-like arrangements. An apparent amorphous graphene structure with nm-sized packages of basal planes in a turbostratic feature was observed. The fabricated fullerene-like hydrogenated carbon films (FL-C:H) possess superior mechanical properties, i.e. high hardness (19 GPa) and high elasticity (elastic recovery of 85%). More importantly, the films exhibit ultra-low friction (μ = 0.009) under ambient conditions with 20% relative humidity.

  18. Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nanostructure.

    PubMed

    Wang, Chengbing; Yang, Shengrong; Wang, Qi; Wang, Zhou; Zhang, Junyan

    2008-06-04

    Hydrogenated carbon films were grown by a plasma-enhanced chemical vapor deposition (PECVD) technique using CH(4) and H(2) as feedstock at ambient temperature. The microstructure of the films was characterized by high resolution transmission electron microscopy (HRTEM). The images showed the presence of curved basal planes in fullerene-like arrangements. An apparent amorphous graphene structure with nm-sized packages of basal planes in a turbostratic feature was observed. The fabricated fullerene-like hydrogenated carbon films (FL-C:H) possess superior mechanical properties, i.e. high hardness (19 GPa) and high elasticity (elastic recovery of 85%). More importantly, the films exhibit ultra-low friction (μ = 0.009) under ambient conditions with 20% relative humidity.

  19. Discovery of Superconductivity in Hard Hexagonal ε-NbN.

    PubMed

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.

  20. Discovery of superconductivity in hard hexagonal ε-NbN

    DOE PAGES

    Zou, Yongtao; Li, Qiang; Qi, Xintong; ...

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (T C) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ~11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower T C have been addressed by themore » weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ~20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (~227 GPa). Furthermore, this exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.« less

  1. Elegent—An elastic event generator

    NASA Astrophysics Data System (ADS)

    Kašpar, J.

    2014-03-01

    Although elastic scattering of nucleons may look like a simple process, it presents a long-lasting challenge for theory. Due to missing hard energy scale, the perturbative QCD cannot be applied. Instead, many phenomenological/theoretical models have emerged. In this paper we present a unified implementation of some of the most prominent models in a C++ library, moreover extended to account for effects of the electromagnetic interaction. The library is complemented with a number of utilities. For instance, programs to sample many distributions of interest in four-momentum transfer squared, t, impact parameter, b, and collision energy √{s}. These distributions at ISR, Spp¯S, RHIC, Tevatron and LHC energies are available for download from the project web site. Both in the form of ROOT files and PDF figures providing comparisons among the models. The package includes also a tool for Monte-Carlo generation of elastic scattering events, which can easily be embedded in any other program framework. Catalogue identifier: AERT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERT_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 10551 No. of bytes in distributed program, including test data, etc.: 126316 Distribution format: tar.gz Programming language: C++. Computer: Any in principle, tested on x86-64 architecture. Operating system: Any in principle, tested on GNU/Linux. RAM: Strongly depends on the task, but typically below 20MB Classification: 11.6. External routines: ROOT, HepMC Nature of problem: Monte-Carlo simulation of elastic nucleon-nucleon collisions Solution method: Implementation of some of the most prominent phenomenological/theoretical models providing cumulative distribution function that is used for random event generation. Running time: Strongly depends on the task, but

  2. Effects of water hardness on size and hatching success of silver carp eggs

    USGS Publications Warehouse

    Rach, Jeff J.; Sass, Greg G.; Luoma, James A.; Gaikowski, Mark P.

    2010-01-01

    Eggs of silver carp Hypophthalmichthys molitrix absorb water after release from the female, causing them to become turgid and to increase substantially in size. The volume of water that diffuses within an egg is most likely determined by (1) the difference in ionic concentration between the egg and the water that surrounds it and (2) the elasticity of the egg membrane. Prior observations suggest that silver carp eggs may swell and burst in soft waters. If water hardness affects silver carp reproductive success in nonnative ecosystems, this abiotic factor could limit silver carp distribution or abundance. In this study, we tested the effect of water hardness on silver carp egg enlargement and hatching success. Groups of newly fertilized silver carp eggs were placed in water at one of five nominal water hardness levels (50, 100, 150, 200, or 250 mg/L as CaCO3) for 1 h to harden (absorb water after fertilization). Egg groups were then placed in separate incubation vessels housed in two recirculation systems that were supplied with either soft (50 mg/L as CaCO3) or hard (250 mg/L as CaCO3) water to evaluate hatching success. Tests were terminated within 24 h after viable eggs had hatched. Eggs that were initially placed in 50-mg/L water to harden were larger (i.e., swelled more) and had a greater probability of hatch than eggs hardened in other water hardness levels. Unlike the effect of water hardness during egg hardening, the water hardness during incubation appeared to have no effect on egg hatching success. Our research suggests that water hardness may not be a limiting factor in the reproduction, recruitment, and range expansion of silver carp in North America.

  3. Blocky inversion of multichannel elastic impedance for elastic parameters

    NASA Astrophysics Data System (ADS)

    Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza

    2018-04-01

    Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.

  4. Correlation of impression removal force with elastomeric impression material rigidity and hardness.

    PubMed

    Walker, Mary P; Alderman, Nick; Petrie, Cynthia S; Melander, Jennifer; McGuire, Jacob

    2013-07-01

    Difficult impression removal has been linked to high rigidity and hardness of elastomeric impression materials. In response to this concern, manufacturers have reformulated their materials to reduce rigidity and hardness to decrease removal difficulty; however, the relationship between impression removal and rigidity or hardness has not been evaluated. The purpose of this study was to determine if there is a positive correlation between impression removal difficulty and rigidity or hardness of current elastomeric impression materials. Light- and medium-body polyether (PE), vinylpolysiloxane (VPS), and hybrid vinyl polyether siloxane (VPES) impression materials were tested (n = 5 for each material/consistency/test method). Rigidity (elastic modulus) was measured via tensile testing of dumbbell-shaped specimens (Die C, ASTM D412). Shore A hardness was measured using disc specimens according to ASTM D2240-05 test specifications. Impressions were also made of a custom stainless steel model using a custom metal tray that could be attached to a universal tester to measure associated removal force. Within each impression material consistency, one-factor ANOVA and Tukey's post hoc analyses (α = 0.05) were used to compare rigidity, hardness, and removal force of the three types of impression materials. A Pearson's correlation (α = 0.05) was used to evaluate the association between impression removal force and rigidity or hardness. With medium-body materials, VPS exhibited significantly higher (p ≤ 0.05) rigidity and hardness than VPES or PE, while PE impressions required significantly higher (p ≤ 0.05) removal force than VPS or VPES impressions. With light-body materials, VPS again demonstrated significantly higher (p ≤ 0.05) hardness than VPES or PE, while the rigidity of the light-body materials did not significantly differ between materials (p > 0.05); however, just as with the medium-body materials, light-body PE impressions required significantly higher (p

  5. Elastic, mechanical, and thermodynamic properties of Bi-Sb binaries: Effect of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Singh, Sobhit; Valencia-Jaime, Irais; Pavlic, Olivia; Romero, Aldo H.

    2018-02-01

    Using first-principles calculations, we systematically study the elastic stiffness constants, mechanical properties, elastic wave velocities, Debye temperature, melting temperature, and specific heat of several thermodynamically stable crystal structures of BixSb1 -x (0 elastic softening in most of the studied structures. Three monoclinic structures of Bi-Sb binaries are found to exhibit significantly large auxetic behavior due to the hingelike geometric structure of bonds. The Debye temperature and the magnitude of the elastic wave velocities monotonically increase with increasing Sb concentration. However, anomalies were observed at very low Sb concentration. We also discuss the specific-heat capacity versus temperature data for all studied binaries. Our theoretical results are in excellent agreement with the existing experimental and theoretical data. The comprehensive understanding of the material properties such as hardness, mechanical strength, melting temperature, propagation of the elastic waves, auxeticity, and heat capacity is vital for practical applications of the studied binaries.

  6. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study.

    PubMed

    Holst, Karen; Liebgott, Hervé; Wilhjelm, Jens E; Nikolov, Svetoslav; Torp-Pedersen, Søren T; Delachartre, Philippe; Jensen, Jørgen A

    2013-02-01

    Shock absorption is the most important function of the human heel pad. However, changes in heel pad elasticity, as seen in e.g. long-distance runners, diabetes patients, and victims of Falanga torture are affecting this function, often in a painful manner. Assessment of heel pad elasticity is usually based on one or a few strain measurements obtained by an external load-deformation system. The aim of this study was to develop a technique for quantitative measurements of heel pad elastic modulus based on several internal strain measures from within the heel pad by use of ultrasound images. Nine heel phantoms were manufactured featuring a combination of three heel pad stiffnesses and three heel pad thicknesses to model the normal human variation. Each phantom was tested in an indentation system comprising a 7MHz linear array ultrasound transducer, working as the indentor, and a connected load cell. Load-compression data and ultrasound B-mode images were simultaneously acquired in 19 compression steps of 0.1mm each. The internal tissue displacement was for each step calculated by a phase-based cross-correlation technique and internal strain maps were derived from these displacement maps. Elastic moduli were found from the resulting stress-strain curves. The elastic moduli made it possible to distinguish eight of nine phantoms from each other according to the manufactured stiffness and showed very little dependence of the thickness. Mean elastic moduli for the three soft, the three medium, and the three hard phantoms were 89kPa, 153kPa, and 168kPa, respectively. The combination of ultrasound images and force measurements provided an effective way of assessing the elastic properties of the heel pad due to the internal strain estimation. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Hydrodynamic mobility of a sphere moving on the centerline of an elastic tube

    NASA Astrophysics Data System (ADS)

    Daddi-Moussa-Ider, Abdallah; Lisicki, Maciej; Gekle, Stephan

    2017-11-01

    Elastic channels are an important component of many soft matter systems, in which hydrodynamic interactions with confining membranes determine the behavior of particles in flow. In this work, we derive analytical expressions for Green's functions associated with a point-force (Stokeslet) directed parallel or perpendicular to the axis of an elastic cylindrical channel exhibiting resistance against shear and bending. We then compute the leading order self- and pair mobility functions of particles on the cylinder axis, finding that the mobilities are primarily determined by membrane shear and that bending does not play a significant role. In the quasi-steady limit of vanishing frequency, the particle self- and pair mobilities near a no-slip hard cylinder are recovered only if the membrane possesses a non-vanishing shear rigidity. We further compute the membrane deformation, finding that deformation is generally more pronounced in the axial (radial) directions, for the motion along (perpendicular to) the cylinder centerline, respectively. Our analytical calculations for Green's functions in an elastic cylinder can serve as a fundamental building block for future studies and are verified by fully resolved boundary integral simulations where very good agreement is obtained.

  8. Influence of Extracellular Matrix Proteins and Substratum Topography on Corneal Epithelial Cell Alignment and Migration

    PubMed Central

    Raghunathan, VijayKrishna; McKee, Clayton; Cheung, Wai; Naik, Rachel; Nealey, Paul F.; Russell, Paul

    2013-01-01

    The basement membrane (BM) of the corneal epithelium presents biophysical cues in the form of topography and compliance that can impact the phenotype and behaviors of cells and their nuclei through modulation of cytoskeletal dynamics. In addition, it is also well known that the intrinsic biochemical attributes of BMs can modulate cell behaviors. In this study, the influence of the combination of exogenous coating of extracellular matrix proteins (ECM) (fibronectin-collagen [FNC]) with substratum topography was investigated on cytoskeletal architecture as well as alignment and migration of immortalized corneal epithelial cells. In the absence of FNC coating, a significantly greater percentage of cells aligned parallel with the long axis of the underlying anisotropically ordered topographic features; however, their ability to migrate was impaired. Additionally, changes in the surface area, elongation, and orientation of cytoskeletal elements were differentially influenced by the presence or absence of FNC. These results suggest that the effects of topographic cues on cells are modulated by the presence of surface-associated ECM proteins. These findings have relevance to experiments using cell cultureware with biomimetic biophysical attributes as well as the integration of biophysical cues in tissue-engineering strategies and the development of improved prosthetics. PMID:23488816

  9. A hybrid substratum for primary hepatocyte culture that enhances hepatic functionality with low serum dependency

    PubMed Central

    Meng, Qingyuan; Tao, Chunsheng; Qiu, Zhiye; Akaike, Toshihiro; Cui, Fuzhai; Wang, Xiumei

    2015-01-01

    Cell culture systems have proven to be crucial for the in vitro maintenance of primary hepatocytes and the preservation of hepatic functional expression at a high level. A poly-(N-p-vinylbenzyl-4-O-β-D-galactopyranosyl-D-gluconamide) matrix can recognize cells and promote liver function in a spheroid structure because of a specific galactose–asialoglycoprotein receptor interaction. Meanwhile, a fusion protein, E-cadherin-Fc, when incubated with various cells, has shown an enhancing effect on cellular viability and metabolism. Therefore, a hybrid substratum was developed for biomedical applications by using both of these materials to combine their advantages for primary hepatocyte cultures. The isolated cells showed a monolayer aggregate morphology on the coimmobilized surface and displayed higher functional expression than cells on traditional matrices. Furthermore, the hybrid system, in which the highest levels of cell adhesion and hepatocellular metabolism were achieved with the addition of 1% fetal bovine serum, showed a lower serum dependency than the collagen/gelatin-coated surface. Accordingly, this substrate may attenuate the negative effects of serum and further contribute to establishing a defined culture system for primary hepatocytes. PMID:25848252

  10. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    DOE PAGES

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; ...

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulatingmore » internal strain fields in BMGs for the purpose of ductility enhancement.« less

  11. Effect of elastic constants of liquid crystals in their electro-optical properties

    NASA Astrophysics Data System (ADS)

    Parang, Z.; Ghaffary, T.; Gharahbeigi, M. M.

    Recently following the success of the density functional theory (DFT) in obtaining the structure and thermodynamics of homogeneous and inhomogeneous classical systems such as simple fluids, dipolar fluid and binary hard spheres, this theory was also applied to obtain the density profile of a molecular fluid in between hard planar walls by Kalpaxis and Rickayzen. In the theory of molecular fluids, the direct correlation function (DCF) can be used to calculate the equation of state, free energy, phase transition, elastic constants, etc. It is well known that the hard core molecular models play an important role in understanding complex liquids such as liquid crystals. In this paper, a classical fluid of nonspherical molecules is studied. The required homogeneous (DCF) is obtained by solving Orenstein-Zernike (OZ) integral equation numerically. Some of the molecules in the liquid crystals have a sphere shape and this kind of molecular fluid is considered here. The DCF sphere of the molecular fluid is calculated and it will be shown that the results are in good agreement with the pervious works and the results of computer simulation. Finally the electro-optical properties of ellipsoid liquid crystal using DCF of these molecules are calculated.

  12. Dissipative elastic metamaterial with a low-frequency passband

    NASA Astrophysics Data System (ADS)

    Liu, Yongquan; Yi, Jianlin; Li, Zheng; Su, Xianyue; Li, Wenlong; Negahban, Mehrdad

    2017-06-01

    We design and experimentally demonstrate a dissipative elastic metamaterial structure that functions as a bandpass filter with a low-frequency passband. The mechanism of dissipation in this structure is well described by a mass-spring-damper model that reveals that the imaginary part of the wavenumber is non-zero, even in the passband of dissipative metamaterials. This indicates that transmittance in this range can be low. A prototype for this viscoelastic metamaterial model is fabricated by 3D printing techniques using soft and hard acrylics as constituent materials. The transmittance of the printed metamaterial is measured and shows good agreement with theoretical predictions, demonstrating its potential in the design of compact waveguides, filters and other advanced devices for controlling mechanical waves.

  13. Haptic communication between humans is tuned by the hard or soft mechanics of interaction

    PubMed Central

    Usai, Francesco; Ganesh, Gowrishankar; Sanguineti, Vittorio; Burdet, Etienne

    2018-01-01

    To move a hard table together, humans may coordinate by following the dominant partner’s motion [1–4], but this strategy is unsuitable for a soft mattress where the perceived forces are small. How do partners readily coordinate in such differing interaction dynamics? To address this, we investigated how pairs tracked a target using flexion-extension of their wrists, which were coupled by a hard, medium or soft virtual elastic band. Tracking performance monotonically increased with a stiffer band for the worse partner, who had higher tracking error, at the cost of the skilled partner’s muscular effort. This suggests that the worse partner followed the skilled one’s lead, but simulations show that the results are better explained by a model where partners share movement goals through the forces, whilst the coupling dynamics determine the capacity of communicable information. This model elucidates the versatile mechanism by which humans can coordinate during both hard and soft physical interactions to ensure maximum performance with minimal effort. PMID:29565966

  14. High elastic modulus nanopowder reinforced resin composites for dental applications

    NASA Astrophysics Data System (ADS)

    Wang, Yijun

    2007-12-01

    Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus <15 GPa. Chemical additives can also effectively raise the hardness to as much as 1.34 GPa. Besides>alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with

  15. Discovery of Superconductivity in Hard Hexagonal ε-NbN

    PubMed Central

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-01-01

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments. PMID:26923318

  16. Transport coefficients for dense hard-disk systems.

    PubMed

    García-Rojo, Ramón; Luding, Stefan; Brey, J Javier

    2006-12-01

    A study of the transport coefficients of a system of elastic hard disks based on the use of Helfand-Einstein expressions is reported. The self-diffusion, the viscosity, and the heat conductivity are examined with averaging techniques especially appropriate for event-driven molecular dynamics algorithms with periodic boundary conditions. The density and size dependence of the results are analyzed, and comparison with the predictions from Enskog's theory is carried out. In particular, the behavior of the transport coefficients in the vicinity of the fluid-solid transition is investigated and a striking power law divergence of the viscosity with density is obtained in this region, while all other examined transport coefficients show a drop in that density range in relation to the Enskog's prediction. Finally, the deviations are related to shear band instabilities and the concept of dilatancy.

  17. Elastic Green’s Function in Anisotropic Bimaterials Considering Interfacial Elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juan, Pierre -Alexandre; Dingreville, Remi

    Here, the two-dimensional elastic Green’s function is calculated for a general anisotropic elastic bimaterial containing a line dislocation and a concentrated force while accounting for the interfacial structure by means of a generalized interfacial elasticity paradigm. The introduction of the interface elasticity model gives rise to boundary conditions that are effectively equivalent to those of a weakly bounded interface. The equations of elastic equilibrium are solved by complex variable techniques and the method of analytical continuation. The solution is decomposed into the sum of the Green’s function corresponding to the perfectly bonded interface and a perturbation term corresponding to themore » complex coupling nature between the interface structure and a line dislocation/concentrated force. Such construct can be implemented into the boundary integral equations and the boundary element method for analysis of nano-layered structures and epitaxial systems where the interface structure plays an important role.« less

  18. Elastic Green’s Function in Anisotropic Bimaterials Considering Interfacial Elasticity

    DOE PAGES

    Juan, Pierre -Alexandre; Dingreville, Remi

    2017-09-13

    Here, the two-dimensional elastic Green’s function is calculated for a general anisotropic elastic bimaterial containing a line dislocation and a concentrated force while accounting for the interfacial structure by means of a generalized interfacial elasticity paradigm. The introduction of the interface elasticity model gives rise to boundary conditions that are effectively equivalent to those of a weakly bounded interface. The equations of elastic equilibrium are solved by complex variable techniques and the method of analytical continuation. The solution is decomposed into the sum of the Green’s function corresponding to the perfectly bonded interface and a perturbation term corresponding to themore » complex coupling nature between the interface structure and a line dislocation/concentrated force. Such construct can be implemented into the boundary integral equations and the boundary element method for analysis of nano-layered structures and epitaxial systems where the interface structure plays an important role.« less

  19. Soft versus hard occlusal splint therapy in the management of temporomandibular disorders (TMDs)

    PubMed Central

    Seifeldin, Sameh A; Elhayes, Khaled A.

    2015-01-01

    Aim To compare between soft and hard occlusal splint therapy for the management of myofacial pain dysfunction (MPD) or internal derangement (ID) of the temporomandibular joint (TMJ) with reciprocal clicking. Patients and methods This study included 50 patients (age range: 24–47 years) who had been diagnosed with MPD or ID of the TMJ in the form of reciprocal clicking. Patients were divided into two groups. They were treated for 4 months with either a vacuum-formed soft occlusal splint constructed from 2-mm-thick elastic rubber sheets (soft splint group) or a hard flat occlusal splint fabricated from transparent acrylic resin (hard splint group). Monthly follow-up visits were performed during the treatment period. Before treatment and 1, 2, 3 and 4 months after treatment, the dentist measured all parameters of TMJ function (pain visual analog scores, tenderness of masticatory muscles, clicking and tenderness of the TMJ, and range of mouth opening). Results All parameters of TMJ function showed significant improvement in both groups during the follow-up period, with a statistically significant difference between the two groups at the 4-month follow-up visit. Conclusions Both forms of occlusal splints (soft and hard) improved TMJ symptoms in patients with MPD or ID of the TMJ. However, the soft occlusal splints exhibited superior results after 4 months of use. PMID:26644756

  20. Relationship Between Crystalline Structure and Hardness of Ti-Si-N-O Coatings Fabricated by dc Sputtering

    NASA Astrophysics Data System (ADS)

    García-González, Leandro; Hernández-Torres, Julián; Mendoza-Barrera, Claudia; Meléndez-Lira, Miguel; García-Ramírez, Pedro J.; Martínez-Castillo, Jaime; Sauceda, Ángel; Herrera-May, Agustin L.; Muñoz Saldaña, Juan; Espinoza-Beltrán, Francisco J.

    2008-08-01

    Ti-Si-N-O coatings were deposited on AISI D2 tool steel and silicon substrates by dc reactive magnetron co-sputtering using a target of Ti-Si with a constant area ratio of 0.2. The substrate temperature was 400 °C and reactive atmosphere of nitrogen and argon. For all samples, argon flow was maintained constant at 25 sccm, while the flow of the nitrogen was varied to analyze the structural changes related to chemical composition and resistivity. According to results obtained by x-ray diffraction and stoichiometry calculations by x-ray energy dispersive spectroscopy the Ti-Si-N-O coatings contain two solid solutions. The higher crystalline part corresponds to titanium oxynitrure. Hardness tests on the coatings were carried out using the indentation work model and the hardness value was determined. Finally, the values of hardness were corroborated by nanoindentation test, and values of Young’s modulus and elastic recovery were discussed. We concluded that F2TSN sample ( F Ar = 25 sccm, F N = 5 sccm, P = 200 W, and P W = 8.9 × 10-3 mbar) presented the greatest hardness and the lowest resistivity values, due to its preferential crystalline orientation.

  1. The effects of substratum material and surface orientation on the developing epibenthic community on a designed artificial reef.

    PubMed

    Ushiama, Shinjiro; Smith, James A; Suthers, Iain M; Lowry, Michael; Johnston, Emma L

    2016-10-01

    Artificial reefs provide shelter and can be an important source of food for fish depending on the epibenthic community on the structure. The growth and diversity of this community is influenced by the substratum material and the surface orientation of the reef. Settlement plates of four materials (Perspex, sandstone, wood and steel) were deployed in three orientations (upwards, downwards and vertical) at a depth of 33 m on a designed artificial reef (DAR) off the coast of Sydney, Australia. After three months, the steel surfaces had lower invertebrate species richness, total abundance and diversity compared to other surfaces. Steel was not an ideal material for the initial recruitment and growth of epibenthic invertebrates. A longer duration would be required to develop a mature epibenthic community. Surface orientation had species-specific impacts. Surface material and orientation are important factors for developing epibenthic assemblages, and are thus likely to affect the broader artificial reef assemblage, including fish.

  2. Hard-bottom bathyal habitats and keystone epibenthic species on Le Danois Bank (Cantabrian Sea)

    NASA Astrophysics Data System (ADS)

    Sánchez, F.; Rodríguez Basalo, A.; García-Alegre, A.; Gómez-Ballesteros, M.

    2017-12-01

    "El Cachucho" Marine Protected Area (MPA), which comprises Le Danois Bank and its intraslope basin, was included during 2008 in the Nature 2000 network mainly because of the presence of the habitat "1170 Reefs" according to the EU Habitat Directive. To review the effectiveness of existing management measures, several activities aimed at characterizing the most structurally complex hard-bottom habitats were planned and carried out during the ESMAREC 0514 survey. For identification of these habitats, several transects using the photogrammetric towed sled Politolana were carried out on Le Danois Bank, in the depth range between 427 and 1379 m, searching for the sea beds with higher values of slope and backscatter. Photogrammetric techniques were used for image scaling, so we could determine the surface areas of different substrata types (facies) and their species densities. A total area of 28,762 m2 was analyzed in the still images of 23 transects, verifying that 85% of the substrata of our study area are occupied by 4 different facies: Bedrock, bedrock with mixed sediments, mixed sediments with pebbles and boulders, and mixed sediments. Acoustic data and ground-truth visual data were combined to evaluate distinctive benthic scenarios. The relative abundances of the 123 epibenthic species identified by image analyses show that the most abundant are sponges (29%), cnidarians (26%), crustaceans (26%) and echinoderms (14%), i.e. mostly sessile species or those with low mobility. The keystone species of the "1170 Reefs" habitat are 3 cnidarians: Callogorgia verticillata, Paramuricea cf. placomus and Dendrophyllia cornigera, and 3 sponges, Asconema setubalense, Geodia msp.1 and Phakellia robusta. Eight new habitats (biotopes) have been identified on Le Danois Bank, six of which occur on the hard bottoms, with depth, substratum, BPI (Bathymetric Position Index) and slope as determining environmental variables that explain their spatial distributions.

  3. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    NASA Astrophysics Data System (ADS)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  4. Investigation of PDMS based bi-layer elasticity via interpretation of apparent Young's modulus.

    PubMed

    Sarrazin, Baptiste; Brossard, Rémy; Guenoun, Patrick; Malloggi, Florent

    2016-02-21

    As the need of new methods for the investigation of thin films on various kinds of substrates becomes greater, a novel approach based on AFM nanoindentation is explored. Substrates of polydimethylsiloxane (PDMS) coated by a layer of hard material are probed with an AFM tip in order to obtain the force profile as a function of the indentation. The equivalent elasticity of those composite systems is interpreted using a new numerical approach, the Coated Half-Space Indentation Model of Elastic Response (CHIMER), in order to extract the thicknesses of the upper layer. Two kinds of coating are investigated. First, chitosan films of known thicknesses between 30 and 200 nm were probed in order to test the model. A second type of samples is produced by oxygen plasma oxidation of the PDMS substrate, which results in the growth of a relatively homogeneous oxide layer. The local nature of this protocol enables measurements at long oxidation time, where the apparition of cracks prevents other kinds of measurements.

  5. Fluctuating Navier-Stokes equations for inelastic hard spheres or disks.

    PubMed

    Brey, J Javier; Maynar, P; de Soria, M I García

    2011-04-01

    Starting from the fluctuating Boltzmann equation for smooth inelastic hard spheres or disks, closed equations for the fluctuating hydrodynamic fields to Navier-Stokes order are derived. This requires deriving constitutive relations for both the fluctuating fluxes and the correlations of the random forces. The former are identified as having the same form as the macroscopic average fluxes and involving the same transport coefficients. On the other hand, the random force terms exhibit two peculiarities as compared with their elastic limit for molecular systems. First, they are not white but have some finite relaxation time. Second, their amplitude is not determined by the macroscopic transport coefficients but involves new coefficients. ©2011 American Physical Society

  6. Hydrostatic Extrusion and Nano-Hardness of Nanocrystalline Grade 2 Titanium.

    PubMed

    Sitek, Ryszard; Kaminski, Janusz; Spychalski, Maciej; Garbacz, Halina; Pachla, Waclaw; Kurzydlowski, Krzysztof Jan

    2015-07-01

    The structure and corrosion resistance of Grade 2 titanium subjected to the hydroextrusion processes were examined. The microstructure was characterized using optical microscopy and transmission electron microscopy. The corrosion resistance was determined using the impedance and potentiodynamic methods, in 0.1 M H2SO4 solutions and an acidified 0.1 M NaCl solution with a pH of 4.2, at ambient temperature. Nanohardness tests were performed under a load of 100 mN. It has been demonstrated that the hydroextrusion method makes it possible to obtain relatively homogeneous nanocrystalline titanium Grade 2 with an increased hardness, the elastic modulus almost unchanged with respect to that of the initial structure and a lower corrosion resistance.

  7. Mechanics of finite cracks in dissimilar anisotropic elastic media considering interfacial elasticity

    DOE PAGES

    Juan, Pierre -Alexandre; Dingreville, Remi

    2016-10-31

    Interfacial crack fields and singularities in bimaterial interfaces (i.e., grain boundaries or dissimilar materials interfaces) are considered through a general formulation for two-dimensional (2-D) anisotropic elasticity while accounting for the interfacial structure by means of an interfacial elasticity paradigm. The interfacial elasticity formulation introduces boundary conditions that are effectively equivalent to those for a weakly bounded interface. This formalism considers the 2-D crack-tip elastic fields using complex variable techniques. While the consideration of the interfacial elasticity does not affect the order of the singularity, it modifies the oscillatory effects associated with problems involving interface cracks. Constructive or destructive “interferences” aremore » directly affected by the interface structure and its elastic response. Furthermore, this general formulation provides an insight on the physical significance and the obvious coupling between the interface structure and the associated mechanical fields in the vicinity of the crack tip.« less

  8. Mechanics of finite cracks in dissimilar anisotropic elastic media considering interfacial elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juan, Pierre -Alexandre; Dingreville, Remi

    Interfacial crack fields and singularities in bimaterial interfaces (i.e., grain boundaries or dissimilar materials interfaces) are considered through a general formulation for two-dimensional (2-D) anisotropic elasticity while accounting for the interfacial structure by means of an interfacial elasticity paradigm. The interfacial elasticity formulation introduces boundary conditions that are effectively equivalent to those for a weakly bounded interface. This formalism considers the 2-D crack-tip elastic fields using complex variable techniques. While the consideration of the interfacial elasticity does not affect the order of the singularity, it modifies the oscillatory effects associated with problems involving interface cracks. Constructive or destructive “interferences” aremore » directly affected by the interface structure and its elastic response. Furthermore, this general formulation provides an insight on the physical significance and the obvious coupling between the interface structure and the associated mechanical fields in the vicinity of the crack tip.« less

  9. Further links between the maximum hardness principle and the hard/soft acid/base principle: insights from hard/soft exchange reactions.

    PubMed

    Chattaraj, Pratim K; Ayers, Paul W; Melin, Junia

    2007-08-07

    Ayers, Parr, and Pearson recently showed that insight into the hard/soft acid/base (HSAB) principle could be obtained by analyzing the energy of reactions in hard/soft exchange reactions, i.e., reactions in which a soft acid replaces a hard acid or a soft base replaces a hard base [J. Chem. Phys., 2006, 124, 194107]. We show, in accord with the maximum hardness principle, that the hardness increases for favorable hard/soft exchange reactions and decreases when the HSAB principle indicates that hard/soft exchange reactions are unfavorable. This extends the previous work of the authors, which treated only the "double hard/soft exchange" reaction [P. K. Chattaraj and P. W. Ayers, J. Chem. Phys., 2005, 123, 086101]. We also discuss two different approaches to computing the hardness of molecules from the hardness of the composing fragments, and explain how the results differ. In the present context, it seems that the arithmetic mean of fragment softnesses is the preferable definition.

  10. Relationship between isometric contraction intensity and muscle hardness assessed by ultrasound strain elastography.

    PubMed

    Inami, Takayuki; Tsujimura, Toru; Shimizu, Takuya; Watanabe, Takemasa; Lau, Wing Yin; Nosaka, Kazunori

    2017-05-01

    Ultrasound elastography is used to assess muscle hardness or stiffness; however, no previous studies have validated muscle hardness measures using ultrasound strain elastography (SE). This study investigated the relationship between plantar flexor isometric contraction intensity and gastrocnemius hardness assessed by SE. We hypothesised that the muscle would become harder linearly with an increase in the contraction intensity of the plantar flexors. Fifteen young women (20.1 ± 0.8 years) performed isometric contractions of the ankle plantar flexors at four different intensities (25, 50, 75, 100% of maximal voluntary contraction force: MVC) at 0° plantar flexion. Using SE images, the strain ratio (SR) between the muscle and an acoustic coupler (elastic modulus 22.6 kPa) placed over the skin was calculated (muscle/coupler); pennation angle and muscle thickness were measured for the resting and contracting conditions. SR decreased with increasing contraction intensity from rest (1.28 ± 0.20) to 25% (0.99 ± 0.21), 50% (0.61 ± 0.15), 75% (0.34 ± 0.1) and 100% MVC (0.20 ± 0.05). SR decreased linearly (P < 0.05) with increasing MVC from rest to 75% MVC, but levelled off from 75 and 100% MVC. SR was negatively correlated with pennation angle (r = -0.80, P < 0.01) and muscle thickness ( r= -0.78,  P< 0.01). SR appears to represent muscle hardness changes in response to contraction intensity changes, in the assumption that the gastrocnemius muscle contraction intensity is proportional to the plantar flexion intensity. We concluded that gastrocnemius muscle hardness changes could be validly assessed by SR, and the force-hardness relationship was not linear.

  11. Form finding in elastic gridshells.

    PubMed

    Baek, Changyeob; Sageman-Furnas, Andrew O; Jawed, Mohammad K; Reis, Pedro M

    2018-01-02

    Elastic gridshells comprise an initially planar network of elastic rods that are actuated into a shell-like structure by loading their extremities. The resulting actuated form derives from the elastic buckling of the rods subjected to inextensibility. We study elastic gridshells with a focus on the rational design of the final shapes. Our precision desktop experiments exhibit complex geometries, even from seemingly simple initial configurations and actuation processes. The numerical simulations capture this nonintuitive behavior with excellent quantitative agreement, allowing for an exploration of parameter space that reveals multistable states. We then turn to the theory of smooth Chebyshev nets to address the inverse design of hemispherical elastic gridshells. The results suggest that rod inextensibility, not elastic response, dictates the zeroth-order shape of an actuated elastic gridshell. As it turns out, this is the shape of a common household strainer. Therefore, the geometry of Chebyshev nets can be further used to understand elastic gridshells. In particular, we introduce a way to quantify the intrinsic shape of the empty, but enclosed regions, which we then use to rationalize the nonlocal deformation of elastic gridshells to point loading. This justifies the observed difficulty in form finding. Nevertheless, we close with an exploration of concatenating multiple elastic gridshell building blocks.

  12. Form finding in elastic gridshells

    NASA Astrophysics Data System (ADS)

    Baek, Changyeob; Sageman-Furnas, Andrew O.; Jawed, Mohammad K.; Reis, Pedro M.

    2018-01-01

    Elastic gridshells comprise an initially planar network of elastic rods that are actuated into a shell-like structure by loading their extremities. The resulting actuated form derives from the elastic buckling of the rods subjected to inextensibility. We study elastic gridshells with a focus on the rational design of the final shapes. Our precision desktop experiments exhibit complex geometries, even from seemingly simple initial configurations and actuation processes. The numerical simulations capture this nonintuitive behavior with excellent quantitative agreement, allowing for an exploration of parameter space that reveals multistable states. We then turn to the theory of smooth Chebyshev nets to address the inverse design of hemispherical elastic gridshells. The results suggest that rod inextensibility, not elastic response, dictates the zeroth-order shape of an actuated elastic gridshell. As it turns out, this is the shape of a common household strainer. Therefore, the geometry of Chebyshev nets can be further used to understand elastic gridshells. In particular, we introduce a way to quantify the intrinsic shape of the empty, but enclosed regions, which we then use to rationalize the nonlocal deformation of elastic gridshells to point loading. This justifies the observed difficulty in form finding. Nevertheless, we close with an exploration of concatenating multiple elastic gridshell building blocks.

  13. Two-Layer Elastographic 3-D Traction Force Microscopy

    PubMed Central

    Álvarez-González, Begoña; Zhang, Shun; Gómez-González, Manuel; Meili, Ruedi; Firtel, Richard A.; Lasheras, Juan C.; del Álamo, Juan C.

    2017-01-01

    Cellular traction force microscopy (TFM) requires knowledge of the mechanical properties of the substratum where the cells adhere to calculate cell-generated forces from measurements of substratum deformation. Polymer-based hydrogels are broadly used for TFM due to their linearly elastic behavior in the range of measured deformations. However, the calculated stresses, particularly their spatial patterns, can be highly sensitive to the substratum’s Poisson’s ratio. We present two-layer elastographic TFM (2LETFM), a method that allows for simultaneously measuring the Poisson’s ratio of the substratum while also determining the cell-generated forces. The new method exploits the analytical solution of the elastostatic equation and deformation measurements from two layers of the substratum. We perform an in silico analysis of 2LETFM concluding that this technique is robust with respect to TFM experimental parameters, and remains accurate even for noisy measurement data. We also provide experimental proof of principle of 2LETFM by simultaneously measuring the stresses exerted by migrating Physarum amoeboae on the surface of polyacrylamide substrata, and the Poisson’s ratio of the substrata. The 2LETFM method could be generalized to concurrently determine the mechanical properties and cell-generated forces in more physiologically relevant extracellular environments, opening new possibilities to study cell-matrix interactions. PMID:28074837

  14. Distinctive Collembola communities in the Mesovoid Shallow Substratum: First data for the Sierra de Guadarrama National Park (Central Spain) and a description of two new species of Orchesella (Entomobryidae)

    PubMed Central

    Ledesma, Enrique; Gilgado, José D.; Ortuño, Vicente M.

    2017-01-01

    Two new species of the genus Orchesella Templeton, 1836 have been identified following intensive sampling in the Colluvial Milieu Souterrain Superficiel (Mesovoid Shallow Substratum, or MSS) of the Sierra de Guadarrama using Subterranean Sampling Devices (SSD). The data were obtained from the first extraction of the traps between May and October of 2015. During a study of the Collembola taxon, 32 different genera (61 species) were identified. The highest representative genus presence in almost all traps was Orchesella, with two new species. One of the two species described had been misidentified until this study was carried out, indicating that their preferential habitat had not been sampled; the second species had never been identified. The community of the Orchesella species in the Colluvial MSS was investigated, leading to the conclusion that this environment has its own assemblage of characteristic species. The opportunity to study specimens that belong to five species of the genus Orchesella, including three previously recollected, has allowed for obtaining reliable information regarding their macrochaetotaxy. A part of this chaetotaxy is proposed as a useful diagnostic tool for the species of the genus. In conclusion, it can be affirmed that this study has demonstrated that the Colluvial Mesovoid Shallow Substratum (Colluvial MSS) has its own fauna, and it supports the hypothesis that it constitutes a new biotope, at least for Collembola. PMID:29236758

  15. Hard breakup of two nucleons from the He3 nucleus

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.; Granados, Carlos

    2009-07-01

    We investigate a large angle photodisintegration of two nucleons from the He3 nucleus within the framework of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with large relative momentum. Assuming the dominance of the quark-interchange mechanism in a hard nucleon-nucleon scattering, the HRM allows the expression of the amplitude of a two-nucleon breakup reaction through the convolution of photon-quark scattering, NN hard scattering amplitude, and nuclear spectral function, which can be calculated using a nonrelativistic He3 wave function. The photon-quark scattering amplitude can be explicitly calculated in the high energy regime, whereas for NN scattering one uses the fit of the available experimental data. The HRM predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale as s-11. Second, the s11 weighted cross section will have the shape of energy dependence similar to that of s10 weighted NN elastic scattering cross section. Also one predicts an enhancement of the pp breakup relative to the pn breakup cross section as compared to the results from low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn breakup cross sections. This is due to the fact that the same-helicity pp-component is strongly suppressed in the ground state wave function of He3. Because of this suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer NN breakup reactions for circularly polarized photons. For the pp breakup this asymmetry is predicted to be zero while for the pn it is close to (2)/(3).

  16. Flexible wavelength de-multiplexer for elastic optical networking.

    PubMed

    Zhou, Rui; Gutierrez Pascual, M Deseada; Anandarajah, Prince M; Shao, Tong; Smyth, Frank; Barry, Liam P

    2016-05-15

    We report an injection locked flexible wavelength de-multiplexer (de-mux) that shows 24-h frequency stability of 1 kHz for optical comb-based elastic optical networking applications. We demonstrate 50 GHz, 87.5 GHz equal spacing and 6.25G-25G-50 GHz, 75G-50G-100 GHz unequal spacing for the de-multiplexer outputs. We also implement an unequally spaced (75G-50G-100 GHz), mixed symbol rate (12.5 GBaud and 40 GBaud) and modulation format (polarization division multiplexed quadrature phase shift keying and on-off keying) wavelength division multiplexed transmission system using the de-multiplexer outputs. The results show 0.6 dB receiver sensitivity penalty, at 7% hard decision forward error correction coding limit, of the 100 km transmitted de-mux outputs when compared to comb source seeding laser back-to-back.

  17. Large Electric Field–Enhanced–Hardness Effect in a SiO2 Film

    PubMed Central

    Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen

    2014-01-01

    Silicon dioxide films are extensively used in nano and micro–electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation–induced deformation during the friction measurements. PMID:24681517

  18. Large Electric Field-Enhanced-Hardness Effect in a SiO2 Film

    NASA Astrophysics Data System (ADS)

    Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen

    2014-03-01

    Silicon dioxide films are extensively used in nano and micro-electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation-induced deformation during the friction measurements.

  19. The effect of angle and moment of the hip and knee joint on iliotibial band hardness.

    PubMed

    Tateuchi, Hiroshige; Shiratori, Sakiko; Ichihashi, Noriaki

    2015-02-01

    Although several studies have described kinematic deviations such as excessive hip adduction in patients with iliotibial band (ITB) syndrome, the factors contributing to increased ITB hardness remains undetermined, owing to lack of direct in vivo measurement. The purpose of this study was to clarify the factors contributing to an increase in ITB hardness by comparing the ITB hardness between the conditions in which the angle, moment, and muscle activity of the hip and knee joint are changed. Sixteen healthy individuals performed the one-leg standing under five conditions in which the pelvic and trunk inclination were changed in the frontal plane. The shear elastic modulus in the ITB was measured as an indicator of the ITB hardness using shear wave elastography. The three-dimensional joint angle and external joint moment in the hip and knee joints, and muscle activities of the gluteus maximus, gluteus medius, tensor fasciae latae, and vastus lateralis, which anatomically connect to the ITB, were also measured. ITB hardness was significantly increased in the posture with pelvic and trunk inclination toward the contralateral side of the standing leg compared with that in all other conditions (increase of approximately 32% compared with that during normal one-leg standing). This posture increased both the hip adduction angle and external adduction moment at the hip and knee joint, although muscle activities were not increased. Our findings suggest that coexistence of an increased adduction moment at the hip and knee joints with an excessive hip adduction angle lead to an increase in ITB hardness. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness

    PubMed Central

    Pavithra, Chokkakula L. P.; Sarada, Bulusu V.; Rajulapati, Koteswararao V.; Rao, Tata N.; Sundararajan, G.

    2014-01-01

    Graphene has proved its significant role as a reinforcement material in improving the strength of polymers as well as metal matrix composites due to its excellent mechanical properties. In addition, graphene is also shown to block dislocation motion in a nanolayered metal-graphene composites resulting in ultra high strength. In the present paper, we demonstrate the synthesis of very hard Cu-Graphene composite foils by a simple, scalable and economical pulse reverse electrodeposition method with a well designed pulse profile. Optimization of pulse parameters and current density resulted in composite foils with well dispersed graphene, exhibiting a high hardness of ~2.5 GPa and an increased elastic modulus of ~137 GPa while exhibiting an electrical conductivity comparable to that of pure Cu. The pulse parameters are designed in such a way to have finer grain size of Cu matrix as well as uniform dispersion of graphene throughout the matrix, contributing to high hardness and modulus. Annealing of these nanocomposite foils at 300°C, neither causes grain growth of the Cu matrix nor deteriorates the mechanical properties, indicating the role of graphene as an excellent reinforcement material as well as a grain growth inhibitor. PMID:24514043

  1. Experimental research and numerical optimisation of multi-point sheet metal forming implementation using a solid elastic cushion system

    NASA Astrophysics Data System (ADS)

    Tolipov, A. A.; Elghawail, A.; Shushing, S.; Pham, D.; Essa, K.

    2017-09-01

    There is a growing demand for flexible manufacturing techniques that meet the rapid changes in customer needs. A finite element analysis numerical optimisation technique was used to optimise the multi-point sheet forming process. Multi-point forming (MPF) is a flexible sheet metal forming technique where the same tool can be readily changed to produce different parts. The process suffers from some geometrical defects such as wrinkling and dimpling, which have been found to be the cause of the major surface quality problems. This study investigated the influence of parameters such as the elastic cushion hardness, blank holder force, coefficient of friction, cushion thickness and radius of curvature, on the quality of parts formed in a flexible multi-point stamping die. For those reasons, in this investigation, a multipoint forming stamping process using a blank holder was carried out in order to study the effects of the wrinkling, dimpling, thickness variation and forming force. The aim was to determine the optimum values of these parameters. Finite element modelling (FEM) was employed to simulate the multi-point forming of hemispherical shapes. Using the response surface method, the effects of process parameters on wrinkling, maximum deviation from the target shape and thickness variation were investigated. The results show that elastic cushion with proper thickness and polyurethane with the hardness of Shore A90. It has also been found that the application of lubrication cans improve the shape accuracy of the formed workpiece. These final results were compared with the numerical simulation results of the multi-point forming for hemispherical shapes using a blank-holder and it was found that using cushion hardness realistic to reduce wrinkling and maximum deviation.

  2. Rotational elasticity

    NASA Astrophysics Data System (ADS)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  3. Rolling motion of an elastic cylinder induced by elastic strain gradients

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Chen, Shaohua

    2014-10-01

    Recent experiment shows that an elastic strain gradient field can be utilized to transport spherical particles on a stretchable substrate by rolling, inspired by which a generalized plane-strain Johnson-Kendall-Roberts model is developed in this paper in order to verify possible rolling of an elastic cylinder adhering on an elastic substrate subject to a strain gradient. With the help of contact mechanics, closed form solutions of interface tractions, stress intensity factors, and corresponding energy release rates in the plane-strain contact model are obtained, based on which a possible rolling motion of an elastic cylinder induced by strain gradients is found and the criterion for the initiation of rolling is established. The theoretical prediction is consistent well with the existing experimental observation. The result should be helpful for understanding biological transport mechanisms through muscle contractions and the design of transport systems with strain gradient.

  4. Contact problem for an elastic reinforcement bonded to an elastic plate

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Civelek, M. B.

    1974-01-01

    The contact problem for a thin elastic reinforcement bonded to an elastic plate is considered. The stiffening layer is treated as an elastic membrane and the base plate is assumed to be an elastic continuum. The bonding between the two materials is assumed to be either one of direct adhesion or through a thin adhesive layer which is treated as a shear spring. The solution for the simple case in which both the stiffener and the base plate are treated as membranes is also given. The contact stress is obtained for a series of numerical examples. In the direct adhesion case the contact stress becomes infinite at the stiffener ends with a typical square root singularity for the continuum model and behaving as a delta function for the membrane model. In the case of bonding through an adhesive layer the contact stress becomes finite and continuous along the entire contact area.

  5. Elastic and piezoelectric fields around a quantum wire of zincblende heterostructures with interface elasticity effect

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Liu, Yifei

    2018-04-01

    This work formulates the solutions to the elastic and piezoelectric fields around a quantum wire (QWR) with interface elasticity effect. Closed-form solutions to the piezoelectric potential field of zincblende QWR/matrix heterostructures grown along [111] crystallographic orientation are found and numerical results of InAs/InP heterostructures are provided as an example. The piezoelectric potential in the matrix depends on the interface elasticity, the radius and stiffness of the QWR. Our results indicate that interface elasticity can significantly alter the elastic and piezoelectric fields near the interface. Additionally, when the elastic property of the QWR is considered to be anisotropic in contrary to the common isotropic assumption, piezoelectric potentials are found to be distinct near the interface, but the deviations are negligible at positions far away from the interface.

  6. Fracton-Elasticity Duality

    NASA Astrophysics Data System (ADS)

    Pretko, Michael; Radzihovsky, Leo

    2018-05-01

    Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.

  7. Detailed petrophysical characterization enhances geological mapping of a buried substratum using aeromagnetic and gravity data; application to the southwestern Paris basin

    NASA Astrophysics Data System (ADS)

    Baptiste, Julien; Martelet, Guillaume; Faure, Michel; Beccaletto, Laurent; Chen, Yan; Reninger, Pierre-Alexandre

    2016-04-01

    Mapping the geometries (structure and lithology) of a buried basement is a key for targeting resources and for improving the regional geological knowledge. The Paris basin is a Mesozoic to Cenozoic intraplate basin set up on a Variscan substratum, which crops out in the surrounding massifs. We focus our study on the southwestern part of the Paris basin at its junction with the Aquitaine basin. This Mezo-Cenozoic cover separates the Armorican Massif and the Massif Central which compose of several litho-tectonic units bounded by crustal-scale shear zones. In spite of several lithological and structural correlations between various domains of the two massifs, their geological connection, hidden below the Paris basin sedimentary cover, is still largely debated. Potential field geophysics have proven effective for mapping buried basin/basement interfaces. In order to enhance the cartographic interpretation of these data, we have set up a detailed petrophysical library (field magnetic susceptibility data and density measurements on rock samples) of the Paleozoic rocks outcropping in the Variscan massifs. The combination of aeromagnetic and gravity data supported by the petrophysical signatures and field/borehole geological information, is carried out to propose a new map of the architecture of the Variscan substratum. The new synthetic map of geophysical signature of the Paris basin basement combines: i) the magnetic anomaly reduced to the pole, ii) the vertical gradient of the Bouguer anomaly and iii) the tilt derivative of the magnetic anomaly reduced to the pole. Based on this information, the Eastern extension of the major shear zones below the sedimentary cover is assessed. The petrophysical signatures were classified in three classes of magnetic susceptibility and density: low, intermediate and high. Basic rocks have high magnetization and density values whereas granite, migmatite and orthogneiss show low magnetization and density values, Proterozoic and Paleozoic

  8. Studying the influence of nanodiamonds over the elasticity of polymer/nanodiamond composites for biomedical application

    NASA Astrophysics Data System (ADS)

    Hikov, T.; Mitev, D.; Radeva, E.; Iglic, A.; Presker, R.; Daniel, M.; Sepitka, J.; Krasteva, N.; Keremidarska, M.; Cvetanov, I.; Pramatarova, L.

    2014-12-01

    (namely elasticity and hardness) using composite layers (PPHMDS-DND) of plasma polymerized (PP) hexamethyldisiloxane (HMDS) and detonation generated nanodiamond (DND). The samples' elastic modulae and hardness were measured by CSM Ultra Nanoindentation Tester.

  9. Evaluation of HardSys/HardDraw, An Expert System for Electromagnetic Interactions Modelling

    DTIC Science & Technology

    1993-05-01

    interactions ir complex systems. This report gives a description of HardSys/HardDraw and reviews the main concepts used in its design. Various aspects of its ...HardDraw, an expert system for the modelling of electromagnetic interactions in complex systems. It consists of two main components: HardSys and HardDraw...HardSys is the advisor part of the expert system. It is knowledge-based, that is it contains a database of models and properties for various types of

  10. Renormalization group study of the melting of a two-dimensional system of collapsing hard disks

    NASA Astrophysics Data System (ADS)

    Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu. D.; Tsiok, E. N.; Chumakov, E. S.

    2017-06-01

    We consider the melting of a two-dimensional system of collapsing hard disks (a system with a hard-disk potential to which a repulsive step is added) for different values of the repulsive-step width. We calculate the system phase diagram by the method of the density functional in crystallization theory using equations of the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young theory to determine the lines of stability with respect to the dissociation of dislocation pairs, which corresponds to the continuous transition from the solid to the hexatic phase. We show that the crystal phase can melt via a continuous transition at low densities (the transition to the hexatic phase) with a subsequent transition from the hexatic phase to the isotropic liquid and via a first-order transition. Using the solution of renormalization group equations with the presence of singular defects (dislocations) in the system taken into account, we consider the influence of the renormalization of the elastic moduli on the form of the phase diagram.

  11. Elastically Decoupling Dark Matter.

    PubMed

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-03

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  12. Elasticity of plagioclase feldspars

    NASA Astrophysics Data System (ADS)

    Brown, J. Michael; Angel, Ross J.; Ross, Nancy L.

    2016-02-01

    Elastic properties are reported for eight plagioclase feldspars that span compositions from albite (NaSi3AlO8) to anorthite (CaSi2Al2O8). Surface acoustic wave velocities measured using Impulsive Stimulated Light Scattering and compliance sums from high-pressure X-ray compression studies accurately determine all 21 components of the elasticity tensor for these triclinic minerals. The overall pattern of elasticity and the changes in individual elastic components with composition can be rationalized on the basis of the evolution of crystal structures and chemistry across this solid-solution join. All plagioclase feldspars have high elastic anisotropy; a* (the direction perpendicular to the b and c axes) is the softest direction by a factor of 3 in albite. From albite to anorthite the stiffness of this direction undergoes the greatest change, increasing twofold. Small discontinuities in the elastic components, inferred to occur between the three plagioclase phases with distinct symmetry (C1>¯, I1>¯, and P1>¯), appear consistent with the nature of the underlying conformation of the framework-linked tetrahedra and the associated structural changes. Measured body wave velocities of plagioclase-rich rocks, reported over the last five decades, are consistent with calculated Hill-averaged velocities using the current moduli. This confirms long-standing speculation that previously reported elastic moduli for plagioclase feldspars are systematically in error. The current results provide greater assurance that the seismic structure of the middle and lower crusts can be accurately estimated on the basis of specified mineral modes, chemistry, and fabric.

  13. Megafaunal Community Structure of Andaman Seamounts Including the Back-Arc Basin – A Quantitative Exploration from the Indian Ocean

    PubMed Central

    Sautya, Sabyasachi; Ingole, Baban; Ray, Durbar; Stöhr, Sabine; Samudrala, Kiranmai; Raju, K. A. Kamesh; Mudholkar, Abhay

    2011-01-01

    Species rich benthic communities have been reported from some seamounts, predominantly from the Atlantic and Pacific Oceans, but the fauna and habitats on Indian Ocean seamounts are still poorly known. This study focuses on two seamounts, a submarine volcano (cratered seamount – CSM) and a non-volcano (SM2) in the Andaman Back–arc Basin (ABB), and the basin itself. The main purpose was to explore and generate regional biodiversity data from summit and flank (upper slope) of the Andaman seamounts for comparison with other seamounts worldwide. We also investigated how substratum types affect the megafaunal community structure along the ABB. Underwater video recordings from TeleVision guided Gripper (TVG) lowerings were used to describe the benthic community structure along the ABB and both seamounts. We found 13 varieties of substratum in the study area. The CSM has hard substratum, such as boulders and cobbles, whereas the SM2 was dominated by cobbles and fine sediment. The highest abundance of megabenthic communities was recorded on the flank of the CSM. Species richness and diversity were higher at the flank of the CSM than other are of ABB. Non-metric multi-dimensional scaling (nMDS) analysis of substratum types showed 50% similarity between the flanks of both seamounts, because both sites have a component of cobbles mixed with fine sediments in their substratum. Further, nMDS of faunal abundance revealed two groups, each restricted to one of the seamounts, suggesting faunal distinctness between them. The sessile fauna corals and poriferans showed a significant positive relation with cobbles and fine sediments substratum, while the mobile categories echinoderms and arthropods showed a significant positive relation with fine sediments only. PMID:21297959

  14. On the relationship between indentation hardness and modulus, and the damage resistance of biological materials.

    PubMed

    Labonte, David; Lenz, Anne-Kristin; Oyen, Michelle L

    2017-07-15

    indentation is a widespread tool for characterising the mechanical properties of biological materials. Here, we show that the ratio between indentation hardness and modulus is approximately constant in biological materials. A simple elastic-plastic series deformation model is employed to rationalise part of this correlation, and criteria for a meaningful comparison of indentation hardness across biological materials are proposed. The ratio between indentation hardness and modulus emerges as the key parameter characterising the relative amount of irreversible deformation during indentation. Despite their comparatively high hardness to modulus ratio, biological materials are susceptible to quasiplastic deformation, due to their high toughness: quasi-plastic deformation is hence hypothesised to be a frequent yet poorly understood phenomenon, highlighting an important area of future research. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  15. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.

    PubMed

    Ozan, Sertan; Lin, Jixing; Li, Yuncang; Ipek, Rasim; Wen, Cuie

    2015-07-01

    A new series of beta Ti-Nb-Zr (TNZ) alloys with considerable plastic deformation ability during compression test, high elastic admissible strain, and excellent cytocompatibility have been developed for removable bone tissue implant applications. TNZ alloys with nominal compositions of Ti-34Nb-25Zr, Ti-30Nb-32Zr, Ti-28Nb-35.4Zr and Ti-24.8Nb-40.7Zr (wt.% hereafter) were fabricated using the cold-crucible levitation technique, and the effects of alloying element content on their microstructures, mechanical properties (tensile strength, yield strength, compressive yield strength, Young's modulus, elastic energy, toughness, and micro-hardness), and cytocompatibilities were investigated and compared. Microstructural examinations revealed that the TNZ alloys consisted of β phase. The alloy samples displayed excellent ductility with no cracking, or fracturing during compression tests. Their tensile strength, Young's modulus, elongation at rupture, and elastic admissible strain were measured in the ranges of 704-839 MPa, 62-65 GPa, 9.9-14.8% and 1.08-1.31%, respectively. The tensile strength, Young's modulus and elongation at rupture of the Ti-34Nb-25Zr alloy were measured as 839 ± 31.8 MPa, 62 ± 3.6 GPa, and 14.8 ± 1.6%, respectively; this alloy exhibited the elastic admissible strain of approximately 1.31%. Cytocompatibility tests indicated that the cell viability ratios (CVR) of the alloys are greater than those of the control group; thus the TNZ alloys possess excellent cytocompatibility. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Pressure effect on the structural, phonon, elastic and thermodynamic properties of L12 phase RH3TA: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Wang, Leini; Jian, Zhang; Ning, Wei

    2018-06-01

    The phonon, elastic and thermodynamic properties of L12 phase Rh3Ta have been investigated by the density functional theory (DFT) approach combined with the quasi-harmonic approximation model. The results of the phonon band structure show that L12 phase Rh3Ta possesses dynamical stability in the pressure range from 0-80 GPa due to the absence of imaginary frequencies. The pressure dependences with the elastic constants Cij, shear modulus G, bulk modulus B, Young’s modulus Y, Poisson’s ratio and B/G ratio have been analyzed. The results of the elastic properties studies show that L12 phase Rh3Ta compound is mechanically stable and possesses a higher hardness, improved ductility and plasticity under higher pressures. The pressure and temperature relationship of the thermodynamic properties, such as the Debye temperature ΘD, heat capacity Cp, thermal expansion coefficient α and the Grüneisen parameter γ are predicted by the quasi-harmonic Debye model in a wide pressure (0-80 GPa) and temperature (0-750 K) ranges.

  17. Resistance to Rolling in the Adhesive Contact of Two Elastic Spheres

    NASA Technical Reports Server (NTRS)

    Dominik, C.; Tielens, A. G. G. M.

    1995-01-01

    For the stability of agglomerates of micron sized particles it is of considerable importance to study the effects of tangential forces on the contact of two particles. If the particles can slide or roll easily over each other, fractal structures of these agglomerates will not be stable. We use the description of contact forces by Johnson, Kendall and Roberts, along with arguments based on the atomic structure of the surfaces in contact, in order to calculate the resistance to rolling in such a contact. It is shown that the contact reacts elastically to torque forces up to a critical bending angle. Beyond that, irreversible rolling occurs. In the elastic regime, the moment opposing the attempt to roll is proportional to the bending angle and to the pull-off force P(sub c). Young's modulus of the involved materials has hardly any influence on the results. We show that agglomerates of sub-micron sized particles will in general be quite rigid and even long chains of particles cannot be bent easily. For very small particles, the contact will rather break than allow for rolling. We further discuss dynamic properties such as the possibility of vibrations in this degree of freedom and the typical amount of rolling during a collision of two particles.

  18. Reflection and transmission of elastic waves through a couple-stress elastic slab sandwiched between two half-spaces

    NASA Astrophysics Data System (ADS)

    Wang, Changda; Chen, Xuejun; Wei, Peijun; Li, Yueqiu

    2017-12-01

    The reflection and transmission of elastic waves through a couple-stress elastic slab that is sandwiched between two couple-stress elastic half-spaces are studied in this paper. Because of the couple-stress effects, there are three types of elastic waves in the couple-stress elastic solid, two of which are dispersive. The interface conditions between two couple-stress solids involve the surface couple and rotation apart from the surface traction and displacement. The nontraditional interface conditions between the slab and two solid half-spaces are used to obtain the linear algebraic equation sets from which the amplitude ratios of reflection and transmission waves to the incident wave can be determined. Then, the energy fluxes carried by the various reflection and transmission waves are calculated numerically and the normal energy flux conservation is used to validate the numerical results. The special case, couple-stress elastic slab sandwiched by the classical elastic half-spaces, is also studied and compared with the situation that the classical elastic slab sandwiched by the classical elastic half-spaces. Incident longitudinal wave (P wave) and incident transverse wave (SV wave) are both considered. The influences of the couple-stress are mainly discussed based on the numerical results. It is found that the couple-stress mainly influences the transverse modes of elastic waves.

  19. The Sirius Cult in Ancient Greece. Aristaios and the Formation of the Attico-Cycladic Mythological Substratum.

    NASA Astrophysics Data System (ADS)

    Laoupi, A.

    Pivotal figure of Sirius myth among the inhabitants of Late Bronze Age Greece (ca.1600-1100 B.C.) is Aristaios protector of the shepherds and hunters teacher of cheese-making and the art of hunting , of oil-making and bee-keeping , honey and honey - mead, god of medicinal herbs and the cooling Etesian winds of mid-summer. The aim of this paper is to detect a) the inventors of Sirius astromyth within the boundaries of prehistoric Greek maritime Civilization (the Pelasgian substratum), b)the geographical distribution of this myth via its main divine figure (colonization of Western Mediterranean and the Prehistoric trade of silphium with the North African Coast , Kadmos and cultural relationships with Eastern Mediterranean connection with Thesaly, Northern Greece, Arcadia, Argos, Attica, Minoan Crete and Cyclades, N.W. Greece), c)the elements of Sirius cult worshipped by the insular population of the Aegean, d)the historical pathway of this astromyth and its survival to the later periods of Cycladic history (Keians coins, Keian traditions, modern Keian names and localities) e)the immigration of its symbols (the hunting lion, the motif of the dogs, deities with fertilizing and creative properties) and f) the environmental setting which gave birth to this astromyth (disturbance of wind patterns, teleconnections with Indian monsoons and NAO, climatic oscillations, pestilence in Eastern Mediterranean).

  20. Hardness and elasticity of caries-affected and sound primary tooth dentin bonded with 4-META one-step self-etch adhesives

    PubMed Central

    Hosoya, Yumiko; Tay, Franklin R.; Miyakoshi, Shoichi; Pashley, David H.

    2013-01-01

    Purpose This study evaluated the quality of the interface of sound and carious primary tooth dentin bonded with two 4-META one-step self-etch adhesives. Methods Twelve sound and twelve carious primary molars were bonded with AQ Bond Plus (AQBP; Sun Medical) or Hybrid Bond (HB; Sun Medical) and restored with Clearfil Protect Liner F (Kuraray Medical Inc.). After 24 hours of water immersion, the teeth were sectioned and polished. Resin-dentin interfaces were measured with a nano-indentation tester and hardness and Young’s modulus were calculated. Data were analyzed using one-way or two-ways ANOVA and Fisher’s PLSD test with α=0.05. Resin-dentin interfaces were also observed with SEM and TEM. Ammoniacal silver nitrate was used as a tracer for TEM observation. Results Hardness and Young’s modulus of the interfacial dentin were significantly lower than the underlying intact dentin except for the carious-AQBP group. However, there was no significant difference of hardness and Young's moduli of the interfacial dentin among all groups. TEM revealed extensive interfacial nanoleakage in sound dentin bonded with either AQBP or HB. For the carious teeth, nanoleakage was absent in the hybrid layers bonded with the two adhesives. However, extensive silver deposits were identified from the subsurface, porous caries-affected dentin. PMID:18795517

  1. Cell Elasticity Determines Macrophage Function

    PubMed Central

    Patel, Naimish R.; Bole, Medhavi; Chen, Cheng; Hardin, Charles C.; Kho, Alvin T.; Mih, Justin; Deng, Linhong; Butler, James; Tschumperlin, Daniel; Fredberg, Jeffrey J.; Krishnan, Ramaswamy; Koziel, Henry

    2012-01-01

    Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function. PMID:23028423

  2. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films

    NASA Astrophysics Data System (ADS)

    Huo, Wenyi; Liu, Xiaodong; Tan, Shuyong; Fang, Feng; Xie, Zonghan; Shang, Jianku; Jiang, Jianqing

    2018-05-01

    Nano-twinned, nanocrystalline CoCrFeNi high-entropy alloy films were produced by magnetron sputtering. The films exhibit a high hardness of 8.5 GPa, the elastic modulus of 161.9 GPa and the resistivity as high as 135.1 μΩ·cm. The outstanding mechanical properties were found to result from the resistance of deformation created by nanocrystalline grains and nano-twins, while the electrical resistivity was attributed to the strong blockage effect induced by grain boundaries and lattice distortions. The results lay a solid foundation for the development of advanced films with structural and functional properties combined in micro-/nano-electronic devices.

  3. A comparison between different finite elements for elastic and aero-elastic analyses.

    PubMed

    Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani

    2017-11-01

    In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.

  4. Electronic and elastic properties of new semiconducting oP(12)-type RuB(2) and OsB(2).

    PubMed

    Hao, Xianfeng; Xu, Yuanhui; Gao, Faming

    2011-03-30

    Using first-principles total energy calculations we investigate the structural, elastic and electronic properties of new hypothetical oP(12)-type phase RuB(2) and OsB(2). The calculations indicate that the oP(12)-type phase RuB(2) and OsB(2) are thermodynamically and mechanically stable. Remarkably, the new phases RuB(2) and OsB(2) are predicted to be semiconductors, and the appearance of band gaps is ascribed to the enhanced B-B covalent hybridization. Compared to metallic oP(6)-type RuB(2) and OsB(2) phases, the new phases possess similar mechanical properties and hardness. The combination of the probability of tunable electronic properties, strong stiffness and high hardness make RuB(2) and OsB(2) attractive and interesting for advanced applications. © 2011 IOP Publishing Ltd

  5. Surface elastic properties in silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Melis, Claudio; Giordano, Stefano; Colombo, Luciano

    2017-09-01

    The elastic behavior of the external surface of a solid body plays a key role in nanomechanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understanding, many surface elasticity features remain unexplored: some of them are here addressed by blending together continuum elasticity and atomistic simulations. A suitable readdressing of the surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates and to investigate the dependence of the surface elastic parameters on the mean and Gaussian curvatures of the surface. In particular, we predict the radial strain induced by surface effects in spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters are nearly independent of curvatures and, therefore, of the surface conformation.

  6. Retaining large and adjustable elastic strains of kilogram-scale Nb nanowires [Better Superconductor by Elastic Strain Engineering: Kilogram-scale Free-Standing Niobium Metal Composite with Large Retained Elastic Strains

    DOE PAGES

    Hao, Shijie; Cui, Lishan; Wang, Hua; ...

    2016-02-10

    Crystals held at ultrahigh elastic strains and stresses may exhibit exceptional physical and chemical properties. Individual metallic nanowires can sustain ultra-large elastic strains of 4-7%. However, retaining elastic strains of such magnitude in kilogram-scale nanowires is challenging. Here, we find that under active load, ~5.6% elastic strain can be achieved in Nb nanowires in a composite material. Moreover, large tensile (2.8%) and compressive (-2.4%) elastic strains can be retained in kilogram-scale Nb nanowires when the composite is unloaded to a free-standing condition. It is then demonstrated that the retained tensile elastic strains of Nb nanowires significantly increase their superconducting transitionmore » temperature and critical magnetic fields, corroborating ab initio calculations based on BCS theory. This free-standing nanocomposite design paradigm opens new avenues for retaining ultra-large elastic strains in great quantities of nanowires and elastic-strain-engineering at industrial scale.« less

  7. Exceptionally strong, stiff and hard hybrid material based on an elastomer and isotropically shaped ceramic nanoparticles.

    PubMed

    Georgopanos, Prokopios; Schneider, Gerold A; Dreyer, Axel; Handge, Ulrich A; Filiz, Volkan; Feld, Artur; Yilmaz, Ezgi D; Krekeler, Tobias; Ritter, Martin; Weller, Horst; Abetz, Volker

    2017-08-04

    In this work the fabrication of hard, stiff and strong nanocomposites based on polybutadiene and iron oxide nanoparticles is presented. The nanocomposites are fabricated via a general concept for mechanically superior nanocomposites not based on the brick and mortar structure, thus on globular nanoparticles with nanosized organic shells. For the fabrication of the composites oleic acid functionalized iron oxide nanoparticles are decorated via ligand exchange with an α,ω-polybutadiene dicarboxylic acid. The functionalized particles were processed at 145 °C. Since polybutadiene contains double bonds the nanocomposites obtained a crosslinked structure which was enhanced by the presence of oxygen or sulfur. It was found that the crosslinking and filler percolation yields high elastic moduli of approximately 12-20 GPa and hardness of 15-18 GPa, although the polymer volume fraction is up to 40%. We attribute our results to a catalytically enhanced crosslinking reaction of the polymer chains induced by oxygen or sulfur and to the microstructure of the nanocomposite.

  8. Longitudinal sound velocities, elastic anisotropy, and phase transition of high-pressure cubic H2O ice to 82 GPa

    NASA Astrophysics Data System (ADS)

    Kuriakose, Maju; Raetz, Samuel; Hu, Qing Miao; Nikitin, Sergey M.; Chigarev, Nikolay; Tournat, Vincent; Bulou, Alain; Lomonosov, Alexey; Djemia, Philippe; Gusev, Vitalyi E.; Zerr, Andreas

    2017-10-01

    Water ice is a molecular solid whose behavior under compression reveals the interplay of covalent bonding in molecules and forces acting between them. This interplay determines high-pressure phase transitions, the elastic and plastic behavior of H2O ice, which are the properties needed for modeling the convection and internal structure of the giant planets and moons of the solar system as well as H2O -rich exoplanets. We investigated experimentally and theoretically elastic properties and phase transitions of cubic H2O ice at room temperature and high pressures between 10 and 82 GPa. The time-domain Brillouin scattering (TDBS) technique was used to measure longitudinal sound velocities (VL) in polycrystalline ice samples compressed in a diamond anvil cell. The high spatial resolution of the TDBS technique revealed variations of VL caused by elastic anisotropy, allowing us to reliably determine the fastest and the slowest sound velocity in a single crystal of cubic H2O ice and thus to evaluate existing equations of state. Pressure dependencies of the single-crystal elastic moduli Ci j(P ) of cubic H2O ice to 82 GPa have been obtained which indicate its hardness and brittleness. These results were compared with ab initio calculations. It is suggested that the transition from molecular ice VII to ionic ice X occurs at much higher pressures than proposed earlier, probably above 80 GPa.

  9. Colonization of habitat islands in the deep sea: recruitment to glass sponge stalks

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.

    2001-04-01

    Biogenic structures in the deep sea often act as hard substratum 'islands' for the attachment of encrusting fauna. At an abyssal station in the NE Pacific, stalks of hexactinellid sponges in the genus Hyalonema are habitat islands for species-rich epifaunal communities. An experimental study was conducted to (1) determine the colonization rates of artificial Hyalonema stalks, (2) compare the species composition and diversity of recruits to newly available substrata to that of the natural communities, and (3) examine the vertical distribution of recruits. Four sets of six artificial sponge stalks, constructed of Hyalonema spicules, were deployed at 4100 m depth for 3- to 5-month periods. There was no difference in net colonization or immigration rate among the four deployments. Colonization rates were similar to those reported for other deep-sea, hard substratum recruitment experiments. The taxa that recruited to the artificial stalks were a subset of the taxa found in natural communities. However, several taxa important in structuring natural communities did not recruit to the artificial stalks. The two taxa with the highest invasion rates, a calcareous foraminiferan ( Cibicides lobatulus) and a serpulid polychaete ( Bathyvermilia sp.), also were the two taxa with greatest relative abundance in natural communities. Vertical distributions of Cibicides and an agglutinated foraminiferan ( Telammina sp.) were skewed towards the top of the artificial stalks, potentially because of active habitat selection. These results have several implications for natural Hyalonema stalk communities. Most importantly, species composition and abundance of individuals in the stalk communities appear to be maintained by frequent recruitment of a few common taxa and infrequent recruitment of many rare taxa. An argument is presented for temporal-mosaic maintenance of diversity in these deep-sea, hard substratum communities.

  10. Hard TiCx/SiC/a-C:H nanocomposite thin films using pulsed high energy density plasma focus device

    NASA Astrophysics Data System (ADS)

    Umar, Z. A.; Rawat, R. S.; Tan, K. S.; Kumar, A. K.; Ahmad, R.; Hussain, T.; Kloc, C.; Chen, Z.; Shen, L.; Zhang, Z.

    2013-04-01

    Thin films of TiCx/SiC/a-C:H were synthesized on Si substrates using a complex mix of high energy density plasmas and instability accelerated energetic ions of filling gas species, emanated from hot and dense pinched plasma column, in dense plasma focus device. The conventional hollow copper anode of Mather type plasma focus device was replaced by solid titanium anode for synthesis of TiCx/SiC/a-C:H nanocomposite thin films using CH4:Ar admixture of (1:9, 3:7 and 5:5) for fixed 20 focus shots as well as with different number of focus shots with fixed CH4:Ar admixture ratio 3:7. XRD results showed the formation of crystalline TiCx/SiC phases for thin film synthesized using different number of focus shots with CH4:Ar admixture ratio fixed at 3:7. SEM results showed that the synthesized thin films consist of nanoparticle agglomerates and the size of agglomerates depended on the CH4:Ar admixture ratio as well as on the number of focus shots. Raman analysis showed the formation of polycrystalline/amorphous Si, SiC and a-C for different CH4:Ar ratio as well as for different number of focus shots. The XPS analysis confirmed the formation of TiCx/SiC/a-C:H composite thin film. Nanoindentation results showed that the hardness and elastic modulus values of composite thin films increased with increasing number of focus shots. Maximum values of hardness and elastic modulus at the surface of the composite thin film were found to be about 22 and 305 GPa, respectively for 30 focus shots confirming the successful synthesis of hard composite TiCx/SiC/a-C:H coatings.

  11. The multiple V-shaped double peeling of elastic thin films from elastic soft substrates

    NASA Astrophysics Data System (ADS)

    Menga, N.; Afferrante, L.; Pugno, N. M.; Carbone, G.

    2018-04-01

    In this paper, a periodic configuration of V-shaped double peeling process is investigated. Specifically, an elastic thin film is detached from a soft elastic material by applying multiple concentrated loads periodically distributed with spatial periodicity λ. The original Kendall's idea is extended to take into account the change in elastic energy occurring in the substrate when the detachment fronts propagate. The symmetric configuration typical of a V-peeling process causes the energy release rate to be sensitive to variations of the elastic energy stored in the soft substrate. This results in an enhancement of the adhesion strength because part of the external work required to trigger the peeling mechanism is converted in substrate elastic energy. A key role is played by both spatial periodicity λ and elasticity ratio E/Eh, between tape and substrate elastic moduli, in determining the conditions of stable adhesion. Indeed, the presence of multiple peeling fronts determines a modification of the mechanism of interaction, because deformations close to each peeling front are also affected by the stresses related to the other fronts. Results show that the energy release rate depends on the detached length of the tape so that conditions can be established which lead to an increase of the supported load compared to the classical peeling on rigid substrates. Finally, we also find that for any given value of the load per unit length, an optimum value of the wavelength λ exists that maximizes the tolerance of the system, before unstable propagation of the peeling front can occur.

  12. Relationship between the Uncompensated Price Elasticity and the Income Elasticity of Demand under Conditions of Additive Preferences.

    PubMed

    Sabatelli, Lorenzo

    2016-01-01

    Income and price elasticity of demand quantify the responsiveness of markets to changes in income and in prices, respectively. Under the assumptions of utility maximization and preference independence (additive preferences), mathematical relationships between income elasticity values and the uncompensated own and cross price elasticity of demand are here derived using the differential approach to demand analysis. Key parameters are: the elasticity of the marginal utility of income, and the average budget share. The proposed method can be used to forecast the direct and indirect impact of price changes and of financial instruments of policy using available estimates of the income elasticity of demand.

  13. Thermo-elastic optical coherence tomography.

    PubMed

    Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, Antonius F W; Huber, Robert; Soest, Gijs van

    2017-09-01

    The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.

  14. Evaluation of multimodality imaging using image fusion with ultrasound tissue elasticity imaging in an experimental animal model.

    PubMed

    Paprottka, P M; Zengel, P; Cyran, C C; Ingrisch, M; Nikolaou, K; Reiser, M F; Clevert, D A

    2014-01-01

    To evaluate the ultrasound tissue elasticity imaging by comparison to multimodality imaging using image fusion with Magnetic Resonance Imaging (MRI) and conventional grey scale imaging with additional elasticity-ultrasound in an experimental small-animal-squamous-cell carcinoma-model for the assessment of tissue morphology. Human hypopharynx carcinoma cells were subcutaneously injected into the left flank of 12 female athymic nude rats. After 10 days (SD ± 2) of subcutaneous tumor growth, sonographic grey scale including elasticity imaging and MRI measurements were performed using a high-end ultrasound system and a 3T MR. For image fusion the contrast-enhanced MRI DICOM data set was uploaded in the ultrasonic device which has a magnetic field generator, a linear array transducer (6-15 MHz) and a dedicated software package (GE Logic E9), that can detect transducers by means of a positioning system. Conventional grey scale and elasticity imaging were integrated in the image fusion examination. After successful registration and image fusion the registered MR-images were simultaneously shown with the respective ultrasound sectional plane. Data evaluation was performed using the digitally stored video sequence data sets by two experienced radiologist using a modified Tsukuba Elasticity score. The colors "red and green" are assigned for an area of soft tissue, "blue" indicates hard tissue. In all cases a successful image fusion and plan registration with MRI and ultrasound imaging including grey scale and elasticity imaging was possible. The mean tumor volume based on caliper measurements in 3 dimensions was ~323 mm3. 4/12 rats were evaluated with Score I, 5/12 rates were evaluated with Score II, 3/12 rates were evaluated with Score III. There was a close correlation in the fused MRI with existing small necrosis in the tumor. None of the scored II or III lesions was visible by conventional grey scale. The comparison of ultrasound tissue elasticity imaging enables a

  15. Seismic motion in urban sites consisting of blocks in welded contact with a soft layer overlying a hard half-space

    NASA Astrophysics Data System (ADS)

    Groby, Jean-Philippe; Wirgin, Armand

    2008-02-01

    We address the problem of the response to a seismic wave of an urban site consisting of Nb blocks overlying a soft layer underlain by a hard substratum. The results of a theoretical analysis, appealing to a space-frequency mode-matching (MM) technique, are compared to those obtained by a space-time finite-element (FE) technique. The two methods are shown to give rise to the same prediction of the seismic response for Nb = 1, 2 and 40 blocks. The mechanism of the interaction between blocks and the ground, as well as that of the mutual interaction between blocks, are studied. It is shown, in the first part of this paper, that the presence of a small number of blocks modifies the seismic disturbance in a manner which evokes qualitatively, but not quantitatively, what was observed during the 1985 Michoacan earthquake in Mexico City. Anomalous earthquake response at a much greater level, in terms of duration, peak and cumulative amplitude of motion, is shown, by a theoretical and numerical analysis in the second part of this paper, to be induced by the presence of a large (>=10) number of identical equi-spaced blocks that are present in certain districts of many cities.

  16. Relationship between the Uncompensated Price Elasticity and the Income Elasticity of Demand under Conditions of Additive Preferences

    PubMed Central

    Sabatelli, Lorenzo

    2016-01-01

    Income and price elasticity of demand quantify the responsiveness of markets to changes in income and in prices, respectively. Under the assumptions of utility maximization and preference independence (additive preferences), mathematical relationships between income elasticity values and the uncompensated own and cross price elasticity of demand are here derived using the differential approach to demand analysis. Key parameters are: the elasticity of the marginal utility of income, and the average budget share. The proposed method can be used to forecast the direct and indirect impact of price changes and of financial instruments of policy using available estimates of the income elasticity of demand. PMID:26999511

  17. Mechanism of Resilin Elasticity

    PubMed Central

    Qin, Guokui; Hu, Xiao; Cebe, Peggy; Kaplan, David L.

    2012-01-01

    Resilin is critical in the flight and jumping systems of insects as a polymeric rubber-like protein with outstanding elasticity. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. Here we report the structure and function of resilin from Drosophila CG15920. A reversible beta-turn transition was identified in the peptide encoded by exon III and for full length resilin during energy input and release, features that correlate to the rapid deformation of resilin during functions in vivo. Micellar structures and nano-porous patterns formed after beta-turn structures were present via changes in either the thermal or mechanical inputs. A model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure-function relationships for this protein. Further, this model offers a view of elastomeric proteins in general where beta-turn related structures serve as fundamental units of the structure and elasticity. PMID:22893127

  18. Hexagonal-structured epsilon-NbN. Ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    DOE PAGES

    Zou, Y.; Wang, X.; Chen, T.; ...

    2015-06-01

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂B S/∂P = 3.81(3) andmore » ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G 0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.« less

  19. Hexagonal-structured epsilon-NbN. Ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Y.; Wang, X.; Chen, T.

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂B S/∂P = 3.81(3) andmore » ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G 0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.« less

  20. Hilbert complexes of nonlinear elasticity

    NASA Astrophysics Data System (ADS)

    Angoshtari, Arzhang; Yavari, Arash

    2016-12-01

    We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors. As some applications of these decompositions in nonlinear elasticity, we study the strain compatibility equations of linear and nonlinear elasticity in the presence of Dirichlet boundary conditions and the existence of stress functions on non-contractible bodies. As an application of these Hilbert complexes in computational mechanics, we briefly discuss the derivation of a new class of mixed finite element methods for nonlinear elasticity.

  1. Tendon elasticity and muscle function.

    PubMed

    Alexander, R McNeill

    2002-12-01

    Vertebrate animals exploit the elastic properties of their tendons in several different ways. Firstly, metabolic energy can be saved in locomotion if tendons stretch and then recoil, storing and returning elastic strain energy, as the animal loses and regains kinetic energy. Leg tendons save energy in this way when birds and mammals run, and an aponeurosis in the back is also important in galloping mammals. Tendons may have similar energy-saving roles in other modes of locomotion, for example in cetacean swimming. Secondly, tendons can recoil elastically much faster than muscles can shorten, enabling animals to jump further than they otherwise could. Thirdly, tendon elasticity affects the control of muscles, enhancing force control at the expense of position control.

  2. Elastic band prediction equations for combined free-weight and elastic band bench presses and squats.

    PubMed

    Shoepe, Todd C; Ramirez, David A; Almstedt, Hawley C

    2010-01-01

    Elastic bands added to traditional free-weight techniques have become a part of suggested training routines in recent years. Because of the variable loading patterns of elastic bands (i.e., greater stretch produces greater resistance), it is necessary to quantify the exact loading patterns of bands to identify the volume and intensity of training. The purpose of this study was to determine the length vs. tension properties of multiple sizes of a set of commonly used elastic bands to quantify the resistance that would be applied to free-weight plus elastic bench presses (BP) and squats (SQ). Five elastic bands of varying thickness were affixed to an overhead support beam. Dumbbells of varying weights were progressively added to the free end while the linear deformation was recorded with each subsequent weight increment. The resistance was plotted as a factor of linear deformation, and best-fit nonlinear logarithmic regression equations were then matched to the data. For both the BP and SQ loading conditions and all band thicknesses tested, R values were greater than 0.9623. These data suggest that differences in load exist as a result of the thickness of the elastic band, attachment technique, and type of exercise being performed. Facilities should adopt their own form of loading quantification to match their unique set of circumstances when acquiring, researching, and implementing elastic band and free-weight exercises into the training programs.

  3. Laser Annealing on the Surface Treatment of Thin Super Elastic NiTi Wire

    NASA Astrophysics Data System (ADS)

    Samal, S.; Heller, L.; Brajer, J.; Tyc, O.; Kadrevek, L.; Sittner, P.

    2018-05-01

    Here the aim of this research is annealing the surface of NiTi wire for shape memory alloy, super-elastic wire by solid state laser beam. The laser surface treatment was carried out on the NiTi wire locally with fast, selective, surface heat treatment that enables precisely tune the localized material properties without any precipitation. Both as drawn (hard) and straight annealing NiTi wire were considered for laser annealing with input power 3 W, with precisely focusing the laser beam height 14.3 % of the Z-axis with a spot size of 1 mm. However, straight annealing wire is more interest due to its low temperature shape setting behavior and used by companies for stent materials. The variable parameter such as speed of the laser scanning and tensile stress on the NiTi wire were optimized to observe the effect of laser response on the sample. Superelastic, straight annealed NiTi wires (d: 0.10 mm) were held prestrained at the end of the superelastic plateau (ε: 5 ∼6.5 %) above the superelastic region by a tensile machine ( Mitter: miniature testing rig) at room temperature (RT). Simultaneously, the hardness of the wires along the cross-section was performed by nano-indentation (NI) method. The hardness of the NiTi wire corresponds to phase changes were correlated with NI test. The laser induced NiTi wire shows better fatigue performance with improved 6500 cycles.

  4. Remember Hard But Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions.

    PubMed

    Xie, Jiushu; Lu, Zhi; Wang, Ruiming; Cai, Zhenguang G

    2016-01-01

    Previous studies have found that bodily stimulation, such as hardness biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between "hard" and "rigid" and between "soft" and "flexible" in Chinese, to investigate whether the experience of hardness affects cognitive functions whose performance depends prospectively on rigidity (memory) and flexibility (creativity). In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition) than a cushioned one (the soft condition). In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity or flexibility. They support the embodiment proposition that cognitive functions and representations can be grounded in bodily states via metaphorical associations.

  5. First-principles study of the structural, elastic, vibrational, thermodynamic and electronic properties of the Mo2B intermetallic under pressure

    NASA Astrophysics Data System (ADS)

    Escamilla, R.; Carvajal, E.; Cruz-Irisson, M.; Romero, M.; Gómez, R.; Marquina, V.; Galván, D. H.; Durán, A.

    2016-12-01

    The structural, elastic, vibrational, thermodynamic and electronic properties of the Mo2B intermetallic under pressure are assessed using first-principles calculations based on the generalized gradient approximation (GGA) proposed by Perdew-Wang (PW91). Our results show that the calculated structural parameters at a pressure of zero GPa are in good agreement with the available experimental data. The effect of high pressures on the lattice constants shows that the compression along the c-axis and along the a-axis are similar. The elastic constants were calculated using the static finite strain technique, and the bulk shear moduli are derived from the ideal polycrystalline aggregate. We find that the elastic constants, elastic modulus and hardness monotonically increase as a function of pressure; consequently, the structure is dynamically stable and tends from brittle to ductile behavior under pressure. The Debye temperature θD increases and the so-called Gru¨ neisen constant γ decreases due to stiffening of the crystal structure. The phonon dispersion curves were obtained using the direct method. Additionally, the internal energy (ΔE), the Helmholtz free energy (ΔF), the entropy (S) and the lattice contribution to the heat capacity Cv were calculated and analyzed with the help of the phonon dispersion curves. The N(EF) and the electron transfer between the B and Mo atoms increase as a function of pressure.

  6. Elastic constants and pressure derivative of elastic constants of Si1-xGex solid solution

    NASA Astrophysics Data System (ADS)

    Jivani, A. R.; Baria, J. K.; Vyas, P. S.; Jani, A. R.

    2013-02-01

    Elastic properties of Si1-xGex solid solution with arbitrary (atomic) concentration (x) are studied using the pseudo-alloy atom model based on the pseudopotential theory and on the higher-order perturbation scheme with the application of our own proposed model potential. We have used local-field correction function proposed by Sarkar et al to study Si-Ge system. The Elastic constants and pressure derivatives of elastic constants of the solid solution is investigated with different concentration x of Ge. It is found in the present study that the calculated numerical values of the aforesaid physical properties of Si-Ge system are function of x. The elastic constants (C11, C12 and C44) decrease linearly with increase in concentration x and pressure derivative of elastic constants (C11, C12 and C44) increase with the concentration x of Ge. This study provides better set of theoretical results for such solid solution for further comparison either with theoretical or experimental results.

  7. Biocompatibility of a functionally graded bioceramic coating made by wide-band laser cladding.

    PubMed

    Weidong, Zhu; Qibin, Liu; Min, Zheng; Xudong, Wang

    2008-11-01

    The application of plasma spray is the most popular method by which a metal-bioceramic surface composite can be prepared for the repair of biological hard-tissue, but this method has disadvantages. These disadvantages include poor coating-to-substrate adhesion, low mechanical strength, and brittleness of the coating. In the investigation described in this article, a gradient bioceramic coating was prepared on a Ti-6Al-4V titanium alloy surface using a gradient composite design and wide-band laser cladding techniques. Using a trilayer-structure composed of a substratum, an alloy and bioceramics, the coating was chemically and metallurgically bonded with the substratum. The coating, which contains beta-tricalcium phosphate and hydroxyapatite, showed favorable biocompatibility with the bone tissue and promoted in vivo osteogenesis.

  8. Elastic interaction of hydrogen atoms on graphene: A multiscale approach from first principles to continuum elasticity

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Vastola, Guglielmo; Jhon, Mark H.; Sullivan, Michael B.; Shenoy, Vivek B.; Srolovitz, David J.

    2016-10-01

    The deformation of graphene due to the chemisorption of hydrogen atoms on its surface and the long-range elastic interaction between hydrogen atoms induced by these deformations are investigated using a multiscale approach based on first principles, empirical interactions, and continuum modeling. Focus is given to the intrinsic low-temperature structure and interactions. Therefore, all calculations are performed at T =0 , neglecting possible temperature or thermal fluctuation effects. Results from different methods agree well and consistently describe the local deformation of graphene on multiple length scales reaching 500 Å . The results indicate that the elastic interaction mediated by this deformation is significant and depends on the deformation of the graphene sheet both in and out of plane. Surprisingly, despite the isotropic elasticity of graphene, within the linear elastic regime, atoms elastically attract or repel each other depending on (i) the specific site they are chemisorbed; (ii) the relative position of the sites; (iii) and if they are on the same or on opposite surface sides. The interaction energy sign and power-law decay calculated from molecular statics agree well with theoretical predictions from linear elasticity theory, considering in-plane or out-of-plane deformations as a superposition or in a coupled nonlinear approach. Deviations on the exact power law between molecular statics and the linear elastic analysis are evidence of the importance of nonlinear effects on the elasticity of monolayer graphene. These results have implications for the understanding of the generation of clusters and regular formations of hydrogen and other chemisorbed atoms on graphene.

  9. Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines

    NASA Astrophysics Data System (ADS)

    Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.

    2014-12-01

    A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.

  10. The Propagation of Seismic Waves in the Presence of Strong Elastic Property Contrasts

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Jeyaraj, R.; Milkereit, B.; Liu, Q.; Valley, B.

    2012-12-01

    In an active underground mine there are many seismic activities taking place, such as seismic noises, blasts, tremors and microseismic events. In between the activities, the microseismic events are mainly used for monitoring purposes. The frequency content of microseismic events can be up to few KHz, which can result in wavelengths on the order of a few meters in hard rock environment. In an underground mine, considering the presence of both small wavelength and strong elastic contrasts, the simulation of seismic wave propagation is a challenge. With the recent availability of detailed 3D rock property models of mines, in addition to the development of efficient numerical techniques (such as Spectral Element Method (SEM)), and parallel computation facilities, a solution for such a problem is achievable. Most seismic wave scattering studies focus on large scales (>1 km) and weak elastic contrasts (velocity perturbations less than 10%). However, scattering in the presence of small-scale heterogeneities and large elastic contrasts is an area of ongoing research. In a mine environment, the presence of strong contrast discontinuities such as massive ore bodies, tunnels and infrastructure lead to discontinuities of displacement and/or stress tensor components, and have significant impact on the propagation of seismic waves. In order to obtain an accurate image of wave propagation in such a complex media, it is necessary to consider the presence of these discontinuities in numerical models. In this study, the effects of such a contrast are illustrated with 2D/3D modeling and compared with real broadband 3-component seismic data. The real broadband 3-component seismic data will be obtained in one of the Canadian underground mines in Ontario. One of the possible scenarios investigated in this study that may explain the observed complexity in seismic wavefield pattern in hard rock environments is the effect of near field displacements rather than far field. Considering the

  11. Effect of deposition temperature on morphological, magnetic and elastic properties of ultrathin Co49Pt51 films

    NASA Astrophysics Data System (ADS)

    Si Abdallah, F.; Chérif, S. M.; Bouamama, Kh.; Roussigné, Y.; Hsu, J.-H.

    2018-03-01

    Morphological, magnetic and elastic properties of 5 nm-thick Co49Pt51 films, sputtered on glass substrates, with 20 nm-thick Ta (seed) and Pt (buffer) layers were studied as function of the deposition temperature Td ranging between room temperature and 350° C. Atomic and magnetic force microscopy, vibrating sample magnetometer and Brillouin light scattering techniques were used to investigate the root mean square (RMS) roughness, the magnetic domain configuration, the coercive field (Hc), the perpendicular magnetic anisotropy (PMA), and the dynamic magnetic and elastic properties of the films with Td. The results show that surface uniformity was enhanced since the RMS roughness decreases with Td while magnetic domains typical of films with high PMA are observed. Hc and PMA are found to sensibly increase with Td. The dynamic magnetization behavior is characterized by magnetic modes related with the co-existence of hard and soft magnetic areas within the samples. The elastic properties of the stack were first analyzed by means of a model describing the main variation of the elastic wave frequencies within the frame of weighted average thickness, density, Young's modulus and Poisson coefficient of all the layers constituting the stacks. However, while Hc and PMA keep increasing with Td, a more precise experimental analysis of the mechanical behavior shows that the group velocity starts increasing and finally decreases with Td, suggesting that knowledge of the influence of Td on the mechanical properties of each individual layer composing the stack is required to obtain a more accurate analysis.

  12. On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction

    DOE PAGES

    Weaver, Jordan S.; Priddy, Matthew W.; McDowell, David L.; ...

    2016-09-01

    Here, spherical nanoindentation combined with electron back-scattered diffraction has been employed to characterize the grain-scale elastic and plastic anisotropy of single crystal alpha-Ti of two different compositions (in two different titanium alloys). Data analyses protocols needed to reliably extract the desired properties of interest are extended and demonstrated in this paper. Specifically, the grain-scale mechanical response is extracted in the form of indentation stress-strain curves for commercially pure (CP-Ti) alpha-Ti and alloyed (Ti-64) titanium from measurements on polycrystalline samples. The results are compared with responses of single crystals and nanoindentation tests (hardness and modulus) from the literature, and the measuredmore » indentation moduli are validated using crystal-elastic finite element simulations. The results obtained in this study show that (i) it is possible to characterize reliably the elastic and plastic anisotropy of alpha-Ti (hcp) of varying alloying contents with spherical nanoindentation stress-strain curves, (ii) the indentation modulus of alpha-Ti-64 is 5–10% less than CP-Ti, and (iii) the indentation yield strength of alpha-Ti-64 is 50–80% higher than CP-Ti.« less

  13. On the Boltzmann-Grad Limit for Smooth Hard-Sphere Systems

    NASA Astrophysics Data System (ADS)

    Tessarotto, Massimo; Cremaschini, Claudio; Mond, Michael; Asci, Claudio; Soranzo, Alessandro; Tironi, Gino

    2018-03-01

    The problem is posed of the prescription of the so-called Boltzmann-Grad limit operator (L_{BG}) for the N-body system of smooth hard-spheres which undergo unary, binary as well as multiple elastic instantaneous collisions. It is proved, that, despite the non-commutative property of the operator L_{BG}, the Boltzmann equation can nevertheless be uniquely determined. In particular, consistent with the claim of Uffink and Valente (Found Phys 45:404, 2015) that there is "no time-asymmetric ingredient" in its derivation, the Boltzmann equation is shown to be time-reversal symmetric. The proof is couched on the "ab initio" axiomatic approach to the classical statistical mechanics recently developed (Tessarotto et al. in Eur Phys J Plus 128:32, 2013). Implications relevant for the physical interpretation of the Boltzmann H-theorem and the phenomenon of decay to kinetic equilibrium are pointed out.

  14. Quasi-elastic (QENS) and inelastic neutron scattering (INS) on hexamethylbenzene

    NASA Astrophysics Data System (ADS)

    Krawczyk, J.; Mayer, J.; Natkaniec, I.; Nowina Konopka, M.; Pawlukojć; Steinsvoll, O.; Janik, J. A.

    2005-05-01

    The Quasi-elastic Neutron scattering (QENS) spectra of polycrystalline hexamethylbenzene (HMB) were measured for temperatures from 10 K to room temperature (phase III and phase II) for momentum transfer 1.9 Å -1. The Inelastic Neutron scattering (INS) and QENS spectra for momentum transfer 0.5-2.9 Å -1 were measured at T=20, 100 and 130 K for energy transfer up to 200 meV. The low-resolution diffraction patterns, used as the phase indicator, were also obtained. In the phase III (below 117 K), we see practically no quasi-elastic broadening. In phase II, the broadening changes with the temperature are in good agreement with the Arrhenius law. The estimated activation barrier to reorientation is 6 kJ/mol. The fitted mean time between instantaneous 120° jumps of CH 3 groups changes from 10 -11 s at T=130 K to 2×10 -13 s at room temperature. On the basis of EISF versus momentum transfer dependency it is hardly possible to decide what is the geometry of the reorientation. Both reorientation of the CH 3 groups around the three-fold symmetry axis and reorientation of the whole molecule around the six-fold symmetry axis of the benzene ring could describe our results, the former being more probable. The measured INS spectra are compared with the quantum chemical ab initio calculations performed for an isolated HMB molecule.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagakubo, A.; Ogi, H., E-mail: ogi@me.es.osaka-u.ac.jp; Hirao, M.

    Nano-polycrystalline boron nitride (BN) is expected to replace diamond as a superhard and superstiff material. Although its hardening was reported, its elasticity remains unclear and the as-measured hardness could be significantly different from the true value due to the elastic recovery. In this study, we measured the longitudinal-wave elastic constant of nano-polycrystalline BNs using picosecond ultrasound spectroscopy and confirmed the elastic softening for small-grain BNs. We also measured Vickers and Knoop hardness for the same specimens and clarified the relationship between hardness and stiffness. The Vickers hardness significantly increased as the grain size decreased, while the Knoop hardness remained nearlymore » unchanged. We attribute the apparent increase in Vickers hardness to the elastic recovery and propose a model to support this insight.« less

  16. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  17. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  18. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  19. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  20. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  1. In situ plasma fabrication of ceramic-like structure on polymeric implant with enhanced surface hardness, cytocompatibility and antibacterial capability.

    PubMed

    Liu, Jun; Zhang, Wei; Shi, Haigang; Yang, Kun; Wang, Gexia; Wang, Pingli; Ji, Junhui; Chu, Paul K

    2016-05-01

    Polymeric materials are commonly found in orthopedic implants due to their unique mechanical properties and biocompatibility but the poor surface hardness and bacterial infection hamper many biomedical applications. In this study, a ceramic-like surface structure doped with silver is produced by successive plasma implantation of silicon (Si) and silver (Ag) into the polyamine 66 (PA66) substrate. Not only the surface hardness and elastic modulus are greatly enhanced due to the partial surface carbonization and the ceramic-like structure produced by the reaction between energetic Si and the carbon chain of PA66, but also the antibacterial activity is improved because of the combined effects rendered by Ag and SiC structure. Furthermore, the modified materials which exhibit good cytocompatibility upregulate bone-related genes and proteins expressions of the contacted bone mesenchymal stem cells (BMSCs). For the first time, it explores out that BMSCs osteogenesis on the antibacterial ceramic-like structure is mediated via the iNOS and nNOS signal pathways. The results reveal that in situ plasma fabrication of an antibacterial ceramic-like structure can endow PA66 with excellent surface hardness, cytocompatibility, as well as antibacterial capability. © 2016 Wiley Periodicals, Inc.

  2. Old issues and new perspectives on prostate cancer hormonal therapy: the molecular substratum.

    PubMed

    Reis, Leonardo Oliveira

    2012-09-01

    Secondary hormonal therapy is a treatment option in patients with castration-resistant prostate cancer (CRPC); however, it is underutilized and is room for optimization and improvement. In this context, androgen receptor (AR) is the Achilles' heel, being critically important and various mechanisms ranging from receptor mutations to secondary signaling pathways are responsible for some of the biological heterogeneity, demanding a multimodal approach. A comprehensive review of the peer-reviewed literature is performed on the topic of molecular mechanisms supporting secondary hormonal therapies, including expanded alternative hormonal therapies for CRPC. Essential concepts in clinical treatment of patients with progression on primary hormonal therapy are maintaining the castrate state, accounting for the intermittency phenomenon and sequentially using oral antiandrogens and adrenolytics heading to androgen depletion microenvironment. Survival prolongation, pain relief or measurable improvement in tumor-related symptoms should be persecuted and are considered to be a tangible benefit of obvious worth to the patient. Understanding the underlying molecular substratum is of paramount importance to hormonal therapy optimization in this context once current androgen-depletion strategies are incomplete, and residual androgens as well as alternative routes contribute to sustained AR activity and disease progression to a lethal phenotype. One or many mechanisms may be playing a role, even within the same patient and lastly are potential targets for treatment. Five fundamental mechanisms mediated through the AR to promote tumor growth (three of which depend on ligand signaling) added to the stem cell pathway must be recognized in CRPC. They are persistence of intratumoral androgens as a result of in situ steroidogenesis or adrenal source; AR mutations that allow promiscuous activation by otherwise nonsignaling ligands; wild-type AR gene amplification; alterations in AR

  3. Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP).

    PubMed

    Aryal, Sitaram; Matsunaga, Katsuyuki; Ching, Wai-Yim

    2015-07-01

    Hydroxyapatite (HAP) is an important bioceramic which constitutes the mineral components of bones and hard tissues in mammals. It is bioactive and used as bioceramic coatings for metallic implants and bone fillers. HAP readily absorbs a large amount of impurities. Knowledge on the elastic and mechanical properties of impurity-doped HAP is a subject of great importance to its potential for biomedical applications. Zn and Mg are the most common divalent cations HAP absorbs. Using density function theory based ab initio methods, we have carried out a large number of ab initio calculations to obtain the bulk elastic and mechanical properties of HAP with Zn or Mg doped in different concentration at the Ca1 and Ca2 sites using large 352-atom supercells. Detailed information on their dependece on the concetraion of the substitued impurity is obtained. Our results show that Mg enhances overall elastic and bulk mechanical properties whereas Zn tends to degrade except at low concentrations. At a higher concentration, the mechanical properties of Zn and Mg doped HAP also depend significantly on impurity distribution between the Ca1 and Ca2 sites. There is a strong evidence that Zn prefers Ca2 site for substituion whereas Mg has no such preference. These results imply that proper control of dopant concentration and their site preference must carefully considered in using doped HAP for specific biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Elastic properties of spherically anisotropic piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming

    2010-09-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.

  5. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  6. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  7. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  8. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  9. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  10. Elasticity of crystalline molecular explosives

    DOE PAGES

    Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; ...

    2015-04-14

    Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, andmore » an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.« less

  11. Experimental Investigation of the Influence of Confining Stress on Hard Rock Fragmentation Using a Conical Pick

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Wang, Shaofeng; Wang, Shanyong

    2018-01-01

    High geostress is a prominent condition in deep excavations and affects the cuttability of deep hard rock. This study aims to determine the influence of confining stress on hard rock fragmentation as applied by a conical pick. Using a true triaxial test apparatus, static and coupled static and dynamic loadings from pick forces were applied to end faces of cubic rock specimens to break them under biaxial, uniaxial and stress-free confining stress conditions. The cuttability indices (peak pick force, insertion depth and disturbance duration), failure patterns and fragment sizes were measured and compared to estimate the effects of confining stress. The results show that the rock cuttabilities decreased in order from rock breakages under stress-free conditions to uniaxial confining stress and then to biaxial confining stress. Under biaxial confining stress, only flake-shaped fragments were stripped from the rock surfaces under the requirements of large pick forces or disturbance durations. As the level of uniaxial confining stress increased, the peak pick force and the insertion depth initially increased and then decreased, and the failure patterns varied from splitting to partial splitting and then to rock bursts with decreasing average fragment sizes. Rock bursts will occur under elastic compression via ultra-high uniaxial confining stresses. There are two critical uniaxial confining stress levels, namely stress values at which peak pick forces begin to decrease and improve rock cuttability, and those at which rock bursts initially occur and cutting safety decreases. In particular, hard rock is easiest to split safely and efficiently under stress-free conditions. Moreover, coupled static preloading and dynamic disturbance can increase the efficiency of rock fragmentation with increasing preloading levels and disturbance amplitudes. The concluding remarks confirm hard rock cuttability using conical pick, which can improve the applicability of mechanical excavation in

  12. Elastic anomalies in Fe-Cr alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Hualei; Wang, Guisheng; Punkkinen, Marko P. J.; Hertzman, Staffan; Johansson, Börje; Vitos, Levente

    2013-05-01

    Using ab initio alloy theory, we determine the elastic parameters of ferromagnetic and paramagnetic Fe1-cCrc (0 ≤ c ≤ 1) alloys in the body centered cubic crystallographic phase. Comparison with the experimental data demonstrates that the employed theoretical approach accurately describes the observed composition dependence of the polycrystalline elastic moduli. The predicted single-crystal elastic constants follow complex anomalous trends, which are shown to originate from the interplay between magnetic and chemical effects. The nonmonotonic composition dependence of the elastic parameters has marked implications on the micro-mechanical properties of ferrite stainless steels.

  13. Asymptotic orderings and approximations of the Master kinetic equation for large hard spheres systems

    NASA Astrophysics Data System (ADS)

    Tessarotto, Massimo; Asci, Claudio

    2017-05-01

    In this paper the problem is posed of determining the physically-meaningful asymptotic orderings holding for the statistical description of a large N-body system of hard spheres, i.e., formed by N ≡1/ε ≫ 1 particles, which are allowed to undergo instantaneous and purely elastic unary, binary or multiple collisions. Starting point is the axiomatic treatment recently developed [Tessarotto et al., 2013-2016] and the related discovery of an exact kinetic equation realized by Master equation which advances in time the 1-body probability density function (PDF) for such a system. As shown in the paper the task involves introducing appropriate asymptotic orderings in terms of ε for all the physically-relevant parameters. The goal is that of identifying the relevant physically-meaningful asymptotic approximations applicable for the Master kinetic equation, together with their possible relationships with the Boltzmann and Enskog kinetic equations, and holding in appropriate asymptotic regimes. These correspond either to dilute or dense systems and are formed either by small-size or finite-size identical hard spheres, the distinction between the various cases depending on suitable asymptotic orderings in terms of ε.

  14. Improved Indentation Test for Measuring Nonlinear Elasticity

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2004-01-01

    A cylindrical-punch indentation technique has been developed as a means of measuring the nonlinear elastic responses of materials -- more specifically, for measuring the moduli of elasticity of materials in cases in which these moduli vary with applied loads. This technique offers no advantage for characterizing materials that exhibit purely linear elastic responses (constant moduli of elasticity, independent of applied loads). However, the technique offers a significant advantage for characterizing such important materials as plasma-sprayed thermal-barrier coatings, which, in cyclic loading, exhibit nonlinear elasticity with hysteresis related to compaction and sliding within their microstructures.

  15. Conical Refraction of Elastic Waves by Anisotropic Metamaterials and Application for Parallel Translation of Elastic Waves.

    PubMed

    Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young

    2017-08-30

    Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.

  16. On the anisotropic elastic properties of hydroxyapatite.

    NASA Technical Reports Server (NTRS)

    Katz, J. L.; Ukraincik, K.

    1971-01-01

    Experimental measurements of the isotropic elastic moduli on polycrystalline specimens of hydroxyapatite and fluorapatite are compared with elastic constants measured directly from single crystals of fluorapatite in order to derive a set of pseudo single crystal elastic constants for hydroxyapatite. The stiffness coefficients thus derived are given. The anisotropic and isotropic elastic properties are then computed and compared with similar properties derived from experimental observations of the anisotropic behavior of bone.

  17. Multiple roles for elastic fibers in the skin.

    PubMed

    Starcher, Barry; Aycock, Ronnie L; Hill, Charles H

    2005-04-01

    Dermal elastic fibers are believed to have a primary role in providing elastic stretch and recoil to the skin. Here we compare the structural arrangement of dermal elastic fibers of chick skin and different animal species. Most elastic fibers in chick skin are derived from cells that line the feather follicle and/or smooth muscle that connects the pterial and apterial muscle bundles to feather follicles. Elastic fibers in the dermis of animals with single, primary hair follicles are derived from cells lining the hair follicle or from the ends of the pili muscle, which anchors the muscle to the matrix or to the hair follicle. Each follicle is interconnected with elastic fibers. Follicles of animals with primary and secondary (wool) hair follicles are also interconnected by elastic fibers, yet only the elastic fibers derived from the primary follicle are connected to each primary follicle. Only the primary hair follicles are connected to the pili muscle. Human skin, but not the skin of other primates, is significantly different from other animals with respect to elastic fiber organization and probably cell of origin. The data suggest that the primary role for elastic fibers in animals, with the possible exception of humans, is movement and/or placement of feathers or hair.

  18. Association Between Scalp Laxity, Elasticity, and Glidability and Donor Strip Scar Width in Hair Transplantation and a New Elasticity Measuring Method.

    PubMed

    Park, Jae Hyun

    2017-04-01

    Hair transplantation requires precise evaluation of donor site laxity, elasticity, and glidability. The purpose of this study was to examine the relationship between donor strip scar width and preoperative laxity, elasticity, and glidability. Preoperative measurements of scalp laxity, elasticity, and glidability and of donor site scar width 10 months postoperatively were evaluated in 88 patients who underwent hair transplantation with strip harvesting. Elasticity was measured by firmly pressing the scalp with the fingertips of one hand at 2 points to restrict dermis movement while stretching the skin with the other hand. Glidability was calculated as laxity minus elasticity. Scar width positively correlated with laxity (p < .01) and elasticity (p < .05) but had no relationship with glidability. There was a significant difference between patients in the upper 30th percentile of elasticity (≥10 mm) versus others (<10 mm) in scar width. Scalp laxity, elasticity, and glidability are of great clinical importance in hair transplantation. The authors' novel method of measuring elasticity will assist surgeons in predicting donor site scar width.

  19. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    PubMed

    Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S; Heitzmann, Daniel W W; Kretzer, J Philippe

    2013-01-01

    The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  20. Hard-on-Hard Lubrication in the Artificial Hip under Dynamic Loading Conditions

    PubMed Central

    Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S.; Heitzmann, Daniel W. W.; Kretzer, J. Philippe

    2013-01-01

    The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal. PMID:23940772

  1. WE-E-9A-01: Ultrasound Elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emelianov, S; Hall, T; Bouchard, R

    2014-06-15

    Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitativemore » Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity

  2. Optimal development of matrix elasticity

    PubMed Central

    Majkut, Stephanie; Idema, Timon; Swift, Joe; Krieger, Christine; Liu, Andrea; Discher, Dennis E.

    2014-01-01

    Summary In development and differentiation, morphological changes often accompany mechanical changes [1], but it is unclear if or when cells in embryos sense tissue elasticity. The earliest embryo is uniformly pliable while adult tissues vary widely in mechanics from soft brain and stiff heart to rigid bone [2], but the sensitivity of cells to microenvironment elasticity is debated [3]. Regenerative cardiology provides strong motivation because rigid post-infarct regions limit pumping by the adult heart [4]. Here we focus on embryonic heart and isolated cardiomyocytes, which both beat spontaneously. Tissue elasticity, Et, increases daily for heart to 1-2 kiloPascal by embryonic day-4 (E4), and although this is ∼10-fold softer than adult heart, the beating contractions of E4-cardiomyocytes prove optimal at ∼Et,E4 both in vivo and in vitro. Proteomics reveals daily increases in a small subset of proteins, namely collagen plus cardiac-specific excitation-contraction proteins. Rapid softening of the heart's matrix with collagenase or stiffening it with enzymatic crosslinking suppresses beating. Sparsely cultured E4-cardiomyocytes on collagen-coated gels likewise show maximal contraction on matrices with native E4 stiffness, highlighting cell-intrinsic mechanosensitivity. While an optimal elasticity for striation proves consistent with the mathematics of force-driven sarcomere registration, contraction wave-speed is linear in Et as theorized for Excitation-Contraction Coupled to Matrix Elasticity. Mechanosensitive stem cell cardiogenesis helps generalize tissue results, which demonstrate how myosin-II organization and contractile function is optimally matched to the load presented by matrix elasticity. PMID:24268417

  3. Elastic constants of calcite

    USGS Publications Warehouse

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  4. Marangoni and Gibbs elasticity of flowing soap films

    NASA Astrophysics Data System (ADS)

    Kim, Ildoo; Sane, Aakash; Mandre, Shreyas

    2017-11-01

    A flowing soap film has two elasticities. Marangoni elasticity dynamically stabilizes the film from sudden disturbance, and Gibbs elasticity is an equilibrium property that influences the film's persistence over time. In our experimental investigation, we find that Marangoni elasticity is 22 mN/m independent of the film thickness. On the other hand, Gibbs elasticity depends both on the film thickness and the soap concentration. Interestingly, the soap film made of dilute soap solution has the greater Gibbs elasticity, which is not consistent to the existing theory. Such discrepancy is originated from the flowing nature of our soap films, in which surfactants are continuously replenished.

  5. ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.

  6. Elastic electroproduction of ϱ and {J}/{ψ} mesons at large Q2 at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; de Roeck, A.; de Wolf, E. A.; Dirkmann, M.; Dixon, P.; di Nezza, P.; Dlugosz, W.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Fahr, A. B.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Griffiths, R.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hampel, M.; Haynes, W. J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Lander, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindström, G.; Lindstroem, M.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lohmander, H.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Rick, H.; Riech, V.; Riedlberger, J.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; van Esch, P.; van Mechelen, P.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zomer, F.; Zsembery, J.; Zuber, K.; Zurnedden, M.

    1996-02-01

    The total cross sections for the elastic electroproduction of P and {J}/{ψ} mesons for Q2 > 8 GeV 2 and ⋍ 90 GeV/c 2 are measured at HERA with the H1 detector. The measurements are for an integrated electron-proton luminosity of ⋍3 pb-1. The dependences of the total virtual photon-proton ( γ ∗p ) cross sections on Q2, W and the momentum transfer squared to the proton ( t), and, for the ϱ, the dependence on the polar decay angle ( cos θ ∗ are presented. The {J}/{ψ} : ∂ cross section ratio is determined. The results are discussed in the light of theoretical models and of the interplay of hard and soft physics processes.

  7. Threshold Setting for Likelihood Function for Elasticity-Based Tissue Classification of Arterial Walls by Evaluating Variance in Measurement of Radial Strain

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Kentaro; Hasegawa, Hideyuki; Kanai, Hiroshi; Ichiki, Masataka; Tezuka, Fumiaki

    2008-05-01

    Pathologic changes in arterial walls significantly influence their mechanical properties. We have developed a correlation-based method, the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791], for measurement of the regional elasticity of the arterial wall. Using this method, elasticity distributions of lipids, blood clots, fibrous tissue, and calcified tissue were measured in vitro by experiments on excised arteries (mean±SD: lipids 89±47 kPa, blood clots 131 ±56 kPa, fibrous tissue 1022±1040 kPa, calcified tissue 2267 ±1228 kPa) [H. Kanai et al.: Circulation 107 (2003) 3018; J. Inagaki et al.: Jpn. J. Appl. Phys. 44 (2005) 4593]. It was found that arterial tissues can be classified into soft tissues (lipids and blood clots) and hard tissues (fibrous tissue and calcified tissue) on the basis of their elasticity. However, there are large overlaps between elasticity distributions of lipids and blood clots and those of fibrous tissue and calcified tissue. Thus, it was difficult to differentiate lipids from blood clots and fibrous tissue from calcified tissue by simply thresholding elasticity value. Therefore, we previously proposed a method by classifying the elasticity distribution in each region of interest (ROI) (not a single pixel) in an elasticity image into lipids, blood clots, fibrous tissue, or calcified tissue based on a likelihood function for each tissue [J. Inagaki et al.: Jpn. J. Appl. Phys. 44 (2006) 4732]. In our previous study, the optimum size of an ROI was determined to be 1,500 µm in the arterial radial direction and 1,500 µm in the arterial longitudinal direction [K. Tsuzuki et al.: Ultrasound Med. Biol. 34 (2008) 573]. In this study, the threshold for the likelihood function used in the tissue classification was set by evaluating the variance in the ultrasonic measurement of radial strain. The recognition rate was improved from 50 to 54% by the proposed thresholding.

  8. Elastic actuator for precise force control

    DOEpatents

    Pratt, G.A.; Williamson, M.M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

  9. Elastic actuator for precise force control

    DOEpatents

    Pratt, Gill A.; Williamson, Matthew M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

  10. Income Elasticity Literature Review | Science Inventory | US ...

    EPA Pesticide Factsheets

    Following advice from the SAB Council, when estimating the economic value of reductions in air pollution-related mortality and morbidity risk, EPA accounts for the effect of personal income on the willingness to pay to reduce the risk of adverse health outcomes. These income growth adjustment factors are calculated using a combination of income elasticity estimates and income growth projections, both of which have remained essentially unchanged since 1999. These income elasticity estimates vary according to the severity of illness. EPA recently received advice from the SAB regarding the range of income elasticities to apply as well as the research standards to use when selecting income elasticity estimates. Following this advice, EPA consulted with a contractor to update its income elasticity and income growth projections, and generate new income growth adjustment factors. The SAB would evaluate the income elasticity estimates identified in the EPA-provided literature review, determining the extent to which these estimates are appropriate to use in human health benefits assessments.

  11. Research in the Hard Sciences, and in Very Hard "Softer" Domains

    ERIC Educational Resources Information Center

    Phillips, D. C.

    2014-01-01

    The author of this commentary argues that physical scientists are attempting to advance knowledge in the so-called hard sciences, whereas education researchers are laboring to increase knowledge and understanding in an "extremely hard" but softer domain. Drawing on the work of Popper and Dewey, this commentary highlights the relative…

  12. Notepad-like triboelectric generator for efficiently harvesting low-velocity motion energy by interconversion between kinetic energy and elastic potential energy.

    PubMed

    Liu, Guanlin; Leng, Qiang; Lian, Jiawei; Guo, Hengyu; Yi, Xi; Hu, Chenguo

    2015-01-21

    Great attention has been paid to nanogenerators that harvest energy from ambient environments lately. In order to give considerable output current, most nanogenerators require high-velocity motion that in most cases can hardly be provided in our daily life. Here we report a notepad-like triboelectric generator (NTEG), which uses simple notepad-like structure to generate elastic deformation so as to turn a low-velocity kinetic energy into high-velocity kinetic energy through the conversion of elastic potential energy. Therefore, the NTEG can achieve high current output under low-velocity motion, which completely distinguishes it from tribogenerators previously reported. The factors that may affect the output performance are explored, including the number of slices, active length of slice, press speed, and vertical displacement. In addition, the working mechanism is systematically studied, indicating that the efficiency of the generator can be greatly enhanced by interconversion between kinetic energy and elastic potential energy. The short-circuit current, the open-circuit voltage, and power density are 205 μA and 470 V and 9.86 W/m(2), respectively, which is powerful enough to light up hundreds of light-emitting diodes (LEDs) and charge a commercial capacitor. Besides, NTEGs have been successfully applied to a self-powered door monitor.

  13. Elastic properties of nc-TiN /a-Si3N4 and nc-TiN /a-BN nanocomposite films by surface Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Manghnani, Murli H.; Tkachev, Sergey N.; Zinin, Pavel V.; Glorieoux, Christ; Karvankova, Pavla; Veprek, Stan

    2005-03-01

    The hardness of nanocomposite (nc) films developed recently appears to reach the hardness of diamond. High hardness is commonly attributed to the granular structure of nanocomposites (Hall-Petch effect) [E. O. Hall, Proc. Phys. Soc. Lond. B 64, 747 (1951); N. J. Petch, J. Iron Steel Inst. 174, 25 (1953)]. However, grain size in nanocomposites is generally small (5-15nm) and falls in the region where the Hall-Petch effect does not apply. The objective of the present study is to report the elastic properties of the superhard nanocomposites determined by means of surface Brillouin scattering (SBS), and to compare the results with those obtained by nanoindentation. Two types of nanocomposite films were studied: nc-TiN /a-Si3N4 and nc-TiN /a-BN. The SBS measurements presented yield values of Young's modulus significantly larger than those obtained from the slope of unloading indentation curve. This discrepancy is attributed to the lack of the validity of the assumptions behind the Sneddon's derivation of the formula used for the calculation of the Young's modulus from the indentation data.

  14. Elastic Wave Propagation Mechanisms in Underwater Acoustic Environments

    DTIC Science & Technology

    2015-09-30

    Elastic wave propagation mechanisms in underwater acoustic environments Scott D. Frank Marist College Department of Mathematics Poughkeepsie...conversion from elastic propagation to acoustic propagation, and intense interface waves on underwater acoustic environments with elastic bottoms...acoustic propagation will be considered as a means to predict the presence of elastic ice layers. APPROACH In a cylindrically symmetric environment

  15. Must "Hard Problems" Be Hard?

    ERIC Educational Resources Information Center

    Kolata, Gina

    1985-01-01

    To determine how hard it is for computers to solve problems, researchers have classified groups of problems (polynomial hierarchy) according to how much time they seem to require for their solutions. A difficult and complex proof is offered which shows that a combinatorial approach (using Boolean circuits) may resolve the problem. (JN)

  16. Unraveling complex nonlinear elastic behaviors in rocks using dynamic acousto-elasticity

    NASA Astrophysics Data System (ADS)

    Riviere, J.; Guyer, R.; Renaud, G.; TenCate, J. A.; Johnson, P. A.

    2012-12-01

    In comparison with standard nonlinear ultrasonic methods like frequency mixing or resonance based measurements that allow one to extract average, bulk variations of modulus and attenuation versus strain level, dynamic acousto-elasticity (DAE) allows to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. This method consists of exciting a sample in Bulk-mode resonance at strains of 10-7 to 10-5 and simultaneously probing with a sequence of high frequency, low amplitude pulses. Time of flight and amplitudes of these pulses, respectively related to nonlinear elastic and dissipative parameters, can be plotted versus vibration strain level. Despite complex nonlinear signatures obtained for most rocks, it can be shown that for low strain amplitude (< 10-6), the nonlinear classical theory issued from a Taylor decomposition can explain the harmonic content. For higher strain, harmonic content becomes richer and the material exhibits more hysteretic behaviors, i.e. strain rate dependencies. Such observations have been made in the past (e.g., Pasqualini et al., JGR 2007), but not with the extreme detail of elasticity provided by DAE. Previous quasi-static measurements made in Berea sandstone (Claytor et al, GRL 2009), show that the hysteretic behavior disappears when the protocol is performed at a very low strain-rate (static limit). Therefore, future work will aim at linking quasi-static and dynamic observations, i.e. the frequency or strain-rate dependence, in order to understand underlying physical phenomena.

  17. Keratocytes Generate Traction Forces in Two PhasesV⃞

    PubMed Central

    Burton, Kevin; Park, Jung H.; Taylor, D. Lansing

    1999-01-01

    Forces generated by goldfish keratocytes and Swiss 3T3 fibroblasts have been measured with nanonewton precision and submicrometer spatial resolution. Differential interference contrast microscopy was used to visualize deformations produced by traction forces in elastic substrata, and interference reflection microscopy revealed sites of cell-substratum adhesions. Force ranged from a few nanonewtons at submicrometer spots under the lamellipodium to several hundred nanonewtons under the cell body. As cells moved forward, centripetal forces were applied by lamellipodia at sites that remained stationary on the substratum. Force increased and abruptly became lateral at the boundary of the lamellipodium and the cell body. When the cell retracted at its posterior margin, cell-substratum contact area decreased more rapidly than force, so that stress (force divided by area) increased as the cell pulled away. An increase in lateral force was associated with widening of the cell body. These mechanical data suggest an integrated, two-phase mechanism of cell motility: (1) low forces in the lamellipodium are applied in the direction of cortical flow and cause the cell body to be pulled forward; and (2) a component of force at the flanks pulls the rear margins forward toward the advancing cell body, whereas a large lateral component contributes to detachment of adhesions without greatly perturbing forward movement. PMID:10564269

  18. Keratocytes generate traction forces in two phases.

    PubMed

    Burton, K; Park, J H; Taylor, D L

    1999-11-01

    Forces generated by goldfish keratocytes and Swiss 3T3 fibroblasts have been measured with nanonewton precision and submicrometer spatial resolution. Differential interference contrast microscopy was used to visualize deformations produced by traction forces in elastic substrata, and interference reflection microscopy revealed sites of cell-substratum adhesions. Force ranged from a few nanonewtons at submicrometer spots under the lamellipodium to several hundred nanonewtons under the cell body. As cells moved forward, centripetal forces were applied by lamellipodia at sites that remained stationary on the substratum. Force increased and abruptly became lateral at the boundary of the lamellipodium and the cell body. When the cell retracted at its posterior margin, cell-substratum contact area decreased more rapidly than force, so that stress (force divided by area) increased as the cell pulled away. An increase in lateral force was associated with widening of the cell body. These mechanical data suggest an integrated, two-phase mechanism of cell motility: (1) low forces in the lamellipodium are applied in the direction of cortical flow and cause the cell body to be pulled forward; and (2) a component of force at the flanks pulls the rear margins forward toward the advancing cell body, whereas a large lateral component contributes to detachment of adhesions without greatly perturbing forward movement.

  19. Price Elasticities of Food Demand: Compensated vs Uncompensated.

    PubMed

    Clements, Kenneth W; Si, Jiawei

    2016-11-01

    Two recent studies have provided a comprehensive review/summary of a large number of estimates of the price elasticity of food consumption using a meta-regression approach. In this letter, we introduce a way of removing the income effect from these elasticities to recover the compensated elasticities. Although the income effect is small, the compensated elasticities vary by income group. Both types of elasticity should possibly be considered when assessing the impact of policy changes on food consumption. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Local zone-wise elastic-plastic constitutive parameters of Laser-welded aluminium alloy 6061 using digital image correlation

    NASA Astrophysics Data System (ADS)

    Bai, Ruixiang; Wei, Yuepeng; Lei, Zhenkun; Jiang, Hao; Tao, Wang; Yan, Cheng; Li, Xiaolei

    2018-02-01

    The mechanical properties of aluminium alloys can be affected by the local high temperature in laser welding. In this paper, an inversion identification method of local zone-wise elastic-plastic constitutive parameters for laser welding of aluminium alloy 6061 was proposed based on full-field optical measurement data using digital image correlation (DIC). Three regions, i.e., the fusion zone, heat-affected zone, and base zone, of the laser-welded joint were distinguished by means of microstructure optical observation and micrometer hardness measurement. The stress data were obtained using a laser-welded specimen via a uniaxial tensile test. Meanwhile, the local strain data of the laser-welded specimen were obtained by the DIC technique. Thus, the stress-strain relationship for different local regions was established. Finally, the constitutive parameters of the Ramberg-Osgood model were identified by least-square fitting to the experimental stress-strain data. Experimental results revealed that the mechanical properties of the local zones of the welded joints clearly weakened, and these results are consistent with the results of the hardness measurement.

  1. A model of convergent plate margins based on the recent tectonics of Shikoku, Japan

    NASA Technical Reports Server (NTRS)

    Bischke, R. E.

    1974-01-01

    A viscoelastic finite element plate tectonic model is applied to displacement data for the island of Shikoku, Japan. The flow properties and geometry of the upper portions of the earth are assumed known from geophysical evidence, and the loading characteristics are determined from the model. The nature of the forces acting on the Philippine Sea plate, particularly in the vicinity of the Nankai trough, is determined. Seismic displacement data related to the 1946 Nankaido earthquake are modeled in terms of a thick elastic plate overlying a fluidlike substratum. The sequence of preseismic and seismic displacements can be explained in terms of two independent processes operating on elastic lithospheric plates: a strain accumulation process caused by vertical downward forces acting on or within the lithosphere in the vicinity of the trench, and a strain release process caused by plate failure along a preexisting zone on weakness. This is a restatement of Reid's elastic rebound theory in terms of elastic lithospheric plates.

  2. In-plane elastic properties of auxetic multilattices

    NASA Astrophysics Data System (ADS)

    Berinskii, Igor E.

    2018-07-01

    Numerous studies proposed the possible use of auxetic periodic structures in engineering applications. The regular cellular structures with several nodes in a unit cell of the lattice are referred to as multilattices. In this work, a homogenization procedure was applied to three types of plane multilattices: conventional and re-entrant honeycombs (REH), double arrowheads, and semi REH constructed from elastic ribs. It was shown, that for all considered lattices the components of effective tensors of elasticity can be obtained in an explicit way in the frames of the same approach taking stretching, bending and shear of the ribs into account. As a result, equivalent elastic in-plane properties were found analytically as the functions of geometrical parameters of the lattices and the elastic parameters of the ribs. The estimation of the limits for the elastic properties was also performed. It was investigated how the condition of constant density changes the dependence of the elastic constants on the angles between the nodes. Also, different lattices were investigated at the same reference density taken equal to the density of the honeycomb lattice. The most typical cases from the practical point of view were considered and the corresponding elastic parameters were calculated for them.

  3. Ultrasound Elasticity Imaging System with Chirp-Coded Excitation for Assessing Biomechanical Properties of Elasticity Phantom

    PubMed Central

    Chun, Guan-Chun; Chiang, Hsing-Jung; Lin, Kuan-Hung; Li, Chien-Ming; Chen, Pei-Jarn; Chen, Tainsong

    2015-01-01

    The biomechanical properties of soft tissues vary with pathological phenomenon. Ultrasound elasticity imaging is a noninvasive method used to analyze the local biomechanical properties of soft tissues in clinical diagnosis. However, the echo signal-to-noise ratio (eSNR) is diminished because of the attenuation of ultrasonic energy by soft tissues. Therefore, to improve the quality of elastography, the eSNR and depth of ultrasound penetration must be increased using chirp-coded excitation. Moreover, the low axial resolution of ultrasound images generated by a chirp-coded pulse must be increased using an appropriate compression filter. The main aim of this study is to develop an ultrasound elasticity imaging system with chirp-coded excitation using a Tukey window for assessing the biomechanical properties of soft tissues. In this study, we propose an ultrasound elasticity imaging system equipped with a 7.5-MHz single-element transducer and polymethylpentene compression plate to measure strains in soft tissues. Soft tissue strains were analyzed using cross correlation (CC) and absolution difference (AD) algorithms. The optimal parameters of CC and AD algorithms used for the ultrasound elasticity imaging system with chirp-coded excitation were determined by measuring the elastographic signal-to-noise ratio (SNRe) of a homogeneous phantom. Moreover, chirp-coded excitation and short pulse excitation were used to measure the elasticity properties of the phantom. The elastographic qualities of the tissue-mimicking phantom were assessed in terms of Young’s modulus and elastographic contrast-to-noise ratio (CNRe). The results show that the developed ultrasound elasticity imaging system with chirp-coded excitation modulated by a Tukey window can acquire accurate, high-quality elastography images. PMID:28793718

  4. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  5. Acoustic radiation force elasticity imaging in diagnostic ultrasound.

    PubMed

    Doherty, Joshua R; Trahey, Gregg E; Nightingale, Kathryn R; Palmeri, Mark L

    2013-04-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.

  6. The First Law of Elasticity

    ERIC Educational Resources Information Center

    Girill, T. R.

    1972-01-01

    The Boyle-Mariotte gas law was formulated in terms of pneumatic springs," subsumed by Hooke under his own stress-strain relation, and generally regarded as a law of elasticity. The subsequent development of Boyle's principle and elasticity provide thought-provoking test cases for Kuhn's notations of paradigm and puzzle solving in physics.…

  7. Inhomogeneous hard homonuclear molecules

    NASA Astrophysics Data System (ADS)

    Quintana, Jacqueline

    A review is given of some features of theories for inhomogeneous fluids of nonspherical molecules that take as input the direct correlation function of the corresponding homogeneous system. Two different methods are described for defining the structure of hard homonuclear molecules close to a hard planar wall. A spherical harmonics expanison (SHE) within the integral equation (IE) method is presented and, for comparison, a version of density functional theory for orientable hard bodies. In both cases the Pynn-Lado model is employed and a comparison is made with Monte Carlo data. The results indicate that for hard molecules the IE approach does not always capture the effects of orientation due to the characteristics of the SHE for the step function. This disadvantage is particularly true in the case of the orientationally averaged density profile.

  8. Rearrangements and Yielding in Concentrated Suspensions of Hard and Soft Colloids

    NASA Astrophysics Data System (ADS)

    Petekidis, Georgios; Carrier, Vincent; Vlassoppoulos, Dimitris; Pusey, Peter; Ballauff, Matthias

    2004-03-01

    The rheology and microscopic particle rearrangements of concentrated colloidal suspensions were studied by a combination of conventional rheology and Light Scattering under shear (LS Echo). In particular we studied the rheological response and the microscopic particle dynamics under shear near and above the glass transitions concentration. Measurements were done in model hard and soft sphere particles (sterically stabilized PMMA and PS-PNIPA microgels respectively) to assess the effect of inter-particle interactions. Creep and recovery measurements and dynamic strain sweeps showed that glasses of hard particles can tolerate surprisingly large strains, up to at least 15probes the extent of irreversible particle rearrangement under oscillatory shear, verified that within their cage particles move reversibly at least up to such a strain. Such a behavior was attributed to 'cage elasticity', the ability of a particle and its neighbors to retain their relative positions within the cage under quite large distortion [1]. The onset of irreversible rearrangements measured by LS echo decreased with decreasing frequency revealing an interplay between shear and Brownian forces. The effects of interparticle interactions were studied using soft thermoreversible migrogel particles where a glass state may be reached either increasing the particle concentration or decreasing the temperature. Here, although particle rearrangements appear to be reversible up to strains as high as 100sweep is observed at much lower strains. [1] G. Petekidis, D. Vlassopoulos and P.N. Pusey, Faraday Discuss., 123, 287 (2003)

  9. Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty.

    PubMed

    Chen, Junzhao; Yan, Chenxi; Zhu, Mengyu; Yao, Qinke; Shao, Chunyi; Lu, Wenjuan; Wang, Jing; Mo, Xiumei; Gu, Ping; Fu, Yao; Fan, Xianqun

    2015-01-01

    Cornea transplant technology has progressed markedly in recent decades, allowing surgeons to replace diseased corneal endothelium by a thin lamellar structure. A thin, transparent, biocompatible, tissue-engineered substratum with corneal endothelial cells for endothelial keratoplasty is currently of interest. Electrospinning a nanofibrous structure can simulate the extracellular matrix and have beneficial effects for cell culture. Silk fibroin (SF) has good biocompatibility but poor mechanical properties, while poly(L-lactic acid-co-ε-caprolactone) (P(LLA-CL)) has good mechanical properties but poor biocompatibility. Blending SF with P(LLA-CL) can maintain the advantages of both these materials and overcome their disadvantages. Blended electrospun nanofibrous membranes may be suitable for regeneration of the corneal endothelium. The aim of this study was to produce a tissue-engineered construct suitable for endothelial keratoplasty. Five scaffolds containing different SF:P(LLA-CL) blended ratios (100:0, 75:25, 50:50, 25:75, 0:100) were manufactured. A human corneal endothelial (B4G12) cell line was cultured on the membranes. Light transmission, speed of cell adherence, cell viability (live-dead test), cell proliferation (Ki-67, BrdU staining), and cell monolayer formation were detected on membranes with the different blended ratios, and expression of some functional genes was also detected by real-time polymerase chain reaction. Different blended ratios of scaffolds had different light transmittance properties. The 25:75 blended ratio membrane had the best transmittance among these scaffolds. All electrospun nanofibrous membranes showed improved speed of cell adherence when compared with the control group, especially when the P(LLA-CL) ratio increased. The 25:75 blended ratio membranes also had the highest cell proliferation. B4G12 cells could form a monolayer on all scaffolds, and most functional genes were also stably expressed on all scaffolds. Only two genes

  10. Elastic membranes in confinement.

    PubMed

    Bostwick, J B; Miksis, M J; Davis, S H

    2016-07-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically 'confined' by another object. Here, the two-dimensional shape of an elastic membrane in a 'confining' box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped. © 2016 The Author(s).

  11. Br-rich tips of calcified crab claws are less hard but more fracture resistant: a comparison of biomineralized and heavy-element biomaterials

    PubMed Central

    Schofield, Robert M. S.; Niedbala, Jack C.; Nesson, Michael H.; Tao, Ye; Shokes, Jacob E.; Scott, Robert A.; Latimer, Matthew J.

    2009-01-01

    We find that the spoon-like tips of the chelipeds (large claws) of the crab Pachygrapsus crassipes differ from the rest of the claw in that they are not calcified, but instead contain about 1% bromine – thus they represent a new example of a class of structural biomaterials that contain heavy elements such as Zn, Mn, Fe, Cu, and Br bound in an organic matrix. X-ray absorption spectroscopy data suggest that the bromine is bound to phenyl rings, possibly in tyrosine. We measure a broad array of mechanical properties of a heavy-element biomaterial (abrasion resistance, coefficient of kinetic friction, energy of fracture, hardness, modulus of elasticity and dynamic mechanical properties) for the first time, and we make a direct comparison with a mineralized tissue. Our results suggest that the greatest advantage of bromine-rich cuticle over calcified cuticle is resistance to fracture (the energy of fracture is about an order of magnitude greater than for calcified cuticle). The greatest advantage relative to unenriched cuticle, represented by ant mandible cuticle, is a factor of about 1.5 greater hardness and modulus of elasticity. The spoon-like tips gain increased fracture resistance from the orientation of the constituent laminae and from the viscoelasticity of the materials. We suggest that fracture resistance is of greater importance in smaller organisms, and we speculate that one function of heavy elements in mechanical biomaterials is to reduce molecular resonant frequencies and thereby increase absorption of energy from impacts. PMID:19422071

  12. Dynamic elasticity measurement for prosthetic socket design.

    PubMed

    Kim, Yujin; Kim, Junghoon; Son, Hyeryon; Choi, Youngjin

    2017-07-01

    The paper proposes a novel apparatus to measure the dynamic elasticity of human limb in order to help the design and fabrication of the personalized prosthetic socket. To take measurements of the dynamic elasticity, the desired force generated as an exponential chirp signal in which the frequency increases and amplitude is maintained according to time progress is applied to human limb and then the skin deformation is recorded, ultimately, to obtain the frequency response of its elasticity. It is referred to as a Dynamic Elasticity Measurement Apparatus (DEMA) in the paper. It has three core components such as linear motor to provide the desired force, loadcell to implement the force feedback control, and potentiometer to record the skin deformation. After measuring the force/deformation and calculating the dynamic elasticity of the limb, it is visualized as 3D color map model of the limb so that the entire dynamic elasticity can be shown at a glance according to the locations and frequencies. For the visualization, the dynamic elasticities measured at specific locations and frequencies are embodied using the color map into 3D limb model acquired by using 3D scanner. To demonstrate the effectiveness, the visualized dynamic elasticities are suggested as outcome of the proposed system, although we do not have any opportunity to apply the proposed system to the amputees. Ultimately, it is expected that the proposed system can be utilized to design and fabricate the personalized prosthetic socket in order for releasing the wearing pain caused by the conventional prosthetic socket.

  13. Robustness Elasticity in Complex Networks

    PubMed Central

    Matisziw, Timothy C.; Grubesic, Tony H.; Guo, Junyu

    2012-01-01

    Network robustness refers to a network’s resilience to stress or damage. Given that most networks are inherently dynamic, with changing topology, loads, and operational states, their robustness is also likely subject to change. However, in most analyses of network structure, it is assumed that interaction among nodes has no effect on robustness. To investigate the hypothesis that network robustness is not sensitive or elastic to the level of interaction (or flow) among network nodes, this paper explores the impacts of network disruption, namely arc deletion, over a temporal sequence of observed nodal interactions for a large Internet backbone system. In particular, a mathematical programming approach is used to identify exact bounds on robustness to arc deletion for each epoch of nodal interaction. Elasticity of the identified bounds relative to the magnitude of arc deletion is assessed. Results indicate that system robustness can be highly elastic to spatial and temporal variations in nodal interactions within complex systems. Further, the presence of this elasticity provides evidence that a failure to account for nodal interaction can confound characterizations of complex networked systems. PMID:22808060

  14. Development and evaluation of gas-pressurized elastic sleeves for extravehicular activity.

    PubMed

    Tanaka, Kunihiko; Tohnan, Momoka; Abe, Chikara; Iwata, Chihiro; Yamagata, Kenji; Tanaka, Masao; Tanaka, Nobuyuki; Morita, Hironobu

    2010-07-01

    In space, mobility of the current extravehicular activity space suit is limited due to the pressure differential between the inside and outside of the suit. We have previously demonstrated that an elastic glove increased mobility when compared with a non-elastic glove such as that found in the current suit. Extending this work, we hypothesized that an elastic sleeve would also have more mobility compared to a non-elastic sleeve, but a partially elastic sleeve, consisting of elastic joints sewn to non-elastic parts in low mobility areas, might generate similar mobility to a wholly elastic sleeve. The right arms of 10 volunteers were studied with wholly elastic, partially elastic, and non-elastic sleeves in a chamber pressure of -220 mmHg. Range of motion (ROM) of the wrist and electromyography (EMG) of the flexor carpi radialis muscle and the biceps brachii muscle during wrist and elbow flexion were measured. ROM of the wrist was similar among all the sleeves. However, EMG amplitudes during wrist flexion with both elastic sleeves were significantly smaller than that with the non-elastic sleeve. EMG amplitudes during 90 degrees of elbow flexion were also significantly smaller in both elastic sleeves. However, no significant difference in EMG amplitudes was observed between the two elastic sleeves (0.53 +/- 0.06, 0.56 +/- 0.07, 1.14 +/- 0.10 V for wholly elastic, partially elastic, and non-elastic sleeves, respectively). The mobility of elastic sleeves is better than that of a non-elastic sleeve. Elasticity over the joints is important; however the elasticity of the other parts does not appear to affect mobility.

  15. Dynamics of hard sphere colloidal dispersions

    NASA Technical Reports Server (NTRS)

    Zhu, J. X.; Chaikin, Paul M.; Phan, S.-E.; Russel, W. B.

    1994-01-01

    Our objective is to perform on homogeneous, fully equilibrated dispersions the full set of experiments characterizing the transition from fluid to solid and the properties of the crystalline and glassy solid. These include measurements quantifying the nucleation and growth of crystallites, the structure of the initial fluid and the fully crystalline solid, and Brownian motion of particles within the crystal, and the elasticity of the crystal and the glass. Experiments are being built and tested for ideal microgravity environment. Here we describe the ground based effort, which exploits a fluidized bed to create a homogeneous, steady dispersion for the studies. The differences between the microgravity environment and the fluidized bed is gauged by the Peclet number Pe, which measures the rate of convection/sedimentation relative to Brownian motion. We have designed our experiment to accomplish three types of measurements on hard sphere suspensions in a fluidized bed: the static scattering intensity as a function of angle to determine the structure factor, the temporal autocorrelation function at all scattering angles to probe the dynamics, and the amplitude of the response to an oscillatory forcing to deduce the low frequency viscoelasticity. Thus the scattering instrument and the colloidal dispersion were chosen such as that the important features of each physical property lie within the detectable range for each measurement.

  16. Precollisional velocity correlations in a hard-disk fluid with dissipative collisions.

    PubMed

    Soto, R; Piasecki, J; Mareschal, M

    2001-09-01

    Velocity correlations are studied in granular fluids, modeled by the inelastic hard sphere gas. Making a density expansion of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for the evolution of the reduced distributions, we predict the presence of precollisional velocity correlations. They are created by the propagation through correlated sequences of collisions (ring events) of the velocity correlations generated after dissipative collisions. The correlations have their origin in the dissipative character of collisions, being always present in granular fluids. The correlations, that manifest microscopically as an alignment of the velocities of a colliding pair produce modifications of collisional averages, in particular, the virial pressure. The pressure shows a reduction with respect to the elastic case as a consequence of the velocity alignment. Good qualitative agreement is obtained for the comparison of the numerical evaluations of the obtained analytical expressions and molecular dynamics results that showed evidence of precollisional velocity correlations [R. Soto and M. Mareschal, Phys. Rev. E 63, 041303 (2001)].

  17. AFM Investigation of Liquid-Filled Polymer Microcapsules Elasticity.

    PubMed

    Sarrazin, Baptiste; Tsapis, Nicolas; Mousnier, Ludivine; Taulier, Nicolas; Urbach, Wladimir; Guenoun, Patrick

    2016-05-10

    Elasticity of polymer microcapsules (MCs) filled with a liquid fluorinated core is studied by atomic force microscopy (AFM). Accurately characterized spherical tips are employed to obtain the Young's moduli of MCs having four different shell thicknesses. We show that those moduli are effective ones because the samples are composites. The strong decrease of the effective MC elasticity (from 3.0 to 0.1 GPa) as the shell thickness decreases (from 200 to 10 nm) is analyzed using a novel numerical approach. This model describes the evolution of the elasticity of a coated half-space according to the contact radius, the thickness of the film, and the elastic moduli of bulk materials. This numerical model is consistent with the experimental data and allows simulating the elastic behavior of MCs at high frequencies (5 MHz). While the quasi-static elasticity of the MCs is found to be very dependent on the shell thickness, the high frequency (5 MHz) elastic behavior of the core leads to a stable behavior of the MCs (from 2.5 to 3 GPa according to the shell thickness). Finally, the effect of thermal annealing on the MCs elasticity is investigated. The Young's modulus is found to decrease because of the reduction of the shell thickness due to the loss of the polymer.

  18. Photo-elastic stress analysis of initial alignment archwires.

    PubMed

    Badran, Serene A; Orr, John F; Stevenson, Mike; Burden, Donald J

    2003-04-01

    Photo-elastic models replicating a lower arch with a moderate degree of lower incisor crowding and a palatally displaced maxillary canine were used to evaluate the stresses transmitted to the roots of the teeth by initial alignment archwires. Six initial alignment archwires were compared, two multi-strand stainless steel wires, two non-super-elastic (stabilized martensitic form) nickel titanium wires, and two stress-induced super-elastic (austenitic active) nickel titanium wires. Three specimens of each archwire type were tested. Analysis of the photo-elastic fringe patterns, in the medium supporting the teeth, revealed that the non-super-elastic nickel titanium archwires produced the highest shear stresses (P = 0.001). However, the shear stresses generated by the super-elastic alignment archwires and the multi-strand stainless steel archwires were very similar (P = 1.00). These results show that even in situations where large deflections of initial alignment archwires are required, super-elastic archwires do not appear to have any marked advantage over multi-strand stainless steel alignment archwires in terms of the stresses transferred to the roots of the teeth.

  19. Hard Water and Soft Soap: Dependence of Soap Performance on Water Hardness

    ERIC Educational Resources Information Center

    Osorio, Viktoria K. L.; de Oliveira, Wanda; El Seoud, Omar A.; Cotton, Wyatt; Easdon, Jerry

    2005-01-01

    The demonstration of the performance of soap in different aqueous solutions, which is due to water hardness and soap formulation, is described. The demonstrations use safe, inexpensive reagents and simple glassware and equipment, introduce important everyday topics, stimulates the students to consider the wider consequences of water hardness and…

  20. Studying Hardness Meter Spring Strength to Understand Hardness Distribution on Body Surfaces.

    PubMed

    Arima, Yoshitaka

    2017-10-01

    For developing a hardness multipoint measurement system for understanding hardness distribution on biological body surfaces, we investigated the spring strength of the contact portion main axis of a biological tissue hardness meter (product name: PEK). We measured the hardness of three-layered sheets of six types of gel sheets (90 mm × 60 mm × 6 mm) constituting the acupuncture practice pads, with PEK measurements of 1.96 N, 2.94 N, 3.92 N, 4.90 N, 5.88 N, 6.86 N, 7.84 N, 8.82 N, and 9.81 N of the main axis spring strength. We obtained measurements 10 times for the gel sheets and simultaneously measured the load using a digital scale. We measured the hardness distribution of induration embedded and breast cancer palpation models, with a main axis with 1.96 N, 4.90 N, and 9.81 N spring strengths, to create a two-dimensional Contour Fill Chart. Using 4.90 N spring strength, we could obtain measurement loads of ≤3.0 N, and the mean hardness was 5.14 mm. This was close to the median of the total measurement range 0.0-10.0 mm, making the measurement range the largest for this spring strength. We could image the induration of the induration-embedded model regardless of the spring strength. Overall, 4.90 N spring strength was best suited for imaging cancer in the breast cancer palpation model. Copyright © 2017. Published by Elsevier B.V.

  1. Marangoni elasticity of flowing soap films

    NASA Astrophysics Data System (ADS)

    Kim, Ildoo; Mandre, Shreyas

    2017-08-01

    We measure the Marangoni elasticity of a flowing soap film to be 22 mN/m irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed, and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows nondestructive measurement of flowing soap film elasticity and the value 22 mN/m is likely applicable to other similarly constructed flowing soap films.

  2. Faraday wave lattice as an elastic metamaterial.

    PubMed

    Domino, L; Tarpin, M; Patinet, S; Eddi, A

    2016-05-01

    Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.

  3. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A.; Jackson, George

    2018-04-01

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  4. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement.

    PubMed

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A; Jackson, George

    2018-04-28

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  5. Non-Singular Dislocation Elastic Fields and Linear Elastic Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Korsunsky, Alexander M.

    2010-03-01

    One of the hallmarks of the traditional linear elastic fracture mechanics (LEFM) is the presence of an (integrable) inverse square root singularity of strains and stresses in the vicinity of the crack tip. It is the presence of this singularity that necessitates the introduction of the concepts of stress intensity factor (and its critical value, the fracture toughness) and the energy release rate (and material toughness). This gives rise to the Griffith theory of strength that includes, apart from applied stresses, the considerations of defect size and geometry. A highly successful framework for the solution of crack problems, particularly in the two-dimensional case, due to Muskhelishvili (1953), Bilby and Eshelby (1968) and others, relies on the mathematical concept of dislocation. Special analytical and numerical methods of dealing with the characteristic 1/r (Cauchy) singularity occupy a prominent place within this theory. Recently, in a different context of dislocation dynamics simulations, Cai et al. (2006) proposed a novel means of removing the singularity associated with the dislocation core, by introducing a blunting radius parameter a into the expressions for elastic fields. Here, using the example of two-dimensional elasticity, we demonstrate how the adoption of the similar mathematically expedient tool leads naturally to a non-singular formulation of fracture mechanics problems. This opens an efficient means of treating a variety of crack problems.

  6. Change in Elasticity Caused by Flow-Mediated Dilation Measured Only for Intima-Media Region of Brachial Artery

    NASA Astrophysics Data System (ADS)

    Sugimoto, Masataka; Hasegawa, Hideyuki; Kanai, Hiroshi

    2005-08-01

    Endothelial dysfunction is considered to be an initial step of arteriosclerosis [R. Ross: N. Engl. J. Med. 340 (2004) 115]. For the assessment of the endothelium function, brachial artery flow-mediated dilation (FMD) caused by increased blood flow has been evaluated with ultrasonic diagnostic equipment. In the case of conventional methods, the change in artery diameter caused by FMD is measured [M. Hashimoto et al.: Circulation 92 (1995) 3431]. Although the arterial wall has a layered structure (intima, media, and adventitia), such a structure is not taken into account in conventional methods because the change in diameter depends on the characteristic of the entire wall. However, smooth muscle present only in the media contributes to FMD, whereas the collagen-rich hard adventitia does not contribute. In this study, we measure the change in elasticity of only the intima-media region including smooth muscle using the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791]. From the change in elasticity, FMD measured only for the intima-media region by our proposed method was found to be more sensitive than that measured for the entire wall by the conventional method.

  7. Elastic metamaterial beam with remotely tunable stiffness

    NASA Astrophysics Data System (ADS)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-02-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  8. Br-rich tips of calcified crab claws are less hard but more fracture resistant: a comparison of mineralized and heavy-element biological materials.

    PubMed

    Schofield, Robert M S; Niedbala, Jack C; Nesson, Michael H; Tao, Ye; Shokes, Jacob E; Scott, Robert A; Latimer, Matthew J

    2009-06-01

    We find that the spoon-like tips of the chelipeds (large claws) of the crab Pachygrapsus crassipes differ from the rest of the claw in that they are not calcified, but instead contain about 1% bromine--thus they represent a new example of a class of structural biological materials that contain heavy elements such as Zn, Mn, Fe, Cu, and Br bound in an organic matrix. X-ray absorption spectroscopy data suggest that the bromine is bound to phenyl rings, possibly in tyrosine. We measure a broad array of mechanical properties of a heavy-element biological material for the first time (abrasion resistance, coefficient of kinetic friction, energy of fracture, hardness, modulus of elasticity and dynamic mechanical properties), and we make a direct comparison with a mineralized tissue. Our results suggest that the greatest advantage of bromine-rich cuticle over calcified cuticle is resistance to fracture (the energy of fracture is about an order of magnitude greater than for calcified cuticle). The greatest advantage relative to unenriched cuticle, represented by ant mandible cuticle, is a factor of about 1.5 greater hardness and modulus of elasticity.The spoon-like tips gain additional fracture resistance from the orientation of the constituent laminae and from the viscoelasticity of the material. We suggest that fracture resistance is of greater importance in smaller organisms, and we speculate that one function of heavy elements in structural biological materials is to reduce molecular resonant frequencies and thereby increase absorption of energy from impacts.

  9. Nonlinear adaptive control of an elastic robotic arm

    NASA Technical Reports Server (NTRS)

    Singh, S. N.

    1986-01-01

    An approach to control of a class of nonlinear flexible robotic systems is presented. For simplicity, a robot arm (PUMA-type) with three rotational joints is considered. The third link is assumed to be elastic. An adaptive torquer control law is derived for controlling the joint angles. This controller includes a dynamic system in the feedback path, requires only joint angle and rate for feedback, and asymptotically decomposes the elastic dynamics into two subsystems representing the transverse vibrations of the elastic link in two orthogonal planes. To damp out the elastic vibration, a force control law using modal feedback is synthesized. The combination of the torque and force control laws accomplishes joint angle control and elastic mode stabilization.

  10. Advances in biomimetic regeneration of elastic matrix structures

    PubMed Central

    Sivaraman, Balakrishnan; Bashur, Chris A.

    2012-01-01

    Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960

  11. Experimental determination of third-order elastic constants of diamond.

    PubMed

    Lang, J M; Gupta, Y M

    2011-03-25

    To determine the nonlinear elastic response of diamond, single crystals were shock compressed along the [100], [110], and [111] orientations to 120 GPa peak elastic stresses. Particle velocity histories and elastic wave velocities were measured by using laser interferometry. The measured elastic wave profiles were used, in combination with published acoustic measurements, to determine the complete set of third-order elastic constants. These constants represent the first experimental determination, and several differ significantly from those calculated by using theoretical models.

  12. The role of elastic fibers in pathogenesis of conjunctivochalasis

    PubMed Central

    Gan, Jing-Yun; Li, Qing-Song; Zhang, Zhen-Yong; Zhang, Wei; Zhang, Xing-Ru

    2017-01-01

    The PubMed, MEDLINE databases and China National Knowledge Infrastructure (CNKI) were searched for information regarding the etiology and pathogenesis of conjunctivochalasis (CCh) and the synthesis and degradation of elastic fibers. After analysis of the literature, we found elastic fibers was a complex protein molecule from the structure and composition; the degradation of elastic fibers was one of the histopathological features of the disease; the vast majority of the factors related to the pathogenesis of CCh ultimately pointed to abnormal elastic fibers. By reasonably speculating, we considered that abnormal elastic fibers cause the conjunctival relaxation. In conclusion, we hypothesize that elastic fibers play an important role in the pathogenesis of CCh. Studies on the mechanism of synthesis, degradation of elastic fibers are helpful to clarify the pathogenesis of the disease and to find effective treatment methods. PMID:28944209

  13. Elastic fiber-mediated enthesis in the human middle ear

    PubMed Central

    Kawase, Tetsuaki; Shibata, Shunichi; Katori, Yukio; Ohtsuka, Aiji; Murakami, Gen; Fujimiya, Mineko

    2012-01-01

    Adaptation to constant vibration (acoustic oscillation) is likely to confer a specific morphology at the bone–tendon and bone–ligament interfaces at the ear ossicles, which therefore represent an exciting target of enthesis research. We histologically examined (i) the bone attachments of the tensor tympani and stapedius muscles and (ii) the annular ligament of the incudostapedial joint obtained from seven elderly donated cadavers. Notably, both aldehyde-fuchsin and elastic-Masson staining demonstrated that the major fibrous component of the entheses was not collagen fibers but mature elastic fibers. The positive controls for elastic fiber staining were the arterial wall elastic laminae included in the temporal bone materials. The elastic fibers were inserted deeply into the type II collagen-poor fibrocartilage covering the ear ossicles. The muscle tendons were composed of an outer thin layer of collagen fibers and an inner thick core of elastic fibers near the malleus or stapes. In the unique elastic fiber-mediated entheses, hyaluronan, versican and fibronectin were expressed strongly along the elastic fibers. The hyaluronan seemed to act as a friction-reducing lubricant for the elastic fibers. Aggrecan was labeled strongly in a disk- or plica-like fibrous mass on the inner side of the elastic fiber-rich ligament, possibly due to compression stress from the ligament. Tenascin-c was not evident in the entheses. The elastic fiber-mediated entheses appeared resistant to tissue destruction in an environment exposed to constant vibration. The morphology was unlikely to be the result of age-related degeneration. PMID:22803514

  14. Elastic fiber-mediated enthesis in the human middle ear.

    PubMed

    Kawase, Tetsuaki; Shibata, Shunichi; Katori, Yukio; Ohtsuka, Aiji; Murakami, Gen; Fujimiya, Mineko

    2012-10-01

    Adaptation to constant vibration (acoustic oscillation) is likely to confer a specific morphology at the bone-tendon and bone-ligament interfaces at the ear ossicles, which therefore represent an exciting target of enthesis research. We histologically examined (i) the bone attachments of the tensor tympani and stapedius muscles and (ii) the annular ligament of the incudostapedial joint obtained from seven elderly donated cadavers. Notably, both aldehyde-fuchsin and elastic-Masson staining demonstrated that the major fibrous component of the entheses was not collagen fibers but mature elastic fibers. The positive controls for elastic fiber staining were the arterial wall elastic laminae included in the temporal bone materials. The elastic fibers were inserted deeply into the type II collagen-poor fibrocartilage covering the ear ossicles. The muscle tendons were composed of an outer thin layer of collagen fibers and an inner thick core of elastic fibers near the malleus or stapes. In the unique elastic fiber-mediated entheses, hyaluronan, versican and fibronectin were expressed strongly along the elastic fibers. The hyaluronan seemed to act as a friction-reducing lubricant for the elastic fibers. Aggrecan was labeled strongly in a disk- or plica-like fibrous mass on the inner side of the elastic fiber-rich ligament, possibly due to compression stress from the ligament. Tenascin-c was not evident in the entheses. The elastic fiber-mediated entheses appeared resistant to tissue destruction in an environment exposed to constant vibration. The morphology was unlikely to be the result of age-related degeneration. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.

  15. Energy in elastic fiber embedded in elastic matrix containing incident SH wave

    NASA Technical Reports Server (NTRS)

    Williams, James H., Jr.; Nagem, Raymond J.

    1989-01-01

    A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.

  16. Flow Interpretation Implications for Poro-Elastic Modeling

    DTIC Science & Technology

    2010-06-01

    interpretation of acoustical inversions based on poro-elastic models . I. INTRODUCTION Poro-elastic models for acoustic propagation in sediments arose out of the...porous solid. ii. higher freqency range, J. Acoust . Soc. America, 28, 179– 191, 1956. [11] Bear, J., and Y. Bachmat (Eds.), Introduction to Modeling of...Flow interpretation implications for Poro-Elastic Modeling James K. Fulford Naval Research Laboratory Stennis Space Center Stennis Space Center

  17. METABOLIC SYNDROME AND ARTERIAL ELASTICITY IN YOUTH

    PubMed Central

    Gardner, Andrew W.; Parker, Donald E.; Krishnan, Sowmya; Chalmers, Laura J.

    2012-01-01

    Objective To compare arterial elasticity in children, adolescents, and young adults with and without metabolic syndrome (MetS), and to assess which MetS components, demographic measures, and body composition measures are associated with arterial elasticity. Materials/Methods Two-hundred six subjects (107 females and 99 males) between the ages of 10 and 20 years were recruited by local newspaper advertisements, university email advertisements, and informational flyers. Subjects were assessed on MetS components, demographic measures, body composition measures, and arterial elasticity via radial tonometry. Forty-five subjects (22%) had MetS, as defined by the International Diabetes Federation, and 161 subjects (78%) did not. Results The primary novel finding was that group differences were not observed for large artery elasticity index (LAEI) (MetS = 16.1±4.4 (ml × mmHg−1) × 10 (mean±SD), control = 15.4±4.9, (ml × mmHg−1) × 10, p=0.349), and small artery elasticity index (SAEI) (MetS = 9.2±2.7 (ml × mmHg−1) × 100, control = 8.4±2.9, (ml × mmHg−1) × 100, p=0.063). In the MetS group, fat free mass was positively associated with arterial elasticity, and was the strongest multivariate predictor of LAEI (partial R2=0.41) and SAEI (partial R2=0.41). Conclusions Youth with MetS did not exhibit differences in LAEI and SAEI compared to controls. Furthermore, fat free mass of youth with MetS was positively associated with arterial elasticity, and was the strongest predictor of both LAEI and SAEI. The clinical implication is that exercise intervention designed to increase fat free mass might increase arterial elasticity in youth, particularly in youth with MetS. PMID:23142161

  18. Janka hardness using nonstandard specimens

    Treesearch

    David W. Green; Marshall Begel; William Nelson

    2006-01-01

    Janka hardness determined on 1.5- by 3.5-in. specimens (2×4s) was found to be equivalent to that determined using the 2- by 2-in. specimen specified in ASTM D 143. Data are presented on the relationship between Janka hardness and the strength of clear wood. Analysis of historical data determined using standard specimens indicated no difference between side hardness...

  19. Irrigation water demand: A meta-analysis of price elasticities

    NASA Astrophysics Data System (ADS)

    Scheierling, Susanne M.; Loomis, John B.; Young, Robert A.

    2006-01-01

    Metaregression models are estimated to investigate sources of variation in empirical estimates of the price elasticity of irrigation water demand. Elasticity estimates are drawn from 24 studies reported in the United States since 1963, including mathematical programming, field experiments, and econometric studies. The mean price elasticity is 0.48. Long-run elasticities, those that are most useful for policy purposes, are likely larger than the mean estimate. Empirical results suggest that estimates may be more elastic if they are derived from mathematical programming or econometric studies and calculated at a higher irrigation water price. Less elastic estimates are found to be derived from models based on field experiments and in the presence of high-valued crops.

  20. Determining the Effect of Material Hardness During the Hard Turning of AISI4340 Steel

    NASA Astrophysics Data System (ADS)

    Kambagowni, Venkatasubbaiah; Chitla, Raju; Challa, Suresh

    2018-05-01

    In the present manufacturing industries hardened steels are most widely used in the applications like tool design and mould design. It enhances the application range of hard turning of hardened steels in manufacturing industries. This study discusses the impact of workpiece hardness, feed and depth of cut on Arithmetic mean roughness (Ra), root mean square roughness (Rq), mean depth of roughness (Rz) and total roughness (Rt) during the hard turning. Experiments have been planned according to the Box-Behnken design and conducted on hardened AISI4340 steel at 45, 50 and 55 HRC with wiper ceramic cutting inserts. Cutting speed is kept constant during this study. The analysis of variance was used to determine the effects of the machining parameters. 3-D response surface plots drawn based on RSM were utilized to set up the input-output relationships. The results indicated that the feed rate has the most significant parameter for Ra, Rq and Rz and hardness has the most critical parameter for the Rt. Further, hardness shows its influence over all the surface roughness characteristics.

  1. Consumer brand choice: individual and group analyses of demand elasticity.

    PubMed

    Oliveira-Castro, Jorge M; Foxall, Gordon R; Schrezenmaier, Teresa C

    2006-03-01

    Following the behavior-analytic tradition of analyzing individual behavior, the present research investigated demand elasticity of individual consumers purchasing supermarket products, and compared individual and group analyses of elasticity. Panel data from 80 UK consumers purchasing 9 product categories (i.e., baked beans, biscuits, breakfast cereals, butter, cheese, fruit juice, instant coffee, margarine and tea) during a 16-week period were used. Elasticity coefficients were calculated for individual consumers with data from all or only 1 product category (intra-consumer elasticities), and for each product category using all data points from all consumers (overall product elasticity) or 1 average data point per consumer (interconsumer elasticity). In addition to this, split-sample elasticity coefficients were obtained for each individual with data from all product categories purchased during weeks 1 to 8 and 9 to 16. The results suggest that: 1) demand elasticity coefficients calculated for individual consumers purchasing supermarket food products are compatible with predictions from economic theory and behavioral economics; 2) overall product elasticities, typically employed in marketing and econometric research, include effects of interconsumer and intraconsumer elasticities; 3) when comparing demand elasticities of different product categories, group and individual analyses yield similar trends; and 4) individual differences in demand elasticity are relatively consistent across time, but do not seem to be consistent across products. These results demonstrate the theoretical, methodological, and managerial relevance of investigating the behavior of individual consumers.

  2. Geometric charges in theories of elasticity and plasticity

    NASA Astrophysics Data System (ADS)

    Moshe, Michael

    The mechanics of many natural systems is governed by localized sources of stresses. Examples include ''plastic events'' that occur in amorphous solids under external stress, defects formation in crystalline material, and force-dipoles applied by cells adhered to an elastic substrate. Recent developments in a geometric formulation of elasticity theory paved the way for a unifying mathematical description of such singular sources of stress, as ''elastic charges''. In this talk I will review basic results in this emerging field, focusing on the geometry and mechanics of elastic charges in two-dimensional solid bodies. I will demonstrate the applicability of this new approach in three different problems: failure of an amorphous solid under load, mechanics of Kirigami, and wrinkle patterns in geometrically-incompatible elastic sheets.

  3. Estimating Price Elasticity using Market-Level Appliance Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, K. Sydny

    This report provides and update to and expansion upon our 2008 LBNL report “An Analysis of the Price Elasticity of Demand for Appliances,” in which we estimated an average relative price elasticity of -0.34 for major household appliances (Dale and Fujita 2008). Consumer responsiveness to price change is a key component of energy efficiency policy analysis; these policies influence consumer purchases through price both explicitly and implicitly. However, few studies address appliance demand elasticity in the U.S. market and public data sources are generally insufficient for rigorous estimation. Therefore, analysts have relied on a small set of outdated papers focusedmore » on limited appliance types, assuming long-term elasticities estimated for other durables (e.g., vehicles) decades ago are applicable to current and future appliance purchasing behavior. We aim to partially rectify this problem in the context of appliance efficiency standards by revisiting our previous analysis, utilizing data released over the last ten years and identifying additional estimates of durable goods price elasticities in the literature. Reviewing the literature, we find the following ranges of market-level price elasticities: -0.14 to -0.42 for appliances; -0.30 to -1.28 for automobiles; -0.47 to -2.55 for other durable goods. Brand price elasticities are substantially higher for these product groups, with most estimates -2.0 or more elastic. Using market-level shipments, sales value, and efficiency level data for 1989-2009, we run various iterations of a log-log regression model, arriving at a recommended range of short run appliance price elasticity between -0.4 and -0.5, with a default value of -0.45.« less

  4. Intramuscular pressures beneath elastic and inelastic leggings

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Ballard, R. E.; Breit, G. A.; Watenpaugh, D. E.; Hargens, A. R.

    1994-01-01

    Leg compression devices have been used extensively by patients to combat chronic venous insufficiency and by astronauts to counteract orthostatic intolerance following spaceflight. However, the effects of elastic and inelastic leggings on the calf muscle pump have not been compared. The purpose of this study was to compare in normal subjects the effects of elastic and inelastic compression on leg intramuscular pressure (IMP), an objective index of calf muscle pump function. IMP in soleus and tibialis anterior muscles was measured with transducer-tipped catheters. Surface compression between each legging and the skin was recorded with an air bladder. Subjects were studied under three conditions: (1) control (no legging), (2) elastic legging, and (3) inelastic legging. Pressure data were recorded for each condition during recumbency, sitting, standing, walking, and running. Elastic leggings applied significantly greater surface compression during recumbency (20 +/- 1 mm Hg, mean +/- SE) than inelastic leggings (13 +/- 2 mm Hg). During recumbency, elastic leggings produced significantly higher soleus IMP of 25 +/- 1 mm Hg and tibialis anterior IMP of 28 +/- 1 mm Hg compared to 17 +/- 1 mm Hg and 20 +/- 2 mm Hg, respectively, generated by inelastic leggings and 8 +/- 1 mm Hg and 11 +/- 1 mm Hg, respectively, without leggings. During sitting, walking, and running, however, peak IMPs generated in the muscular compartments by elastic and inelastic leggings were similar. Our results suggest that elastic leg compression applied over a long period in the recumbent posture may impede microcirculation and jeopardize tissue viability.(ABSTRACT TRUNCATED AT 250 WORDS).

  5. Elastic spheres can walk on water.

    PubMed

    Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T

    2016-02-04

    Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.

  6. Elastic spheres can walk on water

    PubMed Central

    Belden, Jesse; Hurd, Randy C.; Jandron, Michael A.; Bower, Allan F.; Truscott, Tadd T.

    2016-01-01

    Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys. PMID:26842860

  7. How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity

    PubMed Central

    2017-01-01

    The mechanical response of a homogeneous isotropic linearly elastic material can be fully characterized by two physical constants, the Young’s modulus and the Poisson’s ratio, which can be derived by simple tensile experiments. Any other linear elastic parameter can be obtained from these two constants. By contrast, the physical responses of nonlinear elastic materials are generally described by parameters which are scalar functions of the deformation, and their particular choice is not always clear. Here, we review in a unified theoretical framework several nonlinear constitutive parameters, including the stretch modulus, the shear modulus and the Poisson function, that are defined for homogeneous isotropic hyperelastic materials and are measurable under axial or shear experimental tests. These parameters represent changes in the material properties as the deformation progresses, and can be identified with their linear equivalent when the deformations are small. Universal relations between certain of these parameters are further established, and then used to quantify nonlinear elastic responses in several hyperelastic models for rubber, soft tissue and foams. The general parameters identified here can also be viewed as a flexible basis for coupling elastic responses in multi-scale processes, where an open challenge is the transfer of meaningful information between scales. PMID:29225507

  8. Inverse finite element methods for extracting elastic-poroviscoelastic properties of cartilage and other soft tissues from indentation

    NASA Astrophysics Data System (ADS)

    Namani, Ravi

    Mechanical properties are essential for understanding diseases that afflict various soft tissues, such as osteoarthritic cartilage and hypertension which alters cardiovascular arteries. Although the linear elastic modulus is routinely measured for hard materials, standard methods are not available for extracting the nonlinear elastic, linear elastic and time-dependent properties of soft tissues. Consequently, the focus of this work is to develop indentation methods for soft biological tissues; since analytical solutions are not available for the general context, finite element simulations are used. First, parametric studies of finite indentation of hyperelastic layers are performed to examine if indentation has the potential to identify nonlinear elastic behavior. To answer this, spherical, flat-ended conical and cylindrical tips are examined and the influence of thickness is exploited. Also the influence of the specimen/substrate boundary condition (slip or non-slip) is clarified. Second, a new inverse method---the hyperelastic extraction algorithm (HPE)---was developed to extract two nonlinear elastic parameters from the indentation force-depth data, which is the basic measurement in an indentation test. The accuracy of the extracted parameters and the influence of noise in measurements on this accuracy were obtained. This showed that the standard Berkovitch tip could only extract one parameter with sufficient accuracy, since the indentation force-depth curve has limited sensitivity to both nonlinear elastic parameters. Third, indentation methods for testing tissues from small animals were explored. New methods for flat-ended conical tips are derived. These account for practical test issues like the difficulty in locating the surface or soft specimens. Also, finite element simulations are explored to elucidate the influence of specimen curvature on the indentation force-depth curve. Fourth, the influence of inhomogeneity and material anisotropy on the extracted

  9. On the hardness of high carbon ferrous martensite

    NASA Astrophysics Data System (ADS)

    Mola, J.; Ren, M.

    2018-06-01

    Due to the presence of retained austenite in martensitic steels, especially steels with high carbon concentrations, it is difficult to estimate the hardness of martensite independent of the hardness of the coexisting austenite. In the present work, the hardness of ferrous martensite with carbon concentrations in the range 0.23-1.46 mass-% was estimated by the regression analysis of hardnesses for hardened martensitic-austenitic steels containing various martensite fractions. For a given carbon concentration, the hardness of martensitic-austenitic steels was found to increase exponentially with an increase in the fraction of the martensitic constituent. The hardness of the martensitic constituent was subsequently estimated by the exponential extrapolation of the hardness of phase mixtures to 100 vol.% martensite. For martensite containing 1.46 mass-% carbon, the hardness was estimated to be 1791 HV. This estimate of martensite hardness is significantly higher than the experimental hardness of 822 HV for a phase mixture of 68 vol.% martensite and 32 vol.% austenite. The hardness obtained by exponential extrapolation is also much higher than the hardness of 1104 HV based on the rule of mixtures. The underestimated hardness of high carbon martensite in the presence of austenite is due to the non-linear dependence of hardness on the martensite fraction. The latter is also a common observation in composite materials with a soft matrix and hard reinforcing particles.

  10. Consumer Brand Choice: Individual and Group Analyses of Demand Elasticity

    PubMed Central

    Oliveira-Castro, Jorge M; Foxall, Gordon R; Schrezenmaier, Teresa C

    2006-01-01

    Following the behavior-analytic tradition of analyzing individual behavior, the present research investigated demand elasticity of individual consumers purchasing supermarket products, and compared individual and group analyses of elasticity. Panel data from 80 UK consumers purchasing 9 product categories (i.e., baked beans, biscuits, breakfast cereals, butter, cheese, fruit juice, instant coffee, margarine and tea) during a 16-week period were used. Elasticity coefficients were calculated for individual consumers with data from all or only 1 product category (intra-consumer elasticities), and for each product category using all data points from all consumers (overall product elasticity) or 1 average data point per consumer (interconsumer elasticity). In addition to this, split-sample elasticity coefficients were obtained for each individual with data from all product categories purchased during weeks 1 to 8 and 9 to 16. The results suggest that: 1) demand elasticity coefficients calculated for individual consumers purchasing supermarket food products are compatible with predictions from economic theory and behavioral economics; 2) overall product elasticities, typically employed in marketing and econometric research, include effects of interconsumer and intraconsumer elasticities; 3) when comparing demand elasticities of different product categories, group and individual analyses yield similar trends; and 4) individual differences in demand elasticity are relatively consistent across time, but do not seem to be consistent across products. These results demonstrate the theoretical, methodological, and managerial relevance of investigating the behavior of individual consumers. PMID:16673823

  11. Automatic estimation of elasticity parameters in breast tissue

    NASA Astrophysics Data System (ADS)

    Skerl, Katrin; Cochran, Sandy; Evans, Andrew

    2014-03-01

    Shear wave elastography (SWE), a novel ultrasound imaging technique, can provide unique information about cancerous tissue. To estimate elasticity parameters, a region of interest (ROI) is manually positioned over the stiffest part of the shear wave image (SWI). The aim of this work is to estimate the elasticity parameters i.e. mean elasticity, maximal elasticity and standard deviation, fully automatically. Ultrasonic SWI of a breast elastography phantom and breast tissue in vivo were acquired using the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France). First, the SWI within the ultrasonic B-mode image was detected using MATLAB then the elasticity values were extracted. The ROI was automatically positioned over the stiffest part of the SWI and the elasticity parameters were calculated. Finally all values were saved in a spreadsheet which also contains the patient's study ID. This spreadsheet is easily available for physicians and clinical staff for further evaluation and so increase efficiency. Therewith the efficiency is increased. This algorithm simplifies the handling, especially for the performance and evaluation of clinical trials. The SWE processing method allows physicians easy access to the elasticity parameters of the examinations from their own and other institutions. This reduces clinical time and effort and simplifies evaluation of data in clinical trials. Furthermore, reproducibility will be improved.

  12. Using Empirical Point Elasticities To Teach Tax Incidence.

    ERIC Educational Resources Information Center

    Swinton, John R.; Thomas, Christopher R.

    2001-01-01

    Advocates use of point elasticities rather than arc elasticities or slopes of demand and supply curves to teach students about the economic impacts of excise taxes. Uses several available estimates of point elasticities of demand and supply of sugar to calculate the economic impacts of a penny-per-pound tax on sugar. (RLH)

  13. Modeling elastic anisotropy in strained heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Krishna Dixit, Gopal; Ranganathan, Madhav

    2017-09-01

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to < 1 0 5 > facets on the surface.

  14. Modeling elastic anisotropy in strained heteroepitaxy.

    PubMed

    Dixit, Gopal Krishna; Ranganathan, Madhav

    2017-09-20

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.

  15. Least-squares reverse time migration in elastic media

    NASA Astrophysics Data System (ADS)

    Ren, Zhiming; Liu, Yang; Sen, Mrinal K.

    2017-02-01

    Elastic reverse time migration (RTM) can yield accurate subsurface information (e.g. PP and PS reflectivity) by imaging the multicomponent seismic data. However, the existing RTM methods are still insufficient to provide satisfactory results because of the finite recording aperture, limited bandwidth and imperfect illumination. Besides, the P- and S-wave separation and the polarity reversal correction are indispensable in conventional elastic RTM. Here, we propose an iterative elastic least-squares RTM (LSRTM) method, in which the imaging accuracy is improved gradually with iteration. We first use the Born approximation to formulate the elastic de-migration operator, and employ the Lagrange multiplier method to derive the adjoint equations and gradients with respect to reflectivity. Then, an efficient inversion workflow (only four forward computations needed in each iteration) is introduced to update the reflectivity. Synthetic and field data examples reveal that the proposed LSRTM method can obtain higher-quality images than the conventional elastic RTM. We also analyse the influence of model parametrizations and misfit functions in elastic LSRTM. We observe that Lamé parameters, velocity and impedance parametrizations have similar and plausible migration results when the structures of different models are correlated. For an uncorrelated subsurface model, velocity and impedance parametrizations produce fewer artefacts caused by parameter crosstalk than the Lamé coefficient parametrization. Correlation- and convolution-type misfit functions are effective when amplitude errors are involved and the source wavelet is unknown, respectively. Finally, we discuss the dependence of elastic LSRTM on migration velocities and its antinoise ability. Imaging results determine that the new elastic LSRTM method performs well as long as the low-frequency components of migration velocities are correct. The quality of images of elastic LSRTM degrades with increasing noise.

  16. Elastic Moduli of Permanently Densified Silica Glasses

    PubMed Central

    Deschamps, T.; Margueritat, J.; Martinet, C.; Mermet, A.; Champagnon, B.

    2014-01-01

    Modelling the mechanical response of silica glass is still challenging, due to the lack of knowledge concerning the elastic properties of intermediate states of densification. An extensive Brillouin Light Scattering study on permanently densified silica glasses after cold compression in diamond anvil cell has been carried out, in order to deduce the elastic properties of such glasses and to provide new insights concerning the densification process. From sound velocity measurements, we derive phenomenological laws linking the elastic moduli of silica glass as a function of its densification ratio. The found elastic moduli are in excellent agreement with the sparse data extracted from literature, and we show that they do not depend on the thermodynamic path taken during densification (room temperature or heating). We also demonstrate that the longitudinal sound velocity exhibits an anomalous behavior, displaying a minimum for a densification ratio of 5%, and highlight the fact that this anomaly has to be distinguished from the compressibility anomaly of a-SiO2 in the elastic domain. PMID:25431218

  17. Elastic Properties of Chimpanzee Craniofacial Cortical Bone

    PubMed Central

    Gharpure, Poorva; Kontogiorgos, Elias D.; Opperman, Lynne A.; Ross, Callum F.; Strait, David S.; Smith, Amanda; Pryor, Leslie C.; Wang, Qian; Dechow, Paul C.

    2017-01-01

    Relatively few assessments of cranial biomechanics formally take into account variation in the material properties of cranial cortical bone. Our aim was to characterize the elastic properties of chimpanzee craniofacial cortical bone and compare these to the elastic properties of dentate human craniofacial cortical bone. From seven cranial regions, 27 cylindrical samples were harvested from each of five chimpanzee crania. Assuming orthotropy, axes of maximum stiffness in the plane of the cortical plate were derived using modified equations of Hooke’s law in a Mathcad program. Consistent orientations among individuals were observed in the zygomatic arch and alveolus. The density of cortical bone showed significant regional variation (P<0.001). The elastic moduli demonstrated significant differences between sites, and a distinct pattern where E3 >E2 > E1. Shear moduli were significantly different among regions (P<0.001). The pattern by which chimpanzee cranial cortical bone varies in elastic properties resembled that seen in humans, perhaps suggesting that the elastic properties of craniofacial bone in fossil hominins can be estimated with at least some degree of confidence. PMID:27870344

  18. Force degradation of orthodontic latex elastics: An in-vivo study.

    PubMed

    Qodcieh, Sadeq M Adel; Al-Khateeb, Susan N; Jaradat, Ziad W; Abu Alhaija, Elham S J

    2017-03-01

    Our objectives were to assess the force degradation of orthodontic latex elastics over 48 hours in vivo and to study the relationship between the amount of mouth opening and the degree of force decay. Fifty-two orthodontic patients wearing fixed appliances using Class II elastics were asked to wear premeasured-force 3/16-in heavy and medium intermaxillary elastics. The force amounts were measured and compared at different time intervals. Fifty percent of the force was lost after 3.9 hours for the medium elastics and after 4.9 hours for the heavy elastics. A continuous significant force drop in all elastics was seen at all time intervals (P <0.05, P <0.001). There was greater force loss in the heavy elastics compared with the medium elastics in vivo at all time intervals (P <0.001); the rates of force loss, however, were similar. Fifty percent of force degradation occurred in the first 4 to 5 hours. Because of breakage and for oral hygiene purposes, orthodontic elastics should be changed daily; otherwise, elastics can be used for 48 hours. Force decay of the elastics was correlated to the lateral distance between the maxillary canine and the mandibular first molar in occlusion. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  19. Elasticity and dislocation anelasticity of crystals

    NASA Astrophysics Data System (ADS)

    Nikanorov, S. P.; Kardashev, B. K.

    The book is concerned with the application of the results of physical acoustic studies of elasticity and dislocation anelasticity to the investigation of interatomic interactions and interactions between lattice defects. The analysis of the potential functions determining the energy of interatomic interactions is based on a study of the elastic properties of crystals over a wide temperature range; data on the dislocation structure and on the interaction between dislocations and point defects are based mainly on a study of inelastic effects. Particular attention is given to the relationship between microplastic effects and the initial stage of plastic deformation under conditions of elastic oscillations, when the multiplication of dislocations is negligible.

  20. Elasticity and dislocation inelasticity of crystals

    NASA Astrophysics Data System (ADS)

    Nikanorov, S. P.; Kardashev, B. K.

    The use of methods of physical acoustics for studying the elasticity and dislocation inelasticity of crystals is discussed, as is the application of the results of such studies to the analysis of interatomic and lattice defect interactions. The analysis of the potential functions determining the energy of interatomic interactions is based on an analysis of the elastic properties of crystals over a wide temperature range. The data on the dislocation structure and the interaction between dislocations and point defects are obtained from a study of inelastic effects. Particular attention is given to the relationship between microplastic effects under conditions of elastic oscillations and the initial stage of plastic deformation.

  1. Extrapolation of bulk rock elastic moduli of different rock types to high pressure conditions and comparison with texture-derived elastic moduli

    NASA Astrophysics Data System (ADS)

    Ullemeyer, Klaus; Lokajíček, Tomás; Vasin, Roman N.; Keppler, Ruth; Behrmann, Jan H.

    2018-02-01

    In this study elastic moduli of three different rock types of simple (calcite marble) and more complex (amphibolite, micaschist) mineralogical compositions were determined by modeling of elastic moduli using texture (crystallographic preferred orientation; CPO) data, experimental investigation and extrapolation. 3D models were calculated using single crystal elastic moduli, and CPO measured using time-of-flight neutron diffraction at the SKAT diffractometer in Dubna (Russia) and subsequently analyzed using Rietveld Texture Analysis. To define extrinsic factors influencing elastic behaviour, P-wave and S-wave velocity anisotropies were experimentally determined at 200, 400 and 600 MPa confining pressure. Functions describing variations of the elastic moduli with confining pressure were then used to predict elastic properties at 1000 MPa, revealing anisotropies in a supposedly crack-free medium. In the calcite marble elastic anisotropy is dominated by the CPO. Velocities continuously increase, while anisotropies decrease from measured, over extrapolated to CPO derived data. Differences in velocity patterns with sample orientation suggest that the foliation forms an important mechanical anisotropy. The amphibolite sample shows similar magnitudes of extrapolated and CPO derived velocities, however the pattern of CPO derived velocity is closer to that measured at 200 MPa. Anisotropy decreases from the extrapolated to the CPO derived data. In the micaschist, velocities are higher and anisotropies are lower in the extrapolated data, in comparison to the data from measurements at lower pressures. Generally our results show that predictions for the elastic behavior of rocks at great depths are possible based on experimental data and those computed from CPO. The elastic properties of the lower crust can, thus, be characterized with an improved degree of confidence using extrapolations. Anisotropically distributed spherical micro-pores are likely to be preserved, affecting

  2. Nonlinear viscoelasticity of entangled wormlike micellar fluid under large-amplitude oscillatory shear: Role of elastic Taylor-Couette instability

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Sood, A. K.

    2014-06-01

    The role of elastic Taylor-Couette flow instabilities in the dynamic nonlinear viscoelastic response of an entangled wormlike micellar fluid is studied by large-amplitude oscillatory shear (LAOS) rheology and in situ polarized light scattering over a wide range of strain and angular frequency values, both above and below the linear crossover point. Well inside the nonlinear regime, higher harmonic decomposition of the resulting stress signal reveals that the normalized third harmonic I3/I1 shows a power-law behavior with strain amplitude. In addition, I3/I1 and the elastic component of stress amplitude σ0E show a very prominent maximum at the strain value where the number density (nv) of the Taylor vortices is maximum. A subsequent increase in applied strain (γ) results in the distortions of the vortices and a concomitant decrease in nv, accompanied by a sharp drop in I3 and σ0E. The peak position of the spatial correlation function of the scattered intensity along the vorticity direction also captures the crossover. Lissajous plots indicate an intracycle strain hardening for the values of γ corresponding to the peak of I3, similar to that observed for hard-sphere glasses.

  3. Elastic fibers in human skin: quantitation of elastic fibers by computerized digital image analyses and determination of elastin by radioimmunoassay of desmosine.

    PubMed

    Uitto, J; Paul, J L; Brockley, K; Pearce, R H; Clark, J G

    1983-10-01

    The elastic fibers in the skin and other organs can be affected in several disease processes. In this study, we have developed morphometric techniques that allow accurate quantitation of the elastic fibers in punch biopsy specimens of skin. In this procedure, the elastic fibers, visualized by elastin-specific stains, are examined through a camera unit attached to the microscope. The black and white images sensing various gray levels are then converted to binary images after selecting a threshold with an analog threshold selection device. The binary images are digitized and the data analyzed by a computer program designed to express the properties of the image, thus allowing determination of the volume fraction occupied by the elastic fibers. As an independent measure of the elastic fibers, alternate tissue sections were used for assay of desmosine, an elastin-specific cross-link compound, by a radioimmunoassay. The clinical applicability of the computerized morphometric analyses was tested by examining the elastic fibers in the skin of five patients with pseudoxanthoma elasticum or Buschke-Ollendorff syndrome. In the skin of 10 healthy control subjects, the elastic fibers occupied 2.1 +/- 1.1% (mean +/- SD) of the dermis. The volume fractions occupied by the elastic fibers in the lesions of pseudoxanthoma elasticum or Buschke-Ollendorff syndrome were increased as much as 6-fold, whereas the values in the unaffected areas of the skin in the same patients were within normal limits. A significant correlation between the volume fraction of elastic fibers, determined by computerized morphometric analyses, and the concentration of desmosine, quantitated by radioimmunoassay, was noted in the total material. These results demonstrate that computerized morphometric techniques are helpful in characterizing disease processes affecting skin. This methodology should also be applicable to other tissues that contain elastic fibers and that are affected in various heritable and

  4. Force spectroscopy of membrane hardness of SH-SY5Y neuroblastoma cells before and after differentiation

    NASA Astrophysics Data System (ADS)

    Kwon, Sangwoo; Yang, Woochul; Choi, Yun Kyong; Park, Jung Keuck

    2014-05-01

    Atomic force microscopy (AFM) is utilized in many studies for measuring the structure and the physical characteristics of soft and bio materials. In particular, the force spectroscopy function in the AFM system allows us to explore the mechanical properties of bio cells. In this study, we probe the variation in the membrane hardness of human neuroblastoma SH-SY5Y cells (SH-cells) before and after differentiation by using force spectroscopy. The SH-cell, which is usually differentiated by using a chemical treatment with retinoic acid (RA), is a neuronal cell line employed widely as an in-vitro model for neuroscience research. In force spectroscopy, the force-distance curves are obtained from both the original and the RA-treated cells while the AFM tip approaches and pushes on the cell membranes. The slope deduced from linear region in the force-distance curve is the spring constant and corresponds to the hardness of the cell membrane. The spring constant of the RA-treated cells (0.597 ± 0.010 nN/nm) was smaller than that of the original cells (0.794 ± 0.010 nN/nm), reflecting a hardness decrease in the cells differentiated with the RA treatments. The results clearly demonstrated that the differentiated cells are softer than the original cells. The change in the elasticity of the differentiated cells might be caused by morphological modification during differentiation process. We suggest that force spectroscopy can be employed as a novel method to determine the degree of differentiation of stem cells into various functional cells.

  5. Technologies for Elastic Optical Networking Systems in Spatial, Temporal and Spectral Domains

    NASA Astrophysics Data System (ADS)

    Qin, Chuan

    As the demand for more data capacity keeps increasing, the need for the more efficient use of the data channel becomes more imperative. The fixed wavelength grid which has been in use for more than ten years in conventional wavelength division multiplexing (WDM) is a bottleneck that prevents the capacity from upgrading towards 400 Gb/s and above. A new elastic optical networking scheme where both transceivers and interconnects become flexible break the boundary of wavelength grids and allow a more efficient use of the limited optical bands for communication. This dissertation focuses on a few enabling technologies for elastic optical networking systems. Optical arbitrary waveform generation (OAWG) uses Fourier synthesis and generates user-defined broad-band scalable optical waveforms with high-fidelity through line-by-line full field control of a coherent optical frequency comb. OAWG finds its niche in elastic optical networking since it provides no grids, and scales to user-defined bandwidth. When elastic optical networking builds various connections to use an arbitrary number of subcarriers depending on the users' bandwidth needs, the flexibility also creates non-contiguous spectral fragmentation, much like a computer hard disk generating fragments. Spectral defragmentation aims to re-optimize and re-assign the optical spectrum to achieve more efficient use of the spectrum. One of the technologies is "hop tuning" defragmentation method with a fast auto-tracking local oscillator (LO). In the demonstrated defragmentation experiment, I used a field-programmable gate array (FPGA) to monitor the wavelength change in the signal laser and tune the front and rear current that controls the wavelength of the local oscillator laser. However, the control of the front and rear current needs a complete and accurate calibration of the LO laser and may not apply to a larger number of coherent communication links. A single-tone optical frequency shifter can shift the LO laser

  6. Passive and active ventricular elastances of the left ventricle

    PubMed Central

    Zhong, Liang; Ghista, Dhanjoo N; Ng, Eddie YK; Lim, Soo T

    2005-01-01

    Background Description of the heart as a pump has been dominated by models based on elastance and compliance. Here, we are presenting a somewhat new concept of time-varying passive and active elastance. The mathematical basis of time-varying elastance of the ventricle is presented. We have defined elastance in terms of the relationship between ventricular pressure and volume, as: dP = EdV + VdE, where E includes passive (Ep) and active (Ea) elastance. By incorporating this concept in left ventricular (LV) models to simulate filling and systolic phases, we have obtained the time-varying expression for Ea and the LV-volume dependent expression for Ep. Methods and Results Using the patient's catheterization-ventriculogram data, the values of passive and active elastance are computed. Ea is expressed as: ; Epis represented as: . Ea is deemed to represent a measure of LV contractility. Hence, Peak dP/dt and ejection fraction (EF) are computed from the monitored data and used as the traditional measures of LV contractility. When our computed peak active elastance (Ea,max) is compared against these traditional indices by linear regression, a high degree of correlation is obtained. As regards Ep, it constitutes a volume-dependent stiffness property of the LV, and is deemed to represent resistance-to-filling. Conclusions Passive and active ventricular elastance formulae can be evaluated from a single-beat P-V data by means of a simple-to-apply LV model. The active elastance (Ea) can be used to characterize the ventricle's contractile state, while passive elastance (Ep) can represent a measure of resistance-to-filling. PMID:15707494

  7. Hard-Core Unemployment: A Selected, Annotated Bibliography.

    ERIC Educational Resources Information Center

    Cameron, Colin, Comp.; Menon, Anila Bhatt, Comp.

    This annotated bibliography contains references to various films, articles, and books on the subject of hard-core unemployment, and is divided into the following sections: (1) The Sociology of the Hard-Core Milieu, (2) Training Programs, (3) Business and the Hard-Core, (4) Citations of Miscellaneous References on Hard-Core Unemployment, (5)…

  8. Nonlocal elasticity tensors in dislocation and disclination cores

    DOE PAGES

    Taupin, V.; Gbemou, K.; Fressengeas, C.; ...

    2017-01-07

    We introduced nonlocal elastic constitutive laws for crystals containing defects such as dislocations and disclinations. Additionally, the pointwise elastic moduli tensors adequately reflect the elastic response of defect-free regions by relating stresses to strains and couple-stresses to curvatures, elastic cross-moduli tensors relating strains to couple-stresses and curvatures to stresses within convolution integrals are derived from a nonlocal analysis of strains and curvatures in the defects cores. Sufficient conditions are derived for positive-definiteness of the resulting free energy, and stability of elastic solutions is ensured. The elastic stress/couple stress fields associated with prescribed dislocation/disclination density distributions and solving the momentum andmore » moment of momentum balance equations in periodic media are determined by using a Fast Fourier Transform spectral method. Here, the convoluted cross-moduli bring the following results: (i) Nonlocal stresses and couple stresses oppose their local counterparts in the defects core regions, playing the role of restoring forces and possibly ensuring spatio-temporal stability of the simulated defects, (ii) The couple stress fields are strongly affected by nonlocality. Such effects favor the stability of the simulated grain boundaries and allow investigating their elastic interactions with extrinsic defects, (iii) Driving forces inducing grain growth or refinement derive from the self-stress and couple stress fields of grain boundaries in nanocrystalline configurations.« less

  9. Elastic modulus of phases in Ti–Mo alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei-dong; Liu, Yong, E-mail: yonliu11@aliyun.com; Wu, Hong

    2015-08-15

    In this work, a series of binary Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were prepared using non-consumable arc melting. The microstructures were investigated by X-ray diffraction and transmission electron microscope, and the elastic modulus was evaluated by nanoindentation testing technique. The evolution of the volume fractions of ω phase was investigated using X-ray photoelectron spectroscopy. The results indicated that the phase constitution and elastic modulus of the Ti–Mo alloys are sensitive to the Mo content. Ti–3.2Mo and Ti–8Mo alloys containing only α and β phases, respectively, have a low elastic modulus. In contrast, Ti–4.5Mo,more » Ti–6Mo, Ti–7Mo alloys, with different contents of ω phase, have a high elastic modulus. A simple micromechanical model was used to calculate the elastic modulus of ω phase (E{sub ω}), which was determined to be 174.354 GPa. - Highlights: • Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were investigated. • XPS was used to investigate the volume fractions of ω phase. • The elastic modulus of Ti–Mo alloys is sensitive to the Mo content. • The elastic modulus of ω phase was determined to be 174.354 GPa.« less

  10. Elastic and thermal expansion asymmetry in dense molecular materials.

    PubMed

    Burg, Joseph A; Dauskardt, Reinhold H

    2016-09-01

    The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.

  11. Elastic And Plastic Deformations In Butt Welds

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1992-01-01

    Report presents study of mathematical modeling of stresses and strains, reaching beyond limits of elasticity, in bars and plates. Study oriented toward development of capability to predict stresses and resulting elastic and plastic strains in butt welds.

  12. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  13. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  14. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  15. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  16. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  17. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  18. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  19. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  20. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  1. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  2. Population and energy elasticity of tornado casualties

    NASA Astrophysics Data System (ADS)

    Fricker, Tyler; Elsner, James B.; Jagger, Thomas H.

    2017-04-01

    Tornadoes are capable of catastrophic destruction and mass casualties, but there are yet no estimates of how sensitive the number of casualties are to changes in the number of people in harm's way or to changes in tornado energy. Here the relationship between tornado casualties (deaths and injuries), population, and energy dissipation is quantified using the economic concept of "elasticity." Records of casualties from individual tornadoes over the period 2007-2015 are fit to a regression model. The coefficient on the population term (population elasticity) indicates that a doubling in population increases the casualty rate by 21% [(17, 24)%, 95% credible interval]. The coefficient on the energy term (energy elasticity) indicates that a doubling in energy dissipation leads to a 33% [(30, 35)%, 95% credible interval] increase in the casualty rate. The difference in elasticity values show that on average, changes in energy dissipation have been relatively more important in explaining tornado casualties than changes in population. Assuming no changes in warning effectiveness or mitigation efforts, these elasticity estimates can be used to project changes in casualties given the known population trends and possible trends in tornado activity.

  3. Elastic Properties of Chimpanzee Craniofacial Cortical Bone.

    PubMed

    Gharpure, Poorva; Kontogiorgos, Elias D; Opperman, Lynne A; Ross, Callum F; Strait, David S; Smith, Amanda; Pryor, Leslie C; Wang, Qian; Dechow, Paul C

    2016-12-01

    Relatively few assessments of cranial biomechanics formally take into account variation in the material properties of cranial cortical bone. Our aim was to characterize the elastic properties of chimpanzee craniofacial cortical bone and compare these to the elastic properties of dentate human craniofacial cortical bone. From seven cranial regions, 27 cylindrical samples were harvested from each of five chimpanzee crania. Assuming orthotropy, axes of maximum stiffness in the plane of the cortical plate were derived using modified equations of Hooke's law in a Mathcad program. Consistent orientations among individuals were observed in the zygomatic arch and alveolus. The density of cortical bone showed significant regional variation (P < 0.001). The elastic moduli demonstrated significant differences between sites, and a distinct pattern where E 3  > E 2  > E 1 . Shear moduli were significantly different among regions (P < 0.001). The pattern by which chimpanzee cranial cortical bone varies in elastic properties resembled that seen in humans, perhaps suggesting that the elastic properties of craniofacial bone in fossil hominins can be estimated with at least some degree of confidence. Anat Rec, 299:1718-1733, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Adaptive elastic metasurfaces for wave front manipulation

    NASA Astrophysics Data System (ADS)

    Li, Shilong; Xu, Jiawen; Tang, Jiong

    2018-04-01

    In this research, by combining the concept of elastic metasurfaces with piezoelectric transducer with shunted circuitry, we investigate the designs of elastic metasurfaces, consisting of an array of piezoelectric transducers shunted with negative capacitance, which is capable of modulating wave fronts adaptively. In order to construct different adaptive elastic metasurfaces, different phase profiles along the interface can be framed through properly adjusting the negative capacitance values. Flat planar lenses for focusing transmitted A0 Lamb waves are achieved, and possess the flexibility of changing focal locations through electromechanical tunings. Additionally, nonparaxial self-bending beams with arbitrary trajectories and source illusion devices can also be accomplished owing to the free manipulation of phase shifts. With their versatility and tunability, the adaptive elastic metasurfaces could pave new avenues to a wide variety of potential applications, such as nondestructive testing, ultrasound imaging, and caustic engineering.

  5. Statistical properties of a folded elastic rod

    NASA Astrophysics Data System (ADS)

    Bayart, Elsa; Deboeuf, Stéphanie; Boué, Laurent; Corson, Francis; Boudaoud, Arezki; Adda-Bedia, Mokhtar

    2010-03-01

    A large variety of elastic structures naturally seem to be confined into environments too small to accommodate them; the geometry of folded structures span a wide range of length-scales. The elastic properties of these confined systems are further constrained by self-avoidance as well as by the dimensionality of both structures and container. To mimic crumpled paper, we devised an experimental setup to study the packing of a dimensional elastic object in 2D geometries: an elastic rod is folded at the center of a circular Hele-Shaw cell by a centripetal force. The initial configuration of the rod and the acceleration of the rotating disk allow to span different final folded configurations while the final rotation speed controls the packing intensity. Using image analysis we measure geometrical and mechanical properties of the folded configurations, focusing on length, curvature and energy distributions.

  6. Measurement of the antineutrino neutral-current elastic differential cross section

    DOE PAGES

    Aguilar-Arevalo, A.  A.; Brown, B.  C.; Bugel, L.; ...

    2015-01-08

    We report the measurement of the flux-averaged antineutrino neutral current elastic scattering cross section (dσ ν-barN→ν-barN/dQ 2) on CH 2 by the MiniBooNE experiment using the largest sample of antineutrino neutral current elastic candidate events ever collected. The ratio of the antineutrino to neutrino neutral current elastic scattering cross sections and a ratio of the antineutrino neutral current elastic to antineutrino charged current quasi elastic cross sections are also presented.

  7. The role of series ankle elasticity in bipedal walking

    PubMed Central

    Zelik, Karl E.; Huang, Tzu-Wei P.; Adamczyk, Peter G.; Kuo, Arthur D.

    2014-01-01

    The elastic stretch-shortening cycle of the Achilles tendon during walking can reduce the active work demands on the plantarflexor muscles in series. However, this does not explain why or when this ankle work, whether by muscle or tendon, needs to be performed during gait. We therefore employ a simple bipedal walking model to investigate how ankle work and series elasticity impact economical locomotion. Our model shows that ankle elasticity can use passive dynamics to aid push-off late in single support, redirecting the body's center-of-mass (COM) motion upward. An appropriately timed, elastic push-off helps to reduce dissipative collision losses at contralateral heelstrike, and therefore the positive work needed to offset those losses and power steady walking. Thus, the model demonstrates how elastic ankle work can reduce the total energetic demands of walking, including work required from more proximal knee and hip muscles. We found that the key requirement for using ankle elasticity to achieve economical gait is the proper ratio of ankle stiffness to foot length. Optimal combination of these parameters ensures proper timing of elastic energy release prior to contralateral heelstrike, and sufficient energy storage to redirect the COM velocity. In fact, there exist parameter combinations that theoretically yield collision-free walking, thus requiring zero active work, albeit with relatively high ankle torques. Ankle elasticity also allows the hip to power economical walking by contributing indirectly to push-off. Whether walking is powered by the ankle or hip, ankle elasticity may aid walking economy by reducing collision losses. PMID:24365635

  8. The role of series ankle elasticity in bipedal walking.

    PubMed

    Zelik, Karl E; Huang, Tzu-Wei P; Adamczyk, Peter G; Kuo, Arthur D

    2014-04-07

    The elastic stretch-shortening cycle of the Achilles tendon during walking can reduce the active work demands on the plantarflexor muscles in series. However, this does not explain why or when this ankle work, whether by muscle or tendon, needs to be performed during gait. We therefore employ a simple bipedal walking model to investigate how ankle work and series elasticity impact economical locomotion. Our model shows that ankle elasticity can use passive dynamics to aid push-off late in single support, redirecting the body's center-of-mass (COM) motion upward. An appropriately timed, elastic push-off helps to reduce dissipative collision losses at contralateral heelstrike, and therefore the positive work needed to offset those losses and power steady walking. Thus, the model demonstrates how elastic ankle work can reduce the total energetic demands of walking, including work required from more proximal knee and hip muscles. We found that the key requirement for using ankle elasticity to achieve economical gait is the proper ratio of ankle stiffness to foot length. Optimal combination of these parameters ensures proper timing of elastic energy release prior to contralateral heelstrike, and sufficient energy storage to redirect the COM velocity. In fact, there exist parameter combinations that theoretically yield collision-free walking, thus requiring zero active work, albeit with relatively high ankle torques. Ankle elasticity also allows the hip to power economical walking by contributing indirectly to push-off. Whether walking is powered by the ankle or hip, ankle elasticity may aid walking economy by reducing collision losses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Polycrystalline gamma plutonium's elastic moduli versus temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migliori, Albert; Betts, J; Trugman, A

    2009-01-01

    Resonant ultrasound spectroscopy was used to measure the elastic properties of pure polycrystalline {sup 239}Pu in the {gamma} phase. Shear and longitudinal elastic moduli were measured simultaneously and the bulk modulus was computed from them. A smooth, linear, and large decrease of all elastic moduli with increasing temperature was observed. They calculated the Poisson ratio and found that it increases from 0.242 at 519 K to 0.252 at 571 K. These measurements on extremely well characterized pure Pu are in agreement with other reported results where overlap occurs.

  10. Warren G. Harding and the Press.

    ERIC Educational Resources Information Center

    Whitaker, W. Richard

    There are many parallels between the Richard M. Nixon administration and Warren G. Harding's term: both Republicans, both touched by scandal, and both having a unique relationship with the press. But in Harding's case the relationship was a positive one. One of Harding's first official acts as president was to restore the regular White House news…

  11. First-principles study on the electronic, elastic and thermodynamic properties of three novel germanium nitrides

    NASA Astrophysics Data System (ADS)

    Yuping, Cang; Xiaoling, Yao; Dong, Chen; Fan, Yang; Huiming, Yang

    2016-07-01

    The ultrasoft pseudo-potential plane wave method combined with the quasi-harmonic approach have been used to study the electronic, elastic and thermodynamic properties of the tetragonal, monoclinic and orthorhombic Ge3N4. The negative formation enthalpies, the satisfactory of Born's criteria and the linear variations of elastic constants with pressure indicate that the three polymorphs can retain their stabilities in the pressure range of 0-25 GPa. The three Ge3N4 are brittle solids at 0 GPa, while they behave in ductile manners in the pressure range of 5-25 GPa. t- and o-Ge3N4 are hard materials but anisotropic. m-Ge3N4 has the largest ductility among the three phases. The results reveal that m-Ge3N4 belongs to an indirect band gap semiconductor, while t- and o-Ge3N4 have direct band gaps. For the thermal properties, several interesting features can be observed above 300 K. o-Ge3N4 exhibits the largest heat capacity, while m-Ge3N4 shows the highest Debye temperature. The results predicted in this work can provide reference data for future experiments. Project supported by the National Natural Science Foundation of China (Nos. 61475132, 11475143, 61501392, 11304141) and the National Training Programs of Innovation and Entrepreneurship for Undergraduates (No. 201510477001).

  12. Control of elasticity in cast elastomeric shock/vibration isolators

    NASA Technical Reports Server (NTRS)

    Owens, L.; Bright, C.

    1974-01-01

    Elasticity is determined by isolators physical dimensions and by type of elastomer used. Once elastomer is selected and cast between two concentric tubes of device, isolator elasticity will remain fixed. Isolators having same dimensions can be built to different elasticity requirements using same elastomer.

  13. Propagating elastic vibrations dominate thermal conduction in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Moon, Jaeyun; Latour, Benoit; Minnich, Austin J.

    2018-01-01

    The thermal atomic vibrations of amorphous solids can be distinguished by whether they propagate as elastic waves or do not propagate due to lack of atomic periodicity. In a -Si, prior works concluded that nonpropagating waves are the dominant contributors to heat transport, with propagating waves being restricted to frequencies less than a few THz and scattered by anharmonicity. Here, we present a lattice and molecular dynamics analysis of vibrations in a -Si that supports a qualitatively different picture in which propagating elastic waves dominate the thermal conduction and are scattered by local fluctuations of elastic modulus rather than anharmonicity. We explicitly demonstrate the propagating nature of waves up to around 10 THz, and further show that pseudoperiodic structures with homogeneous elastic properties exhibit a marked temperature dependence characteristic of anharmonic interactions. Our work suggests that most heat is carried by propagating elastic waves in a -Si and demonstrates that manipulating local elastic modulus variations is a promising route to realize amorphous materials with extreme thermal properties.

  14. Health care demand elasticities by type of service.

    PubMed

    Ellis, Randall P; Martins, Bruno; Zhu, Wenjia

    2017-09-01

    We estimate within-year price elasticities of demand for detailed health care services using an instrumental variable strategy, in which individual monthly cost shares are instrumented by employer-year-plan-month average cost shares. A specification using backward myopic prices gives more plausible and stable results than using forward myopic prices. Using 171 million person-months spanning 73 employers from 2008 to 2014, we estimate that the overall demand elasticity by backward myopic consumers is -0.44, with higher elasticities of demand for pharmaceuticals (-0.44), specialists visits (-0.32), MRIs (-0.29) and mental health/substance abuse (-0.26), and lower elasticities for prevention visits (-0.02) and emergency rooms (-0.04). Demand response is lower for children, in larger firms, among hourly waged employees, and for sicker people. Overall the method appears promising for estimating elasticities for highly disaggregated services although the approach does not work well on services that are very expensive or persistent. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Averaging of elastic constants for polycrystals

    DOE PAGES

    Blaschke, Daniel N.

    2017-10-13

    Many materials of interest are polycrystals, i.e., aggregates of single crystals. Randomly distributed orientations of single crystals lead to macroscopically isotropic properties. Here in this paper, we briefly review strategies of calculating effective isotropic second and third order elastic constants from the single crystal ones. Our main emphasis is on single crystals of cubic symmetry. Specifically, the averaging of third order elastic constants has not been particularly successful in the past, and discrepancies have often been attributed to texturing of polycrystals as well as to uncertainties in the measurement of elastic constants of both poly and single crystals. While thismore » may well be true, we also point out here shortcomings in the theoretical averaging framework.« less

  16. Influence of Gene Expression on Hardness in Wheat

    PubMed Central

    Nirmal, Ravi C.; Wrigley, Colin

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences. PMID:27741295

  17. Influence of Gene Expression on Hardness in Wheat.

    PubMed

    Nirmal, Ravi C; Furtado, Agnelo; Wrigley, Colin; Henry, Robert J

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences.

  18. Two-zone elastic-plastic single shock waves in solids.

    PubMed

    Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T

    2011-09-23

    By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.

  19. Purely-elastic flow instabilities and elastic turbulence in microfluidic cross-slot devices

    PubMed Central

    Sousa, P. C.; Pinho, F. T.

    2018-01-01

    We experimentally investigate the dynamics of viscoelastic fluid flows in cross-slot microgeometries under creeping flow conditions. We focus on the unsteady flow regime observed at high Weissenberg numbers (Wi) with the purpose of understanding the underlying flow signature of elastic turbulence. The effects of the device aspect ratio and fluid rheology on the unsteady flow state are investigated. Visualization of the flow patterns and time-resolved micro-particle image velocimetry were carried out to study the fluid flow behavior for a wide range of Weissenberg numbers. A periodic flow behavior is observed at low Weissenberg numbers followed by a more complex dynamics as Wi increases, eventually leading to the onset of elastic turbulence for very high Weissenberg numbers. PMID:29376533

  20. Force sensor attachable to thin fiberscopes/endoscopes utilizing high elasticity fabric.

    PubMed

    Watanabe, Tetsuyou; Iwai, Takanobu; Fujihira, Yoshinori; Wakako, Lina; Kagawa, Hiroyuki; Yoneyama, Takeshi

    2014-03-12

    An endoscope/fiberscope is a minimally invasive tool used for directly observing tissues in areas deep inside the human body where access is limited. However, this tool only yields visual information. If force feedback information were also available, endoscope/fiberscope operators would be able to detect indurated areas that are visually hard to recognize. Furthermore, obtaining such feedback information from tissues in areas where collecting visual information is a challenge would be highly useful. The major obstacle is that such force information is difficult to acquire. This paper presents a novel force sensing system that can be attached to a very thin fiberscope/endoscope. To ensure a small size, high resolution, easy sterilization, and low cost, the proposed force visualization-based system uses a highly elastic material-panty stocking fabric. The paper also presents the methodology for deriving the force value from the captured image. The system has a resolution of less than 0.01 N and sensitivity of greater than 600 pixels/N within the force range of 0-0.2 N.

  1. Elasticity of methane hydrate phases at high pressure.

    PubMed

    Beam, Jennifer; Yang, Jing; Liu, Jin; Liu, Chujie; Lin, Jung-Fu

    2016-04-21

    Determination of the full elastic constants (cij) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases' compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  2. Contact problem for an elastic reinforcement bonded to an elastic plate

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Civelek, M. B.

    1973-01-01

    The stiffening layer is treated as an elastic membrane and the base plate is assumed to be an elastic continuum. The bonding between the two materials is assumed to be either one of direct adhesion ro through a thin adhesive layer which is treated as a shear spring. The solution for the simple case in which both the stiffener and the base plate are treated as membranes is also given. The contact stress is obtained for a series of numerical examples. In the direct adhesion case the contact stress becomes infinite at the stiffener ends with a typical square root singularity for the continuum model, and behaving as a delta function for the membrane model. In the case of bonding through an adhesive layer the contact stress becomes finite and continuous along the entire contact area.

  3. Measurement of an Elasticity Map in the Human Cornea

    PubMed Central

    Mikula, Eric R.; Jester, James V.; Juhasz, Tibor

    2016-01-01

    Purpose The biomechanical properties of the cornea have an important role in determining the shape of the cornea and visual acuity. Since the cornea is a nonhomogeneous tissue, it is thought that the elastic properties vary throughout the cornea. We aim to measure a map of corneal elasticity across the cornea. Methods An acoustic radiation force elasticity microscope (ARFEM) was used to create a map of corneal elasticity in the human cornea. This ARFEM uses a low frequency, high intensity acoustic force to displace a femtosecond laser-generated microbubble, while using a high frequency, low intensity ultrasound to monitor the position of the microbubble within the cornea. From the displacement of the bubble and the magnitude of the acoustic radiation force, the local value of corneal elasticity is calculated in the direction of the displacement. Measurements were conducted at 6 locations, ranging from the central to peripheral cornea at anterior and posterior depths. Results The mean anterior elastic moduli were 4.2 ± 1.2, 3.4 ± 0.7, and 1.9 ± 0.7 kPa in the central, mid, and peripheral regions, respectively, while the posterior elastic moduli were 2.3 ± 0.7, 1.6 ± 0.3, and 2.9 ± 1.2 kPa in the same radial locations. Conclusions We found that there is a unique distribution of elasticity axially and radially throughout the cornea. PMID:27327584

  4. Effects of frequency- and direction-dependent elastic materials on linearly elastic MRE image reconstructions

    NASA Astrophysics Data System (ADS)

    Perreard, I. M.; Pattison, A. J.; Doyley, M.; McGarry, M. D. J.; Barani, Z.; Van Houten, E. E.; Weaver, J. B.; Paulsen, K. D.

    2010-11-01

    The mechanical model commonly used in magnetic resonance elastography (MRE) is linear elasticity. However, soft tissue may exhibit frequency- and direction-dependent (FDD) shear moduli in response to an induced excitation causing a purely linear elastic model to provide an inaccurate image reconstruction of its mechanical properties. The goal of this study was to characterize the effects of reconstructing FDD data using a linear elastic inversion (LEI) algorithm. Linear and FDD phantoms were manufactured and LEI images were obtained from time-harmonic MRE acquisitions with variations in frequency and driving signal amplitude. LEI responses to artificially imposed uniform phase shifts in the displacement data from both purely linear elastic and FDD phantoms were also evaluated. Of the variety of FDD phantoms considered, LEI appeared to tolerate viscoelastic data-model mismatch better than deviations caused by poroelastic and anisotropic mechanical properties in terms of visual image contrast. However, the estimated shear modulus values were substantially incorrect relative to independent mechanical measurements even in the successful viscoelastic cases and the variations in mean values with changes in experimental conditions associated with uniform phase shifts, driving signal frequency and amplitude were unpredictable. Overall, use of LEI to reconstruct data acquired in phantoms with FDD material properties provided biased results under the best conditions and significant artifacts in the worst cases. These findings suggest that the success with which LEI is applied to MRE data in tissue will depend on the underlying mechanical characteristics of the tissues and/or organs systems of clinical interest.

  5. Effects of frequency- and direction-dependent elastic materials on linearly elastic MRE image reconstructions.

    PubMed

    Perreard, I M; Pattison, A J; Doyley, M; McGarry, M D J; Barani, Z; Van Houten, E E; Weaver, J B; Paulsen, K D

    2010-11-21

    The mechanical model commonly used in magnetic resonance elastography (MRE) is linear elasticity. However, soft tissue may exhibit frequency- and direction-dependent (FDD) shear moduli in response to an induced excitation causing a purely linear elastic model to provide an inaccurate image reconstruction of its mechanical properties. The goal of this study was to characterize the effects of reconstructing FDD data using a linear elastic inversion (LEI) algorithm. Linear and FDD phantoms were manufactured and LEI images were obtained from time-harmonic MRE acquisitions with variations in frequency and driving signal amplitude. LEI responses to artificially imposed uniform phase shifts in the displacement data from both purely linear elastic and FDD phantoms were also evaluated. Of the variety of FDD phantoms considered, LEI appeared to tolerate viscoelastic data-model mismatch better than deviations caused by poroelastic and anisotropic mechanical properties in terms of visual image contrast. However, the estimated shear modulus values were substantially incorrect relative to independent mechanical measurements even in the successful viscoelastic cases and the variations in mean values with changes in experimental conditions associated with uniform phase shifts, driving signal frequency and amplitude were unpredictable. Overall, use of LEI to reconstruct data acquired in phantoms with FDD material properties provided biased results under the best conditions and significant artifacts in the worst cases. These findings suggest that the success with which LEI is applied to MRE data in tissue will depend on the underlying mechanical characteristics of the tissues and/or organs systems of clinical interest.

  6. Dynamics of an elastic sphere containing a thin creeping region and immersed in an acoustic region for similar viscous-elastic and acoustic time- and length-scales

    NASA Astrophysics Data System (ADS)

    Gat, Amir; Friedman, Yonathan

    2017-11-01

    The characteristic time of low-Reynolds number fluid-structure interaction scales linearly with the ratio of fluid viscosity to solid Young's modulus. For sufficiently large values of Young's modulus, both time- and length-scales of the viscous-elastic dynamics may be similar to acoustic time- and length-scales. However, the requirement of dominant viscous effects limits the validity of such regimes to micro-configurations. We here study the dynamics of an acoustic plane wave impinging on the surface of a layered sphere, immersed within an inviscid fluid, and composed of an inner elastic sphere, a creeping fluid layer and an external elastic shell. We focus on configurations with similar viscous-elastic and acoustic time- and length-scales, where the viscous-elastic speed of interaction between the creeping layer and the elastic regions is similar to the speed of sound. By expanding the linearized spherical Reynolds equation into the relevant spectral series solution for the hyperbolic elastic regions, a global stiffness matrix of the layered elastic sphere was obtained. This work relates viscous-elastic dynamics to acoustic scattering and may pave the way to the design of novel meta-materials with unique acoustic properties. ISF 818/13.

  7. Indentation of a rigid sphere into an elastic substrate with surface tension and adhesion

    PubMed Central

    Hui, Chung-Yuen; Liu, Tianshu; Salez, Thomas; Raphael, Elie; Jagota, Anand

    2015-01-01

    The surface tension of compliant materials such as gels provides resistance to deformation in addition to and sometimes surpassing that owing to elasticity. This paper studies how surface tension changes the contact mechanics of a small hard sphere indenting a soft elastic substrate. Previous studies have examined the special case where the external load is zero, so contact is driven by adhesion alone. Here, we tackle the much more complicated problem where, in addition to adhesion, deformation is driven by an indentation force. We present an exact solution based on small strain theory. The relation between indentation force (displacement) and contact radius is found to depend on a single dimensionless parameter: ω=σ(μR)−2/3((9π/4)Wad)−1/3, where σ and μ are the surface tension and shear modulus of the substrate, R is the sphere radius and Wad is the interfacial work of adhesion. Our theory reduces to the Johnson–Kendall–Roberts (JKR) theory and Young–Dupre equation in the limits of small and large ω, respectively, and compares well with existing experimental data. Our results show that, although surface tension can significantly affect the indentation force, the magnitude of the pull-off load in the partial wetting liquid-like limit is reduced only by one-third compared with the JKR limit and the pull-off behaviour is completely determined by ω. PMID:25792953

  8. Mobility of an elastic glove for extravehicular activity without prebreathing.

    PubMed

    Tanaka, Kunihiko; Ikeda, Mizuki; Mochizuki, Yosuke; Katafuchi, Tetsuro

    2011-09-01

    The current U.S. extravehicular activity (EVA) suit is pressurized at 0.29 atm, which is much lower than the pressures of sea level and inside a space station. Higher pressure can reduce the risk of decompression sickness (DCS), but mobility would be sacrificed. We have demonstrated that a glove and sleeve made of elastic material increased mobility when compared with those made of nonelastic material, such as that found in the current suit. We hypothesized that an elastic glove of 0.65 atm that has no risk of DCS also has greater mobility compared with a non-elastic glove of 0.29 atm. The right hands of 10 healthy volunteers were studied in a chamber with their bare hands at normal ambient pressure, after donning a non-elastic glove with a pressure differential of 0.29 atm, and after donning an elastic glove with a pressure differential of 0.29 and 0.65 atm. Range of motion (ROM) of the index finger and surface electromyography (EMG) amplitudes during finger flexion were measured. ROM with gloves was significantly smaller than that of bare hands, but was similar between conditions of gloves regardless of elasticity and pressure differentials. However, EMG amplitudes with the elastic glove of 0.29 and 0.65 atm were significantly smaller than those with the non-elastic glove of 0.29 atm. The results suggest that mobility of the elastic glove of 0.65 atm may be better than that of the non-elastic glove of 0.29 atm, similar to that used in the current EVA suit.

  9. Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer.

    PubMed

    Huang, Chih-Chung; Chen, Ruimin; Tsui, Po-Hsiang; Zhou, Qifa; Humayun, Mark S; Shung, K Kirk

    2009-10-07

    A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 +/- 0.02 to 0.520 +/- 0.06 dB mm(-1) MHz(-1) corresponding to an increase in Young's modulus from 6 +/- 0.4 to 96 +/- 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse-echo test showed that a good performance in sensitivity was maintained after the vibration test.

  10. Theoretical model of hardness anisotropy in brittle materials

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2012-07-01

    Anisotropy is prominent in the hardness test of single crystals. However, the anisotropic nature is not demonstrated quantitatively in previous hardness model. In this work, it is found that the electron transition energy per unit volume in the glide region and the orientation of glide region play critical roles in determining hardness value and hardness anisotropy for a single crystal material. We express the mathematical definition of hardness anisotropy through simple algebraic relations. The calculated Knoop hardnesses of the single crystals are in good agreement with observations. This theory, extended to polycrystalline materials by including hall-petch effect and quantum size effect, predicts that the polycrystalline diamond with low angle grain boundaries can be harder than single-crystal bulk diamond. Combining first-principles technique and the formula of hardness anisotropy the hardness of monoclinic M-carbon, orthorhombic W-carbon, Z-carbon, and T-carbon are predicted.

  11. Elasticity-Driven Backflow of Fluid-Driven Cracks

    NASA Astrophysics Data System (ADS)

    Lai, Ching-Yao; Dressaire, Emilie; Ramon, Guy; Huppert, Herbert; Stone, Howard A.

    2016-11-01

    Fluid-driven cracks are generated by the injection of pressurized fluid into an elastic medium. Once the injection pressure is released, the crack closes up due to elasticity and the fluid in the crack drains out of the crack through an outlet, which we refer to as backflow. We experimentally study the effects of crack size, elasticity of the matrix, and fluid viscosity on the backflow dynamics. During backflow, the volume of liquid remaining in the crack as a function of time exhibits a transition from a fast decay at early times to a power law behavior at late times. Our results at late times can be explained by scaling arguments balancing elastic and viscous stresses in the crack. This work may relate to the environmental issue of flowback in hydraulic fracturing. This work is supported by National Science Foundation via Grant CBET-1509347 and partially supported by Andlinger Center for Energy and the Environment at Princeton University.

  12. Elastic Valve Using Induced-Charge Electro-Osmosis

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2015-06-01

    Biomimic devices using induced-charge electro-osmosis (ICEO) is interesting since they have the possibility to realize high-performance functions with simple structures and with low-energy consumption. Thus, inspired by a cilium, we propose a two-dimensional artificial elastic valve using hydrodynamic force due to ICEO with a thin elastic beam in a microfluidic channel and numerically examine the valving performance. By an implicit strongly coupled simulation technique between a fluid and an elastic structure based on the boundary-element method, along with the thin-double-layer approximation, we realize stable calculations and find that the elastic valve using ICEO functions effectively at high frequency with low applied voltages in a realistic pressure flow. Further, we also examine passive motion of the valve; i.e., it stops a reverse flow effectively and releases a forward flow in the channel. We believe that our device can be used in a wide range of microfluidic applications, such as mixers, pumps, etc.

  13. Wave propagation of carbon nanotubes embedded in an elastic medium

    NASA Astrophysics Data System (ADS)

    Natsuki, Toshiaki; Hayashi, Takuya; Endo, Morinobu

    2005-02-01

    This paper presents analytical models of wave propagation in single- and double-walled carbon nanotubes, as well as nanotubes embedded in an elastic matrix. The nanotube structures are treated within the multilayer thin shell approximation with the elastic properties taken to be those of the graphene sheet. The double-walled nanotubes are coupled together through the van der Waals force between the inner and outer nanotubes. For carbon nanotubes embedded in an elastic matrix, the surrounding elastic medium can be described by a Winkler model. Tube wave propagation of both symmetrical and asymmetrical modes can be analyzed based on the present elastic continuum model. It is found that the asymmetrical wave behavior of single- and double-walled nanotubes is significantly different. The behavior is also different from that in the surrounding elastic medium.

  14. Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials.

    PubMed

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Wieja, K

    2016-02-01

    This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Dynamics of elastic systems

    NASA Astrophysics Data System (ADS)

    Sankovich, Vladimir

    1998-12-01

    The goal of this paper is to build a consistent physical theory of the dynamics of the bat-ball interaction. This requires creating realistic models for both the softball bat and the softball. Some of the features of these models are known phenomenologically, from experiments conducted in our laboratory, others will be introduced and computed from first principles here for the first time. Both interacting objects are treated from the viewpoint of the theory of elasticity, and it is shown how a computer can be used to accurately calculate all the relevant characteristics of batball collisions. It is shown also how the major elastic parameters of the material constituting the interior of a softball can be determined using the existing experimental data. These parameters, such as the Young's modulus, the Poisson ratio and the damping coefficient are vital for the accurate description of the ball's dynamics. We are demonstrating how the existing theories of the elastic behavior of solid bars and hollow shells can be augmented to simplify the resulting equations and make the subsequent computer analysis feasible. The standard system of fourth-order PDE's is reduced to a system of the second order, because of the inclusion of the usually ignored effects of the shear forces in the bat.

  16. Elastic Gauge Fields in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Cortijo, Alberto; Ferreiros, Yago; Landsteiner, Karl; Hernandez Vozmediano, Maria Angeles

    We show that, as it happens in graphene, elastic deformations couple to the electronic degrees of freedom as pseudo gauge fields in Weyl semimetals. We derive the form of the elastic gauge fields in a tight-binding model hosting Weyl nodes and see that this vector electron-phonon coupling is chiral, providing an example of axial gauge fields in three dimensions. As an example of the new response functions that arise associated to these elastic gauge fields, we derive a non-zero phonon Hall viscosity for the neutral system at zero temperature. The axial nature of the fields provides a test of the chiral anomaly in high energy with three axial vector couplings. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007).

  17. Hard-hard coupling assisted anomalous magnetoresistance effect in amine-ended single-molecule magnetic junction

    NASA Astrophysics Data System (ADS)

    Tang, Y.-H.; Lin, C.-J.; Chiang, K.-R.

    2017-06-01

    We proposed a single-molecule magnetic junction (SMMJ), composed of a dissociated amine-ended benzene sandwiched between two Co tip-like nanowires. To better simulate the break junction technique for real SMMJs, the first-principles calculation associated with the hard-hard coupling between a amine-linker and Co tip-atom is carried out for SMMJs with mechanical strain and under an external bias. We predict an anomalous magnetoresistance (MR) effect, including strain-induced sign reversal and bias-induced enhancement of the MR value, which is in sharp contrast to the normal MR effect in conventional magnetic tunnel junctions. The underlying mechanism is the interplay between four spin-polarized currents in parallel and anti-parallel magnetic configurations, originated from the pronounced spin-up transmission feature in the parallel case and spiky transmission peaks in other three spin-polarized channels. These intriguing findings may open a new arena in which magnetotransport and hard-hard coupling are closely coupled in SMMJs and can be dually controlled either via mechanical strain or by an external bias.

  18. Influence of elastic parameters on the evolution of elasticity modulus of thin films

    NASA Astrophysics Data System (ADS)

    Gacem, A.; Doghmane, A.; Hadjoub, Z.; Beldi, I.; Doghmane, M.

    2012-09-01

    In recent years, it appears many structures in the form of thin films or multilayers, used as coatings for surface protection, or to provide materials with new properties different from those of substrates. These properties are the subject of a growing number of studies in order to produce Nano or micro structures with different degrees of quality, and cost as well as the manufacture of thin film properties more functional and more controllable. As the thicknesses are close to micrometric or nanometric scales, the modulus of elasticity are difficult to measure and experimental results are rarely published in the literature. In this context, we propose an analytical qualitative methodology to describe the influence of acoustic parameters of thin films on the evolution of elastic moduli the most used. This method is based on the determination of the acoustic signature V(z) of several thin layers deposited on different substrates, as well the information on the propagation velocity of ultrasonic waves are obtained. Thus, the dispersion curves representing the variation of the modulus of elasticity (Young and the shear), were determined. We have noticed that, according to the type of substrate (light, medium or heavy), we observed the appearance of some anomalies in curves that are generally associated with changes in the acoustic properties of each of the examined layers. We have shown that these anomalies are mainly due to the effect loading, and represent one of the fundamental parameters determining the appearance or disappearance of a phenomenon and represent one of the basic parameters determining the appearance or disappearance of phenomena. Finally, we determine the Poisson ratio of thin films in order to calculate other elastic parameters such as the compressor modulus.

  19. Latrunculin B and substratum stiffness regulate corneal fibroblast to myofibroblast transformation.

    PubMed

    Thomasy, Sara M; Raghunathan, Vijay Krishna; Miyagi, Hidetaka; Evashenk, Alexander T; Sermeno, Jasmyne C; Tripp, Geneva K; Morgan, Joshua T; Murphy, Christopher J

    2018-05-01

    TCP (P < 0.001) without TGFβ1. Administration of topical Lat-B BID was well tolerated by rabbits post-PTK but did not significantly alter epithelial wound closure, stromal haze score, stromal haze thickness as measured by FD-OCT in comparison to DMSO-treated rabbits. When corneal stromal cells are cultured on substrates possessing biologically relevant substratum stiffnesses, Lat-B modulates mRNA and protein expression of α-SMA and thus modulates myofibroblast transformation. At a dose and dose-frequency that reduced IOP in human glaucoma patients, Lat-B treatment did not substantially impact corneal epithelial or stromal wound healing in a rabbit PTK model. While a significant impact on wound healing was observed at the concentration and dose frequency reported here was not found, encouraging in vitro data support further investigations of topically applied Lat-B to determine if this compound can reduce stromal fibrosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Hard X-ray imaging from Explorer

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Murray, S. S.

    1981-01-01

    Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

  1. Ultrafast imaging of cell elasticity with optical microelastography

    PubMed Central

    Grasland-Mongrain, Pol; Zorgani, Ali; Nakagawa, Shoma; Bernard, Simon; Paim, Lia Gomes; Fitzharris, Greg; Catheline, Stefan

    2018-01-01

    Elasticity is a fundamental cellular property that is related to the anatomy, functionality, and pathological state of cells and tissues. However, current techniques based on cell deformation, atomic force microscopy, or Brillouin scattering are rather slow and do not always accurately represent cell elasticity. Here, we have developed an alternative technique by applying shear wave elastography to the micrometer scale. Elastic waves were mechanically induced in live mammalian oocytes using a vibrating micropipette. These audible frequency waves were observed optically at 200,000 frames per second and tracked with an optical flow algorithm. Whole-cell elasticity was then mapped using an elastography method inspired by the seismology field. Using this approach we show that the elasticity of mouse oocytes is decreased when the oocyte cytoskeleton is disrupted with cytochalasin B. The technique is fast (less than 1 ms for data acquisition), precise (spatial resolution of a few micrometers), able to map internal cell structures, and robust and thus represents a tractable option for interrogating biomechanical properties of diverse cell types. PMID:29339488

  2. Elasticity modulated Electrowetting of a sessile liquid droplet

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Subramanian, Sri Ganesh; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    The sessile liquid droplets on the elastic and soft deformable surface produce strong deformation near the three-phase contact line (TPCL). The capillary and elastic forces play an important role during this deformation, and deteriorate the wetting behaviour of a sessile drop. The present work combines the effects of liquid viscosity and substrate elasticity on the dynamics of EWOD. The influence of decreasing film elasticity and viscosity on the electrowetting response of a sessile drop is experimentally investigated by delineating the changes in equilibrium apparent contact angles on substrates with varying Young's modulus of elasticity. The increase in viscosity of the liquid leads to greater electrowetting for non-deformable substrates whereas; the dynamics are not greatly affected in case of soft substrates. Although the viscosity appears to be an influential factor, the dynamics are more skewed towards the substrate rigidity. The vertical component of Young's force creates a wetting ridge at the three-phase contact line, the height of which is a direct function of the substrate rigidity. The produced ridges reduce the overall wettability of the droplet.

  3. Partitioning no-take marine reserve (NTMR) and benthic habitat effects on density of small and large-bodied tropical wrasses

    PubMed Central

    Rizzari, Justin R.; Bergseth, Brock J.; Alcala, Angel C.

    2017-01-01

    No-take marine reserves (NTMRs) are increasingly implemented for fisheries management and biodiversity conservation. Yet, assessing NTMR effectiveness depends on partitioning the effects of NTMR protection and benthic habitat on protected species. Such partitioning is often difficult, since most studies lack well-designed sampling programs (i.e. Before-After-Control-Impact-Pair designs) spanning long-term time scales. Spanning 31 years, this study quantifies the effects of NTMR protection and changes to benthic habitat on the density of tropical wrasses (F. Labridae) at Sumilon and Apo Islands, Philippines. Five species of wrasse were studied: two species of large-bodied (40–50 cm TL) Hemigymnus that were vulnerable to fishing, and three species of small-bodied (10–25 cm TL) Thalassoma and Cirrhilabrus that were not targeted by fishing. NTMR protection had no measurable effect on wrasse density, irrespective of species or body size, over 20 (Sumilon) and 31 (Apo) years of protection. However, the density of wrasses was often affected strongly by benthic cover. Hemigymnus spp. had a positive association with hard coral cover, while Thalassoma spp. and Cirrhilabrus spp. had strong positive associations with cover of rubble and dead substratum. These associations were most apparent after environmental disturbances (typhoons, coral bleaching, crown of thorns starfish (COTS) outbreaks, use of explosives and drive nets) reduced live hard coral cover and increased cover of rubble, dead substratum and sand. Disturbances that reduced hard coral cover often reduced the density of Hemigymnus spp. and increased the density of Thalassoma spp. and Cirrhilabrus spp. rapidly (1–2 years). As hard coral recovered, density of Hemigymnus spp. often increased while density of Thalassoma spp. and Cirrhilabrus spp. often decreased, often on scales of 5–10 years. This study demonstrates that wrasse population density was influenced more by changes to benthic cover than by

  4. Elastic Properties of Plasticine, Silly Putty, and Tennis Strings

    ERIC Educational Resources Information Center

    Cross, Rod

    2012-01-01

    How would a physicist describe the elastic properties of an apple or a banana? Physics students and teachers are familiar with the elastic properties of metal springs, but are likely to be less familiar with the elastic properties of other common materials. The behavior of a metal spring is commonly examined in the laboratory by adding masses to…

  5. Global model for the lithospheric strength and effective elastic thickness

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2013-08-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member 'hard' (HRM) and a 'soft' (SRM) rheology models of the continental crust. Temperature within the lithosphere has been estimated using a recent tomography model of Ritsema et al. (2011), which has much higher horizontal resolution than previous global models. Most of the strength is localized in the crust for the HRM and in the mantle for the SRM. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" model for the lithosphere structure. Changing from the SRM to HRM turns most of the continental areas from the totally decoupled mode to the fully coupled mode of the lithospheric layers. However, in the areas characterized by a high thermal regime and thick crust, the layers remain decoupled even for the HRM. At the same time, for the inner part of the cratons the lithospheric layers are coupled in both models. Therefore, rheological variations lead to large changes in the integrated strength and Te distribution in the regions characterized by intermediate thermal conditions. In these areas temperature uncertainties have a greater effect, since this parameter principally determines rheological behavior. Comparison of the Te estimates for both models with those determined from the flexural loading and spectral analysis shows that the 'hard' rheology is likely applicable for cratonic areas, whereas the 'soft' rheology is more representative for young orogens.

  6. Elasticity of bilayers containing PEG lipids

    NASA Astrophysics Data System (ADS)

    Bivas, I.; Winterhalter, M.; Méléard, P.; Bothorel, P.

    1998-02-01

    The addition of lipids with a poly(ethylene glycol) head group (Stealth or grafted or PEG lipids) to a phosphatidylcholine bilayer changes the mechanical properties of the membrane. We calculate the dependences of the bending and stretching elasticities of the bilayer on the PEG lipid concentration and on the monomer number in its polymer chain. The role of the bending elasticity at blocked flip-flop of the pure bilayer is revealed.

  7. Impact of Hydration Media on Ex Vivo Corneal Elasticity Measurements

    PubMed Central

    Dias, Janice; Ziebarth, Noël M.

    2014-01-01

    Objectives To determine the effect of hydration media on ex vivo corneal elasticity. Methods Experiments were conducted on forty porcine eyes retrieved from an abattoir (10 eyes each for PBS, BSS, Optisol, 15% Dextran). The epithelium was removed and the cornea was excised with an intact scleral rim and placed in 20% Dextran overnight to restore its physiological thickness. For each hydration media, corneas were evenly divided into two groups: one with an intact scleral rim and the other without. Corneas were mounted onto a custom chamber and immersed in a hydration medium for elasticity testing. While in each medium, corneal elasticity measurements were performed for 2 hours: at 5-minute intervals for the first 30 minutes and then 15-minute intervals for the remaining 90 minutes. Elasticity testing was performed using nanoindentation with spherical indenters and Young’s modulus was calculated using the Hertz model. Thickness measurements were taken before and after elasticity testing. Results The percentage change in corneal thickness and elasticity was calculated for each hydration media group. BSS, PBS, and Optisol showed an increase in thickness and Young’s moduli for corneas with and without an intact scleral rim. 15% Dextran exhibited a dehydrating effect on corneal thickness and provided stable maintenance of corneal elasticity for both groups. Conclusions Hydration media affects the stability of corneal thickness and elasticity measurements over time. 15% Dextran was most effective in maintaining corneal hydration and elasticity, followed by Optisol. PMID:25603443

  8. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    NASA Astrophysics Data System (ADS)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  9. Superelastic stress-strain behavior in ferrogels with different types of magneto-elastic coupling

    NASA Astrophysics Data System (ADS)

    Cremer, Peet; Löwen, Hartmut; Menzel, Andreas M.

    Colloidal magnetic particles embedded in an elastic polymer matrix constitute a smart material called ferrogel. It responds to an applied external magnetic field by changes in elastic properties, which can be exploited for various applications like dampers, vibration absorbers, or actuators. Under appropriate conditions, the stress-strain behavior of a ferrogel can display a fascinating feature: superelasticity, the capability to reversibly deform by a huge amount while barely altering the applied load. In a previous work, using numerical simulations, we investigated this behavior assuming that the magnetic moments carried by the embedded particles can freely reorient to minimize their magnetic interaction energy. Here, we extend the analysis to ferrogels where restoring torques by the surrounding matrix hinder rotations towards a magnetically favored configuration. For example, the particles can be chemically cross-linked into the polymer matrix and the magnetic moments can be fixed to the particle axes. We demonstrate that these systems still feature a superelastic regime. As before, the nonlinear stress-strain behavior can be reversibly tailored during operation by external magnetic fields. Yet, the different coupling of the magnetic moments causes different types of response to external stimuli. For instance, an external magnetic field applied parallel to the stretching axis hardly affects the superelastic regime but stiffens the system beyond it. Other smart materials featuring superelasticity, e.g. metallic shape-memory alloys, have already found widespread applications. Our soft polymer systems offer many additional advantages like a typically higher deformability and enhanced biocompatibility combined with high tunability.

  10. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating

    PubMed Central

    Engler, Adam J.; Carag-Krieger, Christine; Johnson, Colin P.; Raab, Matthew; Tang, Hsin-Yao; Speicher, David W.; Sanger, Joseph W.; Sanger, Jean M.; Discher, Dennis E.

    2009-01-01

    Summary Fibrotic rigidification following a myocardial infarct is known to impair cardiac output, and it is also known that cardiomyocytes on rigid culture substrates show a progressive loss of rhythmic beating. Here, isolated embryonic cardiomyocytes cultured on a series of flexible substrates show that matrices that mimic the elasticity of the developing myocardial microenvironment are optimal for transmitting contractile work to the matrix and for promoting actomyosin striation and 1-Hz beating. On hard matrices that mechanically mimic a post-infarct fibrotic scar, cells overstrain themselves, lack striated myofibrils and stop beating; on very soft matrices, cells preserve contractile beating for days in culture but do very little work. Optimal matrix leads to a strain match between cell and matrix, and suggests dynamic differences in intracellular protein structures. A ‘cysteine shotgun’ method of labeling the in situ proteome reveals differences in assembly or conformation of several abundant cytoskeletal proteins, including vimentin, filamin and myosin. Combined with recent results, which show that stem cell differentiation is also highly sensitive to matrix elasticity, the methods and analyses might be useful in the culture and assessment of cardiogenesis of both embryonic stem cells and induced pluripotent stem cells. The results described here also highlight the need for greater attention to fibrosis and mechanical microenvironments in cell therapy and development. PMID:18957515

  11. Ground hardness and injury in community level Australian football.

    PubMed

    Twomey, Dara M; Finch, Caroline F; Lloyd, David G; Elliott, Bruce C; Doyle, Tim L A

    2012-07-01

    To describe the risk and details of injuries associated with ground hardness in community level Australian football (AF). Prospective injury surveillance with periodic objective ground hardness measurement. 112 ground hardness assessments were undertaken using a Clegg hammer at nine locations across 20 grounds, over the 2007 and 2008 AF seasons. Details of 352 injuries sustained by community level players on those grounds were prospectively collected as part of a large randomised controlled trial. The ground location of the injury was matched to the nearest corresponding ground hardness Clegg hammer readings, in gravities (g), which were classified from unacceptably low (<30 g) to unacceptably high hardness (>120 g). Clegg hammer readings ranged from 25 to 301 g. Clegg hammer hardness categories from low/normal to high/normal were associated with the majority of injuries, with only 3.7% (13 injuries) on unacceptably high hardness and 0.3% (1 injury) on the unacceptably low hardness locations. Relative to the preferred range of hardness, the risk of sustaining an injury on low/normal hardness locations was 1.31 (95%CI: 1.06-1.62) times higher and 1.82 (95%CI: 1.17-2.85) times higher on locations with unacceptably high hardness. The more severe injuries occurred with low/normal ground hardness. Despite the low number of injuries, the risk of sustaining an injury on low/normal and unacceptably hard grounds was significantly greater than on the preferred range of hardness. Notably, the severity of the injuries sustained on unacceptably hard grounds was lower than for other categories of hardness. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. Identification of elastic, dielectric, and piezoelectric constants in piezoceramic disks.

    PubMed

    Perez, Nicolas; Andrade, Marco A B; Buiochi, Flavio; Adamowski, Julio C

    2010-12-01

    Three-dimensional modeling of piezoelectric devices requires a precise knowledge of piezoelectric material parameters. The commonly used piezoelectric materials belong to the 6mm symmetry class, which have ten independent constants. In this work, a methodology to obtain precise material constants over a wide frequency band through finite element analysis of a piezoceramic disk is presented. Given an experimental electrical impedance curve and a first estimate for the piezoelectric material properties, the objective is to find the material properties that minimize the difference between the electrical impedance calculated by the finite element method and that obtained experimentally by an electrical impedance analyzer. The methodology consists of four basic steps: experimental measurement, identification of vibration modes and their sensitivity to material constants, a preliminary identification algorithm, and final refinement of the material constants using an optimization algorithm. The application of the methodology is exemplified using a hard lead zirconate titanate piezoceramic. The same methodology is applied to a soft piezoceramic. The errors in the identification of each parameter are statistically estimated in both cases, and are less than 0.6% for elastic constants, and less than 6.3% for dielectric and piezoelectric constants.

  13. Singularity-free dislocation dynamics with strain gradient elasticity

    NASA Astrophysics Data System (ADS)

    Po, Giacomo; Lazar, Markus; Seif, Dariush; Ghoniem, Nasr

    2014-08-01

    The singular nature of the elastic fields produced by dislocations presents conceptual challenges and computational difficulties in the implementation of discrete dislocation-based models of plasticity. In the context of classical elasticity, attempts to regularize the elastic fields of discrete dislocations encounter intrinsic difficulties. On the other hand, in gradient elasticity, the issue of singularity can be removed at the outset and smooth elastic fields of dislocations are available. In this work we consider theoretical and numerical aspects of the non-singular theory of discrete dislocation loops in gradient elasticity of Helmholtz type, with interest in its applications to three dimensional dislocation dynamics (DD) simulations. The gradient solution is developed and compared to its singular and non-singular counterparts in classical elasticity using the unified framework of eigenstrain theory. The fundamental equations of curved dislocation theory are given as non-singular line integrals suitable for numerical implementation using fast one-dimensional quadrature. These include expressions for the interaction energy between two dislocation loops and the line integral form of the generalized solid angle associated with dislocations having a spread core. The single characteristic length scale of Helmholtz elasticity is determined from independent molecular statics (MS) calculations. The gradient solution is implemented numerically within our variational formulation of DD, with several examples illustrating the viability of the non-singular solution. The displacement field around a dislocation loop is shown to be smooth, and the loop self-energy non-divergent, as expected from atomic configurations of crystalline materials. The loop nucleation energy barrier and its dependence on the applied shear stress are computed and shown to be in good agreement with atomistic calculations. DD simulations of Lome-Cottrell junctions in Al show that the strength of the

  14. WNx and MoNx Layers: Elastic Properties and Crystal Structure

    NASA Astrophysics Data System (ADS)

    Ozsdolay, Brian

    This thesis research has focused on the thin film growth, phase stability, and elastic properties of two relatively unknown nitrides: tungsten nitride and molybdenum nitride. The elastic properties and hardness are not well characterized for either material, with previous measurements showing a wide range of values. In addition, the conditions leading to growth of high quality epitaxial layers of these materials are not well known. There is also some discrepancy over the cubic crystal structure seen in both WNx and MoNx. While the presence of nitrogen vacancies are well documented, it is unclear if metal vacancies also appear and in what concentrations. Tungsten nitride layers, 1.45-microm-thick, were deposited by reactive magnetron sputtering on MgO(001), MgO(111), and Al2O3(0001) in 20 mTorr N2 at 500-800 °C. All layers deposited at Ts = 500-700 °C form a cubic phase, as determined by X-ray diffraction o-2theta scans, and show an N-to-W ratio x that decreases from x = 1.21 to 0.83 with increasing Ts = 500-700 °C, as measured by energy dispersive and photoelectron spectroscopies. Ts = 500 and 600 °C yields polycrystalline predominantly 111 oriented beta-WN on all substrates. In contrast, deposition at 700 °C results in epitaxial growth of beta-WN(111) and beta-WN(001) on MgO(111) and MgO(001), respectively, and a 111-preferred orientation on Al2O3(0001). Ts = 800 °C causes nitrogen loss and WN x layers with primarily BCC W grains and x = 0.04-0.06. For Ts = 700 °C, nanoindentation provides hardness values of 9.8+/-2.2, 12.5+/-1.0, and 10.3+/-0.4 GPa, and elastic moduli of 240+/-40, 257+/-13, and 242+/-10 GPa for layers grown on MgO(001), MgO(111), and Al2O3(0001), respectively. Brillouin spectroscopy measurements yield shear moduli of 120+/-2 GPa, 114+/-2 GPa and 108+/-2 GPa for WN on MgO(001), MgO(111) and Al2O3(0001), respectively, suggesting a WN elastic anisotropy factor of 1.6+/-0.3, consistent with the indentation results. The combined analysis of the

  15. A FORTRAN program for calculating nonlinear seismic ground response

    USGS Publications Warehouse

    Joyner, William B.

    1977-01-01

    The program described here was designed for calculating the nonlinear seismic response of a system of horizontal soil layers underlain by a semi-infinite elastic medium representing bedrock. Excitation is a vertically incident shear wave in the underlying medium. The nonlinear hysteretic behavior of the soil is represented by a model consisting of simple linear springs and Coulomb friction elements arranged as shown. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. A brief program description is provided here with instructions for preparing the input and a source listing. A more detailed discussion of the method is presented elsewhere as is the description of a different program employing implicit integration.

  16. Over-damped elastic `snap-through'

    NASA Astrophysics Data System (ADS)

    Gomez, Michael; Moulton, Derek E.; Vella, Dominic

    Elastic `snap-through' occurs when a system is in an equilibrium state that either disappears or becomes unstable as a control parameter varies. The switch from one state to another is generally rapid and hence is used to generate fast motions in biology and engineering. While the conditions under which simple elastic objects undergo snap-through have been reasonably well studied, how fast snapping happens is much less well understood. Recently, it has been shown that snap-through can be subject to critical slowing down near the snapping transition, so that the dynamics may be slow even in the absence of viscous damping. Here, we study the interaction of snap-through with the flow of a viscous fluid. We begin by showing how snap-through may be used to create a channel whose hydraulic conductivity changes discontinuously in response to fluid flow. We then study the dynamics of snap-through for an elastic element embedded in a viscous fluid, which is typical of pull-in instabilities in micro-electromechanical systems (MEMS).

  17. Elastic collapse in disordered isostatic networks

    NASA Astrophysics Data System (ADS)

    Moukarzel, C. F.

    2012-02-01

    Isostatic networks are minimally rigid and therefore have, generically, nonzero elastic moduli. Regular isostatic networks have finite moduli in the limit of large sizes. However, numerical simulations show that all elastic moduli of geometrically disordered isostatic networks go to zero with system size. This holds true for positional as well as for topological disorder. In most cases, elastic moduli decrease as inverse power laws of system size. On directed isostatic networks, however, of which the square and cubic lattices are particular cases, the decrease of the moduli is exponential with size. For these, the observed elastic weakening can be quantitatively described in terms of the multiplicative growth of stresses with system size, giving rise to bulk and shear moduli of order e-bL. The case of sphere packings, which only accept compressive contact forces, is considered separately. It is argued that these have a finite bulk modulus because of specific correlations in contact disorder, introduced by the constraint of compressivity. We discuss why their shear modulus, nevertheless, is again zero for large sizes. A quantitative model is proposed that describes the numerically measured shear modulus, both as a function of the loading angle and system size. In all cases, if a density p>0 of overconstraints is present, as when a packing is deformed by compression or when a glass is outside its isostatic composition window, all asymptotic moduli become finite. For square networks with periodic boundary conditions, these are of order \\sqrt{p} . For directed networks, elastic moduli are of order e-c/p, indicating the existence of an "isostatic length scale" of order 1/p.

  18. A Reformulation of Nonlinear Anisotropic Elasticity for Impact Physics

    DTIC Science & Technology

    2014-02-01

    aluminum, copper, and magnesium . 15. SUBJECT TERMS impact physics, shock compression, elasticity, plasticity 16. SECURITY CLASSIFICATION OF: 17... deformation wave propagation code accounting for dissipative inelastic mechanisms. • Accuracy of the new nonlinear elastic- plastic model(s) will be...gradient and its transpose. A new general thermomechanical theory accounting for both elastic and plastic deformations has been briefly outlined in

  19. Offshore wellbore stability analysis based on fully coupled poro-thermo-elastic theory

    NASA Astrophysics Data System (ADS)

    Cao, Wenke; Deng, Jingen; Yu, Baohua; Liu, Wei; Tan, Qiang

    2017-03-01

    Drilling-induced tensile fractures are usually caused when the weight of mud is too high, and the effective tangential stress becomes tensile. It is thus hard to explain why tensile fractures are distributed along the lower part of a hole in an offshore exploration well when the mud weight is low. According to analysis, the reason could be the thermal effect, which cannot be ignored because of the drilling fluid and the cooling action of sea water during circulation. A heat transfer model is set up to obtain the temperature distribution of the wellbore and its formation by the finite difference method. Then, fully coupled poro-thermo-elastic theory is used to study the pore pressure and effective stress around the wellbore. By comparing it with both poroelastic and elastic models, it is indicated that the poroelastic effect is dominant at the beginning of circulation and inhibits tensile fractures from forming; then, the thermal effect becomes more important and decreases the effective tangential stress with the passing of time, so the drilling fluid and the cooling effect of sea water can cause tensile fractures to happen. Meanwhile, tensile fractures are shallow and not likely to lead to mud leakage with lower mud weight, which agrees with the actual drilling process. On the other hand, the fluid cooling effect could increase the strength of the rock and reduce the likelihood of shear failure, which would be beneficial for wellbore stability. So, the thermal effect cannot be neglected in offshore wellbore stability analysis, and mud weight and borehole exposure time should be controlled in the case of mud loss.

  20. Anomalous elasticity, fluctuations and disorder in elastic membranes

    NASA Astrophysics Data System (ADS)

    Le Doussal, Pierre; Radzihovsky, Leo

    2018-05-01

    Motivated by freely suspended graphene and polymerized membranes in soft and biological matter we present a detailed study of a tensionless elastic sheet in the presence of thermal fluctuations and quenched disorder. The manuscript is based on an extensive draft dating back to 1993, that was circulated privately. It presents the general theoretical framework and calculational details of numerous results, partial forms of which have been published in brief Letters (Le Doussal and Radzihovsky, 1992; 1993). The experimental realization atom-thin graphene sheets (Novoselov et al., 2004) have driven a resurgence in this fascinating subject, making our dated predictions and their detailed derivations timely. To this end we analyze the statistical mechanics of a generalized D-dimensional elastic "membrane" embedded in d dimensions using a self-consistent screening approximation (SCSA), that has proved to be unprecedentedly accurate in this system, exact in three complementary limits: (i) d → ∞, (ii) D → 4, and (iii) D = d. Focusing on the critical "flat" phase, for a homogeneous two-dimensional (D = 2) membrane embedded in three dimensions (d = 3), we predict its universal roughness exponent ζ = 0 . 590, length-scale dependent elastic moduli exponents η = 0 . 821 and ηu = 0 . 358, and an anomalous Poisson ratio, σ = - 1 / 3. In the presence of random uncorrelated heterogeneity the membrane exhibits a glassy wrinkled ground state, characterized by ζ‧ = 0 . 775 ,η‧ = 0 . 449, ηu‧ = 1 . 101 and a Poisson ratio σ‧ = - 1 / 3. Motivated by a number of physical realizations (charged impurities, disclinations and dislocations) we also study power-law correlated quenched disorder that leads to a variety of distinct glassy wrinkled phases. Finally, neglecting self-avoiding interaction we demonstrate that at high temperature a "phantom" sheet undergoes a continuous crumpling transition, characterized by a radius of gyration exponent, ν = 0 . 732 and η = 0

  1. Traceability in hardness measurements: from the definition to industry

    NASA Astrophysics Data System (ADS)

    Germak, Alessandro; Herrmann, Konrad; Low, Samuel

    2010-04-01

    The measurement of hardness has been and continues to be of significant importance to many of the world's manufacturing industries. Conventional hardness testing is the most commonly used method for acceptance testing and production quality control of metals and metallic products. Instrumented indentation is one of the few techniques available for obtaining various property values for coatings and electronic products in the micrometre and nanometre dimensional scales. For these industries to be successful, it is critical that measurements made by suppliers and customers agree within some practical limits. To help assure this measurement agreement, a traceability chain for hardness measurement traceability from the hardness definition to industry has developed and evolved over the past 100 years, but its development has been complicated. A hardness measurement value not only requires traceability of force, length and time measurements but also requires traceability of the hardness values measured by the hardness machine. These multiple traceability paths are needed because a hardness measurement is affected by other influence parameters that are often difficult to identify, quantify and correct. This paper describes the current situation of hardness measurement traceability that exists for the conventional hardness methods (i.e. Rockwell, Brinell, Vickers and Knoop hardness) and for special-application hardness and indentation methods (i.e. elastomer, dynamic, portables and instrumented indentation).

  2. Dynamics of periodic mechanical structures containing bistable elastic elements: From elastic to solitary wave propagation

    NASA Astrophysics Data System (ADS)

    Nadkarni, Neel; Daraio, Chiara; Kochmann, Dennis M.

    2014-08-01

    We investigate the nonlinear dynamics of a periodic chain of bistable elements consisting of masses connected by elastic springs whose constraint arrangement gives rise to a large-deformation snap-through instability. We show that the resulting negative-stiffness effect produces three different regimes of (linear and nonlinear) wave propagation in the periodic medium, depending on the wave amplitude. At small amplitudes, linear elastic waves experience dispersion that is controllable by the geometry and by the level of precompression. At moderate to large amplitudes, solitary waves arise in the weakly and strongly nonlinear regime. For each case, we present closed-form analytical solutions and we confirm our theoretical findings by specific numerical examples. The precompression reveals a class of wave propagation for a partially positive and negative potential. The presented results highlight opportunities in the design of mechanical metamaterials based on negative-stiffness elements, which go beyond current concepts primarily based on linear elastic wave propagation. Our findings shed light on the rich effective dynamics achievable by nonlinear small-scale instabilities in solids and structures.

  3. Stiffness Characteristics of Composite Rotor Blades With Elastic Couplings

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Nixon, Mark W.; Kosmatka, John B.

    1997-01-01

    Recent studies on rotor aeroelastic response and stability have shown the beneficial effects of incorporating elastic couplings in composite rotor blades. However, none of these studies have clearly identified elastic coupling limits and the effects of elastic couplings on classical beam stiffnesses of representative rotor blades. Knowledge of these limits and effects would greatly enhance future aeroelastic studies involving composite rotor blades. The present study addresses these voids and provides a preliminary design database for investigators who may wish to study the effects of elastic couplings on representative blade designs. The results of the present study should provide a basis for estimating the potential benefits associated with incorporating elastic couplings without the need for first designing a blade cross section and then performing a cross-section analysis to obtain the required beam section properties as is customary in the usual one-dimensional beam-type approach.

  4. Elastic limit and microplastic response of hardened steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaccone, M.A.; Krauss, G.

    Tempered martensite-retained austenite microstructures were produced by direct quenching a series of 41XX medium carbon steels, direct quenching and reheating a series of five 0.8C-Cr-Ni-Mo steels and intercritically austenitizing at various temperatures, and quenching a SAE 52100 steel. All specimens were tempered either at 150 C or at 200 C. Specimens were subjected to compression and tension testing in the microstrain regime to determine the elastic limits and microplastic response of the microstructures. The retained austenite and matrix carbon content of the intercritically austenized specimens were measured by X-ray diffraction and Mossbauer spectroscopy. The elastic limit of the microstructures decreasesmore » with increasing amounts of retained austenite. Refining of the austenite distribution increases the elastic limit. Low elastic limits are mainly due to low flow stresses in the austenite and not internal stresses. The elastic limit correlates with the largest austenite free-mean path by a Hall-Petch type equation. The elastic limit increases with decreasing intercritical austenitizing temperature in the SAE 52100 due to a lower carbon content in the matrix reducing the retained austenite levels and retained carbides that refine grain size and, therefore, the austenite distribution in quenched specimens. In the microplastic region, the strain is accommodated by successively smaller austenite regions until the flow strength matches that of the martensite. Reheating and quenching refines the microstructure and renders the austenite unstable in the microplastic regime, causing transformation of the austenite to martensite by a strain-induced mechanism. The transformation of austenite to martensite occurs by a stress-assisted mechanism in medium carbon steels. The low elastic limits in medium carbon steels were due to the inability of the strain from the stress-assisted transformation to balance the plastic strain accumulated in the austenite.« less

  5. Consequences of elastic anisotropy in patterned substrate heteroepitaxy.

    PubMed

    Dixit, Gopal Krishna; Ranganathan, Madhav

    2018-06-13

    The role of elastic anisotropy on quantum dot formation and evolution on a pre-patterned substrate is evaluated within the framework of a continuum model. We first extend the formulation for surface evolution to take elastic anisotropy into account. Using a small slope approximation, we derive the evolution equation and show how it can be numerically implemented up to linear and second order for stripe and egg-carton patterned substrates using an accurate and efficient procedure. The semi--infinite nature of the substrate is used to solve the elasticity problem subject to other boundary conditions at the free surface and at the film--substrate interface. The positioning of the quantum dots with respect to the peaks and valleys of the pattern is explained by a competition between the length scale of the pattern and the wavelength of the Asaro--Tiller--Grinfeld instability, which is also affected by the elastic anisotropy. The alignment of dots is affected by a competition between the elastic anisotropy of the film and the pattern orientation. A domain of pattern inversion, wherein the quantum dots form exclusively in the valleys of the patterns is identified as a function of the average film thickness and the elastic anisotropy, and the time--scale for this inversion as function of height is analyzed. © 2018 IOP Publishing Ltd.

  6. Muscle-spring dynamics in time-limited, elastic movements.

    PubMed

    Rosario, M V; Sutton, G P; Patek, S N; Sawicki, G S

    2016-09-14

    Muscle contractions that load in-series springs with slow speed over a long duration do maximal work and store the most elastic energy. However, time constraints, such as those experienced during escape and predation behaviours, may prevent animals from achieving maximal force capacity from their muscles during spring-loading. Here, we ask whether animals that have limited time for elastic energy storage operate with springs that are tuned to submaximal force production. To answer this question, we used a dynamic model of a muscle-spring system undergoing a fixed-end contraction, with parameters from a time-limited spring-loader (bullfrog: Lithobates catesbeiana) and a non-time-limited spring-loader (grasshopper: Schistocerca gregaria). We found that when muscles have less time to contract, stored elastic energy is maximized with lower spring stiffness (quantified as spring constant). The spring stiffness measured in bullfrog tendons permitted less elastic energy storage than was predicted by a modelled, maximal muscle contraction. However, when muscle contractions were modelled using biologically relevant loading times for bullfrog jumps (50 ms), tendon stiffness actually maximized elastic energy storage. In contrast, grasshoppers, which are not time limited, exhibited spring stiffness that maximized elastic energy storage when modelled with a maximal muscle contraction. These findings demonstrate the significance of evolutionary variation in tendon and apodeme properties to realistic jumping contexts as well as the importance of considering the effect of muscle dynamics and behavioural constraints on energy storage in muscle-spring systems. © 2016 The Author(s).

  7. Measurement of the antineutrino neutral-current elastic differential cross section

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; Cheng, G.; Church, E. D.; Conrad, J. M.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Huelsnitz, W.; Ignarra, C.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Katori, T.; Kobilarcik, T.; Louis, W. C.; Mariani, C.; Marsh, W.; Mills, G. B.; Mirabal, J.; Moore, C. D.; Mousseau, J.; Nienaber, P.; Osmanov, B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Ray, H.; Roe, B. P.; Russell, A. D.; Shaevitz, M. H.; Spitz, J.; Stancu, I.; Tayloe, R.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wickremasinghe, D. A.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration

    2015-01-01

    We report the measurement of the flux-averaged antineutrino neutral current elastic scattering cross section (d σν ¯N →ν ¯N/d Q2) on CH2 by the MiniBooNE experiment using the largest sample of antineutrino neutral current elastic candidate events ever collected. The ratio of the antineutrino to neutrino neutral current elastic scattering cross sections and a ratio of the antineutrino neutral current elastic to antineutrino charged current quasielastic cross sections are also presented.

  8. An experimental study of the elastic theory for granular flows

    NASA Astrophysics Data System (ADS)

    Guo, Tongtong; Campbell, Charles S.

    2016-08-01

    This paper reports annular shear cell measurements granular flows with an eye towards experimentally confirming the flow regimes laid out in the elastic theory of granular flow. Tests were carried out on four different kinds of plastic spherical particles under both constant volume flows and constant applied stress flows. In particular, observations were made of the new regime in that model, the elastic-inertial regime, and the predicted transitions between the elastic-inertial and both the elastic-quasistatic and pure inertial regimes.

  9. Elastic robot control - Nonlinear inversion and linear stabilization

    NASA Technical Reports Server (NTRS)

    Singh, S. N.; Schy, A. A.

    1986-01-01

    An approach to the control of elastic robot systems for space applications using inversion, servocompensation, and feedback stabilization is presented. For simplicity, a robot arm (PUMA type) with three rotational joints is considered. The third link is assumed to be elastic. Using an inversion algorithm, a nonlinear decoupling control law u(d) is derived such that in the closed-loop system independent control of joint angles by the three joint torquers is accomplished. For the stabilization of elastic oscillations, a linear feedback torquer control law u(s) is obtained applying linear quadratic optimization to the linearized arm model augmented with a servocompensator about the terminal state. Simulation results show that in spite of uncertainties in the payload and vehicle angular velocity, good joint angle control and damping of elastic oscillations are obtained with the torquer control law u = u(d) + u(s).

  10. Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population

    USDA-ARS?s Scientific Manuscript database

    Grain hardness is a very important trait in determining wheat market class and also influences milling and baking traits. At the grain Hardness (Ha) locus on chromosome 5DS, there are two primary mutations responsible for conveying a harder kernel texture among U.S. hard red spring wheats: (1) the P...

  11. On the origin of nonlinear elasticity in disparate rocks

    DOE PAGES

    Riviere, Jacques Vincent; Shokouhi, Parisa; Guyer, Robert A.; ...

    2015-03-31

    Dynamic acousto-elastic (DAE) studies are performed on a set of 6 rock samples (four sandstones, one soapstone, and one granite). From these studies, at 20 strain levels 10 -7 < ϵ < 10 -5, four measures characterizing the nonlinear elastic response of each sample are found. Additionally, each sample is tested with nonlinear resonant ultrasonic spectroscopy (NRUS) and a fth measure of nonlinear elastic response is found. The ve measures of the nonlinear elastic response of the samples (approximately 3 x 6 x 20 x 5 numbers as each measurement is repeated 3 times) are subjected to careful analysis usingmore » model independent statistical methods, principal component analysis and fuzzy clustering. This analysis reveals di erences among the samples and di erences among the nonlinear measures. Four of the nonlinear measures are sensing much the same physical mechanism in the samples. The fth is seeing something di erent. This is the case for all samples. Although the same physical mechanisms (two) are operating in all samples there are distinctive features in the way the physical mechanisms present themselves from sample to sample. This suggests classi cation of the samples into two groups. The numbers in this study and the classi cation of the measures/samples constitute an empirical characterization of rock nonlinear elastic properties that can serve as a valuable testing ground for physically based theories that relate rock nonlinear elastic properties to microscopic elastic features.« less

  12. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles

    NASA Technical Reports Server (NTRS)

    Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.

    1985-01-01

    The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.

  13. Leadership Elasticity Enhancing Style-Flex for Leadership Equilibrium

    ERIC Educational Resources Information Center

    Rajbhandari, Mani Man Singh

    2017-01-01

    Leadership elasticity enhances leadership style flexibility and mobility to enable educational leaders to maintain appropriate leadership equilibrium. The essential of leadership elasticity contributes towards organizational effectiveness by followership's maintenance through appropriate expansion and contraction of relations and task behavioural…

  14. Temperature Dependence Of Elastic Constants Of Polymers

    NASA Technical Reports Server (NTRS)

    Simha, Robert; Papazoglou, Elisabeth

    1989-01-01

    Two papers extend theory of elastic constants of disordered solids to finite temperatures below glass-transition temperatures. First paper, entitled "Elastic Constants of Disordered Solids II: Temperature Dependence," applies to cryogenic temperatures. Second paper, entitled "Theory of Thermoelastic Properties for Polymer Glasses," develops unified treatment for static compressional and elongational properties at temperatures up to glass-transition temperatures.

  15. Measuring the Hardness of Minerals

    ERIC Educational Resources Information Center

    Bushby, Jessica

    2005-01-01

    The author discusses Moh's hardness scale, a comparative scale for minerals, whereby the softest mineral (talc) is placed at 1 and the hardest mineral (diamond) is placed at 10, with all other minerals ordered in between, according to their hardness. Development history of the scale is outlined, as well as a description of how the scale is used…

  16. Laboratory Tests of Bitumen Samples Elasticity

    NASA Astrophysics Data System (ADS)

    Ziganshin, E. R.; Usmanov, S. A.; Khasanov, D. I.; Khamidullina, G. S.

    2018-05-01

    This paper is devoted to the study of the elastic and acoustic properties of bitumen core samples. The travel velocities of the ultrasonic P- and S-waves were determined under in-situ simulation conditions. The resulting data were then used to calculate dynamic Young's modulus and Poisson's ratio. The authors studied the correlation between the elasticity and the permeability and porosity. In addition, the tests looked into how the acoustic properties had changed with temperature rise.

  17. "We Can Get Everything We Want if We Try Hard": Young People, Celebrity, Hard Work

    ERIC Educational Resources Information Center

    Mendick, Heather; Allen, Kim; Harvey, Laura

    2015-01-01

    Drawing on 24 group interviews on celebrity with 148 students aged 14-17 across six schools, we show that "hard work" is valued by young people in England. We argue that we should not simply celebrate this investment in hard work. While it opens up successful subjectivities to previously excluded groups, it reproduces neoliberal…

  18. Approaching the ideal elastic strain limit in silicon nanowires

    PubMed Central

    Zhang, Hongti; Tersoff, Jerry; Xu, Shang; Chen, Huixin; Zhang, Qiaobao; Zhang, Kaili; Yang, Yong; Lee, Chun-Sing; Tu, King-Ning; Li, Ju; Lu, Yang

    2016-01-01

    Achieving high elasticity for silicon (Si) nanowires, one of the most important and versatile building blocks in nanoelectronics, would enable their application in flexible electronics and bio-nano interfaces. We show that vapor-liquid-solid–grown single-crystalline Si nanowires with diameters of ~100 nm can be repeatedly stretched above 10% elastic strain at room temperature, approaching the theoretical elastic limit of silicon (17 to 20%). A few samples even reached ~16% tensile strain, with estimated fracture stress up to ~20 GPa. The deformations were fully reversible and hysteresis-free under loading-unloading tests with varied strain rates, and the failures still occurred in brittle fracture, with no visible sign of plasticity. The ability to achieve this “deep ultra-strength” for Si nanowires can be attributed mainly to their pristine, defect-scarce, nanosized single-crystalline structure and atomically smooth surfaces. This result indicates that semiconductor nanowires could have ultra-large elasticity with tunable band structures for promising “elastic strain engineering” applications. PMID:27540586

  19. Elastic-plastic models for multi-site damage

    NASA Technical Reports Server (NTRS)

    Actis, Ricardo L.; Szabo, Barna A.

    1994-01-01

    This paper presents recent developments in advanced analysis methods for the computation of stress site damage. The method of solution is based on the p-version of the finite element method. Its implementation was designed to permit extraction of linear stress intensity factors using a superconvergent extraction method (known as the contour integral method) and evaluation of the J-integral following an elastic-plastic analysis. Coarse meshes are adequate for obtaining accurate results supported by p-convergence data. The elastic-plastic analysis is based on the deformation theory of plasticity and the von Mises yield criterion. The model problem consists of an aluminum plate with six equally spaced holes and a crack emanating from each hole. The cracks are of different sizes. The panel is subjected to a remote tensile load. Experimental results are available for the panel. The plasticity analysis provided the same limit load as the experimentally determined load. The results of elastic-plastic analysis were compared with the results of linear elastic analysis in an effort to evaluate how plastic zone sizes influence the crack growth rates. The onset of net-section yielding was determined also. The results show that crack growth rate is accelerated by the presence of adjacent damage, and the critical crack size is shorter when the effects of plasticity are taken into consideration. This work also addresses the effects of alternative stress-strain laws: The elastic-ideally-plastic material model is compared against the Ramberg-Osgood model.

  20. Short-term hot hardness characteristics of rolling-element steels

    NASA Technical Reports Server (NTRS)

    Chevalier, J. L.; Dietrich, M. W.; Zaretsky, E. V.

    1972-01-01

    Short-term hot hardness studies were performed with five vacuum-melted steels at temperatures from 294 to 887 K (70 to 1140 F). Based upon a minimum Rockwell C hardness of 58, the temperature limitation on all materials studied was dependent on the initial room temperature hardness and the tempering temperature of each material. For the same room temperature hardness, the short-term hot hardness characteristics were identical and independent of material composition. An equation was developed to predict the short-term hardness at temperature as a function of initial room temperature hardness for AISI 52100, as well as the high-speed tool steels.

  1. 36 CFR 13.1308 - Harding Icefield Trail.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Harding Icefield Trail. 13... Provisions § 13.1308 Harding Icefield Trail. The Harding Icefield Trail from the junction with the main paved trail near Exit Glacier to the emergency hut near the terminus is closed to— (a) Camping within 1/8 mile...

  2. Ab initio elastic tensor of cubic Ti0.5Al0.5N alloys: Dependence of elastic constants on size and shape of the supercell model and their convergence

    NASA Astrophysics Data System (ADS)

    Tasnádi, Ferenc; Odén, M.; Abrikosov, Igor A.

    2012-04-01

    In this study we discuss the performance of the special quasirandom structure (SQS) method in predicting the elastic properties of B1 (rocksalt) Ti0.5Al0.5N alloy. We use a symmetry-based projection technique, which gives the closest cubic approximate of the elastic tensor and allows us to align the SQSs of different shapes and sizes for a comparison in modeling elastic tensors. We show that the derived closest cubic approximate of the elastic tensor converges faster with respect to SQS size than the elastic tensor itself. That establishes a less demanding computational strategy to achieve convergence for the elastic constants. We determine the cubic elastic constants (Cij) and Zener's type elastic anisotropy (A) of Ti0.5Al0.5N. Optimal supercells, which capture accurately both the configurational disorder and cubic symmetry of elastic tensor, result in C11=447 GPa, C12=158 GPa, and C44=203 GPa with 3% of error and A=1.40 with 6% of error. In addition, we establish the general importance of selecting proper SQS with symmetry arguments to reliably model elasticity of alloys. We suggest the calculation of nine elastic tensor elements: C11, C22, C33, C12, C13, C23, C44, C55, and C66, to analyze the performance of SQSs and predict elastic constants of cubic alloys. The described methodology is general enough to be extended for alloys with other symmetry at arbitrary composition.

  3. Elastic, thermodynamic and optical behavior of V2AC (A = Al, Ga) MAX phases

    NASA Astrophysics Data System (ADS)

    Khatun, M. R.; Ali, M. A.; Parvin, F.; Islam, A. K. M. A.

    This article reports the first-principles calculations of yet unexplored Mulliken bond population, Vickers hardness, thermodynamic and optical properties of MAX phases V2AC (A = Al, Ga). We have also revisited the structural and elastic properties of these phases in order to assess the reliability of our calculations. The temperature and pressure dependence of bulk modulus, Debye temperature, specific heats, and thermal expansion coefficient have been successfully estimated through the quasi-harmonic Debye model in the temperature range from 0 to 1000 K and the pressure range from 0 to 50 GPa. The optical properties such as the dielectric function, refractive index, photoconductivity, absorption coefficients, reflectivity and loss function are also evaluated for the first time. The reflectivity is found to be high which indicates that V2AC (A = Al, Ga) having the same characteristics could be good candidate materials to reduce solar heating up to ∼15 eV.

  4. A new technique to make transparent teeth without decalcifying: description of the methodology and micro-hardness assessment.

    PubMed

    Malentacca, Augusto; Lajolo, Carlo

    2015-01-01

    Diaphanisation and other in vitro endodontic models (i.e., plastic blocks, micro-CT reconstruction, computerised models) do not recreate real root canal working conditions: a more realistic endodontic model is essential for testing endodontic devices and teaching purposes. The aim of this study was to describe a new technique to construct transparent teeth without decalcifying and evaluate the micro-hardness of so treated teeth. Thirty freshly extracted teeth were randomly divided into three groups as follows: 10 non-treated teeth (4 molars, 3 premolars, 3 incisors; control group - G1), 10 teeth were diaphanised (4 molars, 4 premolars, 2 incisors - G2) and 10 teeth were treated with the new proposed technique (2 molars, 6 premolars, 2 incisors - G3). Vickers hardness tester (MHT-4 and AxioVision microscope, Carl Zeiss, 37030 Gottingen, Germany - load=50 g, dwell time=20s, slope=5, 50× magnification) was used to determine microhardness (Vickers Hardness Number - VHN). Statistical analysis was performed using the Intercooled Stata 8.0 software (Stata Corporation, College Station, TX, USA). Only groups 1 and 3 could be tested for hardness because diaphanised teeth were too tender and elastic. Differences in enamel VHN were observed between G1 (mean 304.29; DS=10.44; range 283-321) and G3 (mean 318.51; DS=14.36; range 295.5-339.2) - (p<0.05); differences in dentine VHN were observed between G1 (mean 74.73; DS=6.62; range 63.9-88.1) and G3 (mean 64.54; DS=5.55; range 51.2-72.3) - (p<0.05). G3 teeth presented a slightly lower VHN compared to G1, probably due to some little structural differences among groups, and were dramatically harder than the diaphanised teeth. The described technique, thus, can be considered ideal for testing endodontic instruments and for teaching purposes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Elastic fibre organization in the intervertebral discs of the bovine tail

    PubMed Central

    Yu, Jing; Peter, C; Roberts, Sally; Urban, Jill PG

    2002-01-01

    Elastic fibres have been revealed by both elastin immunostaining and conventional histological orcein-staining in the intervertebral discs of the bovine tail. These fibres are distributed in all regions of the disc but their organization varies from region to region. In the centre of the nucleus, long (>150 μm) elastic fibres are orientated radially. In the transitional region between nucleus and annulus, the orientation of the elastic fibres changes, producing a criss-cross pattern. In the annulus itself, elastic fibres appear densely distributed in the region between the lamellae and also in ‘bridges’ across the lamellae, particularly in the adult. Elastic fibres are apparent within the lamellae, orientated parallel to the collagen fibres of each lamella, particularly in the young (12-day-old) discs. In the region between the disc and the cartilaginous endplate, elastic fibres appear to anchor into the plate and terminate there. The results of this study suggest that elastic fibres contribute to the mechanical functioning of the intervertebral disc. The varying organization of the elastic fibres in the different regions of the disc is likely to relate to the different regional loading patterns PMID:12489758

  6. Determination of elastic modulus of ceramics using ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Sasmita, Firmansyah; Wibisono, Gatot; Judawisastra, Hermawan; Priambodo, Toni Agung

    2018-04-01

    Elastic modulus is important material property on structural ceramics application. However, bending test as a common method for determining this property require particular specimen preparation. Furthermore, elastic modulus of ceramics could vary because it depends on porosity content. For structural ceramics industry, such as ceramic tiles, this property is very important. This drives the development of new method to improve effectivity or verification method as well. In this research, ultrasonic testing was conducted to determine elastic modulus of soda lime glass and ceramic tiles. The experiment parameter was frequency of probe (1, 2, 4 MHz). Characterization of density and porosity were also done for analysis. Results from ultrasonic testing were compared with elastic modulus resulted from bending test. Elastic modulus of soda-lime glass based on ultrasonic testing showed excellent result with error 2.69% for 2 MHz probe relative to bending test result. Testing on red and white ceramic tiles were still contained error up to 41% and 158%, respectively. The results for red ceramic tile showed trend that 1 MHz probe gave better accuracy in determining elastic modulus. However, testing on white ceramic tile showed different trend. It was due to the presence of porosity and near field effect.

  7. Hard and soft acids and bases: atoms and atomic ions.

    PubMed

    Reed, James L

    2008-07-07

    The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.

  8. Modeling the elastic energy of alloys: Potential pitfalls of continuum treatments.

    PubMed

    Baskaran, Arvind; Ratsch, Christian; Smereka, Peter

    2015-12-01

    Some issues that arise when modeling elastic energy for binary alloys are discussed within the context of a Keating model and density-functional calculations. The Keating model is a simplified atomistic formulation based on modeling elastic interactions of a binary alloy with harmonic springs whose equilibrium length is species dependent. It is demonstrated that the continuum limit for the strain field are the usual equations of linear elasticity for alloys and that they correctly capture the coarse-grained behavior of the displacement field. In addition, it is established that Euler-Lagrange equation of the continuum limit of the elastic energy will yield the same strain field equation. This is the same energy functional that is often used to model elastic effects in binary alloys. However, a direct calculation of the elastic energy atomistic model reveals that the continuum expression for the elastic energy is both qualitatively and quantitatively incorrect. This is because it does not take atomistic scale compositional nonuniformity into account. Importantly, this result also shows that finely mixed alloys tend to have more elastic energy than segregated systems, which is the exact opposite of predictions made by some continuum theories. It is also shown that for strained thin films the traditionally used effective misfit for alloys systematically underestimate the strain energy. In some models, this drawback is handled by including an elastic contribution to the enthalpy of mixing, which is characterized in terms of the continuum concentration. The direct calculation of the atomistic model reveals that this approach suffers serious difficulties. It is demonstrated that elastic contribution to the enthalpy of mixing is nonisotropic and scale dependent. It is also shown that such effects are present in density-functional theory calculations for the Si-Ge system. This work demonstrates that it is critical to include the microscopic arrangements in any elastic

  9. Hard Copy Market Overview

    NASA Astrophysics Data System (ADS)

    Testan, Peter R.

    1987-04-01

    A number of Color Hard Copy (CHC) market drivers are currently indicating strong growth in the use of CHC technologies for the business graphics marketplace. These market drivers relate to product, software, color monitors and color copiers. The use of color in business graphics allows more information to be relayed than is normally the case in a monochrome format. The communicative powers of full-color computer generated output in the business graphics application area will continue to induce end users to desire and require color in their future applications. A number of color hard copy technologies will be utilized in the presentation graphics arena. Thermal transfer, ink jet, photographic and electrophotographic technologies are all expected to be utilized in the business graphics presentation application area in the future. Since the end of 1984, the availability of color application software packages has grown significantly. Sales revenue generated by business graphics software is expected to grow at a compound annual growth rate of just over 40 percent to 1990. Increased availability of packages to allow the integration of text and graphics is expected. Currently, the latest versions of page description languages such as Postscript, Interpress and DDL all support color output. The use of color monitors will also drive the demand for color hard copy in the business graphics market place. The availability of higher resolution screens is allowing color monitors to be easily used for both text and graphics applications in the office environment. During 1987, the sales of color monitors are expected to surpass the sales of monochrome monitors. Another major color hard copy market driver will be the color copier. In order to take advantage of the communications power of computer generated color output, multiple copies are required for distribution. Product introductions of a new generation of color copiers is now underway with additional introductions expected

  10. Role of surface elasticity in the drainage of soap films

    NASA Astrophysics Data System (ADS)

    Sonin, A. A.; Bonfillon, A.; Langevin, D.

    1993-10-01

    We present measurements of the thinning velocity of circular horizontal soap films made from dilute surfactant solutions (around the critical micellar concentration). We have solved numerically the hydrodynamic equations for the drainage process. After data fitting, we deduce the values of the elasticities of the surfactant monolayer that stabilizes the soap film. These elasticity values have been compared to elasticities obtained independently from the study of waves at the surface of the solution. The comparison reveals the importance of surface convection in the drainage process and demonstrates the important role of surface elasticity.

  11. Effect of a 4-week elastic resistance band training regimen on back kinematics in horses trotting in-hand and on the lunge.

    PubMed

    Pfau, T; Simons, V; Rombach, N; Stubbs, N; Weller, R

    2017-11-01

    Training and rehabilitation techniques aiming at improving core muscle strength may result in increased dynamic stability of the equine vertebral column. A system of elastic resistance bands is suggested to provide proprioceptive feedback during motion to encourage recruitment of core abdominal and hindquarter musculature for improved dynamic stability. To quantify the effects of a specific resistance band system on back kinematics during trot in-hand and lungeing at beginning and end of a 4-week exercise programme. Quantitative analysis of back movement before/after a 4-week exercise programme. Inertial sensor data were collected from seven horses at weeks 1 and 4 of an exercise protocol with elastic resistance bands. Translational (dorsoventral, mediolateral) and rotational (roll, pitch) range of motion of six landmarks from poll to coccygeal region were quantified during trot in-hand (hard surface) and during lungeing (soft surface, both reins) with/without elastic exercise bands. A mixed model (P<0.05) evaluated the effects of exercise bands, time (week) and movement direction (straight, left, right). The bands reduced roll, pitch and mediolateral displacement in the thoracolumbar region (all P≤0.04). At week 4, independent of band usage, rotational movement (withers, thoracic) was reduced while dorsoventral movement (thoracic, coccygeal) increased. Increased back movement was measured in 80% of back movement parameters during lungeing. Comparing each horse without and with bands without a control group does not distinguish whether the differences measured between weeks 1 and 4 are related to use of the bands, or only to the exercise regimen. Results suggest that the elastic resistance bands reduce mediolateral and rotational movement of the thoracolumbar region (increase dynamic stability) in trot. Further studies should investigate the underlying mechanism with reference to core abdominal and hindquarter muscle recruitment and study the long-term effects

  12. Radial elasticity of self-assembled lipid tubules.

    PubMed

    Zhao, Yue; Tamhane, Karan; Zhang, Xuejun; An, Linan; Fang, Jiyu

    2008-07-01

    Self-assembled lipid tubules with crystalline bilayer walls represent useful supramolecular architectures which hold promise as vehicles for the controlled release of preloaded drugs and templates for the synthesis of one-dimensional inorganic materials. We study the local elasticity of lipid tubules of 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine by radial atomic force microscope indentation, coupled with finite element analysis. A reduced stiffness is found to extend a distance of approximately 600 nm from the ends of lipid tubules. The middle section of lipid tubules is homogeneous in terms of their radial elasticity with a Young's modulus of approximately 703 MPa. The inhomogeneous radial elasticity likely arises from the variation of lipid packing density near the tubule ends.

  13. Numerical solution of acoustic scattering by finite perforated elastic plates

    PubMed Central

    2016-01-01

    We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k0 based on the plate length. However, at low k0, finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k0. The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k0 for perforated elastic plates. PMID:27274685

  14. Numerical solution of acoustic scattering by finite perforated elastic plates.

    PubMed

    Cavalieri, A V G; Wolf, W R; Jaworski, J W

    2016-04-01

    We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k 0 based on the plate length. However, at low k 0 , finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k 0 . The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k 0 for perforated elastic plates.

  15. The Incredible Shrinking Elasticities: Married Female Labor Supply, 1978-2002

    ERIC Educational Resources Information Center

    Heim, Bradley T.

    2007-01-01

    This paper demonstrates the extent to which married women's labor supply elasticities have changed over the past quarter century. Estimates from March Current Population Survey data suggest that these elasticities have decreased substantially, by 60 percent for the hours wage elasticity (from 0.36 to 0.14), 70 percent for the hours income…

  16. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  17. Substrate-dependent cell elasticity measured by optical tweezers indentation

    NASA Astrophysics Data System (ADS)

    Yousafzai, Muhammad S.; Ndoye, Fatou; Coceano, Giovanna; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan

    2016-01-01

    In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell-bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).

  18. Permeability and elastic properties of cracked glass under pressure

    NASA Astrophysics Data System (ADS)

    Ougier-Simonin, A.; GuéGuen, Y.; Fortin, J.; Schubnel, A.; Bouyer, F.

    2011-07-01

    Fluid flow in rocks is allowed through networks of cracks and fractures at all scales. In fact, cracks are of high importance in various applications ranging from rock elastic and transport properties to nuclear waste disposal. The present work aims at investigating thermomechanical cracking effects on elastic wave velocities, mechanical strength, and permeability of cracked glass under pressure. We performed the experiments on a triaxial cell at room temperature which allows for independent controls of the confining pressure, the axial stress, and pore pressure. We produced cracks in original borosilicate glass samples with a reproducible method (thermal treatment with a thermal shock of 300°C). The evolution of the elastic and transport properties have been monitored using elastic wave velocity sensors, strain gage, and flow measurements. The results obtained evidence for (1) a crack family with identified average aspect ratio and crack aperture, (2) a very small permeability which decreases as a power (exponential) function of pressure, and depends on (3) the crack aperture cube. We also show that permeability behavior of a cracked elastic brittle solid is reversible and independent of the fluid nature. Two independent methods (permeability and elastic wave velocity measurements) give these consistent results. This study provides data on the mechanical and transport properties of an almost ideal elastic brittle solid in which a crack population has been introduced. Comparisons with similar data on rocks allow for drawing interesting conclusions. Over the timescale of our experiments, our results do not provide any data on stress corrosion, which should be considered in further study.

  19. Structure and elasticity of phlogopite under compression: Geophysical implications

    NASA Astrophysics Data System (ADS)

    Chheda, Tanvi D.; Mookherjee, Mainak; Mainprice, David; dos Santos, Antonio M.; Molaison, Jamie J.; Chantel, Julien; Manthilake, Geeth; Bassett, William A.

    2014-08-01

    We investigated the response of the crystal structure, lattice parameters, and unit-cell volume of hydrous layered silicate phlogopite at conditions relevant to subduction zone settings. We have used first principles simulation based on density functional theory to calculate the equation of state and full elastic constant tensor. Based on the generalized gradient approximation, the full single crystal elastic constant tensor with monoclinic symmetry shows significant anisotropy with the compressional elastic constants: c11 = 181 GPa, c22 = 185 GPa, c33 = 62 GPa, the shear elastic constants c44 = 14 GPa, c55 = 20 GPa, c66 = 68 Ga, and c46 = -6 GPa; the off diagonal elastic constants c12 = 48 GPa, c13 = 12 GPa, c23 = 12 GPa, c15 = -16 GPa, c25 = -5 GPa and c35 = -1 GPa at zero pressure. The elastic anisotropy of phlogopite is larger than most of the layered hydrous phases relevant in the subduction zone conditions. The shear anisotropy, AVS for phlogopite is ∼77% at zero pressure condition and although it decreases upon compression it remains relatively high compared to other hydrous phases relevant in the subduction zone settings. We also note that the shear elastic constants for phlogopite are relatively low. Phlogopite also has a high isotropic bulk VP/VS ratio ∼2.0. However, the VP/VS ratio also exhibits significant anisotropy with values as low as 1.49. Thus, phlogopite bearing metasomatized mantle could readily explain unusual VP/VS ratio as observed from seismological studies from the mantle wedge regions of the subduction zone.

  20. Effects of thermal annealing on the structural, mechanical, and tribological properties of hard fluorinated carbon films deposited by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Maia da Costa, M. E. H.; Baumvol, I. J. R.; Radke, C.; Jacobsohn, L. G.; Zamora, R. R. M.; Freire, F. L.

    2004-11-01

    Hard amorphous fluorinated carbon films (a-C:F) deposited by plasma enhanced chemical vapor deposition were annealed in vacuum for 30 min in the temperature range of 200-600 °C. The structural and compositional modifications were followed by several analytical techniques: Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Nanoidentation measurements and lateral force microscopy experiments were carried out in order to provide the film hardness and the friction coefficient, respectively. The internal stress and contact angle were also measured. RBS, ERDA, and XPS results indicate that both fluorine and hydrogen losses occur for annealing temperatures higher than 300 °C. Raman spectroscopy shows a progressive graphitization upon annealing, while the surface became slightly more hydrophobic as revealed by the increase of the contact angle. Following the surface wettability reduction, a decrease of the friction coefficient was observed. These results highlight the influence of the capillary condensation on the nanoscale friction. The film hardness and the internal stress are constant up to 300 °C and decrease for higher annealing temperatures, showing a direct correlation with the atomic density of the films. Since the thickness variation is negligible, the mass loss upon thermal treatment results in amorphous structures with a lower degree of cross-linking, explaining the deterioration of the mechanical properties of the a-C:F films.

  1. Series Elastic Actuators for legged robots

    NASA Astrophysics Data System (ADS)

    Pratt, Jerry E.; Krupp, Benjamin T.

    2004-09-01

    Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of "stiffer is better." A compliant element is placed between the gear train and driven load to intentionally reduce the stiffness of the actuator. A position sensor measures the deflection, and the force output is accurately calculated using Hooke"s Law (F=Kx). A control loop then servos the actuator to the desired output force. The resulting actuator has inherent shock tolerance, high force fidelity and extremely low impedance. These characteristics are desirable in many applications including legged robots, exoskeletons for human performance amplification, robotic arms, haptic interfaces, and adaptive suspensions. We describe several variations of Series Elastic Actuators that have been developed using both electric and hydraulic components.

  2. Dependence of elastic hadron collisions on impact parameter

    NASA Astrophysics Data System (ADS)

    Procházka, Jiří; Lokajíček, Miloš V.; Kundrát, Vojtěch

    2016-05-01

    Elastic proton-proton collisions represent probably the greatest ensemble of available measured data, the analysis of which may provide a large amount of new physical results concerning fundamental particles. It is, however, necessary to analyze first some conclusions concerning pp collisions and their interpretations differing fundamentally from our common macroscopic experience. It has been argued, e.g., that elastic hadron collisions have been more central than inelastic ones, even if any explanation of the existence of so different processes, i.e., elastic and inelastic (with hundreds of secondary particles) collisions, under the same conditions has not been given until now. The given conclusion has been based on a greater number of simplifying mathematical assumptions (already done in earlier calculations), without their influence on physical interpretation being analyzed and entitled; the corresponding influence has started to be studied in the approach based on the eikonal model. The possibility of a peripheral interpretation of elastic collisions will be demonstrated and the corresponding results summarized. The arguments will be given on why no preference may be given to the mentioned centrality against the standard peripheral behaviour. The corresponding discussion on the contemporary description of elastic hadronic collision in dependence on the impact parameter will be summarized and the justification of some important assumptions will be considered.

  3. Elastic medium equivalent to Fresnel's double-refraction crystal.

    PubMed

    Carcione, José M; Helbig, Klaus

    2008-10-01

    In 1821, Fresnel obtained the wave surface of an optically biaxial crystal, assuming that light waves are vibrations of the ether in which longitudinal vibrations (P waves) do not propagate. An anisotropic elastic medium mathematically analogous to Fresnel's crystal exists. The medium has four elastic constants: a P-wave modulus, associated with a spherical P wave surface, and three elastic constants, c(44), c(55), and c(66), associated with the shear waves, which are mathematically equivalent to the three dielectric permittivity constants epsilon(11), epsilon(22), and epsilon(33) as follows: mu(0)epsilon(11)<==>rho/c(44), mu(0)epsilon(22)<==>rho/c(55), mu(0)epsilon(33)<==>rho/c(66), where mu(0) is the magnetic permeability of vacuum and rho is the mass density. These relations also represent the equivalence between the elastic and electromagnetic wave velocities along the principal axes of the medium. A complete mathematical equivalence can be obtained by setting the P-wave modulus equal to zero, but this yields an unstable elastic medium (the hypothetical ether). To obtain stability the P-wave velocity has to be assumed infinite (incompressibility). Another equivalent Fresnel's wave surface corresponds to a medium with anomalous polarization. This medium is physically unstable even for a nonzero P-wave modulus.

  4. Delayed elasticity in Zerodur® at room temperature

    NASA Astrophysics Data System (ADS)

    Pepi, John W.; Golini, Donald

    1991-12-01

    Much has been written about structural relaxation, viscous flow, delayed elasticity, hysteresis, and other dimensional stability phenomena of glass and ceramics at elevated temperatures. Less has been documented about similar effects at room temperature. The time dependent phenomenon of delayed elasticity exhibited by Zerodur has been studied at room temperature and is presented here. Using a high-performance mechanical profilometer, a delayed strain on the order of 1 percent is realized over a period of a few weeks, under low stress levels. An independent test using optical interferometry validates the results. A comparison of Corning ULE silica glass is also made. The effect is believed to be related to the alkali oxide content of the glass ceramic and rearrangement of the ion groups within the structure during stress. The effect, apparent under externally applied load, is elastic and repeatable, that is, no hysteresis of permanent set, as measured at elevated temperature, is evidenced within measurement capabilities. Nonetheless, it must be accounted for in determining the magnitude of distortion under load (delayed elastic creep) and upon load removal (delayed elastic recovery). This is particularly important for large lightweight optics which might undergo large strain during fabrication and environmental loading, such as experienced in gravity release or in dynamic control of active optics.

  5. Hydrodynamic and elastic interactions of sedimenting flexible fibers

    NASA Astrophysics Data System (ADS)

    Ekiel-Jezewska, Maria L.; Bukowicki, Marek

    2017-11-01

    Dynamics of flexible micro and nano filaments in fluids is intensively investigated in many laboratories, with a perspective of numerous applications in biology, medicine or modern technology. In the literature, different theoretical models of elastic interactions between flexible fiber segments are applied. The task of this work is to examine the impact of a chosen elastic model on the dynamics of fibers settling in a viscous fluid under low Reynolds number. To this goal, we construct two trumbbells, each made of three beads connected by springs and with a bending resistance, and we describe hydrodynamic interactions of the beads in terms of the Rotne-Prager mobility tensors. Using the harmonic bending potential, and coupling it to the spring potential by the Young's modulus, we find simple benchmark solutions: stable stationary configurations of a single elastic trumbbell and a fast horizontal attraction of two elastic trumbbells towards a periodic long-lasting orbit. We show that for sufficiently large bending angles, other models of bending interactions can lead to qualitatively and quantitatively different spurious effects. We also demonstrate examples of essential differences between the dynamics of elastic dumbbells and trumbbells. This work was supported in part by Narodowe Centrum Nauki under Grant No. 2014/15/B/ST8/04359.

  6. FATIGUE OF BIOMATERIALS: HARD TISSUES

    PubMed Central

    Arola, D.; Bajaj, D.; Ivancik, J.; Majd, H.; Zhang, D.

    2009-01-01

    The fatigue and fracture behavior of hard tissues are topics of considerable interest today. This special group of organic materials comprises the highly mineralized and load-bearing tissues of the human body, and includes bone, cementum, dentin and enamel. An understanding of their fatigue behavior and the influence of loading conditions and physiological factors (e.g. aging and disease) on the mechanisms of degradation are essential for achieving lifelong health. But there is much more to this topic than the immediate medical issues. There are many challenges to characterizing the fatigue behavior of hard tissues, much of which is attributed to size constraints and the complexity of their microstructure. The relative importance of the constituents on the type and distribution of defects, rate of coalescence, and their contributions to the initiation and growth of cracks, are formidable topics that have not reached maturity. Hard tissues also provide a medium for learning and a source of inspiration in the design of new microstructures for engineering materials. This article briefly reviews fatigue of hard tissues with shared emphasis on current understanding, the challenges and the unanswered questions. PMID:20563239

  7. Hard and soft acids and bases: structure and process.

    PubMed

    Reed, James L

    2012-07-05

    Under investigation is the structure and process that gives rise to hard-soft behavior in simple anionic atomic bases. That for simple atomic bases the chemical hardness is expected to be the only extrinsic component of acid-base strength, has been substantiated in the current study. A thermochemically based operational scale of chemical hardness was used to identify the structure within anionic atomic bases that is responsible for chemical hardness. The base's responding electrons have been identified as the structure, and the relaxation that occurs during charge transfer has been identified as the process giving rise to hard-soft behavior. This is in contrast the commonly accepted explanations that attribute hard-soft behavior to varying degrees of electrostatic and covalent contributions to the acid-base interaction. The ability of the atomic ion's responding electrons to cause hard-soft behavior has been assessed by examining the correlation of the estimated relaxation energies of the responding electrons with the operational chemical hardness. It has been demonstrated that the responding electrons are able to give rise to hard-soft behavior in simple anionic bases.

  8. Finite indentation of highly curved elastic shells

    NASA Astrophysics Data System (ADS)

    Pearce, S. P.; King, J. R.; Steinbrecher, T.; Leubner-Metzger, G.; Everitt, N. M.; Holdsworth, M. J.

    2018-01-01

    Experimentally measuring the elastic properties of thin biological surfaces is non-trivial, particularly when they are curved. One technique that may be used is the indentation of a thin sheet of material by a rigid indenter, while measuring the applied force and displacement. This gives immediate information on the fracture strength of the material (from the force required to puncture), but it is also theoretically possible to determine the elastic properties by comparing the resulting force-displacement curves with a mathematical model. Existing mathematical studies generally assume that the elastic surface is initially flat, which is often not the case for biological membranes. We previously outlined a theory for the indentation of curved isotropic, incompressible, hyperelastic membranes (with no bending stiffness) which breaks down for highly curved surfaces, as the entire membrane becomes wrinkled. Here, we introduce the effect of bending stiffness, ensuring that energy is required to change the shell shape without stretching, and find that commonly neglected terms in the shell equilibrium equation must be included. The theory presented here allows for the estimation of shape- and size-independent elastic properties of highly curved surfaces via indentation experiments, and is particularly relevant for biological surfaces.

  9. Finite indentation of highly curved elastic shells

    PubMed Central

    2018-01-01

    Experimentally measuring the elastic properties of thin biological surfaces is non-trivial, particularly when they are curved. One technique that may be used is the indentation of a thin sheet of material by a rigid indenter, while measuring the applied force and displacement. This gives immediate information on the fracture strength of the material (from the force required to puncture), but it is also theoretically possible to determine the elastic properties by comparing the resulting force–displacement curves with a mathematical model. Existing mathematical studies generally assume that the elastic surface is initially flat, which is often not the case for biological membranes. We previously outlined a theory for the indentation of curved isotropic, incompressible, hyperelastic membranes (with no bending stiffness) which breaks down for highly curved surfaces, as the entire membrane becomes wrinkled. Here, we introduce the effect of bending stiffness, ensuring that energy is required to change the shell shape without stretching, and find that commonly neglected terms in the shell equilibrium equation must be included. The theory presented here allows for the estimation of shape- and size-independent elastic properties of highly curved surfaces via indentation experiments, and is particularly relevant for biological surfaces. PMID:29434505

  10. Characterization of granular collapse onto hard substrates by acoustic emissions

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; De Rosny, Julien

    2013-04-01

    Brittle deformation in granular porous media can generate gravitational instabilities such as debris flows and rock avalanches. These phenomena constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what

  11. Uzawa algorithm to solve elastic and elastic-plastic fretting wear problems within the bipotential framework

    NASA Astrophysics Data System (ADS)

    Ning, Po; Feng, Zhi-Qiang; Quintero, Juan Antonio Rojas; Zhou, Yang-Jing; Peng, Lei

    2018-03-01

    This paper deals with elastic and elastic-plastic fretting problems. The wear gap is taken into account along with the initial contact distance to obtain the Signorini conditions. Both the Signorini conditions and the Coulomb friction laws are written in a compact form. Within the bipotential framework, an augmented Lagrangian method is applied to calculate the contact forces. The Archard wear law is then used to calculate the wear gap at the contact surface. The local fretting problems are solved via the Uzawa algorithm. Numerical examples are performed to show the efficiency and accuracy of the proposed approach. The influence of plasticity has been discussed.

  12. An Easy Way to One-Dimensional Elastic Collisions

    ERIC Educational Resources Information Center

    Sztrajman, Jorge; Sztrajman, Alejandro

    2017-01-01

    The aim of this paper is to propose a method for solving head-on elastic collisions, without algebraic complications, to emphasize the use of the fundamental conservations laws. Head-on elastic collisions are treated in many physics textbooks as examples of conservation of momentum and kinetic energy.

  13. Negative stiffness honeycombs as tunable elastic metamaterials

    NASA Astrophysics Data System (ADS)

    Goldsberry, Benjamin M.; Haberman, Michael R.

    2018-03-01

    Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.

  14. Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX{sub 2}: X = S, Se, Te)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sheetal; Department of Physics, Panjab University, Chandigarh 160014; Verma, A.S., E-mail: ajay_phy@rediffmail.com

    2014-05-01

    Graphical abstract: - Highlights: • FP-LAPW method has been used to compute the solid state properties of AgGaX{sub 2} (X = S, Se, Te). • Electronic and optical properties reported with recently developed mBJ potential. • Thermal expansion, heat capacity, Debye temperature, entropy and Grüneisen parameter were evaluated. • Hardness was calculated for the first time at different temperature and pressure. - Abstract: We have performed ab initio calculations for the structural, electronic, optical, elastic and thermal properties of the silver gallium dichalcogenides (AgGaX{sub 2}: X = S, Se, Te). In this study, we have used the accurate full potentialmore » linearized augmented plane wave (FP-LAPW) method to find the equilibrium structural parameters and to compute the six elastic constants (C{sub 11}, C{sub 12}, C{sub 13}, C{sub 33}, C{sub 44} and C{sub 66}). We have reported electronic and optical properties with the recently developed density functional theory of Tran and Blaha, and this theory is used along with the Wu-Cohen generalized gradient approximation (WC-GGA) for the exchange-correlation potential. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients and optical conductivities were calculated for photon energies up to 40 eV. The thermodynamical properties such as thermal expansion, heat capacity, debye temperature, entropy, Grüneisen parameter and bulk modulus were calculated employing the quasi-harmonic Debye model at different temperatures (0–900 K) and pressures (0–8 GPa) and the silent results were interpreted. Hardness of the materials was calculated for the first time at different temperatures and pressures.« less

  15. Influence of different surfactants on the physicochemical properties of elastic liposomes.

    PubMed

    Barbosa, R M; Severino, P; Preté, P S C; Santana, M H A

    2017-05-01

    Elastic liposomes are capable to improve drug transport through the skin by acting as penetration enhancers due to the high fluidity and elasticity of the liposome membranes. Therefore, elastic liposomes were prepared and characterized to facilitate the transdermal transport of bioactive molecules. Liposomes consisted of dimyristoylphosphatidylcholine (DMPC) as the structural component, with different surfactants derived from lauric acid as elastic components: C 12 E 5 (polyoxyethylene-5-lauryl ether), PEG4L (polyethyleneglycol-4-lauryl ester), PEG4DL (polyethylene glycol-4-dilauryl ester), PEG8L (polyethylene glycol-8-lauryl ester) and PEG8DL (polyethylene glycol-8-dilauryl ester). The elastic liposomes were characterized in terms of their phospholipid content, mean diameter, size distribution, elasticity and stability during storage, as well as their ability to incorporate surfactant and permeate through 50 nm pore size membranes. The results showed that the phospholipid phase transition temperature, the fluidity of the lipid bilayer resulting from incorporation of the surfactant and the preservation of particle integrity were factors determining the performance of the elastic liposomes in permeating through nanoporous membranes. The best results were obtained using DMPC combined with the surfactants PEG8L or PEG8DL. The findings demonstrate the potential of using elastic liposomes for transdermal administration of drugs.

  16. Elastic-plastic deformation of molybdenum single crystals shocked along [100

    DOE PAGES

    Mandal, A.; Gupta, Y. M.

    2017-01-24

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less

  17. Elasticity dominates strength and failure in metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z. Q.; Qu, R. T.; Zhang, Z. F., E-mail: zhfzhang@imr.ac.cn

    2015-01-07

    Two distinct deformation mechanisms of shearing and volume dilatation are quantitatively analyzed in metallic glasses (MGs) from the fundamental thermodynamics. Their competition is deduced to intrinsically dominate the strength and failure behaviors of MGs. Both the intrinsic shear and normal strengths give rise to the critical mechanical energies to activate destabilization of amorphous structures, under pure shearing and volume dilatation, respectively, and can be determined in terms of elastic constants. By adopting an ellipse failure criterion, the strength and failure behaviors of MGs can be precisely described just according to their shear modulus and Poisson's ratio without mechanical testing. Quantitativemore » relations are established systematically and verified by experimental results. Accordingly, the real-sense non-destructive failure prediction can be achieved in various MGs. By highlighting the broad key significance of elasticity, a “composition-elasticity-property” scheme is further outlined for better understanding and controlling the mechanical properties of MGs and other glassy materials from the elastic perspectives.« less

  18. Coiling of elastic rods from a geometric perspective

    NASA Astrophysics Data System (ADS)

    Jawed, Mohammad; Brun, Pierre-Thomas; Reis, Pedro

    2015-03-01

    We present results from a systematic numerical investigation of the pattern formation of coiling obtained when a slender elastic rod is deployed onto a moving substrate; a system known as the elastic sewing machine (ESM). The Discrete Elastic Rods method is employed to explore the parameter space, construct phase diagrams, identify their phase boundaries and characterize the morphology of the patterns. The nontrivial geometric nonlinearities are described in terms of the gravito-bending length and the deployment height. Our results are interpreted using a reduced geometric model for the evolution of the position of the contact point with the belt and the curvature of the rod in its neighborhood. This geometric model reproduces all of the coiling patterns of the ESM, which allows us to establish a universal link between our elastic problem and the analogous patterns obtained when depositing a viscous thread onto a moving surface; a well-known system referred to as the fluid mechanical sewing machine.

  19. Price elasticity of expenditure across health care services.

    PubMed

    Duarte, Fabian

    2012-12-01

    Policymakers in countries around the world are faced with rising health care costs and are debating ways to reform health care to reduce expenditures. Estimates of price elasticity of expenditure are a key component for predicting expenditures under alternative policies. Using unique individual-level data compiled from administrative records from the Chilean private health insurance market, I estimate the price elasticity of expenditures across a variety of health care services. I find elasticities that range between zero for the most acute service (appendectomy) and -2.08 for the most elective (psychologist visit). Moreover, the results show that at least one third of the elasticity is explained by the number of visits; the rest is explained by the intensity of each visit. Finally, I find that high-income individuals are five times more price sensitive than low-income individuals and that older individuals are less price-sensitive than young individuals. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. ShearWave™ elastography for evaluation of the elasticity of Hashimoto's thyroiditis.

    PubMed

    Liu, Haifang; Zhu, Yuping; Jiao, Jie; Yuan, Jia; Pu, Tianning; Yong, Qiang

    2018-04-13

    The aim of this study was to assess the elasticity of Hashimoto's thyroiditis in the different processes via supersonic ShearWave™ Elastography (SWE™). Quantitative information is delivered as Young's modulus value expressed in kilo-Pascal (kPa). 30 healthy female and 30 healthy male individuals aging at 40±20 y had undergone conventional ultrasonography and SWE to determine the influence of gender on elasticity of thyroid. Also 60 female and 60 male patients (mean age, 40±20 y) with Hashimoto's thyroiditis in different processes underwent conventional ultrasonography and SWE to determine the elasticity of thyroid in Hashimoto's thyroiditis. Furthermore, the relationship between elasticity values and thyroid peroxidase antibody (TPOAB) in the patients was investigated. We found significant impact of gender on elasticity values of healthy thyroids. Our study showed that increased elasticity values with statistical significance in hyperthyroidism stage, normal thyroid function stage and hypothyroidism were shown. Low degree relationship between elasticity values and TPOAB was found in 60 male patients. However, there was no such correlation in female patients.

  1. Double hard scattering without double counting

    NASA Astrophysics Data System (ADS)

    Diehl, Markus; Gaunt, Jonathan R.; Schönwald, Kay

    2017-06-01

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  2. Elastic limit and microplastic response of hardened steels

    NASA Astrophysics Data System (ADS)

    Zaccone, M. A.; Krauss, G.

    1993-10-01

    Tempered martensite-retained austenite microstructures were produced by direct quenching a series of 41XX medium carbon steels, direct quenching and reheating a series of five 0.8C-Cr- Ni-Mo steels and intercritically austenitizing at various temperatures, and quenching a SAE 52100 steel. All specimens were tempered either at 150 °C or at 200 °C. Specimens were subjected to compression and tension testing in the microstrain regime to determine the elastic limits and microplastic response of the microstructures. The retained austenite and matrix carbon content of the intercritically austenized specimens were measured by X-ray diffraction and Mossbauer spectroscopy. The elastic limit of the microstructures decreases with increasing amounts of retained austenite. Refining of the austenite distribution increases the elastic limit. Low elastic limits are mainly due to low flow stresses in the austenite and not internal stresses. The elastic limit correlates with the largest austenite free-mean path by a Hall-Petch type equation. The elastic limit increases with decreasing intercritical austenitizing temperature in the SAE 52100 due to (1) a lower carbon content in the matrix reducing the retained austenite levels and (2) retained carbides that refine grain size and, therefore, the austenite distribution in quenched specimens. The microplastic response of stable austenite-martensite composites may be modeled by a rule of mixtures. In the microplastic region, the strain is accommodated by successively smaller austenite regions until the flow strength matches that of the martensite. Reheating and quenching refines the microstructure and renders the austenite unstable in the microplastic regime, causing transformation of the austenite to martensite by a strain-induced mechanism. The transformation of austenite to martensite occurs by a stress-assisted mechanism in medium carbon steels. The low elastic limits in medium carbon steels were due to the inability of the strain

  3. Charting the complete elastic properties of inorganic crystalline compounds

    PubMed Central

    de Jong, Maarten; Chen, Wei; Angsten, Thomas; Jain, Anubhav; Notestine, Randy; Gamst, Anthony; Sluiter, Marcel; Krishna Ande, Chaitanya; van der Zwaag, Sybrand; Plata, Jose J; Toher, Cormac; Curtarolo, Stefano; Ceder, Gerbrand; Persson, Kristin A.; Asta, Mark

    2015-01-01

    The elastic constant tensor of an inorganic compound provides a complete description of the response of the material to external stresses in the elastic limit. It thus provides fundamental insight into the nature of the bonding in the material, and it is known to correlate with many mechanical properties. Despite the importance of the elastic constant tensor, it has been measured for a very small fraction of all known inorganic compounds, a situation that limits the ability of materials scientists to develop new materials with targeted mechanical responses. To address this deficiency, we present here the largest database of calculated elastic properties for inorganic compounds to date. The database currently contains full elastic information for 1,181 inorganic compounds, and this number is growing steadily. The methods used to develop the database are described, as are results of tests that establish the accuracy of the data. In addition, we document the database format and describe the different ways it can be accessed and analyzed in efforts related to materials discovery and design. PMID:25984348

  4. [Aortic elastic properties and its clinical significance in intracranial aneurysms].

    PubMed

    Pu, Zhao-xia; You, Xiang-dong; Weng, Wen-chao; Wang, Jian-an; Shi, Jian

    2011-09-01

    To investigate the aortic elastic properties and its clinical significance in intracranial aneurysms (IAs). One hundred and seven IAs patients (57 with hypertension) and 108 healthy subjects were recruited. The internal aortic diameters in systole and diastole were measured by the M-mode echocardiography, the aortic elasticity indexes were calculated and compared. The aortic distensibility (DIS) was lower and the aortic stiffness index (SI) was higher in IAs patients than those in controls (both P <0.001). DIS was lower and SI was higher in IAs patients with hypertension (IAs-HP) than those in IAs with no hypertension (P <0.001). Similar results were obtained when the aortic elasticity index were adjusted for body surface area and body mass index. Abnormal aortic elasticity is a common finding in IAs patients and hypertension is closely related to the severity of aortic elasticity.

  5. Elasticity and Inverse Temperature Transition in Elastin

    DOE PAGES

    Perticaroli, Stefania; Ehlers, Georg; Jalarvo, Niina; ...

    2015-09-22

    Structurally, elastin is protein and biomaterial that provides elasticity and resilience to a range of tissues. This work provides insights into the elastic properties of elastin and its peculiar inverse temperature transition (ITT). These features are dependent on hydration of elastin and are driven by a similar mechanism of hydrophobic collapse to an entropically favorable state. Moreover, when using neutron scattering, we quantify the changes in the geometry of molecular motions above and below the transition temperature, showing a reduction in the displacement of water-induced motions upon hydrophobic collapse at the ITT. Finally, we measured the collective vibrations of elastinmore » gels as a function of elongation, revealing no changes in the spectral features associated with local rigidity and secondary structure, in agreement with the entropic origin of elasticity.« less

  6. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  7. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  8. Perforating elastic fibers ('elastic fiber trapping') in the differentiation of keratoacanthoma, conventional squamous cell carcinoma and pseudocarcinomatous epithelial hyperplasia.

    PubMed

    Shah, Kabeer; Kazlouskaya, Viktoryia; Lal, Karan; Molina, David; Elston, Dirk M

    2014-02-01

    Keratoacanthoma (KA), an epithelial neoplasm occurring in sun-exposed skin of the elderly, is considered a well-differentiated form of conventional squamous cell carcinoma (SCC) that often follows a course of spontaneous regression. Distinguishing KA from conventional SCC or pseudocarcinomatous epithelial hyperplasia ensures proper diagnosis, treatment and management. For some time, perforating elastic fibers have been utilized in differentiating KA from SCC. This phenomenon may also occur in association with scars and hypertrophic lupus erythematosus (LE). To assess the diagnostic utility of perforating elastic fibers, we compared their incidence in KA, SCC, scars with overlying pseudocarcinomatous hyperplasia, hypertrophic LE, hypertrophic lichen planus (LP) and lichen simplex chronicus (LSC). A retrospective case search identified 359 lesions and the presence of perforating elastic fibers was evaluated using routinely stained sections. This phenomenon was documented in all studied groups except hypertrophic LP. The incidence was found to be 71% in KA, 37% in SCC, and was lowest in inflammatory conditions with associated pseudocarcinomatous hyperplasia (hypertrophic LP 0%, hypertrophic LE 5.9% and LSC 28.2%). The observed frequency in pseudocarcinomatous hyperplasia overlying scars (57.8%) vs. KA (71%) was not statistically different. Although elastic fiber trapping has potential value as a diagnostic criterion for KA, dermatopathologists should consider its limitations. Its diagnostic utility was greatest in distinguishing KA from hypertrophic LE and hypertrophic LP. Conversely, elastic trapping is not helpful differentiating pseudocarcinomatous hyperplasia from recurrent/persistent KA following surgery. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Towards Cloud-based Asynchronous Elasticity for Iterative HPC Applications

    NASA Astrophysics Data System (ADS)

    da Rosa Righi, Rodrigo; Facco Rodrigues, Vinicius; André da Costa, Cristiano; Kreutz, Diego; Heiss, Hans-Ulrich

    2015-10-01

    Elasticity is one of the key features of cloud computing. It allows applications to dynamically scale computing and storage resources, avoiding over- and under-provisioning. In high performance computing (HPC), initiatives are normally modeled to handle bag-of-tasks or key-value applications through a load balancer and a loosely-coupled set of virtual machine (VM) instances. In the joint-field of Message Passing Interface (MPI) and tightly-coupled HPC applications, we observe the need of rewriting source codes, previous knowledge of the application and/or stop-reconfigure-and-go approaches to address cloud elasticity. Besides, there are problems related to how profit this new feature in the HPC scope, since in MPI 2.0 applications the programmers need to handle communicators by themselves, and a sudden consolidation of a VM, together with a process, can compromise the entire execution. To address these issues, we propose a PaaS-based elasticity model, named AutoElastic. It acts as a middleware that allows iterative HPC applications to take advantage of dynamic resource provisioning of cloud infrastructures without any major modification. AutoElastic provides a new concept denoted here as asynchronous elasticity, i.e., it provides a framework to allow applications to either increase or decrease their computing resources without blocking the current execution. The feasibility of AutoElastic is demonstrated through a prototype that runs a CPU-bound numerical integration application on top of the OpenNebula middleware. The results showed the saving of about 3 min at each scaling out operations, emphasizing the contribution of the new concept on contexts where seconds are precious.

  10. Injury risk associated with ground hardness in junior cricket.

    PubMed

    Twomey, Dara M; White, Peta E; Finch, Caroline F

    2012-03-01

    To establish if there is an association between ground hardness and injury risk in junior cricket. Nested case-series of players who played matches on specific grounds with objective ground hardness measures, within a prospective cohort study of junior community club cricket players. Monitoring of injuries and playing exposure occurred during 434 matches over the 2007/2008 playing season. Objective assessment of the hardness of 38 grounds was undertaken using a Clegg hammer at 13 sites on 19 different junior cricket grounds on the match eve across the season. Hardness readings were classified from unacceptably low (<30 g) to unacceptably high (>120 g) and two independent raters assessed the likelihood of each injury being related to ground hardness. Injuries sustained on tested grounds were related to the ground hardness measures. Overall, 31 match injuries were reported; 6.5% were rated as likely to be related to ground hardness, 16.1% as possibly related and 74.2% as unlikely to be related and 3.2% unknown. The two injuries likely to be related to ground hardness were sustained whilst diving to catch a ball resulting, in a graze/laceration from contact with hard ground. Overall, 31/38 (82%) ground assessments were rated as having 'unacceptably high' hardness and all others as 'high/normal' hardness. Only one injury occurred on an objectively tested ground. It remains unclear if ground hardness is a contributing factor to the most common injury mechanism of being struck by the ball, and needs to be confirmed in future larger-scale studies. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. Protein Disulfide Levels and Lens Elasticity Modulation: Applications for Presbyopia

    PubMed Central

    Garner, William H.; Garner, Margaret H.

    2016-01-01

    Purpose The purpose of the experiments described here was to determine the effects of lipoic acid (LA)-dependent disulfide reduction on mouse lens elasticity, to synthesize the choline ester of LA (LACE), and to characterize the effects of topical ocular doses of LACE on mouse lens elasticity. Methods Eight-month-old mouse lenses (C57BL/6J) were incubated for 12 hours in medium supplemented with selected levels (0–500 μM) of LA. Lens elasticity was measured using the coverslip method. After the elasticity measurements, P-SH and PSSP levels were determined in homogenates by differential alkylation before and after alkylation. Choline ester of LA was synthesized and characterized by mass spectrometry and HPLC. Eight-month-old C57BL/6J mice were treated with 2.5 μL of a formulation of 5% LACE three times per day at 8-hour intervals in the right eye (OD) for 5 weeks. After the final treatment, lenses were removed and placed in a cuvette containing buffer. Elasticity was determined with a computer-controlled instrument that provided Z-stage upward movements in 1-μm increments with concomitant force measurements with a Harvard Apparatus F10 isometric force transducer. The elasticity of lenses from 8-week-old C57BL/6J mice was determined for comparison. Results Lipoic acid treatment led to a concentration-dependent decrease in lens protein disulfides concurrent with an increase in lens elasticity. The structure and purity of newly synthesized LACE was confirmed. Aqueous humor concentrations of LA were higher in eyes of mice following topical ocular treatment with LACE than in mice following topical ocular treatment with LA. The lenses of the treated eyes of the old mice were more elastic than the lenses of untreated eyes (i.e., the relative force required for similar Z displacements was higher in the lenses of untreated eyes). In most instances, the lenses of the treated eyes were even more elastic than the lenses of the 8-week-old mice. Conclusions As the elasticity

  12. Analysis of flexible layered shallow shells on elastic foundation

    NASA Astrophysics Data System (ADS)

    Stupishin, L.; Kolesnikov, A.; Tolmacheva, T.

    2017-05-01

    This paper contains numerical analysis of a layered geometric nonlinear flexible shallow shell based on an elastic foundation. Rise of arch in the center of the shell, width, length and type of support are given. The design variable is taken to be the thickness of the shallow shell, the form of the middle surface forming and the characteristic of elastic foundations. Critical force coefficient and stress of shells are calculated by Bubnov-Galerkin. Stress, characteristic of elastic foundations - thickness dependence are presented.

  13. Impact of commercial garden growth substratum and NPK-fertilizer on copper fractionation in a copper-mine tailing

    NASA Astrophysics Data System (ADS)

    Charles, A.; Karam, A.; Jaouich, A.

    2009-04-01

    Organic amendment and NPK-fertilizer could affect the distribution of copper (Cu) among Cu-mine tailing compounds and hence the availability or phytotoxicity of Cu to plants. A laboratory incubation experiment was conducted to investigate the forms of Cu in a Cu-mine tailing (pH 7.70) amended with a commercial garden growth substratum (GGS) containing peat moss and natural mycorrhizae (Glomus intraradices) in combination with a commercial NPK-fertilizer (20-20-20), by a sequential extraction method. There were eight treatments after the combination of four rates of GGS (0, 12.4, 50 and 100 g/kg tailing) and two rates of fertilizer (0 and 20 g/kg tailing). At the end of a 52-week incubation period, tailing Cu was sequentially extracted to fractionate Cu into five operationally defined geochemical forms, namely ‘water-soluble' (Cu-sol), ‘exchangeable' (Cu-exc), ‘specifically adsorbed on carbonates or carbonate-bound' (Cu-car), ‘organic-bound' (Cu-org) and ‘residual' (Cu-res) fractions. After treatments, the most labile Cu pool (Cu-sol + Cu-exc) represented about 0.94 % of the total Cu, the Cu-car and Cu-org accounted for 22.7 and 5.0% of total Cu, and the residual Cu accounted for nearly 71.3% of total Cu. Compared with the control, the application of GGS decreased Cu-car and increased CuORG whereas the addition of fertilizer increased Cu-sol + Cu-exc and decreased Cu-carb. Fertilizer-treated tailings had the highest amount of Cu-sol + Cu-exc. High rates of GGS resulted in Cu-org levels in GGS-treated tailings which were more than 2.0-2.8 times those obtained in the untreated tailing (control). The partition of Cu in GGS-treated tailings followed the order: Cu-sol + Cu-exc < Cu-car < Cu-org < Cu-res. This study suggests that NPK-fertilizer promotes the formation of labile Cu forms in the calcite-containing Cu-mine tailing. GGS in the tailing matrix acts as effective sorbent for Cu.

  14. Diffusion of MMPs on the Surface of Collagen Fibrils: The Mobile Cell Surface – Collagen Substratum Interface

    PubMed Central

    Collier, Ivan E.; Legant, Wesley; Marmer, Barry; Lubman, Olga; Saffarian, Saveez; Wakatsuki, Tetsuro; Elson, Elliot; Goldberg, Gregory I.

    2011-01-01

    Remodeling of the extracellular matrix catalyzed by MMPs is central to morphogenetic phenomena during development and wound healing as well as in numerous pathologic conditions such as fibrosis and cancer. We have previously demonstrated that secreted MMP-2 is tethered to the cell surface and activated by MT1-MMP/TIMP-2-dependent mechanism. The resulting cell-surface collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 can initiate (MT1-MMP) and complete (MMP-2) degradation of an underlying collagen fibril. The following question remained: What is the mechanism of substrate recognition involving the two structures of relatively restricted mobility, the cell surface enzymatic complex and a collagen fibril embedded in the ECM? Here we demonstrate that all the components of the complex are capable of processive movement on a surface of the collagen fibril. The mechanism of MT1-MMP movement is a biased diffusion with the bias component dependent on the proteolysis of its substrate, not adenosine triphosphate (ATP) hydrolysis. It is similar to that of the MMP-1 Brownian ratchet we described earlier. In addition, both MMP-2 and MMP-9 as well as their respective complexes with TIMP-1 and -2 are capable of Brownian diffusion on the surface of native collagen fibrils without noticeable dissociation while the dimerization of MMP-9 renders the enzyme immobile. Most instructive is the finding that the inactivation of the enzymatic activity of MT1-MMP has a detectable negative effect on the cell force developed in miniaturized 3D tissue constructs. We propose that the collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 represents a Mobile Cell Surface – Collagen Substratum Interface. The biological implications of MT1-MMP acting as a molecular ratchet tethered to the cell surface in complex with MMP-2 suggest a new mechanism for the role of spatially regulated peri-cellular proteolysis in cell-matrix interactions. PMID:21912660

  15. Constitution-specific features of perspiration and skin visco-elasticity in SCM

    PubMed Central

    2014-01-01

    Background Human skin properties have been used as an important diagnostic component in traditional medicine as they change with health conditions. Sasang constitutional medicine (SCM) puts emphasis on the recognition of the constitution-specific skin features prior to the diagnostic decision of health. In this work, in search of skin-characteristics effectively reflecting SCM features, we compared several skin properties such as perspiration, visco-elasticity, elasticity, and elasticity hysteresis, in several candidate body parts. Methods We conducted a clinical study in which a total of 111 healthy females aged 50 – 70 years participated with their Sasang constitution (SC) types determined objectively by the Sasang constitutional analytic tool. Perspiration on the skin surface was estimated by using a capacitance sensor to measure the amount of moisture on the palm, forehead, and philtrum before and after a heating stimulus. We acquired the visco-elasticity, elasticity, and elasticity hysteresis at the forearm by Dermalab’s elasticity sensing device. An analysis of covariance (ANCOVA) was conducted to evaluate the effect of SC on the nine skin features acquired. Results The visco-elasticity of the forearm of the Soeum-in (SE) group was significantly lower than that of the Taeeum-in (TE) group (F = 68.867, p < 0.001), whereas the elasticity hysteresis of the SE group was higher than that of the TE group (F = 10.364, p < 0.01). The TE group had more perspiration on the forehead than the SE group (F = 9.050, p < 0.01). The SE group had a large perspiration difference between the philtrum and the forehead compared with the TE group (F = 7.892, p < 0.01). Conclusions We found four significant skin features that reflect the inherent constitutional attributes of the TE and SE groups in accordance with SCM literature; the visco-elasticity, elasticity hysteresis, perspiration on the forehead and philtrum. Our findings are based on a

  16. Entropic Elasticity in the Giant Muscle Protein Titin

    NASA Astrophysics Data System (ADS)

    Morgan, Ian; Saleh, Omar

    Intrinsically disordered proteins (IDPs) are a large and functionally important class of proteins that lack a fixed three-dimensional structure. Instead, they adopt a conformational ensemble of states which facilitates their biological function as molecular linkers, springs, and switches. Due to their conformational flexibility, it can be difficult to study IDPs using typical experimental methods. To overcome this challenge, we use a high-resolution single-molecule magnetic stretching technique to quantify IDP flexibility. We apply this technique to the giant muscle protein titin, measuring its elastic response at low forces. We present results demonstrating that titin's native elastic response derives from the combined entropic elasticity of its ordered and disordered domains.

  17. Effect of repeated cycles of chemical disinfection on the roughness and hardness of hard reline acrylic resins.

    PubMed

    Pinto, Luciana de Rezende; Acosta, Emílio José T Rodríguez; Távora, Flora Freitas Fernandes; da Silva, Paulo Maurício Batista; Porto, Vinícius Carvalho

    2010-06-01

    The aim of this study was to assess the effect of repeated cycles of five chemical disinfectant solutions on the roughness and hardness of three hard chairside reliners. A total of 180 circular specimens (30 mm x 6 mm) were fabricated using three hard chairside reliners (Jet; n = 60, Kooliner; n = 60, Tokuyama Rebase II Fast; n = 60), which were immersed in deionised water (control), and five disinfectant solutions (1%, 2%, 5.25% sodium hypochlorite; 2% glutaraldehyde; 4% chlorhexidine gluconate). They were tested for Knoop hardness (KHN) and surface roughness (microm), before and after 30 simulated disinfecting cycles. Data was analysed by the factorial scheme (6 x 2), two-way analysis of variance (anova), followed by Tukey's test. For Jet (from 18.74 to 13.86 KHN), Kooliner (from 14.09 to 8.72 KHN), Tokuyama (from 12.57 to 8.28 KHN) a significant decrease in hardness was observed irrespective of the solution used on all materials. For Jet (from 0.09 to 0.11 microm) there was a statistically significant increase in roughness. Kooliner (from 0.36 to 0.26 microm) presented a statistically significant decrease in roughness and Tokuyama (from 0.15 to 0.11 microm) presented no statistically significant difference after 30 days. This study showed that all disinfectant solutions promoted a statistically significant decrease in hardness, whereas with roughness, the materials tested showed a statistically significant increase, except for Tokuyama. Although statistically significant values were registered, these results could not be considered clinically significant.

  18. Elastic Heterogeneity in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Dmowski, W.; Iwashita, T.; Chuang, C.-P.; Almer, J.; Egami, T.

    2010-11-01

    When a stress is applied on a metallic glass it deforms following Hook’s law. Therefore it may appear obvious that a metallic glass deforms elastically. Using x-ray diffraction and anisotropic pair-density function analysis we show that only about (3)/(4) in volume fraction of metallic glasses deforms elastically, whereas the rest of the volume is anelastic and in the experimental time scale deform without resistance. We suggest that this anelastic portion represents residual liquidity in the glassy state. Many theories, such as the free-volume theory, assume the density of defects in the glassy state to be of the order of 1%, but this result shows that it is as much as a quarter.

  19. Metal nanoplates: Smaller is weaker due to failure by elastic instability

    NASA Astrophysics Data System (ADS)

    Ho, Duc Tam; Kwon, Soon-Yong; Park, Harold S.; Kim, Sung Youb

    2017-11-01

    Under mechanical loading, crystalline solids deform elastically, and subsequently yield and fail via plastic deformation. Thus crystalline materials experience two mechanical regimes: elasticity and plasticity. Here, we provide numerical and theoretical evidence to show that metal nanoplates exhibit an intermediate mechanical regime that occurs between elasticity and plasticity, which we call the elastic instability regime. The elastic instability regime begins with a decrease in stress, during which the nanoplates fail via global, and not local, deformation mechanisms that are distinctly different from traditional dislocation-mediated plasticity. Because the nanoplates fail via elastic instability, the governing strength criterion is the ideal strength, rather than the yield strength, and as a result, we observe a unique "smaller is weaker" trend. We develop a simple surface-stress-based analytic model to predict the ideal strength of the metal nanoplates, which accurately reproduces the smaller is weaker behavior observed in the atomistic simulations.

  20. A design concept of parallel elasticity extracted from biological muscles for engineered actuators.

    PubMed

    Chen, Jie; Jin, Hongzhe; Iida, Fumiya; Zhao, Jie

    2016-08-23

    Series elastic actuation that takes inspiration from biological muscle-tendon units has been extensively studied and used to address the challenges (e.g. energy efficiency, robustness) existing in purely stiff robots. However, there also exists another form of passive property in biological actuation, parallel elasticity within muscles themselves, and our knowledge of it is limited: for example, there is still no general design strategy for the elasticity profile. When we look at nature, on the other hand, there seems a universal agreement in biological systems: experimental evidence has suggested that a concave-upward elasticity behaviour is exhibited within the muscles of animals. Seeking to draw possible design clues for elasticity in parallel with actuators, we use a simplified joint model to investigate the mechanisms behind this biologically universal preference of muscles. Actuation of the model is identified from general biological joints and further reduced with a specific focus on muscle elasticity aspects, for the sake of easy implementation. By examining various elasticity scenarios, one without elasticity and three with elasticity of different profiles, we find that parallel elasticity generally exerts contradictory influences on energy efficiency and disturbance rejection, due to the mechanical impedance shift thus caused. The trade-off analysis between them also reveals that concave parallel elasticity is able to achieve a more advantageous balance than linear and convex ones. It is expected that the results could contribute to our further understanding of muscle elasticity and provide a theoretical guideline on how to properly design parallel elasticity behaviours for engineering systems such as artificial actuators and robotic joints.